1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Statepoint.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/MC/MCContext.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/InstructionCost.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Target/TargetIntrinsicInfo.h" 101 #include "llvm/Target/TargetMachine.h" 102 #include "llvm/Target/TargetOptions.h" 103 #include "llvm/TargetParser/Triple.h" 104 #include "llvm/Transforms/Utils/Local.h" 105 #include <cstddef> 106 #include <iterator> 107 #include <limits> 108 #include <optional> 109 #include <tuple> 110 111 using namespace llvm; 112 using namespace PatternMatch; 113 using namespace SwitchCG; 114 115 #define DEBUG_TYPE "isel" 116 117 /// LimitFloatPrecision - Generate low-precision inline sequences for 118 /// some float libcalls (6, 8 or 12 bits). 119 static unsigned LimitFloatPrecision; 120 121 static cl::opt<bool> 122 InsertAssertAlign("insert-assert-align", cl::init(true), 123 cl::desc("Insert the experimental `assertalign` node."), 124 cl::ReallyHidden); 125 126 static cl::opt<unsigned, true> 127 LimitFPPrecision("limit-float-precision", 128 cl::desc("Generate low-precision inline sequences " 129 "for some float libcalls"), 130 cl::location(LimitFloatPrecision), cl::Hidden, 131 cl::init(0)); 132 133 static cl::opt<unsigned> SwitchPeelThreshold( 134 "switch-peel-threshold", cl::Hidden, cl::init(66), 135 cl::desc("Set the case probability threshold for peeling the case from a " 136 "switch statement. A value greater than 100 will void this " 137 "optimization")); 138 139 // Limit the width of DAG chains. This is important in general to prevent 140 // DAG-based analysis from blowing up. For example, alias analysis and 141 // load clustering may not complete in reasonable time. It is difficult to 142 // recognize and avoid this situation within each individual analysis, and 143 // future analyses are likely to have the same behavior. Limiting DAG width is 144 // the safe approach and will be especially important with global DAGs. 145 // 146 // MaxParallelChains default is arbitrarily high to avoid affecting 147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 148 // sequence over this should have been converted to llvm.memcpy by the 149 // frontend. It is easy to induce this behavior with .ll code such as: 150 // %buffer = alloca [4096 x i8] 151 // %data = load [4096 x i8]* %argPtr 152 // store [4096 x i8] %data, [4096 x i8]* %buffer 153 static const unsigned MaxParallelChains = 64; 154 155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 156 const SDValue *Parts, unsigned NumParts, 157 MVT PartVT, EVT ValueVT, const Value *V, 158 SDValue InChain, 159 std::optional<CallingConv::ID> CC); 160 161 /// getCopyFromParts - Create a value that contains the specified legal parts 162 /// combined into the value they represent. If the parts combine to a type 163 /// larger than ValueVT then AssertOp can be used to specify whether the extra 164 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 165 /// (ISD::AssertSext). 166 static SDValue 167 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 168 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 169 SDValue InChain, 170 std::optional<CallingConv::ID> CC = std::nullopt, 171 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 172 // Let the target assemble the parts if it wants to 173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 174 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 175 PartVT, ValueVT, CC)) 176 return Val; 177 178 if (ValueVT.isVector()) 179 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 180 InChain, CC); 181 182 assert(NumParts > 0 && "No parts to assemble!"); 183 SDValue Val = Parts[0]; 184 185 if (NumParts > 1) { 186 // Assemble the value from multiple parts. 187 if (ValueVT.isInteger()) { 188 unsigned PartBits = PartVT.getSizeInBits(); 189 unsigned ValueBits = ValueVT.getSizeInBits(); 190 191 // Assemble the power of 2 part. 192 unsigned RoundParts = llvm::bit_floor(NumParts); 193 unsigned RoundBits = PartBits * RoundParts; 194 EVT RoundVT = RoundBits == ValueBits ? 195 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 196 SDValue Lo, Hi; 197 198 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 199 200 if (RoundParts > 2) { 201 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 202 InChain); 203 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 204 PartVT, HalfVT, V, InChain); 205 } else { 206 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 207 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 208 } 209 210 if (DAG.getDataLayout().isBigEndian()) 211 std::swap(Lo, Hi); 212 213 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 214 215 if (RoundParts < NumParts) { 216 // Assemble the trailing non-power-of-2 part. 217 unsigned OddParts = NumParts - RoundParts; 218 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 219 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 220 OddVT, V, InChain, CC); 221 222 // Combine the round and odd parts. 223 Lo = Val; 224 if (DAG.getDataLayout().isBigEndian()) 225 std::swap(Lo, Hi); 226 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 227 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 228 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 229 DAG.getConstant(Lo.getValueSizeInBits(), DL, 230 TLI.getShiftAmountTy( 231 TotalVT, DAG.getDataLayout()))); 232 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 233 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 234 } 235 } else if (PartVT.isFloatingPoint()) { 236 // FP split into multiple FP parts (for ppcf128) 237 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 238 "Unexpected split"); 239 SDValue Lo, Hi; 240 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 241 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 242 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 243 std::swap(Lo, Hi); 244 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 245 } else { 246 // FP split into integer parts (soft fp) 247 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 248 !PartVT.isVector() && "Unexpected split"); 249 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 250 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 251 InChain, CC); 252 } 253 } 254 255 // There is now one part, held in Val. Correct it to match ValueVT. 256 // PartEVT is the type of the register class that holds the value. 257 // ValueVT is the type of the inline asm operation. 258 EVT PartEVT = Val.getValueType(); 259 260 if (PartEVT == ValueVT) 261 return Val; 262 263 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 264 ValueVT.bitsLT(PartEVT)) { 265 // For an FP value in an integer part, we need to truncate to the right 266 // width first. 267 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 268 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 269 } 270 271 // Handle types that have the same size. 272 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 273 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 274 275 // Handle types with different sizes. 276 if (PartEVT.isInteger() && ValueVT.isInteger()) { 277 if (ValueVT.bitsLT(PartEVT)) { 278 // For a truncate, see if we have any information to 279 // indicate whether the truncated bits will always be 280 // zero or sign-extension. 281 if (AssertOp) 282 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 283 DAG.getValueType(ValueVT)); 284 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 285 } 286 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 287 } 288 289 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 290 // FP_ROUND's are always exact here. 291 if (ValueVT.bitsLT(Val.getValueType())) { 292 293 SDValue NoChange = 294 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 295 296 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 297 llvm::Attribute::StrictFP)) { 298 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 299 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 300 NoChange); 301 } 302 303 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 304 } 305 306 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 307 } 308 309 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 310 // then truncating. 311 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 312 ValueVT.bitsLT(PartEVT)) { 313 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 314 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 315 } 316 317 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 318 } 319 320 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 321 const Twine &ErrMsg) { 322 const Instruction *I = dyn_cast_or_null<Instruction>(V); 323 if (!V) 324 return Ctx.emitError(ErrMsg); 325 326 const char *AsmError = ", possible invalid constraint for vector type"; 327 if (const CallInst *CI = dyn_cast<CallInst>(I)) 328 if (CI->isInlineAsm()) 329 return Ctx.emitError(I, ErrMsg + AsmError); 330 331 return Ctx.emitError(I, ErrMsg); 332 } 333 334 /// getCopyFromPartsVector - Create a value that contains the specified legal 335 /// parts combined into the value they represent. If the parts combine to a 336 /// type larger than ValueVT then AssertOp can be used to specify whether the 337 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 338 /// ValueVT (ISD::AssertSext). 339 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 340 const SDValue *Parts, unsigned NumParts, 341 MVT PartVT, EVT ValueVT, const Value *V, 342 SDValue InChain, 343 std::optional<CallingConv::ID> CallConv) { 344 assert(ValueVT.isVector() && "Not a vector value"); 345 assert(NumParts > 0 && "No parts to assemble!"); 346 const bool IsABIRegCopy = CallConv.has_value(); 347 348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 349 SDValue Val = Parts[0]; 350 351 // Handle a multi-element vector. 352 if (NumParts > 1) { 353 EVT IntermediateVT; 354 MVT RegisterVT; 355 unsigned NumIntermediates; 356 unsigned NumRegs; 357 358 if (IsABIRegCopy) { 359 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 360 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 361 NumIntermediates, RegisterVT); 362 } else { 363 NumRegs = 364 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 365 NumIntermediates, RegisterVT); 366 } 367 368 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 369 NumParts = NumRegs; // Silence a compiler warning. 370 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 371 assert(RegisterVT.getSizeInBits() == 372 Parts[0].getSimpleValueType().getSizeInBits() && 373 "Part type sizes don't match!"); 374 375 // Assemble the parts into intermediate operands. 376 SmallVector<SDValue, 8> Ops(NumIntermediates); 377 if (NumIntermediates == NumParts) { 378 // If the register was not expanded, truncate or copy the value, 379 // as appropriate. 380 for (unsigned i = 0; i != NumParts; ++i) 381 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 382 V, InChain, CallConv); 383 } else if (NumParts > 0) { 384 // If the intermediate type was expanded, build the intermediate 385 // operands from the parts. 386 assert(NumParts % NumIntermediates == 0 && 387 "Must expand into a divisible number of parts!"); 388 unsigned Factor = NumParts / NumIntermediates; 389 for (unsigned i = 0; i != NumIntermediates; ++i) 390 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 391 IntermediateVT, V, InChain, CallConv); 392 } 393 394 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 395 // intermediate operands. 396 EVT BuiltVectorTy = 397 IntermediateVT.isVector() 398 ? EVT::getVectorVT( 399 *DAG.getContext(), IntermediateVT.getScalarType(), 400 IntermediateVT.getVectorElementCount() * NumParts) 401 : EVT::getVectorVT(*DAG.getContext(), 402 IntermediateVT.getScalarType(), 403 NumIntermediates); 404 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 405 : ISD::BUILD_VECTOR, 406 DL, BuiltVectorTy, Ops); 407 } 408 409 // There is now one part, held in Val. Correct it to match ValueVT. 410 EVT PartEVT = Val.getValueType(); 411 412 if (PartEVT == ValueVT) 413 return Val; 414 415 if (PartEVT.isVector()) { 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 // If the parts vector has more elements than the value vector, then we 421 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 422 // Extract the elements we want. 423 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 424 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 425 ValueVT.getVectorElementCount().getKnownMinValue()) && 426 (PartEVT.getVectorElementCount().isScalable() == 427 ValueVT.getVectorElementCount().isScalable()) && 428 "Cannot narrow, it would be a lossy transformation"); 429 PartEVT = 430 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 431 ValueVT.getVectorElementCount()); 432 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 433 DAG.getVectorIdxConstant(0, DL)); 434 if (PartEVT == ValueVT) 435 return Val; 436 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 439 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 440 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 441 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 442 } 443 444 // Promoted vector extract 445 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 446 } 447 448 // Trivial bitcast if the types are the same size and the destination 449 // vector type is legal. 450 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 451 TLI.isTypeLegal(ValueVT)) 452 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 453 454 if (ValueVT.getVectorNumElements() != 1) { 455 // Certain ABIs require that vectors are passed as integers. For vectors 456 // are the same size, this is an obvious bitcast. 457 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 458 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 459 } else if (ValueVT.bitsLT(PartEVT)) { 460 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 461 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 462 // Drop the extra bits. 463 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 464 return DAG.getBitcast(ValueVT, Val); 465 } 466 467 diagnosePossiblyInvalidConstraint( 468 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 469 return DAG.getUNDEF(ValueVT); 470 } 471 472 // Handle cases such as i8 -> <1 x i1> 473 EVT ValueSVT = ValueVT.getVectorElementType(); 474 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 475 unsigned ValueSize = ValueSVT.getSizeInBits(); 476 if (ValueSize == PartEVT.getSizeInBits()) { 477 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 478 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 479 // It's possible a scalar floating point type gets softened to integer and 480 // then promoted to a larger integer. If PartEVT is the larger integer 481 // we need to truncate it and then bitcast to the FP type. 482 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 483 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 484 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 485 Val = DAG.getBitcast(ValueSVT, Val); 486 } else { 487 Val = ValueVT.isFloatingPoint() 488 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 489 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 490 } 491 } 492 493 return DAG.getBuildVector(ValueVT, DL, Val); 494 } 495 496 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 497 SDValue Val, SDValue *Parts, unsigned NumParts, 498 MVT PartVT, const Value *V, 499 std::optional<CallingConv::ID> CallConv); 500 501 /// getCopyToParts - Create a series of nodes that contain the specified value 502 /// split into legal parts. If the parts contain more bits than Val, then, for 503 /// integers, ExtendKind can be used to specify how to generate the extra bits. 504 static void 505 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 506 unsigned NumParts, MVT PartVT, const Value *V, 507 std::optional<CallingConv::ID> CallConv = std::nullopt, 508 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 509 // Let the target split the parts if it wants to 510 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 511 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 512 CallConv)) 513 return; 514 EVT ValueVT = Val.getValueType(); 515 516 // Handle the vector case separately. 517 if (ValueVT.isVector()) 518 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 519 CallConv); 520 521 unsigned OrigNumParts = NumParts; 522 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 523 "Copying to an illegal type!"); 524 525 if (NumParts == 0) 526 return; 527 528 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 529 EVT PartEVT = PartVT; 530 if (PartEVT == ValueVT) { 531 assert(NumParts == 1 && "No-op copy with multiple parts!"); 532 Parts[0] = Val; 533 return; 534 } 535 536 unsigned PartBits = PartVT.getSizeInBits(); 537 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 538 // If the parts cover more bits than the value has, promote the value. 539 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 540 assert(NumParts == 1 && "Do not know what to promote to!"); 541 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 542 } else { 543 if (ValueVT.isFloatingPoint()) { 544 // FP values need to be bitcast, then extended if they are being put 545 // into a larger container. 546 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 547 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 548 } 549 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 550 ValueVT.isInteger() && 551 "Unknown mismatch!"); 552 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 553 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 554 if (PartVT == MVT::x86mmx) 555 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 556 } 557 } else if (PartBits == ValueVT.getSizeInBits()) { 558 // Different types of the same size. 559 assert(NumParts == 1 && PartEVT != ValueVT); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 562 // If the parts cover less bits than value has, truncate the value. 563 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 564 ValueVT.isInteger() && 565 "Unknown mismatch!"); 566 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 567 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 568 if (PartVT == MVT::x86mmx) 569 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 570 } 571 572 // The value may have changed - recompute ValueVT. 573 ValueVT = Val.getValueType(); 574 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 575 "Failed to tile the value with PartVT!"); 576 577 if (NumParts == 1) { 578 if (PartEVT != ValueVT) { 579 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 580 "scalar-to-vector conversion failed"); 581 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 582 } 583 584 Parts[0] = Val; 585 return; 586 } 587 588 // Expand the value into multiple parts. 589 if (NumParts & (NumParts - 1)) { 590 // The number of parts is not a power of 2. Split off and copy the tail. 591 assert(PartVT.isInteger() && ValueVT.isInteger() && 592 "Do not know what to expand to!"); 593 unsigned RoundParts = llvm::bit_floor(NumParts); 594 unsigned RoundBits = RoundParts * PartBits; 595 unsigned OddParts = NumParts - RoundParts; 596 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 597 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 598 599 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 600 CallConv); 601 602 if (DAG.getDataLayout().isBigEndian()) 603 // The odd parts were reversed by getCopyToParts - unreverse them. 604 std::reverse(Parts + RoundParts, Parts + NumParts); 605 606 NumParts = RoundParts; 607 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 608 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 609 } 610 611 // The number of parts is a power of 2. Repeatedly bisect the value using 612 // EXTRACT_ELEMENT. 613 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 614 EVT::getIntegerVT(*DAG.getContext(), 615 ValueVT.getSizeInBits()), 616 Val); 617 618 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 619 for (unsigned i = 0; i < NumParts; i += StepSize) { 620 unsigned ThisBits = StepSize * PartBits / 2; 621 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 622 SDValue &Part0 = Parts[i]; 623 SDValue &Part1 = Parts[i+StepSize/2]; 624 625 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 626 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 627 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 628 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 629 630 if (ThisBits == PartBits && ThisVT != PartVT) { 631 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 632 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 633 } 634 } 635 } 636 637 if (DAG.getDataLayout().isBigEndian()) 638 std::reverse(Parts, Parts + OrigNumParts); 639 } 640 641 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 642 const SDLoc &DL, EVT PartVT) { 643 if (!PartVT.isVector()) 644 return SDValue(); 645 646 EVT ValueVT = Val.getValueType(); 647 EVT PartEVT = PartVT.getVectorElementType(); 648 EVT ValueEVT = ValueVT.getVectorElementType(); 649 ElementCount PartNumElts = PartVT.getVectorElementCount(); 650 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 651 652 // We only support widening vectors with equivalent element types and 653 // fixed/scalable properties. If a target needs to widen a fixed-length type 654 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 655 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 656 PartNumElts.isScalable() != ValueNumElts.isScalable()) 657 return SDValue(); 658 659 // Have a try for bf16 because some targets share its ABI with fp16. 660 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 661 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 662 "Cannot widen to illegal type"); 663 Val = DAG.getNode(ISD::BITCAST, DL, 664 ValueVT.changeVectorElementType(MVT::f16), Val); 665 } else if (PartEVT != ValueEVT) { 666 return SDValue(); 667 } 668 669 // Widening a scalable vector to another scalable vector is done by inserting 670 // the vector into a larger undef one. 671 if (PartNumElts.isScalable()) 672 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 673 Val, DAG.getVectorIdxConstant(0, DL)); 674 675 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 676 // undef elements. 677 SmallVector<SDValue, 16> Ops; 678 DAG.ExtractVectorElements(Val, Ops); 679 SDValue EltUndef = DAG.getUNDEF(PartEVT); 680 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 681 682 // FIXME: Use CONCAT for 2x -> 4x. 683 return DAG.getBuildVector(PartVT, DL, Ops); 684 } 685 686 /// getCopyToPartsVector - Create a series of nodes that contain the specified 687 /// value split into legal parts. 688 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 689 SDValue Val, SDValue *Parts, unsigned NumParts, 690 MVT PartVT, const Value *V, 691 std::optional<CallingConv::ID> CallConv) { 692 EVT ValueVT = Val.getValueType(); 693 assert(ValueVT.isVector() && "Not a vector"); 694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 695 const bool IsABIRegCopy = CallConv.has_value(); 696 697 if (NumParts == 1) { 698 EVT PartEVT = PartVT; 699 if (PartEVT == ValueVT) { 700 // Nothing to do. 701 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 702 // Bitconvert vector->vector case. 703 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 704 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 705 Val = Widened; 706 } else if (PartVT.isVector() && 707 PartEVT.getVectorElementType().bitsGE( 708 ValueVT.getVectorElementType()) && 709 PartEVT.getVectorElementCount() == 710 ValueVT.getVectorElementCount()) { 711 712 // Promoted vector extract 713 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 714 } else if (PartEVT.isVector() && 715 PartEVT.getVectorElementType() != 716 ValueVT.getVectorElementType() && 717 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 718 TargetLowering::TypeWidenVector) { 719 // Combination of widening and promotion. 720 EVT WidenVT = 721 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 722 PartVT.getVectorElementCount()); 723 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 724 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 725 } else { 726 // Don't extract an integer from a float vector. This can happen if the 727 // FP type gets softened to integer and then promoted. The promotion 728 // prevents it from being picked up by the earlier bitcast case. 729 if (ValueVT.getVectorElementCount().isScalar() && 730 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 731 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 732 DAG.getVectorIdxConstant(0, DL)); 733 } else { 734 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 735 assert(PartVT.getFixedSizeInBits() > ValueSize && 736 "lossy conversion of vector to scalar type"); 737 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 738 Val = DAG.getBitcast(IntermediateType, Val); 739 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 740 } 741 } 742 743 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 744 Parts[0] = Val; 745 return; 746 } 747 748 // Handle a multi-element vector. 749 EVT IntermediateVT; 750 MVT RegisterVT; 751 unsigned NumIntermediates; 752 unsigned NumRegs; 753 if (IsABIRegCopy) { 754 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 755 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 756 RegisterVT); 757 } else { 758 NumRegs = 759 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 760 NumIntermediates, RegisterVT); 761 } 762 763 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 764 NumParts = NumRegs; // Silence a compiler warning. 765 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 766 767 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 768 "Mixing scalable and fixed vectors when copying in parts"); 769 770 std::optional<ElementCount> DestEltCnt; 771 772 if (IntermediateVT.isVector()) 773 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 774 else 775 DestEltCnt = ElementCount::getFixed(NumIntermediates); 776 777 EVT BuiltVectorTy = EVT::getVectorVT( 778 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 779 780 if (ValueVT == BuiltVectorTy) { 781 // Nothing to do. 782 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 783 // Bitconvert vector->vector case. 784 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 785 } else { 786 if (BuiltVectorTy.getVectorElementType().bitsGT( 787 ValueVT.getVectorElementType())) { 788 // Integer promotion. 789 ValueVT = EVT::getVectorVT(*DAG.getContext(), 790 BuiltVectorTy.getVectorElementType(), 791 ValueVT.getVectorElementCount()); 792 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 793 } 794 795 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 796 Val = Widened; 797 } 798 } 799 800 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 801 802 // Split the vector into intermediate operands. 803 SmallVector<SDValue, 8> Ops(NumIntermediates); 804 for (unsigned i = 0; i != NumIntermediates; ++i) { 805 if (IntermediateVT.isVector()) { 806 // This does something sensible for scalable vectors - see the 807 // definition of EXTRACT_SUBVECTOR for further details. 808 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 809 Ops[i] = 810 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 811 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 812 } else { 813 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 814 DAG.getVectorIdxConstant(i, DL)); 815 } 816 } 817 818 // Split the intermediate operands into legal parts. 819 if (NumParts == NumIntermediates) { 820 // If the register was not expanded, promote or copy the value, 821 // as appropriate. 822 for (unsigned i = 0; i != NumParts; ++i) 823 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 824 } else if (NumParts > 0) { 825 // If the intermediate type was expanded, split each the value into 826 // legal parts. 827 assert(NumIntermediates != 0 && "division by zero"); 828 assert(NumParts % NumIntermediates == 0 && 829 "Must expand into a divisible number of parts!"); 830 unsigned Factor = NumParts / NumIntermediates; 831 for (unsigned i = 0; i != NumIntermediates; ++i) 832 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 833 CallConv); 834 } 835 } 836 837 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 838 EVT valuevt, std::optional<CallingConv::ID> CC) 839 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 840 RegCount(1, regs.size()), CallConv(CC) {} 841 842 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 843 const DataLayout &DL, unsigned Reg, Type *Ty, 844 std::optional<CallingConv::ID> CC) { 845 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 846 847 CallConv = CC; 848 849 for (EVT ValueVT : ValueVTs) { 850 unsigned NumRegs = 851 isABIMangled() 852 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 853 : TLI.getNumRegisters(Context, ValueVT); 854 MVT RegisterVT = 855 isABIMangled() 856 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 857 : TLI.getRegisterType(Context, ValueVT); 858 for (unsigned i = 0; i != NumRegs; ++i) 859 Regs.push_back(Reg + i); 860 RegVTs.push_back(RegisterVT); 861 RegCount.push_back(NumRegs); 862 Reg += NumRegs; 863 } 864 } 865 866 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 867 FunctionLoweringInfo &FuncInfo, 868 const SDLoc &dl, SDValue &Chain, 869 SDValue *Glue, const Value *V) const { 870 // A Value with type {} or [0 x %t] needs no registers. 871 if (ValueVTs.empty()) 872 return SDValue(); 873 874 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 875 876 // Assemble the legal parts into the final values. 877 SmallVector<SDValue, 4> Values(ValueVTs.size()); 878 SmallVector<SDValue, 8> Parts; 879 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 880 // Copy the legal parts from the registers. 881 EVT ValueVT = ValueVTs[Value]; 882 unsigned NumRegs = RegCount[Value]; 883 MVT RegisterVT = isABIMangled() 884 ? TLI.getRegisterTypeForCallingConv( 885 *DAG.getContext(), *CallConv, RegVTs[Value]) 886 : RegVTs[Value]; 887 888 Parts.resize(NumRegs); 889 for (unsigned i = 0; i != NumRegs; ++i) { 890 SDValue P; 891 if (!Glue) { 892 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 893 } else { 894 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 895 *Glue = P.getValue(2); 896 } 897 898 Chain = P.getValue(1); 899 Parts[i] = P; 900 901 // If the source register was virtual and if we know something about it, 902 // add an assert node. 903 if (!Register::isVirtualRegister(Regs[Part + i]) || 904 !RegisterVT.isInteger()) 905 continue; 906 907 const FunctionLoweringInfo::LiveOutInfo *LOI = 908 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 909 if (!LOI) 910 continue; 911 912 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 913 unsigned NumSignBits = LOI->NumSignBits; 914 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 915 916 if (NumZeroBits == RegSize) { 917 // The current value is a zero. 918 // Explicitly express that as it would be easier for 919 // optimizations to kick in. 920 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 921 continue; 922 } 923 924 // FIXME: We capture more information than the dag can represent. For 925 // now, just use the tightest assertzext/assertsext possible. 926 bool isSExt; 927 EVT FromVT(MVT::Other); 928 if (NumZeroBits) { 929 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 930 isSExt = false; 931 } else if (NumSignBits > 1) { 932 FromVT = 933 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 934 isSExt = true; 935 } else { 936 continue; 937 } 938 // Add an assertion node. 939 assert(FromVT != MVT::Other); 940 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 941 RegisterVT, P, DAG.getValueType(FromVT)); 942 } 943 944 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 945 RegisterVT, ValueVT, V, Chain, CallConv); 946 Part += NumRegs; 947 Parts.clear(); 948 } 949 950 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 951 } 952 953 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 954 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 955 const Value *V, 956 ISD::NodeType PreferredExtendType) const { 957 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 958 ISD::NodeType ExtendKind = PreferredExtendType; 959 960 // Get the list of the values's legal parts. 961 unsigned NumRegs = Regs.size(); 962 SmallVector<SDValue, 8> Parts(NumRegs); 963 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 964 unsigned NumParts = RegCount[Value]; 965 966 MVT RegisterVT = isABIMangled() 967 ? TLI.getRegisterTypeForCallingConv( 968 *DAG.getContext(), *CallConv, RegVTs[Value]) 969 : RegVTs[Value]; 970 971 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 972 ExtendKind = ISD::ZERO_EXTEND; 973 974 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 975 NumParts, RegisterVT, V, CallConv, ExtendKind); 976 Part += NumParts; 977 } 978 979 // Copy the parts into the registers. 980 SmallVector<SDValue, 8> Chains(NumRegs); 981 for (unsigned i = 0; i != NumRegs; ++i) { 982 SDValue Part; 983 if (!Glue) { 984 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 985 } else { 986 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 987 *Glue = Part.getValue(1); 988 } 989 990 Chains[i] = Part.getValue(0); 991 } 992 993 if (NumRegs == 1 || Glue) 994 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 995 // flagged to it. That is the CopyToReg nodes and the user are considered 996 // a single scheduling unit. If we create a TokenFactor and return it as 997 // chain, then the TokenFactor is both a predecessor (operand) of the 998 // user as well as a successor (the TF operands are flagged to the user). 999 // c1, f1 = CopyToReg 1000 // c2, f2 = CopyToReg 1001 // c3 = TokenFactor c1, c2 1002 // ... 1003 // = op c3, ..., f2 1004 Chain = Chains[NumRegs-1]; 1005 else 1006 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1007 } 1008 1009 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1010 unsigned MatchingIdx, const SDLoc &dl, 1011 SelectionDAG &DAG, 1012 std::vector<SDValue> &Ops) const { 1013 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1014 1015 InlineAsm::Flag Flag(Code, Regs.size()); 1016 if (HasMatching) 1017 Flag.setMatchingOp(MatchingIdx); 1018 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1019 // Put the register class of the virtual registers in the flag word. That 1020 // way, later passes can recompute register class constraints for inline 1021 // assembly as well as normal instructions. 1022 // Don't do this for tied operands that can use the regclass information 1023 // from the def. 1024 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1025 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1026 Flag.setRegClass(RC->getID()); 1027 } 1028 1029 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1030 Ops.push_back(Res); 1031 1032 if (Code == InlineAsm::Kind::Clobber) { 1033 // Clobbers should always have a 1:1 mapping with registers, and may 1034 // reference registers that have illegal (e.g. vector) types. Hence, we 1035 // shouldn't try to apply any sort of splitting logic to them. 1036 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1037 "No 1:1 mapping from clobbers to regs?"); 1038 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1039 (void)SP; 1040 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1041 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1042 assert( 1043 (Regs[I] != SP || 1044 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1045 "If we clobbered the stack pointer, MFI should know about it."); 1046 } 1047 return; 1048 } 1049 1050 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1051 MVT RegisterVT = RegVTs[Value]; 1052 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1053 RegisterVT); 1054 for (unsigned i = 0; i != NumRegs; ++i) { 1055 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1056 unsigned TheReg = Regs[Reg++]; 1057 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1058 } 1059 } 1060 } 1061 1062 SmallVector<std::pair<unsigned, TypeSize>, 4> 1063 RegsForValue::getRegsAndSizes() const { 1064 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1065 unsigned I = 0; 1066 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1067 unsigned RegCount = std::get<0>(CountAndVT); 1068 MVT RegisterVT = std::get<1>(CountAndVT); 1069 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1070 for (unsigned E = I + RegCount; I != E; ++I) 1071 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1072 } 1073 return OutVec; 1074 } 1075 1076 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1077 AssumptionCache *ac, 1078 const TargetLibraryInfo *li) { 1079 AA = aa; 1080 AC = ac; 1081 GFI = gfi; 1082 LibInfo = li; 1083 Context = DAG.getContext(); 1084 LPadToCallSiteMap.clear(); 1085 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1086 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1087 *DAG.getMachineFunction().getFunction().getParent()); 1088 } 1089 1090 void SelectionDAGBuilder::clear() { 1091 NodeMap.clear(); 1092 UnusedArgNodeMap.clear(); 1093 PendingLoads.clear(); 1094 PendingExports.clear(); 1095 PendingConstrainedFP.clear(); 1096 PendingConstrainedFPStrict.clear(); 1097 CurInst = nullptr; 1098 HasTailCall = false; 1099 SDNodeOrder = LowestSDNodeOrder; 1100 StatepointLowering.clear(); 1101 } 1102 1103 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1104 DanglingDebugInfoMap.clear(); 1105 } 1106 1107 // Update DAG root to include dependencies on Pending chains. 1108 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1109 SDValue Root = DAG.getRoot(); 1110 1111 if (Pending.empty()) 1112 return Root; 1113 1114 // Add current root to PendingChains, unless we already indirectly 1115 // depend on it. 1116 if (Root.getOpcode() != ISD::EntryToken) { 1117 unsigned i = 0, e = Pending.size(); 1118 for (; i != e; ++i) { 1119 assert(Pending[i].getNode()->getNumOperands() > 1); 1120 if (Pending[i].getNode()->getOperand(0) == Root) 1121 break; // Don't add the root if we already indirectly depend on it. 1122 } 1123 1124 if (i == e) 1125 Pending.push_back(Root); 1126 } 1127 1128 if (Pending.size() == 1) 1129 Root = Pending[0]; 1130 else 1131 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1132 1133 DAG.setRoot(Root); 1134 Pending.clear(); 1135 return Root; 1136 } 1137 1138 SDValue SelectionDAGBuilder::getMemoryRoot() { 1139 return updateRoot(PendingLoads); 1140 } 1141 1142 SDValue SelectionDAGBuilder::getRoot() { 1143 // Chain up all pending constrained intrinsics together with all 1144 // pending loads, by simply appending them to PendingLoads and 1145 // then calling getMemoryRoot(). 1146 PendingLoads.reserve(PendingLoads.size() + 1147 PendingConstrainedFP.size() + 1148 PendingConstrainedFPStrict.size()); 1149 PendingLoads.append(PendingConstrainedFP.begin(), 1150 PendingConstrainedFP.end()); 1151 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1152 PendingConstrainedFPStrict.end()); 1153 PendingConstrainedFP.clear(); 1154 PendingConstrainedFPStrict.clear(); 1155 return getMemoryRoot(); 1156 } 1157 1158 SDValue SelectionDAGBuilder::getControlRoot() { 1159 // We need to emit pending fpexcept.strict constrained intrinsics, 1160 // so append them to the PendingExports list. 1161 PendingExports.append(PendingConstrainedFPStrict.begin(), 1162 PendingConstrainedFPStrict.end()); 1163 PendingConstrainedFPStrict.clear(); 1164 return updateRoot(PendingExports); 1165 } 1166 1167 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1168 DILocalVariable *Variable, 1169 DIExpression *Expression, 1170 DebugLoc DL) { 1171 assert(Variable && "Missing variable"); 1172 1173 // Check if address has undef value. 1174 if (!Address || isa<UndefValue>(Address) || 1175 (Address->use_empty() && !isa<Argument>(Address))) { 1176 LLVM_DEBUG( 1177 dbgs() 1178 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1179 return; 1180 } 1181 1182 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1183 1184 SDValue &N = NodeMap[Address]; 1185 if (!N.getNode() && isa<Argument>(Address)) 1186 // Check unused arguments map. 1187 N = UnusedArgNodeMap[Address]; 1188 SDDbgValue *SDV; 1189 if (N.getNode()) { 1190 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1191 Address = BCI->getOperand(0); 1192 // Parameters are handled specially. 1193 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1194 if (IsParameter && FINode) { 1195 // Byval parameter. We have a frame index at this point. 1196 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1197 /*IsIndirect*/ true, DL, SDNodeOrder); 1198 } else if (isa<Argument>(Address)) { 1199 // Address is an argument, so try to emit its dbg value using 1200 // virtual register info from the FuncInfo.ValueMap. 1201 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1202 FuncArgumentDbgValueKind::Declare, N); 1203 return; 1204 } else { 1205 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1206 true, DL, SDNodeOrder); 1207 } 1208 DAG.AddDbgValue(SDV, IsParameter); 1209 } else { 1210 // If Address is an argument then try to emit its dbg value using 1211 // virtual register info from the FuncInfo.ValueMap. 1212 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1213 FuncArgumentDbgValueKind::Declare, N)) { 1214 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1215 << " (could not emit func-arg dbg_value)\n"); 1216 } 1217 } 1218 return; 1219 } 1220 1221 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1222 // Add SDDbgValue nodes for any var locs here. Do so before updating 1223 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1224 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1225 // Add SDDbgValue nodes for any var locs here. Do so before updating 1226 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1227 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1228 It != End; ++It) { 1229 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1230 dropDanglingDebugInfo(Var, It->Expr); 1231 if (It->Values.isKillLocation(It->Expr)) { 1232 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1233 continue; 1234 } 1235 SmallVector<Value *> Values(It->Values.location_ops()); 1236 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1237 It->Values.hasArgList())) { 1238 SmallVector<Value *, 4> Vals; 1239 for (Value *V : It->Values.location_ops()) 1240 Vals.push_back(V); 1241 addDanglingDebugInfo(Vals, 1242 FnVarLocs->getDILocalVariable(It->VariableID), 1243 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1244 } 1245 } 1246 } 1247 1248 // We must skip DbgVariableRecords if they've already been processed above as 1249 // we have just emitted the debug values resulting from assignment tracking 1250 // analysis, making any existing DbgVariableRecords redundant (and probably 1251 // less correct). We still need to process DbgLabelRecords. This does sink 1252 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1253 // be important as it does so deterministcally and ordering between 1254 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1255 // printing). 1256 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1257 // Is there is any debug-info attached to this instruction, in the form of 1258 // DbgRecord non-instruction debug-info records. 1259 for (DbgRecord &DR : I.getDbgRecordRange()) { 1260 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1261 assert(DLR->getLabel() && "Missing label"); 1262 SDDbgLabel *SDV = 1263 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1264 DAG.AddDbgLabel(SDV); 1265 continue; 1266 } 1267 1268 if (SkipDbgVariableRecords) 1269 continue; 1270 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1271 DILocalVariable *Variable = DVR.getVariable(); 1272 DIExpression *Expression = DVR.getExpression(); 1273 dropDanglingDebugInfo(Variable, Expression); 1274 1275 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1276 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1277 continue; 1278 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1279 << "\n"); 1280 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1281 DVR.getDebugLoc()); 1282 continue; 1283 } 1284 1285 // A DbgVariableRecord with no locations is a kill location. 1286 SmallVector<Value *, 4> Values(DVR.location_ops()); 1287 if (Values.empty()) { 1288 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1289 SDNodeOrder); 1290 continue; 1291 } 1292 1293 // A DbgVariableRecord with an undef or absent location is also a kill 1294 // location. 1295 if (llvm::any_of(Values, 1296 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1297 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1298 SDNodeOrder); 1299 continue; 1300 } 1301 1302 bool IsVariadic = DVR.hasArgList(); 1303 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1304 SDNodeOrder, IsVariadic)) { 1305 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1306 DVR.getDebugLoc(), SDNodeOrder); 1307 } 1308 } 1309 } 1310 1311 void SelectionDAGBuilder::visit(const Instruction &I) { 1312 visitDbgInfo(I); 1313 1314 // Set up outgoing PHI node register values before emitting the terminator. 1315 if (I.isTerminator()) { 1316 HandlePHINodesInSuccessorBlocks(I.getParent()); 1317 } 1318 1319 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1320 if (!isa<DbgInfoIntrinsic>(I)) 1321 ++SDNodeOrder; 1322 1323 CurInst = &I; 1324 1325 // Set inserted listener only if required. 1326 bool NodeInserted = false; 1327 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1328 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1329 if (PCSectionsMD) { 1330 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1331 DAG, [&](SDNode *) { NodeInserted = true; }); 1332 } 1333 1334 visit(I.getOpcode(), I); 1335 1336 if (!I.isTerminator() && !HasTailCall && 1337 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1338 CopyToExportRegsIfNeeded(&I); 1339 1340 // Handle metadata. 1341 if (PCSectionsMD) { 1342 auto It = NodeMap.find(&I); 1343 if (It != NodeMap.end()) { 1344 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1345 } else if (NodeInserted) { 1346 // This should not happen; if it does, don't let it go unnoticed so we can 1347 // fix it. Relevant visit*() function is probably missing a setValue(). 1348 errs() << "warning: loosing !pcsections metadata [" 1349 << I.getModule()->getName() << "]\n"; 1350 LLVM_DEBUG(I.dump()); 1351 assert(false); 1352 } 1353 } 1354 1355 CurInst = nullptr; 1356 } 1357 1358 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1359 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1360 } 1361 1362 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1363 // Note: this doesn't use InstVisitor, because it has to work with 1364 // ConstantExpr's in addition to instructions. 1365 switch (Opcode) { 1366 default: llvm_unreachable("Unknown instruction type encountered!"); 1367 // Build the switch statement using the Instruction.def file. 1368 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1369 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1370 #include "llvm/IR/Instruction.def" 1371 } 1372 } 1373 1374 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1375 DILocalVariable *Variable, 1376 DebugLoc DL, unsigned Order, 1377 SmallVectorImpl<Value *> &Values, 1378 DIExpression *Expression) { 1379 // For variadic dbg_values we will now insert an undef. 1380 // FIXME: We can potentially recover these! 1381 SmallVector<SDDbgOperand, 2> Locs; 1382 for (const Value *V : Values) { 1383 auto *Undef = UndefValue::get(V->getType()); 1384 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1385 } 1386 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1387 /*IsIndirect=*/false, DL, Order, 1388 /*IsVariadic=*/true); 1389 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1390 return true; 1391 } 1392 1393 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1394 DILocalVariable *Var, 1395 DIExpression *Expr, 1396 bool IsVariadic, DebugLoc DL, 1397 unsigned Order) { 1398 if (IsVariadic) { 1399 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1400 return; 1401 } 1402 // TODO: Dangling debug info will eventually either be resolved or produce 1403 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1404 // between the original dbg.value location and its resolved DBG_VALUE, 1405 // which we should ideally fill with an extra Undef DBG_VALUE. 1406 assert(Values.size() == 1); 1407 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1408 } 1409 1410 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1411 const DIExpression *Expr) { 1412 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1413 DIVariable *DanglingVariable = DDI.getVariable(); 1414 DIExpression *DanglingExpr = DDI.getExpression(); 1415 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1416 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1417 << printDDI(nullptr, DDI) << "\n"); 1418 return true; 1419 } 1420 return false; 1421 }; 1422 1423 for (auto &DDIMI : DanglingDebugInfoMap) { 1424 DanglingDebugInfoVector &DDIV = DDIMI.second; 1425 1426 // If debug info is to be dropped, run it through final checks to see 1427 // whether it can be salvaged. 1428 for (auto &DDI : DDIV) 1429 if (isMatchingDbgValue(DDI)) 1430 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1431 1432 erase_if(DDIV, isMatchingDbgValue); 1433 } 1434 } 1435 1436 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1437 // generate the debug data structures now that we've seen its definition. 1438 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1439 SDValue Val) { 1440 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1441 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1442 return; 1443 1444 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1445 for (auto &DDI : DDIV) { 1446 DebugLoc DL = DDI.getDebugLoc(); 1447 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1448 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1449 DILocalVariable *Variable = DDI.getVariable(); 1450 DIExpression *Expr = DDI.getExpression(); 1451 assert(Variable->isValidLocationForIntrinsic(DL) && 1452 "Expected inlined-at fields to agree"); 1453 SDDbgValue *SDV; 1454 if (Val.getNode()) { 1455 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1456 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1457 // we couldn't resolve it directly when examining the DbgValue intrinsic 1458 // in the first place we should not be more successful here). Unless we 1459 // have some test case that prove this to be correct we should avoid 1460 // calling EmitFuncArgumentDbgValue here. 1461 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1462 FuncArgumentDbgValueKind::Value, Val)) { 1463 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1464 << printDDI(V, DDI) << "\n"); 1465 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1466 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1467 // inserted after the definition of Val when emitting the instructions 1468 // after ISel. An alternative could be to teach 1469 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1470 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1471 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1472 << ValSDNodeOrder << "\n"); 1473 SDV = getDbgValue(Val, Variable, Expr, DL, 1474 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1475 DAG.AddDbgValue(SDV, false); 1476 } else 1477 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1478 << printDDI(V, DDI) 1479 << " in EmitFuncArgumentDbgValue\n"); 1480 } else { 1481 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1482 << "\n"); 1483 auto Undef = UndefValue::get(V->getType()); 1484 auto SDV = 1485 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1486 DAG.AddDbgValue(SDV, false); 1487 } 1488 } 1489 DDIV.clear(); 1490 } 1491 1492 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1493 DanglingDebugInfo &DDI) { 1494 // TODO: For the variadic implementation, instead of only checking the fail 1495 // state of `handleDebugValue`, we need know specifically which values were 1496 // invalid, so that we attempt to salvage only those values when processing 1497 // a DIArgList. 1498 const Value *OrigV = V; 1499 DILocalVariable *Var = DDI.getVariable(); 1500 DIExpression *Expr = DDI.getExpression(); 1501 DebugLoc DL = DDI.getDebugLoc(); 1502 unsigned SDOrder = DDI.getSDNodeOrder(); 1503 1504 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1505 // that DW_OP_stack_value is desired. 1506 bool StackValue = true; 1507 1508 // Can this Value can be encoded without any further work? 1509 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1510 return; 1511 1512 // Attempt to salvage back through as many instructions as possible. Bail if 1513 // a non-instruction is seen, such as a constant expression or global 1514 // variable. FIXME: Further work could recover those too. 1515 while (isa<Instruction>(V)) { 1516 const Instruction &VAsInst = *cast<const Instruction>(V); 1517 // Temporary "0", awaiting real implementation. 1518 SmallVector<uint64_t, 16> Ops; 1519 SmallVector<Value *, 4> AdditionalValues; 1520 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1521 Expr->getNumLocationOperands(), Ops, 1522 AdditionalValues); 1523 // If we cannot salvage any further, and haven't yet found a suitable debug 1524 // expression, bail out. 1525 if (!V) 1526 break; 1527 1528 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1529 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1530 // here for variadic dbg_values, remove that condition. 1531 if (!AdditionalValues.empty()) 1532 break; 1533 1534 // New value and expr now represent this debuginfo. 1535 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1536 1537 // Some kind of simplification occurred: check whether the operand of the 1538 // salvaged debug expression can be encoded in this DAG. 1539 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1540 LLVM_DEBUG( 1541 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1542 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1543 return; 1544 } 1545 } 1546 1547 // This was the final opportunity to salvage this debug information, and it 1548 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1549 // any earlier variable location. 1550 assert(OrigV && "V shouldn't be null"); 1551 auto *Undef = UndefValue::get(OrigV->getType()); 1552 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1553 DAG.AddDbgValue(SDV, false); 1554 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1555 << printDDI(OrigV, DDI) << "\n"); 1556 } 1557 1558 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1559 DIExpression *Expr, 1560 DebugLoc DbgLoc, 1561 unsigned Order) { 1562 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1563 DIExpression *NewExpr = 1564 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1565 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1566 /*IsVariadic*/ false); 1567 } 1568 1569 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1570 DILocalVariable *Var, 1571 DIExpression *Expr, DebugLoc DbgLoc, 1572 unsigned Order, bool IsVariadic) { 1573 if (Values.empty()) 1574 return true; 1575 1576 // Filter EntryValue locations out early. 1577 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1578 return true; 1579 1580 SmallVector<SDDbgOperand> LocationOps; 1581 SmallVector<SDNode *> Dependencies; 1582 for (const Value *V : Values) { 1583 // Constant value. 1584 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1585 isa<ConstantPointerNull>(V)) { 1586 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1587 continue; 1588 } 1589 1590 // Look through IntToPtr constants. 1591 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1592 if (CE->getOpcode() == Instruction::IntToPtr) { 1593 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1594 continue; 1595 } 1596 1597 // If the Value is a frame index, we can create a FrameIndex debug value 1598 // without relying on the DAG at all. 1599 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1600 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1601 if (SI != FuncInfo.StaticAllocaMap.end()) { 1602 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1603 continue; 1604 } 1605 } 1606 1607 // Do not use getValue() in here; we don't want to generate code at 1608 // this point if it hasn't been done yet. 1609 SDValue N = NodeMap[V]; 1610 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1611 N = UnusedArgNodeMap[V]; 1612 if (N.getNode()) { 1613 // Only emit func arg dbg value for non-variadic dbg.values for now. 1614 if (!IsVariadic && 1615 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1616 FuncArgumentDbgValueKind::Value, N)) 1617 return true; 1618 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1619 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1620 // describe stack slot locations. 1621 // 1622 // Consider "int x = 0; int *px = &x;". There are two kinds of 1623 // interesting debug values here after optimization: 1624 // 1625 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1626 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1627 // 1628 // Both describe the direct values of their associated variables. 1629 Dependencies.push_back(N.getNode()); 1630 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1631 continue; 1632 } 1633 LocationOps.emplace_back( 1634 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1635 continue; 1636 } 1637 1638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1639 // Special rules apply for the first dbg.values of parameter variables in a 1640 // function. Identify them by the fact they reference Argument Values, that 1641 // they're parameters, and they are parameters of the current function. We 1642 // need to let them dangle until they get an SDNode. 1643 bool IsParamOfFunc = 1644 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1645 if (IsParamOfFunc) 1646 return false; 1647 1648 // The value is not used in this block yet (or it would have an SDNode). 1649 // We still want the value to appear for the user if possible -- if it has 1650 // an associated VReg, we can refer to that instead. 1651 auto VMI = FuncInfo.ValueMap.find(V); 1652 if (VMI != FuncInfo.ValueMap.end()) { 1653 unsigned Reg = VMI->second; 1654 // If this is a PHI node, it may be split up into several MI PHI nodes 1655 // (in FunctionLoweringInfo::set). 1656 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1657 V->getType(), std::nullopt); 1658 if (RFV.occupiesMultipleRegs()) { 1659 // FIXME: We could potentially support variadic dbg_values here. 1660 if (IsVariadic) 1661 return false; 1662 unsigned Offset = 0; 1663 unsigned BitsToDescribe = 0; 1664 if (auto VarSize = Var->getSizeInBits()) 1665 BitsToDescribe = *VarSize; 1666 if (auto Fragment = Expr->getFragmentInfo()) 1667 BitsToDescribe = Fragment->SizeInBits; 1668 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1669 // Bail out if all bits are described already. 1670 if (Offset >= BitsToDescribe) 1671 break; 1672 // TODO: handle scalable vectors. 1673 unsigned RegisterSize = RegAndSize.second; 1674 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1675 ? BitsToDescribe - Offset 1676 : RegisterSize; 1677 auto FragmentExpr = DIExpression::createFragmentExpression( 1678 Expr, Offset, FragmentSize); 1679 if (!FragmentExpr) 1680 continue; 1681 SDDbgValue *SDV = DAG.getVRegDbgValue( 1682 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1683 DAG.AddDbgValue(SDV, false); 1684 Offset += RegisterSize; 1685 } 1686 return true; 1687 } 1688 // We can use simple vreg locations for variadic dbg_values as well. 1689 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1690 continue; 1691 } 1692 // We failed to create a SDDbgOperand for V. 1693 return false; 1694 } 1695 1696 // We have created a SDDbgOperand for each Value in Values. 1697 // Should use Order instead of SDNodeOrder? 1698 assert(!LocationOps.empty()); 1699 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1700 /*IsIndirect=*/false, DbgLoc, 1701 SDNodeOrder, IsVariadic); 1702 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1703 return true; 1704 } 1705 1706 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1707 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1708 for (auto &Pair : DanglingDebugInfoMap) 1709 for (auto &DDI : Pair.second) 1710 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1711 clearDanglingDebugInfo(); 1712 } 1713 1714 /// getCopyFromRegs - If there was virtual register allocated for the value V 1715 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1716 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1717 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1718 SDValue Result; 1719 1720 if (It != FuncInfo.ValueMap.end()) { 1721 Register InReg = It->second; 1722 1723 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1724 DAG.getDataLayout(), InReg, Ty, 1725 std::nullopt); // This is not an ABI copy. 1726 SDValue Chain = DAG.getEntryNode(); 1727 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1728 V); 1729 resolveDanglingDebugInfo(V, Result); 1730 } 1731 1732 return Result; 1733 } 1734 1735 /// getValue - Return an SDValue for the given Value. 1736 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1737 // If we already have an SDValue for this value, use it. It's important 1738 // to do this first, so that we don't create a CopyFromReg if we already 1739 // have a regular SDValue. 1740 SDValue &N = NodeMap[V]; 1741 if (N.getNode()) return N; 1742 1743 // If there's a virtual register allocated and initialized for this 1744 // value, use it. 1745 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1746 return copyFromReg; 1747 1748 // Otherwise create a new SDValue and remember it. 1749 SDValue Val = getValueImpl(V); 1750 NodeMap[V] = Val; 1751 resolveDanglingDebugInfo(V, Val); 1752 return Val; 1753 } 1754 1755 /// getNonRegisterValue - Return an SDValue for the given Value, but 1756 /// don't look in FuncInfo.ValueMap for a virtual register. 1757 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1758 // If we already have an SDValue for this value, use it. 1759 SDValue &N = NodeMap[V]; 1760 if (N.getNode()) { 1761 if (isIntOrFPConstant(N)) { 1762 // Remove the debug location from the node as the node is about to be used 1763 // in a location which may differ from the original debug location. This 1764 // is relevant to Constant and ConstantFP nodes because they can appear 1765 // as constant expressions inside PHI nodes. 1766 N->setDebugLoc(DebugLoc()); 1767 } 1768 return N; 1769 } 1770 1771 // Otherwise create a new SDValue and remember it. 1772 SDValue Val = getValueImpl(V); 1773 NodeMap[V] = Val; 1774 resolveDanglingDebugInfo(V, Val); 1775 return Val; 1776 } 1777 1778 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1779 /// Create an SDValue for the given value. 1780 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1781 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1782 1783 if (const Constant *C = dyn_cast<Constant>(V)) { 1784 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1785 1786 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1787 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1788 1789 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1790 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1791 1792 if (isa<ConstantPointerNull>(C)) { 1793 unsigned AS = V->getType()->getPointerAddressSpace(); 1794 return DAG.getConstant(0, getCurSDLoc(), 1795 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1796 } 1797 1798 if (match(C, m_VScale())) 1799 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1800 1801 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1802 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1803 1804 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1805 return DAG.getUNDEF(VT); 1806 1807 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1808 visit(CE->getOpcode(), *CE); 1809 SDValue N1 = NodeMap[V]; 1810 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1811 return N1; 1812 } 1813 1814 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1815 SmallVector<SDValue, 4> Constants; 1816 for (const Use &U : C->operands()) { 1817 SDNode *Val = getValue(U).getNode(); 1818 // If the operand is an empty aggregate, there are no values. 1819 if (!Val) continue; 1820 // Add each leaf value from the operand to the Constants list 1821 // to form a flattened list of all the values. 1822 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1823 Constants.push_back(SDValue(Val, i)); 1824 } 1825 1826 return DAG.getMergeValues(Constants, getCurSDLoc()); 1827 } 1828 1829 if (const ConstantDataSequential *CDS = 1830 dyn_cast<ConstantDataSequential>(C)) { 1831 SmallVector<SDValue, 4> Ops; 1832 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1833 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1834 // Add each leaf value from the operand to the Constants list 1835 // to form a flattened list of all the values. 1836 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1837 Ops.push_back(SDValue(Val, i)); 1838 } 1839 1840 if (isa<ArrayType>(CDS->getType())) 1841 return DAG.getMergeValues(Ops, getCurSDLoc()); 1842 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1843 } 1844 1845 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1846 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1847 "Unknown struct or array constant!"); 1848 1849 SmallVector<EVT, 4> ValueVTs; 1850 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1851 unsigned NumElts = ValueVTs.size(); 1852 if (NumElts == 0) 1853 return SDValue(); // empty struct 1854 SmallVector<SDValue, 4> Constants(NumElts); 1855 for (unsigned i = 0; i != NumElts; ++i) { 1856 EVT EltVT = ValueVTs[i]; 1857 if (isa<UndefValue>(C)) 1858 Constants[i] = DAG.getUNDEF(EltVT); 1859 else if (EltVT.isFloatingPoint()) 1860 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1861 else 1862 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1863 } 1864 1865 return DAG.getMergeValues(Constants, getCurSDLoc()); 1866 } 1867 1868 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1869 return DAG.getBlockAddress(BA, VT); 1870 1871 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1872 return getValue(Equiv->getGlobalValue()); 1873 1874 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1875 return getValue(NC->getGlobalValue()); 1876 1877 if (VT == MVT::aarch64svcount) { 1878 assert(C->isNullValue() && "Can only zero this target type!"); 1879 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1880 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1881 } 1882 1883 VectorType *VecTy = cast<VectorType>(V->getType()); 1884 1885 // Now that we know the number and type of the elements, get that number of 1886 // elements into the Ops array based on what kind of constant it is. 1887 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1888 SmallVector<SDValue, 16> Ops; 1889 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1890 for (unsigned i = 0; i != NumElements; ++i) 1891 Ops.push_back(getValue(CV->getOperand(i))); 1892 1893 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1894 } 1895 1896 if (isa<ConstantAggregateZero>(C)) { 1897 EVT EltVT = 1898 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1899 1900 SDValue Op; 1901 if (EltVT.isFloatingPoint()) 1902 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1903 else 1904 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1905 1906 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1907 } 1908 1909 llvm_unreachable("Unknown vector constant"); 1910 } 1911 1912 // If this is a static alloca, generate it as the frameindex instead of 1913 // computation. 1914 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1915 DenseMap<const AllocaInst*, int>::iterator SI = 1916 FuncInfo.StaticAllocaMap.find(AI); 1917 if (SI != FuncInfo.StaticAllocaMap.end()) 1918 return DAG.getFrameIndex( 1919 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1920 } 1921 1922 // If this is an instruction which fast-isel has deferred, select it now. 1923 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1924 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1925 1926 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1927 Inst->getType(), std::nullopt); 1928 SDValue Chain = DAG.getEntryNode(); 1929 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1930 } 1931 1932 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1933 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1934 1935 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1936 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1937 1938 llvm_unreachable("Can't get register for value!"); 1939 } 1940 1941 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1942 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1943 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1944 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1945 bool IsSEH = isAsynchronousEHPersonality(Pers); 1946 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1947 if (!IsSEH) 1948 CatchPadMBB->setIsEHScopeEntry(); 1949 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1950 if (IsMSVCCXX || IsCoreCLR) 1951 CatchPadMBB->setIsEHFuncletEntry(); 1952 } 1953 1954 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1955 // Update machine-CFG edge. 1956 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1957 FuncInfo.MBB->addSuccessor(TargetMBB); 1958 TargetMBB->setIsEHCatchretTarget(true); 1959 DAG.getMachineFunction().setHasEHCatchret(true); 1960 1961 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1962 bool IsSEH = isAsynchronousEHPersonality(Pers); 1963 if (IsSEH) { 1964 // If this is not a fall-through branch or optimizations are switched off, 1965 // emit the branch. 1966 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1967 TM.getOptLevel() == CodeGenOptLevel::None) 1968 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1969 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1970 return; 1971 } 1972 1973 // Figure out the funclet membership for the catchret's successor. 1974 // This will be used by the FuncletLayout pass to determine how to order the 1975 // BB's. 1976 // A 'catchret' returns to the outer scope's color. 1977 Value *ParentPad = I.getCatchSwitchParentPad(); 1978 const BasicBlock *SuccessorColor; 1979 if (isa<ConstantTokenNone>(ParentPad)) 1980 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1981 else 1982 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1983 assert(SuccessorColor && "No parent funclet for catchret!"); 1984 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1985 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1986 1987 // Create the terminator node. 1988 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1989 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1990 DAG.getBasicBlock(SuccessorColorMBB)); 1991 DAG.setRoot(Ret); 1992 } 1993 1994 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1995 // Don't emit any special code for the cleanuppad instruction. It just marks 1996 // the start of an EH scope/funclet. 1997 FuncInfo.MBB->setIsEHScopeEntry(); 1998 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1999 if (Pers != EHPersonality::Wasm_CXX) { 2000 FuncInfo.MBB->setIsEHFuncletEntry(); 2001 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2002 } 2003 } 2004 2005 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2006 // not match, it is OK to add only the first unwind destination catchpad to the 2007 // successors, because there will be at least one invoke instruction within the 2008 // catch scope that points to the next unwind destination, if one exists, so 2009 // CFGSort cannot mess up with BB sorting order. 2010 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2011 // call within them, and catchpads only consisting of 'catch (...)' have a 2012 // '__cxa_end_catch' call within them, both of which generate invokes in case 2013 // the next unwind destination exists, i.e., the next unwind destination is not 2014 // the caller.) 2015 // 2016 // Having at most one EH pad successor is also simpler and helps later 2017 // transformations. 2018 // 2019 // For example, 2020 // current: 2021 // invoke void @foo to ... unwind label %catch.dispatch 2022 // catch.dispatch: 2023 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2024 // catch.start: 2025 // ... 2026 // ... in this BB or some other child BB dominated by this BB there will be an 2027 // invoke that points to 'next' BB as an unwind destination 2028 // 2029 // next: ; We don't need to add this to 'current' BB's successor 2030 // ... 2031 static void findWasmUnwindDestinations( 2032 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2033 BranchProbability Prob, 2034 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2035 &UnwindDests) { 2036 while (EHPadBB) { 2037 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2038 if (isa<CleanupPadInst>(Pad)) { 2039 // Stop on cleanup pads. 2040 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2041 UnwindDests.back().first->setIsEHScopeEntry(); 2042 break; 2043 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2044 // Add the catchpad handlers to the possible destinations. We don't 2045 // continue to the unwind destination of the catchswitch for wasm. 2046 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2047 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2048 UnwindDests.back().first->setIsEHScopeEntry(); 2049 } 2050 break; 2051 } else { 2052 continue; 2053 } 2054 } 2055 } 2056 2057 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2058 /// many places it could ultimately go. In the IR, we have a single unwind 2059 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2060 /// This function skips over imaginary basic blocks that hold catchswitch 2061 /// instructions, and finds all the "real" machine 2062 /// basic block destinations. As those destinations may not be successors of 2063 /// EHPadBB, here we also calculate the edge probability to those destinations. 2064 /// The passed-in Prob is the edge probability to EHPadBB. 2065 static void findUnwindDestinations( 2066 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2067 BranchProbability Prob, 2068 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2069 &UnwindDests) { 2070 EHPersonality Personality = 2071 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2072 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2073 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2074 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2075 bool IsSEH = isAsynchronousEHPersonality(Personality); 2076 2077 if (IsWasmCXX) { 2078 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2079 assert(UnwindDests.size() <= 1 && 2080 "There should be at most one unwind destination for wasm"); 2081 return; 2082 } 2083 2084 while (EHPadBB) { 2085 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2086 BasicBlock *NewEHPadBB = nullptr; 2087 if (isa<LandingPadInst>(Pad)) { 2088 // Stop on landingpads. They are not funclets. 2089 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2090 break; 2091 } else if (isa<CleanupPadInst>(Pad)) { 2092 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2093 // personalities. 2094 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2095 UnwindDests.back().first->setIsEHScopeEntry(); 2096 UnwindDests.back().first->setIsEHFuncletEntry(); 2097 break; 2098 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2099 // Add the catchpad handlers to the possible destinations. 2100 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2101 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2102 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2103 if (IsMSVCCXX || IsCoreCLR) 2104 UnwindDests.back().first->setIsEHFuncletEntry(); 2105 if (!IsSEH) 2106 UnwindDests.back().first->setIsEHScopeEntry(); 2107 } 2108 NewEHPadBB = CatchSwitch->getUnwindDest(); 2109 } else { 2110 continue; 2111 } 2112 2113 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2114 if (BPI && NewEHPadBB) 2115 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2116 EHPadBB = NewEHPadBB; 2117 } 2118 } 2119 2120 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2121 // Update successor info. 2122 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2123 auto UnwindDest = I.getUnwindDest(); 2124 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2125 BranchProbability UnwindDestProb = 2126 (BPI && UnwindDest) 2127 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2128 : BranchProbability::getZero(); 2129 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2130 for (auto &UnwindDest : UnwindDests) { 2131 UnwindDest.first->setIsEHPad(); 2132 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2133 } 2134 FuncInfo.MBB->normalizeSuccProbs(); 2135 2136 // Create the terminator node. 2137 SDValue Ret = 2138 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2139 DAG.setRoot(Ret); 2140 } 2141 2142 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2143 report_fatal_error("visitCatchSwitch not yet implemented!"); 2144 } 2145 2146 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2148 auto &DL = DAG.getDataLayout(); 2149 SDValue Chain = getControlRoot(); 2150 SmallVector<ISD::OutputArg, 8> Outs; 2151 SmallVector<SDValue, 8> OutVals; 2152 2153 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2154 // lower 2155 // 2156 // %val = call <ty> @llvm.experimental.deoptimize() 2157 // ret <ty> %val 2158 // 2159 // differently. 2160 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2161 LowerDeoptimizingReturn(); 2162 return; 2163 } 2164 2165 if (!FuncInfo.CanLowerReturn) { 2166 unsigned DemoteReg = FuncInfo.DemoteRegister; 2167 const Function *F = I.getParent()->getParent(); 2168 2169 // Emit a store of the return value through the virtual register. 2170 // Leave Outs empty so that LowerReturn won't try to load return 2171 // registers the usual way. 2172 SmallVector<EVT, 1> PtrValueVTs; 2173 ComputeValueVTs(TLI, DL, 2174 PointerType::get(F->getContext(), 2175 DAG.getDataLayout().getAllocaAddrSpace()), 2176 PtrValueVTs); 2177 2178 SDValue RetPtr = 2179 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2180 SDValue RetOp = getValue(I.getOperand(0)); 2181 2182 SmallVector<EVT, 4> ValueVTs, MemVTs; 2183 SmallVector<uint64_t, 4> Offsets; 2184 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2185 &Offsets, 0); 2186 unsigned NumValues = ValueVTs.size(); 2187 2188 SmallVector<SDValue, 4> Chains(NumValues); 2189 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2190 for (unsigned i = 0; i != NumValues; ++i) { 2191 // An aggregate return value cannot wrap around the address space, so 2192 // offsets to its parts don't wrap either. 2193 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2194 TypeSize::getFixed(Offsets[i])); 2195 2196 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2197 if (MemVTs[i] != ValueVTs[i]) 2198 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2199 Chains[i] = DAG.getStore( 2200 Chain, getCurSDLoc(), Val, 2201 // FIXME: better loc info would be nice. 2202 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2203 commonAlignment(BaseAlign, Offsets[i])); 2204 } 2205 2206 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2207 MVT::Other, Chains); 2208 } else if (I.getNumOperands() != 0) { 2209 SmallVector<EVT, 4> ValueVTs; 2210 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2211 unsigned NumValues = ValueVTs.size(); 2212 if (NumValues) { 2213 SDValue RetOp = getValue(I.getOperand(0)); 2214 2215 const Function *F = I.getParent()->getParent(); 2216 2217 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2218 I.getOperand(0)->getType(), F->getCallingConv(), 2219 /*IsVarArg*/ false, DL); 2220 2221 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2222 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2223 ExtendKind = ISD::SIGN_EXTEND; 2224 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2225 ExtendKind = ISD::ZERO_EXTEND; 2226 2227 LLVMContext &Context = F->getContext(); 2228 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2229 2230 for (unsigned j = 0; j != NumValues; ++j) { 2231 EVT VT = ValueVTs[j]; 2232 2233 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2234 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2235 2236 CallingConv::ID CC = F->getCallingConv(); 2237 2238 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2239 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2240 SmallVector<SDValue, 4> Parts(NumParts); 2241 getCopyToParts(DAG, getCurSDLoc(), 2242 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2243 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2244 2245 // 'inreg' on function refers to return value 2246 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2247 if (RetInReg) 2248 Flags.setInReg(); 2249 2250 if (I.getOperand(0)->getType()->isPointerTy()) { 2251 Flags.setPointer(); 2252 Flags.setPointerAddrSpace( 2253 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2254 } 2255 2256 if (NeedsRegBlock) { 2257 Flags.setInConsecutiveRegs(); 2258 if (j == NumValues - 1) 2259 Flags.setInConsecutiveRegsLast(); 2260 } 2261 2262 // Propagate extension type if any 2263 if (ExtendKind == ISD::SIGN_EXTEND) 2264 Flags.setSExt(); 2265 else if (ExtendKind == ISD::ZERO_EXTEND) 2266 Flags.setZExt(); 2267 2268 for (unsigned i = 0; i < NumParts; ++i) { 2269 Outs.push_back(ISD::OutputArg(Flags, 2270 Parts[i].getValueType().getSimpleVT(), 2271 VT, /*isfixed=*/true, 0, 0)); 2272 OutVals.push_back(Parts[i]); 2273 } 2274 } 2275 } 2276 } 2277 2278 // Push in swifterror virtual register as the last element of Outs. This makes 2279 // sure swifterror virtual register will be returned in the swifterror 2280 // physical register. 2281 const Function *F = I.getParent()->getParent(); 2282 if (TLI.supportSwiftError() && 2283 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2284 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2285 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2286 Flags.setSwiftError(); 2287 Outs.push_back(ISD::OutputArg( 2288 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2289 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2290 // Create SDNode for the swifterror virtual register. 2291 OutVals.push_back( 2292 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2293 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2294 EVT(TLI.getPointerTy(DL)))); 2295 } 2296 2297 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2298 CallingConv::ID CallConv = 2299 DAG.getMachineFunction().getFunction().getCallingConv(); 2300 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2301 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2302 2303 // Verify that the target's LowerReturn behaved as expected. 2304 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2305 "LowerReturn didn't return a valid chain!"); 2306 2307 // Update the DAG with the new chain value resulting from return lowering. 2308 DAG.setRoot(Chain); 2309 } 2310 2311 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2312 /// created for it, emit nodes to copy the value into the virtual 2313 /// registers. 2314 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2315 // Skip empty types 2316 if (V->getType()->isEmptyTy()) 2317 return; 2318 2319 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2320 if (VMI != FuncInfo.ValueMap.end()) { 2321 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2322 "Unused value assigned virtual registers!"); 2323 CopyValueToVirtualRegister(V, VMI->second); 2324 } 2325 } 2326 2327 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2328 /// the current basic block, add it to ValueMap now so that we'll get a 2329 /// CopyTo/FromReg. 2330 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2331 // No need to export constants. 2332 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2333 2334 // Already exported? 2335 if (FuncInfo.isExportedInst(V)) return; 2336 2337 Register Reg = FuncInfo.InitializeRegForValue(V); 2338 CopyValueToVirtualRegister(V, Reg); 2339 } 2340 2341 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2342 const BasicBlock *FromBB) { 2343 // The operands of the setcc have to be in this block. We don't know 2344 // how to export them from some other block. 2345 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2346 // Can export from current BB. 2347 if (VI->getParent() == FromBB) 2348 return true; 2349 2350 // Is already exported, noop. 2351 return FuncInfo.isExportedInst(V); 2352 } 2353 2354 // If this is an argument, we can export it if the BB is the entry block or 2355 // if it is already exported. 2356 if (isa<Argument>(V)) { 2357 if (FromBB->isEntryBlock()) 2358 return true; 2359 2360 // Otherwise, can only export this if it is already exported. 2361 return FuncInfo.isExportedInst(V); 2362 } 2363 2364 // Otherwise, constants can always be exported. 2365 return true; 2366 } 2367 2368 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2369 BranchProbability 2370 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2371 const MachineBasicBlock *Dst) const { 2372 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2373 const BasicBlock *SrcBB = Src->getBasicBlock(); 2374 const BasicBlock *DstBB = Dst->getBasicBlock(); 2375 if (!BPI) { 2376 // If BPI is not available, set the default probability as 1 / N, where N is 2377 // the number of successors. 2378 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2379 return BranchProbability(1, SuccSize); 2380 } 2381 return BPI->getEdgeProbability(SrcBB, DstBB); 2382 } 2383 2384 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2385 MachineBasicBlock *Dst, 2386 BranchProbability Prob) { 2387 if (!FuncInfo.BPI) 2388 Src->addSuccessorWithoutProb(Dst); 2389 else { 2390 if (Prob.isUnknown()) 2391 Prob = getEdgeProbability(Src, Dst); 2392 Src->addSuccessor(Dst, Prob); 2393 } 2394 } 2395 2396 static bool InBlock(const Value *V, const BasicBlock *BB) { 2397 if (const Instruction *I = dyn_cast<Instruction>(V)) 2398 return I->getParent() == BB; 2399 return true; 2400 } 2401 2402 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2403 /// This function emits a branch and is used at the leaves of an OR or an 2404 /// AND operator tree. 2405 void 2406 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2407 MachineBasicBlock *TBB, 2408 MachineBasicBlock *FBB, 2409 MachineBasicBlock *CurBB, 2410 MachineBasicBlock *SwitchBB, 2411 BranchProbability TProb, 2412 BranchProbability FProb, 2413 bool InvertCond) { 2414 const BasicBlock *BB = CurBB->getBasicBlock(); 2415 2416 // If the leaf of the tree is a comparison, merge the condition into 2417 // the caseblock. 2418 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2419 // The operands of the cmp have to be in this block. We don't know 2420 // how to export them from some other block. If this is the first block 2421 // of the sequence, no exporting is needed. 2422 if (CurBB == SwitchBB || 2423 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2424 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2425 ISD::CondCode Condition; 2426 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2427 ICmpInst::Predicate Pred = 2428 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2429 Condition = getICmpCondCode(Pred); 2430 } else { 2431 const FCmpInst *FC = cast<FCmpInst>(Cond); 2432 FCmpInst::Predicate Pred = 2433 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2434 Condition = getFCmpCondCode(Pred); 2435 if (TM.Options.NoNaNsFPMath) 2436 Condition = getFCmpCodeWithoutNaN(Condition); 2437 } 2438 2439 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2440 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2441 SL->SwitchCases.push_back(CB); 2442 return; 2443 } 2444 } 2445 2446 // Create a CaseBlock record representing this branch. 2447 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2448 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2449 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2450 SL->SwitchCases.push_back(CB); 2451 } 2452 2453 // Collect dependencies on V recursively. This is used for the cost analysis in 2454 // `shouldKeepJumpConditionsTogether`. 2455 static bool collectInstructionDeps( 2456 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2457 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2458 unsigned Depth = 0) { 2459 // Return false if we have an incomplete count. 2460 if (Depth >= SelectionDAG::MaxRecursionDepth) 2461 return false; 2462 2463 auto *I = dyn_cast<Instruction>(V); 2464 if (I == nullptr) 2465 return true; 2466 2467 if (Necessary != nullptr) { 2468 // This instruction is necessary for the other side of the condition so 2469 // don't count it. 2470 if (Necessary->contains(I)) 2471 return true; 2472 } 2473 2474 // Already added this dep. 2475 if (!Deps->try_emplace(I, false).second) 2476 return true; 2477 2478 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2479 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2480 Depth + 1)) 2481 return false; 2482 return true; 2483 } 2484 2485 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2486 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2487 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2488 TargetLoweringBase::CondMergingParams Params) const { 2489 if (I.getNumSuccessors() != 2) 2490 return false; 2491 2492 if (!I.isConditional()) 2493 return false; 2494 2495 if (Params.BaseCost < 0) 2496 return false; 2497 2498 // Baseline cost. 2499 InstructionCost CostThresh = Params.BaseCost; 2500 2501 BranchProbabilityInfo *BPI = nullptr; 2502 if (Params.LikelyBias || Params.UnlikelyBias) 2503 BPI = FuncInfo.BPI; 2504 if (BPI != nullptr) { 2505 // See if we are either likely to get an early out or compute both lhs/rhs 2506 // of the condition. 2507 BasicBlock *IfFalse = I.getSuccessor(0); 2508 BasicBlock *IfTrue = I.getSuccessor(1); 2509 2510 std::optional<bool> Likely; 2511 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2512 Likely = true; 2513 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2514 Likely = false; 2515 2516 if (Likely) { 2517 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2518 // Its likely we will have to compute both lhs and rhs of condition 2519 CostThresh += Params.LikelyBias; 2520 else { 2521 if (Params.UnlikelyBias < 0) 2522 return false; 2523 // Its likely we will get an early out. 2524 CostThresh -= Params.UnlikelyBias; 2525 } 2526 } 2527 } 2528 2529 if (CostThresh <= 0) 2530 return false; 2531 2532 // Collect "all" instructions that lhs condition is dependent on. 2533 // Use map for stable iteration (to avoid non-determanism of iteration of 2534 // SmallPtrSet). The `bool` value is just a dummy. 2535 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2536 collectInstructionDeps(&LhsDeps, Lhs); 2537 // Collect "all" instructions that rhs condition is dependent on AND are 2538 // dependencies of lhs. This gives us an estimate on which instructions we 2539 // stand to save by splitting the condition. 2540 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2541 return false; 2542 // Add the compare instruction itself unless its a dependency on the LHS. 2543 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2544 if (!LhsDeps.contains(RhsI)) 2545 RhsDeps.try_emplace(RhsI, false); 2546 2547 const auto &TLI = DAG.getTargetLoweringInfo(); 2548 const auto &TTI = 2549 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2550 2551 InstructionCost CostOfIncluding = 0; 2552 // See if this instruction will need to computed independently of whether RHS 2553 // is. 2554 Value *BrCond = I.getCondition(); 2555 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2556 for (const auto *U : Ins->users()) { 2557 // If user is independent of RHS calculation we don't need to count it. 2558 if (auto *UIns = dyn_cast<Instruction>(U)) 2559 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2560 return false; 2561 } 2562 return true; 2563 }; 2564 2565 // Prune instructions from RHS Deps that are dependencies of unrelated 2566 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2567 // arbitrary and just meant to cap the how much time we spend in the pruning 2568 // loop. Its highly unlikely to come into affect. 2569 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2570 // Stop after a certain point. No incorrectness from including too many 2571 // instructions. 2572 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2573 const Instruction *ToDrop = nullptr; 2574 for (const auto &InsPair : RhsDeps) { 2575 if (!ShouldCountInsn(InsPair.first)) { 2576 ToDrop = InsPair.first; 2577 break; 2578 } 2579 } 2580 if (ToDrop == nullptr) 2581 break; 2582 RhsDeps.erase(ToDrop); 2583 } 2584 2585 for (const auto &InsPair : RhsDeps) { 2586 // Finally accumulate latency that we can only attribute to computing the 2587 // RHS condition. Use latency because we are essentially trying to calculate 2588 // the cost of the dependency chain. 2589 // Possible TODO: We could try to estimate ILP and make this more precise. 2590 CostOfIncluding += 2591 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2592 2593 if (CostOfIncluding > CostThresh) 2594 return false; 2595 } 2596 return true; 2597 } 2598 2599 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2600 MachineBasicBlock *TBB, 2601 MachineBasicBlock *FBB, 2602 MachineBasicBlock *CurBB, 2603 MachineBasicBlock *SwitchBB, 2604 Instruction::BinaryOps Opc, 2605 BranchProbability TProb, 2606 BranchProbability FProb, 2607 bool InvertCond) { 2608 // Skip over not part of the tree and remember to invert op and operands at 2609 // next level. 2610 Value *NotCond; 2611 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2612 InBlock(NotCond, CurBB->getBasicBlock())) { 2613 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2614 !InvertCond); 2615 return; 2616 } 2617 2618 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2619 const Value *BOpOp0, *BOpOp1; 2620 // Compute the effective opcode for Cond, taking into account whether it needs 2621 // to be inverted, e.g. 2622 // and (not (or A, B)), C 2623 // gets lowered as 2624 // and (and (not A, not B), C) 2625 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2626 if (BOp) { 2627 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2628 ? Instruction::And 2629 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2630 ? Instruction::Or 2631 : (Instruction::BinaryOps)0); 2632 if (InvertCond) { 2633 if (BOpc == Instruction::And) 2634 BOpc = Instruction::Or; 2635 else if (BOpc == Instruction::Or) 2636 BOpc = Instruction::And; 2637 } 2638 } 2639 2640 // If this node is not part of the or/and tree, emit it as a branch. 2641 // Note that all nodes in the tree should have same opcode. 2642 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2643 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2644 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2645 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2646 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2647 TProb, FProb, InvertCond); 2648 return; 2649 } 2650 2651 // Create TmpBB after CurBB. 2652 MachineFunction::iterator BBI(CurBB); 2653 MachineFunction &MF = DAG.getMachineFunction(); 2654 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2655 CurBB->getParent()->insert(++BBI, TmpBB); 2656 2657 if (Opc == Instruction::Or) { 2658 // Codegen X | Y as: 2659 // BB1: 2660 // jmp_if_X TBB 2661 // jmp TmpBB 2662 // TmpBB: 2663 // jmp_if_Y TBB 2664 // jmp FBB 2665 // 2666 2667 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2668 // The requirement is that 2669 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2670 // = TrueProb for original BB. 2671 // Assuming the original probabilities are A and B, one choice is to set 2672 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2673 // A/(1+B) and 2B/(1+B). This choice assumes that 2674 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2675 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2676 // TmpBB, but the math is more complicated. 2677 2678 auto NewTrueProb = TProb / 2; 2679 auto NewFalseProb = TProb / 2 + FProb; 2680 // Emit the LHS condition. 2681 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2682 NewFalseProb, InvertCond); 2683 2684 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2685 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2686 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2687 // Emit the RHS condition into TmpBB. 2688 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2689 Probs[1], InvertCond); 2690 } else { 2691 assert(Opc == Instruction::And && "Unknown merge op!"); 2692 // Codegen X & Y as: 2693 // BB1: 2694 // jmp_if_X TmpBB 2695 // jmp FBB 2696 // TmpBB: 2697 // jmp_if_Y TBB 2698 // jmp FBB 2699 // 2700 // This requires creation of TmpBB after CurBB. 2701 2702 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2703 // The requirement is that 2704 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2705 // = FalseProb for original BB. 2706 // Assuming the original probabilities are A and B, one choice is to set 2707 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2708 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2709 // TrueProb for BB1 * FalseProb for TmpBB. 2710 2711 auto NewTrueProb = TProb + FProb / 2; 2712 auto NewFalseProb = FProb / 2; 2713 // Emit the LHS condition. 2714 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2715 NewFalseProb, InvertCond); 2716 2717 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2718 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2719 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2720 // Emit the RHS condition into TmpBB. 2721 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2722 Probs[1], InvertCond); 2723 } 2724 } 2725 2726 /// If the set of cases should be emitted as a series of branches, return true. 2727 /// If we should emit this as a bunch of and/or'd together conditions, return 2728 /// false. 2729 bool 2730 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2731 if (Cases.size() != 2) return true; 2732 2733 // If this is two comparisons of the same values or'd or and'd together, they 2734 // will get folded into a single comparison, so don't emit two blocks. 2735 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2736 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2737 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2738 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2739 return false; 2740 } 2741 2742 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2743 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2744 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2745 Cases[0].CC == Cases[1].CC && 2746 isa<Constant>(Cases[0].CmpRHS) && 2747 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2748 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2749 return false; 2750 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2751 return false; 2752 } 2753 2754 return true; 2755 } 2756 2757 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2758 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2759 2760 // Update machine-CFG edges. 2761 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2762 2763 if (I.isUnconditional()) { 2764 // Update machine-CFG edges. 2765 BrMBB->addSuccessor(Succ0MBB); 2766 2767 // If this is not a fall-through branch or optimizations are switched off, 2768 // emit the branch. 2769 if (Succ0MBB != NextBlock(BrMBB) || 2770 TM.getOptLevel() == CodeGenOptLevel::None) { 2771 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2772 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2773 setValue(&I, Br); 2774 DAG.setRoot(Br); 2775 } 2776 2777 return; 2778 } 2779 2780 // If this condition is one of the special cases we handle, do special stuff 2781 // now. 2782 const Value *CondVal = I.getCondition(); 2783 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2784 2785 // If this is a series of conditions that are or'd or and'd together, emit 2786 // this as a sequence of branches instead of setcc's with and/or operations. 2787 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2788 // unpredictable branches, and vector extracts because those jumps are likely 2789 // expensive for any target), this should improve performance. 2790 // For example, instead of something like: 2791 // cmp A, B 2792 // C = seteq 2793 // cmp D, E 2794 // F = setle 2795 // or C, F 2796 // jnz foo 2797 // Emit: 2798 // cmp A, B 2799 // je foo 2800 // cmp D, E 2801 // jle foo 2802 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2803 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2804 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2805 Value *Vec; 2806 const Value *BOp0, *BOp1; 2807 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2808 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2809 Opcode = Instruction::And; 2810 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2811 Opcode = Instruction::Or; 2812 2813 if (Opcode && 2814 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2815 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2816 !shouldKeepJumpConditionsTogether( 2817 FuncInfo, I, Opcode, BOp0, BOp1, 2818 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2819 Opcode, BOp0, BOp1))) { 2820 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2821 getEdgeProbability(BrMBB, Succ0MBB), 2822 getEdgeProbability(BrMBB, Succ1MBB), 2823 /*InvertCond=*/false); 2824 // If the compares in later blocks need to use values not currently 2825 // exported from this block, export them now. This block should always 2826 // be the first entry. 2827 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2828 2829 // Allow some cases to be rejected. 2830 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2831 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2832 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2833 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2834 } 2835 2836 // Emit the branch for this block. 2837 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2838 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2839 return; 2840 } 2841 2842 // Okay, we decided not to do this, remove any inserted MBB's and clear 2843 // SwitchCases. 2844 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2845 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2846 2847 SL->SwitchCases.clear(); 2848 } 2849 } 2850 2851 // Create a CaseBlock record representing this branch. 2852 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2853 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2854 2855 // Use visitSwitchCase to actually insert the fast branch sequence for this 2856 // cond branch. 2857 visitSwitchCase(CB, BrMBB); 2858 } 2859 2860 /// visitSwitchCase - Emits the necessary code to represent a single node in 2861 /// the binary search tree resulting from lowering a switch instruction. 2862 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2863 MachineBasicBlock *SwitchBB) { 2864 SDValue Cond; 2865 SDValue CondLHS = getValue(CB.CmpLHS); 2866 SDLoc dl = CB.DL; 2867 2868 if (CB.CC == ISD::SETTRUE) { 2869 // Branch or fall through to TrueBB. 2870 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2871 SwitchBB->normalizeSuccProbs(); 2872 if (CB.TrueBB != NextBlock(SwitchBB)) { 2873 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2874 DAG.getBasicBlock(CB.TrueBB))); 2875 } 2876 return; 2877 } 2878 2879 auto &TLI = DAG.getTargetLoweringInfo(); 2880 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2881 2882 // Build the setcc now. 2883 if (!CB.CmpMHS) { 2884 // Fold "(X == true)" to X and "(X == false)" to !X to 2885 // handle common cases produced by branch lowering. 2886 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2887 CB.CC == ISD::SETEQ) 2888 Cond = CondLHS; 2889 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2890 CB.CC == ISD::SETEQ) { 2891 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2892 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2893 } else { 2894 SDValue CondRHS = getValue(CB.CmpRHS); 2895 2896 // If a pointer's DAG type is larger than its memory type then the DAG 2897 // values are zero-extended. This breaks signed comparisons so truncate 2898 // back to the underlying type before doing the compare. 2899 if (CondLHS.getValueType() != MemVT) { 2900 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2901 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2902 } 2903 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2904 } 2905 } else { 2906 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2907 2908 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2909 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2910 2911 SDValue CmpOp = getValue(CB.CmpMHS); 2912 EVT VT = CmpOp.getValueType(); 2913 2914 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2915 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2916 ISD::SETLE); 2917 } else { 2918 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2919 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2920 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2921 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2922 } 2923 } 2924 2925 // Update successor info 2926 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2927 // TrueBB and FalseBB are always different unless the incoming IR is 2928 // degenerate. This only happens when running llc on weird IR. 2929 if (CB.TrueBB != CB.FalseBB) 2930 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2931 SwitchBB->normalizeSuccProbs(); 2932 2933 // If the lhs block is the next block, invert the condition so that we can 2934 // fall through to the lhs instead of the rhs block. 2935 if (CB.TrueBB == NextBlock(SwitchBB)) { 2936 std::swap(CB.TrueBB, CB.FalseBB); 2937 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2938 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2939 } 2940 2941 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2942 MVT::Other, getControlRoot(), Cond, 2943 DAG.getBasicBlock(CB.TrueBB)); 2944 2945 setValue(CurInst, BrCond); 2946 2947 // Insert the false branch. Do this even if it's a fall through branch, 2948 // this makes it easier to do DAG optimizations which require inverting 2949 // the branch condition. 2950 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2951 DAG.getBasicBlock(CB.FalseBB)); 2952 2953 DAG.setRoot(BrCond); 2954 } 2955 2956 /// visitJumpTable - Emit JumpTable node in the current MBB 2957 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2958 // Emit the code for the jump table 2959 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2960 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2961 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2962 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2963 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2964 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2965 Index.getValue(1), Table, Index); 2966 DAG.setRoot(BrJumpTable); 2967 } 2968 2969 /// visitJumpTableHeader - This function emits necessary code to produce index 2970 /// in the JumpTable from switch case. 2971 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2972 JumpTableHeader &JTH, 2973 MachineBasicBlock *SwitchBB) { 2974 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2975 const SDLoc &dl = *JT.SL; 2976 2977 // Subtract the lowest switch case value from the value being switched on. 2978 SDValue SwitchOp = getValue(JTH.SValue); 2979 EVT VT = SwitchOp.getValueType(); 2980 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2981 DAG.getConstant(JTH.First, dl, VT)); 2982 2983 // The SDNode we just created, which holds the value being switched on minus 2984 // the smallest case value, needs to be copied to a virtual register so it 2985 // can be used as an index into the jump table in a subsequent basic block. 2986 // This value may be smaller or larger than the target's pointer type, and 2987 // therefore require extension or truncating. 2988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2989 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2990 2991 unsigned JumpTableReg = 2992 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2993 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2994 JumpTableReg, SwitchOp); 2995 JT.Reg = JumpTableReg; 2996 2997 if (!JTH.FallthroughUnreachable) { 2998 // Emit the range check for the jump table, and branch to the default block 2999 // for the switch statement if the value being switched on exceeds the 3000 // largest case in the switch. 3001 SDValue CMP = DAG.getSetCC( 3002 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3003 Sub.getValueType()), 3004 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3005 3006 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3007 MVT::Other, CopyTo, CMP, 3008 DAG.getBasicBlock(JT.Default)); 3009 3010 // Avoid emitting unnecessary branches to the next block. 3011 if (JT.MBB != NextBlock(SwitchBB)) 3012 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3013 DAG.getBasicBlock(JT.MBB)); 3014 3015 DAG.setRoot(BrCond); 3016 } else { 3017 // Avoid emitting unnecessary branches to the next block. 3018 if (JT.MBB != NextBlock(SwitchBB)) 3019 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3020 DAG.getBasicBlock(JT.MBB))); 3021 else 3022 DAG.setRoot(CopyTo); 3023 } 3024 } 3025 3026 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3027 /// variable if there exists one. 3028 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3029 SDValue &Chain) { 3030 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3031 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3032 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3033 MachineFunction &MF = DAG.getMachineFunction(); 3034 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3035 MachineSDNode *Node = 3036 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3037 if (Global) { 3038 MachinePointerInfo MPInfo(Global); 3039 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3040 MachineMemOperand::MODereferenceable; 3041 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3042 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3043 DAG.getEVTAlign(PtrTy)); 3044 DAG.setNodeMemRefs(Node, {MemRef}); 3045 } 3046 if (PtrTy != PtrMemTy) 3047 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3048 return SDValue(Node, 0); 3049 } 3050 3051 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3052 /// tail spliced into a stack protector check success bb. 3053 /// 3054 /// For a high level explanation of how this fits into the stack protector 3055 /// generation see the comment on the declaration of class 3056 /// StackProtectorDescriptor. 3057 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3058 MachineBasicBlock *ParentBB) { 3059 3060 // First create the loads to the guard/stack slot for the comparison. 3061 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3062 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3063 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3064 3065 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3066 int FI = MFI.getStackProtectorIndex(); 3067 3068 SDValue Guard; 3069 SDLoc dl = getCurSDLoc(); 3070 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3071 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3072 Align Align = 3073 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3074 3075 // Generate code to load the content of the guard slot. 3076 SDValue GuardVal = DAG.getLoad( 3077 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3078 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3079 MachineMemOperand::MOVolatile); 3080 3081 if (TLI.useStackGuardXorFP()) 3082 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3083 3084 // Retrieve guard check function, nullptr if instrumentation is inlined. 3085 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3086 // The target provides a guard check function to validate the guard value. 3087 // Generate a call to that function with the content of the guard slot as 3088 // argument. 3089 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3090 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3091 3092 TargetLowering::ArgListTy Args; 3093 TargetLowering::ArgListEntry Entry; 3094 Entry.Node = GuardVal; 3095 Entry.Ty = FnTy->getParamType(0); 3096 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3097 Entry.IsInReg = true; 3098 Args.push_back(Entry); 3099 3100 TargetLowering::CallLoweringInfo CLI(DAG); 3101 CLI.setDebugLoc(getCurSDLoc()) 3102 .setChain(DAG.getEntryNode()) 3103 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3104 getValue(GuardCheckFn), std::move(Args)); 3105 3106 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3107 DAG.setRoot(Result.second); 3108 return; 3109 } 3110 3111 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3112 // Otherwise, emit a volatile load to retrieve the stack guard value. 3113 SDValue Chain = DAG.getEntryNode(); 3114 if (TLI.useLoadStackGuardNode()) { 3115 Guard = getLoadStackGuard(DAG, dl, Chain); 3116 } else { 3117 const Value *IRGuard = TLI.getSDagStackGuard(M); 3118 SDValue GuardPtr = getValue(IRGuard); 3119 3120 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3121 MachinePointerInfo(IRGuard, 0), Align, 3122 MachineMemOperand::MOVolatile); 3123 } 3124 3125 // Perform the comparison via a getsetcc. 3126 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3127 *DAG.getContext(), 3128 Guard.getValueType()), 3129 Guard, GuardVal, ISD::SETNE); 3130 3131 // If the guard/stackslot do not equal, branch to failure MBB. 3132 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3133 MVT::Other, GuardVal.getOperand(0), 3134 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3135 // Otherwise branch to success MBB. 3136 SDValue Br = DAG.getNode(ISD::BR, dl, 3137 MVT::Other, BrCond, 3138 DAG.getBasicBlock(SPD.getSuccessMBB())); 3139 3140 DAG.setRoot(Br); 3141 } 3142 3143 /// Codegen the failure basic block for a stack protector check. 3144 /// 3145 /// A failure stack protector machine basic block consists simply of a call to 3146 /// __stack_chk_fail(). 3147 /// 3148 /// For a high level explanation of how this fits into the stack protector 3149 /// generation see the comment on the declaration of class 3150 /// StackProtectorDescriptor. 3151 void 3152 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3153 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3154 TargetLowering::MakeLibCallOptions CallOptions; 3155 CallOptions.setDiscardResult(true); 3156 SDValue Chain = 3157 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3158 std::nullopt, CallOptions, getCurSDLoc()) 3159 .second; 3160 // On PS4/PS5, the "return address" must still be within the calling 3161 // function, even if it's at the very end, so emit an explicit TRAP here. 3162 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3163 if (TM.getTargetTriple().isPS()) 3164 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3165 // WebAssembly needs an unreachable instruction after a non-returning call, 3166 // because the function return type can be different from __stack_chk_fail's 3167 // return type (void). 3168 if (TM.getTargetTriple().isWasm()) 3169 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3170 3171 DAG.setRoot(Chain); 3172 } 3173 3174 /// visitBitTestHeader - This function emits necessary code to produce value 3175 /// suitable for "bit tests" 3176 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3177 MachineBasicBlock *SwitchBB) { 3178 SDLoc dl = getCurSDLoc(); 3179 3180 // Subtract the minimum value. 3181 SDValue SwitchOp = getValue(B.SValue); 3182 EVT VT = SwitchOp.getValueType(); 3183 SDValue RangeSub = 3184 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3185 3186 // Determine the type of the test operands. 3187 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3188 bool UsePtrType = false; 3189 if (!TLI.isTypeLegal(VT)) { 3190 UsePtrType = true; 3191 } else { 3192 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3193 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3194 // Switch table case range are encoded into series of masks. 3195 // Just use pointer type, it's guaranteed to fit. 3196 UsePtrType = true; 3197 break; 3198 } 3199 } 3200 SDValue Sub = RangeSub; 3201 if (UsePtrType) { 3202 VT = TLI.getPointerTy(DAG.getDataLayout()); 3203 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3204 } 3205 3206 B.RegVT = VT.getSimpleVT(); 3207 B.Reg = FuncInfo.CreateReg(B.RegVT); 3208 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3209 3210 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3211 3212 if (!B.FallthroughUnreachable) 3213 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3214 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3215 SwitchBB->normalizeSuccProbs(); 3216 3217 SDValue Root = CopyTo; 3218 if (!B.FallthroughUnreachable) { 3219 // Conditional branch to the default block. 3220 SDValue RangeCmp = DAG.getSetCC(dl, 3221 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3222 RangeSub.getValueType()), 3223 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3224 ISD::SETUGT); 3225 3226 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3227 DAG.getBasicBlock(B.Default)); 3228 } 3229 3230 // Avoid emitting unnecessary branches to the next block. 3231 if (MBB != NextBlock(SwitchBB)) 3232 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3233 3234 DAG.setRoot(Root); 3235 } 3236 3237 /// visitBitTestCase - this function produces one "bit test" 3238 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3239 MachineBasicBlock* NextMBB, 3240 BranchProbability BranchProbToNext, 3241 unsigned Reg, 3242 BitTestCase &B, 3243 MachineBasicBlock *SwitchBB) { 3244 SDLoc dl = getCurSDLoc(); 3245 MVT VT = BB.RegVT; 3246 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3247 SDValue Cmp; 3248 unsigned PopCount = llvm::popcount(B.Mask); 3249 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3250 if (PopCount == 1) { 3251 // Testing for a single bit; just compare the shift count with what it 3252 // would need to be to shift a 1 bit in that position. 3253 Cmp = DAG.getSetCC( 3254 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3255 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3256 ISD::SETEQ); 3257 } else if (PopCount == BB.Range) { 3258 // There is only one zero bit in the range, test for it directly. 3259 Cmp = DAG.getSetCC( 3260 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3261 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3262 } else { 3263 // Make desired shift 3264 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3265 DAG.getConstant(1, dl, VT), ShiftOp); 3266 3267 // Emit bit tests and jumps 3268 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3269 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3270 Cmp = DAG.getSetCC( 3271 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3272 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3273 } 3274 3275 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3276 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3277 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3278 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3279 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3280 // one as they are relative probabilities (and thus work more like weights), 3281 // and hence we need to normalize them to let the sum of them become one. 3282 SwitchBB->normalizeSuccProbs(); 3283 3284 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3285 MVT::Other, getControlRoot(), 3286 Cmp, DAG.getBasicBlock(B.TargetBB)); 3287 3288 // Avoid emitting unnecessary branches to the next block. 3289 if (NextMBB != NextBlock(SwitchBB)) 3290 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3291 DAG.getBasicBlock(NextMBB)); 3292 3293 DAG.setRoot(BrAnd); 3294 } 3295 3296 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3297 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3298 3299 // Retrieve successors. Look through artificial IR level blocks like 3300 // catchswitch for successors. 3301 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3302 const BasicBlock *EHPadBB = I.getSuccessor(1); 3303 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3304 3305 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3306 // have to do anything here to lower funclet bundles. 3307 assert(!I.hasOperandBundlesOtherThan( 3308 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3309 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3310 LLVMContext::OB_cfguardtarget, 3311 LLVMContext::OB_clang_arc_attachedcall}) && 3312 "Cannot lower invokes with arbitrary operand bundles yet!"); 3313 3314 const Value *Callee(I.getCalledOperand()); 3315 const Function *Fn = dyn_cast<Function>(Callee); 3316 if (isa<InlineAsm>(Callee)) 3317 visitInlineAsm(I, EHPadBB); 3318 else if (Fn && Fn->isIntrinsic()) { 3319 switch (Fn->getIntrinsicID()) { 3320 default: 3321 llvm_unreachable("Cannot invoke this intrinsic"); 3322 case Intrinsic::donothing: 3323 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3324 case Intrinsic::seh_try_begin: 3325 case Intrinsic::seh_scope_begin: 3326 case Intrinsic::seh_try_end: 3327 case Intrinsic::seh_scope_end: 3328 if (EHPadMBB) 3329 // a block referenced by EH table 3330 // so dtor-funclet not removed by opts 3331 EHPadMBB->setMachineBlockAddressTaken(); 3332 break; 3333 case Intrinsic::experimental_patchpoint_void: 3334 case Intrinsic::experimental_patchpoint_i64: 3335 visitPatchpoint(I, EHPadBB); 3336 break; 3337 case Intrinsic::experimental_gc_statepoint: 3338 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3339 break; 3340 case Intrinsic::wasm_rethrow: { 3341 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3342 // special because it can be invoked, so we manually lower it to a DAG 3343 // node here. 3344 SmallVector<SDValue, 8> Ops; 3345 Ops.push_back(getRoot()); // inchain 3346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3347 Ops.push_back( 3348 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3349 TLI.getPointerTy(DAG.getDataLayout()))); 3350 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3351 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3352 break; 3353 } 3354 } 3355 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3356 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3357 // Eventually we will support lowering the @llvm.experimental.deoptimize 3358 // intrinsic, and right now there are no plans to support other intrinsics 3359 // with deopt state. 3360 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3361 } else { 3362 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3363 } 3364 3365 // If the value of the invoke is used outside of its defining block, make it 3366 // available as a virtual register. 3367 // We already took care of the exported value for the statepoint instruction 3368 // during call to the LowerStatepoint. 3369 if (!isa<GCStatepointInst>(I)) { 3370 CopyToExportRegsIfNeeded(&I); 3371 } 3372 3373 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3374 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3375 BranchProbability EHPadBBProb = 3376 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3377 : BranchProbability::getZero(); 3378 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3379 3380 // Update successor info. 3381 addSuccessorWithProb(InvokeMBB, Return); 3382 for (auto &UnwindDest : UnwindDests) { 3383 UnwindDest.first->setIsEHPad(); 3384 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3385 } 3386 InvokeMBB->normalizeSuccProbs(); 3387 3388 // Drop into normal successor. 3389 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3390 DAG.getBasicBlock(Return))); 3391 } 3392 3393 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3394 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3395 3396 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3397 // have to do anything here to lower funclet bundles. 3398 assert(!I.hasOperandBundlesOtherThan( 3399 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3400 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3401 3402 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3403 visitInlineAsm(I); 3404 CopyToExportRegsIfNeeded(&I); 3405 3406 // Retrieve successors. 3407 SmallPtrSet<BasicBlock *, 8> Dests; 3408 Dests.insert(I.getDefaultDest()); 3409 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3410 3411 // Update successor info. 3412 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3413 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3414 BasicBlock *Dest = I.getIndirectDest(i); 3415 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3416 Target->setIsInlineAsmBrIndirectTarget(); 3417 Target->setMachineBlockAddressTaken(); 3418 Target->setLabelMustBeEmitted(); 3419 // Don't add duplicate machine successors. 3420 if (Dests.insert(Dest).second) 3421 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3422 } 3423 CallBrMBB->normalizeSuccProbs(); 3424 3425 // Drop into default successor. 3426 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3427 MVT::Other, getControlRoot(), 3428 DAG.getBasicBlock(Return))); 3429 } 3430 3431 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3432 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3433 } 3434 3435 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3436 assert(FuncInfo.MBB->isEHPad() && 3437 "Call to landingpad not in landing pad!"); 3438 3439 // If there aren't registers to copy the values into (e.g., during SjLj 3440 // exceptions), then don't bother to create these DAG nodes. 3441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3442 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3443 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3444 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3445 return; 3446 3447 // If landingpad's return type is token type, we don't create DAG nodes 3448 // for its exception pointer and selector value. The extraction of exception 3449 // pointer or selector value from token type landingpads is not currently 3450 // supported. 3451 if (LP.getType()->isTokenTy()) 3452 return; 3453 3454 SmallVector<EVT, 2> ValueVTs; 3455 SDLoc dl = getCurSDLoc(); 3456 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3457 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3458 3459 // Get the two live-in registers as SDValues. The physregs have already been 3460 // copied into virtual registers. 3461 SDValue Ops[2]; 3462 if (FuncInfo.ExceptionPointerVirtReg) { 3463 Ops[0] = DAG.getZExtOrTrunc( 3464 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3465 FuncInfo.ExceptionPointerVirtReg, 3466 TLI.getPointerTy(DAG.getDataLayout())), 3467 dl, ValueVTs[0]); 3468 } else { 3469 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3470 } 3471 Ops[1] = DAG.getZExtOrTrunc( 3472 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3473 FuncInfo.ExceptionSelectorVirtReg, 3474 TLI.getPointerTy(DAG.getDataLayout())), 3475 dl, ValueVTs[1]); 3476 3477 // Merge into one. 3478 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3479 DAG.getVTList(ValueVTs), Ops); 3480 setValue(&LP, Res); 3481 } 3482 3483 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3484 MachineBasicBlock *Last) { 3485 // Update JTCases. 3486 for (JumpTableBlock &JTB : SL->JTCases) 3487 if (JTB.first.HeaderBB == First) 3488 JTB.first.HeaderBB = Last; 3489 3490 // Update BitTestCases. 3491 for (BitTestBlock &BTB : SL->BitTestCases) 3492 if (BTB.Parent == First) 3493 BTB.Parent = Last; 3494 } 3495 3496 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3497 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3498 3499 // Update machine-CFG edges with unique successors. 3500 SmallSet<BasicBlock*, 32> Done; 3501 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3502 BasicBlock *BB = I.getSuccessor(i); 3503 bool Inserted = Done.insert(BB).second; 3504 if (!Inserted) 3505 continue; 3506 3507 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3508 addSuccessorWithProb(IndirectBrMBB, Succ); 3509 } 3510 IndirectBrMBB->normalizeSuccProbs(); 3511 3512 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3513 MVT::Other, getControlRoot(), 3514 getValue(I.getAddress()))); 3515 } 3516 3517 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3518 if (!DAG.getTarget().Options.TrapUnreachable) 3519 return; 3520 3521 // We may be able to ignore unreachable behind a noreturn call. 3522 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3523 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3524 if (Call->doesNotReturn()) 3525 return; 3526 } 3527 } 3528 3529 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3530 } 3531 3532 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3533 SDNodeFlags Flags; 3534 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3535 Flags.copyFMF(*FPOp); 3536 3537 SDValue Op = getValue(I.getOperand(0)); 3538 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3539 Op, Flags); 3540 setValue(&I, UnNodeValue); 3541 } 3542 3543 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3544 SDNodeFlags Flags; 3545 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3546 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3547 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3548 } 3549 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3550 Flags.setExact(ExactOp->isExact()); 3551 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3552 Flags.setDisjoint(DisjointOp->isDisjoint()); 3553 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3554 Flags.copyFMF(*FPOp); 3555 3556 SDValue Op1 = getValue(I.getOperand(0)); 3557 SDValue Op2 = getValue(I.getOperand(1)); 3558 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3559 Op1, Op2, Flags); 3560 setValue(&I, BinNodeValue); 3561 } 3562 3563 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3564 SDValue Op1 = getValue(I.getOperand(0)); 3565 SDValue Op2 = getValue(I.getOperand(1)); 3566 3567 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3568 Op1.getValueType(), DAG.getDataLayout()); 3569 3570 // Coerce the shift amount to the right type if we can. This exposes the 3571 // truncate or zext to optimization early. 3572 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3573 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3574 "Unexpected shift type"); 3575 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3576 } 3577 3578 bool nuw = false; 3579 bool nsw = false; 3580 bool exact = false; 3581 3582 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3583 3584 if (const OverflowingBinaryOperator *OFBinOp = 3585 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3586 nuw = OFBinOp->hasNoUnsignedWrap(); 3587 nsw = OFBinOp->hasNoSignedWrap(); 3588 } 3589 if (const PossiblyExactOperator *ExactOp = 3590 dyn_cast<const PossiblyExactOperator>(&I)) 3591 exact = ExactOp->isExact(); 3592 } 3593 SDNodeFlags Flags; 3594 Flags.setExact(exact); 3595 Flags.setNoSignedWrap(nsw); 3596 Flags.setNoUnsignedWrap(nuw); 3597 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3598 Flags); 3599 setValue(&I, Res); 3600 } 3601 3602 void SelectionDAGBuilder::visitSDiv(const User &I) { 3603 SDValue Op1 = getValue(I.getOperand(0)); 3604 SDValue Op2 = getValue(I.getOperand(1)); 3605 3606 SDNodeFlags Flags; 3607 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3608 cast<PossiblyExactOperator>(&I)->isExact()); 3609 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3610 Op2, Flags)); 3611 } 3612 3613 void SelectionDAGBuilder::visitICmp(const User &I) { 3614 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3615 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3616 predicate = IC->getPredicate(); 3617 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3618 predicate = ICmpInst::Predicate(IC->getPredicate()); 3619 SDValue Op1 = getValue(I.getOperand(0)); 3620 SDValue Op2 = getValue(I.getOperand(1)); 3621 ISD::CondCode Opcode = getICmpCondCode(predicate); 3622 3623 auto &TLI = DAG.getTargetLoweringInfo(); 3624 EVT MemVT = 3625 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3626 3627 // If a pointer's DAG type is larger than its memory type then the DAG values 3628 // are zero-extended. This breaks signed comparisons so truncate back to the 3629 // underlying type before doing the compare. 3630 if (Op1.getValueType() != MemVT) { 3631 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3632 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3633 } 3634 3635 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3636 I.getType()); 3637 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3638 } 3639 3640 void SelectionDAGBuilder::visitFCmp(const User &I) { 3641 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3642 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3643 predicate = FC->getPredicate(); 3644 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3645 predicate = FCmpInst::Predicate(FC->getPredicate()); 3646 SDValue Op1 = getValue(I.getOperand(0)); 3647 SDValue Op2 = getValue(I.getOperand(1)); 3648 3649 ISD::CondCode Condition = getFCmpCondCode(predicate); 3650 auto *FPMO = cast<FPMathOperator>(&I); 3651 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3652 Condition = getFCmpCodeWithoutNaN(Condition); 3653 3654 SDNodeFlags Flags; 3655 Flags.copyFMF(*FPMO); 3656 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3657 3658 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3659 I.getType()); 3660 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3661 } 3662 3663 // Check if the condition of the select has one use or two users that are both 3664 // selects with the same condition. 3665 static bool hasOnlySelectUsers(const Value *Cond) { 3666 return llvm::all_of(Cond->users(), [](const Value *V) { 3667 return isa<SelectInst>(V); 3668 }); 3669 } 3670 3671 void SelectionDAGBuilder::visitSelect(const User &I) { 3672 SmallVector<EVT, 4> ValueVTs; 3673 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3674 ValueVTs); 3675 unsigned NumValues = ValueVTs.size(); 3676 if (NumValues == 0) return; 3677 3678 SmallVector<SDValue, 4> Values(NumValues); 3679 SDValue Cond = getValue(I.getOperand(0)); 3680 SDValue LHSVal = getValue(I.getOperand(1)); 3681 SDValue RHSVal = getValue(I.getOperand(2)); 3682 SmallVector<SDValue, 1> BaseOps(1, Cond); 3683 ISD::NodeType OpCode = 3684 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3685 3686 bool IsUnaryAbs = false; 3687 bool Negate = false; 3688 3689 SDNodeFlags Flags; 3690 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3691 Flags.copyFMF(*FPOp); 3692 3693 Flags.setUnpredictable( 3694 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3695 3696 // Min/max matching is only viable if all output VTs are the same. 3697 if (all_equal(ValueVTs)) { 3698 EVT VT = ValueVTs[0]; 3699 LLVMContext &Ctx = *DAG.getContext(); 3700 auto &TLI = DAG.getTargetLoweringInfo(); 3701 3702 // We care about the legality of the operation after it has been type 3703 // legalized. 3704 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3705 VT = TLI.getTypeToTransformTo(Ctx, VT); 3706 3707 // If the vselect is legal, assume we want to leave this as a vector setcc + 3708 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3709 // min/max is legal on the scalar type. 3710 bool UseScalarMinMax = VT.isVector() && 3711 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3712 3713 // ValueTracking's select pattern matching does not account for -0.0, 3714 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3715 // -0.0 is less than +0.0. 3716 Value *LHS, *RHS; 3717 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3718 ISD::NodeType Opc = ISD::DELETED_NODE; 3719 switch (SPR.Flavor) { 3720 case SPF_UMAX: Opc = ISD::UMAX; break; 3721 case SPF_UMIN: Opc = ISD::UMIN; break; 3722 case SPF_SMAX: Opc = ISD::SMAX; break; 3723 case SPF_SMIN: Opc = ISD::SMIN; break; 3724 case SPF_FMINNUM: 3725 switch (SPR.NaNBehavior) { 3726 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3727 case SPNB_RETURNS_NAN: break; 3728 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3729 case SPNB_RETURNS_ANY: 3730 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3731 (UseScalarMinMax && 3732 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3733 Opc = ISD::FMINNUM; 3734 break; 3735 } 3736 break; 3737 case SPF_FMAXNUM: 3738 switch (SPR.NaNBehavior) { 3739 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3740 case SPNB_RETURNS_NAN: break; 3741 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3742 case SPNB_RETURNS_ANY: 3743 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3744 (UseScalarMinMax && 3745 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3746 Opc = ISD::FMAXNUM; 3747 break; 3748 } 3749 break; 3750 case SPF_NABS: 3751 Negate = true; 3752 [[fallthrough]]; 3753 case SPF_ABS: 3754 IsUnaryAbs = true; 3755 Opc = ISD::ABS; 3756 break; 3757 default: break; 3758 } 3759 3760 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3761 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3762 (UseScalarMinMax && 3763 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3764 // If the underlying comparison instruction is used by any other 3765 // instruction, the consumed instructions won't be destroyed, so it is 3766 // not profitable to convert to a min/max. 3767 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3768 OpCode = Opc; 3769 LHSVal = getValue(LHS); 3770 RHSVal = getValue(RHS); 3771 BaseOps.clear(); 3772 } 3773 3774 if (IsUnaryAbs) { 3775 OpCode = Opc; 3776 LHSVal = getValue(LHS); 3777 BaseOps.clear(); 3778 } 3779 } 3780 3781 if (IsUnaryAbs) { 3782 for (unsigned i = 0; i != NumValues; ++i) { 3783 SDLoc dl = getCurSDLoc(); 3784 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3785 Values[i] = 3786 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3787 if (Negate) 3788 Values[i] = DAG.getNegative(Values[i], dl, VT); 3789 } 3790 } else { 3791 for (unsigned i = 0; i != NumValues; ++i) { 3792 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3793 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3794 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3795 Values[i] = DAG.getNode( 3796 OpCode, getCurSDLoc(), 3797 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3798 } 3799 } 3800 3801 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3802 DAG.getVTList(ValueVTs), Values)); 3803 } 3804 3805 void SelectionDAGBuilder::visitTrunc(const User &I) { 3806 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3807 SDValue N = getValue(I.getOperand(0)); 3808 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3809 I.getType()); 3810 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3811 } 3812 3813 void SelectionDAGBuilder::visitZExt(const User &I) { 3814 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3815 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3816 SDValue N = getValue(I.getOperand(0)); 3817 auto &TLI = DAG.getTargetLoweringInfo(); 3818 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3819 3820 SDNodeFlags Flags; 3821 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3822 Flags.setNonNeg(PNI->hasNonNeg()); 3823 3824 // Eagerly use nonneg information to canonicalize towards sign_extend if 3825 // that is the target's preference. 3826 // TODO: Let the target do this later. 3827 if (Flags.hasNonNeg() && 3828 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3829 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3830 return; 3831 } 3832 3833 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3834 } 3835 3836 void SelectionDAGBuilder::visitSExt(const User &I) { 3837 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3838 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3839 SDValue N = getValue(I.getOperand(0)); 3840 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3841 I.getType()); 3842 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3843 } 3844 3845 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3846 // FPTrunc is never a no-op cast, no need to check 3847 SDValue N = getValue(I.getOperand(0)); 3848 SDLoc dl = getCurSDLoc(); 3849 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3850 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3851 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3852 DAG.getTargetConstant( 3853 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3854 } 3855 3856 void SelectionDAGBuilder::visitFPExt(const User &I) { 3857 // FPExt is never a no-op cast, no need to check 3858 SDValue N = getValue(I.getOperand(0)); 3859 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3860 I.getType()); 3861 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3862 } 3863 3864 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3865 // FPToUI is never a no-op cast, no need to check 3866 SDValue N = getValue(I.getOperand(0)); 3867 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3868 I.getType()); 3869 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3870 } 3871 3872 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3873 // FPToSI is never a no-op cast, no need to check 3874 SDValue N = getValue(I.getOperand(0)); 3875 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3876 I.getType()); 3877 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3878 } 3879 3880 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3881 // UIToFP is never a no-op cast, no need to check 3882 SDValue N = getValue(I.getOperand(0)); 3883 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3884 I.getType()); 3885 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3886 } 3887 3888 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3889 // SIToFP is never a no-op cast, no need to check 3890 SDValue N = getValue(I.getOperand(0)); 3891 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3892 I.getType()); 3893 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3894 } 3895 3896 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3897 // What to do depends on the size of the integer and the size of the pointer. 3898 // We can either truncate, zero extend, or no-op, accordingly. 3899 SDValue N = getValue(I.getOperand(0)); 3900 auto &TLI = DAG.getTargetLoweringInfo(); 3901 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3902 I.getType()); 3903 EVT PtrMemVT = 3904 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3905 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3906 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3907 setValue(&I, N); 3908 } 3909 3910 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3911 // What to do depends on the size of the integer and the size of the pointer. 3912 // We can either truncate, zero extend, or no-op, accordingly. 3913 SDValue N = getValue(I.getOperand(0)); 3914 auto &TLI = DAG.getTargetLoweringInfo(); 3915 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3916 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3917 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3918 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3919 setValue(&I, N); 3920 } 3921 3922 void SelectionDAGBuilder::visitBitCast(const User &I) { 3923 SDValue N = getValue(I.getOperand(0)); 3924 SDLoc dl = getCurSDLoc(); 3925 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3926 I.getType()); 3927 3928 // BitCast assures us that source and destination are the same size so this is 3929 // either a BITCAST or a no-op. 3930 if (DestVT != N.getValueType()) 3931 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3932 DestVT, N)); // convert types. 3933 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3934 // might fold any kind of constant expression to an integer constant and that 3935 // is not what we are looking for. Only recognize a bitcast of a genuine 3936 // constant integer as an opaque constant. 3937 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3938 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3939 /*isOpaque*/true)); 3940 else 3941 setValue(&I, N); // noop cast. 3942 } 3943 3944 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3945 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3946 const Value *SV = I.getOperand(0); 3947 SDValue N = getValue(SV); 3948 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3949 3950 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3951 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3952 3953 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3954 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3955 3956 setValue(&I, N); 3957 } 3958 3959 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3961 SDValue InVec = getValue(I.getOperand(0)); 3962 SDValue InVal = getValue(I.getOperand(1)); 3963 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3964 TLI.getVectorIdxTy(DAG.getDataLayout())); 3965 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3966 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3967 InVec, InVal, InIdx)); 3968 } 3969 3970 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3972 SDValue InVec = getValue(I.getOperand(0)); 3973 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3974 TLI.getVectorIdxTy(DAG.getDataLayout())); 3975 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3976 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3977 InVec, InIdx)); 3978 } 3979 3980 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3981 SDValue Src1 = getValue(I.getOperand(0)); 3982 SDValue Src2 = getValue(I.getOperand(1)); 3983 ArrayRef<int> Mask; 3984 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3985 Mask = SVI->getShuffleMask(); 3986 else 3987 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3988 SDLoc DL = getCurSDLoc(); 3989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3990 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3991 EVT SrcVT = Src1.getValueType(); 3992 3993 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3994 VT.isScalableVector()) { 3995 // Canonical splat form of first element of first input vector. 3996 SDValue FirstElt = 3997 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3998 DAG.getVectorIdxConstant(0, DL)); 3999 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4000 return; 4001 } 4002 4003 // For now, we only handle splats for scalable vectors. 4004 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4005 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4006 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4007 4008 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4009 unsigned MaskNumElts = Mask.size(); 4010 4011 if (SrcNumElts == MaskNumElts) { 4012 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4013 return; 4014 } 4015 4016 // Normalize the shuffle vector since mask and vector length don't match. 4017 if (SrcNumElts < MaskNumElts) { 4018 // Mask is longer than the source vectors. We can use concatenate vector to 4019 // make the mask and vectors lengths match. 4020 4021 if (MaskNumElts % SrcNumElts == 0) { 4022 // Mask length is a multiple of the source vector length. 4023 // Check if the shuffle is some kind of concatenation of the input 4024 // vectors. 4025 unsigned NumConcat = MaskNumElts / SrcNumElts; 4026 bool IsConcat = true; 4027 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4028 for (unsigned i = 0; i != MaskNumElts; ++i) { 4029 int Idx = Mask[i]; 4030 if (Idx < 0) 4031 continue; 4032 // Ensure the indices in each SrcVT sized piece are sequential and that 4033 // the same source is used for the whole piece. 4034 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4035 (ConcatSrcs[i / SrcNumElts] >= 0 && 4036 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4037 IsConcat = false; 4038 break; 4039 } 4040 // Remember which source this index came from. 4041 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4042 } 4043 4044 // The shuffle is concatenating multiple vectors together. Just emit 4045 // a CONCAT_VECTORS operation. 4046 if (IsConcat) { 4047 SmallVector<SDValue, 8> ConcatOps; 4048 for (auto Src : ConcatSrcs) { 4049 if (Src < 0) 4050 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4051 else if (Src == 0) 4052 ConcatOps.push_back(Src1); 4053 else 4054 ConcatOps.push_back(Src2); 4055 } 4056 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4057 return; 4058 } 4059 } 4060 4061 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4062 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4063 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4064 PaddedMaskNumElts); 4065 4066 // Pad both vectors with undefs to make them the same length as the mask. 4067 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4068 4069 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4070 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4071 MOps1[0] = Src1; 4072 MOps2[0] = Src2; 4073 4074 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4075 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4076 4077 // Readjust mask for new input vector length. 4078 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4079 for (unsigned i = 0; i != MaskNumElts; ++i) { 4080 int Idx = Mask[i]; 4081 if (Idx >= (int)SrcNumElts) 4082 Idx -= SrcNumElts - PaddedMaskNumElts; 4083 MappedOps[i] = Idx; 4084 } 4085 4086 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4087 4088 // If the concatenated vector was padded, extract a subvector with the 4089 // correct number of elements. 4090 if (MaskNumElts != PaddedMaskNumElts) 4091 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4092 DAG.getVectorIdxConstant(0, DL)); 4093 4094 setValue(&I, Result); 4095 return; 4096 } 4097 4098 if (SrcNumElts > MaskNumElts) { 4099 // Analyze the access pattern of the vector to see if we can extract 4100 // two subvectors and do the shuffle. 4101 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4102 bool CanExtract = true; 4103 for (int Idx : Mask) { 4104 unsigned Input = 0; 4105 if (Idx < 0) 4106 continue; 4107 4108 if (Idx >= (int)SrcNumElts) { 4109 Input = 1; 4110 Idx -= SrcNumElts; 4111 } 4112 4113 // If all the indices come from the same MaskNumElts sized portion of 4114 // the sources we can use extract. Also make sure the extract wouldn't 4115 // extract past the end of the source. 4116 int NewStartIdx = alignDown(Idx, MaskNumElts); 4117 if (NewStartIdx + MaskNumElts > SrcNumElts || 4118 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4119 CanExtract = false; 4120 // Make sure we always update StartIdx as we use it to track if all 4121 // elements are undef. 4122 StartIdx[Input] = NewStartIdx; 4123 } 4124 4125 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4126 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4127 return; 4128 } 4129 if (CanExtract) { 4130 // Extract appropriate subvector and generate a vector shuffle 4131 for (unsigned Input = 0; Input < 2; ++Input) { 4132 SDValue &Src = Input == 0 ? Src1 : Src2; 4133 if (StartIdx[Input] < 0) 4134 Src = DAG.getUNDEF(VT); 4135 else { 4136 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4137 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4138 } 4139 } 4140 4141 // Calculate new mask. 4142 SmallVector<int, 8> MappedOps(Mask); 4143 for (int &Idx : MappedOps) { 4144 if (Idx >= (int)SrcNumElts) 4145 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4146 else if (Idx >= 0) 4147 Idx -= StartIdx[0]; 4148 } 4149 4150 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4151 return; 4152 } 4153 } 4154 4155 // We can't use either concat vectors or extract subvectors so fall back to 4156 // replacing the shuffle with extract and build vector. 4157 // to insert and build vector. 4158 EVT EltVT = VT.getVectorElementType(); 4159 SmallVector<SDValue,8> Ops; 4160 for (int Idx : Mask) { 4161 SDValue Res; 4162 4163 if (Idx < 0) { 4164 Res = DAG.getUNDEF(EltVT); 4165 } else { 4166 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4167 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4168 4169 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4170 DAG.getVectorIdxConstant(Idx, DL)); 4171 } 4172 4173 Ops.push_back(Res); 4174 } 4175 4176 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4177 } 4178 4179 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4180 ArrayRef<unsigned> Indices = I.getIndices(); 4181 const Value *Op0 = I.getOperand(0); 4182 const Value *Op1 = I.getOperand(1); 4183 Type *AggTy = I.getType(); 4184 Type *ValTy = Op1->getType(); 4185 bool IntoUndef = isa<UndefValue>(Op0); 4186 bool FromUndef = isa<UndefValue>(Op1); 4187 4188 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4189 4190 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4191 SmallVector<EVT, 4> AggValueVTs; 4192 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4193 SmallVector<EVT, 4> ValValueVTs; 4194 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4195 4196 unsigned NumAggValues = AggValueVTs.size(); 4197 unsigned NumValValues = ValValueVTs.size(); 4198 SmallVector<SDValue, 4> Values(NumAggValues); 4199 4200 // Ignore an insertvalue that produces an empty object 4201 if (!NumAggValues) { 4202 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4203 return; 4204 } 4205 4206 SDValue Agg = getValue(Op0); 4207 unsigned i = 0; 4208 // Copy the beginning value(s) from the original aggregate. 4209 for (; i != LinearIndex; ++i) 4210 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4211 SDValue(Agg.getNode(), Agg.getResNo() + i); 4212 // Copy values from the inserted value(s). 4213 if (NumValValues) { 4214 SDValue Val = getValue(Op1); 4215 for (; i != LinearIndex + NumValValues; ++i) 4216 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4217 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4218 } 4219 // Copy remaining value(s) from the original aggregate. 4220 for (; i != NumAggValues; ++i) 4221 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4222 SDValue(Agg.getNode(), Agg.getResNo() + i); 4223 4224 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4225 DAG.getVTList(AggValueVTs), Values)); 4226 } 4227 4228 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4229 ArrayRef<unsigned> Indices = I.getIndices(); 4230 const Value *Op0 = I.getOperand(0); 4231 Type *AggTy = Op0->getType(); 4232 Type *ValTy = I.getType(); 4233 bool OutOfUndef = isa<UndefValue>(Op0); 4234 4235 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4236 4237 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4238 SmallVector<EVT, 4> ValValueVTs; 4239 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4240 4241 unsigned NumValValues = ValValueVTs.size(); 4242 4243 // Ignore a extractvalue that produces an empty object 4244 if (!NumValValues) { 4245 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4246 return; 4247 } 4248 4249 SmallVector<SDValue, 4> Values(NumValValues); 4250 4251 SDValue Agg = getValue(Op0); 4252 // Copy out the selected value(s). 4253 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4254 Values[i - LinearIndex] = 4255 OutOfUndef ? 4256 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4257 SDValue(Agg.getNode(), Agg.getResNo() + i); 4258 4259 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4260 DAG.getVTList(ValValueVTs), Values)); 4261 } 4262 4263 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4264 Value *Op0 = I.getOperand(0); 4265 // Note that the pointer operand may be a vector of pointers. Take the scalar 4266 // element which holds a pointer. 4267 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4268 SDValue N = getValue(Op0); 4269 SDLoc dl = getCurSDLoc(); 4270 auto &TLI = DAG.getTargetLoweringInfo(); 4271 4272 // Normalize Vector GEP - all scalar operands should be converted to the 4273 // splat vector. 4274 bool IsVectorGEP = I.getType()->isVectorTy(); 4275 ElementCount VectorElementCount = 4276 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4277 : ElementCount::getFixed(0); 4278 4279 if (IsVectorGEP && !N.getValueType().isVector()) { 4280 LLVMContext &Context = *DAG.getContext(); 4281 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4282 N = DAG.getSplat(VT, dl, N); 4283 } 4284 4285 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4286 GTI != E; ++GTI) { 4287 const Value *Idx = GTI.getOperand(); 4288 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4289 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4290 if (Field) { 4291 // N = N + Offset 4292 uint64_t Offset = 4293 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4294 4295 // In an inbounds GEP with an offset that is nonnegative even when 4296 // interpreted as signed, assume there is no unsigned overflow. 4297 SDNodeFlags Flags; 4298 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4299 Flags.setNoUnsignedWrap(true); 4300 4301 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4302 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4303 } 4304 } else { 4305 // IdxSize is the width of the arithmetic according to IR semantics. 4306 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4307 // (and fix up the result later). 4308 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4309 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4310 TypeSize ElementSize = 4311 GTI.getSequentialElementStride(DAG.getDataLayout()); 4312 // We intentionally mask away the high bits here; ElementSize may not 4313 // fit in IdxTy. 4314 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4315 bool ElementScalable = ElementSize.isScalable(); 4316 4317 // If this is a scalar constant or a splat vector of constants, 4318 // handle it quickly. 4319 const auto *C = dyn_cast<Constant>(Idx); 4320 if (C && isa<VectorType>(C->getType())) 4321 C = C->getSplatValue(); 4322 4323 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4324 if (CI && CI->isZero()) 4325 continue; 4326 if (CI && !ElementScalable) { 4327 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4328 LLVMContext &Context = *DAG.getContext(); 4329 SDValue OffsVal; 4330 if (IsVectorGEP) 4331 OffsVal = DAG.getConstant( 4332 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4333 else 4334 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4335 4336 // In an inbounds GEP with an offset that is nonnegative even when 4337 // interpreted as signed, assume there is no unsigned overflow. 4338 SDNodeFlags Flags; 4339 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4340 Flags.setNoUnsignedWrap(true); 4341 4342 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4343 4344 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4345 continue; 4346 } 4347 4348 // N = N + Idx * ElementMul; 4349 SDValue IdxN = getValue(Idx); 4350 4351 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4352 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4353 VectorElementCount); 4354 IdxN = DAG.getSplat(VT, dl, IdxN); 4355 } 4356 4357 // If the index is smaller or larger than intptr_t, truncate or extend 4358 // it. 4359 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4360 4361 if (ElementScalable) { 4362 EVT VScaleTy = N.getValueType().getScalarType(); 4363 SDValue VScale = DAG.getNode( 4364 ISD::VSCALE, dl, VScaleTy, 4365 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4366 if (IsVectorGEP) 4367 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4368 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4369 } else { 4370 // If this is a multiply by a power of two, turn it into a shl 4371 // immediately. This is a very common case. 4372 if (ElementMul != 1) { 4373 if (ElementMul.isPowerOf2()) { 4374 unsigned Amt = ElementMul.logBase2(); 4375 IdxN = DAG.getNode(ISD::SHL, dl, 4376 N.getValueType(), IdxN, 4377 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4378 } else { 4379 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4380 IdxN.getValueType()); 4381 IdxN = DAG.getNode(ISD::MUL, dl, 4382 N.getValueType(), IdxN, Scale); 4383 } 4384 } 4385 } 4386 4387 N = DAG.getNode(ISD::ADD, dl, 4388 N.getValueType(), N, IdxN); 4389 } 4390 } 4391 4392 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4393 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4394 if (IsVectorGEP) { 4395 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4396 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4397 } 4398 4399 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4400 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4401 4402 setValue(&I, N); 4403 } 4404 4405 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4406 // If this is a fixed sized alloca in the entry block of the function, 4407 // allocate it statically on the stack. 4408 if (FuncInfo.StaticAllocaMap.count(&I)) 4409 return; // getValue will auto-populate this. 4410 4411 SDLoc dl = getCurSDLoc(); 4412 Type *Ty = I.getAllocatedType(); 4413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4414 auto &DL = DAG.getDataLayout(); 4415 TypeSize TySize = DL.getTypeAllocSize(Ty); 4416 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4417 4418 SDValue AllocSize = getValue(I.getArraySize()); 4419 4420 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4421 if (AllocSize.getValueType() != IntPtr) 4422 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4423 4424 if (TySize.isScalable()) 4425 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4426 DAG.getVScale(dl, IntPtr, 4427 APInt(IntPtr.getScalarSizeInBits(), 4428 TySize.getKnownMinValue()))); 4429 else { 4430 SDValue TySizeValue = 4431 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4432 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4433 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4434 } 4435 4436 // Handle alignment. If the requested alignment is less than or equal to 4437 // the stack alignment, ignore it. If the size is greater than or equal to 4438 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4439 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4440 if (*Alignment <= StackAlign) 4441 Alignment = std::nullopt; 4442 4443 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4444 // Round the size of the allocation up to the stack alignment size 4445 // by add SA-1 to the size. This doesn't overflow because we're computing 4446 // an address inside an alloca. 4447 SDNodeFlags Flags; 4448 Flags.setNoUnsignedWrap(true); 4449 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4450 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4451 4452 // Mask out the low bits for alignment purposes. 4453 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4454 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4455 4456 SDValue Ops[] = { 4457 getRoot(), AllocSize, 4458 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4459 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4460 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4461 setValue(&I, DSA); 4462 DAG.setRoot(DSA.getValue(1)); 4463 4464 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4465 } 4466 4467 static const MDNode *getRangeMetadata(const Instruction &I) { 4468 // If !noundef is not present, then !range violation results in a poison 4469 // value rather than immediate undefined behavior. In theory, transferring 4470 // these annotations to SDAG is fine, but in practice there are key SDAG 4471 // transforms that are known not to be poison-safe, such as folding logical 4472 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4473 // also present. 4474 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4475 return nullptr; 4476 return I.getMetadata(LLVMContext::MD_range); 4477 } 4478 4479 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4480 if (I.isAtomic()) 4481 return visitAtomicLoad(I); 4482 4483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4484 const Value *SV = I.getOperand(0); 4485 if (TLI.supportSwiftError()) { 4486 // Swifterror values can come from either a function parameter with 4487 // swifterror attribute or an alloca with swifterror attribute. 4488 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4489 if (Arg->hasSwiftErrorAttr()) 4490 return visitLoadFromSwiftError(I); 4491 } 4492 4493 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4494 if (Alloca->isSwiftError()) 4495 return visitLoadFromSwiftError(I); 4496 } 4497 } 4498 4499 SDValue Ptr = getValue(SV); 4500 4501 Type *Ty = I.getType(); 4502 SmallVector<EVT, 4> ValueVTs, MemVTs; 4503 SmallVector<TypeSize, 4> Offsets; 4504 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4505 unsigned NumValues = ValueVTs.size(); 4506 if (NumValues == 0) 4507 return; 4508 4509 Align Alignment = I.getAlign(); 4510 AAMDNodes AAInfo = I.getAAMetadata(); 4511 const MDNode *Ranges = getRangeMetadata(I); 4512 bool isVolatile = I.isVolatile(); 4513 MachineMemOperand::Flags MMOFlags = 4514 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4515 4516 SDValue Root; 4517 bool ConstantMemory = false; 4518 if (isVolatile) 4519 // Serialize volatile loads with other side effects. 4520 Root = getRoot(); 4521 else if (NumValues > MaxParallelChains) 4522 Root = getMemoryRoot(); 4523 else if (AA && 4524 AA->pointsToConstantMemory(MemoryLocation( 4525 SV, 4526 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4527 AAInfo))) { 4528 // Do not serialize (non-volatile) loads of constant memory with anything. 4529 Root = DAG.getEntryNode(); 4530 ConstantMemory = true; 4531 MMOFlags |= MachineMemOperand::MOInvariant; 4532 } else { 4533 // Do not serialize non-volatile loads against each other. 4534 Root = DAG.getRoot(); 4535 } 4536 4537 SDLoc dl = getCurSDLoc(); 4538 4539 if (isVolatile) 4540 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4541 4542 SmallVector<SDValue, 4> Values(NumValues); 4543 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4544 4545 unsigned ChainI = 0; 4546 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4547 // Serializing loads here may result in excessive register pressure, and 4548 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4549 // could recover a bit by hoisting nodes upward in the chain by recognizing 4550 // they are side-effect free or do not alias. The optimizer should really 4551 // avoid this case by converting large object/array copies to llvm.memcpy 4552 // (MaxParallelChains should always remain as failsafe). 4553 if (ChainI == MaxParallelChains) { 4554 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4555 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4556 ArrayRef(Chains.data(), ChainI)); 4557 Root = Chain; 4558 ChainI = 0; 4559 } 4560 4561 // TODO: MachinePointerInfo only supports a fixed length offset. 4562 MachinePointerInfo PtrInfo = 4563 !Offsets[i].isScalable() || Offsets[i].isZero() 4564 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4565 : MachinePointerInfo(); 4566 4567 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4568 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4569 MMOFlags, AAInfo, Ranges); 4570 Chains[ChainI] = L.getValue(1); 4571 4572 if (MemVTs[i] != ValueVTs[i]) 4573 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4574 4575 Values[i] = L; 4576 } 4577 4578 if (!ConstantMemory) { 4579 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4580 ArrayRef(Chains.data(), ChainI)); 4581 if (isVolatile) 4582 DAG.setRoot(Chain); 4583 else 4584 PendingLoads.push_back(Chain); 4585 } 4586 4587 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4588 DAG.getVTList(ValueVTs), Values)); 4589 } 4590 4591 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4592 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4593 "call visitStoreToSwiftError when backend supports swifterror"); 4594 4595 SmallVector<EVT, 4> ValueVTs; 4596 SmallVector<uint64_t, 4> Offsets; 4597 const Value *SrcV = I.getOperand(0); 4598 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4599 SrcV->getType(), ValueVTs, &Offsets, 0); 4600 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4601 "expect a single EVT for swifterror"); 4602 4603 SDValue Src = getValue(SrcV); 4604 // Create a virtual register, then update the virtual register. 4605 Register VReg = 4606 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4607 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4608 // Chain can be getRoot or getControlRoot. 4609 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4610 SDValue(Src.getNode(), Src.getResNo())); 4611 DAG.setRoot(CopyNode); 4612 } 4613 4614 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4615 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4616 "call visitLoadFromSwiftError when backend supports swifterror"); 4617 4618 assert(!I.isVolatile() && 4619 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4620 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4621 "Support volatile, non temporal, invariant for load_from_swift_error"); 4622 4623 const Value *SV = I.getOperand(0); 4624 Type *Ty = I.getType(); 4625 assert( 4626 (!AA || 4627 !AA->pointsToConstantMemory(MemoryLocation( 4628 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4629 I.getAAMetadata()))) && 4630 "load_from_swift_error should not be constant memory"); 4631 4632 SmallVector<EVT, 4> ValueVTs; 4633 SmallVector<uint64_t, 4> Offsets; 4634 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4635 ValueVTs, &Offsets, 0); 4636 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4637 "expect a single EVT for swifterror"); 4638 4639 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4640 SDValue L = DAG.getCopyFromReg( 4641 getRoot(), getCurSDLoc(), 4642 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4643 4644 setValue(&I, L); 4645 } 4646 4647 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4648 if (I.isAtomic()) 4649 return visitAtomicStore(I); 4650 4651 const Value *SrcV = I.getOperand(0); 4652 const Value *PtrV = I.getOperand(1); 4653 4654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4655 if (TLI.supportSwiftError()) { 4656 // Swifterror values can come from either a function parameter with 4657 // swifterror attribute or an alloca with swifterror attribute. 4658 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4659 if (Arg->hasSwiftErrorAttr()) 4660 return visitStoreToSwiftError(I); 4661 } 4662 4663 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4664 if (Alloca->isSwiftError()) 4665 return visitStoreToSwiftError(I); 4666 } 4667 } 4668 4669 SmallVector<EVT, 4> ValueVTs, MemVTs; 4670 SmallVector<TypeSize, 4> Offsets; 4671 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4672 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4673 unsigned NumValues = ValueVTs.size(); 4674 if (NumValues == 0) 4675 return; 4676 4677 // Get the lowered operands. Note that we do this after 4678 // checking if NumResults is zero, because with zero results 4679 // the operands won't have values in the map. 4680 SDValue Src = getValue(SrcV); 4681 SDValue Ptr = getValue(PtrV); 4682 4683 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4684 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4685 SDLoc dl = getCurSDLoc(); 4686 Align Alignment = I.getAlign(); 4687 AAMDNodes AAInfo = I.getAAMetadata(); 4688 4689 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4690 4691 unsigned ChainI = 0; 4692 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4693 // See visitLoad comments. 4694 if (ChainI == MaxParallelChains) { 4695 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4696 ArrayRef(Chains.data(), ChainI)); 4697 Root = Chain; 4698 ChainI = 0; 4699 } 4700 4701 // TODO: MachinePointerInfo only supports a fixed length offset. 4702 MachinePointerInfo PtrInfo = 4703 !Offsets[i].isScalable() || Offsets[i].isZero() 4704 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4705 : MachinePointerInfo(); 4706 4707 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4708 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4709 if (MemVTs[i] != ValueVTs[i]) 4710 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4711 SDValue St = 4712 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4713 Chains[ChainI] = St; 4714 } 4715 4716 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4717 ArrayRef(Chains.data(), ChainI)); 4718 setValue(&I, StoreNode); 4719 DAG.setRoot(StoreNode); 4720 } 4721 4722 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4723 bool IsCompressing) { 4724 SDLoc sdl = getCurSDLoc(); 4725 4726 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4727 Align &Alignment) { 4728 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4729 Src0 = I.getArgOperand(0); 4730 Ptr = I.getArgOperand(1); 4731 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4732 Mask = I.getArgOperand(3); 4733 }; 4734 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4735 Align &Alignment) { 4736 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4737 Src0 = I.getArgOperand(0); 4738 Ptr = I.getArgOperand(1); 4739 Mask = I.getArgOperand(2); 4740 Alignment = I.getParamAlign(1).valueOrOne(); 4741 }; 4742 4743 Value *PtrOperand, *MaskOperand, *Src0Operand; 4744 Align Alignment; 4745 if (IsCompressing) 4746 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4747 else 4748 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4749 4750 SDValue Ptr = getValue(PtrOperand); 4751 SDValue Src0 = getValue(Src0Operand); 4752 SDValue Mask = getValue(MaskOperand); 4753 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4754 4755 EVT VT = Src0.getValueType(); 4756 4757 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4758 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4759 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4760 SDValue StoreNode = 4761 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4762 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4763 DAG.setRoot(StoreNode); 4764 setValue(&I, StoreNode); 4765 } 4766 4767 // Get a uniform base for the Gather/Scatter intrinsic. 4768 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4769 // We try to represent it as a base pointer + vector of indices. 4770 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4771 // The first operand of the GEP may be a single pointer or a vector of pointers 4772 // Example: 4773 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4774 // or 4775 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4776 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4777 // 4778 // When the first GEP operand is a single pointer - it is the uniform base we 4779 // are looking for. If first operand of the GEP is a splat vector - we 4780 // extract the splat value and use it as a uniform base. 4781 // In all other cases the function returns 'false'. 4782 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4783 ISD::MemIndexType &IndexType, SDValue &Scale, 4784 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4785 uint64_t ElemSize) { 4786 SelectionDAG& DAG = SDB->DAG; 4787 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4788 const DataLayout &DL = DAG.getDataLayout(); 4789 4790 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4791 4792 // Handle splat constant pointer. 4793 if (auto *C = dyn_cast<Constant>(Ptr)) { 4794 C = C->getSplatValue(); 4795 if (!C) 4796 return false; 4797 4798 Base = SDB->getValue(C); 4799 4800 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4801 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4802 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4803 IndexType = ISD::SIGNED_SCALED; 4804 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4805 return true; 4806 } 4807 4808 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4809 if (!GEP || GEP->getParent() != CurBB) 4810 return false; 4811 4812 if (GEP->getNumOperands() != 2) 4813 return false; 4814 4815 const Value *BasePtr = GEP->getPointerOperand(); 4816 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4817 4818 // Make sure the base is scalar and the index is a vector. 4819 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4820 return false; 4821 4822 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4823 if (ScaleVal.isScalable()) 4824 return false; 4825 4826 // Target may not support the required addressing mode. 4827 if (ScaleVal != 1 && 4828 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4829 return false; 4830 4831 Base = SDB->getValue(BasePtr); 4832 Index = SDB->getValue(IndexVal); 4833 IndexType = ISD::SIGNED_SCALED; 4834 4835 Scale = 4836 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4837 return true; 4838 } 4839 4840 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4841 SDLoc sdl = getCurSDLoc(); 4842 4843 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4844 const Value *Ptr = I.getArgOperand(1); 4845 SDValue Src0 = getValue(I.getArgOperand(0)); 4846 SDValue Mask = getValue(I.getArgOperand(3)); 4847 EVT VT = Src0.getValueType(); 4848 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4849 ->getMaybeAlignValue() 4850 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4851 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4852 4853 SDValue Base; 4854 SDValue Index; 4855 ISD::MemIndexType IndexType; 4856 SDValue Scale; 4857 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4858 I.getParent(), VT.getScalarStoreSize()); 4859 4860 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4861 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4862 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4863 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4864 if (!UniformBase) { 4865 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4866 Index = getValue(Ptr); 4867 IndexType = ISD::SIGNED_SCALED; 4868 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4869 } 4870 4871 EVT IdxVT = Index.getValueType(); 4872 EVT EltTy = IdxVT.getVectorElementType(); 4873 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4874 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4875 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4876 } 4877 4878 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4879 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4880 Ops, MMO, IndexType, false); 4881 DAG.setRoot(Scatter); 4882 setValue(&I, Scatter); 4883 } 4884 4885 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4886 SDLoc sdl = getCurSDLoc(); 4887 4888 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4889 Align &Alignment) { 4890 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4891 Ptr = I.getArgOperand(0); 4892 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4893 Mask = I.getArgOperand(2); 4894 Src0 = I.getArgOperand(3); 4895 }; 4896 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4897 Align &Alignment) { 4898 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4899 Ptr = I.getArgOperand(0); 4900 Alignment = I.getParamAlign(0).valueOrOne(); 4901 Mask = I.getArgOperand(1); 4902 Src0 = I.getArgOperand(2); 4903 }; 4904 4905 Value *PtrOperand, *MaskOperand, *Src0Operand; 4906 Align Alignment; 4907 if (IsExpanding) 4908 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4909 else 4910 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4911 4912 SDValue Ptr = getValue(PtrOperand); 4913 SDValue Src0 = getValue(Src0Operand); 4914 SDValue Mask = getValue(MaskOperand); 4915 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4916 4917 EVT VT = Src0.getValueType(); 4918 AAMDNodes AAInfo = I.getAAMetadata(); 4919 const MDNode *Ranges = getRangeMetadata(I); 4920 4921 // Do not serialize masked loads of constant memory with anything. 4922 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4923 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4924 4925 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4926 4927 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4928 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4929 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4930 4931 SDValue Load = 4932 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4933 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4934 if (AddToChain) 4935 PendingLoads.push_back(Load.getValue(1)); 4936 setValue(&I, Load); 4937 } 4938 4939 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4940 SDLoc sdl = getCurSDLoc(); 4941 4942 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4943 const Value *Ptr = I.getArgOperand(0); 4944 SDValue Src0 = getValue(I.getArgOperand(3)); 4945 SDValue Mask = getValue(I.getArgOperand(2)); 4946 4947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4948 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4949 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4950 ->getMaybeAlignValue() 4951 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4952 4953 const MDNode *Ranges = getRangeMetadata(I); 4954 4955 SDValue Root = DAG.getRoot(); 4956 SDValue Base; 4957 SDValue Index; 4958 ISD::MemIndexType IndexType; 4959 SDValue Scale; 4960 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4961 I.getParent(), VT.getScalarStoreSize()); 4962 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4963 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4964 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4965 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), Ranges); 4966 4967 if (!UniformBase) { 4968 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4969 Index = getValue(Ptr); 4970 IndexType = ISD::SIGNED_SCALED; 4971 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4972 } 4973 4974 EVT IdxVT = Index.getValueType(); 4975 EVT EltTy = IdxVT.getVectorElementType(); 4976 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4977 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4978 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4979 } 4980 4981 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4982 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4983 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4984 4985 PendingLoads.push_back(Gather.getValue(1)); 4986 setValue(&I, Gather); 4987 } 4988 4989 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4990 SDLoc dl = getCurSDLoc(); 4991 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4992 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4993 SyncScope::ID SSID = I.getSyncScopeID(); 4994 4995 SDValue InChain = getRoot(); 4996 4997 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4998 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4999 5000 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5001 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5002 5003 MachineFunction &MF = DAG.getMachineFunction(); 5004 MachineMemOperand *MMO = MF.getMachineMemOperand( 5005 MachinePointerInfo(I.getPointerOperand()), Flags, 5006 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5007 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5008 5009 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5010 dl, MemVT, VTs, InChain, 5011 getValue(I.getPointerOperand()), 5012 getValue(I.getCompareOperand()), 5013 getValue(I.getNewValOperand()), MMO); 5014 5015 SDValue OutChain = L.getValue(2); 5016 5017 setValue(&I, L); 5018 DAG.setRoot(OutChain); 5019 } 5020 5021 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5022 SDLoc dl = getCurSDLoc(); 5023 ISD::NodeType NT; 5024 switch (I.getOperation()) { 5025 default: llvm_unreachable("Unknown atomicrmw operation"); 5026 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5027 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5028 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5029 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5030 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5031 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5032 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5033 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5034 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5035 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5036 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5037 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5038 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5039 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5040 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5041 case AtomicRMWInst::UIncWrap: 5042 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5043 break; 5044 case AtomicRMWInst::UDecWrap: 5045 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5046 break; 5047 } 5048 AtomicOrdering Ordering = I.getOrdering(); 5049 SyncScope::ID SSID = I.getSyncScopeID(); 5050 5051 SDValue InChain = getRoot(); 5052 5053 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5054 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5055 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5056 5057 MachineFunction &MF = DAG.getMachineFunction(); 5058 MachineMemOperand *MMO = MF.getMachineMemOperand( 5059 MachinePointerInfo(I.getPointerOperand()), Flags, 5060 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5061 AAMDNodes(), nullptr, SSID, Ordering); 5062 5063 SDValue L = 5064 DAG.getAtomic(NT, dl, MemVT, InChain, 5065 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5066 MMO); 5067 5068 SDValue OutChain = L.getValue(1); 5069 5070 setValue(&I, L); 5071 DAG.setRoot(OutChain); 5072 } 5073 5074 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5075 SDLoc dl = getCurSDLoc(); 5076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5077 SDValue Ops[3]; 5078 Ops[0] = getRoot(); 5079 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5080 TLI.getFenceOperandTy(DAG.getDataLayout())); 5081 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5082 TLI.getFenceOperandTy(DAG.getDataLayout())); 5083 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5084 setValue(&I, N); 5085 DAG.setRoot(N); 5086 } 5087 5088 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5089 SDLoc dl = getCurSDLoc(); 5090 AtomicOrdering Order = I.getOrdering(); 5091 SyncScope::ID SSID = I.getSyncScopeID(); 5092 5093 SDValue InChain = getRoot(); 5094 5095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5096 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5097 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5098 5099 if (!TLI.supportsUnalignedAtomics() && 5100 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5101 report_fatal_error("Cannot generate unaligned atomic load"); 5102 5103 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5104 5105 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5106 MachinePointerInfo(I.getPointerOperand()), Flags, 5107 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5108 nullptr, SSID, Order); 5109 5110 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5111 5112 SDValue Ptr = getValue(I.getPointerOperand()); 5113 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5114 Ptr, MMO); 5115 5116 SDValue OutChain = L.getValue(1); 5117 if (MemVT != VT) 5118 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5119 5120 setValue(&I, L); 5121 DAG.setRoot(OutChain); 5122 } 5123 5124 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5125 SDLoc dl = getCurSDLoc(); 5126 5127 AtomicOrdering Ordering = I.getOrdering(); 5128 SyncScope::ID SSID = I.getSyncScopeID(); 5129 5130 SDValue InChain = getRoot(); 5131 5132 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5133 EVT MemVT = 5134 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5135 5136 if (!TLI.supportsUnalignedAtomics() && 5137 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5138 report_fatal_error("Cannot generate unaligned atomic store"); 5139 5140 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5141 5142 MachineFunction &MF = DAG.getMachineFunction(); 5143 MachineMemOperand *MMO = MF.getMachineMemOperand( 5144 MachinePointerInfo(I.getPointerOperand()), Flags, 5145 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5146 nullptr, SSID, Ordering); 5147 5148 SDValue Val = getValue(I.getValueOperand()); 5149 if (Val.getValueType() != MemVT) 5150 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5151 SDValue Ptr = getValue(I.getPointerOperand()); 5152 5153 SDValue OutChain = 5154 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5155 5156 setValue(&I, OutChain); 5157 DAG.setRoot(OutChain); 5158 } 5159 5160 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5161 /// node. 5162 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5163 unsigned Intrinsic) { 5164 // Ignore the callsite's attributes. A specific call site may be marked with 5165 // readnone, but the lowering code will expect the chain based on the 5166 // definition. 5167 const Function *F = I.getCalledFunction(); 5168 bool HasChain = !F->doesNotAccessMemory(); 5169 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5170 5171 // Build the operand list. 5172 SmallVector<SDValue, 8> Ops; 5173 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5174 if (OnlyLoad) { 5175 // We don't need to serialize loads against other loads. 5176 Ops.push_back(DAG.getRoot()); 5177 } else { 5178 Ops.push_back(getRoot()); 5179 } 5180 } 5181 5182 // Info is set by getTgtMemIntrinsic 5183 TargetLowering::IntrinsicInfo Info; 5184 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5185 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5186 DAG.getMachineFunction(), 5187 Intrinsic); 5188 5189 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5190 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5191 Info.opc == ISD::INTRINSIC_W_CHAIN) 5192 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5193 TLI.getPointerTy(DAG.getDataLayout()))); 5194 5195 // Add all operands of the call to the operand list. 5196 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5197 const Value *Arg = I.getArgOperand(i); 5198 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5199 Ops.push_back(getValue(Arg)); 5200 continue; 5201 } 5202 5203 // Use TargetConstant instead of a regular constant for immarg. 5204 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5205 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5206 assert(CI->getBitWidth() <= 64 && 5207 "large intrinsic immediates not handled"); 5208 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5209 } else { 5210 Ops.push_back( 5211 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5212 } 5213 } 5214 5215 SmallVector<EVT, 4> ValueVTs; 5216 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5217 5218 if (HasChain) 5219 ValueVTs.push_back(MVT::Other); 5220 5221 SDVTList VTs = DAG.getVTList(ValueVTs); 5222 5223 // Propagate fast-math-flags from IR to node(s). 5224 SDNodeFlags Flags; 5225 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5226 Flags.copyFMF(*FPMO); 5227 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5228 5229 // Create the node. 5230 SDValue Result; 5231 5232 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5233 auto *Token = Bundle->Inputs[0].get(); 5234 SDValue ConvControlToken = getValue(Token); 5235 assert(Ops.back().getValueType() != MVT::Glue && 5236 "Did not expected another glue node here."); 5237 ConvControlToken = 5238 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5239 Ops.push_back(ConvControlToken); 5240 } 5241 5242 // In some cases, custom collection of operands from CallInst I may be needed. 5243 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5244 if (IsTgtIntrinsic) { 5245 // This is target intrinsic that touches memory 5246 // 5247 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5248 // didn't yield anything useful. 5249 MachinePointerInfo MPI; 5250 if (Info.ptrVal) 5251 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5252 else if (Info.fallbackAddressSpace) 5253 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5254 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5255 Info.memVT, MPI, Info.align, Info.flags, 5256 Info.size, I.getAAMetadata()); 5257 } else if (!HasChain) { 5258 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5259 } else if (!I.getType()->isVoidTy()) { 5260 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5261 } else { 5262 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5263 } 5264 5265 if (HasChain) { 5266 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5267 if (OnlyLoad) 5268 PendingLoads.push_back(Chain); 5269 else 5270 DAG.setRoot(Chain); 5271 } 5272 5273 if (!I.getType()->isVoidTy()) { 5274 if (!isa<VectorType>(I.getType())) 5275 Result = lowerRangeToAssertZExt(DAG, I, Result); 5276 5277 MaybeAlign Alignment = I.getRetAlign(); 5278 5279 // Insert `assertalign` node if there's an alignment. 5280 if (InsertAssertAlign && Alignment) { 5281 Result = 5282 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5283 } 5284 5285 setValue(&I, Result); 5286 } 5287 } 5288 5289 /// GetSignificand - Get the significand and build it into a floating-point 5290 /// number with exponent of 1: 5291 /// 5292 /// Op = (Op & 0x007fffff) | 0x3f800000; 5293 /// 5294 /// where Op is the hexadecimal representation of floating point value. 5295 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5296 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5297 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5298 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5299 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5300 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5301 } 5302 5303 /// GetExponent - Get the exponent: 5304 /// 5305 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5306 /// 5307 /// where Op is the hexadecimal representation of floating point value. 5308 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5309 const TargetLowering &TLI, const SDLoc &dl) { 5310 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5311 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5312 SDValue t1 = DAG.getNode( 5313 ISD::SRL, dl, MVT::i32, t0, 5314 DAG.getConstant(23, dl, 5315 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5316 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5317 DAG.getConstant(127, dl, MVT::i32)); 5318 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5319 } 5320 5321 /// getF32Constant - Get 32-bit floating point constant. 5322 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5323 const SDLoc &dl) { 5324 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5325 MVT::f32); 5326 } 5327 5328 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5329 SelectionDAG &DAG) { 5330 // TODO: What fast-math-flags should be set on the floating-point nodes? 5331 5332 // IntegerPartOfX = ((int32_t)(t0); 5333 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5334 5335 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5336 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5337 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5338 5339 // IntegerPartOfX <<= 23; 5340 IntegerPartOfX = 5341 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5342 DAG.getConstant(23, dl, 5343 DAG.getTargetLoweringInfo().getShiftAmountTy( 5344 MVT::i32, DAG.getDataLayout()))); 5345 5346 SDValue TwoToFractionalPartOfX; 5347 if (LimitFloatPrecision <= 6) { 5348 // For floating-point precision of 6: 5349 // 5350 // TwoToFractionalPartOfX = 5351 // 0.997535578f + 5352 // (0.735607626f + 0.252464424f * x) * x; 5353 // 5354 // error 0.0144103317, which is 6 bits 5355 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5356 getF32Constant(DAG, 0x3e814304, dl)); 5357 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5358 getF32Constant(DAG, 0x3f3c50c8, dl)); 5359 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5360 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5361 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5362 } else if (LimitFloatPrecision <= 12) { 5363 // For floating-point precision of 12: 5364 // 5365 // TwoToFractionalPartOfX = 5366 // 0.999892986f + 5367 // (0.696457318f + 5368 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5369 // 5370 // error 0.000107046256, which is 13 to 14 bits 5371 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5372 getF32Constant(DAG, 0x3da235e3, dl)); 5373 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5374 getF32Constant(DAG, 0x3e65b8f3, dl)); 5375 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5376 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5377 getF32Constant(DAG, 0x3f324b07, dl)); 5378 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5379 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5380 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5381 } else { // LimitFloatPrecision <= 18 5382 // For floating-point precision of 18: 5383 // 5384 // TwoToFractionalPartOfX = 5385 // 0.999999982f + 5386 // (0.693148872f + 5387 // (0.240227044f + 5388 // (0.554906021e-1f + 5389 // (0.961591928e-2f + 5390 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5391 // error 2.47208000*10^(-7), which is better than 18 bits 5392 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5393 getF32Constant(DAG, 0x3924b03e, dl)); 5394 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5395 getF32Constant(DAG, 0x3ab24b87, dl)); 5396 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5397 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5398 getF32Constant(DAG, 0x3c1d8c17, dl)); 5399 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5400 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5401 getF32Constant(DAG, 0x3d634a1d, dl)); 5402 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5403 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5404 getF32Constant(DAG, 0x3e75fe14, dl)); 5405 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5406 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5407 getF32Constant(DAG, 0x3f317234, dl)); 5408 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5409 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5410 getF32Constant(DAG, 0x3f800000, dl)); 5411 } 5412 5413 // Add the exponent into the result in integer domain. 5414 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5415 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5416 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5417 } 5418 5419 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5420 /// limited-precision mode. 5421 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5422 const TargetLowering &TLI, SDNodeFlags Flags) { 5423 if (Op.getValueType() == MVT::f32 && 5424 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5425 5426 // Put the exponent in the right bit position for later addition to the 5427 // final result: 5428 // 5429 // t0 = Op * log2(e) 5430 5431 // TODO: What fast-math-flags should be set here? 5432 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5433 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5434 return getLimitedPrecisionExp2(t0, dl, DAG); 5435 } 5436 5437 // No special expansion. 5438 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5439 } 5440 5441 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5442 /// limited-precision mode. 5443 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5444 const TargetLowering &TLI, SDNodeFlags Flags) { 5445 // TODO: What fast-math-flags should be set on the floating-point nodes? 5446 5447 if (Op.getValueType() == MVT::f32 && 5448 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5449 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5450 5451 // Scale the exponent by log(2). 5452 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5453 SDValue LogOfExponent = 5454 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5455 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5456 5457 // Get the significand and build it into a floating-point number with 5458 // exponent of 1. 5459 SDValue X = GetSignificand(DAG, Op1, dl); 5460 5461 SDValue LogOfMantissa; 5462 if (LimitFloatPrecision <= 6) { 5463 // For floating-point precision of 6: 5464 // 5465 // LogofMantissa = 5466 // -1.1609546f + 5467 // (1.4034025f - 0.23903021f * x) * x; 5468 // 5469 // error 0.0034276066, which is better than 8 bits 5470 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5471 getF32Constant(DAG, 0xbe74c456, dl)); 5472 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5473 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5474 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5475 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5476 getF32Constant(DAG, 0x3f949a29, dl)); 5477 } else if (LimitFloatPrecision <= 12) { 5478 // For floating-point precision of 12: 5479 // 5480 // LogOfMantissa = 5481 // -1.7417939f + 5482 // (2.8212026f + 5483 // (-1.4699568f + 5484 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5485 // 5486 // error 0.000061011436, which is 14 bits 5487 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5488 getF32Constant(DAG, 0xbd67b6d6, dl)); 5489 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5490 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5491 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5492 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5493 getF32Constant(DAG, 0x3fbc278b, dl)); 5494 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5495 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5496 getF32Constant(DAG, 0x40348e95, dl)); 5497 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5498 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5499 getF32Constant(DAG, 0x3fdef31a, dl)); 5500 } else { // LimitFloatPrecision <= 18 5501 // For floating-point precision of 18: 5502 // 5503 // LogOfMantissa = 5504 // -2.1072184f + 5505 // (4.2372794f + 5506 // (-3.7029485f + 5507 // (2.2781945f + 5508 // (-0.87823314f + 5509 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5510 // 5511 // error 0.0000023660568, which is better than 18 bits 5512 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5513 getF32Constant(DAG, 0xbc91e5ac, dl)); 5514 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5515 getF32Constant(DAG, 0x3e4350aa, dl)); 5516 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5517 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5518 getF32Constant(DAG, 0x3f60d3e3, dl)); 5519 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5520 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5521 getF32Constant(DAG, 0x4011cdf0, dl)); 5522 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5523 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5524 getF32Constant(DAG, 0x406cfd1c, dl)); 5525 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5526 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5527 getF32Constant(DAG, 0x408797cb, dl)); 5528 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5529 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5530 getF32Constant(DAG, 0x4006dcab, dl)); 5531 } 5532 5533 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5534 } 5535 5536 // No special expansion. 5537 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5538 } 5539 5540 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5541 /// limited-precision mode. 5542 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5543 const TargetLowering &TLI, SDNodeFlags Flags) { 5544 // TODO: What fast-math-flags should be set on the floating-point nodes? 5545 5546 if (Op.getValueType() == MVT::f32 && 5547 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5548 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5549 5550 // Get the exponent. 5551 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5552 5553 // Get the significand and build it into a floating-point number with 5554 // exponent of 1. 5555 SDValue X = GetSignificand(DAG, Op1, dl); 5556 5557 // Different possible minimax approximations of significand in 5558 // floating-point for various degrees of accuracy over [1,2]. 5559 SDValue Log2ofMantissa; 5560 if (LimitFloatPrecision <= 6) { 5561 // For floating-point precision of 6: 5562 // 5563 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5564 // 5565 // error 0.0049451742, which is more than 7 bits 5566 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5567 getF32Constant(DAG, 0xbeb08fe0, dl)); 5568 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5569 getF32Constant(DAG, 0x40019463, dl)); 5570 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5571 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5572 getF32Constant(DAG, 0x3fd6633d, dl)); 5573 } else if (LimitFloatPrecision <= 12) { 5574 // For floating-point precision of 12: 5575 // 5576 // Log2ofMantissa = 5577 // -2.51285454f + 5578 // (4.07009056f + 5579 // (-2.12067489f + 5580 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5581 // 5582 // error 0.0000876136000, which is better than 13 bits 5583 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5584 getF32Constant(DAG, 0xbda7262e, dl)); 5585 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5586 getF32Constant(DAG, 0x3f25280b, dl)); 5587 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5588 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5589 getF32Constant(DAG, 0x4007b923, dl)); 5590 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5591 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5592 getF32Constant(DAG, 0x40823e2f, dl)); 5593 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5594 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5595 getF32Constant(DAG, 0x4020d29c, dl)); 5596 } else { // LimitFloatPrecision <= 18 5597 // For floating-point precision of 18: 5598 // 5599 // Log2ofMantissa = 5600 // -3.0400495f + 5601 // (6.1129976f + 5602 // (-5.3420409f + 5603 // (3.2865683f + 5604 // (-1.2669343f + 5605 // (0.27515199f - 5606 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5607 // 5608 // error 0.0000018516, which is better than 18 bits 5609 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5610 getF32Constant(DAG, 0xbcd2769e, dl)); 5611 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5612 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5613 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5614 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5615 getF32Constant(DAG, 0x3fa22ae7, dl)); 5616 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5617 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5618 getF32Constant(DAG, 0x40525723, dl)); 5619 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5620 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5621 getF32Constant(DAG, 0x40aaf200, dl)); 5622 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5623 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5624 getF32Constant(DAG, 0x40c39dad, dl)); 5625 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5626 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5627 getF32Constant(DAG, 0x4042902c, dl)); 5628 } 5629 5630 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5631 } 5632 5633 // No special expansion. 5634 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5635 } 5636 5637 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5638 /// limited-precision mode. 5639 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5640 const TargetLowering &TLI, SDNodeFlags Flags) { 5641 // TODO: What fast-math-flags should be set on the floating-point nodes? 5642 5643 if (Op.getValueType() == MVT::f32 && 5644 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5645 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5646 5647 // Scale the exponent by log10(2) [0.30102999f]. 5648 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5649 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5650 getF32Constant(DAG, 0x3e9a209a, dl)); 5651 5652 // Get the significand and build it into a floating-point number with 5653 // exponent of 1. 5654 SDValue X = GetSignificand(DAG, Op1, dl); 5655 5656 SDValue Log10ofMantissa; 5657 if (LimitFloatPrecision <= 6) { 5658 // For floating-point precision of 6: 5659 // 5660 // Log10ofMantissa = 5661 // -0.50419619f + 5662 // (0.60948995f - 0.10380950f * x) * x; 5663 // 5664 // error 0.0014886165, which is 6 bits 5665 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5666 getF32Constant(DAG, 0xbdd49a13, dl)); 5667 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5668 getF32Constant(DAG, 0x3f1c0789, dl)); 5669 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5670 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5671 getF32Constant(DAG, 0x3f011300, dl)); 5672 } else if (LimitFloatPrecision <= 12) { 5673 // For floating-point precision of 12: 5674 // 5675 // Log10ofMantissa = 5676 // -0.64831180f + 5677 // (0.91751397f + 5678 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5679 // 5680 // error 0.00019228036, which is better than 12 bits 5681 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5682 getF32Constant(DAG, 0x3d431f31, dl)); 5683 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5684 getF32Constant(DAG, 0x3ea21fb2, dl)); 5685 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5686 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5687 getF32Constant(DAG, 0x3f6ae232, dl)); 5688 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5689 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5690 getF32Constant(DAG, 0x3f25f7c3, dl)); 5691 } else { // LimitFloatPrecision <= 18 5692 // For floating-point precision of 18: 5693 // 5694 // Log10ofMantissa = 5695 // -0.84299375f + 5696 // (1.5327582f + 5697 // (-1.0688956f + 5698 // (0.49102474f + 5699 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5700 // 5701 // error 0.0000037995730, which is better than 18 bits 5702 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5703 getF32Constant(DAG, 0x3c5d51ce, dl)); 5704 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5705 getF32Constant(DAG, 0x3e00685a, dl)); 5706 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5707 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5708 getF32Constant(DAG, 0x3efb6798, dl)); 5709 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5710 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5711 getF32Constant(DAG, 0x3f88d192, dl)); 5712 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5713 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5714 getF32Constant(DAG, 0x3fc4316c, dl)); 5715 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5716 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5717 getF32Constant(DAG, 0x3f57ce70, dl)); 5718 } 5719 5720 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5721 } 5722 5723 // No special expansion. 5724 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5725 } 5726 5727 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5728 /// limited-precision mode. 5729 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5730 const TargetLowering &TLI, SDNodeFlags Flags) { 5731 if (Op.getValueType() == MVT::f32 && 5732 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5733 return getLimitedPrecisionExp2(Op, dl, DAG); 5734 5735 // No special expansion. 5736 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5737 } 5738 5739 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5740 /// limited-precision mode with x == 10.0f. 5741 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5742 SelectionDAG &DAG, const TargetLowering &TLI, 5743 SDNodeFlags Flags) { 5744 bool IsExp10 = false; 5745 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5746 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5747 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5748 APFloat Ten(10.0f); 5749 IsExp10 = LHSC->isExactlyValue(Ten); 5750 } 5751 } 5752 5753 // TODO: What fast-math-flags should be set on the FMUL node? 5754 if (IsExp10) { 5755 // Put the exponent in the right bit position for later addition to the 5756 // final result: 5757 // 5758 // #define LOG2OF10 3.3219281f 5759 // t0 = Op * LOG2OF10; 5760 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5761 getF32Constant(DAG, 0x40549a78, dl)); 5762 return getLimitedPrecisionExp2(t0, dl, DAG); 5763 } 5764 5765 // No special expansion. 5766 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5767 } 5768 5769 /// ExpandPowI - Expand a llvm.powi intrinsic. 5770 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5771 SelectionDAG &DAG) { 5772 // If RHS is a constant, we can expand this out to a multiplication tree if 5773 // it's beneficial on the target, otherwise we end up lowering to a call to 5774 // __powidf2 (for example). 5775 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5776 unsigned Val = RHSC->getSExtValue(); 5777 5778 // powi(x, 0) -> 1.0 5779 if (Val == 0) 5780 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5781 5782 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5783 Val, DAG.shouldOptForSize())) { 5784 // Get the exponent as a positive value. 5785 if ((int)Val < 0) 5786 Val = -Val; 5787 // We use the simple binary decomposition method to generate the multiply 5788 // sequence. There are more optimal ways to do this (for example, 5789 // powi(x,15) generates one more multiply than it should), but this has 5790 // the benefit of being both really simple and much better than a libcall. 5791 SDValue Res; // Logically starts equal to 1.0 5792 SDValue CurSquare = LHS; 5793 // TODO: Intrinsics should have fast-math-flags that propagate to these 5794 // nodes. 5795 while (Val) { 5796 if (Val & 1) { 5797 if (Res.getNode()) 5798 Res = 5799 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5800 else 5801 Res = CurSquare; // 1.0*CurSquare. 5802 } 5803 5804 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5805 CurSquare, CurSquare); 5806 Val >>= 1; 5807 } 5808 5809 // If the original was negative, invert the result, producing 1/(x*x*x). 5810 if (RHSC->getSExtValue() < 0) 5811 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5812 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5813 return Res; 5814 } 5815 } 5816 5817 // Otherwise, expand to a libcall. 5818 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5819 } 5820 5821 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5822 SDValue LHS, SDValue RHS, SDValue Scale, 5823 SelectionDAG &DAG, const TargetLowering &TLI) { 5824 EVT VT = LHS.getValueType(); 5825 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5826 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5827 LLVMContext &Ctx = *DAG.getContext(); 5828 5829 // If the type is legal but the operation isn't, this node might survive all 5830 // the way to operation legalization. If we end up there and we do not have 5831 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5832 // node. 5833 5834 // Coax the legalizer into expanding the node during type legalization instead 5835 // by bumping the size by one bit. This will force it to Promote, enabling the 5836 // early expansion and avoiding the need to expand later. 5837 5838 // We don't have to do this if Scale is 0; that can always be expanded, unless 5839 // it's a saturating signed operation. Those can experience true integer 5840 // division overflow, a case which we must avoid. 5841 5842 // FIXME: We wouldn't have to do this (or any of the early 5843 // expansion/promotion) if it was possible to expand a libcall of an 5844 // illegal type during operation legalization. But it's not, so things 5845 // get a bit hacky. 5846 unsigned ScaleInt = Scale->getAsZExtVal(); 5847 if ((ScaleInt > 0 || (Saturating && Signed)) && 5848 (TLI.isTypeLegal(VT) || 5849 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5850 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5851 Opcode, VT, ScaleInt); 5852 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5853 EVT PromVT; 5854 if (VT.isScalarInteger()) 5855 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5856 else if (VT.isVector()) { 5857 PromVT = VT.getVectorElementType(); 5858 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5859 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5860 } else 5861 llvm_unreachable("Wrong VT for DIVFIX?"); 5862 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5863 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5864 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5865 // For saturating operations, we need to shift up the LHS to get the 5866 // proper saturation width, and then shift down again afterwards. 5867 if (Saturating) 5868 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5869 DAG.getConstant(1, DL, ShiftTy)); 5870 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5871 if (Saturating) 5872 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5873 DAG.getConstant(1, DL, ShiftTy)); 5874 return DAG.getZExtOrTrunc(Res, DL, VT); 5875 } 5876 } 5877 5878 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5879 } 5880 5881 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5882 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5883 static void 5884 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5885 const SDValue &N) { 5886 switch (N.getOpcode()) { 5887 case ISD::CopyFromReg: { 5888 SDValue Op = N.getOperand(1); 5889 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5890 Op.getValueType().getSizeInBits()); 5891 return; 5892 } 5893 case ISD::BITCAST: 5894 case ISD::AssertZext: 5895 case ISD::AssertSext: 5896 case ISD::TRUNCATE: 5897 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5898 return; 5899 case ISD::BUILD_PAIR: 5900 case ISD::BUILD_VECTOR: 5901 case ISD::CONCAT_VECTORS: 5902 for (SDValue Op : N->op_values()) 5903 getUnderlyingArgRegs(Regs, Op); 5904 return; 5905 default: 5906 return; 5907 } 5908 } 5909 5910 /// If the DbgValueInst is a dbg_value of a function argument, create the 5911 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5912 /// instruction selection, they will be inserted to the entry BB. 5913 /// We don't currently support this for variadic dbg_values, as they shouldn't 5914 /// appear for function arguments or in the prologue. 5915 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5916 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5917 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5918 const Argument *Arg = dyn_cast<Argument>(V); 5919 if (!Arg) 5920 return false; 5921 5922 MachineFunction &MF = DAG.getMachineFunction(); 5923 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5924 5925 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5926 // we've been asked to pursue. 5927 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5928 bool Indirect) { 5929 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5930 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5931 // pointing at the VReg, which will be patched up later. 5932 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5933 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5934 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5935 /* isKill */ false, /* isDead */ false, 5936 /* isUndef */ false, /* isEarlyClobber */ false, 5937 /* SubReg */ 0, /* isDebug */ true)}); 5938 5939 auto *NewDIExpr = FragExpr; 5940 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5941 // the DIExpression. 5942 if (Indirect) 5943 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5944 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5945 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5946 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5947 } else { 5948 // Create a completely standard DBG_VALUE. 5949 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5950 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5951 } 5952 }; 5953 5954 if (Kind == FuncArgumentDbgValueKind::Value) { 5955 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5956 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5957 // the entry block. 5958 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5959 if (!IsInEntryBlock) 5960 return false; 5961 5962 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5963 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5964 // variable that also is a param. 5965 // 5966 // Although, if we are at the top of the entry block already, we can still 5967 // emit using ArgDbgValue. This might catch some situations when the 5968 // dbg.value refers to an argument that isn't used in the entry block, so 5969 // any CopyToReg node would be optimized out and the only way to express 5970 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5971 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5972 // we should only emit as ArgDbgValue if the Variable is an argument to the 5973 // current function, and the dbg.value intrinsic is found in the entry 5974 // block. 5975 bool VariableIsFunctionInputArg = Variable->isParameter() && 5976 !DL->getInlinedAt(); 5977 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5978 if (!IsInPrologue && !VariableIsFunctionInputArg) 5979 return false; 5980 5981 // Here we assume that a function argument on IR level only can be used to 5982 // describe one input parameter on source level. If we for example have 5983 // source code like this 5984 // 5985 // struct A { long x, y; }; 5986 // void foo(struct A a, long b) { 5987 // ... 5988 // b = a.x; 5989 // ... 5990 // } 5991 // 5992 // and IR like this 5993 // 5994 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5995 // entry: 5996 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5997 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5998 // call void @llvm.dbg.value(metadata i32 %b, "b", 5999 // ... 6000 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6001 // ... 6002 // 6003 // then the last dbg.value is describing a parameter "b" using a value that 6004 // is an argument. But since we already has used %a1 to describe a parameter 6005 // we should not handle that last dbg.value here (that would result in an 6006 // incorrect hoisting of the DBG_VALUE to the function entry). 6007 // Notice that we allow one dbg.value per IR level argument, to accommodate 6008 // for the situation with fragments above. 6009 if (VariableIsFunctionInputArg) { 6010 unsigned ArgNo = Arg->getArgNo(); 6011 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6012 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6013 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6014 return false; 6015 FuncInfo.DescribedArgs.set(ArgNo); 6016 } 6017 } 6018 6019 bool IsIndirect = false; 6020 std::optional<MachineOperand> Op; 6021 // Some arguments' frame index is recorded during argument lowering. 6022 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6023 if (FI != std::numeric_limits<int>::max()) 6024 Op = MachineOperand::CreateFI(FI); 6025 6026 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 6027 if (!Op && N.getNode()) { 6028 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6029 Register Reg; 6030 if (ArgRegsAndSizes.size() == 1) 6031 Reg = ArgRegsAndSizes.front().first; 6032 6033 if (Reg && Reg.isVirtual()) { 6034 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6035 Register PR = RegInfo.getLiveInPhysReg(Reg); 6036 if (PR) 6037 Reg = PR; 6038 } 6039 if (Reg) { 6040 Op = MachineOperand::CreateReg(Reg, false); 6041 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6042 } 6043 } 6044 6045 if (!Op && N.getNode()) { 6046 // Check if frame index is available. 6047 SDValue LCandidate = peekThroughBitcasts(N); 6048 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6049 if (FrameIndexSDNode *FINode = 6050 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6051 Op = MachineOperand::CreateFI(FINode->getIndex()); 6052 } 6053 6054 if (!Op) { 6055 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6056 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 6057 SplitRegs) { 6058 unsigned Offset = 0; 6059 for (const auto &RegAndSize : SplitRegs) { 6060 // If the expression is already a fragment, the current register 6061 // offset+size might extend beyond the fragment. In this case, only 6062 // the register bits that are inside the fragment are relevant. 6063 int RegFragmentSizeInBits = RegAndSize.second; 6064 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6065 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6066 // The register is entirely outside the expression fragment, 6067 // so is irrelevant for debug info. 6068 if (Offset >= ExprFragmentSizeInBits) 6069 break; 6070 // The register is partially outside the expression fragment, only 6071 // the low bits within the fragment are relevant for debug info. 6072 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6073 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6074 } 6075 } 6076 6077 auto FragmentExpr = DIExpression::createFragmentExpression( 6078 Expr, Offset, RegFragmentSizeInBits); 6079 Offset += RegAndSize.second; 6080 // If a valid fragment expression cannot be created, the variable's 6081 // correct value cannot be determined and so it is set as Undef. 6082 if (!FragmentExpr) { 6083 SDDbgValue *SDV = DAG.getConstantDbgValue( 6084 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6085 DAG.AddDbgValue(SDV, false); 6086 continue; 6087 } 6088 MachineInstr *NewMI = 6089 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6090 Kind != FuncArgumentDbgValueKind::Value); 6091 FuncInfo.ArgDbgValues.push_back(NewMI); 6092 } 6093 }; 6094 6095 // Check if ValueMap has reg number. 6096 DenseMap<const Value *, Register>::const_iterator 6097 VMI = FuncInfo.ValueMap.find(V); 6098 if (VMI != FuncInfo.ValueMap.end()) { 6099 const auto &TLI = DAG.getTargetLoweringInfo(); 6100 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6101 V->getType(), std::nullopt); 6102 if (RFV.occupiesMultipleRegs()) { 6103 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6104 return true; 6105 } 6106 6107 Op = MachineOperand::CreateReg(VMI->second, false); 6108 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6109 } else if (ArgRegsAndSizes.size() > 1) { 6110 // This was split due to the calling convention, and no virtual register 6111 // mapping exists for the value. 6112 splitMultiRegDbgValue(ArgRegsAndSizes); 6113 return true; 6114 } 6115 } 6116 6117 if (!Op) 6118 return false; 6119 6120 assert(Variable->isValidLocationForIntrinsic(DL) && 6121 "Expected inlined-at fields to agree"); 6122 MachineInstr *NewMI = nullptr; 6123 6124 if (Op->isReg()) 6125 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6126 else 6127 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6128 Variable, Expr); 6129 6130 // Otherwise, use ArgDbgValues. 6131 FuncInfo.ArgDbgValues.push_back(NewMI); 6132 return true; 6133 } 6134 6135 /// Return the appropriate SDDbgValue based on N. 6136 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6137 DILocalVariable *Variable, 6138 DIExpression *Expr, 6139 const DebugLoc &dl, 6140 unsigned DbgSDNodeOrder) { 6141 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6142 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6143 // stack slot locations. 6144 // 6145 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6146 // debug values here after optimization: 6147 // 6148 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6149 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6150 // 6151 // Both describe the direct values of their associated variables. 6152 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6153 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6154 } 6155 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6156 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6157 } 6158 6159 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6160 switch (Intrinsic) { 6161 case Intrinsic::smul_fix: 6162 return ISD::SMULFIX; 6163 case Intrinsic::umul_fix: 6164 return ISD::UMULFIX; 6165 case Intrinsic::smul_fix_sat: 6166 return ISD::SMULFIXSAT; 6167 case Intrinsic::umul_fix_sat: 6168 return ISD::UMULFIXSAT; 6169 case Intrinsic::sdiv_fix: 6170 return ISD::SDIVFIX; 6171 case Intrinsic::udiv_fix: 6172 return ISD::UDIVFIX; 6173 case Intrinsic::sdiv_fix_sat: 6174 return ISD::SDIVFIXSAT; 6175 case Intrinsic::udiv_fix_sat: 6176 return ISD::UDIVFIXSAT; 6177 default: 6178 llvm_unreachable("Unhandled fixed point intrinsic"); 6179 } 6180 } 6181 6182 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6183 const char *FunctionName) { 6184 assert(FunctionName && "FunctionName must not be nullptr"); 6185 SDValue Callee = DAG.getExternalSymbol( 6186 FunctionName, 6187 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6188 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6189 } 6190 6191 /// Given a @llvm.call.preallocated.setup, return the corresponding 6192 /// preallocated call. 6193 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6194 assert(cast<CallBase>(PreallocatedSetup) 6195 ->getCalledFunction() 6196 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6197 "expected call_preallocated_setup Value"); 6198 for (const auto *U : PreallocatedSetup->users()) { 6199 auto *UseCall = cast<CallBase>(U); 6200 const Function *Fn = UseCall->getCalledFunction(); 6201 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6202 return UseCall; 6203 } 6204 } 6205 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6206 } 6207 6208 /// If DI is a debug value with an EntryValue expression, lower it using the 6209 /// corresponding physical register of the associated Argument value 6210 /// (guaranteed to exist by the verifier). 6211 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6212 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6213 DIExpression *Expr, DebugLoc DbgLoc) { 6214 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6215 return false; 6216 6217 // These properties are guaranteed by the verifier. 6218 const Argument *Arg = cast<Argument>(Values[0]); 6219 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6220 6221 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6222 if (ArgIt == FuncInfo.ValueMap.end()) { 6223 LLVM_DEBUG( 6224 dbgs() << "Dropping dbg.value: expression is entry_value but " 6225 "couldn't find an associated register for the Argument\n"); 6226 return true; 6227 } 6228 Register ArgVReg = ArgIt->getSecond(); 6229 6230 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6231 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6232 SDDbgValue *SDV = DAG.getVRegDbgValue( 6233 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6234 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6235 return true; 6236 } 6237 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6238 "couldn't find a physical register\n"); 6239 return true; 6240 } 6241 6242 /// Lower the call to the specified intrinsic function. 6243 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6244 unsigned Intrinsic) { 6245 SDLoc sdl = getCurSDLoc(); 6246 switch (Intrinsic) { 6247 case Intrinsic::experimental_convergence_anchor: 6248 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6249 break; 6250 case Intrinsic::experimental_convergence_entry: 6251 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6252 break; 6253 case Intrinsic::experimental_convergence_loop: { 6254 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6255 auto *Token = Bundle->Inputs[0].get(); 6256 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6257 getValue(Token))); 6258 break; 6259 } 6260 } 6261 } 6262 6263 /// Lower the call to the specified intrinsic function. 6264 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6265 unsigned Intrinsic) { 6266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6267 SDLoc sdl = getCurSDLoc(); 6268 DebugLoc dl = getCurDebugLoc(); 6269 SDValue Res; 6270 6271 SDNodeFlags Flags; 6272 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6273 Flags.copyFMF(*FPOp); 6274 6275 switch (Intrinsic) { 6276 default: 6277 // By default, turn this into a target intrinsic node. 6278 visitTargetIntrinsic(I, Intrinsic); 6279 return; 6280 case Intrinsic::vscale: { 6281 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6282 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6283 return; 6284 } 6285 case Intrinsic::vastart: visitVAStart(I); return; 6286 case Intrinsic::vaend: visitVAEnd(I); return; 6287 case Intrinsic::vacopy: visitVACopy(I); return; 6288 case Intrinsic::returnaddress: 6289 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6290 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6291 getValue(I.getArgOperand(0)))); 6292 return; 6293 case Intrinsic::addressofreturnaddress: 6294 setValue(&I, 6295 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6296 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6297 return; 6298 case Intrinsic::sponentry: 6299 setValue(&I, 6300 DAG.getNode(ISD::SPONENTRY, sdl, 6301 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6302 return; 6303 case Intrinsic::frameaddress: 6304 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6305 TLI.getFrameIndexTy(DAG.getDataLayout()), 6306 getValue(I.getArgOperand(0)))); 6307 return; 6308 case Intrinsic::read_volatile_register: 6309 case Intrinsic::read_register: { 6310 Value *Reg = I.getArgOperand(0); 6311 SDValue Chain = getRoot(); 6312 SDValue RegName = 6313 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6314 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6315 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6316 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6317 setValue(&I, Res); 6318 DAG.setRoot(Res.getValue(1)); 6319 return; 6320 } 6321 case Intrinsic::write_register: { 6322 Value *Reg = I.getArgOperand(0); 6323 Value *RegValue = I.getArgOperand(1); 6324 SDValue Chain = getRoot(); 6325 SDValue RegName = 6326 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6327 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6328 RegName, getValue(RegValue))); 6329 return; 6330 } 6331 case Intrinsic::memcpy: { 6332 const auto &MCI = cast<MemCpyInst>(I); 6333 SDValue Op1 = getValue(I.getArgOperand(0)); 6334 SDValue Op2 = getValue(I.getArgOperand(1)); 6335 SDValue Op3 = getValue(I.getArgOperand(2)); 6336 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6337 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6338 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6339 Align Alignment = std::min(DstAlign, SrcAlign); 6340 bool isVol = MCI.isVolatile(); 6341 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6342 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6343 // node. 6344 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6345 SDValue MC = DAG.getMemcpy( 6346 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6347 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6348 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6349 updateDAGForMaybeTailCall(MC); 6350 return; 6351 } 6352 case Intrinsic::memcpy_inline: { 6353 const auto &MCI = cast<MemCpyInlineInst>(I); 6354 SDValue Dst = getValue(I.getArgOperand(0)); 6355 SDValue Src = getValue(I.getArgOperand(1)); 6356 SDValue Size = getValue(I.getArgOperand(2)); 6357 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6358 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6359 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6360 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6361 Align Alignment = std::min(DstAlign, SrcAlign); 6362 bool isVol = MCI.isVolatile(); 6363 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6364 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6365 // node. 6366 SDValue MC = DAG.getMemcpy( 6367 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6368 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6369 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6370 updateDAGForMaybeTailCall(MC); 6371 return; 6372 } 6373 case Intrinsic::memset: { 6374 const auto &MSI = cast<MemSetInst>(I); 6375 SDValue Op1 = getValue(I.getArgOperand(0)); 6376 SDValue Op2 = getValue(I.getArgOperand(1)); 6377 SDValue Op3 = getValue(I.getArgOperand(2)); 6378 // @llvm.memset defines 0 and 1 to both mean no alignment. 6379 Align Alignment = MSI.getDestAlign().valueOrOne(); 6380 bool isVol = MSI.isVolatile(); 6381 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6382 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6383 SDValue MS = DAG.getMemset( 6384 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6385 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6386 updateDAGForMaybeTailCall(MS); 6387 return; 6388 } 6389 case Intrinsic::memset_inline: { 6390 const auto &MSII = cast<MemSetInlineInst>(I); 6391 SDValue Dst = getValue(I.getArgOperand(0)); 6392 SDValue Value = getValue(I.getArgOperand(1)); 6393 SDValue Size = getValue(I.getArgOperand(2)); 6394 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6395 // @llvm.memset defines 0 and 1 to both mean no alignment. 6396 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6397 bool isVol = MSII.isVolatile(); 6398 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6399 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6400 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6401 /* AlwaysInline */ true, isTC, 6402 MachinePointerInfo(I.getArgOperand(0)), 6403 I.getAAMetadata()); 6404 updateDAGForMaybeTailCall(MC); 6405 return; 6406 } 6407 case Intrinsic::memmove: { 6408 const auto &MMI = cast<MemMoveInst>(I); 6409 SDValue Op1 = getValue(I.getArgOperand(0)); 6410 SDValue Op2 = getValue(I.getArgOperand(1)); 6411 SDValue Op3 = getValue(I.getArgOperand(2)); 6412 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6413 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6414 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6415 Align Alignment = std::min(DstAlign, SrcAlign); 6416 bool isVol = MMI.isVolatile(); 6417 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6418 // FIXME: Support passing different dest/src alignments to the memmove DAG 6419 // node. 6420 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6421 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6422 isTC, MachinePointerInfo(I.getArgOperand(0)), 6423 MachinePointerInfo(I.getArgOperand(1)), 6424 I.getAAMetadata(), AA); 6425 updateDAGForMaybeTailCall(MM); 6426 return; 6427 } 6428 case Intrinsic::memcpy_element_unordered_atomic: { 6429 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6430 SDValue Dst = getValue(MI.getRawDest()); 6431 SDValue Src = getValue(MI.getRawSource()); 6432 SDValue Length = getValue(MI.getLength()); 6433 6434 Type *LengthTy = MI.getLength()->getType(); 6435 unsigned ElemSz = MI.getElementSizeInBytes(); 6436 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6437 SDValue MC = 6438 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6439 isTC, MachinePointerInfo(MI.getRawDest()), 6440 MachinePointerInfo(MI.getRawSource())); 6441 updateDAGForMaybeTailCall(MC); 6442 return; 6443 } 6444 case Intrinsic::memmove_element_unordered_atomic: { 6445 auto &MI = cast<AtomicMemMoveInst>(I); 6446 SDValue Dst = getValue(MI.getRawDest()); 6447 SDValue Src = getValue(MI.getRawSource()); 6448 SDValue Length = getValue(MI.getLength()); 6449 6450 Type *LengthTy = MI.getLength()->getType(); 6451 unsigned ElemSz = MI.getElementSizeInBytes(); 6452 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6453 SDValue MC = 6454 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6455 isTC, MachinePointerInfo(MI.getRawDest()), 6456 MachinePointerInfo(MI.getRawSource())); 6457 updateDAGForMaybeTailCall(MC); 6458 return; 6459 } 6460 case Intrinsic::memset_element_unordered_atomic: { 6461 auto &MI = cast<AtomicMemSetInst>(I); 6462 SDValue Dst = getValue(MI.getRawDest()); 6463 SDValue Val = getValue(MI.getValue()); 6464 SDValue Length = getValue(MI.getLength()); 6465 6466 Type *LengthTy = MI.getLength()->getType(); 6467 unsigned ElemSz = MI.getElementSizeInBytes(); 6468 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6469 SDValue MC = 6470 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6471 isTC, MachinePointerInfo(MI.getRawDest())); 6472 updateDAGForMaybeTailCall(MC); 6473 return; 6474 } 6475 case Intrinsic::call_preallocated_setup: { 6476 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6477 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6478 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6479 getRoot(), SrcValue); 6480 setValue(&I, Res); 6481 DAG.setRoot(Res); 6482 return; 6483 } 6484 case Intrinsic::call_preallocated_arg: { 6485 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6486 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6487 SDValue Ops[3]; 6488 Ops[0] = getRoot(); 6489 Ops[1] = SrcValue; 6490 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6491 MVT::i32); // arg index 6492 SDValue Res = DAG.getNode( 6493 ISD::PREALLOCATED_ARG, sdl, 6494 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6495 setValue(&I, Res); 6496 DAG.setRoot(Res.getValue(1)); 6497 return; 6498 } 6499 case Intrinsic::dbg_declare: { 6500 const auto &DI = cast<DbgDeclareInst>(I); 6501 // Debug intrinsics are handled separately in assignment tracking mode. 6502 // Some intrinsics are handled right after Argument lowering. 6503 if (AssignmentTrackingEnabled || 6504 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6505 return; 6506 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6507 DILocalVariable *Variable = DI.getVariable(); 6508 DIExpression *Expression = DI.getExpression(); 6509 dropDanglingDebugInfo(Variable, Expression); 6510 // Assume dbg.declare can not currently use DIArgList, i.e. 6511 // it is non-variadic. 6512 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6513 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6514 DI.getDebugLoc()); 6515 return; 6516 } 6517 case Intrinsic::dbg_label: { 6518 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6519 DILabel *Label = DI.getLabel(); 6520 assert(Label && "Missing label"); 6521 6522 SDDbgLabel *SDV; 6523 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6524 DAG.AddDbgLabel(SDV); 6525 return; 6526 } 6527 case Intrinsic::dbg_assign: { 6528 // Debug intrinsics are handled seperately in assignment tracking mode. 6529 if (AssignmentTrackingEnabled) 6530 return; 6531 // If assignment tracking hasn't been enabled then fall through and treat 6532 // the dbg.assign as a dbg.value. 6533 [[fallthrough]]; 6534 } 6535 case Intrinsic::dbg_value: { 6536 // Debug intrinsics are handled seperately in assignment tracking mode. 6537 if (AssignmentTrackingEnabled) 6538 return; 6539 const DbgValueInst &DI = cast<DbgValueInst>(I); 6540 assert(DI.getVariable() && "Missing variable"); 6541 6542 DILocalVariable *Variable = DI.getVariable(); 6543 DIExpression *Expression = DI.getExpression(); 6544 dropDanglingDebugInfo(Variable, Expression); 6545 6546 if (DI.isKillLocation()) { 6547 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6548 return; 6549 } 6550 6551 SmallVector<Value *, 4> Values(DI.getValues()); 6552 if (Values.empty()) 6553 return; 6554 6555 bool IsVariadic = DI.hasArgList(); 6556 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6557 SDNodeOrder, IsVariadic)) 6558 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6559 DI.getDebugLoc(), SDNodeOrder); 6560 return; 6561 } 6562 6563 case Intrinsic::eh_typeid_for: { 6564 // Find the type id for the given typeinfo. 6565 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6566 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6567 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6568 setValue(&I, Res); 6569 return; 6570 } 6571 6572 case Intrinsic::eh_return_i32: 6573 case Intrinsic::eh_return_i64: 6574 DAG.getMachineFunction().setCallsEHReturn(true); 6575 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6576 MVT::Other, 6577 getControlRoot(), 6578 getValue(I.getArgOperand(0)), 6579 getValue(I.getArgOperand(1)))); 6580 return; 6581 case Intrinsic::eh_unwind_init: 6582 DAG.getMachineFunction().setCallsUnwindInit(true); 6583 return; 6584 case Intrinsic::eh_dwarf_cfa: 6585 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6586 TLI.getPointerTy(DAG.getDataLayout()), 6587 getValue(I.getArgOperand(0)))); 6588 return; 6589 case Intrinsic::eh_sjlj_callsite: { 6590 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6591 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6592 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6593 6594 MMI.setCurrentCallSite(CI->getZExtValue()); 6595 return; 6596 } 6597 case Intrinsic::eh_sjlj_functioncontext: { 6598 // Get and store the index of the function context. 6599 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6600 AllocaInst *FnCtx = 6601 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6602 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6603 MFI.setFunctionContextIndex(FI); 6604 return; 6605 } 6606 case Intrinsic::eh_sjlj_setjmp: { 6607 SDValue Ops[2]; 6608 Ops[0] = getRoot(); 6609 Ops[1] = getValue(I.getArgOperand(0)); 6610 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6611 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6612 setValue(&I, Op.getValue(0)); 6613 DAG.setRoot(Op.getValue(1)); 6614 return; 6615 } 6616 case Intrinsic::eh_sjlj_longjmp: 6617 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6618 getRoot(), getValue(I.getArgOperand(0)))); 6619 return; 6620 case Intrinsic::eh_sjlj_setup_dispatch: 6621 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6622 getRoot())); 6623 return; 6624 case Intrinsic::masked_gather: 6625 visitMaskedGather(I); 6626 return; 6627 case Intrinsic::masked_load: 6628 visitMaskedLoad(I); 6629 return; 6630 case Intrinsic::masked_scatter: 6631 visitMaskedScatter(I); 6632 return; 6633 case Intrinsic::masked_store: 6634 visitMaskedStore(I); 6635 return; 6636 case Intrinsic::masked_expandload: 6637 visitMaskedLoad(I, true /* IsExpanding */); 6638 return; 6639 case Intrinsic::masked_compressstore: 6640 visitMaskedStore(I, true /* IsCompressing */); 6641 return; 6642 case Intrinsic::powi: 6643 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6644 getValue(I.getArgOperand(1)), DAG)); 6645 return; 6646 case Intrinsic::log: 6647 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6648 return; 6649 case Intrinsic::log2: 6650 setValue(&I, 6651 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6652 return; 6653 case Intrinsic::log10: 6654 setValue(&I, 6655 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6656 return; 6657 case Intrinsic::exp: 6658 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6659 return; 6660 case Intrinsic::exp2: 6661 setValue(&I, 6662 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6663 return; 6664 case Intrinsic::pow: 6665 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6666 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6667 return; 6668 case Intrinsic::sqrt: 6669 case Intrinsic::fabs: 6670 case Intrinsic::sin: 6671 case Intrinsic::cos: 6672 case Intrinsic::exp10: 6673 case Intrinsic::floor: 6674 case Intrinsic::ceil: 6675 case Intrinsic::trunc: 6676 case Intrinsic::rint: 6677 case Intrinsic::nearbyint: 6678 case Intrinsic::round: 6679 case Intrinsic::roundeven: 6680 case Intrinsic::canonicalize: { 6681 unsigned Opcode; 6682 switch (Intrinsic) { 6683 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6684 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6685 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6686 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6687 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6688 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6689 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6690 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6691 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6692 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6693 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6694 case Intrinsic::round: Opcode = ISD::FROUND; break; 6695 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6696 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6697 } 6698 6699 setValue(&I, DAG.getNode(Opcode, sdl, 6700 getValue(I.getArgOperand(0)).getValueType(), 6701 getValue(I.getArgOperand(0)), Flags)); 6702 return; 6703 } 6704 case Intrinsic::lround: 6705 case Intrinsic::llround: 6706 case Intrinsic::lrint: 6707 case Intrinsic::llrint: { 6708 unsigned Opcode; 6709 switch (Intrinsic) { 6710 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6711 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6712 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6713 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6714 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6715 } 6716 6717 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6718 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6719 getValue(I.getArgOperand(0)))); 6720 return; 6721 } 6722 case Intrinsic::minnum: 6723 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6724 getValue(I.getArgOperand(0)).getValueType(), 6725 getValue(I.getArgOperand(0)), 6726 getValue(I.getArgOperand(1)), Flags)); 6727 return; 6728 case Intrinsic::maxnum: 6729 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6730 getValue(I.getArgOperand(0)).getValueType(), 6731 getValue(I.getArgOperand(0)), 6732 getValue(I.getArgOperand(1)), Flags)); 6733 return; 6734 case Intrinsic::minimum: 6735 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6736 getValue(I.getArgOperand(0)).getValueType(), 6737 getValue(I.getArgOperand(0)), 6738 getValue(I.getArgOperand(1)), Flags)); 6739 return; 6740 case Intrinsic::maximum: 6741 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6742 getValue(I.getArgOperand(0)).getValueType(), 6743 getValue(I.getArgOperand(0)), 6744 getValue(I.getArgOperand(1)), Flags)); 6745 return; 6746 case Intrinsic::copysign: 6747 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6748 getValue(I.getArgOperand(0)).getValueType(), 6749 getValue(I.getArgOperand(0)), 6750 getValue(I.getArgOperand(1)), Flags)); 6751 return; 6752 case Intrinsic::ldexp: 6753 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6754 getValue(I.getArgOperand(0)).getValueType(), 6755 getValue(I.getArgOperand(0)), 6756 getValue(I.getArgOperand(1)), Flags)); 6757 return; 6758 case Intrinsic::frexp: { 6759 SmallVector<EVT, 2> ValueVTs; 6760 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6761 SDVTList VTs = DAG.getVTList(ValueVTs); 6762 setValue(&I, 6763 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6764 return; 6765 } 6766 case Intrinsic::arithmetic_fence: { 6767 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6768 getValue(I.getArgOperand(0)).getValueType(), 6769 getValue(I.getArgOperand(0)), Flags)); 6770 return; 6771 } 6772 case Intrinsic::fma: 6773 setValue(&I, DAG.getNode( 6774 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6775 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6776 getValue(I.getArgOperand(2)), Flags)); 6777 return; 6778 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6779 case Intrinsic::INTRINSIC: 6780 #include "llvm/IR/ConstrainedOps.def" 6781 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6782 return; 6783 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6784 #include "llvm/IR/VPIntrinsics.def" 6785 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6786 return; 6787 case Intrinsic::fptrunc_round: { 6788 // Get the last argument, the metadata and convert it to an integer in the 6789 // call 6790 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6791 std::optional<RoundingMode> RoundMode = 6792 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6793 6794 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6795 6796 // Propagate fast-math-flags from IR to node(s). 6797 SDNodeFlags Flags; 6798 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6799 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6800 6801 SDValue Result; 6802 Result = DAG.getNode( 6803 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6804 DAG.getTargetConstant((int)*RoundMode, sdl, 6805 TLI.getPointerTy(DAG.getDataLayout()))); 6806 setValue(&I, Result); 6807 6808 return; 6809 } 6810 case Intrinsic::fmuladd: { 6811 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6812 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6813 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6814 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6815 getValue(I.getArgOperand(0)).getValueType(), 6816 getValue(I.getArgOperand(0)), 6817 getValue(I.getArgOperand(1)), 6818 getValue(I.getArgOperand(2)), Flags)); 6819 } else { 6820 // TODO: Intrinsic calls should have fast-math-flags. 6821 SDValue Mul = DAG.getNode( 6822 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6823 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6824 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6825 getValue(I.getArgOperand(0)).getValueType(), 6826 Mul, getValue(I.getArgOperand(2)), Flags); 6827 setValue(&I, Add); 6828 } 6829 return; 6830 } 6831 case Intrinsic::convert_to_fp16: 6832 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6833 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6834 getValue(I.getArgOperand(0)), 6835 DAG.getTargetConstant(0, sdl, 6836 MVT::i32)))); 6837 return; 6838 case Intrinsic::convert_from_fp16: 6839 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6840 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6841 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6842 getValue(I.getArgOperand(0))))); 6843 return; 6844 case Intrinsic::fptosi_sat: { 6845 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6846 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6847 getValue(I.getArgOperand(0)), 6848 DAG.getValueType(VT.getScalarType()))); 6849 return; 6850 } 6851 case Intrinsic::fptoui_sat: { 6852 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6853 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6854 getValue(I.getArgOperand(0)), 6855 DAG.getValueType(VT.getScalarType()))); 6856 return; 6857 } 6858 case Intrinsic::set_rounding: 6859 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6860 {getRoot(), getValue(I.getArgOperand(0))}); 6861 setValue(&I, Res); 6862 DAG.setRoot(Res.getValue(0)); 6863 return; 6864 case Intrinsic::is_fpclass: { 6865 const DataLayout DLayout = DAG.getDataLayout(); 6866 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6867 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6868 FPClassTest Test = static_cast<FPClassTest>( 6869 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6870 MachineFunction &MF = DAG.getMachineFunction(); 6871 const Function &F = MF.getFunction(); 6872 SDValue Op = getValue(I.getArgOperand(0)); 6873 SDNodeFlags Flags; 6874 Flags.setNoFPExcept( 6875 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6876 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6877 // expansion can use illegal types. Making expansion early allows 6878 // legalizing these types prior to selection. 6879 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6880 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6881 setValue(&I, Result); 6882 return; 6883 } 6884 6885 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6886 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6887 setValue(&I, V); 6888 return; 6889 } 6890 case Intrinsic::get_fpenv: { 6891 const DataLayout DLayout = DAG.getDataLayout(); 6892 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6893 Align TempAlign = DAG.getEVTAlign(EnvVT); 6894 SDValue Chain = getRoot(); 6895 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6896 // and temporary storage in stack. 6897 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6898 Res = DAG.getNode( 6899 ISD::GET_FPENV, sdl, 6900 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6901 MVT::Other), 6902 Chain); 6903 } else { 6904 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6905 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6906 auto MPI = 6907 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6908 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6909 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 6910 TempAlign); 6911 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6912 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6913 } 6914 setValue(&I, Res); 6915 DAG.setRoot(Res.getValue(1)); 6916 return; 6917 } 6918 case Intrinsic::set_fpenv: { 6919 const DataLayout DLayout = DAG.getDataLayout(); 6920 SDValue Env = getValue(I.getArgOperand(0)); 6921 EVT EnvVT = Env.getValueType(); 6922 Align TempAlign = DAG.getEVTAlign(EnvVT); 6923 SDValue Chain = getRoot(); 6924 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6925 // environment from memory. 6926 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6927 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6928 } else { 6929 // Allocate space in stack, copy environment bits into it and use this 6930 // memory in SET_FPENV_MEM. 6931 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6932 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6933 auto MPI = 6934 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6935 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6936 MachineMemOperand::MOStore); 6937 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6938 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 6939 TempAlign); 6940 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6941 } 6942 DAG.setRoot(Chain); 6943 return; 6944 } 6945 case Intrinsic::reset_fpenv: 6946 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6947 return; 6948 case Intrinsic::get_fpmode: 6949 Res = DAG.getNode( 6950 ISD::GET_FPMODE, sdl, 6951 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6952 MVT::Other), 6953 DAG.getRoot()); 6954 setValue(&I, Res); 6955 DAG.setRoot(Res.getValue(1)); 6956 return; 6957 case Intrinsic::set_fpmode: 6958 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6959 getValue(I.getArgOperand(0))); 6960 DAG.setRoot(Res); 6961 return; 6962 case Intrinsic::reset_fpmode: { 6963 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6964 DAG.setRoot(Res); 6965 return; 6966 } 6967 case Intrinsic::pcmarker: { 6968 SDValue Tmp = getValue(I.getArgOperand(0)); 6969 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6970 return; 6971 } 6972 case Intrinsic::readcyclecounter: { 6973 SDValue Op = getRoot(); 6974 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6975 DAG.getVTList(MVT::i64, MVT::Other), Op); 6976 setValue(&I, Res); 6977 DAG.setRoot(Res.getValue(1)); 6978 return; 6979 } 6980 case Intrinsic::readsteadycounter: { 6981 SDValue Op = getRoot(); 6982 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 6983 DAG.getVTList(MVT::i64, MVT::Other), Op); 6984 setValue(&I, Res); 6985 DAG.setRoot(Res.getValue(1)); 6986 return; 6987 } 6988 case Intrinsic::bitreverse: 6989 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6990 getValue(I.getArgOperand(0)).getValueType(), 6991 getValue(I.getArgOperand(0)))); 6992 return; 6993 case Intrinsic::bswap: 6994 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6995 getValue(I.getArgOperand(0)).getValueType(), 6996 getValue(I.getArgOperand(0)))); 6997 return; 6998 case Intrinsic::cttz: { 6999 SDValue Arg = getValue(I.getArgOperand(0)); 7000 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7001 EVT Ty = Arg.getValueType(); 7002 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7003 sdl, Ty, Arg)); 7004 return; 7005 } 7006 case Intrinsic::ctlz: { 7007 SDValue Arg = getValue(I.getArgOperand(0)); 7008 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7009 EVT Ty = Arg.getValueType(); 7010 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7011 sdl, Ty, Arg)); 7012 return; 7013 } 7014 case Intrinsic::ctpop: { 7015 SDValue Arg = getValue(I.getArgOperand(0)); 7016 EVT Ty = Arg.getValueType(); 7017 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7018 return; 7019 } 7020 case Intrinsic::fshl: 7021 case Intrinsic::fshr: { 7022 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7023 SDValue X = getValue(I.getArgOperand(0)); 7024 SDValue Y = getValue(I.getArgOperand(1)); 7025 SDValue Z = getValue(I.getArgOperand(2)); 7026 EVT VT = X.getValueType(); 7027 7028 if (X == Y) { 7029 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7030 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7031 } else { 7032 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7033 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7034 } 7035 return; 7036 } 7037 case Intrinsic::sadd_sat: { 7038 SDValue Op1 = getValue(I.getArgOperand(0)); 7039 SDValue Op2 = getValue(I.getArgOperand(1)); 7040 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7041 return; 7042 } 7043 case Intrinsic::uadd_sat: { 7044 SDValue Op1 = getValue(I.getArgOperand(0)); 7045 SDValue Op2 = getValue(I.getArgOperand(1)); 7046 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7047 return; 7048 } 7049 case Intrinsic::ssub_sat: { 7050 SDValue Op1 = getValue(I.getArgOperand(0)); 7051 SDValue Op2 = getValue(I.getArgOperand(1)); 7052 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7053 return; 7054 } 7055 case Intrinsic::usub_sat: { 7056 SDValue Op1 = getValue(I.getArgOperand(0)); 7057 SDValue Op2 = getValue(I.getArgOperand(1)); 7058 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7059 return; 7060 } 7061 case Intrinsic::sshl_sat: { 7062 SDValue Op1 = getValue(I.getArgOperand(0)); 7063 SDValue Op2 = getValue(I.getArgOperand(1)); 7064 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7065 return; 7066 } 7067 case Intrinsic::ushl_sat: { 7068 SDValue Op1 = getValue(I.getArgOperand(0)); 7069 SDValue Op2 = getValue(I.getArgOperand(1)); 7070 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7071 return; 7072 } 7073 case Intrinsic::smul_fix: 7074 case Intrinsic::umul_fix: 7075 case Intrinsic::smul_fix_sat: 7076 case Intrinsic::umul_fix_sat: { 7077 SDValue Op1 = getValue(I.getArgOperand(0)); 7078 SDValue Op2 = getValue(I.getArgOperand(1)); 7079 SDValue Op3 = getValue(I.getArgOperand(2)); 7080 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7081 Op1.getValueType(), Op1, Op2, Op3)); 7082 return; 7083 } 7084 case Intrinsic::sdiv_fix: 7085 case Intrinsic::udiv_fix: 7086 case Intrinsic::sdiv_fix_sat: 7087 case Intrinsic::udiv_fix_sat: { 7088 SDValue Op1 = getValue(I.getArgOperand(0)); 7089 SDValue Op2 = getValue(I.getArgOperand(1)); 7090 SDValue Op3 = getValue(I.getArgOperand(2)); 7091 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7092 Op1, Op2, Op3, DAG, TLI)); 7093 return; 7094 } 7095 case Intrinsic::smax: { 7096 SDValue Op1 = getValue(I.getArgOperand(0)); 7097 SDValue Op2 = getValue(I.getArgOperand(1)); 7098 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7099 return; 7100 } 7101 case Intrinsic::smin: { 7102 SDValue Op1 = getValue(I.getArgOperand(0)); 7103 SDValue Op2 = getValue(I.getArgOperand(1)); 7104 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7105 return; 7106 } 7107 case Intrinsic::umax: { 7108 SDValue Op1 = getValue(I.getArgOperand(0)); 7109 SDValue Op2 = getValue(I.getArgOperand(1)); 7110 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7111 return; 7112 } 7113 case Intrinsic::umin: { 7114 SDValue Op1 = getValue(I.getArgOperand(0)); 7115 SDValue Op2 = getValue(I.getArgOperand(1)); 7116 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7117 return; 7118 } 7119 case Intrinsic::abs: { 7120 // TODO: Preserve "int min is poison" arg in SDAG? 7121 SDValue Op1 = getValue(I.getArgOperand(0)); 7122 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7123 return; 7124 } 7125 case Intrinsic::stacksave: { 7126 SDValue Op = getRoot(); 7127 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7128 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7129 setValue(&I, Res); 7130 DAG.setRoot(Res.getValue(1)); 7131 return; 7132 } 7133 case Intrinsic::stackrestore: 7134 Res = getValue(I.getArgOperand(0)); 7135 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7136 return; 7137 case Intrinsic::get_dynamic_area_offset: { 7138 SDValue Op = getRoot(); 7139 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7140 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7141 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7142 // target. 7143 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7144 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7145 " intrinsic!"); 7146 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7147 Op); 7148 DAG.setRoot(Op); 7149 setValue(&I, Res); 7150 return; 7151 } 7152 case Intrinsic::stackguard: { 7153 MachineFunction &MF = DAG.getMachineFunction(); 7154 const Module &M = *MF.getFunction().getParent(); 7155 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7156 SDValue Chain = getRoot(); 7157 if (TLI.useLoadStackGuardNode()) { 7158 Res = getLoadStackGuard(DAG, sdl, Chain); 7159 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7160 } else { 7161 const Value *Global = TLI.getSDagStackGuard(M); 7162 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7163 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7164 MachinePointerInfo(Global, 0), Align, 7165 MachineMemOperand::MOVolatile); 7166 } 7167 if (TLI.useStackGuardXorFP()) 7168 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7169 DAG.setRoot(Chain); 7170 setValue(&I, Res); 7171 return; 7172 } 7173 case Intrinsic::stackprotector: { 7174 // Emit code into the DAG to store the stack guard onto the stack. 7175 MachineFunction &MF = DAG.getMachineFunction(); 7176 MachineFrameInfo &MFI = MF.getFrameInfo(); 7177 SDValue Src, Chain = getRoot(); 7178 7179 if (TLI.useLoadStackGuardNode()) 7180 Src = getLoadStackGuard(DAG, sdl, Chain); 7181 else 7182 Src = getValue(I.getArgOperand(0)); // The guard's value. 7183 7184 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7185 7186 int FI = FuncInfo.StaticAllocaMap[Slot]; 7187 MFI.setStackProtectorIndex(FI); 7188 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7189 7190 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7191 7192 // Store the stack protector onto the stack. 7193 Res = DAG.getStore( 7194 Chain, sdl, Src, FIN, 7195 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7196 MaybeAlign(), MachineMemOperand::MOVolatile); 7197 setValue(&I, Res); 7198 DAG.setRoot(Res); 7199 return; 7200 } 7201 case Intrinsic::objectsize: 7202 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7203 7204 case Intrinsic::is_constant: 7205 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7206 7207 case Intrinsic::annotation: 7208 case Intrinsic::ptr_annotation: 7209 case Intrinsic::launder_invariant_group: 7210 case Intrinsic::strip_invariant_group: 7211 // Drop the intrinsic, but forward the value 7212 setValue(&I, getValue(I.getOperand(0))); 7213 return; 7214 7215 case Intrinsic::assume: 7216 case Intrinsic::experimental_noalias_scope_decl: 7217 case Intrinsic::var_annotation: 7218 case Intrinsic::sideeffect: 7219 // Discard annotate attributes, noalias scope declarations, assumptions, and 7220 // artificial side-effects. 7221 return; 7222 7223 case Intrinsic::codeview_annotation: { 7224 // Emit a label associated with this metadata. 7225 MachineFunction &MF = DAG.getMachineFunction(); 7226 MCSymbol *Label = 7227 MF.getMMI().getContext().createTempSymbol("annotation", true); 7228 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7229 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7230 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7231 DAG.setRoot(Res); 7232 return; 7233 } 7234 7235 case Intrinsic::init_trampoline: { 7236 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7237 7238 SDValue Ops[6]; 7239 Ops[0] = getRoot(); 7240 Ops[1] = getValue(I.getArgOperand(0)); 7241 Ops[2] = getValue(I.getArgOperand(1)); 7242 Ops[3] = getValue(I.getArgOperand(2)); 7243 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7244 Ops[5] = DAG.getSrcValue(F); 7245 7246 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7247 7248 DAG.setRoot(Res); 7249 return; 7250 } 7251 case Intrinsic::adjust_trampoline: 7252 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7253 TLI.getPointerTy(DAG.getDataLayout()), 7254 getValue(I.getArgOperand(0)))); 7255 return; 7256 case Intrinsic::gcroot: { 7257 assert(DAG.getMachineFunction().getFunction().hasGC() && 7258 "only valid in functions with gc specified, enforced by Verifier"); 7259 assert(GFI && "implied by previous"); 7260 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7261 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7262 7263 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7264 GFI->addStackRoot(FI->getIndex(), TypeMap); 7265 return; 7266 } 7267 case Intrinsic::gcread: 7268 case Intrinsic::gcwrite: 7269 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7270 case Intrinsic::get_rounding: 7271 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7272 setValue(&I, Res); 7273 DAG.setRoot(Res.getValue(1)); 7274 return; 7275 7276 case Intrinsic::expect: 7277 // Just replace __builtin_expect(exp, c) with EXP. 7278 setValue(&I, getValue(I.getArgOperand(0))); 7279 return; 7280 7281 case Intrinsic::ubsantrap: 7282 case Intrinsic::debugtrap: 7283 case Intrinsic::trap: { 7284 StringRef TrapFuncName = 7285 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7286 if (TrapFuncName.empty()) { 7287 switch (Intrinsic) { 7288 case Intrinsic::trap: 7289 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7290 break; 7291 case Intrinsic::debugtrap: 7292 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7293 break; 7294 case Intrinsic::ubsantrap: 7295 DAG.setRoot(DAG.getNode( 7296 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7297 DAG.getTargetConstant( 7298 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7299 MVT::i32))); 7300 break; 7301 default: llvm_unreachable("unknown trap intrinsic"); 7302 } 7303 return; 7304 } 7305 TargetLowering::ArgListTy Args; 7306 if (Intrinsic == Intrinsic::ubsantrap) { 7307 Args.push_back(TargetLoweringBase::ArgListEntry()); 7308 Args[0].Val = I.getArgOperand(0); 7309 Args[0].Node = getValue(Args[0].Val); 7310 Args[0].Ty = Args[0].Val->getType(); 7311 } 7312 7313 TargetLowering::CallLoweringInfo CLI(DAG); 7314 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7315 CallingConv::C, I.getType(), 7316 DAG.getExternalSymbol(TrapFuncName.data(), 7317 TLI.getPointerTy(DAG.getDataLayout())), 7318 std::move(Args)); 7319 7320 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7321 DAG.setRoot(Result.second); 7322 return; 7323 } 7324 7325 case Intrinsic::uadd_with_overflow: 7326 case Intrinsic::sadd_with_overflow: 7327 case Intrinsic::usub_with_overflow: 7328 case Intrinsic::ssub_with_overflow: 7329 case Intrinsic::umul_with_overflow: 7330 case Intrinsic::smul_with_overflow: { 7331 ISD::NodeType Op; 7332 switch (Intrinsic) { 7333 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7334 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7335 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7336 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7337 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7338 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7339 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7340 } 7341 SDValue Op1 = getValue(I.getArgOperand(0)); 7342 SDValue Op2 = getValue(I.getArgOperand(1)); 7343 7344 EVT ResultVT = Op1.getValueType(); 7345 EVT OverflowVT = MVT::i1; 7346 if (ResultVT.isVector()) 7347 OverflowVT = EVT::getVectorVT( 7348 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7349 7350 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7351 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7352 return; 7353 } 7354 case Intrinsic::prefetch: { 7355 SDValue Ops[5]; 7356 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7357 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7358 Ops[0] = DAG.getRoot(); 7359 Ops[1] = getValue(I.getArgOperand(0)); 7360 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7361 MVT::i32); 7362 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7363 MVT::i32); 7364 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7365 MVT::i32); 7366 SDValue Result = DAG.getMemIntrinsicNode( 7367 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7368 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7369 /* align */ std::nullopt, Flags); 7370 7371 // Chain the prefetch in parallel with any pending loads, to stay out of 7372 // the way of later optimizations. 7373 PendingLoads.push_back(Result); 7374 Result = getRoot(); 7375 DAG.setRoot(Result); 7376 return; 7377 } 7378 case Intrinsic::lifetime_start: 7379 case Intrinsic::lifetime_end: { 7380 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7381 // Stack coloring is not enabled in O0, discard region information. 7382 if (TM.getOptLevel() == CodeGenOptLevel::None) 7383 return; 7384 7385 const int64_t ObjectSize = 7386 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7387 Value *const ObjectPtr = I.getArgOperand(1); 7388 SmallVector<const Value *, 4> Allocas; 7389 getUnderlyingObjects(ObjectPtr, Allocas); 7390 7391 for (const Value *Alloca : Allocas) { 7392 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7393 7394 // Could not find an Alloca. 7395 if (!LifetimeObject) 7396 continue; 7397 7398 // First check that the Alloca is static, otherwise it won't have a 7399 // valid frame index. 7400 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7401 if (SI == FuncInfo.StaticAllocaMap.end()) 7402 return; 7403 7404 const int FrameIndex = SI->second; 7405 int64_t Offset; 7406 if (GetPointerBaseWithConstantOffset( 7407 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7408 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7409 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7410 Offset); 7411 DAG.setRoot(Res); 7412 } 7413 return; 7414 } 7415 case Intrinsic::pseudoprobe: { 7416 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7417 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7418 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7419 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7420 DAG.setRoot(Res); 7421 return; 7422 } 7423 case Intrinsic::invariant_start: 7424 // Discard region information. 7425 setValue(&I, 7426 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7427 return; 7428 case Intrinsic::invariant_end: 7429 // Discard region information. 7430 return; 7431 case Intrinsic::clear_cache: 7432 /// FunctionName may be null. 7433 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7434 lowerCallToExternalSymbol(I, FunctionName); 7435 return; 7436 case Intrinsic::donothing: 7437 case Intrinsic::seh_try_begin: 7438 case Intrinsic::seh_scope_begin: 7439 case Intrinsic::seh_try_end: 7440 case Intrinsic::seh_scope_end: 7441 // ignore 7442 return; 7443 case Intrinsic::experimental_stackmap: 7444 visitStackmap(I); 7445 return; 7446 case Intrinsic::experimental_patchpoint_void: 7447 case Intrinsic::experimental_patchpoint_i64: 7448 visitPatchpoint(I); 7449 return; 7450 case Intrinsic::experimental_gc_statepoint: 7451 LowerStatepoint(cast<GCStatepointInst>(I)); 7452 return; 7453 case Intrinsic::experimental_gc_result: 7454 visitGCResult(cast<GCResultInst>(I)); 7455 return; 7456 case Intrinsic::experimental_gc_relocate: 7457 visitGCRelocate(cast<GCRelocateInst>(I)); 7458 return; 7459 case Intrinsic::instrprof_cover: 7460 llvm_unreachable("instrprof failed to lower a cover"); 7461 case Intrinsic::instrprof_increment: 7462 llvm_unreachable("instrprof failed to lower an increment"); 7463 case Intrinsic::instrprof_timestamp: 7464 llvm_unreachable("instrprof failed to lower a timestamp"); 7465 case Intrinsic::instrprof_value_profile: 7466 llvm_unreachable("instrprof failed to lower a value profiling call"); 7467 case Intrinsic::instrprof_mcdc_parameters: 7468 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7469 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7470 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7471 case Intrinsic::instrprof_mcdc_condbitmap_update: 7472 llvm_unreachable("instrprof failed to lower an mcdc condbitmap update"); 7473 case Intrinsic::localescape: { 7474 MachineFunction &MF = DAG.getMachineFunction(); 7475 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7476 7477 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7478 // is the same on all targets. 7479 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7480 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7481 if (isa<ConstantPointerNull>(Arg)) 7482 continue; // Skip null pointers. They represent a hole in index space. 7483 AllocaInst *Slot = cast<AllocaInst>(Arg); 7484 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7485 "can only escape static allocas"); 7486 int FI = FuncInfo.StaticAllocaMap[Slot]; 7487 MCSymbol *FrameAllocSym = 7488 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7489 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7490 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7491 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7492 .addSym(FrameAllocSym) 7493 .addFrameIndex(FI); 7494 } 7495 7496 return; 7497 } 7498 7499 case Intrinsic::localrecover: { 7500 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7501 MachineFunction &MF = DAG.getMachineFunction(); 7502 7503 // Get the symbol that defines the frame offset. 7504 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7505 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7506 unsigned IdxVal = 7507 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7508 MCSymbol *FrameAllocSym = 7509 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7510 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7511 7512 Value *FP = I.getArgOperand(1); 7513 SDValue FPVal = getValue(FP); 7514 EVT PtrVT = FPVal.getValueType(); 7515 7516 // Create a MCSymbol for the label to avoid any target lowering 7517 // that would make this PC relative. 7518 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7519 SDValue OffsetVal = 7520 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7521 7522 // Add the offset to the FP. 7523 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7524 setValue(&I, Add); 7525 7526 return; 7527 } 7528 7529 case Intrinsic::eh_exceptionpointer: 7530 case Intrinsic::eh_exceptioncode: { 7531 // Get the exception pointer vreg, copy from it, and resize it to fit. 7532 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7533 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7534 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7535 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7536 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7537 if (Intrinsic == Intrinsic::eh_exceptioncode) 7538 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7539 setValue(&I, N); 7540 return; 7541 } 7542 case Intrinsic::xray_customevent: { 7543 // Here we want to make sure that the intrinsic behaves as if it has a 7544 // specific calling convention. 7545 const auto &Triple = DAG.getTarget().getTargetTriple(); 7546 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7547 return; 7548 7549 SmallVector<SDValue, 8> Ops; 7550 7551 // We want to say that we always want the arguments in registers. 7552 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7553 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7554 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7555 SDValue Chain = getRoot(); 7556 Ops.push_back(LogEntryVal); 7557 Ops.push_back(StrSizeVal); 7558 Ops.push_back(Chain); 7559 7560 // We need to enforce the calling convention for the callsite, so that 7561 // argument ordering is enforced correctly, and that register allocation can 7562 // see that some registers may be assumed clobbered and have to preserve 7563 // them across calls to the intrinsic. 7564 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7565 sdl, NodeTys, Ops); 7566 SDValue patchableNode = SDValue(MN, 0); 7567 DAG.setRoot(patchableNode); 7568 setValue(&I, patchableNode); 7569 return; 7570 } 7571 case Intrinsic::xray_typedevent: { 7572 // Here we want to make sure that the intrinsic behaves as if it has a 7573 // specific calling convention. 7574 const auto &Triple = DAG.getTarget().getTargetTriple(); 7575 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7576 return; 7577 7578 SmallVector<SDValue, 8> Ops; 7579 7580 // We want to say that we always want the arguments in registers. 7581 // It's unclear to me how manipulating the selection DAG here forces callers 7582 // to provide arguments in registers instead of on the stack. 7583 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7584 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7585 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7586 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7587 SDValue Chain = getRoot(); 7588 Ops.push_back(LogTypeId); 7589 Ops.push_back(LogEntryVal); 7590 Ops.push_back(StrSizeVal); 7591 Ops.push_back(Chain); 7592 7593 // We need to enforce the calling convention for the callsite, so that 7594 // argument ordering is enforced correctly, and that register allocation can 7595 // see that some registers may be assumed clobbered and have to preserve 7596 // them across calls to the intrinsic. 7597 MachineSDNode *MN = DAG.getMachineNode( 7598 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7599 SDValue patchableNode = SDValue(MN, 0); 7600 DAG.setRoot(patchableNode); 7601 setValue(&I, patchableNode); 7602 return; 7603 } 7604 case Intrinsic::experimental_deoptimize: 7605 LowerDeoptimizeCall(&I); 7606 return; 7607 case Intrinsic::experimental_stepvector: 7608 visitStepVector(I); 7609 return; 7610 case Intrinsic::vector_reduce_fadd: 7611 case Intrinsic::vector_reduce_fmul: 7612 case Intrinsic::vector_reduce_add: 7613 case Intrinsic::vector_reduce_mul: 7614 case Intrinsic::vector_reduce_and: 7615 case Intrinsic::vector_reduce_or: 7616 case Intrinsic::vector_reduce_xor: 7617 case Intrinsic::vector_reduce_smax: 7618 case Intrinsic::vector_reduce_smin: 7619 case Intrinsic::vector_reduce_umax: 7620 case Intrinsic::vector_reduce_umin: 7621 case Intrinsic::vector_reduce_fmax: 7622 case Intrinsic::vector_reduce_fmin: 7623 case Intrinsic::vector_reduce_fmaximum: 7624 case Intrinsic::vector_reduce_fminimum: 7625 visitVectorReduce(I, Intrinsic); 7626 return; 7627 7628 case Intrinsic::icall_branch_funnel: { 7629 SmallVector<SDValue, 16> Ops; 7630 Ops.push_back(getValue(I.getArgOperand(0))); 7631 7632 int64_t Offset; 7633 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7634 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7635 if (!Base) 7636 report_fatal_error( 7637 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7638 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7639 7640 struct BranchFunnelTarget { 7641 int64_t Offset; 7642 SDValue Target; 7643 }; 7644 SmallVector<BranchFunnelTarget, 8> Targets; 7645 7646 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7647 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7648 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7649 if (ElemBase != Base) 7650 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7651 "to the same GlobalValue"); 7652 7653 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7654 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7655 if (!GA) 7656 report_fatal_error( 7657 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7658 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7659 GA->getGlobal(), sdl, Val.getValueType(), 7660 GA->getOffset())}); 7661 } 7662 llvm::sort(Targets, 7663 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7664 return T1.Offset < T2.Offset; 7665 }); 7666 7667 for (auto &T : Targets) { 7668 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7669 Ops.push_back(T.Target); 7670 } 7671 7672 Ops.push_back(DAG.getRoot()); // Chain 7673 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7674 MVT::Other, Ops), 7675 0); 7676 DAG.setRoot(N); 7677 setValue(&I, N); 7678 HasTailCall = true; 7679 return; 7680 } 7681 7682 case Intrinsic::wasm_landingpad_index: 7683 // Information this intrinsic contained has been transferred to 7684 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7685 // delete it now. 7686 return; 7687 7688 case Intrinsic::aarch64_settag: 7689 case Intrinsic::aarch64_settag_zero: { 7690 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7691 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7692 SDValue Val = TSI.EmitTargetCodeForSetTag( 7693 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7694 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7695 ZeroMemory); 7696 DAG.setRoot(Val); 7697 setValue(&I, Val); 7698 return; 7699 } 7700 case Intrinsic::amdgcn_cs_chain: { 7701 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7702 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7703 "Non-zero flags not supported yet"); 7704 7705 // At this point we don't care if it's amdgpu_cs_chain or 7706 // amdgpu_cs_chain_preserve. 7707 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7708 7709 Type *RetTy = I.getType(); 7710 assert(RetTy->isVoidTy() && "Should not return"); 7711 7712 SDValue Callee = getValue(I.getOperand(0)); 7713 7714 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7715 // We'll also tack the value of the EXEC mask at the end. 7716 TargetLowering::ArgListTy Args; 7717 Args.reserve(3); 7718 7719 for (unsigned Idx : {2, 3, 1}) { 7720 TargetLowering::ArgListEntry Arg; 7721 Arg.Node = getValue(I.getOperand(Idx)); 7722 Arg.Ty = I.getOperand(Idx)->getType(); 7723 Arg.setAttributes(&I, Idx); 7724 Args.push_back(Arg); 7725 } 7726 7727 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7728 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7729 Args[2].IsInReg = true; // EXEC should be inreg 7730 7731 TargetLowering::CallLoweringInfo CLI(DAG); 7732 CLI.setDebugLoc(getCurSDLoc()) 7733 .setChain(getRoot()) 7734 .setCallee(CC, RetTy, Callee, std::move(Args)) 7735 .setNoReturn(true) 7736 .setTailCall(true) 7737 .setConvergent(I.isConvergent()); 7738 CLI.CB = &I; 7739 std::pair<SDValue, SDValue> Result = 7740 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7741 (void)Result; 7742 assert(!Result.first.getNode() && !Result.second.getNode() && 7743 "Should've lowered as tail call"); 7744 7745 HasTailCall = true; 7746 return; 7747 } 7748 case Intrinsic::ptrmask: { 7749 SDValue Ptr = getValue(I.getOperand(0)); 7750 SDValue Mask = getValue(I.getOperand(1)); 7751 7752 EVT PtrVT = Ptr.getValueType(); 7753 assert(PtrVT == Mask.getValueType() && 7754 "Pointers with different index type are not supported by SDAG"); 7755 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7756 return; 7757 } 7758 case Intrinsic::threadlocal_address: { 7759 setValue(&I, getValue(I.getOperand(0))); 7760 return; 7761 } 7762 case Intrinsic::get_active_lane_mask: { 7763 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7764 SDValue Index = getValue(I.getOperand(0)); 7765 EVT ElementVT = Index.getValueType(); 7766 7767 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7768 visitTargetIntrinsic(I, Intrinsic); 7769 return; 7770 } 7771 7772 SDValue TripCount = getValue(I.getOperand(1)); 7773 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7774 CCVT.getVectorElementCount()); 7775 7776 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7777 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7778 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7779 SDValue VectorInduction = DAG.getNode( 7780 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7781 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7782 VectorTripCount, ISD::CondCode::SETULT); 7783 setValue(&I, SetCC); 7784 return; 7785 } 7786 case Intrinsic::experimental_get_vector_length: { 7787 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7788 "Expected positive VF"); 7789 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7790 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7791 7792 SDValue Count = getValue(I.getOperand(0)); 7793 EVT CountVT = Count.getValueType(); 7794 7795 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7796 visitTargetIntrinsic(I, Intrinsic); 7797 return; 7798 } 7799 7800 // Expand to a umin between the trip count and the maximum elements the type 7801 // can hold. 7802 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7803 7804 // Extend the trip count to at least the result VT. 7805 if (CountVT.bitsLT(VT)) { 7806 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7807 CountVT = VT; 7808 } 7809 7810 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7811 ElementCount::get(VF, IsScalable)); 7812 7813 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7814 // Clip to the result type if needed. 7815 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7816 7817 setValue(&I, Trunc); 7818 return; 7819 } 7820 case Intrinsic::experimental_cttz_elts: { 7821 auto DL = getCurSDLoc(); 7822 SDValue Op = getValue(I.getOperand(0)); 7823 EVT OpVT = Op.getValueType(); 7824 7825 if (!TLI.shouldExpandCttzElements(OpVT)) { 7826 visitTargetIntrinsic(I, Intrinsic); 7827 return; 7828 } 7829 7830 if (OpVT.getScalarType() != MVT::i1) { 7831 // Compare the input vector elements to zero & use to count trailing zeros 7832 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7833 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7834 OpVT.getVectorElementCount()); 7835 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7836 } 7837 7838 // Find the smallest "sensible" element type to use for the expansion. 7839 ConstantRange CR( 7840 APInt(64, OpVT.getVectorElementCount().getKnownMinValue())); 7841 if (OpVT.isScalableVT()) 7842 CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64)); 7843 7844 // If the zero-is-poison flag is set, we can assume the upper limit 7845 // of the result is VF-1. 7846 if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero()) 7847 CR = CR.subtract(APInt(64, 1)); 7848 7849 unsigned EltWidth = I.getType()->getScalarSizeInBits(); 7850 EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits()); 7851 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8); 7852 7853 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7854 7855 // Create the new vector type & get the vector length 7856 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7857 OpVT.getVectorElementCount()); 7858 7859 SDValue VL = 7860 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7861 7862 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7863 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7864 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7865 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7866 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7867 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 7868 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 7869 7870 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7871 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 7872 7873 setValue(&I, Ret); 7874 return; 7875 } 7876 case Intrinsic::vector_insert: { 7877 SDValue Vec = getValue(I.getOperand(0)); 7878 SDValue SubVec = getValue(I.getOperand(1)); 7879 SDValue Index = getValue(I.getOperand(2)); 7880 7881 // The intrinsic's index type is i64, but the SDNode requires an index type 7882 // suitable for the target. Convert the index as required. 7883 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7884 if (Index.getValueType() != VectorIdxTy) 7885 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7886 7887 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7888 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7889 Index)); 7890 return; 7891 } 7892 case Intrinsic::vector_extract: { 7893 SDValue Vec = getValue(I.getOperand(0)); 7894 SDValue Index = getValue(I.getOperand(1)); 7895 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7896 7897 // The intrinsic's index type is i64, but the SDNode requires an index type 7898 // suitable for the target. Convert the index as required. 7899 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7900 if (Index.getValueType() != VectorIdxTy) 7901 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7902 7903 setValue(&I, 7904 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7905 return; 7906 } 7907 case Intrinsic::experimental_vector_reverse: 7908 visitVectorReverse(I); 7909 return; 7910 case Intrinsic::experimental_vector_splice: 7911 visitVectorSplice(I); 7912 return; 7913 case Intrinsic::callbr_landingpad: 7914 visitCallBrLandingPad(I); 7915 return; 7916 case Intrinsic::experimental_vector_interleave2: 7917 visitVectorInterleave(I); 7918 return; 7919 case Intrinsic::experimental_vector_deinterleave2: 7920 visitVectorDeinterleave(I); 7921 return; 7922 case Intrinsic::experimental_convergence_anchor: 7923 case Intrinsic::experimental_convergence_entry: 7924 case Intrinsic::experimental_convergence_loop: 7925 visitConvergenceControl(I, Intrinsic); 7926 } 7927 } 7928 7929 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7930 const ConstrainedFPIntrinsic &FPI) { 7931 SDLoc sdl = getCurSDLoc(); 7932 7933 // We do not need to serialize constrained FP intrinsics against 7934 // each other or against (nonvolatile) loads, so they can be 7935 // chained like loads. 7936 SDValue Chain = DAG.getRoot(); 7937 SmallVector<SDValue, 4> Opers; 7938 Opers.push_back(Chain); 7939 if (FPI.isUnaryOp()) { 7940 Opers.push_back(getValue(FPI.getArgOperand(0))); 7941 } else if (FPI.isTernaryOp()) { 7942 Opers.push_back(getValue(FPI.getArgOperand(0))); 7943 Opers.push_back(getValue(FPI.getArgOperand(1))); 7944 Opers.push_back(getValue(FPI.getArgOperand(2))); 7945 } else { 7946 Opers.push_back(getValue(FPI.getArgOperand(0))); 7947 Opers.push_back(getValue(FPI.getArgOperand(1))); 7948 } 7949 7950 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7951 assert(Result.getNode()->getNumValues() == 2); 7952 7953 // Push node to the appropriate list so that future instructions can be 7954 // chained up correctly. 7955 SDValue OutChain = Result.getValue(1); 7956 switch (EB) { 7957 case fp::ExceptionBehavior::ebIgnore: 7958 // The only reason why ebIgnore nodes still need to be chained is that 7959 // they might depend on the current rounding mode, and therefore must 7960 // not be moved across instruction that may change that mode. 7961 [[fallthrough]]; 7962 case fp::ExceptionBehavior::ebMayTrap: 7963 // These must not be moved across calls or instructions that may change 7964 // floating-point exception masks. 7965 PendingConstrainedFP.push_back(OutChain); 7966 break; 7967 case fp::ExceptionBehavior::ebStrict: 7968 // These must not be moved across calls or instructions that may change 7969 // floating-point exception masks or read floating-point exception flags. 7970 // In addition, they cannot be optimized out even if unused. 7971 PendingConstrainedFPStrict.push_back(OutChain); 7972 break; 7973 } 7974 }; 7975 7976 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7977 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7978 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7979 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7980 7981 SDNodeFlags Flags; 7982 if (EB == fp::ExceptionBehavior::ebIgnore) 7983 Flags.setNoFPExcept(true); 7984 7985 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7986 Flags.copyFMF(*FPOp); 7987 7988 unsigned Opcode; 7989 switch (FPI.getIntrinsicID()) { 7990 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7991 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7992 case Intrinsic::INTRINSIC: \ 7993 Opcode = ISD::STRICT_##DAGN; \ 7994 break; 7995 #include "llvm/IR/ConstrainedOps.def" 7996 case Intrinsic::experimental_constrained_fmuladd: { 7997 Opcode = ISD::STRICT_FMA; 7998 // Break fmuladd into fmul and fadd. 7999 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8000 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8001 Opers.pop_back(); 8002 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8003 pushOutChain(Mul, EB); 8004 Opcode = ISD::STRICT_FADD; 8005 Opers.clear(); 8006 Opers.push_back(Mul.getValue(1)); 8007 Opers.push_back(Mul.getValue(0)); 8008 Opers.push_back(getValue(FPI.getArgOperand(2))); 8009 } 8010 break; 8011 } 8012 } 8013 8014 // A few strict DAG nodes carry additional operands that are not 8015 // set up by the default code above. 8016 switch (Opcode) { 8017 default: break; 8018 case ISD::STRICT_FP_ROUND: 8019 Opers.push_back( 8020 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8021 break; 8022 case ISD::STRICT_FSETCC: 8023 case ISD::STRICT_FSETCCS: { 8024 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8025 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8026 if (TM.Options.NoNaNsFPMath) 8027 Condition = getFCmpCodeWithoutNaN(Condition); 8028 Opers.push_back(DAG.getCondCode(Condition)); 8029 break; 8030 } 8031 } 8032 8033 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8034 pushOutChain(Result, EB); 8035 8036 SDValue FPResult = Result.getValue(0); 8037 setValue(&FPI, FPResult); 8038 } 8039 8040 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8041 std::optional<unsigned> ResOPC; 8042 switch (VPIntrin.getIntrinsicID()) { 8043 case Intrinsic::vp_ctlz: { 8044 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8045 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8046 break; 8047 } 8048 case Intrinsic::vp_cttz: { 8049 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8050 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8051 break; 8052 } 8053 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8054 case Intrinsic::VPID: \ 8055 ResOPC = ISD::VPSD; \ 8056 break; 8057 #include "llvm/IR/VPIntrinsics.def" 8058 } 8059 8060 if (!ResOPC) 8061 llvm_unreachable( 8062 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8063 8064 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8065 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8066 if (VPIntrin.getFastMathFlags().allowReassoc()) 8067 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8068 : ISD::VP_REDUCE_FMUL; 8069 } 8070 8071 return *ResOPC; 8072 } 8073 8074 void SelectionDAGBuilder::visitVPLoad( 8075 const VPIntrinsic &VPIntrin, EVT VT, 8076 const SmallVectorImpl<SDValue> &OpValues) { 8077 SDLoc DL = getCurSDLoc(); 8078 Value *PtrOperand = VPIntrin.getArgOperand(0); 8079 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8080 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8081 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8082 SDValue LD; 8083 // Do not serialize variable-length loads of constant memory with 8084 // anything. 8085 if (!Alignment) 8086 Alignment = DAG.getEVTAlign(VT); 8087 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8088 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8089 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8090 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8091 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8092 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8093 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8094 MMO, false /*IsExpanding */); 8095 if (AddToChain) 8096 PendingLoads.push_back(LD.getValue(1)); 8097 setValue(&VPIntrin, LD); 8098 } 8099 8100 void SelectionDAGBuilder::visitVPGather( 8101 const VPIntrinsic &VPIntrin, EVT VT, 8102 const SmallVectorImpl<SDValue> &OpValues) { 8103 SDLoc DL = getCurSDLoc(); 8104 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8105 Value *PtrOperand = VPIntrin.getArgOperand(0); 8106 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8107 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8108 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8109 SDValue LD; 8110 if (!Alignment) 8111 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8112 unsigned AS = 8113 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8114 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8115 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8116 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8117 SDValue Base, Index, Scale; 8118 ISD::MemIndexType IndexType; 8119 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8120 this, VPIntrin.getParent(), 8121 VT.getScalarStoreSize()); 8122 if (!UniformBase) { 8123 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8124 Index = getValue(PtrOperand); 8125 IndexType = ISD::SIGNED_SCALED; 8126 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8127 } 8128 EVT IdxVT = Index.getValueType(); 8129 EVT EltTy = IdxVT.getVectorElementType(); 8130 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8131 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8132 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8133 } 8134 LD = DAG.getGatherVP( 8135 DAG.getVTList(VT, MVT::Other), VT, DL, 8136 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8137 IndexType); 8138 PendingLoads.push_back(LD.getValue(1)); 8139 setValue(&VPIntrin, LD); 8140 } 8141 8142 void SelectionDAGBuilder::visitVPStore( 8143 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8144 SDLoc DL = getCurSDLoc(); 8145 Value *PtrOperand = VPIntrin.getArgOperand(1); 8146 EVT VT = OpValues[0].getValueType(); 8147 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8148 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8149 SDValue ST; 8150 if (!Alignment) 8151 Alignment = DAG.getEVTAlign(VT); 8152 SDValue Ptr = OpValues[1]; 8153 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8154 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8155 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8156 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8157 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8158 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8159 /* IsTruncating */ false, /*IsCompressing*/ false); 8160 DAG.setRoot(ST); 8161 setValue(&VPIntrin, ST); 8162 } 8163 8164 void SelectionDAGBuilder::visitVPScatter( 8165 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8166 SDLoc DL = getCurSDLoc(); 8167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8168 Value *PtrOperand = VPIntrin.getArgOperand(1); 8169 EVT VT = OpValues[0].getValueType(); 8170 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8171 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8172 SDValue ST; 8173 if (!Alignment) 8174 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8175 unsigned AS = 8176 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8177 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8178 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8179 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8180 SDValue Base, Index, Scale; 8181 ISD::MemIndexType IndexType; 8182 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8183 this, VPIntrin.getParent(), 8184 VT.getScalarStoreSize()); 8185 if (!UniformBase) { 8186 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8187 Index = getValue(PtrOperand); 8188 IndexType = ISD::SIGNED_SCALED; 8189 Scale = 8190 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8191 } 8192 EVT IdxVT = Index.getValueType(); 8193 EVT EltTy = IdxVT.getVectorElementType(); 8194 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8195 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8196 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8197 } 8198 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8199 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8200 OpValues[2], OpValues[3]}, 8201 MMO, IndexType); 8202 DAG.setRoot(ST); 8203 setValue(&VPIntrin, ST); 8204 } 8205 8206 void SelectionDAGBuilder::visitVPStridedLoad( 8207 const VPIntrinsic &VPIntrin, EVT VT, 8208 const SmallVectorImpl<SDValue> &OpValues) { 8209 SDLoc DL = getCurSDLoc(); 8210 Value *PtrOperand = VPIntrin.getArgOperand(0); 8211 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8212 if (!Alignment) 8213 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8214 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8215 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8216 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8217 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8218 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8219 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8220 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8221 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8222 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8223 8224 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8225 OpValues[2], OpValues[3], MMO, 8226 false /*IsExpanding*/); 8227 8228 if (AddToChain) 8229 PendingLoads.push_back(LD.getValue(1)); 8230 setValue(&VPIntrin, LD); 8231 } 8232 8233 void SelectionDAGBuilder::visitVPStridedStore( 8234 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8235 SDLoc DL = getCurSDLoc(); 8236 Value *PtrOperand = VPIntrin.getArgOperand(1); 8237 EVT VT = OpValues[0].getValueType(); 8238 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8239 if (!Alignment) 8240 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8241 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8242 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8243 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8244 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8245 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8246 8247 SDValue ST = DAG.getStridedStoreVP( 8248 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8249 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8250 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8251 /*IsCompressing*/ false); 8252 8253 DAG.setRoot(ST); 8254 setValue(&VPIntrin, ST); 8255 } 8256 8257 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8258 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8259 SDLoc DL = getCurSDLoc(); 8260 8261 ISD::CondCode Condition; 8262 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8263 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8264 if (IsFP) { 8265 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8266 // flags, but calls that don't return floating-point types can't be 8267 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8268 Condition = getFCmpCondCode(CondCode); 8269 if (TM.Options.NoNaNsFPMath) 8270 Condition = getFCmpCodeWithoutNaN(Condition); 8271 } else { 8272 Condition = getICmpCondCode(CondCode); 8273 } 8274 8275 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8276 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8277 // #2 is the condition code 8278 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8279 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8280 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8281 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8282 "Unexpected target EVL type"); 8283 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8284 8285 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8286 VPIntrin.getType()); 8287 setValue(&VPIntrin, 8288 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8289 } 8290 8291 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8292 const VPIntrinsic &VPIntrin) { 8293 SDLoc DL = getCurSDLoc(); 8294 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8295 8296 auto IID = VPIntrin.getIntrinsicID(); 8297 8298 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8299 return visitVPCmp(*CmpI); 8300 8301 SmallVector<EVT, 4> ValueVTs; 8302 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8303 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8304 SDVTList VTs = DAG.getVTList(ValueVTs); 8305 8306 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8307 8308 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8309 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8310 "Unexpected target EVL type"); 8311 8312 // Request operands. 8313 SmallVector<SDValue, 7> OpValues; 8314 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8315 auto Op = getValue(VPIntrin.getArgOperand(I)); 8316 if (I == EVLParamPos) 8317 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8318 OpValues.push_back(Op); 8319 } 8320 8321 switch (Opcode) { 8322 default: { 8323 SDNodeFlags SDFlags; 8324 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8325 SDFlags.copyFMF(*FPMO); 8326 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8327 setValue(&VPIntrin, Result); 8328 break; 8329 } 8330 case ISD::VP_LOAD: 8331 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8332 break; 8333 case ISD::VP_GATHER: 8334 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8335 break; 8336 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8337 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8338 break; 8339 case ISD::VP_STORE: 8340 visitVPStore(VPIntrin, OpValues); 8341 break; 8342 case ISD::VP_SCATTER: 8343 visitVPScatter(VPIntrin, OpValues); 8344 break; 8345 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8346 visitVPStridedStore(VPIntrin, OpValues); 8347 break; 8348 case ISD::VP_FMULADD: { 8349 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8350 SDNodeFlags SDFlags; 8351 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8352 SDFlags.copyFMF(*FPMO); 8353 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8354 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8355 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8356 } else { 8357 SDValue Mul = DAG.getNode( 8358 ISD::VP_FMUL, DL, VTs, 8359 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8360 SDValue Add = 8361 DAG.getNode(ISD::VP_FADD, DL, VTs, 8362 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8363 setValue(&VPIntrin, Add); 8364 } 8365 break; 8366 } 8367 case ISD::VP_IS_FPCLASS: { 8368 const DataLayout DLayout = DAG.getDataLayout(); 8369 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8370 auto Constant = OpValues[1]->getAsZExtVal(); 8371 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8372 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8373 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8374 setValue(&VPIntrin, V); 8375 return; 8376 } 8377 case ISD::VP_INTTOPTR: { 8378 SDValue N = OpValues[0]; 8379 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8380 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8381 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8382 OpValues[2]); 8383 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8384 OpValues[2]); 8385 setValue(&VPIntrin, N); 8386 break; 8387 } 8388 case ISD::VP_PTRTOINT: { 8389 SDValue N = OpValues[0]; 8390 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8391 VPIntrin.getType()); 8392 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8393 VPIntrin.getOperand(0)->getType()); 8394 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8395 OpValues[2]); 8396 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8397 OpValues[2]); 8398 setValue(&VPIntrin, N); 8399 break; 8400 } 8401 case ISD::VP_ABS: 8402 case ISD::VP_CTLZ: 8403 case ISD::VP_CTLZ_ZERO_UNDEF: 8404 case ISD::VP_CTTZ: 8405 case ISD::VP_CTTZ_ZERO_UNDEF: { 8406 SDValue Result = 8407 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8408 setValue(&VPIntrin, Result); 8409 break; 8410 } 8411 } 8412 } 8413 8414 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8415 const BasicBlock *EHPadBB, 8416 MCSymbol *&BeginLabel) { 8417 MachineFunction &MF = DAG.getMachineFunction(); 8418 MachineModuleInfo &MMI = MF.getMMI(); 8419 8420 // Insert a label before the invoke call to mark the try range. This can be 8421 // used to detect deletion of the invoke via the MachineModuleInfo. 8422 BeginLabel = MMI.getContext().createTempSymbol(); 8423 8424 // For SjLj, keep track of which landing pads go with which invokes 8425 // so as to maintain the ordering of pads in the LSDA. 8426 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8427 if (CallSiteIndex) { 8428 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8429 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8430 8431 // Now that the call site is handled, stop tracking it. 8432 MMI.setCurrentCallSite(0); 8433 } 8434 8435 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8436 } 8437 8438 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8439 const BasicBlock *EHPadBB, 8440 MCSymbol *BeginLabel) { 8441 assert(BeginLabel && "BeginLabel should've been set"); 8442 8443 MachineFunction &MF = DAG.getMachineFunction(); 8444 MachineModuleInfo &MMI = MF.getMMI(); 8445 8446 // Insert a label at the end of the invoke call to mark the try range. This 8447 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8448 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8449 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8450 8451 // Inform MachineModuleInfo of range. 8452 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8453 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8454 // actually use outlined funclets and their LSDA info style. 8455 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8456 assert(II && "II should've been set"); 8457 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8458 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8459 } else if (!isScopedEHPersonality(Pers)) { 8460 assert(EHPadBB); 8461 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8462 } 8463 8464 return Chain; 8465 } 8466 8467 std::pair<SDValue, SDValue> 8468 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8469 const BasicBlock *EHPadBB) { 8470 MCSymbol *BeginLabel = nullptr; 8471 8472 if (EHPadBB) { 8473 // Both PendingLoads and PendingExports must be flushed here; 8474 // this call might not return. 8475 (void)getRoot(); 8476 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8477 CLI.setChain(getRoot()); 8478 } 8479 8480 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8481 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8482 8483 assert((CLI.IsTailCall || Result.second.getNode()) && 8484 "Non-null chain expected with non-tail call!"); 8485 assert((Result.second.getNode() || !Result.first.getNode()) && 8486 "Null value expected with tail call!"); 8487 8488 if (!Result.second.getNode()) { 8489 // As a special case, a null chain means that a tail call has been emitted 8490 // and the DAG root is already updated. 8491 HasTailCall = true; 8492 8493 // Since there's no actual continuation from this block, nothing can be 8494 // relying on us setting vregs for them. 8495 PendingExports.clear(); 8496 } else { 8497 DAG.setRoot(Result.second); 8498 } 8499 8500 if (EHPadBB) { 8501 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8502 BeginLabel)); 8503 } 8504 8505 return Result; 8506 } 8507 8508 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8509 bool isTailCall, 8510 bool isMustTailCall, 8511 const BasicBlock *EHPadBB) { 8512 auto &DL = DAG.getDataLayout(); 8513 FunctionType *FTy = CB.getFunctionType(); 8514 Type *RetTy = CB.getType(); 8515 8516 TargetLowering::ArgListTy Args; 8517 Args.reserve(CB.arg_size()); 8518 8519 const Value *SwiftErrorVal = nullptr; 8520 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8521 8522 if (isTailCall) { 8523 // Avoid emitting tail calls in functions with the disable-tail-calls 8524 // attribute. 8525 auto *Caller = CB.getParent()->getParent(); 8526 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8527 "true" && !isMustTailCall) 8528 isTailCall = false; 8529 8530 // We can't tail call inside a function with a swifterror argument. Lowering 8531 // does not support this yet. It would have to move into the swifterror 8532 // register before the call. 8533 if (TLI.supportSwiftError() && 8534 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8535 isTailCall = false; 8536 } 8537 8538 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8539 TargetLowering::ArgListEntry Entry; 8540 const Value *V = *I; 8541 8542 // Skip empty types 8543 if (V->getType()->isEmptyTy()) 8544 continue; 8545 8546 SDValue ArgNode = getValue(V); 8547 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8548 8549 Entry.setAttributes(&CB, I - CB.arg_begin()); 8550 8551 // Use swifterror virtual register as input to the call. 8552 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8553 SwiftErrorVal = V; 8554 // We find the virtual register for the actual swifterror argument. 8555 // Instead of using the Value, we use the virtual register instead. 8556 Entry.Node = 8557 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8558 EVT(TLI.getPointerTy(DL))); 8559 } 8560 8561 Args.push_back(Entry); 8562 8563 // If we have an explicit sret argument that is an Instruction, (i.e., it 8564 // might point to function-local memory), we can't meaningfully tail-call. 8565 if (Entry.IsSRet && isa<Instruction>(V)) 8566 isTailCall = false; 8567 } 8568 8569 // If call site has a cfguardtarget operand bundle, create and add an 8570 // additional ArgListEntry. 8571 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8572 TargetLowering::ArgListEntry Entry; 8573 Value *V = Bundle->Inputs[0]; 8574 SDValue ArgNode = getValue(V); 8575 Entry.Node = ArgNode; 8576 Entry.Ty = V->getType(); 8577 Entry.IsCFGuardTarget = true; 8578 Args.push_back(Entry); 8579 } 8580 8581 // Check if target-independent constraints permit a tail call here. 8582 // Target-dependent constraints are checked within TLI->LowerCallTo. 8583 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8584 isTailCall = false; 8585 8586 // Disable tail calls if there is an swifterror argument. Targets have not 8587 // been updated to support tail calls. 8588 if (TLI.supportSwiftError() && SwiftErrorVal) 8589 isTailCall = false; 8590 8591 ConstantInt *CFIType = nullptr; 8592 if (CB.isIndirectCall()) { 8593 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8594 if (!TLI.supportKCFIBundles()) 8595 report_fatal_error( 8596 "Target doesn't support calls with kcfi operand bundles."); 8597 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8598 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8599 } 8600 } 8601 8602 SDValue ConvControlToken; 8603 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8604 auto *Token = Bundle->Inputs[0].get(); 8605 ConvControlToken = getValue(Token); 8606 } else { 8607 ConvControlToken = DAG.getUNDEF(MVT::Untyped); 8608 } 8609 8610 TargetLowering::CallLoweringInfo CLI(DAG); 8611 CLI.setDebugLoc(getCurSDLoc()) 8612 .setChain(getRoot()) 8613 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8614 .setTailCall(isTailCall) 8615 .setConvergent(CB.isConvergent()) 8616 .setIsPreallocated( 8617 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8618 .setCFIType(CFIType) 8619 .setConvergenceControlToken(ConvControlToken); 8620 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8621 8622 if (Result.first.getNode()) { 8623 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8624 setValue(&CB, Result.first); 8625 } 8626 8627 // The last element of CLI.InVals has the SDValue for swifterror return. 8628 // Here we copy it to a virtual register and update SwiftErrorMap for 8629 // book-keeping. 8630 if (SwiftErrorVal && TLI.supportSwiftError()) { 8631 // Get the last element of InVals. 8632 SDValue Src = CLI.InVals.back(); 8633 Register VReg = 8634 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8635 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8636 DAG.setRoot(CopyNode); 8637 } 8638 } 8639 8640 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8641 SelectionDAGBuilder &Builder) { 8642 // Check to see if this load can be trivially constant folded, e.g. if the 8643 // input is from a string literal. 8644 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8645 // Cast pointer to the type we really want to load. 8646 Type *LoadTy = 8647 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8648 if (LoadVT.isVector()) 8649 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8650 8651 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8652 PointerType::getUnqual(LoadTy)); 8653 8654 if (const Constant *LoadCst = 8655 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8656 LoadTy, Builder.DAG.getDataLayout())) 8657 return Builder.getValue(LoadCst); 8658 } 8659 8660 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8661 // still constant memory, the input chain can be the entry node. 8662 SDValue Root; 8663 bool ConstantMemory = false; 8664 8665 // Do not serialize (non-volatile) loads of constant memory with anything. 8666 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8667 Root = Builder.DAG.getEntryNode(); 8668 ConstantMemory = true; 8669 } else { 8670 // Do not serialize non-volatile loads against each other. 8671 Root = Builder.DAG.getRoot(); 8672 } 8673 8674 SDValue Ptr = Builder.getValue(PtrVal); 8675 SDValue LoadVal = 8676 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8677 MachinePointerInfo(PtrVal), Align(1)); 8678 8679 if (!ConstantMemory) 8680 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8681 return LoadVal; 8682 } 8683 8684 /// Record the value for an instruction that produces an integer result, 8685 /// converting the type where necessary. 8686 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8687 SDValue Value, 8688 bool IsSigned) { 8689 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8690 I.getType(), true); 8691 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8692 setValue(&I, Value); 8693 } 8694 8695 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8696 /// true and lower it. Otherwise return false, and it will be lowered like a 8697 /// normal call. 8698 /// The caller already checked that \p I calls the appropriate LibFunc with a 8699 /// correct prototype. 8700 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8701 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8702 const Value *Size = I.getArgOperand(2); 8703 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8704 if (CSize && CSize->getZExtValue() == 0) { 8705 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8706 I.getType(), true); 8707 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8708 return true; 8709 } 8710 8711 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8712 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8713 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8714 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8715 if (Res.first.getNode()) { 8716 processIntegerCallValue(I, Res.first, true); 8717 PendingLoads.push_back(Res.second); 8718 return true; 8719 } 8720 8721 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8722 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8723 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8724 return false; 8725 8726 // If the target has a fast compare for the given size, it will return a 8727 // preferred load type for that size. Require that the load VT is legal and 8728 // that the target supports unaligned loads of that type. Otherwise, return 8729 // INVALID. 8730 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8731 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8732 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8733 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8734 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8735 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8736 // TODO: Check alignment of src and dest ptrs. 8737 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8738 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8739 if (!TLI.isTypeLegal(LVT) || 8740 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8741 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8742 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8743 } 8744 8745 return LVT; 8746 }; 8747 8748 // This turns into unaligned loads. We only do this if the target natively 8749 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8750 // we'll only produce a small number of byte loads. 8751 MVT LoadVT; 8752 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8753 switch (NumBitsToCompare) { 8754 default: 8755 return false; 8756 case 16: 8757 LoadVT = MVT::i16; 8758 break; 8759 case 32: 8760 LoadVT = MVT::i32; 8761 break; 8762 case 64: 8763 case 128: 8764 case 256: 8765 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8766 break; 8767 } 8768 8769 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8770 return false; 8771 8772 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8773 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8774 8775 // Bitcast to a wide integer type if the loads are vectors. 8776 if (LoadVT.isVector()) { 8777 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8778 LoadL = DAG.getBitcast(CmpVT, LoadL); 8779 LoadR = DAG.getBitcast(CmpVT, LoadR); 8780 } 8781 8782 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8783 processIntegerCallValue(I, Cmp, false); 8784 return true; 8785 } 8786 8787 /// See if we can lower a memchr call into an optimized form. If so, return 8788 /// true and lower it. Otherwise return false, and it will be lowered like a 8789 /// normal call. 8790 /// The caller already checked that \p I calls the appropriate LibFunc with a 8791 /// correct prototype. 8792 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8793 const Value *Src = I.getArgOperand(0); 8794 const Value *Char = I.getArgOperand(1); 8795 const Value *Length = I.getArgOperand(2); 8796 8797 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8798 std::pair<SDValue, SDValue> Res = 8799 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8800 getValue(Src), getValue(Char), getValue(Length), 8801 MachinePointerInfo(Src)); 8802 if (Res.first.getNode()) { 8803 setValue(&I, Res.first); 8804 PendingLoads.push_back(Res.second); 8805 return true; 8806 } 8807 8808 return false; 8809 } 8810 8811 /// See if we can lower a mempcpy call into an optimized form. If so, return 8812 /// true and lower it. Otherwise return false, and it will be lowered like a 8813 /// normal call. 8814 /// The caller already checked that \p I calls the appropriate LibFunc with a 8815 /// correct prototype. 8816 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8817 SDValue Dst = getValue(I.getArgOperand(0)); 8818 SDValue Src = getValue(I.getArgOperand(1)); 8819 SDValue Size = getValue(I.getArgOperand(2)); 8820 8821 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8822 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8823 // DAG::getMemcpy needs Alignment to be defined. 8824 Align Alignment = std::min(DstAlign, SrcAlign); 8825 8826 SDLoc sdl = getCurSDLoc(); 8827 8828 // In the mempcpy context we need to pass in a false value for isTailCall 8829 // because the return pointer needs to be adjusted by the size of 8830 // the copied memory. 8831 SDValue Root = getMemoryRoot(); 8832 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8833 /*isTailCall=*/false, 8834 MachinePointerInfo(I.getArgOperand(0)), 8835 MachinePointerInfo(I.getArgOperand(1)), 8836 I.getAAMetadata()); 8837 assert(MC.getNode() != nullptr && 8838 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8839 DAG.setRoot(MC); 8840 8841 // Check if Size needs to be truncated or extended. 8842 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8843 8844 // Adjust return pointer to point just past the last dst byte. 8845 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8846 Dst, Size); 8847 setValue(&I, DstPlusSize); 8848 return true; 8849 } 8850 8851 /// See if we can lower a strcpy call into an optimized form. If so, return 8852 /// true and lower it, otherwise return false and it will be lowered like a 8853 /// normal call. 8854 /// The caller already checked that \p I calls the appropriate LibFunc with a 8855 /// correct prototype. 8856 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8857 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8858 8859 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8860 std::pair<SDValue, SDValue> Res = 8861 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8862 getValue(Arg0), getValue(Arg1), 8863 MachinePointerInfo(Arg0), 8864 MachinePointerInfo(Arg1), isStpcpy); 8865 if (Res.first.getNode()) { 8866 setValue(&I, Res.first); 8867 DAG.setRoot(Res.second); 8868 return true; 8869 } 8870 8871 return false; 8872 } 8873 8874 /// See if we can lower a strcmp call into an optimized form. If so, return 8875 /// true and lower it, otherwise return false and it will be lowered like a 8876 /// normal call. 8877 /// The caller already checked that \p I calls the appropriate LibFunc with a 8878 /// correct prototype. 8879 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8880 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8881 8882 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8883 std::pair<SDValue, SDValue> Res = 8884 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8885 getValue(Arg0), getValue(Arg1), 8886 MachinePointerInfo(Arg0), 8887 MachinePointerInfo(Arg1)); 8888 if (Res.first.getNode()) { 8889 processIntegerCallValue(I, Res.first, true); 8890 PendingLoads.push_back(Res.second); 8891 return true; 8892 } 8893 8894 return false; 8895 } 8896 8897 /// See if we can lower a strlen call into an optimized form. If so, return 8898 /// true and lower it, otherwise return false and it will be lowered like a 8899 /// normal call. 8900 /// The caller already checked that \p I calls the appropriate LibFunc with a 8901 /// correct prototype. 8902 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8903 const Value *Arg0 = I.getArgOperand(0); 8904 8905 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8906 std::pair<SDValue, SDValue> Res = 8907 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8908 getValue(Arg0), MachinePointerInfo(Arg0)); 8909 if (Res.first.getNode()) { 8910 processIntegerCallValue(I, Res.first, false); 8911 PendingLoads.push_back(Res.second); 8912 return true; 8913 } 8914 8915 return false; 8916 } 8917 8918 /// See if we can lower a strnlen call into an optimized form. If so, return 8919 /// true and lower it, otherwise return false and it will be lowered like a 8920 /// normal call. 8921 /// The caller already checked that \p I calls the appropriate LibFunc with a 8922 /// correct prototype. 8923 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8924 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8925 8926 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8927 std::pair<SDValue, SDValue> Res = 8928 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8929 getValue(Arg0), getValue(Arg1), 8930 MachinePointerInfo(Arg0)); 8931 if (Res.first.getNode()) { 8932 processIntegerCallValue(I, Res.first, false); 8933 PendingLoads.push_back(Res.second); 8934 return true; 8935 } 8936 8937 return false; 8938 } 8939 8940 /// See if we can lower a unary floating-point operation into an SDNode with 8941 /// the specified Opcode. If so, return true and lower it, otherwise return 8942 /// false and it will be lowered like a normal call. 8943 /// The caller already checked that \p I calls the appropriate LibFunc with a 8944 /// correct prototype. 8945 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8946 unsigned Opcode) { 8947 // We already checked this call's prototype; verify it doesn't modify errno. 8948 if (!I.onlyReadsMemory()) 8949 return false; 8950 8951 SDNodeFlags Flags; 8952 Flags.copyFMF(cast<FPMathOperator>(I)); 8953 8954 SDValue Tmp = getValue(I.getArgOperand(0)); 8955 setValue(&I, 8956 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8957 return true; 8958 } 8959 8960 /// See if we can lower a binary floating-point operation into an SDNode with 8961 /// the specified Opcode. If so, return true and lower it. Otherwise return 8962 /// false, and it will be lowered like a normal call. 8963 /// The caller already checked that \p I calls the appropriate LibFunc with a 8964 /// correct prototype. 8965 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8966 unsigned Opcode) { 8967 // We already checked this call's prototype; verify it doesn't modify errno. 8968 if (!I.onlyReadsMemory()) 8969 return false; 8970 8971 SDNodeFlags Flags; 8972 Flags.copyFMF(cast<FPMathOperator>(I)); 8973 8974 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8975 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8976 EVT VT = Tmp0.getValueType(); 8977 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8978 return true; 8979 } 8980 8981 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8982 // Handle inline assembly differently. 8983 if (I.isInlineAsm()) { 8984 visitInlineAsm(I); 8985 return; 8986 } 8987 8988 diagnoseDontCall(I); 8989 8990 if (Function *F = I.getCalledFunction()) { 8991 if (F->isDeclaration()) { 8992 // Is this an LLVM intrinsic or a target-specific intrinsic? 8993 unsigned IID = F->getIntrinsicID(); 8994 if (!IID) 8995 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8996 IID = II->getIntrinsicID(F); 8997 8998 if (IID) { 8999 visitIntrinsicCall(I, IID); 9000 return; 9001 } 9002 } 9003 9004 // Check for well-known libc/libm calls. If the function is internal, it 9005 // can't be a library call. Don't do the check if marked as nobuiltin for 9006 // some reason or the call site requires strict floating point semantics. 9007 LibFunc Func; 9008 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9009 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9010 LibInfo->hasOptimizedCodeGen(Func)) { 9011 switch (Func) { 9012 default: break; 9013 case LibFunc_bcmp: 9014 if (visitMemCmpBCmpCall(I)) 9015 return; 9016 break; 9017 case LibFunc_copysign: 9018 case LibFunc_copysignf: 9019 case LibFunc_copysignl: 9020 // We already checked this call's prototype; verify it doesn't modify 9021 // errno. 9022 if (I.onlyReadsMemory()) { 9023 SDValue LHS = getValue(I.getArgOperand(0)); 9024 SDValue RHS = getValue(I.getArgOperand(1)); 9025 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9026 LHS.getValueType(), LHS, RHS)); 9027 return; 9028 } 9029 break; 9030 case LibFunc_fabs: 9031 case LibFunc_fabsf: 9032 case LibFunc_fabsl: 9033 if (visitUnaryFloatCall(I, ISD::FABS)) 9034 return; 9035 break; 9036 case LibFunc_fmin: 9037 case LibFunc_fminf: 9038 case LibFunc_fminl: 9039 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9040 return; 9041 break; 9042 case LibFunc_fmax: 9043 case LibFunc_fmaxf: 9044 case LibFunc_fmaxl: 9045 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9046 return; 9047 break; 9048 case LibFunc_sin: 9049 case LibFunc_sinf: 9050 case LibFunc_sinl: 9051 if (visitUnaryFloatCall(I, ISD::FSIN)) 9052 return; 9053 break; 9054 case LibFunc_cos: 9055 case LibFunc_cosf: 9056 case LibFunc_cosl: 9057 if (visitUnaryFloatCall(I, ISD::FCOS)) 9058 return; 9059 break; 9060 case LibFunc_sqrt: 9061 case LibFunc_sqrtf: 9062 case LibFunc_sqrtl: 9063 case LibFunc_sqrt_finite: 9064 case LibFunc_sqrtf_finite: 9065 case LibFunc_sqrtl_finite: 9066 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9067 return; 9068 break; 9069 case LibFunc_floor: 9070 case LibFunc_floorf: 9071 case LibFunc_floorl: 9072 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9073 return; 9074 break; 9075 case LibFunc_nearbyint: 9076 case LibFunc_nearbyintf: 9077 case LibFunc_nearbyintl: 9078 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9079 return; 9080 break; 9081 case LibFunc_ceil: 9082 case LibFunc_ceilf: 9083 case LibFunc_ceill: 9084 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9085 return; 9086 break; 9087 case LibFunc_rint: 9088 case LibFunc_rintf: 9089 case LibFunc_rintl: 9090 if (visitUnaryFloatCall(I, ISD::FRINT)) 9091 return; 9092 break; 9093 case LibFunc_round: 9094 case LibFunc_roundf: 9095 case LibFunc_roundl: 9096 if (visitUnaryFloatCall(I, ISD::FROUND)) 9097 return; 9098 break; 9099 case LibFunc_trunc: 9100 case LibFunc_truncf: 9101 case LibFunc_truncl: 9102 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9103 return; 9104 break; 9105 case LibFunc_log2: 9106 case LibFunc_log2f: 9107 case LibFunc_log2l: 9108 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9109 return; 9110 break; 9111 case LibFunc_exp2: 9112 case LibFunc_exp2f: 9113 case LibFunc_exp2l: 9114 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9115 return; 9116 break; 9117 case LibFunc_exp10: 9118 case LibFunc_exp10f: 9119 case LibFunc_exp10l: 9120 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9121 return; 9122 break; 9123 case LibFunc_ldexp: 9124 case LibFunc_ldexpf: 9125 case LibFunc_ldexpl: 9126 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9127 return; 9128 break; 9129 case LibFunc_memcmp: 9130 if (visitMemCmpBCmpCall(I)) 9131 return; 9132 break; 9133 case LibFunc_mempcpy: 9134 if (visitMemPCpyCall(I)) 9135 return; 9136 break; 9137 case LibFunc_memchr: 9138 if (visitMemChrCall(I)) 9139 return; 9140 break; 9141 case LibFunc_strcpy: 9142 if (visitStrCpyCall(I, false)) 9143 return; 9144 break; 9145 case LibFunc_stpcpy: 9146 if (visitStrCpyCall(I, true)) 9147 return; 9148 break; 9149 case LibFunc_strcmp: 9150 if (visitStrCmpCall(I)) 9151 return; 9152 break; 9153 case LibFunc_strlen: 9154 if (visitStrLenCall(I)) 9155 return; 9156 break; 9157 case LibFunc_strnlen: 9158 if (visitStrNLenCall(I)) 9159 return; 9160 break; 9161 } 9162 } 9163 } 9164 9165 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9166 // have to do anything here to lower funclet bundles. 9167 // CFGuardTarget bundles are lowered in LowerCallTo. 9168 assert(!I.hasOperandBundlesOtherThan( 9169 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9170 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9171 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9172 LLVMContext::OB_convergencectrl}) && 9173 "Cannot lower calls with arbitrary operand bundles!"); 9174 9175 SDValue Callee = getValue(I.getCalledOperand()); 9176 9177 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 9178 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9179 else 9180 // Check if we can potentially perform a tail call. More detailed checking 9181 // is be done within LowerCallTo, after more information about the call is 9182 // known. 9183 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9184 } 9185 9186 namespace { 9187 9188 /// AsmOperandInfo - This contains information for each constraint that we are 9189 /// lowering. 9190 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9191 public: 9192 /// CallOperand - If this is the result output operand or a clobber 9193 /// this is null, otherwise it is the incoming operand to the CallInst. 9194 /// This gets modified as the asm is processed. 9195 SDValue CallOperand; 9196 9197 /// AssignedRegs - If this is a register or register class operand, this 9198 /// contains the set of register corresponding to the operand. 9199 RegsForValue AssignedRegs; 9200 9201 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9202 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9203 } 9204 9205 /// Whether or not this operand accesses memory 9206 bool hasMemory(const TargetLowering &TLI) const { 9207 // Indirect operand accesses access memory. 9208 if (isIndirect) 9209 return true; 9210 9211 for (const auto &Code : Codes) 9212 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9213 return true; 9214 9215 return false; 9216 } 9217 }; 9218 9219 9220 } // end anonymous namespace 9221 9222 /// Make sure that the output operand \p OpInfo and its corresponding input 9223 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9224 /// out). 9225 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9226 SDISelAsmOperandInfo &MatchingOpInfo, 9227 SelectionDAG &DAG) { 9228 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9229 return; 9230 9231 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9232 const auto &TLI = DAG.getTargetLoweringInfo(); 9233 9234 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9235 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9236 OpInfo.ConstraintVT); 9237 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9238 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9239 MatchingOpInfo.ConstraintVT); 9240 if ((OpInfo.ConstraintVT.isInteger() != 9241 MatchingOpInfo.ConstraintVT.isInteger()) || 9242 (MatchRC.second != InputRC.second)) { 9243 // FIXME: error out in a more elegant fashion 9244 report_fatal_error("Unsupported asm: input constraint" 9245 " with a matching output constraint of" 9246 " incompatible type!"); 9247 } 9248 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9249 } 9250 9251 /// Get a direct memory input to behave well as an indirect operand. 9252 /// This may introduce stores, hence the need for a \p Chain. 9253 /// \return The (possibly updated) chain. 9254 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9255 SDISelAsmOperandInfo &OpInfo, 9256 SelectionDAG &DAG) { 9257 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9258 9259 // If we don't have an indirect input, put it in the constpool if we can, 9260 // otherwise spill it to a stack slot. 9261 // TODO: This isn't quite right. We need to handle these according to 9262 // the addressing mode that the constraint wants. Also, this may take 9263 // an additional register for the computation and we don't want that 9264 // either. 9265 9266 // If the operand is a float, integer, or vector constant, spill to a 9267 // constant pool entry to get its address. 9268 const Value *OpVal = OpInfo.CallOperandVal; 9269 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9270 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9271 OpInfo.CallOperand = DAG.getConstantPool( 9272 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9273 return Chain; 9274 } 9275 9276 // Otherwise, create a stack slot and emit a store to it before the asm. 9277 Type *Ty = OpVal->getType(); 9278 auto &DL = DAG.getDataLayout(); 9279 uint64_t TySize = DL.getTypeAllocSize(Ty); 9280 MachineFunction &MF = DAG.getMachineFunction(); 9281 int SSFI = MF.getFrameInfo().CreateStackObject( 9282 TySize, DL.getPrefTypeAlign(Ty), false); 9283 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9284 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9285 MachinePointerInfo::getFixedStack(MF, SSFI), 9286 TLI.getMemValueType(DL, Ty)); 9287 OpInfo.CallOperand = StackSlot; 9288 9289 return Chain; 9290 } 9291 9292 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9293 /// specified operand. We prefer to assign virtual registers, to allow the 9294 /// register allocator to handle the assignment process. However, if the asm 9295 /// uses features that we can't model on machineinstrs, we have SDISel do the 9296 /// allocation. This produces generally horrible, but correct, code. 9297 /// 9298 /// OpInfo describes the operand 9299 /// RefOpInfo describes the matching operand if any, the operand otherwise 9300 static std::optional<unsigned> 9301 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9302 SDISelAsmOperandInfo &OpInfo, 9303 SDISelAsmOperandInfo &RefOpInfo) { 9304 LLVMContext &Context = *DAG.getContext(); 9305 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9306 9307 MachineFunction &MF = DAG.getMachineFunction(); 9308 SmallVector<unsigned, 4> Regs; 9309 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9310 9311 // No work to do for memory/address operands. 9312 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9313 OpInfo.ConstraintType == TargetLowering::C_Address) 9314 return std::nullopt; 9315 9316 // If this is a constraint for a single physreg, or a constraint for a 9317 // register class, find it. 9318 unsigned AssignedReg; 9319 const TargetRegisterClass *RC; 9320 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9321 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9322 // RC is unset only on failure. Return immediately. 9323 if (!RC) 9324 return std::nullopt; 9325 9326 // Get the actual register value type. This is important, because the user 9327 // may have asked for (e.g.) the AX register in i32 type. We need to 9328 // remember that AX is actually i16 to get the right extension. 9329 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9330 9331 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9332 // If this is an FP operand in an integer register (or visa versa), or more 9333 // generally if the operand value disagrees with the register class we plan 9334 // to stick it in, fix the operand type. 9335 // 9336 // If this is an input value, the bitcast to the new type is done now. 9337 // Bitcast for output value is done at the end of visitInlineAsm(). 9338 if ((OpInfo.Type == InlineAsm::isOutput || 9339 OpInfo.Type == InlineAsm::isInput) && 9340 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9341 // Try to convert to the first EVT that the reg class contains. If the 9342 // types are identical size, use a bitcast to convert (e.g. two differing 9343 // vector types). Note: output bitcast is done at the end of 9344 // visitInlineAsm(). 9345 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9346 // Exclude indirect inputs while they are unsupported because the code 9347 // to perform the load is missing and thus OpInfo.CallOperand still 9348 // refers to the input address rather than the pointed-to value. 9349 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9350 OpInfo.CallOperand = 9351 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9352 OpInfo.ConstraintVT = RegVT; 9353 // If the operand is an FP value and we want it in integer registers, 9354 // use the corresponding integer type. This turns an f64 value into 9355 // i64, which can be passed with two i32 values on a 32-bit machine. 9356 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9357 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9358 if (OpInfo.Type == InlineAsm::isInput) 9359 OpInfo.CallOperand = 9360 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9361 OpInfo.ConstraintVT = VT; 9362 } 9363 } 9364 } 9365 9366 // No need to allocate a matching input constraint since the constraint it's 9367 // matching to has already been allocated. 9368 if (OpInfo.isMatchingInputConstraint()) 9369 return std::nullopt; 9370 9371 EVT ValueVT = OpInfo.ConstraintVT; 9372 if (OpInfo.ConstraintVT == MVT::Other) 9373 ValueVT = RegVT; 9374 9375 // Initialize NumRegs. 9376 unsigned NumRegs = 1; 9377 if (OpInfo.ConstraintVT != MVT::Other) 9378 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9379 9380 // If this is a constraint for a specific physical register, like {r17}, 9381 // assign it now. 9382 9383 // If this associated to a specific register, initialize iterator to correct 9384 // place. If virtual, make sure we have enough registers 9385 9386 // Initialize iterator if necessary 9387 TargetRegisterClass::iterator I = RC->begin(); 9388 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9389 9390 // Do not check for single registers. 9391 if (AssignedReg) { 9392 I = std::find(I, RC->end(), AssignedReg); 9393 if (I == RC->end()) { 9394 // RC does not contain the selected register, which indicates a 9395 // mismatch between the register and the required type/bitwidth. 9396 return {AssignedReg}; 9397 } 9398 } 9399 9400 for (; NumRegs; --NumRegs, ++I) { 9401 assert(I != RC->end() && "Ran out of registers to allocate!"); 9402 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9403 Regs.push_back(R); 9404 } 9405 9406 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9407 return std::nullopt; 9408 } 9409 9410 static unsigned 9411 findMatchingInlineAsmOperand(unsigned OperandNo, 9412 const std::vector<SDValue> &AsmNodeOperands) { 9413 // Scan until we find the definition we already emitted of this operand. 9414 unsigned CurOp = InlineAsm::Op_FirstOperand; 9415 for (; OperandNo; --OperandNo) { 9416 // Advance to the next operand. 9417 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9418 const InlineAsm::Flag F(OpFlag); 9419 assert( 9420 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9421 "Skipped past definitions?"); 9422 CurOp += F.getNumOperandRegisters() + 1; 9423 } 9424 return CurOp; 9425 } 9426 9427 namespace { 9428 9429 class ExtraFlags { 9430 unsigned Flags = 0; 9431 9432 public: 9433 explicit ExtraFlags(const CallBase &Call) { 9434 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9435 if (IA->hasSideEffects()) 9436 Flags |= InlineAsm::Extra_HasSideEffects; 9437 if (IA->isAlignStack()) 9438 Flags |= InlineAsm::Extra_IsAlignStack; 9439 if (Call.isConvergent()) 9440 Flags |= InlineAsm::Extra_IsConvergent; 9441 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9442 } 9443 9444 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9445 // Ideally, we would only check against memory constraints. However, the 9446 // meaning of an Other constraint can be target-specific and we can't easily 9447 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9448 // for Other constraints as well. 9449 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9450 OpInfo.ConstraintType == TargetLowering::C_Other) { 9451 if (OpInfo.Type == InlineAsm::isInput) 9452 Flags |= InlineAsm::Extra_MayLoad; 9453 else if (OpInfo.Type == InlineAsm::isOutput) 9454 Flags |= InlineAsm::Extra_MayStore; 9455 else if (OpInfo.Type == InlineAsm::isClobber) 9456 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9457 } 9458 } 9459 9460 unsigned get() const { return Flags; } 9461 }; 9462 9463 } // end anonymous namespace 9464 9465 static bool isFunction(SDValue Op) { 9466 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9467 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9468 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9469 9470 // In normal "call dllimport func" instruction (non-inlineasm) it force 9471 // indirect access by specifing call opcode. And usually specially print 9472 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9473 // not do in this way now. (In fact, this is similar with "Data Access" 9474 // action). So here we ignore dllimport function. 9475 if (Fn && !Fn->hasDLLImportStorageClass()) 9476 return true; 9477 } 9478 } 9479 return false; 9480 } 9481 9482 /// visitInlineAsm - Handle a call to an InlineAsm object. 9483 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9484 const BasicBlock *EHPadBB) { 9485 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9486 9487 /// ConstraintOperands - Information about all of the constraints. 9488 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9489 9490 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9491 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9492 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9493 9494 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9495 // AsmDialect, MayLoad, MayStore). 9496 bool HasSideEffect = IA->hasSideEffects(); 9497 ExtraFlags ExtraInfo(Call); 9498 9499 for (auto &T : TargetConstraints) { 9500 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9501 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9502 9503 if (OpInfo.CallOperandVal) 9504 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9505 9506 if (!HasSideEffect) 9507 HasSideEffect = OpInfo.hasMemory(TLI); 9508 9509 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9510 // FIXME: Could we compute this on OpInfo rather than T? 9511 9512 // Compute the constraint code and ConstraintType to use. 9513 TLI.ComputeConstraintToUse(T, SDValue()); 9514 9515 if (T.ConstraintType == TargetLowering::C_Immediate && 9516 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9517 // We've delayed emitting a diagnostic like the "n" constraint because 9518 // inlining could cause an integer showing up. 9519 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9520 "' expects an integer constant " 9521 "expression"); 9522 9523 ExtraInfo.update(T); 9524 } 9525 9526 // We won't need to flush pending loads if this asm doesn't touch 9527 // memory and is nonvolatile. 9528 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9529 9530 bool EmitEHLabels = isa<InvokeInst>(Call); 9531 if (EmitEHLabels) { 9532 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9533 } 9534 bool IsCallBr = isa<CallBrInst>(Call); 9535 9536 if (IsCallBr || EmitEHLabels) { 9537 // If this is a callbr or invoke we need to flush pending exports since 9538 // inlineasm_br and invoke are terminators. 9539 // We need to do this before nodes are glued to the inlineasm_br node. 9540 Chain = getControlRoot(); 9541 } 9542 9543 MCSymbol *BeginLabel = nullptr; 9544 if (EmitEHLabels) { 9545 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9546 } 9547 9548 int OpNo = -1; 9549 SmallVector<StringRef> AsmStrs; 9550 IA->collectAsmStrs(AsmStrs); 9551 9552 // Second pass over the constraints: compute which constraint option to use. 9553 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9554 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9555 OpNo++; 9556 9557 // If this is an output operand with a matching input operand, look up the 9558 // matching input. If their types mismatch, e.g. one is an integer, the 9559 // other is floating point, or their sizes are different, flag it as an 9560 // error. 9561 if (OpInfo.hasMatchingInput()) { 9562 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9563 patchMatchingInput(OpInfo, Input, DAG); 9564 } 9565 9566 // Compute the constraint code and ConstraintType to use. 9567 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9568 9569 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9570 OpInfo.Type == InlineAsm::isClobber) || 9571 OpInfo.ConstraintType == TargetLowering::C_Address) 9572 continue; 9573 9574 // In Linux PIC model, there are 4 cases about value/label addressing: 9575 // 9576 // 1: Function call or Label jmp inside the module. 9577 // 2: Data access (such as global variable, static variable) inside module. 9578 // 3: Function call or Label jmp outside the module. 9579 // 4: Data access (such as global variable) outside the module. 9580 // 9581 // Due to current llvm inline asm architecture designed to not "recognize" 9582 // the asm code, there are quite troubles for us to treat mem addressing 9583 // differently for same value/adress used in different instuctions. 9584 // For example, in pic model, call a func may in plt way or direclty 9585 // pc-related, but lea/mov a function adress may use got. 9586 // 9587 // Here we try to "recognize" function call for the case 1 and case 3 in 9588 // inline asm. And try to adjust the constraint for them. 9589 // 9590 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9591 // label, so here we don't handle jmp function label now, but we need to 9592 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9593 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9594 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9595 TM.getCodeModel() != CodeModel::Large) { 9596 OpInfo.isIndirect = false; 9597 OpInfo.ConstraintType = TargetLowering::C_Address; 9598 } 9599 9600 // If this is a memory input, and if the operand is not indirect, do what we 9601 // need to provide an address for the memory input. 9602 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9603 !OpInfo.isIndirect) { 9604 assert((OpInfo.isMultipleAlternative || 9605 (OpInfo.Type == InlineAsm::isInput)) && 9606 "Can only indirectify direct input operands!"); 9607 9608 // Memory operands really want the address of the value. 9609 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9610 9611 // There is no longer a Value* corresponding to this operand. 9612 OpInfo.CallOperandVal = nullptr; 9613 9614 // It is now an indirect operand. 9615 OpInfo.isIndirect = true; 9616 } 9617 9618 } 9619 9620 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9621 std::vector<SDValue> AsmNodeOperands; 9622 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9623 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9624 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9625 9626 // If we have a !srcloc metadata node associated with it, we want to attach 9627 // this to the ultimately generated inline asm machineinstr. To do this, we 9628 // pass in the third operand as this (potentially null) inline asm MDNode. 9629 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9630 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9631 9632 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9633 // bits as operand 3. 9634 AsmNodeOperands.push_back(DAG.getTargetConstant( 9635 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9636 9637 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9638 // this, assign virtual and physical registers for inputs and otput. 9639 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9640 // Assign Registers. 9641 SDISelAsmOperandInfo &RefOpInfo = 9642 OpInfo.isMatchingInputConstraint() 9643 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9644 : OpInfo; 9645 const auto RegError = 9646 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9647 if (RegError) { 9648 const MachineFunction &MF = DAG.getMachineFunction(); 9649 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9650 const char *RegName = TRI.getName(*RegError); 9651 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9652 "' allocated for constraint '" + 9653 Twine(OpInfo.ConstraintCode) + 9654 "' does not match required type"); 9655 return; 9656 } 9657 9658 auto DetectWriteToReservedRegister = [&]() { 9659 const MachineFunction &MF = DAG.getMachineFunction(); 9660 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9661 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9662 if (Register::isPhysicalRegister(Reg) && 9663 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9664 const char *RegName = TRI.getName(Reg); 9665 emitInlineAsmError(Call, "write to reserved register '" + 9666 Twine(RegName) + "'"); 9667 return true; 9668 } 9669 } 9670 return false; 9671 }; 9672 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9673 (OpInfo.Type == InlineAsm::isInput && 9674 !OpInfo.isMatchingInputConstraint())) && 9675 "Only address as input operand is allowed."); 9676 9677 switch (OpInfo.Type) { 9678 case InlineAsm::isOutput: 9679 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9680 const InlineAsm::ConstraintCode ConstraintID = 9681 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9682 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9683 "Failed to convert memory constraint code to constraint id."); 9684 9685 // Add information to the INLINEASM node to know about this output. 9686 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9687 OpFlags.setMemConstraint(ConstraintID); 9688 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9689 MVT::i32)); 9690 AsmNodeOperands.push_back(OpInfo.CallOperand); 9691 } else { 9692 // Otherwise, this outputs to a register (directly for C_Register / 9693 // C_RegisterClass, and a target-defined fashion for 9694 // C_Immediate/C_Other). Find a register that we can use. 9695 if (OpInfo.AssignedRegs.Regs.empty()) { 9696 emitInlineAsmError( 9697 Call, "couldn't allocate output register for constraint '" + 9698 Twine(OpInfo.ConstraintCode) + "'"); 9699 return; 9700 } 9701 9702 if (DetectWriteToReservedRegister()) 9703 return; 9704 9705 // Add information to the INLINEASM node to know that this register is 9706 // set. 9707 OpInfo.AssignedRegs.AddInlineAsmOperands( 9708 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9709 : InlineAsm::Kind::RegDef, 9710 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9711 } 9712 break; 9713 9714 case InlineAsm::isInput: 9715 case InlineAsm::isLabel: { 9716 SDValue InOperandVal = OpInfo.CallOperand; 9717 9718 if (OpInfo.isMatchingInputConstraint()) { 9719 // If this is required to match an output register we have already set, 9720 // just use its register. 9721 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9722 AsmNodeOperands); 9723 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 9724 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9725 if (OpInfo.isIndirect) { 9726 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9727 emitInlineAsmError(Call, "inline asm not supported yet: " 9728 "don't know how to handle tied " 9729 "indirect register inputs"); 9730 return; 9731 } 9732 9733 SmallVector<unsigned, 4> Regs; 9734 MachineFunction &MF = DAG.getMachineFunction(); 9735 MachineRegisterInfo &MRI = MF.getRegInfo(); 9736 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9737 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9738 Register TiedReg = R->getReg(); 9739 MVT RegVT = R->getSimpleValueType(0); 9740 const TargetRegisterClass *RC = 9741 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9742 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9743 : TRI.getMinimalPhysRegClass(TiedReg); 9744 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9745 Regs.push_back(MRI.createVirtualRegister(RC)); 9746 9747 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9748 9749 SDLoc dl = getCurSDLoc(); 9750 // Use the produced MatchedRegs object to 9751 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9752 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9753 OpInfo.getMatchedOperand(), dl, DAG, 9754 AsmNodeOperands); 9755 break; 9756 } 9757 9758 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9759 assert(Flag.getNumOperandRegisters() == 1 && 9760 "Unexpected number of operands"); 9761 // Add information to the INLINEASM node to know about this input. 9762 // See InlineAsm.h isUseOperandTiedToDef. 9763 Flag.clearMemConstraint(); 9764 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9765 AsmNodeOperands.push_back(DAG.getTargetConstant( 9766 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9767 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9768 break; 9769 } 9770 9771 // Treat indirect 'X' constraint as memory. 9772 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9773 OpInfo.isIndirect) 9774 OpInfo.ConstraintType = TargetLowering::C_Memory; 9775 9776 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9777 OpInfo.ConstraintType == TargetLowering::C_Other) { 9778 std::vector<SDValue> Ops; 9779 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9780 Ops, DAG); 9781 if (Ops.empty()) { 9782 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9783 if (isa<ConstantSDNode>(InOperandVal)) { 9784 emitInlineAsmError(Call, "value out of range for constraint '" + 9785 Twine(OpInfo.ConstraintCode) + "'"); 9786 return; 9787 } 9788 9789 emitInlineAsmError(Call, 9790 "invalid operand for inline asm constraint '" + 9791 Twine(OpInfo.ConstraintCode) + "'"); 9792 return; 9793 } 9794 9795 // Add information to the INLINEASM node to know about this input. 9796 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9797 AsmNodeOperands.push_back(DAG.getTargetConstant( 9798 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9799 llvm::append_range(AsmNodeOperands, Ops); 9800 break; 9801 } 9802 9803 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9804 assert((OpInfo.isIndirect || 9805 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9806 "Operand must be indirect to be a mem!"); 9807 assert(InOperandVal.getValueType() == 9808 TLI.getPointerTy(DAG.getDataLayout()) && 9809 "Memory operands expect pointer values"); 9810 9811 const InlineAsm::ConstraintCode ConstraintID = 9812 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9813 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9814 "Failed to convert memory constraint code to constraint id."); 9815 9816 // Add information to the INLINEASM node to know about this input. 9817 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9818 ResOpType.setMemConstraint(ConstraintID); 9819 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9820 getCurSDLoc(), 9821 MVT::i32)); 9822 AsmNodeOperands.push_back(InOperandVal); 9823 break; 9824 } 9825 9826 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9827 const InlineAsm::ConstraintCode ConstraintID = 9828 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9829 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9830 "Failed to convert memory constraint code to constraint id."); 9831 9832 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9833 9834 SDValue AsmOp = InOperandVal; 9835 if (isFunction(InOperandVal)) { 9836 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9837 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9838 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9839 InOperandVal.getValueType(), 9840 GA->getOffset()); 9841 } 9842 9843 // Add information to the INLINEASM node to know about this input. 9844 ResOpType.setMemConstraint(ConstraintID); 9845 9846 AsmNodeOperands.push_back( 9847 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9848 9849 AsmNodeOperands.push_back(AsmOp); 9850 break; 9851 } 9852 9853 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9854 OpInfo.ConstraintType == TargetLowering::C_Register) && 9855 "Unknown constraint type!"); 9856 9857 // TODO: Support this. 9858 if (OpInfo.isIndirect) { 9859 emitInlineAsmError( 9860 Call, "Don't know how to handle indirect register inputs yet " 9861 "for constraint '" + 9862 Twine(OpInfo.ConstraintCode) + "'"); 9863 return; 9864 } 9865 9866 // Copy the input into the appropriate registers. 9867 if (OpInfo.AssignedRegs.Regs.empty()) { 9868 emitInlineAsmError(Call, 9869 "couldn't allocate input reg for constraint '" + 9870 Twine(OpInfo.ConstraintCode) + "'"); 9871 return; 9872 } 9873 9874 if (DetectWriteToReservedRegister()) 9875 return; 9876 9877 SDLoc dl = getCurSDLoc(); 9878 9879 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9880 &Call); 9881 9882 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 9883 0, dl, DAG, AsmNodeOperands); 9884 break; 9885 } 9886 case InlineAsm::isClobber: 9887 // Add the clobbered value to the operand list, so that the register 9888 // allocator is aware that the physreg got clobbered. 9889 if (!OpInfo.AssignedRegs.Regs.empty()) 9890 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 9891 false, 0, getCurSDLoc(), DAG, 9892 AsmNodeOperands); 9893 break; 9894 } 9895 } 9896 9897 // Finish up input operands. Set the input chain and add the flag last. 9898 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9899 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9900 9901 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9902 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9903 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9904 Glue = Chain.getValue(1); 9905 9906 // Do additional work to generate outputs. 9907 9908 SmallVector<EVT, 1> ResultVTs; 9909 SmallVector<SDValue, 1> ResultValues; 9910 SmallVector<SDValue, 8> OutChains; 9911 9912 llvm::Type *CallResultType = Call.getType(); 9913 ArrayRef<Type *> ResultTypes; 9914 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9915 ResultTypes = StructResult->elements(); 9916 else if (!CallResultType->isVoidTy()) 9917 ResultTypes = ArrayRef(CallResultType); 9918 9919 auto CurResultType = ResultTypes.begin(); 9920 auto handleRegAssign = [&](SDValue V) { 9921 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9922 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9923 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9924 ++CurResultType; 9925 // If the type of the inline asm call site return value is different but has 9926 // same size as the type of the asm output bitcast it. One example of this 9927 // is for vectors with different width / number of elements. This can 9928 // happen for register classes that can contain multiple different value 9929 // types. The preg or vreg allocated may not have the same VT as was 9930 // expected. 9931 // 9932 // This can also happen for a return value that disagrees with the register 9933 // class it is put in, eg. a double in a general-purpose register on a 9934 // 32-bit machine. 9935 if (ResultVT != V.getValueType() && 9936 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9937 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9938 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9939 V.getValueType().isInteger()) { 9940 // If a result value was tied to an input value, the computed result 9941 // may have a wider width than the expected result. Extract the 9942 // relevant portion. 9943 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9944 } 9945 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9946 ResultVTs.push_back(ResultVT); 9947 ResultValues.push_back(V); 9948 }; 9949 9950 // Deal with output operands. 9951 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9952 if (OpInfo.Type == InlineAsm::isOutput) { 9953 SDValue Val; 9954 // Skip trivial output operands. 9955 if (OpInfo.AssignedRegs.Regs.empty()) 9956 continue; 9957 9958 switch (OpInfo.ConstraintType) { 9959 case TargetLowering::C_Register: 9960 case TargetLowering::C_RegisterClass: 9961 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9962 Chain, &Glue, &Call); 9963 break; 9964 case TargetLowering::C_Immediate: 9965 case TargetLowering::C_Other: 9966 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9967 OpInfo, DAG); 9968 break; 9969 case TargetLowering::C_Memory: 9970 break; // Already handled. 9971 case TargetLowering::C_Address: 9972 break; // Silence warning. 9973 case TargetLowering::C_Unknown: 9974 assert(false && "Unexpected unknown constraint"); 9975 } 9976 9977 // Indirect output manifest as stores. Record output chains. 9978 if (OpInfo.isIndirect) { 9979 const Value *Ptr = OpInfo.CallOperandVal; 9980 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9981 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9982 MachinePointerInfo(Ptr)); 9983 OutChains.push_back(Store); 9984 } else { 9985 // generate CopyFromRegs to associated registers. 9986 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9987 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9988 for (const SDValue &V : Val->op_values()) 9989 handleRegAssign(V); 9990 } else 9991 handleRegAssign(Val); 9992 } 9993 } 9994 } 9995 9996 // Set results. 9997 if (!ResultValues.empty()) { 9998 assert(CurResultType == ResultTypes.end() && 9999 "Mismatch in number of ResultTypes"); 10000 assert(ResultValues.size() == ResultTypes.size() && 10001 "Mismatch in number of output operands in asm result"); 10002 10003 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10004 DAG.getVTList(ResultVTs), ResultValues); 10005 setValue(&Call, V); 10006 } 10007 10008 // Collect store chains. 10009 if (!OutChains.empty()) 10010 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10011 10012 if (EmitEHLabels) { 10013 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10014 } 10015 10016 // Only Update Root if inline assembly has a memory effect. 10017 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10018 EmitEHLabels) 10019 DAG.setRoot(Chain); 10020 } 10021 10022 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10023 const Twine &Message) { 10024 LLVMContext &Ctx = *DAG.getContext(); 10025 Ctx.emitError(&Call, Message); 10026 10027 // Make sure we leave the DAG in a valid state 10028 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10029 SmallVector<EVT, 1> ValueVTs; 10030 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10031 10032 if (ValueVTs.empty()) 10033 return; 10034 10035 SmallVector<SDValue, 1> Ops; 10036 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 10037 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 10038 10039 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10040 } 10041 10042 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10043 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10044 MVT::Other, getRoot(), 10045 getValue(I.getArgOperand(0)), 10046 DAG.getSrcValue(I.getArgOperand(0)))); 10047 } 10048 10049 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10050 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10051 const DataLayout &DL = DAG.getDataLayout(); 10052 SDValue V = DAG.getVAArg( 10053 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10054 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10055 DL.getABITypeAlign(I.getType()).value()); 10056 DAG.setRoot(V.getValue(1)); 10057 10058 if (I.getType()->isPointerTy()) 10059 V = DAG.getPtrExtOrTrunc( 10060 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10061 setValue(&I, V); 10062 } 10063 10064 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10065 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10066 MVT::Other, getRoot(), 10067 getValue(I.getArgOperand(0)), 10068 DAG.getSrcValue(I.getArgOperand(0)))); 10069 } 10070 10071 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10072 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10073 MVT::Other, getRoot(), 10074 getValue(I.getArgOperand(0)), 10075 getValue(I.getArgOperand(1)), 10076 DAG.getSrcValue(I.getArgOperand(0)), 10077 DAG.getSrcValue(I.getArgOperand(1)))); 10078 } 10079 10080 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10081 const Instruction &I, 10082 SDValue Op) { 10083 const MDNode *Range = getRangeMetadata(I); 10084 if (!Range) 10085 return Op; 10086 10087 ConstantRange CR = getConstantRangeFromMetadata(*Range); 10088 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 10089 return Op; 10090 10091 APInt Lo = CR.getUnsignedMin(); 10092 if (!Lo.isMinValue()) 10093 return Op; 10094 10095 APInt Hi = CR.getUnsignedMax(); 10096 unsigned Bits = std::max(Hi.getActiveBits(), 10097 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10098 10099 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10100 10101 SDLoc SL = getCurSDLoc(); 10102 10103 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10104 DAG.getValueType(SmallVT)); 10105 unsigned NumVals = Op.getNode()->getNumValues(); 10106 if (NumVals == 1) 10107 return ZExt; 10108 10109 SmallVector<SDValue, 4> Ops; 10110 10111 Ops.push_back(ZExt); 10112 for (unsigned I = 1; I != NumVals; ++I) 10113 Ops.push_back(Op.getValue(I)); 10114 10115 return DAG.getMergeValues(Ops, SL); 10116 } 10117 10118 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10119 /// the call being lowered. 10120 /// 10121 /// This is a helper for lowering intrinsics that follow a target calling 10122 /// convention or require stack pointer adjustment. Only a subset of the 10123 /// intrinsic's operands need to participate in the calling convention. 10124 void SelectionDAGBuilder::populateCallLoweringInfo( 10125 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10126 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10127 AttributeSet RetAttrs, bool IsPatchPoint) { 10128 TargetLowering::ArgListTy Args; 10129 Args.reserve(NumArgs); 10130 10131 // Populate the argument list. 10132 // Attributes for args start at offset 1, after the return attribute. 10133 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10134 ArgI != ArgE; ++ArgI) { 10135 const Value *V = Call->getOperand(ArgI); 10136 10137 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10138 10139 TargetLowering::ArgListEntry Entry; 10140 Entry.Node = getValue(V); 10141 Entry.Ty = V->getType(); 10142 Entry.setAttributes(Call, ArgI); 10143 Args.push_back(Entry); 10144 } 10145 10146 CLI.setDebugLoc(getCurSDLoc()) 10147 .setChain(getRoot()) 10148 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10149 RetAttrs) 10150 .setDiscardResult(Call->use_empty()) 10151 .setIsPatchPoint(IsPatchPoint) 10152 .setIsPreallocated( 10153 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10154 } 10155 10156 /// Add a stack map intrinsic call's live variable operands to a stackmap 10157 /// or patchpoint target node's operand list. 10158 /// 10159 /// Constants are converted to TargetConstants purely as an optimization to 10160 /// avoid constant materialization and register allocation. 10161 /// 10162 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10163 /// generate addess computation nodes, and so FinalizeISel can convert the 10164 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10165 /// address materialization and register allocation, but may also be required 10166 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10167 /// alloca in the entry block, then the runtime may assume that the alloca's 10168 /// StackMap location can be read immediately after compilation and that the 10169 /// location is valid at any point during execution (this is similar to the 10170 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10171 /// only available in a register, then the runtime would need to trap when 10172 /// execution reaches the StackMap in order to read the alloca's location. 10173 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10174 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10175 SelectionDAGBuilder &Builder) { 10176 SelectionDAG &DAG = Builder.DAG; 10177 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10178 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10179 10180 // Things on the stack are pointer-typed, meaning that they are already 10181 // legal and can be emitted directly to target nodes. 10182 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10183 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10184 } else { 10185 // Otherwise emit a target independent node to be legalised. 10186 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10187 } 10188 } 10189 } 10190 10191 /// Lower llvm.experimental.stackmap. 10192 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10193 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10194 // [live variables...]) 10195 10196 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10197 10198 SDValue Chain, InGlue, Callee; 10199 SmallVector<SDValue, 32> Ops; 10200 10201 SDLoc DL = getCurSDLoc(); 10202 Callee = getValue(CI.getCalledOperand()); 10203 10204 // The stackmap intrinsic only records the live variables (the arguments 10205 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10206 // intrinsic, this won't be lowered to a function call. This means we don't 10207 // have to worry about calling conventions and target specific lowering code. 10208 // Instead we perform the call lowering right here. 10209 // 10210 // chain, flag = CALLSEQ_START(chain, 0, 0) 10211 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10212 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10213 // 10214 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10215 InGlue = Chain.getValue(1); 10216 10217 // Add the STACKMAP operands, starting with DAG house-keeping. 10218 Ops.push_back(Chain); 10219 Ops.push_back(InGlue); 10220 10221 // Add the <id>, <numShadowBytes> operands. 10222 // 10223 // These do not require legalisation, and can be emitted directly to target 10224 // constant nodes. 10225 SDValue ID = getValue(CI.getArgOperand(0)); 10226 assert(ID.getValueType() == MVT::i64); 10227 SDValue IDConst = 10228 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10229 Ops.push_back(IDConst); 10230 10231 SDValue Shad = getValue(CI.getArgOperand(1)); 10232 assert(Shad.getValueType() == MVT::i32); 10233 SDValue ShadConst = 10234 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10235 Ops.push_back(ShadConst); 10236 10237 // Add the live variables. 10238 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10239 10240 // Create the STACKMAP node. 10241 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10242 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10243 InGlue = Chain.getValue(1); 10244 10245 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10246 10247 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10248 10249 // Set the root to the target-lowered call chain. 10250 DAG.setRoot(Chain); 10251 10252 // Inform the Frame Information that we have a stackmap in this function. 10253 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10254 } 10255 10256 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10257 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10258 const BasicBlock *EHPadBB) { 10259 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 10260 // i32 <numBytes>, 10261 // i8* <target>, 10262 // i32 <numArgs>, 10263 // [Args...], 10264 // [live variables...]) 10265 10266 CallingConv::ID CC = CB.getCallingConv(); 10267 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10268 bool HasDef = !CB.getType()->isVoidTy(); 10269 SDLoc dl = getCurSDLoc(); 10270 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10271 10272 // Handle immediate and symbolic callees. 10273 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10274 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10275 /*isTarget=*/true); 10276 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10277 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10278 SDLoc(SymbolicCallee), 10279 SymbolicCallee->getValueType(0)); 10280 10281 // Get the real number of arguments participating in the call <numArgs> 10282 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10283 unsigned NumArgs = NArgVal->getAsZExtVal(); 10284 10285 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10286 // Intrinsics include all meta-operands up to but not including CC. 10287 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10288 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10289 "Not enough arguments provided to the patchpoint intrinsic"); 10290 10291 // For AnyRegCC the arguments are lowered later on manually. 10292 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10293 Type *ReturnTy = 10294 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10295 10296 TargetLowering::CallLoweringInfo CLI(DAG); 10297 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10298 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10299 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10300 10301 SDNode *CallEnd = Result.second.getNode(); 10302 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10303 CallEnd = CallEnd->getOperand(0).getNode(); 10304 10305 /// Get a call instruction from the call sequence chain. 10306 /// Tail calls are not allowed. 10307 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10308 "Expected a callseq node."); 10309 SDNode *Call = CallEnd->getOperand(0).getNode(); 10310 bool HasGlue = Call->getGluedNode(); 10311 10312 // Replace the target specific call node with the patchable intrinsic. 10313 SmallVector<SDValue, 8> Ops; 10314 10315 // Push the chain. 10316 Ops.push_back(*(Call->op_begin())); 10317 10318 // Optionally, push the glue (if any). 10319 if (HasGlue) 10320 Ops.push_back(*(Call->op_end() - 1)); 10321 10322 // Push the register mask info. 10323 if (HasGlue) 10324 Ops.push_back(*(Call->op_end() - 2)); 10325 else 10326 Ops.push_back(*(Call->op_end() - 1)); 10327 10328 // Add the <id> and <numBytes> constants. 10329 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10330 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10331 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10332 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10333 10334 // Add the callee. 10335 Ops.push_back(Callee); 10336 10337 // Adjust <numArgs> to account for any arguments that have been passed on the 10338 // stack instead. 10339 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10340 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10341 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10342 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10343 10344 // Add the calling convention 10345 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10346 10347 // Add the arguments we omitted previously. The register allocator should 10348 // place these in any free register. 10349 if (IsAnyRegCC) 10350 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10351 Ops.push_back(getValue(CB.getArgOperand(i))); 10352 10353 // Push the arguments from the call instruction. 10354 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10355 Ops.append(Call->op_begin() + 2, e); 10356 10357 // Push live variables for the stack map. 10358 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10359 10360 SDVTList NodeTys; 10361 if (IsAnyRegCC && HasDef) { 10362 // Create the return types based on the intrinsic definition 10363 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10364 SmallVector<EVT, 3> ValueVTs; 10365 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10366 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10367 10368 // There is always a chain and a glue type at the end 10369 ValueVTs.push_back(MVT::Other); 10370 ValueVTs.push_back(MVT::Glue); 10371 NodeTys = DAG.getVTList(ValueVTs); 10372 } else 10373 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10374 10375 // Replace the target specific call node with a PATCHPOINT node. 10376 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10377 10378 // Update the NodeMap. 10379 if (HasDef) { 10380 if (IsAnyRegCC) 10381 setValue(&CB, SDValue(PPV.getNode(), 0)); 10382 else 10383 setValue(&CB, Result.first); 10384 } 10385 10386 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10387 // call sequence. Furthermore the location of the chain and glue can change 10388 // when the AnyReg calling convention is used and the intrinsic returns a 10389 // value. 10390 if (IsAnyRegCC && HasDef) { 10391 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10392 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10393 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10394 } else 10395 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10396 DAG.DeleteNode(Call); 10397 10398 // Inform the Frame Information that we have a patchpoint in this function. 10399 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10400 } 10401 10402 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10403 unsigned Intrinsic) { 10404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10405 SDValue Op1 = getValue(I.getArgOperand(0)); 10406 SDValue Op2; 10407 if (I.arg_size() > 1) 10408 Op2 = getValue(I.getArgOperand(1)); 10409 SDLoc dl = getCurSDLoc(); 10410 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10411 SDValue Res; 10412 SDNodeFlags SDFlags; 10413 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10414 SDFlags.copyFMF(*FPMO); 10415 10416 switch (Intrinsic) { 10417 case Intrinsic::vector_reduce_fadd: 10418 if (SDFlags.hasAllowReassociation()) 10419 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10420 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10421 SDFlags); 10422 else 10423 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10424 break; 10425 case Intrinsic::vector_reduce_fmul: 10426 if (SDFlags.hasAllowReassociation()) 10427 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10428 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10429 SDFlags); 10430 else 10431 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10432 break; 10433 case Intrinsic::vector_reduce_add: 10434 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10435 break; 10436 case Intrinsic::vector_reduce_mul: 10437 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10438 break; 10439 case Intrinsic::vector_reduce_and: 10440 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10441 break; 10442 case Intrinsic::vector_reduce_or: 10443 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10444 break; 10445 case Intrinsic::vector_reduce_xor: 10446 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10447 break; 10448 case Intrinsic::vector_reduce_smax: 10449 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10450 break; 10451 case Intrinsic::vector_reduce_smin: 10452 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10453 break; 10454 case Intrinsic::vector_reduce_umax: 10455 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10456 break; 10457 case Intrinsic::vector_reduce_umin: 10458 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10459 break; 10460 case Intrinsic::vector_reduce_fmax: 10461 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10462 break; 10463 case Intrinsic::vector_reduce_fmin: 10464 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10465 break; 10466 case Intrinsic::vector_reduce_fmaximum: 10467 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10468 break; 10469 case Intrinsic::vector_reduce_fminimum: 10470 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10471 break; 10472 default: 10473 llvm_unreachable("Unhandled vector reduce intrinsic"); 10474 } 10475 setValue(&I, Res); 10476 } 10477 10478 /// Returns an AttributeList representing the attributes applied to the return 10479 /// value of the given call. 10480 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10481 SmallVector<Attribute::AttrKind, 2> Attrs; 10482 if (CLI.RetSExt) 10483 Attrs.push_back(Attribute::SExt); 10484 if (CLI.RetZExt) 10485 Attrs.push_back(Attribute::ZExt); 10486 if (CLI.IsInReg) 10487 Attrs.push_back(Attribute::InReg); 10488 10489 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10490 Attrs); 10491 } 10492 10493 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10494 /// implementation, which just calls LowerCall. 10495 /// FIXME: When all targets are 10496 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10497 std::pair<SDValue, SDValue> 10498 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10499 // Handle the incoming return values from the call. 10500 CLI.Ins.clear(); 10501 Type *OrigRetTy = CLI.RetTy; 10502 SmallVector<EVT, 4> RetTys; 10503 SmallVector<uint64_t, 4> Offsets; 10504 auto &DL = CLI.DAG.getDataLayout(); 10505 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10506 10507 if (CLI.IsPostTypeLegalization) { 10508 // If we are lowering a libcall after legalization, split the return type. 10509 SmallVector<EVT, 4> OldRetTys; 10510 SmallVector<uint64_t, 4> OldOffsets; 10511 RetTys.swap(OldRetTys); 10512 Offsets.swap(OldOffsets); 10513 10514 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10515 EVT RetVT = OldRetTys[i]; 10516 uint64_t Offset = OldOffsets[i]; 10517 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10518 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10519 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10520 RetTys.append(NumRegs, RegisterVT); 10521 for (unsigned j = 0; j != NumRegs; ++j) 10522 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10523 } 10524 } 10525 10526 SmallVector<ISD::OutputArg, 4> Outs; 10527 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10528 10529 bool CanLowerReturn = 10530 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10531 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10532 10533 SDValue DemoteStackSlot; 10534 int DemoteStackIdx = -100; 10535 if (!CanLowerReturn) { 10536 // FIXME: equivalent assert? 10537 // assert(!CS.hasInAllocaArgument() && 10538 // "sret demotion is incompatible with inalloca"); 10539 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10540 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10541 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10542 DemoteStackIdx = 10543 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10544 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10545 DL.getAllocaAddrSpace()); 10546 10547 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10548 ArgListEntry Entry; 10549 Entry.Node = DemoteStackSlot; 10550 Entry.Ty = StackSlotPtrType; 10551 Entry.IsSExt = false; 10552 Entry.IsZExt = false; 10553 Entry.IsInReg = false; 10554 Entry.IsSRet = true; 10555 Entry.IsNest = false; 10556 Entry.IsByVal = false; 10557 Entry.IsByRef = false; 10558 Entry.IsReturned = false; 10559 Entry.IsSwiftSelf = false; 10560 Entry.IsSwiftAsync = false; 10561 Entry.IsSwiftError = false; 10562 Entry.IsCFGuardTarget = false; 10563 Entry.Alignment = Alignment; 10564 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10565 CLI.NumFixedArgs += 1; 10566 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10567 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10568 10569 // sret demotion isn't compatible with tail-calls, since the sret argument 10570 // points into the callers stack frame. 10571 CLI.IsTailCall = false; 10572 } else { 10573 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10574 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10575 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10576 ISD::ArgFlagsTy Flags; 10577 if (NeedsRegBlock) { 10578 Flags.setInConsecutiveRegs(); 10579 if (I == RetTys.size() - 1) 10580 Flags.setInConsecutiveRegsLast(); 10581 } 10582 EVT VT = RetTys[I]; 10583 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10584 CLI.CallConv, VT); 10585 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10586 CLI.CallConv, VT); 10587 for (unsigned i = 0; i != NumRegs; ++i) { 10588 ISD::InputArg MyFlags; 10589 MyFlags.Flags = Flags; 10590 MyFlags.VT = RegisterVT; 10591 MyFlags.ArgVT = VT; 10592 MyFlags.Used = CLI.IsReturnValueUsed; 10593 if (CLI.RetTy->isPointerTy()) { 10594 MyFlags.Flags.setPointer(); 10595 MyFlags.Flags.setPointerAddrSpace( 10596 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10597 } 10598 if (CLI.RetSExt) 10599 MyFlags.Flags.setSExt(); 10600 if (CLI.RetZExt) 10601 MyFlags.Flags.setZExt(); 10602 if (CLI.IsInReg) 10603 MyFlags.Flags.setInReg(); 10604 CLI.Ins.push_back(MyFlags); 10605 } 10606 } 10607 } 10608 10609 // We push in swifterror return as the last element of CLI.Ins. 10610 ArgListTy &Args = CLI.getArgs(); 10611 if (supportSwiftError()) { 10612 for (const ArgListEntry &Arg : Args) { 10613 if (Arg.IsSwiftError) { 10614 ISD::InputArg MyFlags; 10615 MyFlags.VT = getPointerTy(DL); 10616 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10617 MyFlags.Flags.setSwiftError(); 10618 CLI.Ins.push_back(MyFlags); 10619 } 10620 } 10621 } 10622 10623 // Handle all of the outgoing arguments. 10624 CLI.Outs.clear(); 10625 CLI.OutVals.clear(); 10626 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10627 SmallVector<EVT, 4> ValueVTs; 10628 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10629 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10630 Type *FinalType = Args[i].Ty; 10631 if (Args[i].IsByVal) 10632 FinalType = Args[i].IndirectType; 10633 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10634 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10635 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10636 ++Value) { 10637 EVT VT = ValueVTs[Value]; 10638 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10639 SDValue Op = SDValue(Args[i].Node.getNode(), 10640 Args[i].Node.getResNo() + Value); 10641 ISD::ArgFlagsTy Flags; 10642 10643 // Certain targets (such as MIPS), may have a different ABI alignment 10644 // for a type depending on the context. Give the target a chance to 10645 // specify the alignment it wants. 10646 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10647 Flags.setOrigAlign(OriginalAlignment); 10648 10649 if (Args[i].Ty->isPointerTy()) { 10650 Flags.setPointer(); 10651 Flags.setPointerAddrSpace( 10652 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10653 } 10654 if (Args[i].IsZExt) 10655 Flags.setZExt(); 10656 if (Args[i].IsSExt) 10657 Flags.setSExt(); 10658 if (Args[i].IsInReg) { 10659 // If we are using vectorcall calling convention, a structure that is 10660 // passed InReg - is surely an HVA 10661 if (CLI.CallConv == CallingConv::X86_VectorCall && 10662 isa<StructType>(FinalType)) { 10663 // The first value of a structure is marked 10664 if (0 == Value) 10665 Flags.setHvaStart(); 10666 Flags.setHva(); 10667 } 10668 // Set InReg Flag 10669 Flags.setInReg(); 10670 } 10671 if (Args[i].IsSRet) 10672 Flags.setSRet(); 10673 if (Args[i].IsSwiftSelf) 10674 Flags.setSwiftSelf(); 10675 if (Args[i].IsSwiftAsync) 10676 Flags.setSwiftAsync(); 10677 if (Args[i].IsSwiftError) 10678 Flags.setSwiftError(); 10679 if (Args[i].IsCFGuardTarget) 10680 Flags.setCFGuardTarget(); 10681 if (Args[i].IsByVal) 10682 Flags.setByVal(); 10683 if (Args[i].IsByRef) 10684 Flags.setByRef(); 10685 if (Args[i].IsPreallocated) { 10686 Flags.setPreallocated(); 10687 // Set the byval flag for CCAssignFn callbacks that don't know about 10688 // preallocated. This way we can know how many bytes we should've 10689 // allocated and how many bytes a callee cleanup function will pop. If 10690 // we port preallocated to more targets, we'll have to add custom 10691 // preallocated handling in the various CC lowering callbacks. 10692 Flags.setByVal(); 10693 } 10694 if (Args[i].IsInAlloca) { 10695 Flags.setInAlloca(); 10696 // Set the byval flag for CCAssignFn callbacks that don't know about 10697 // inalloca. This way we can know how many bytes we should've allocated 10698 // and how many bytes a callee cleanup function will pop. If we port 10699 // inalloca to more targets, we'll have to add custom inalloca handling 10700 // in the various CC lowering callbacks. 10701 Flags.setByVal(); 10702 } 10703 Align MemAlign; 10704 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10705 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10706 Flags.setByValSize(FrameSize); 10707 10708 // info is not there but there are cases it cannot get right. 10709 if (auto MA = Args[i].Alignment) 10710 MemAlign = *MA; 10711 else 10712 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10713 } else if (auto MA = Args[i].Alignment) { 10714 MemAlign = *MA; 10715 } else { 10716 MemAlign = OriginalAlignment; 10717 } 10718 Flags.setMemAlign(MemAlign); 10719 if (Args[i].IsNest) 10720 Flags.setNest(); 10721 if (NeedsRegBlock) 10722 Flags.setInConsecutiveRegs(); 10723 10724 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10725 CLI.CallConv, VT); 10726 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10727 CLI.CallConv, VT); 10728 SmallVector<SDValue, 4> Parts(NumParts); 10729 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10730 10731 if (Args[i].IsSExt) 10732 ExtendKind = ISD::SIGN_EXTEND; 10733 else if (Args[i].IsZExt) 10734 ExtendKind = ISD::ZERO_EXTEND; 10735 10736 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10737 // for now. 10738 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10739 CanLowerReturn) { 10740 assert((CLI.RetTy == Args[i].Ty || 10741 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10742 CLI.RetTy->getPointerAddressSpace() == 10743 Args[i].Ty->getPointerAddressSpace())) && 10744 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10745 // Before passing 'returned' to the target lowering code, ensure that 10746 // either the register MVT and the actual EVT are the same size or that 10747 // the return value and argument are extended in the same way; in these 10748 // cases it's safe to pass the argument register value unchanged as the 10749 // return register value (although it's at the target's option whether 10750 // to do so) 10751 // TODO: allow code generation to take advantage of partially preserved 10752 // registers rather than clobbering the entire register when the 10753 // parameter extension method is not compatible with the return 10754 // extension method 10755 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10756 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10757 CLI.RetZExt == Args[i].IsZExt)) 10758 Flags.setReturned(); 10759 } 10760 10761 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10762 CLI.CallConv, ExtendKind); 10763 10764 for (unsigned j = 0; j != NumParts; ++j) { 10765 // if it isn't first piece, alignment must be 1 10766 // For scalable vectors the scalable part is currently handled 10767 // by individual targets, so we just use the known minimum size here. 10768 ISD::OutputArg MyFlags( 10769 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10770 i < CLI.NumFixedArgs, i, 10771 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10772 if (NumParts > 1 && j == 0) 10773 MyFlags.Flags.setSplit(); 10774 else if (j != 0) { 10775 MyFlags.Flags.setOrigAlign(Align(1)); 10776 if (j == NumParts - 1) 10777 MyFlags.Flags.setSplitEnd(); 10778 } 10779 10780 CLI.Outs.push_back(MyFlags); 10781 CLI.OutVals.push_back(Parts[j]); 10782 } 10783 10784 if (NeedsRegBlock && Value == NumValues - 1) 10785 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10786 } 10787 } 10788 10789 SmallVector<SDValue, 4> InVals; 10790 CLI.Chain = LowerCall(CLI, InVals); 10791 10792 // Update CLI.InVals to use outside of this function. 10793 CLI.InVals = InVals; 10794 10795 // Verify that the target's LowerCall behaved as expected. 10796 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10797 "LowerCall didn't return a valid chain!"); 10798 assert((!CLI.IsTailCall || InVals.empty()) && 10799 "LowerCall emitted a return value for a tail call!"); 10800 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10801 "LowerCall didn't emit the correct number of values!"); 10802 10803 // For a tail call, the return value is merely live-out and there aren't 10804 // any nodes in the DAG representing it. Return a special value to 10805 // indicate that a tail call has been emitted and no more Instructions 10806 // should be processed in the current block. 10807 if (CLI.IsTailCall) { 10808 CLI.DAG.setRoot(CLI.Chain); 10809 return std::make_pair(SDValue(), SDValue()); 10810 } 10811 10812 #ifndef NDEBUG 10813 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10814 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10815 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10816 "LowerCall emitted a value with the wrong type!"); 10817 } 10818 #endif 10819 10820 SmallVector<SDValue, 4> ReturnValues; 10821 if (!CanLowerReturn) { 10822 // The instruction result is the result of loading from the 10823 // hidden sret parameter. 10824 SmallVector<EVT, 1> PVTs; 10825 Type *PtrRetTy = 10826 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10827 10828 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10829 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10830 EVT PtrVT = PVTs[0]; 10831 10832 unsigned NumValues = RetTys.size(); 10833 ReturnValues.resize(NumValues); 10834 SmallVector<SDValue, 4> Chains(NumValues); 10835 10836 // An aggregate return value cannot wrap around the address space, so 10837 // offsets to its parts don't wrap either. 10838 SDNodeFlags Flags; 10839 Flags.setNoUnsignedWrap(true); 10840 10841 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10842 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10843 for (unsigned i = 0; i < NumValues; ++i) { 10844 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10845 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10846 PtrVT), Flags); 10847 SDValue L = CLI.DAG.getLoad( 10848 RetTys[i], CLI.DL, CLI.Chain, Add, 10849 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10850 DemoteStackIdx, Offsets[i]), 10851 HiddenSRetAlign); 10852 ReturnValues[i] = L; 10853 Chains[i] = L.getValue(1); 10854 } 10855 10856 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10857 } else { 10858 // Collect the legal value parts into potentially illegal values 10859 // that correspond to the original function's return values. 10860 std::optional<ISD::NodeType> AssertOp; 10861 if (CLI.RetSExt) 10862 AssertOp = ISD::AssertSext; 10863 else if (CLI.RetZExt) 10864 AssertOp = ISD::AssertZext; 10865 unsigned CurReg = 0; 10866 for (EVT VT : RetTys) { 10867 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10868 CLI.CallConv, VT); 10869 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10870 CLI.CallConv, VT); 10871 10872 ReturnValues.push_back(getCopyFromParts( 10873 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 10874 CLI.Chain, CLI.CallConv, AssertOp)); 10875 CurReg += NumRegs; 10876 } 10877 10878 // For a function returning void, there is no return value. We can't create 10879 // such a node, so we just return a null return value in that case. In 10880 // that case, nothing will actually look at the value. 10881 if (ReturnValues.empty()) 10882 return std::make_pair(SDValue(), CLI.Chain); 10883 } 10884 10885 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10886 CLI.DAG.getVTList(RetTys), ReturnValues); 10887 return std::make_pair(Res, CLI.Chain); 10888 } 10889 10890 /// Places new result values for the node in Results (their number 10891 /// and types must exactly match those of the original return values of 10892 /// the node), or leaves Results empty, which indicates that the node is not 10893 /// to be custom lowered after all. 10894 void TargetLowering::LowerOperationWrapper(SDNode *N, 10895 SmallVectorImpl<SDValue> &Results, 10896 SelectionDAG &DAG) const { 10897 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10898 10899 if (!Res.getNode()) 10900 return; 10901 10902 // If the original node has one result, take the return value from 10903 // LowerOperation as is. It might not be result number 0. 10904 if (N->getNumValues() == 1) { 10905 Results.push_back(Res); 10906 return; 10907 } 10908 10909 // If the original node has multiple results, then the return node should 10910 // have the same number of results. 10911 assert((N->getNumValues() == Res->getNumValues()) && 10912 "Lowering returned the wrong number of results!"); 10913 10914 // Places new result values base on N result number. 10915 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10916 Results.push_back(Res.getValue(I)); 10917 } 10918 10919 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10920 llvm_unreachable("LowerOperation not implemented for this target!"); 10921 } 10922 10923 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10924 unsigned Reg, 10925 ISD::NodeType ExtendType) { 10926 SDValue Op = getNonRegisterValue(V); 10927 assert((Op.getOpcode() != ISD::CopyFromReg || 10928 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10929 "Copy from a reg to the same reg!"); 10930 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10931 10932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10933 // If this is an InlineAsm we have to match the registers required, not the 10934 // notional registers required by the type. 10935 10936 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10937 std::nullopt); // This is not an ABI copy. 10938 SDValue Chain = DAG.getEntryNode(); 10939 10940 if (ExtendType == ISD::ANY_EXTEND) { 10941 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10942 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10943 ExtendType = PreferredExtendIt->second; 10944 } 10945 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10946 PendingExports.push_back(Chain); 10947 } 10948 10949 #include "llvm/CodeGen/SelectionDAGISel.h" 10950 10951 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10952 /// entry block, return true. This includes arguments used by switches, since 10953 /// the switch may expand into multiple basic blocks. 10954 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10955 // With FastISel active, we may be splitting blocks, so force creation 10956 // of virtual registers for all non-dead arguments. 10957 if (FastISel) 10958 return A->use_empty(); 10959 10960 const BasicBlock &Entry = A->getParent()->front(); 10961 for (const User *U : A->users()) 10962 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10963 return false; // Use not in entry block. 10964 10965 return true; 10966 } 10967 10968 using ArgCopyElisionMapTy = 10969 DenseMap<const Argument *, 10970 std::pair<const AllocaInst *, const StoreInst *>>; 10971 10972 /// Scan the entry block of the function in FuncInfo for arguments that look 10973 /// like copies into a local alloca. Record any copied arguments in 10974 /// ArgCopyElisionCandidates. 10975 static void 10976 findArgumentCopyElisionCandidates(const DataLayout &DL, 10977 FunctionLoweringInfo *FuncInfo, 10978 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10979 // Record the state of every static alloca used in the entry block. Argument 10980 // allocas are all used in the entry block, so we need approximately as many 10981 // entries as we have arguments. 10982 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10983 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10984 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10985 StaticAllocas.reserve(NumArgs * 2); 10986 10987 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10988 if (!V) 10989 return nullptr; 10990 V = V->stripPointerCasts(); 10991 const auto *AI = dyn_cast<AllocaInst>(V); 10992 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10993 return nullptr; 10994 auto Iter = StaticAllocas.insert({AI, Unknown}); 10995 return &Iter.first->second; 10996 }; 10997 10998 // Look for stores of arguments to static allocas. Look through bitcasts and 10999 // GEPs to handle type coercions, as long as the alloca is fully initialized 11000 // by the store. Any non-store use of an alloca escapes it and any subsequent 11001 // unanalyzed store might write it. 11002 // FIXME: Handle structs initialized with multiple stores. 11003 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11004 // Look for stores, and handle non-store uses conservatively. 11005 const auto *SI = dyn_cast<StoreInst>(&I); 11006 if (!SI) { 11007 // We will look through cast uses, so ignore them completely. 11008 if (I.isCast()) 11009 continue; 11010 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11011 // to allocas. 11012 if (I.isDebugOrPseudoInst()) 11013 continue; 11014 // This is an unknown instruction. Assume it escapes or writes to all 11015 // static alloca operands. 11016 for (const Use &U : I.operands()) { 11017 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11018 *Info = StaticAllocaInfo::Clobbered; 11019 } 11020 continue; 11021 } 11022 11023 // If the stored value is a static alloca, mark it as escaped. 11024 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11025 *Info = StaticAllocaInfo::Clobbered; 11026 11027 // Check if the destination is a static alloca. 11028 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11029 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11030 if (!Info) 11031 continue; 11032 const AllocaInst *AI = cast<AllocaInst>(Dst); 11033 11034 // Skip allocas that have been initialized or clobbered. 11035 if (*Info != StaticAllocaInfo::Unknown) 11036 continue; 11037 11038 // Check if the stored value is an argument, and that this store fully 11039 // initializes the alloca. 11040 // If the argument type has padding bits we can't directly forward a pointer 11041 // as the upper bits may contain garbage. 11042 // Don't elide copies from the same argument twice. 11043 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11044 const auto *Arg = dyn_cast<Argument>(Val); 11045 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11046 Arg->getType()->isEmptyTy() || 11047 DL.getTypeStoreSize(Arg->getType()) != 11048 DL.getTypeAllocSize(AI->getAllocatedType()) || 11049 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11050 ArgCopyElisionCandidates.count(Arg)) { 11051 *Info = StaticAllocaInfo::Clobbered; 11052 continue; 11053 } 11054 11055 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11056 << '\n'); 11057 11058 // Mark this alloca and store for argument copy elision. 11059 *Info = StaticAllocaInfo::Elidable; 11060 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11061 11062 // Stop scanning if we've seen all arguments. This will happen early in -O0 11063 // builds, which is useful, because -O0 builds have large entry blocks and 11064 // many allocas. 11065 if (ArgCopyElisionCandidates.size() == NumArgs) 11066 break; 11067 } 11068 } 11069 11070 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11071 /// ArgVal is a load from a suitable fixed stack object. 11072 static void tryToElideArgumentCopy( 11073 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11074 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11075 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11076 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11077 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11078 // Check if this is a load from a fixed stack object. 11079 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11080 if (!LNode) 11081 return; 11082 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11083 if (!FINode) 11084 return; 11085 11086 // Check that the fixed stack object is the right size and alignment. 11087 // Look at the alignment that the user wrote on the alloca instead of looking 11088 // at the stack object. 11089 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11090 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11091 const AllocaInst *AI = ArgCopyIter->second.first; 11092 int FixedIndex = FINode->getIndex(); 11093 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11094 int OldIndex = AllocaIndex; 11095 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11096 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11097 LLVM_DEBUG( 11098 dbgs() << " argument copy elision failed due to bad fixed stack " 11099 "object size\n"); 11100 return; 11101 } 11102 Align RequiredAlignment = AI->getAlign(); 11103 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11104 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11105 "greater than stack argument alignment (" 11106 << DebugStr(RequiredAlignment) << " vs " 11107 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11108 return; 11109 } 11110 11111 // Perform the elision. Delete the old stack object and replace its only use 11112 // in the variable info map. Mark the stack object as mutable. 11113 LLVM_DEBUG({ 11114 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11115 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11116 << '\n'; 11117 }); 11118 MFI.RemoveStackObject(OldIndex); 11119 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11120 AllocaIndex = FixedIndex; 11121 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11122 for (SDValue ArgVal : ArgVals) 11123 Chains.push_back(ArgVal.getValue(1)); 11124 11125 // Avoid emitting code for the store implementing the copy. 11126 const StoreInst *SI = ArgCopyIter->second.second; 11127 ElidedArgCopyInstrs.insert(SI); 11128 11129 // Check for uses of the argument again so that we can avoid exporting ArgVal 11130 // if it is't used by anything other than the store. 11131 for (const Value *U : Arg.users()) { 11132 if (U != SI) { 11133 ArgHasUses = true; 11134 break; 11135 } 11136 } 11137 } 11138 11139 void SelectionDAGISel::LowerArguments(const Function &F) { 11140 SelectionDAG &DAG = SDB->DAG; 11141 SDLoc dl = SDB->getCurSDLoc(); 11142 const DataLayout &DL = DAG.getDataLayout(); 11143 SmallVector<ISD::InputArg, 16> Ins; 11144 11145 // In Naked functions we aren't going to save any registers. 11146 if (F.hasFnAttribute(Attribute::Naked)) 11147 return; 11148 11149 if (!FuncInfo->CanLowerReturn) { 11150 // Put in an sret pointer parameter before all the other parameters. 11151 SmallVector<EVT, 1> ValueVTs; 11152 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11153 PointerType::get(F.getContext(), 11154 DAG.getDataLayout().getAllocaAddrSpace()), 11155 ValueVTs); 11156 11157 // NOTE: Assuming that a pointer will never break down to more than one VT 11158 // or one register. 11159 ISD::ArgFlagsTy Flags; 11160 Flags.setSRet(); 11161 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11162 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11163 ISD::InputArg::NoArgIndex, 0); 11164 Ins.push_back(RetArg); 11165 } 11166 11167 // Look for stores of arguments to static allocas. Mark such arguments with a 11168 // flag to ask the target to give us the memory location of that argument if 11169 // available. 11170 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11171 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11172 ArgCopyElisionCandidates); 11173 11174 // Set up the incoming argument description vector. 11175 for (const Argument &Arg : F.args()) { 11176 unsigned ArgNo = Arg.getArgNo(); 11177 SmallVector<EVT, 4> ValueVTs; 11178 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11179 bool isArgValueUsed = !Arg.use_empty(); 11180 unsigned PartBase = 0; 11181 Type *FinalType = Arg.getType(); 11182 if (Arg.hasAttribute(Attribute::ByVal)) 11183 FinalType = Arg.getParamByValType(); 11184 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11185 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11186 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11187 Value != NumValues; ++Value) { 11188 EVT VT = ValueVTs[Value]; 11189 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11190 ISD::ArgFlagsTy Flags; 11191 11192 11193 if (Arg.getType()->isPointerTy()) { 11194 Flags.setPointer(); 11195 Flags.setPointerAddrSpace( 11196 cast<PointerType>(Arg.getType())->getAddressSpace()); 11197 } 11198 if (Arg.hasAttribute(Attribute::ZExt)) 11199 Flags.setZExt(); 11200 if (Arg.hasAttribute(Attribute::SExt)) 11201 Flags.setSExt(); 11202 if (Arg.hasAttribute(Attribute::InReg)) { 11203 // If we are using vectorcall calling convention, a structure that is 11204 // passed InReg - is surely an HVA 11205 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11206 isa<StructType>(Arg.getType())) { 11207 // The first value of a structure is marked 11208 if (0 == Value) 11209 Flags.setHvaStart(); 11210 Flags.setHva(); 11211 } 11212 // Set InReg Flag 11213 Flags.setInReg(); 11214 } 11215 if (Arg.hasAttribute(Attribute::StructRet)) 11216 Flags.setSRet(); 11217 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11218 Flags.setSwiftSelf(); 11219 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11220 Flags.setSwiftAsync(); 11221 if (Arg.hasAttribute(Attribute::SwiftError)) 11222 Flags.setSwiftError(); 11223 if (Arg.hasAttribute(Attribute::ByVal)) 11224 Flags.setByVal(); 11225 if (Arg.hasAttribute(Attribute::ByRef)) 11226 Flags.setByRef(); 11227 if (Arg.hasAttribute(Attribute::InAlloca)) { 11228 Flags.setInAlloca(); 11229 // Set the byval flag for CCAssignFn callbacks that don't know about 11230 // inalloca. This way we can know how many bytes we should've allocated 11231 // and how many bytes a callee cleanup function will pop. If we port 11232 // inalloca to more targets, we'll have to add custom inalloca handling 11233 // in the various CC lowering callbacks. 11234 Flags.setByVal(); 11235 } 11236 if (Arg.hasAttribute(Attribute::Preallocated)) { 11237 Flags.setPreallocated(); 11238 // Set the byval flag for CCAssignFn callbacks that don't know about 11239 // preallocated. This way we can know how many bytes we should've 11240 // allocated and how many bytes a callee cleanup function will pop. If 11241 // we port preallocated to more targets, we'll have to add custom 11242 // preallocated handling in the various CC lowering callbacks. 11243 Flags.setByVal(); 11244 } 11245 11246 // Certain targets (such as MIPS), may have a different ABI alignment 11247 // for a type depending on the context. Give the target a chance to 11248 // specify the alignment it wants. 11249 const Align OriginalAlignment( 11250 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11251 Flags.setOrigAlign(OriginalAlignment); 11252 11253 Align MemAlign; 11254 Type *ArgMemTy = nullptr; 11255 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11256 Flags.isByRef()) { 11257 if (!ArgMemTy) 11258 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11259 11260 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11261 11262 // For in-memory arguments, size and alignment should be passed from FE. 11263 // BE will guess if this info is not there but there are cases it cannot 11264 // get right. 11265 if (auto ParamAlign = Arg.getParamStackAlign()) 11266 MemAlign = *ParamAlign; 11267 else if ((ParamAlign = Arg.getParamAlign())) 11268 MemAlign = *ParamAlign; 11269 else 11270 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11271 if (Flags.isByRef()) 11272 Flags.setByRefSize(MemSize); 11273 else 11274 Flags.setByValSize(MemSize); 11275 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11276 MemAlign = *ParamAlign; 11277 } else { 11278 MemAlign = OriginalAlignment; 11279 } 11280 Flags.setMemAlign(MemAlign); 11281 11282 if (Arg.hasAttribute(Attribute::Nest)) 11283 Flags.setNest(); 11284 if (NeedsRegBlock) 11285 Flags.setInConsecutiveRegs(); 11286 if (ArgCopyElisionCandidates.count(&Arg)) 11287 Flags.setCopyElisionCandidate(); 11288 if (Arg.hasAttribute(Attribute::Returned)) 11289 Flags.setReturned(); 11290 11291 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11292 *CurDAG->getContext(), F.getCallingConv(), VT); 11293 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11294 *CurDAG->getContext(), F.getCallingConv(), VT); 11295 for (unsigned i = 0; i != NumRegs; ++i) { 11296 // For scalable vectors, use the minimum size; individual targets 11297 // are responsible for handling scalable vector arguments and 11298 // return values. 11299 ISD::InputArg MyFlags( 11300 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11301 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11302 if (NumRegs > 1 && i == 0) 11303 MyFlags.Flags.setSplit(); 11304 // if it isn't first piece, alignment must be 1 11305 else if (i > 0) { 11306 MyFlags.Flags.setOrigAlign(Align(1)); 11307 if (i == NumRegs - 1) 11308 MyFlags.Flags.setSplitEnd(); 11309 } 11310 Ins.push_back(MyFlags); 11311 } 11312 if (NeedsRegBlock && Value == NumValues - 1) 11313 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11314 PartBase += VT.getStoreSize().getKnownMinValue(); 11315 } 11316 } 11317 11318 // Call the target to set up the argument values. 11319 SmallVector<SDValue, 8> InVals; 11320 SDValue NewRoot = TLI->LowerFormalArguments( 11321 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11322 11323 // Verify that the target's LowerFormalArguments behaved as expected. 11324 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11325 "LowerFormalArguments didn't return a valid chain!"); 11326 assert(InVals.size() == Ins.size() && 11327 "LowerFormalArguments didn't emit the correct number of values!"); 11328 LLVM_DEBUG({ 11329 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11330 assert(InVals[i].getNode() && 11331 "LowerFormalArguments emitted a null value!"); 11332 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11333 "LowerFormalArguments emitted a value with the wrong type!"); 11334 } 11335 }); 11336 11337 // Update the DAG with the new chain value resulting from argument lowering. 11338 DAG.setRoot(NewRoot); 11339 11340 // Set up the argument values. 11341 unsigned i = 0; 11342 if (!FuncInfo->CanLowerReturn) { 11343 // Create a virtual register for the sret pointer, and put in a copy 11344 // from the sret argument into it. 11345 SmallVector<EVT, 1> ValueVTs; 11346 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11347 PointerType::get(F.getContext(), 11348 DAG.getDataLayout().getAllocaAddrSpace()), 11349 ValueVTs); 11350 MVT VT = ValueVTs[0].getSimpleVT(); 11351 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11352 std::optional<ISD::NodeType> AssertOp; 11353 SDValue ArgValue = 11354 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11355 F.getCallingConv(), AssertOp); 11356 11357 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11358 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11359 Register SRetReg = 11360 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11361 FuncInfo->DemoteRegister = SRetReg; 11362 NewRoot = 11363 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11364 DAG.setRoot(NewRoot); 11365 11366 // i indexes lowered arguments. Bump it past the hidden sret argument. 11367 ++i; 11368 } 11369 11370 SmallVector<SDValue, 4> Chains; 11371 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11372 for (const Argument &Arg : F.args()) { 11373 SmallVector<SDValue, 4> ArgValues; 11374 SmallVector<EVT, 4> ValueVTs; 11375 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11376 unsigned NumValues = ValueVTs.size(); 11377 if (NumValues == 0) 11378 continue; 11379 11380 bool ArgHasUses = !Arg.use_empty(); 11381 11382 // Elide the copying store if the target loaded this argument from a 11383 // suitable fixed stack object. 11384 if (Ins[i].Flags.isCopyElisionCandidate()) { 11385 unsigned NumParts = 0; 11386 for (EVT VT : ValueVTs) 11387 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11388 F.getCallingConv(), VT); 11389 11390 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11391 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11392 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11393 } 11394 11395 // If this argument is unused then remember its value. It is used to generate 11396 // debugging information. 11397 bool isSwiftErrorArg = 11398 TLI->supportSwiftError() && 11399 Arg.hasAttribute(Attribute::SwiftError); 11400 if (!ArgHasUses && !isSwiftErrorArg) { 11401 SDB->setUnusedArgValue(&Arg, InVals[i]); 11402 11403 // Also remember any frame index for use in FastISel. 11404 if (FrameIndexSDNode *FI = 11405 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11406 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11407 } 11408 11409 for (unsigned Val = 0; Val != NumValues; ++Val) { 11410 EVT VT = ValueVTs[Val]; 11411 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11412 F.getCallingConv(), VT); 11413 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11414 *CurDAG->getContext(), F.getCallingConv(), VT); 11415 11416 // Even an apparent 'unused' swifterror argument needs to be returned. So 11417 // we do generate a copy for it that can be used on return from the 11418 // function. 11419 if (ArgHasUses || isSwiftErrorArg) { 11420 std::optional<ISD::NodeType> AssertOp; 11421 if (Arg.hasAttribute(Attribute::SExt)) 11422 AssertOp = ISD::AssertSext; 11423 else if (Arg.hasAttribute(Attribute::ZExt)) 11424 AssertOp = ISD::AssertZext; 11425 11426 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11427 PartVT, VT, nullptr, NewRoot, 11428 F.getCallingConv(), AssertOp)); 11429 } 11430 11431 i += NumParts; 11432 } 11433 11434 // We don't need to do anything else for unused arguments. 11435 if (ArgValues.empty()) 11436 continue; 11437 11438 // Note down frame index. 11439 if (FrameIndexSDNode *FI = 11440 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11441 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11442 11443 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11444 SDB->getCurSDLoc()); 11445 11446 SDB->setValue(&Arg, Res); 11447 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11448 // We want to associate the argument with the frame index, among 11449 // involved operands, that correspond to the lowest address. The 11450 // getCopyFromParts function, called earlier, is swapping the order of 11451 // the operands to BUILD_PAIR depending on endianness. The result of 11452 // that swapping is that the least significant bits of the argument will 11453 // be in the first operand of the BUILD_PAIR node, and the most 11454 // significant bits will be in the second operand. 11455 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11456 if (LoadSDNode *LNode = 11457 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11458 if (FrameIndexSDNode *FI = 11459 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11460 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11461 } 11462 11463 // Analyses past this point are naive and don't expect an assertion. 11464 if (Res.getOpcode() == ISD::AssertZext) 11465 Res = Res.getOperand(0); 11466 11467 // Update the SwiftErrorVRegDefMap. 11468 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11469 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11470 if (Register::isVirtualRegister(Reg)) 11471 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11472 Reg); 11473 } 11474 11475 // If this argument is live outside of the entry block, insert a copy from 11476 // wherever we got it to the vreg that other BB's will reference it as. 11477 if (Res.getOpcode() == ISD::CopyFromReg) { 11478 // If we can, though, try to skip creating an unnecessary vreg. 11479 // FIXME: This isn't very clean... it would be nice to make this more 11480 // general. 11481 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11482 if (Register::isVirtualRegister(Reg)) { 11483 FuncInfo->ValueMap[&Arg] = Reg; 11484 continue; 11485 } 11486 } 11487 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11488 FuncInfo->InitializeRegForValue(&Arg); 11489 SDB->CopyToExportRegsIfNeeded(&Arg); 11490 } 11491 } 11492 11493 if (!Chains.empty()) { 11494 Chains.push_back(NewRoot); 11495 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11496 } 11497 11498 DAG.setRoot(NewRoot); 11499 11500 assert(i == InVals.size() && "Argument register count mismatch!"); 11501 11502 // If any argument copy elisions occurred and we have debug info, update the 11503 // stale frame indices used in the dbg.declare variable info table. 11504 if (!ArgCopyElisionFrameIndexMap.empty()) { 11505 for (MachineFunction::VariableDbgInfo &VI : 11506 MF->getInStackSlotVariableDbgInfo()) { 11507 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11508 if (I != ArgCopyElisionFrameIndexMap.end()) 11509 VI.updateStackSlot(I->second); 11510 } 11511 } 11512 11513 // Finally, if the target has anything special to do, allow it to do so. 11514 emitFunctionEntryCode(); 11515 } 11516 11517 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11518 /// ensure constants are generated when needed. Remember the virtual registers 11519 /// that need to be added to the Machine PHI nodes as input. We cannot just 11520 /// directly add them, because expansion might result in multiple MBB's for one 11521 /// BB. As such, the start of the BB might correspond to a different MBB than 11522 /// the end. 11523 void 11524 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11525 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11526 11527 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11528 11529 // Check PHI nodes in successors that expect a value to be available from this 11530 // block. 11531 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11532 if (!isa<PHINode>(SuccBB->begin())) continue; 11533 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11534 11535 // If this terminator has multiple identical successors (common for 11536 // switches), only handle each succ once. 11537 if (!SuccsHandled.insert(SuccMBB).second) 11538 continue; 11539 11540 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11541 11542 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11543 // nodes and Machine PHI nodes, but the incoming operands have not been 11544 // emitted yet. 11545 for (const PHINode &PN : SuccBB->phis()) { 11546 // Ignore dead phi's. 11547 if (PN.use_empty()) 11548 continue; 11549 11550 // Skip empty types 11551 if (PN.getType()->isEmptyTy()) 11552 continue; 11553 11554 unsigned Reg; 11555 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11556 11557 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11558 unsigned &RegOut = ConstantsOut[C]; 11559 if (RegOut == 0) { 11560 RegOut = FuncInfo.CreateRegs(C); 11561 // We need to zero/sign extend ConstantInt phi operands to match 11562 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11563 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11564 if (auto *CI = dyn_cast<ConstantInt>(C)) 11565 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11566 : ISD::ZERO_EXTEND; 11567 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11568 } 11569 Reg = RegOut; 11570 } else { 11571 DenseMap<const Value *, Register>::iterator I = 11572 FuncInfo.ValueMap.find(PHIOp); 11573 if (I != FuncInfo.ValueMap.end()) 11574 Reg = I->second; 11575 else { 11576 assert(isa<AllocaInst>(PHIOp) && 11577 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11578 "Didn't codegen value into a register!??"); 11579 Reg = FuncInfo.CreateRegs(PHIOp); 11580 CopyValueToVirtualRegister(PHIOp, Reg); 11581 } 11582 } 11583 11584 // Remember that this register needs to added to the machine PHI node as 11585 // the input for this MBB. 11586 SmallVector<EVT, 4> ValueVTs; 11587 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11588 for (EVT VT : ValueVTs) { 11589 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11590 for (unsigned i = 0; i != NumRegisters; ++i) 11591 FuncInfo.PHINodesToUpdate.push_back( 11592 std::make_pair(&*MBBI++, Reg + i)); 11593 Reg += NumRegisters; 11594 } 11595 } 11596 } 11597 11598 ConstantsOut.clear(); 11599 } 11600 11601 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11602 MachineFunction::iterator I(MBB); 11603 if (++I == FuncInfo.MF->end()) 11604 return nullptr; 11605 return &*I; 11606 } 11607 11608 /// During lowering new call nodes can be created (such as memset, etc.). 11609 /// Those will become new roots of the current DAG, but complications arise 11610 /// when they are tail calls. In such cases, the call lowering will update 11611 /// the root, but the builder still needs to know that a tail call has been 11612 /// lowered in order to avoid generating an additional return. 11613 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11614 // If the node is null, we do have a tail call. 11615 if (MaybeTC.getNode() != nullptr) 11616 DAG.setRoot(MaybeTC); 11617 else 11618 HasTailCall = true; 11619 } 11620 11621 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11622 MachineBasicBlock *SwitchMBB, 11623 MachineBasicBlock *DefaultMBB) { 11624 MachineFunction *CurMF = FuncInfo.MF; 11625 MachineBasicBlock *NextMBB = nullptr; 11626 MachineFunction::iterator BBI(W.MBB); 11627 if (++BBI != FuncInfo.MF->end()) 11628 NextMBB = &*BBI; 11629 11630 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11631 11632 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11633 11634 if (Size == 2 && W.MBB == SwitchMBB) { 11635 // If any two of the cases has the same destination, and if one value 11636 // is the same as the other, but has one bit unset that the other has set, 11637 // use bit manipulation to do two compares at once. For example: 11638 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11639 // TODO: This could be extended to merge any 2 cases in switches with 3 11640 // cases. 11641 // TODO: Handle cases where W.CaseBB != SwitchBB. 11642 CaseCluster &Small = *W.FirstCluster; 11643 CaseCluster &Big = *W.LastCluster; 11644 11645 if (Small.Low == Small.High && Big.Low == Big.High && 11646 Small.MBB == Big.MBB) { 11647 const APInt &SmallValue = Small.Low->getValue(); 11648 const APInt &BigValue = Big.Low->getValue(); 11649 11650 // Check that there is only one bit different. 11651 APInt CommonBit = BigValue ^ SmallValue; 11652 if (CommonBit.isPowerOf2()) { 11653 SDValue CondLHS = getValue(Cond); 11654 EVT VT = CondLHS.getValueType(); 11655 SDLoc DL = getCurSDLoc(); 11656 11657 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11658 DAG.getConstant(CommonBit, DL, VT)); 11659 SDValue Cond = DAG.getSetCC( 11660 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11661 ISD::SETEQ); 11662 11663 // Update successor info. 11664 // Both Small and Big will jump to Small.BB, so we sum up the 11665 // probabilities. 11666 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11667 if (BPI) 11668 addSuccessorWithProb( 11669 SwitchMBB, DefaultMBB, 11670 // The default destination is the first successor in IR. 11671 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11672 else 11673 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11674 11675 // Insert the true branch. 11676 SDValue BrCond = 11677 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11678 DAG.getBasicBlock(Small.MBB)); 11679 // Insert the false branch. 11680 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11681 DAG.getBasicBlock(DefaultMBB)); 11682 11683 DAG.setRoot(BrCond); 11684 return; 11685 } 11686 } 11687 } 11688 11689 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11690 // Here, we order cases by probability so the most likely case will be 11691 // checked first. However, two clusters can have the same probability in 11692 // which case their relative ordering is non-deterministic. So we use Low 11693 // as a tie-breaker as clusters are guaranteed to never overlap. 11694 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11695 [](const CaseCluster &a, const CaseCluster &b) { 11696 return a.Prob != b.Prob ? 11697 a.Prob > b.Prob : 11698 a.Low->getValue().slt(b.Low->getValue()); 11699 }); 11700 11701 // Rearrange the case blocks so that the last one falls through if possible 11702 // without changing the order of probabilities. 11703 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11704 --I; 11705 if (I->Prob > W.LastCluster->Prob) 11706 break; 11707 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11708 std::swap(*I, *W.LastCluster); 11709 break; 11710 } 11711 } 11712 } 11713 11714 // Compute total probability. 11715 BranchProbability DefaultProb = W.DefaultProb; 11716 BranchProbability UnhandledProbs = DefaultProb; 11717 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11718 UnhandledProbs += I->Prob; 11719 11720 MachineBasicBlock *CurMBB = W.MBB; 11721 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11722 bool FallthroughUnreachable = false; 11723 MachineBasicBlock *Fallthrough; 11724 if (I == W.LastCluster) { 11725 // For the last cluster, fall through to the default destination. 11726 Fallthrough = DefaultMBB; 11727 FallthroughUnreachable = isa<UnreachableInst>( 11728 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11729 } else { 11730 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11731 CurMF->insert(BBI, Fallthrough); 11732 // Put Cond in a virtual register to make it available from the new blocks. 11733 ExportFromCurrentBlock(Cond); 11734 } 11735 UnhandledProbs -= I->Prob; 11736 11737 switch (I->Kind) { 11738 case CC_JumpTable: { 11739 // FIXME: Optimize away range check based on pivot comparisons. 11740 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11741 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11742 11743 // The jump block hasn't been inserted yet; insert it here. 11744 MachineBasicBlock *JumpMBB = JT->MBB; 11745 CurMF->insert(BBI, JumpMBB); 11746 11747 auto JumpProb = I->Prob; 11748 auto FallthroughProb = UnhandledProbs; 11749 11750 // If the default statement is a target of the jump table, we evenly 11751 // distribute the default probability to successors of CurMBB. Also 11752 // update the probability on the edge from JumpMBB to Fallthrough. 11753 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11754 SE = JumpMBB->succ_end(); 11755 SI != SE; ++SI) { 11756 if (*SI == DefaultMBB) { 11757 JumpProb += DefaultProb / 2; 11758 FallthroughProb -= DefaultProb / 2; 11759 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11760 JumpMBB->normalizeSuccProbs(); 11761 break; 11762 } 11763 } 11764 11765 // If the default clause is unreachable, propagate that knowledge into 11766 // JTH->FallthroughUnreachable which will use it to suppress the range 11767 // check. 11768 // 11769 // However, don't do this if we're doing branch target enforcement, 11770 // because a table branch _without_ a range check can be a tempting JOP 11771 // gadget - out-of-bounds inputs that are impossible in correct 11772 // execution become possible again if an attacker can influence the 11773 // control flow. So if an attacker doesn't already have a BTI bypass 11774 // available, we don't want them to be able to get one out of this 11775 // table branch. 11776 if (FallthroughUnreachable) { 11777 Function &CurFunc = CurMF->getFunction(); 11778 bool HasBranchTargetEnforcement = false; 11779 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11780 HasBranchTargetEnforcement = 11781 CurFunc.getFnAttribute("branch-target-enforcement") 11782 .getValueAsBool(); 11783 } else { 11784 HasBranchTargetEnforcement = 11785 CurMF->getMMI().getModule()->getModuleFlag( 11786 "branch-target-enforcement"); 11787 } 11788 if (!HasBranchTargetEnforcement) 11789 JTH->FallthroughUnreachable = true; 11790 } 11791 11792 if (!JTH->FallthroughUnreachable) 11793 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11794 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11795 CurMBB->normalizeSuccProbs(); 11796 11797 // The jump table header will be inserted in our current block, do the 11798 // range check, and fall through to our fallthrough block. 11799 JTH->HeaderBB = CurMBB; 11800 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11801 11802 // If we're in the right place, emit the jump table header right now. 11803 if (CurMBB == SwitchMBB) { 11804 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11805 JTH->Emitted = true; 11806 } 11807 break; 11808 } 11809 case CC_BitTests: { 11810 // FIXME: Optimize away range check based on pivot comparisons. 11811 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11812 11813 // The bit test blocks haven't been inserted yet; insert them here. 11814 for (BitTestCase &BTC : BTB->Cases) 11815 CurMF->insert(BBI, BTC.ThisBB); 11816 11817 // Fill in fields of the BitTestBlock. 11818 BTB->Parent = CurMBB; 11819 BTB->Default = Fallthrough; 11820 11821 BTB->DefaultProb = UnhandledProbs; 11822 // If the cases in bit test don't form a contiguous range, we evenly 11823 // distribute the probability on the edge to Fallthrough to two 11824 // successors of CurMBB. 11825 if (!BTB->ContiguousRange) { 11826 BTB->Prob += DefaultProb / 2; 11827 BTB->DefaultProb -= DefaultProb / 2; 11828 } 11829 11830 if (FallthroughUnreachable) 11831 BTB->FallthroughUnreachable = true; 11832 11833 // If we're in the right place, emit the bit test header right now. 11834 if (CurMBB == SwitchMBB) { 11835 visitBitTestHeader(*BTB, SwitchMBB); 11836 BTB->Emitted = true; 11837 } 11838 break; 11839 } 11840 case CC_Range: { 11841 const Value *RHS, *LHS, *MHS; 11842 ISD::CondCode CC; 11843 if (I->Low == I->High) { 11844 // Check Cond == I->Low. 11845 CC = ISD::SETEQ; 11846 LHS = Cond; 11847 RHS=I->Low; 11848 MHS = nullptr; 11849 } else { 11850 // Check I->Low <= Cond <= I->High. 11851 CC = ISD::SETLE; 11852 LHS = I->Low; 11853 MHS = Cond; 11854 RHS = I->High; 11855 } 11856 11857 // If Fallthrough is unreachable, fold away the comparison. 11858 if (FallthroughUnreachable) 11859 CC = ISD::SETTRUE; 11860 11861 // The false probability is the sum of all unhandled cases. 11862 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11863 getCurSDLoc(), I->Prob, UnhandledProbs); 11864 11865 if (CurMBB == SwitchMBB) 11866 visitSwitchCase(CB, SwitchMBB); 11867 else 11868 SL->SwitchCases.push_back(CB); 11869 11870 break; 11871 } 11872 } 11873 CurMBB = Fallthrough; 11874 } 11875 } 11876 11877 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11878 const SwitchWorkListItem &W, 11879 Value *Cond, 11880 MachineBasicBlock *SwitchMBB) { 11881 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11882 "Clusters not sorted?"); 11883 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11884 11885 auto [LastLeft, FirstRight, LeftProb, RightProb] = 11886 SL->computeSplitWorkItemInfo(W); 11887 11888 // Use the first element on the right as pivot since we will make less-than 11889 // comparisons against it. 11890 CaseClusterIt PivotCluster = FirstRight; 11891 assert(PivotCluster > W.FirstCluster); 11892 assert(PivotCluster <= W.LastCluster); 11893 11894 CaseClusterIt FirstLeft = W.FirstCluster; 11895 CaseClusterIt LastRight = W.LastCluster; 11896 11897 const ConstantInt *Pivot = PivotCluster->Low; 11898 11899 // New blocks will be inserted immediately after the current one. 11900 MachineFunction::iterator BBI(W.MBB); 11901 ++BBI; 11902 11903 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11904 // we can branch to its destination directly if it's squeezed exactly in 11905 // between the known lower bound and Pivot - 1. 11906 MachineBasicBlock *LeftMBB; 11907 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11908 FirstLeft->Low == W.GE && 11909 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11910 LeftMBB = FirstLeft->MBB; 11911 } else { 11912 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11913 FuncInfo.MF->insert(BBI, LeftMBB); 11914 WorkList.push_back( 11915 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11916 // Put Cond in a virtual register to make it available from the new blocks. 11917 ExportFromCurrentBlock(Cond); 11918 } 11919 11920 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11921 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11922 // directly if RHS.High equals the current upper bound. 11923 MachineBasicBlock *RightMBB; 11924 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11925 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11926 RightMBB = FirstRight->MBB; 11927 } else { 11928 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11929 FuncInfo.MF->insert(BBI, RightMBB); 11930 WorkList.push_back( 11931 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11932 // Put Cond in a virtual register to make it available from the new blocks. 11933 ExportFromCurrentBlock(Cond); 11934 } 11935 11936 // Create the CaseBlock record that will be used to lower the branch. 11937 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11938 getCurSDLoc(), LeftProb, RightProb); 11939 11940 if (W.MBB == SwitchMBB) 11941 visitSwitchCase(CB, SwitchMBB); 11942 else 11943 SL->SwitchCases.push_back(CB); 11944 } 11945 11946 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11947 // from the swith statement. 11948 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11949 BranchProbability PeeledCaseProb) { 11950 if (PeeledCaseProb == BranchProbability::getOne()) 11951 return BranchProbability::getZero(); 11952 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11953 11954 uint32_t Numerator = CaseProb.getNumerator(); 11955 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11956 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11957 } 11958 11959 // Try to peel the top probability case if it exceeds the threshold. 11960 // Return current MachineBasicBlock for the switch statement if the peeling 11961 // does not occur. 11962 // If the peeling is performed, return the newly created MachineBasicBlock 11963 // for the peeled switch statement. Also update Clusters to remove the peeled 11964 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11965 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11966 const SwitchInst &SI, CaseClusterVector &Clusters, 11967 BranchProbability &PeeledCaseProb) { 11968 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11969 // Don't perform if there is only one cluster or optimizing for size. 11970 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11971 TM.getOptLevel() == CodeGenOptLevel::None || 11972 SwitchMBB->getParent()->getFunction().hasMinSize()) 11973 return SwitchMBB; 11974 11975 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11976 unsigned PeeledCaseIndex = 0; 11977 bool SwitchPeeled = false; 11978 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11979 CaseCluster &CC = Clusters[Index]; 11980 if (CC.Prob < TopCaseProb) 11981 continue; 11982 TopCaseProb = CC.Prob; 11983 PeeledCaseIndex = Index; 11984 SwitchPeeled = true; 11985 } 11986 if (!SwitchPeeled) 11987 return SwitchMBB; 11988 11989 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11990 << TopCaseProb << "\n"); 11991 11992 // Record the MBB for the peeled switch statement. 11993 MachineFunction::iterator BBI(SwitchMBB); 11994 ++BBI; 11995 MachineBasicBlock *PeeledSwitchMBB = 11996 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11997 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11998 11999 ExportFromCurrentBlock(SI.getCondition()); 12000 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12001 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12002 nullptr, nullptr, TopCaseProb.getCompl()}; 12003 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12004 12005 Clusters.erase(PeeledCaseIt); 12006 for (CaseCluster &CC : Clusters) { 12007 LLVM_DEBUG( 12008 dbgs() << "Scale the probablity for one cluster, before scaling: " 12009 << CC.Prob << "\n"); 12010 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12011 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12012 } 12013 PeeledCaseProb = TopCaseProb; 12014 return PeeledSwitchMBB; 12015 } 12016 12017 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12018 // Extract cases from the switch. 12019 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12020 CaseClusterVector Clusters; 12021 Clusters.reserve(SI.getNumCases()); 12022 for (auto I : SI.cases()) { 12023 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 12024 const ConstantInt *CaseVal = I.getCaseValue(); 12025 BranchProbability Prob = 12026 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12027 : BranchProbability(1, SI.getNumCases() + 1); 12028 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12029 } 12030 12031 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 12032 12033 // Cluster adjacent cases with the same destination. We do this at all 12034 // optimization levels because it's cheap to do and will make codegen faster 12035 // if there are many clusters. 12036 sortAndRangeify(Clusters); 12037 12038 // The branch probablity of the peeled case. 12039 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12040 MachineBasicBlock *PeeledSwitchMBB = 12041 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12042 12043 // If there is only the default destination, jump there directly. 12044 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12045 if (Clusters.empty()) { 12046 assert(PeeledSwitchMBB == SwitchMBB); 12047 SwitchMBB->addSuccessor(DefaultMBB); 12048 if (DefaultMBB != NextBlock(SwitchMBB)) { 12049 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12050 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12051 } 12052 return; 12053 } 12054 12055 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12056 DAG.getBFI()); 12057 SL->findBitTestClusters(Clusters, &SI); 12058 12059 LLVM_DEBUG({ 12060 dbgs() << "Case clusters: "; 12061 for (const CaseCluster &C : Clusters) { 12062 if (C.Kind == CC_JumpTable) 12063 dbgs() << "JT:"; 12064 if (C.Kind == CC_BitTests) 12065 dbgs() << "BT:"; 12066 12067 C.Low->getValue().print(dbgs(), true); 12068 if (C.Low != C.High) { 12069 dbgs() << '-'; 12070 C.High->getValue().print(dbgs(), true); 12071 } 12072 dbgs() << ' '; 12073 } 12074 dbgs() << '\n'; 12075 }); 12076 12077 assert(!Clusters.empty()); 12078 SwitchWorkList WorkList; 12079 CaseClusterIt First = Clusters.begin(); 12080 CaseClusterIt Last = Clusters.end() - 1; 12081 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12082 // Scale the branchprobability for DefaultMBB if the peel occurs and 12083 // DefaultMBB is not replaced. 12084 if (PeeledCaseProb != BranchProbability::getZero() && 12085 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 12086 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12087 WorkList.push_back( 12088 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12089 12090 while (!WorkList.empty()) { 12091 SwitchWorkListItem W = WorkList.pop_back_val(); 12092 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12093 12094 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12095 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12096 // For optimized builds, lower large range as a balanced binary tree. 12097 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12098 continue; 12099 } 12100 12101 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12102 } 12103 } 12104 12105 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12107 auto DL = getCurSDLoc(); 12108 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12109 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12110 } 12111 12112 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12114 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12115 12116 SDLoc DL = getCurSDLoc(); 12117 SDValue V = getValue(I.getOperand(0)); 12118 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12119 12120 if (VT.isScalableVector()) { 12121 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12122 return; 12123 } 12124 12125 // Use VECTOR_SHUFFLE for the fixed-length vector 12126 // to maintain existing behavior. 12127 SmallVector<int, 8> Mask; 12128 unsigned NumElts = VT.getVectorMinNumElements(); 12129 for (unsigned i = 0; i != NumElts; ++i) 12130 Mask.push_back(NumElts - 1 - i); 12131 12132 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12133 } 12134 12135 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12136 auto DL = getCurSDLoc(); 12137 SDValue InVec = getValue(I.getOperand(0)); 12138 EVT OutVT = 12139 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12140 12141 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12142 12143 // ISD Node needs the input vectors split into two equal parts 12144 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12145 DAG.getVectorIdxConstant(0, DL)); 12146 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12147 DAG.getVectorIdxConstant(OutNumElts, DL)); 12148 12149 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12150 // legalisation and combines. 12151 if (OutVT.isFixedLengthVector()) { 12152 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12153 createStrideMask(0, 2, OutNumElts)); 12154 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12155 createStrideMask(1, 2, OutNumElts)); 12156 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12157 setValue(&I, Res); 12158 return; 12159 } 12160 12161 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12162 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12163 setValue(&I, Res); 12164 } 12165 12166 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12167 auto DL = getCurSDLoc(); 12168 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12169 SDValue InVec0 = getValue(I.getOperand(0)); 12170 SDValue InVec1 = getValue(I.getOperand(1)); 12171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12172 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12173 12174 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12175 // legalisation and combines. 12176 if (OutVT.isFixedLengthVector()) { 12177 unsigned NumElts = InVT.getVectorMinNumElements(); 12178 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12179 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12180 createInterleaveMask(NumElts, 2))); 12181 return; 12182 } 12183 12184 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12185 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12186 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12187 Res.getValue(1)); 12188 setValue(&I, Res); 12189 } 12190 12191 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12192 SmallVector<EVT, 4> ValueVTs; 12193 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12194 ValueVTs); 12195 unsigned NumValues = ValueVTs.size(); 12196 if (NumValues == 0) return; 12197 12198 SmallVector<SDValue, 4> Values(NumValues); 12199 SDValue Op = getValue(I.getOperand(0)); 12200 12201 for (unsigned i = 0; i != NumValues; ++i) 12202 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12203 SDValue(Op.getNode(), Op.getResNo() + i)); 12204 12205 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12206 DAG.getVTList(ValueVTs), Values)); 12207 } 12208 12209 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12211 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12212 12213 SDLoc DL = getCurSDLoc(); 12214 SDValue V1 = getValue(I.getOperand(0)); 12215 SDValue V2 = getValue(I.getOperand(1)); 12216 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12217 12218 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12219 if (VT.isScalableVector()) { 12220 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 12221 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12222 DAG.getConstant(Imm, DL, IdxVT))); 12223 return; 12224 } 12225 12226 unsigned NumElts = VT.getVectorNumElements(); 12227 12228 uint64_t Idx = (NumElts + Imm) % NumElts; 12229 12230 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12231 SmallVector<int, 8> Mask; 12232 for (unsigned i = 0; i < NumElts; ++i) 12233 Mask.push_back(Idx + i); 12234 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12235 } 12236 12237 // Consider the following MIR after SelectionDAG, which produces output in 12238 // phyregs in the first case or virtregs in the second case. 12239 // 12240 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12241 // %5:gr32 = COPY $ebx 12242 // %6:gr32 = COPY $edx 12243 // %1:gr32 = COPY %6:gr32 12244 // %0:gr32 = COPY %5:gr32 12245 // 12246 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12247 // %1:gr32 = COPY %6:gr32 12248 // %0:gr32 = COPY %5:gr32 12249 // 12250 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12251 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12252 // 12253 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12254 // to a single virtreg (such as %0). The remaining outputs monotonically 12255 // increase in virtreg number from there. If a callbr has no outputs, then it 12256 // should not have a corresponding callbr landingpad; in fact, the callbr 12257 // landingpad would not even be able to refer to such a callbr. 12258 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12259 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12260 // There is definitely at least one copy. 12261 assert(MI->getOpcode() == TargetOpcode::COPY && 12262 "start of copy chain MUST be COPY"); 12263 Reg = MI->getOperand(1).getReg(); 12264 MI = MRI.def_begin(Reg)->getParent(); 12265 // There may be an optional second copy. 12266 if (MI->getOpcode() == TargetOpcode::COPY) { 12267 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12268 Reg = MI->getOperand(1).getReg(); 12269 assert(Reg.isPhysical() && "expected COPY of physical register"); 12270 MI = MRI.def_begin(Reg)->getParent(); 12271 } 12272 // The start of the chain must be an INLINEASM_BR. 12273 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12274 "end of copy chain MUST be INLINEASM_BR"); 12275 return Reg; 12276 } 12277 12278 // We must do this walk rather than the simpler 12279 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12280 // otherwise we will end up with copies of virtregs only valid along direct 12281 // edges. 12282 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12283 SmallVector<EVT, 8> ResultVTs; 12284 SmallVector<SDValue, 8> ResultValues; 12285 const auto *CBR = 12286 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12287 12288 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12289 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12290 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12291 12292 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12293 SDValue Chain = DAG.getRoot(); 12294 12295 // Re-parse the asm constraints string. 12296 TargetLowering::AsmOperandInfoVector TargetConstraints = 12297 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12298 for (auto &T : TargetConstraints) { 12299 SDISelAsmOperandInfo OpInfo(T); 12300 if (OpInfo.Type != InlineAsm::isOutput) 12301 continue; 12302 12303 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12304 // individual constraint. 12305 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12306 12307 switch (OpInfo.ConstraintType) { 12308 case TargetLowering::C_Register: 12309 case TargetLowering::C_RegisterClass: { 12310 // Fill in OpInfo.AssignedRegs.Regs. 12311 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12312 12313 // getRegistersForValue may produce 1 to many registers based on whether 12314 // the OpInfo.ConstraintVT is legal on the target or not. 12315 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12316 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12317 if (Register::isPhysicalRegister(OriginalDef)) 12318 FuncInfo.MBB->addLiveIn(OriginalDef); 12319 // Update the assigned registers to use the original defs. 12320 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12321 } 12322 12323 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12324 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12325 ResultValues.push_back(V); 12326 ResultVTs.push_back(OpInfo.ConstraintVT); 12327 break; 12328 } 12329 case TargetLowering::C_Other: { 12330 SDValue Flag; 12331 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12332 OpInfo, DAG); 12333 ++InitialDef; 12334 ResultValues.push_back(V); 12335 ResultVTs.push_back(OpInfo.ConstraintVT); 12336 break; 12337 } 12338 default: 12339 break; 12340 } 12341 } 12342 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12343 DAG.getVTList(ResultVTs), ResultValues); 12344 setValue(&I, V); 12345 } 12346