1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/FastISel.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/GCMetadata.h" 30 #include "llvm/CodeGen/GCStrategy.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 39 #include "llvm/CodeGen/StackMaps.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Statepoint.h" 56 #include "llvm/MC/MCSymbol.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetFrameLowering.h" 63 #include "llvm/Target/TargetInstrInfo.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetLowering.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include "llvm/Target/TargetSubtargetInfo.h" 68 #include <algorithm> 69 #include <utility> 70 using namespace llvm; 71 72 #define DEBUG_TYPE "isel" 73 74 /// LimitFloatPrecision - Generate low-precision inline sequences for 75 /// some float libcalls (6, 8 or 12 bits). 76 static unsigned LimitFloatPrecision; 77 78 static cl::opt<unsigned, true> 79 LimitFPPrecision("limit-float-precision", 80 cl::desc("Generate low-precision inline sequences " 81 "for some float libcalls"), 82 cl::location(LimitFloatPrecision), 83 cl::init(0)); 84 85 static cl::opt<bool> 86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 87 cl::desc("Enable fast-math-flags for DAG nodes")); 88 89 /// Minimum jump table density for normal functions. 90 static cl::opt<unsigned> 91 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 92 cl::desc("Minimum density for building a jump table in " 93 "a normal function")); 94 95 /// Minimum jump table density for -Os or -Oz functions. 96 static cl::opt<unsigned> 97 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 98 cl::desc("Minimum density for building a jump table in " 99 "an optsize function")); 100 101 102 // Limit the width of DAG chains. This is important in general to prevent 103 // DAG-based analysis from blowing up. For example, alias analysis and 104 // load clustering may not complete in reasonable time. It is difficult to 105 // recognize and avoid this situation within each individual analysis, and 106 // future analyses are likely to have the same behavior. Limiting DAG width is 107 // the safe approach and will be especially important with global DAGs. 108 // 109 // MaxParallelChains default is arbitrarily high to avoid affecting 110 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 111 // sequence over this should have been converted to llvm.memcpy by the 112 // frontend. It is easy to induce this behavior with .ll code such as: 113 // %buffer = alloca [4096 x i8] 114 // %data = load [4096 x i8]* %argPtr 115 // store [4096 x i8] %data, [4096 x i8]* %buffer 116 static const unsigned MaxParallelChains = 64; 117 118 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 119 const SDValue *Parts, unsigned NumParts, 120 MVT PartVT, EVT ValueVT, const Value *V); 121 122 /// getCopyFromParts - Create a value that contains the specified legal parts 123 /// combined into the value they represent. If the parts combine to a type 124 /// larger than ValueVT then AssertOp can be used to specify whether the extra 125 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 126 /// (ISD::AssertSext). 127 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 128 const SDValue *Parts, unsigned NumParts, 129 MVT PartVT, EVT ValueVT, const Value *V, 130 Optional<ISD::NodeType> AssertOp = None) { 131 if (ValueVT.isVector()) 132 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 133 PartVT, ValueVT, V); 134 135 assert(NumParts > 0 && "No parts to assemble!"); 136 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 137 SDValue Val = Parts[0]; 138 139 if (NumParts > 1) { 140 // Assemble the value from multiple parts. 141 if (ValueVT.isInteger()) { 142 unsigned PartBits = PartVT.getSizeInBits(); 143 unsigned ValueBits = ValueVT.getSizeInBits(); 144 145 // Assemble the power of 2 part. 146 unsigned RoundParts = NumParts & (NumParts - 1) ? 147 1 << Log2_32(NumParts) : NumParts; 148 unsigned RoundBits = PartBits * RoundParts; 149 EVT RoundVT = RoundBits == ValueBits ? 150 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 151 SDValue Lo, Hi; 152 153 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 154 155 if (RoundParts > 2) { 156 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 157 PartVT, HalfVT, V); 158 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 159 RoundParts / 2, PartVT, HalfVT, V); 160 } else { 161 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 162 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 163 } 164 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 168 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 169 170 if (RoundParts < NumParts) { 171 // Assemble the trailing non-power-of-2 part. 172 unsigned OddParts = NumParts - RoundParts; 173 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 174 Hi = getCopyFromParts(DAG, DL, 175 Parts + RoundParts, OddParts, PartVT, OddVT, V); 176 177 // Combine the round and odd parts. 178 Lo = Val; 179 if (DAG.getDataLayout().isBigEndian()) 180 std::swap(Lo, Hi); 181 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 182 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 183 Hi = 184 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 185 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 186 TLI.getPointerTy(DAG.getDataLayout()))); 187 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 188 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 189 } 190 } else if (PartVT.isFloatingPoint()) { 191 // FP split into multiple FP parts (for ppcf128) 192 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 193 "Unexpected split"); 194 SDValue Lo, Hi; 195 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 196 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 197 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 198 std::swap(Lo, Hi); 199 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 200 } else { 201 // FP split into integer parts (soft fp) 202 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 203 !PartVT.isVector() && "Unexpected split"); 204 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 205 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 206 } 207 } 208 209 // There is now one part, held in Val. Correct it to match ValueVT. 210 // PartEVT is the type of the register class that holds the value. 211 // ValueVT is the type of the inline asm operation. 212 EVT PartEVT = Val.getValueType(); 213 214 if (PartEVT == ValueVT) 215 return Val; 216 217 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 218 ValueVT.bitsLT(PartEVT)) { 219 // For an FP value in an integer part, we need to truncate to the right 220 // width first. 221 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 222 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 223 } 224 225 // Handle types that have the same size. 226 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 227 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 228 229 // Handle types with different sizes. 230 if (PartEVT.isInteger() && ValueVT.isInteger()) { 231 if (ValueVT.bitsLT(PartEVT)) { 232 // For a truncate, see if we have any information to 233 // indicate whether the truncated bits will always be 234 // zero or sign-extension. 235 if (AssertOp.hasValue()) 236 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 237 DAG.getValueType(ValueVT)); 238 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 239 } 240 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 241 } 242 243 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 244 // FP_ROUND's are always exact here. 245 if (ValueVT.bitsLT(Val.getValueType())) 246 return DAG.getNode( 247 ISD::FP_ROUND, DL, ValueVT, Val, 248 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 249 250 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 251 } 252 253 llvm_unreachable("Unknown mismatch!"); 254 } 255 256 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 257 const Twine &ErrMsg) { 258 const Instruction *I = dyn_cast_or_null<Instruction>(V); 259 if (!V) 260 return Ctx.emitError(ErrMsg); 261 262 const char *AsmError = ", possible invalid constraint for vector type"; 263 if (const CallInst *CI = dyn_cast<CallInst>(I)) 264 if (isa<InlineAsm>(CI->getCalledValue())) 265 return Ctx.emitError(I, ErrMsg + AsmError); 266 267 return Ctx.emitError(I, ErrMsg); 268 } 269 270 /// getCopyFromPartsVector - Create a value that contains the specified legal 271 /// parts combined into the value they represent. If the parts combine to a 272 /// type larger than ValueVT then AssertOp can be used to specify whether the 273 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 274 /// ValueVT (ISD::AssertSext). 275 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 276 const SDValue *Parts, unsigned NumParts, 277 MVT PartVT, EVT ValueVT, const Value *V) { 278 assert(ValueVT.isVector() && "Not a vector value"); 279 assert(NumParts > 0 && "No parts to assemble!"); 280 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 281 SDValue Val = Parts[0]; 282 283 // Handle a multi-element vector. 284 if (NumParts > 1) { 285 EVT IntermediateVT; 286 MVT RegisterVT; 287 unsigned NumIntermediates; 288 unsigned NumRegs = 289 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 290 NumIntermediates, RegisterVT); 291 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 292 NumParts = NumRegs; // Silence a compiler warning. 293 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 294 assert(RegisterVT.getSizeInBits() == 295 Parts[0].getSimpleValueType().getSizeInBits() && 296 "Part type sizes don't match!"); 297 298 // Assemble the parts into intermediate operands. 299 SmallVector<SDValue, 8> Ops(NumIntermediates); 300 if (NumIntermediates == NumParts) { 301 // If the register was not expanded, truncate or copy the value, 302 // as appropriate. 303 for (unsigned i = 0; i != NumParts; ++i) 304 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 305 PartVT, IntermediateVT, V); 306 } else if (NumParts > 0) { 307 // If the intermediate type was expanded, build the intermediate 308 // operands from the parts. 309 assert(NumParts % NumIntermediates == 0 && 310 "Must expand into a divisible number of parts!"); 311 unsigned Factor = NumParts / NumIntermediates; 312 for (unsigned i = 0; i != NumIntermediates; ++i) 313 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 314 PartVT, IntermediateVT, V); 315 } 316 317 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 318 // intermediate operands. 319 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 320 : ISD::BUILD_VECTOR, 321 DL, ValueVT, Ops); 322 } 323 324 // There is now one part, held in Val. Correct it to match ValueVT. 325 EVT PartEVT = Val.getValueType(); 326 327 if (PartEVT == ValueVT) 328 return Val; 329 330 if (PartEVT.isVector()) { 331 // If the element type of the source/dest vectors are the same, but the 332 // parts vector has more elements than the value vector, then we have a 333 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 334 // elements we want. 335 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 336 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 337 "Cannot narrow, it would be a lossy transformation"); 338 return DAG.getNode( 339 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 340 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 341 } 342 343 // Vector/Vector bitcast. 344 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 345 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 346 347 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 348 "Cannot handle this kind of promotion"); 349 // Promoted vector extract 350 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 351 352 } 353 354 // Trivial bitcast if the types are the same size and the destination 355 // vector type is legal. 356 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 357 TLI.isTypeLegal(ValueVT)) 358 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 359 360 // Handle cases such as i8 -> <1 x i1> 361 if (ValueVT.getVectorNumElements() != 1) { 362 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 363 "non-trivial scalar-to-vector conversion"); 364 return DAG.getUNDEF(ValueVT); 365 } 366 367 if (ValueVT.getVectorNumElements() == 1 && 368 ValueVT.getVectorElementType() != PartEVT) 369 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 370 371 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 372 } 373 374 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 375 SDValue Val, SDValue *Parts, unsigned NumParts, 376 MVT PartVT, const Value *V); 377 378 /// getCopyToParts - Create a series of nodes that contain the specified value 379 /// split into legal parts. If the parts contain more bits than Val, then, for 380 /// integers, ExtendKind can be used to specify how to generate the extra bits. 381 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 382 SDValue *Parts, unsigned NumParts, MVT PartVT, 383 const Value *V, 384 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 385 EVT ValueVT = Val.getValueType(); 386 387 // Handle the vector case separately. 388 if (ValueVT.isVector()) 389 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 390 391 unsigned PartBits = PartVT.getSizeInBits(); 392 unsigned OrigNumParts = NumParts; 393 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 394 "Copying to an illegal type!"); 395 396 if (NumParts == 0) 397 return; 398 399 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 400 EVT PartEVT = PartVT; 401 if (PartEVT == ValueVT) { 402 assert(NumParts == 1 && "No-op copy with multiple parts!"); 403 Parts[0] = Val; 404 return; 405 } 406 407 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 408 // If the parts cover more bits than the value has, promote the value. 409 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 410 assert(NumParts == 1 && "Do not know what to promote to!"); 411 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 412 } else { 413 if (ValueVT.isFloatingPoint()) { 414 // FP values need to be bitcast, then extended if they are being put 415 // into a larger container. 416 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 417 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 418 } 419 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 420 ValueVT.isInteger() && 421 "Unknown mismatch!"); 422 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 423 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 424 if (PartVT == MVT::x86mmx) 425 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 426 } 427 } else if (PartBits == ValueVT.getSizeInBits()) { 428 // Different types of the same size. 429 assert(NumParts == 1 && PartEVT != ValueVT); 430 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 431 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 432 // If the parts cover less bits than value has, truncate the value. 433 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 434 ValueVT.isInteger() && 435 "Unknown mismatch!"); 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 if (PartVT == MVT::x86mmx) 439 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 440 } 441 442 // The value may have changed - recompute ValueVT. 443 ValueVT = Val.getValueType(); 444 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 445 "Failed to tile the value with PartVT!"); 446 447 if (NumParts == 1) { 448 if (PartEVT != ValueVT) 449 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 450 "scalar-to-vector conversion failed"); 451 452 Parts[0] = Val; 453 return; 454 } 455 456 // Expand the value into multiple parts. 457 if (NumParts & (NumParts - 1)) { 458 // The number of parts is not a power of 2. Split off and copy the tail. 459 assert(PartVT.isInteger() && ValueVT.isInteger() && 460 "Do not know what to expand to!"); 461 unsigned RoundParts = 1 << Log2_32(NumParts); 462 unsigned RoundBits = RoundParts * PartBits; 463 unsigned OddParts = NumParts - RoundParts; 464 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 465 DAG.getIntPtrConstant(RoundBits, DL)); 466 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 467 468 if (DAG.getDataLayout().isBigEndian()) 469 // The odd parts were reversed by getCopyToParts - unreverse them. 470 std::reverse(Parts + RoundParts, Parts + NumParts); 471 472 NumParts = RoundParts; 473 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 474 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 475 } 476 477 // The number of parts is a power of 2. Repeatedly bisect the value using 478 // EXTRACT_ELEMENT. 479 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 480 EVT::getIntegerVT(*DAG.getContext(), 481 ValueVT.getSizeInBits()), 482 Val); 483 484 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 485 for (unsigned i = 0; i < NumParts; i += StepSize) { 486 unsigned ThisBits = StepSize * PartBits / 2; 487 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 488 SDValue &Part0 = Parts[i]; 489 SDValue &Part1 = Parts[i+StepSize/2]; 490 491 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 492 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 493 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 494 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 495 496 if (ThisBits == PartBits && ThisVT != PartVT) { 497 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 498 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 499 } 500 } 501 } 502 503 if (DAG.getDataLayout().isBigEndian()) 504 std::reverse(Parts, Parts + OrigNumParts); 505 } 506 507 508 /// getCopyToPartsVector - Create a series of nodes that contain the specified 509 /// value split into legal parts. 510 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 511 SDValue Val, SDValue *Parts, unsigned NumParts, 512 MVT PartVT, const Value *V) { 513 EVT ValueVT = Val.getValueType(); 514 assert(ValueVT.isVector() && "Not a vector"); 515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 516 517 if (NumParts == 1) { 518 EVT PartEVT = PartVT; 519 if (PartEVT == ValueVT) { 520 // Nothing to do. 521 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 522 // Bitconvert vector->vector case. 523 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 524 } else if (PartVT.isVector() && 525 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 526 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 527 EVT ElementVT = PartVT.getVectorElementType(); 528 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 529 // undef elements. 530 SmallVector<SDValue, 16> Ops; 531 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 532 Ops.push_back(DAG.getNode( 533 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 534 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 535 536 for (unsigned i = ValueVT.getVectorNumElements(), 537 e = PartVT.getVectorNumElements(); i != e; ++i) 538 Ops.push_back(DAG.getUNDEF(ElementVT)); 539 540 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 541 542 // FIXME: Use CONCAT for 2x -> 4x. 543 544 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 545 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 546 } else if (PartVT.isVector() && 547 PartEVT.getVectorElementType().bitsGE( 548 ValueVT.getVectorElementType()) && 549 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 550 551 // Promoted vector extract 552 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 553 } else{ 554 // Vector -> scalar conversion. 555 assert(ValueVT.getVectorNumElements() == 1 && 556 "Only trivial vector-to-scalar conversions should get here!"); 557 Val = DAG.getNode( 558 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 559 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 560 561 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 562 } 563 564 Parts[0] = Val; 565 return; 566 } 567 568 // Handle a multi-element vector. 569 EVT IntermediateVT; 570 MVT RegisterVT; 571 unsigned NumIntermediates; 572 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 573 IntermediateVT, 574 NumIntermediates, RegisterVT); 575 unsigned NumElements = ValueVT.getVectorNumElements(); 576 577 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 578 NumParts = NumRegs; // Silence a compiler warning. 579 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 580 581 // Split the vector into intermediate operands. 582 SmallVector<SDValue, 8> Ops(NumIntermediates); 583 for (unsigned i = 0; i != NumIntermediates; ++i) { 584 if (IntermediateVT.isVector()) 585 Ops[i] = 586 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 587 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 588 TLI.getVectorIdxTy(DAG.getDataLayout()))); 589 else 590 Ops[i] = DAG.getNode( 591 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 592 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 593 } 594 595 // Split the intermediate operands into legal parts. 596 if (NumParts == NumIntermediates) { 597 // If the register was not expanded, promote or copy the value, 598 // as appropriate. 599 for (unsigned i = 0; i != NumParts; ++i) 600 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 601 } else if (NumParts > 0) { 602 // If the intermediate type was expanded, split each the value into 603 // legal parts. 604 assert(NumIntermediates != 0 && "division by zero"); 605 assert(NumParts % NumIntermediates == 0 && 606 "Must expand into a divisible number of parts!"); 607 unsigned Factor = NumParts / NumIntermediates; 608 for (unsigned i = 0; i != NumIntermediates; ++i) 609 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 610 } 611 } 612 613 RegsForValue::RegsForValue() {} 614 615 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 616 EVT valuevt) 617 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 618 619 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 620 const DataLayout &DL, unsigned Reg, Type *Ty) { 621 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 622 623 for (EVT ValueVT : ValueVTs) { 624 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 625 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 626 for (unsigned i = 0; i != NumRegs; ++i) 627 Regs.push_back(Reg + i); 628 RegVTs.push_back(RegisterVT); 629 Reg += NumRegs; 630 } 631 } 632 633 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 634 /// this value and returns the result as a ValueVT value. This uses 635 /// Chain/Flag as the input and updates them for the output Chain/Flag. 636 /// If the Flag pointer is NULL, no flag is used. 637 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 638 FunctionLoweringInfo &FuncInfo, 639 const SDLoc &dl, SDValue &Chain, 640 SDValue *Flag, const Value *V) const { 641 // A Value with type {} or [0 x %t] needs no registers. 642 if (ValueVTs.empty()) 643 return SDValue(); 644 645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 646 647 // Assemble the legal parts into the final values. 648 SmallVector<SDValue, 4> Values(ValueVTs.size()); 649 SmallVector<SDValue, 8> Parts; 650 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 651 // Copy the legal parts from the registers. 652 EVT ValueVT = ValueVTs[Value]; 653 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 654 MVT RegisterVT = RegVTs[Value]; 655 656 Parts.resize(NumRegs); 657 for (unsigned i = 0; i != NumRegs; ++i) { 658 SDValue P; 659 if (!Flag) { 660 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 661 } else { 662 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 663 *Flag = P.getValue(2); 664 } 665 666 Chain = P.getValue(1); 667 Parts[i] = P; 668 669 // If the source register was virtual and if we know something about it, 670 // add an assert node. 671 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 672 !RegisterVT.isInteger() || RegisterVT.isVector()) 673 continue; 674 675 const FunctionLoweringInfo::LiveOutInfo *LOI = 676 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 677 if (!LOI) 678 continue; 679 680 unsigned RegSize = RegisterVT.getSizeInBits(); 681 unsigned NumSignBits = LOI->NumSignBits; 682 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 683 684 if (NumZeroBits == RegSize) { 685 // The current value is a zero. 686 // Explicitly express that as it would be easier for 687 // optimizations to kick in. 688 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 689 continue; 690 } 691 692 // FIXME: We capture more information than the dag can represent. For 693 // now, just use the tightest assertzext/assertsext possible. 694 bool isSExt = true; 695 EVT FromVT(MVT::Other); 696 if (NumSignBits == RegSize) { 697 isSExt = true; // ASSERT SEXT 1 698 FromVT = MVT::i1; 699 } else if (NumZeroBits >= RegSize - 1) { 700 isSExt = false; // ASSERT ZEXT 1 701 FromVT = MVT::i1; 702 } else if (NumSignBits > RegSize - 8) { 703 isSExt = true; // ASSERT SEXT 8 704 FromVT = MVT::i8; 705 } else if (NumZeroBits >= RegSize - 8) { 706 isSExt = false; // ASSERT ZEXT 8 707 FromVT = MVT::i8; 708 } else if (NumSignBits > RegSize - 16) { 709 isSExt = true; // ASSERT SEXT 16 710 FromVT = MVT::i16; 711 } else if (NumZeroBits >= RegSize - 16) { 712 isSExt = false; // ASSERT ZEXT 16 713 FromVT = MVT::i16; 714 } else if (NumSignBits > RegSize - 32) { 715 isSExt = true; // ASSERT SEXT 32 716 FromVT = MVT::i32; 717 } else if (NumZeroBits >= RegSize - 32) { 718 isSExt = false; // ASSERT ZEXT 32 719 FromVT = MVT::i32; 720 } else { 721 continue; 722 } 723 // Add an assertion node. 724 assert(FromVT != MVT::Other); 725 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 726 RegisterVT, P, DAG.getValueType(FromVT)); 727 } 728 729 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 730 NumRegs, RegisterVT, ValueVT, V); 731 Part += NumRegs; 732 Parts.clear(); 733 } 734 735 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 736 } 737 738 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 739 /// specified value into the registers specified by this object. This uses 740 /// Chain/Flag as the input and updates them for the output Chain/Flag. 741 /// If the Flag pointer is NULL, no flag is used. 742 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 743 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 744 const Value *V, 745 ISD::NodeType PreferredExtendType) const { 746 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 747 ISD::NodeType ExtendKind = PreferredExtendType; 748 749 // Get the list of the values's legal parts. 750 unsigned NumRegs = Regs.size(); 751 SmallVector<SDValue, 8> Parts(NumRegs); 752 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 753 EVT ValueVT = ValueVTs[Value]; 754 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 755 MVT RegisterVT = RegVTs[Value]; 756 757 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 758 ExtendKind = ISD::ZERO_EXTEND; 759 760 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 761 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 762 Part += NumParts; 763 } 764 765 // Copy the parts into the registers. 766 SmallVector<SDValue, 8> Chains(NumRegs); 767 for (unsigned i = 0; i != NumRegs; ++i) { 768 SDValue Part; 769 if (!Flag) { 770 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 771 } else { 772 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 773 *Flag = Part.getValue(1); 774 } 775 776 Chains[i] = Part.getValue(0); 777 } 778 779 if (NumRegs == 1 || Flag) 780 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 781 // flagged to it. That is the CopyToReg nodes and the user are considered 782 // a single scheduling unit. If we create a TokenFactor and return it as 783 // chain, then the TokenFactor is both a predecessor (operand) of the 784 // user as well as a successor (the TF operands are flagged to the user). 785 // c1, f1 = CopyToReg 786 // c2, f2 = CopyToReg 787 // c3 = TokenFactor c1, c2 788 // ... 789 // = op c3, ..., f2 790 Chain = Chains[NumRegs-1]; 791 else 792 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 793 } 794 795 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 796 /// operand list. This adds the code marker and includes the number of 797 /// values added into it. 798 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 799 unsigned MatchingIdx, const SDLoc &dl, 800 SelectionDAG &DAG, 801 std::vector<SDValue> &Ops) const { 802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 803 804 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 805 if (HasMatching) 806 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 807 else if (!Regs.empty() && 808 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 809 // Put the register class of the virtual registers in the flag word. That 810 // way, later passes can recompute register class constraints for inline 811 // assembly as well as normal instructions. 812 // Don't do this for tied operands that can use the regclass information 813 // from the def. 814 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 815 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 816 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 817 } 818 819 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 820 Ops.push_back(Res); 821 822 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 823 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 824 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 825 MVT RegisterVT = RegVTs[Value]; 826 for (unsigned i = 0; i != NumRegs; ++i) { 827 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 828 unsigned TheReg = Regs[Reg++]; 829 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 830 831 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 832 // If we clobbered the stack pointer, MFI should know about it. 833 assert(DAG.getMachineFunction().getFrameInfo()-> 834 hasOpaqueSPAdjustment()); 835 } 836 } 837 } 838 } 839 840 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 841 const TargetLibraryInfo *li) { 842 AA = &aa; 843 GFI = gfi; 844 LibInfo = li; 845 DL = &DAG.getDataLayout(); 846 Context = DAG.getContext(); 847 LPadToCallSiteMap.clear(); 848 } 849 850 /// clear - Clear out the current SelectionDAG and the associated 851 /// state and prepare this SelectionDAGBuilder object to be used 852 /// for a new block. This doesn't clear out information about 853 /// additional blocks that are needed to complete switch lowering 854 /// or PHI node updating; that information is cleared out as it is 855 /// consumed. 856 void SelectionDAGBuilder::clear() { 857 NodeMap.clear(); 858 UnusedArgNodeMap.clear(); 859 PendingLoads.clear(); 860 PendingExports.clear(); 861 CurInst = nullptr; 862 HasTailCall = false; 863 SDNodeOrder = LowestSDNodeOrder; 864 StatepointLowering.clear(); 865 } 866 867 /// clearDanglingDebugInfo - Clear the dangling debug information 868 /// map. This function is separated from the clear so that debug 869 /// information that is dangling in a basic block can be properly 870 /// resolved in a different basic block. This allows the 871 /// SelectionDAG to resolve dangling debug information attached 872 /// to PHI nodes. 873 void SelectionDAGBuilder::clearDanglingDebugInfo() { 874 DanglingDebugInfoMap.clear(); 875 } 876 877 /// getRoot - Return the current virtual root of the Selection DAG, 878 /// flushing any PendingLoad items. This must be done before emitting 879 /// a store or any other node that may need to be ordered after any 880 /// prior load instructions. 881 /// 882 SDValue SelectionDAGBuilder::getRoot() { 883 if (PendingLoads.empty()) 884 return DAG.getRoot(); 885 886 if (PendingLoads.size() == 1) { 887 SDValue Root = PendingLoads[0]; 888 DAG.setRoot(Root); 889 PendingLoads.clear(); 890 return Root; 891 } 892 893 // Otherwise, we have to make a token factor node. 894 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 895 PendingLoads); 896 PendingLoads.clear(); 897 DAG.setRoot(Root); 898 return Root; 899 } 900 901 /// getControlRoot - Similar to getRoot, but instead of flushing all the 902 /// PendingLoad items, flush all the PendingExports items. It is necessary 903 /// to do this before emitting a terminator instruction. 904 /// 905 SDValue SelectionDAGBuilder::getControlRoot() { 906 SDValue Root = DAG.getRoot(); 907 908 if (PendingExports.empty()) 909 return Root; 910 911 // Turn all of the CopyToReg chains into one factored node. 912 if (Root.getOpcode() != ISD::EntryToken) { 913 unsigned i = 0, e = PendingExports.size(); 914 for (; i != e; ++i) { 915 assert(PendingExports[i].getNode()->getNumOperands() > 1); 916 if (PendingExports[i].getNode()->getOperand(0) == Root) 917 break; // Don't add the root if we already indirectly depend on it. 918 } 919 920 if (i == e) 921 PendingExports.push_back(Root); 922 } 923 924 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 925 PendingExports); 926 PendingExports.clear(); 927 DAG.setRoot(Root); 928 return Root; 929 } 930 931 /// Copy swift error to the final virtual register at end of a basic block, as 932 /// specified by SwiftErrorWorklist, if necessary. 933 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) { 934 const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo(); 935 if (!TLI.supportSwiftError()) 936 return; 937 938 if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB)) 939 return; 940 941 // Go through entries in SwiftErrorWorklist, and create copy as necessary. 942 FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry = 943 SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB]; 944 FunctionLoweringInfo::SwiftErrorVRegs &MapEntry = 945 SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB]; 946 for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) { 947 unsigned WorkReg = WorklistEntry[I]; 948 949 // Find the swifterror virtual register for the value in SwiftErrorMap. 950 unsigned MapReg = MapEntry[I]; 951 assert(TargetRegisterInfo::isVirtualRegister(MapReg) && 952 "Entries in SwiftErrorMap should be virtual registers"); 953 954 if (WorkReg == MapReg) 955 continue; 956 957 // Create copy from SwiftErrorMap to SwiftWorklist. 958 auto &DL = SDB.DAG.getDataLayout(); 959 SDValue CopyNode = SDB.DAG.getCopyToReg( 960 SDB.getRoot(), SDB.getCurSDLoc(), WorkReg, 961 SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL)))); 962 MapEntry[I] = WorkReg; 963 SDB.DAG.setRoot(CopyNode); 964 } 965 } 966 967 void SelectionDAGBuilder::visit(const Instruction &I) { 968 // Set up outgoing PHI node register values before emitting the terminator. 969 if (isa<TerminatorInst>(&I)) { 970 copySwiftErrorsToFinalVRegs(*this); 971 HandlePHINodesInSuccessorBlocks(I.getParent()); 972 } 973 974 ++SDNodeOrder; 975 976 CurInst = &I; 977 978 visit(I.getOpcode(), I); 979 980 if (!isa<TerminatorInst>(&I) && !HasTailCall && 981 !isStatepoint(&I)) // statepoints handle their exports internally 982 CopyToExportRegsIfNeeded(&I); 983 984 CurInst = nullptr; 985 } 986 987 void SelectionDAGBuilder::visitPHI(const PHINode &) { 988 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 989 } 990 991 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 992 // Note: this doesn't use InstVisitor, because it has to work with 993 // ConstantExpr's in addition to instructions. 994 switch (Opcode) { 995 default: llvm_unreachable("Unknown instruction type encountered!"); 996 // Build the switch statement using the Instruction.def file. 997 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 998 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 999 #include "llvm/IR/Instruction.def" 1000 } 1001 } 1002 1003 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1004 // generate the debug data structures now that we've seen its definition. 1005 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1006 SDValue Val) { 1007 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1008 if (DDI.getDI()) { 1009 const DbgValueInst *DI = DDI.getDI(); 1010 DebugLoc dl = DDI.getdl(); 1011 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1012 DILocalVariable *Variable = DI->getVariable(); 1013 DIExpression *Expr = DI->getExpression(); 1014 assert(Variable->isValidLocationForIntrinsic(dl) && 1015 "Expected inlined-at fields to agree"); 1016 uint64_t Offset = DI->getOffset(); 1017 SDDbgValue *SDV; 1018 if (Val.getNode()) { 1019 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 1020 Val)) { 1021 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1022 false, Offset, dl, DbgSDNodeOrder); 1023 DAG.AddDbgValue(SDV, Val.getNode(), false); 1024 } 1025 } else 1026 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1027 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1028 } 1029 } 1030 1031 /// getCopyFromRegs - If there was virtual register allocated for the value V 1032 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1033 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1034 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1035 SDValue Result; 1036 1037 if (It != FuncInfo.ValueMap.end()) { 1038 unsigned InReg = It->second; 1039 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1040 DAG.getDataLayout(), InReg, Ty); 1041 SDValue Chain = DAG.getEntryNode(); 1042 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1043 resolveDanglingDebugInfo(V, Result); 1044 } 1045 1046 return Result; 1047 } 1048 1049 /// getValue - Return an SDValue for the given Value. 1050 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1051 // If we already have an SDValue for this value, use it. It's important 1052 // to do this first, so that we don't create a CopyFromReg if we already 1053 // have a regular SDValue. 1054 SDValue &N = NodeMap[V]; 1055 if (N.getNode()) return N; 1056 1057 // If there's a virtual register allocated and initialized for this 1058 // value, use it. 1059 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1060 return copyFromReg; 1061 1062 // Otherwise create a new SDValue and remember it. 1063 SDValue Val = getValueImpl(V); 1064 NodeMap[V] = Val; 1065 resolveDanglingDebugInfo(V, Val); 1066 return Val; 1067 } 1068 1069 // Return true if SDValue exists for the given Value 1070 bool SelectionDAGBuilder::findValue(const Value *V) const { 1071 return (NodeMap.find(V) != NodeMap.end()) || 1072 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1073 } 1074 1075 /// getNonRegisterValue - Return an SDValue for the given Value, but 1076 /// don't look in FuncInfo.ValueMap for a virtual register. 1077 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1078 // If we already have an SDValue for this value, use it. 1079 SDValue &N = NodeMap[V]; 1080 if (N.getNode()) { 1081 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1082 // Remove the debug location from the node as the node is about to be used 1083 // in a location which may differ from the original debug location. This 1084 // is relevant to Constant and ConstantFP nodes because they can appear 1085 // as constant expressions inside PHI nodes. 1086 N->setDebugLoc(DebugLoc()); 1087 } 1088 return N; 1089 } 1090 1091 // Otherwise create a new SDValue and remember it. 1092 SDValue Val = getValueImpl(V); 1093 NodeMap[V] = Val; 1094 resolveDanglingDebugInfo(V, Val); 1095 return Val; 1096 } 1097 1098 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1099 /// Create an SDValue for the given value. 1100 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1101 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1102 1103 if (const Constant *C = dyn_cast<Constant>(V)) { 1104 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1105 1106 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1107 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1108 1109 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1110 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1111 1112 if (isa<ConstantPointerNull>(C)) { 1113 unsigned AS = V->getType()->getPointerAddressSpace(); 1114 return DAG.getConstant(0, getCurSDLoc(), 1115 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1116 } 1117 1118 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1119 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1120 1121 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1122 return DAG.getUNDEF(VT); 1123 1124 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1125 visit(CE->getOpcode(), *CE); 1126 SDValue N1 = NodeMap[V]; 1127 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1128 return N1; 1129 } 1130 1131 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1132 SmallVector<SDValue, 4> Constants; 1133 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1134 OI != OE; ++OI) { 1135 SDNode *Val = getValue(*OI).getNode(); 1136 // If the operand is an empty aggregate, there are no values. 1137 if (!Val) continue; 1138 // Add each leaf value from the operand to the Constants list 1139 // to form a flattened list of all the values. 1140 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1141 Constants.push_back(SDValue(Val, i)); 1142 } 1143 1144 return DAG.getMergeValues(Constants, getCurSDLoc()); 1145 } 1146 1147 if (const ConstantDataSequential *CDS = 1148 dyn_cast<ConstantDataSequential>(C)) { 1149 SmallVector<SDValue, 4> Ops; 1150 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1151 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1152 // Add each leaf value from the operand to the Constants list 1153 // to form a flattened list of all the values. 1154 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1155 Ops.push_back(SDValue(Val, i)); 1156 } 1157 1158 if (isa<ArrayType>(CDS->getType())) 1159 return DAG.getMergeValues(Ops, getCurSDLoc()); 1160 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1161 VT, Ops); 1162 } 1163 1164 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1165 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1166 "Unknown struct or array constant!"); 1167 1168 SmallVector<EVT, 4> ValueVTs; 1169 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1170 unsigned NumElts = ValueVTs.size(); 1171 if (NumElts == 0) 1172 return SDValue(); // empty struct 1173 SmallVector<SDValue, 4> Constants(NumElts); 1174 for (unsigned i = 0; i != NumElts; ++i) { 1175 EVT EltVT = ValueVTs[i]; 1176 if (isa<UndefValue>(C)) 1177 Constants[i] = DAG.getUNDEF(EltVT); 1178 else if (EltVT.isFloatingPoint()) 1179 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1180 else 1181 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1182 } 1183 1184 return DAG.getMergeValues(Constants, getCurSDLoc()); 1185 } 1186 1187 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1188 return DAG.getBlockAddress(BA, VT); 1189 1190 VectorType *VecTy = cast<VectorType>(V->getType()); 1191 unsigned NumElements = VecTy->getNumElements(); 1192 1193 // Now that we know the number and type of the elements, get that number of 1194 // elements into the Ops array based on what kind of constant it is. 1195 SmallVector<SDValue, 16> Ops; 1196 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1197 for (unsigned i = 0; i != NumElements; ++i) 1198 Ops.push_back(getValue(CV->getOperand(i))); 1199 } else { 1200 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1201 EVT EltVT = 1202 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1203 1204 SDValue Op; 1205 if (EltVT.isFloatingPoint()) 1206 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1207 else 1208 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1209 Ops.assign(NumElements, Op); 1210 } 1211 1212 // Create a BUILD_VECTOR node. 1213 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1214 } 1215 1216 // If this is a static alloca, generate it as the frameindex instead of 1217 // computation. 1218 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1219 DenseMap<const AllocaInst*, int>::iterator SI = 1220 FuncInfo.StaticAllocaMap.find(AI); 1221 if (SI != FuncInfo.StaticAllocaMap.end()) 1222 return DAG.getFrameIndex(SI->second, 1223 TLI.getPointerTy(DAG.getDataLayout())); 1224 } 1225 1226 // If this is an instruction which fast-isel has deferred, select it now. 1227 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1228 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1229 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1230 Inst->getType()); 1231 SDValue Chain = DAG.getEntryNode(); 1232 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1233 } 1234 1235 llvm_unreachable("Can't get register for value!"); 1236 } 1237 1238 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1239 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1240 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1241 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1242 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1243 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1244 if (IsMSVCCXX || IsCoreCLR) 1245 CatchPadMBB->setIsEHFuncletEntry(); 1246 1247 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1248 } 1249 1250 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1251 // Update machine-CFG edge. 1252 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1253 FuncInfo.MBB->addSuccessor(TargetMBB); 1254 1255 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1256 bool IsSEH = isAsynchronousEHPersonality(Pers); 1257 if (IsSEH) { 1258 // If this is not a fall-through branch or optimizations are switched off, 1259 // emit the branch. 1260 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1261 TM.getOptLevel() == CodeGenOpt::None) 1262 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1263 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1264 return; 1265 } 1266 1267 // Figure out the funclet membership for the catchret's successor. 1268 // This will be used by the FuncletLayout pass to determine how to order the 1269 // BB's. 1270 // A 'catchret' returns to the outer scope's color. 1271 Value *ParentPad = I.getCatchSwitchParentPad(); 1272 const BasicBlock *SuccessorColor; 1273 if (isa<ConstantTokenNone>(ParentPad)) 1274 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1275 else 1276 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1277 assert(SuccessorColor && "No parent funclet for catchret!"); 1278 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1279 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1280 1281 // Create the terminator node. 1282 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1283 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1284 DAG.getBasicBlock(SuccessorColorMBB)); 1285 DAG.setRoot(Ret); 1286 } 1287 1288 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1289 // Don't emit any special code for the cleanuppad instruction. It just marks 1290 // the start of a funclet. 1291 FuncInfo.MBB->setIsEHFuncletEntry(); 1292 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1293 } 1294 1295 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1296 /// many places it could ultimately go. In the IR, we have a single unwind 1297 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1298 /// This function skips over imaginary basic blocks that hold catchswitch 1299 /// instructions, and finds all the "real" machine 1300 /// basic block destinations. As those destinations may not be successors of 1301 /// EHPadBB, here we also calculate the edge probability to those destinations. 1302 /// The passed-in Prob is the edge probability to EHPadBB. 1303 static void findUnwindDestinations( 1304 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1305 BranchProbability Prob, 1306 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1307 &UnwindDests) { 1308 EHPersonality Personality = 1309 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1310 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1311 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1312 1313 while (EHPadBB) { 1314 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1315 BasicBlock *NewEHPadBB = nullptr; 1316 if (isa<LandingPadInst>(Pad)) { 1317 // Stop on landingpads. They are not funclets. 1318 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1319 break; 1320 } else if (isa<CleanupPadInst>(Pad)) { 1321 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1322 // personalities. 1323 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1324 UnwindDests.back().first->setIsEHFuncletEntry(); 1325 break; 1326 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1327 // Add the catchpad handlers to the possible destinations. 1328 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1329 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1330 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1331 if (IsMSVCCXX || IsCoreCLR) 1332 UnwindDests.back().first->setIsEHFuncletEntry(); 1333 } 1334 NewEHPadBB = CatchSwitch->getUnwindDest(); 1335 } else { 1336 continue; 1337 } 1338 1339 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1340 if (BPI && NewEHPadBB) 1341 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1342 EHPadBB = NewEHPadBB; 1343 } 1344 } 1345 1346 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1347 // Update successor info. 1348 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1349 auto UnwindDest = I.getUnwindDest(); 1350 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1351 BranchProbability UnwindDestProb = 1352 (BPI && UnwindDest) 1353 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1354 : BranchProbability::getZero(); 1355 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1356 for (auto &UnwindDest : UnwindDests) { 1357 UnwindDest.first->setIsEHPad(); 1358 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1359 } 1360 FuncInfo.MBB->normalizeSuccProbs(); 1361 1362 // Create the terminator node. 1363 SDValue Ret = 1364 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1365 DAG.setRoot(Ret); 1366 } 1367 1368 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1369 report_fatal_error("visitCatchSwitch not yet implemented!"); 1370 } 1371 1372 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1373 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1374 auto &DL = DAG.getDataLayout(); 1375 SDValue Chain = getControlRoot(); 1376 SmallVector<ISD::OutputArg, 8> Outs; 1377 SmallVector<SDValue, 8> OutVals; 1378 1379 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1380 // lower 1381 // 1382 // %val = call <ty> @llvm.experimental.deoptimize() 1383 // ret <ty> %val 1384 // 1385 // differently. 1386 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1387 LowerDeoptimizingReturn(); 1388 return; 1389 } 1390 1391 if (!FuncInfo.CanLowerReturn) { 1392 unsigned DemoteReg = FuncInfo.DemoteRegister; 1393 const Function *F = I.getParent()->getParent(); 1394 1395 // Emit a store of the return value through the virtual register. 1396 // Leave Outs empty so that LowerReturn won't try to load return 1397 // registers the usual way. 1398 SmallVector<EVT, 1> PtrValueVTs; 1399 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1400 PtrValueVTs); 1401 1402 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1403 DemoteReg, PtrValueVTs[0]); 1404 SDValue RetOp = getValue(I.getOperand(0)); 1405 1406 SmallVector<EVT, 4> ValueVTs; 1407 SmallVector<uint64_t, 4> Offsets; 1408 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1409 unsigned NumValues = ValueVTs.size(); 1410 1411 // An aggregate return value cannot wrap around the address space, so 1412 // offsets to its parts don't wrap either. 1413 SDNodeFlags Flags; 1414 Flags.setNoUnsignedWrap(true); 1415 1416 SmallVector<SDValue, 4> Chains(NumValues); 1417 for (unsigned i = 0; i != NumValues; ++i) { 1418 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1419 RetPtr.getValueType(), RetPtr, 1420 DAG.getIntPtrConstant(Offsets[i], 1421 getCurSDLoc()), 1422 &Flags); 1423 Chains[i] = 1424 DAG.getStore(Chain, getCurSDLoc(), 1425 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1426 // FIXME: better loc info would be nice. 1427 Add, MachinePointerInfo(), false, false, 0); 1428 } 1429 1430 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1431 MVT::Other, Chains); 1432 } else if (I.getNumOperands() != 0) { 1433 SmallVector<EVT, 4> ValueVTs; 1434 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1435 unsigned NumValues = ValueVTs.size(); 1436 if (NumValues) { 1437 SDValue RetOp = getValue(I.getOperand(0)); 1438 1439 const Function *F = I.getParent()->getParent(); 1440 1441 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1442 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1443 Attribute::SExt)) 1444 ExtendKind = ISD::SIGN_EXTEND; 1445 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1446 Attribute::ZExt)) 1447 ExtendKind = ISD::ZERO_EXTEND; 1448 1449 LLVMContext &Context = F->getContext(); 1450 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1451 Attribute::InReg); 1452 1453 for (unsigned j = 0; j != NumValues; ++j) { 1454 EVT VT = ValueVTs[j]; 1455 1456 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1457 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1458 1459 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1460 MVT PartVT = TLI.getRegisterType(Context, VT); 1461 SmallVector<SDValue, 4> Parts(NumParts); 1462 getCopyToParts(DAG, getCurSDLoc(), 1463 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1464 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1465 1466 // 'inreg' on function refers to return value 1467 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1468 if (RetInReg) 1469 Flags.setInReg(); 1470 1471 // Propagate extension type if any 1472 if (ExtendKind == ISD::SIGN_EXTEND) 1473 Flags.setSExt(); 1474 else if (ExtendKind == ISD::ZERO_EXTEND) 1475 Flags.setZExt(); 1476 1477 for (unsigned i = 0; i < NumParts; ++i) { 1478 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1479 VT, /*isfixed=*/true, 0, 0)); 1480 OutVals.push_back(Parts[i]); 1481 } 1482 } 1483 } 1484 } 1485 1486 // Push in swifterror virtual register as the last element of Outs. This makes 1487 // sure swifterror virtual register will be returned in the swifterror 1488 // physical register. 1489 const Function *F = I.getParent()->getParent(); 1490 if (TLI.supportSwiftError() && 1491 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1492 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1493 Flags.setSwiftError(); 1494 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1495 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1496 true /*isfixed*/, 1 /*origidx*/, 1497 0 /*partOffs*/)); 1498 // Create SDNode for the swifterror virtual register. 1499 OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0], 1500 EVT(TLI.getPointerTy(DL)))); 1501 } 1502 1503 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1504 CallingConv::ID CallConv = 1505 DAG.getMachineFunction().getFunction()->getCallingConv(); 1506 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1507 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1508 1509 // Verify that the target's LowerReturn behaved as expected. 1510 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1511 "LowerReturn didn't return a valid chain!"); 1512 1513 // Update the DAG with the new chain value resulting from return lowering. 1514 DAG.setRoot(Chain); 1515 } 1516 1517 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1518 /// created for it, emit nodes to copy the value into the virtual 1519 /// registers. 1520 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1521 // Skip empty types 1522 if (V->getType()->isEmptyTy()) 1523 return; 1524 1525 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1526 if (VMI != FuncInfo.ValueMap.end()) { 1527 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1528 CopyValueToVirtualRegister(V, VMI->second); 1529 } 1530 } 1531 1532 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1533 /// the current basic block, add it to ValueMap now so that we'll get a 1534 /// CopyTo/FromReg. 1535 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1536 // No need to export constants. 1537 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1538 1539 // Already exported? 1540 if (FuncInfo.isExportedInst(V)) return; 1541 1542 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1543 CopyValueToVirtualRegister(V, Reg); 1544 } 1545 1546 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1547 const BasicBlock *FromBB) { 1548 // The operands of the setcc have to be in this block. We don't know 1549 // how to export them from some other block. 1550 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1551 // Can export from current BB. 1552 if (VI->getParent() == FromBB) 1553 return true; 1554 1555 // Is already exported, noop. 1556 return FuncInfo.isExportedInst(V); 1557 } 1558 1559 // If this is an argument, we can export it if the BB is the entry block or 1560 // if it is already exported. 1561 if (isa<Argument>(V)) { 1562 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1563 return true; 1564 1565 // Otherwise, can only export this if it is already exported. 1566 return FuncInfo.isExportedInst(V); 1567 } 1568 1569 // Otherwise, constants can always be exported. 1570 return true; 1571 } 1572 1573 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1574 BranchProbability 1575 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1576 const MachineBasicBlock *Dst) const { 1577 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1578 const BasicBlock *SrcBB = Src->getBasicBlock(); 1579 const BasicBlock *DstBB = Dst->getBasicBlock(); 1580 if (!BPI) { 1581 // If BPI is not available, set the default probability as 1 / N, where N is 1582 // the number of successors. 1583 auto SuccSize = std::max<uint32_t>( 1584 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1585 return BranchProbability(1, SuccSize); 1586 } 1587 return BPI->getEdgeProbability(SrcBB, DstBB); 1588 } 1589 1590 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1591 MachineBasicBlock *Dst, 1592 BranchProbability Prob) { 1593 if (!FuncInfo.BPI) 1594 Src->addSuccessorWithoutProb(Dst); 1595 else { 1596 if (Prob.isUnknown()) 1597 Prob = getEdgeProbability(Src, Dst); 1598 Src->addSuccessor(Dst, Prob); 1599 } 1600 } 1601 1602 static bool InBlock(const Value *V, const BasicBlock *BB) { 1603 if (const Instruction *I = dyn_cast<Instruction>(V)) 1604 return I->getParent() == BB; 1605 return true; 1606 } 1607 1608 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1609 /// This function emits a branch and is used at the leaves of an OR or an 1610 /// AND operator tree. 1611 /// 1612 void 1613 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1614 MachineBasicBlock *TBB, 1615 MachineBasicBlock *FBB, 1616 MachineBasicBlock *CurBB, 1617 MachineBasicBlock *SwitchBB, 1618 BranchProbability TProb, 1619 BranchProbability FProb) { 1620 const BasicBlock *BB = CurBB->getBasicBlock(); 1621 1622 // If the leaf of the tree is a comparison, merge the condition into 1623 // the caseblock. 1624 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1625 // The operands of the cmp have to be in this block. We don't know 1626 // how to export them from some other block. If this is the first block 1627 // of the sequence, no exporting is needed. 1628 if (CurBB == SwitchBB || 1629 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1630 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1631 ISD::CondCode Condition; 1632 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1633 Condition = getICmpCondCode(IC->getPredicate()); 1634 } else { 1635 const FCmpInst *FC = cast<FCmpInst>(Cond); 1636 Condition = getFCmpCondCode(FC->getPredicate()); 1637 if (TM.Options.NoNaNsFPMath) 1638 Condition = getFCmpCodeWithoutNaN(Condition); 1639 } 1640 1641 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1642 TBB, FBB, CurBB, TProb, FProb); 1643 SwitchCases.push_back(CB); 1644 return; 1645 } 1646 } 1647 1648 // Create a CaseBlock record representing this branch. 1649 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1650 nullptr, TBB, FBB, CurBB, TProb, FProb); 1651 SwitchCases.push_back(CB); 1652 } 1653 1654 /// FindMergedConditions - If Cond is an expression like 1655 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1656 MachineBasicBlock *TBB, 1657 MachineBasicBlock *FBB, 1658 MachineBasicBlock *CurBB, 1659 MachineBasicBlock *SwitchBB, 1660 Instruction::BinaryOps Opc, 1661 BranchProbability TProb, 1662 BranchProbability FProb) { 1663 // If this node is not part of the or/and tree, emit it as a branch. 1664 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1665 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1666 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1667 BOp->getParent() != CurBB->getBasicBlock() || 1668 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1669 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1670 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1671 TProb, FProb); 1672 return; 1673 } 1674 1675 // Create TmpBB after CurBB. 1676 MachineFunction::iterator BBI(CurBB); 1677 MachineFunction &MF = DAG.getMachineFunction(); 1678 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1679 CurBB->getParent()->insert(++BBI, TmpBB); 1680 1681 if (Opc == Instruction::Or) { 1682 // Codegen X | Y as: 1683 // BB1: 1684 // jmp_if_X TBB 1685 // jmp TmpBB 1686 // TmpBB: 1687 // jmp_if_Y TBB 1688 // jmp FBB 1689 // 1690 1691 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1692 // The requirement is that 1693 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1694 // = TrueProb for original BB. 1695 // Assuming the original probabilities are A and B, one choice is to set 1696 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1697 // A/(1+B) and 2B/(1+B). This choice assumes that 1698 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1699 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1700 // TmpBB, but the math is more complicated. 1701 1702 auto NewTrueProb = TProb / 2; 1703 auto NewFalseProb = TProb / 2 + FProb; 1704 // Emit the LHS condition. 1705 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1706 NewTrueProb, NewFalseProb); 1707 1708 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1709 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1710 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1711 // Emit the RHS condition into TmpBB. 1712 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1713 Probs[0], Probs[1]); 1714 } else { 1715 assert(Opc == Instruction::And && "Unknown merge op!"); 1716 // Codegen X & Y as: 1717 // BB1: 1718 // jmp_if_X TmpBB 1719 // jmp FBB 1720 // TmpBB: 1721 // jmp_if_Y TBB 1722 // jmp FBB 1723 // 1724 // This requires creation of TmpBB after CurBB. 1725 1726 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1727 // The requirement is that 1728 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1729 // = FalseProb for original BB. 1730 // Assuming the original probabilities are A and B, one choice is to set 1731 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1732 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1733 // TrueProb for BB1 * FalseProb for TmpBB. 1734 1735 auto NewTrueProb = TProb + FProb / 2; 1736 auto NewFalseProb = FProb / 2; 1737 // Emit the LHS condition. 1738 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1739 NewTrueProb, NewFalseProb); 1740 1741 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1742 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1743 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1744 // Emit the RHS condition into TmpBB. 1745 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1746 Probs[0], Probs[1]); 1747 } 1748 } 1749 1750 /// If the set of cases should be emitted as a series of branches, return true. 1751 /// If we should emit this as a bunch of and/or'd together conditions, return 1752 /// false. 1753 bool 1754 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1755 if (Cases.size() != 2) return true; 1756 1757 // If this is two comparisons of the same values or'd or and'd together, they 1758 // will get folded into a single comparison, so don't emit two blocks. 1759 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1760 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1761 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1762 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1763 return false; 1764 } 1765 1766 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1767 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1768 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1769 Cases[0].CC == Cases[1].CC && 1770 isa<Constant>(Cases[0].CmpRHS) && 1771 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1772 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1773 return false; 1774 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1775 return false; 1776 } 1777 1778 return true; 1779 } 1780 1781 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1782 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1783 1784 // Update machine-CFG edges. 1785 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1786 1787 if (I.isUnconditional()) { 1788 // Update machine-CFG edges. 1789 BrMBB->addSuccessor(Succ0MBB); 1790 1791 // If this is not a fall-through branch or optimizations are switched off, 1792 // emit the branch. 1793 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1794 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1795 MVT::Other, getControlRoot(), 1796 DAG.getBasicBlock(Succ0MBB))); 1797 1798 return; 1799 } 1800 1801 // If this condition is one of the special cases we handle, do special stuff 1802 // now. 1803 const Value *CondVal = I.getCondition(); 1804 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1805 1806 // If this is a series of conditions that are or'd or and'd together, emit 1807 // this as a sequence of branches instead of setcc's with and/or operations. 1808 // As long as jumps are not expensive, this should improve performance. 1809 // For example, instead of something like: 1810 // cmp A, B 1811 // C = seteq 1812 // cmp D, E 1813 // F = setle 1814 // or C, F 1815 // jnz foo 1816 // Emit: 1817 // cmp A, B 1818 // je foo 1819 // cmp D, E 1820 // jle foo 1821 // 1822 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1823 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1824 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1825 !I.getMetadata(LLVMContext::MD_unpredictable) && 1826 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1827 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1828 Opcode, 1829 getEdgeProbability(BrMBB, Succ0MBB), 1830 getEdgeProbability(BrMBB, Succ1MBB)); 1831 // If the compares in later blocks need to use values not currently 1832 // exported from this block, export them now. This block should always 1833 // be the first entry. 1834 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1835 1836 // Allow some cases to be rejected. 1837 if (ShouldEmitAsBranches(SwitchCases)) { 1838 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1839 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1840 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1841 } 1842 1843 // Emit the branch for this block. 1844 visitSwitchCase(SwitchCases[0], BrMBB); 1845 SwitchCases.erase(SwitchCases.begin()); 1846 return; 1847 } 1848 1849 // Okay, we decided not to do this, remove any inserted MBB's and clear 1850 // SwitchCases. 1851 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1852 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1853 1854 SwitchCases.clear(); 1855 } 1856 } 1857 1858 // Create a CaseBlock record representing this branch. 1859 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1860 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1861 1862 // Use visitSwitchCase to actually insert the fast branch sequence for this 1863 // cond branch. 1864 visitSwitchCase(CB, BrMBB); 1865 } 1866 1867 /// visitSwitchCase - Emits the necessary code to represent a single node in 1868 /// the binary search tree resulting from lowering a switch instruction. 1869 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1870 MachineBasicBlock *SwitchBB) { 1871 SDValue Cond; 1872 SDValue CondLHS = getValue(CB.CmpLHS); 1873 SDLoc dl = getCurSDLoc(); 1874 1875 // Build the setcc now. 1876 if (!CB.CmpMHS) { 1877 // Fold "(X == true)" to X and "(X == false)" to !X to 1878 // handle common cases produced by branch lowering. 1879 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1880 CB.CC == ISD::SETEQ) 1881 Cond = CondLHS; 1882 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1883 CB.CC == ISD::SETEQ) { 1884 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1885 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1886 } else 1887 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1888 } else { 1889 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1890 1891 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1892 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1893 1894 SDValue CmpOp = getValue(CB.CmpMHS); 1895 EVT VT = CmpOp.getValueType(); 1896 1897 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1898 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1899 ISD::SETLE); 1900 } else { 1901 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1902 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1903 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1904 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1905 } 1906 } 1907 1908 // Update successor info 1909 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1910 // TrueBB and FalseBB are always different unless the incoming IR is 1911 // degenerate. This only happens when running llc on weird IR. 1912 if (CB.TrueBB != CB.FalseBB) 1913 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1914 SwitchBB->normalizeSuccProbs(); 1915 1916 // If the lhs block is the next block, invert the condition so that we can 1917 // fall through to the lhs instead of the rhs block. 1918 if (CB.TrueBB == NextBlock(SwitchBB)) { 1919 std::swap(CB.TrueBB, CB.FalseBB); 1920 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1921 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1922 } 1923 1924 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1925 MVT::Other, getControlRoot(), Cond, 1926 DAG.getBasicBlock(CB.TrueBB)); 1927 1928 // Insert the false branch. Do this even if it's a fall through branch, 1929 // this makes it easier to do DAG optimizations which require inverting 1930 // the branch condition. 1931 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1932 DAG.getBasicBlock(CB.FalseBB)); 1933 1934 DAG.setRoot(BrCond); 1935 } 1936 1937 /// visitJumpTable - Emit JumpTable node in the current MBB 1938 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1939 // Emit the code for the jump table 1940 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1941 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1942 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1943 JT.Reg, PTy); 1944 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1945 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1946 MVT::Other, Index.getValue(1), 1947 Table, Index); 1948 DAG.setRoot(BrJumpTable); 1949 } 1950 1951 /// visitJumpTableHeader - This function emits necessary code to produce index 1952 /// in the JumpTable from switch case. 1953 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1954 JumpTableHeader &JTH, 1955 MachineBasicBlock *SwitchBB) { 1956 SDLoc dl = getCurSDLoc(); 1957 1958 // Subtract the lowest switch case value from the value being switched on and 1959 // conditional branch to default mbb if the result is greater than the 1960 // difference between smallest and largest cases. 1961 SDValue SwitchOp = getValue(JTH.SValue); 1962 EVT VT = SwitchOp.getValueType(); 1963 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1964 DAG.getConstant(JTH.First, dl, VT)); 1965 1966 // The SDNode we just created, which holds the value being switched on minus 1967 // the smallest case value, needs to be copied to a virtual register so it 1968 // can be used as an index into the jump table in a subsequent basic block. 1969 // This value may be smaller or larger than the target's pointer type, and 1970 // therefore require extension or truncating. 1971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1972 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1973 1974 unsigned JumpTableReg = 1975 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1976 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1977 JumpTableReg, SwitchOp); 1978 JT.Reg = JumpTableReg; 1979 1980 // Emit the range check for the jump table, and branch to the default block 1981 // for the switch statement if the value being switched on exceeds the largest 1982 // case in the switch. 1983 SDValue CMP = DAG.getSetCC( 1984 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1985 Sub.getValueType()), 1986 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1987 1988 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1989 MVT::Other, CopyTo, CMP, 1990 DAG.getBasicBlock(JT.Default)); 1991 1992 // Avoid emitting unnecessary branches to the next block. 1993 if (JT.MBB != NextBlock(SwitchBB)) 1994 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1995 DAG.getBasicBlock(JT.MBB)); 1996 1997 DAG.setRoot(BrCond); 1998 } 1999 2000 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2001 /// variable if there exists one. 2002 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2003 SDValue &Chain) { 2004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2005 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2006 MachineFunction &MF = DAG.getMachineFunction(); 2007 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 2008 MachineSDNode *Node = 2009 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2010 if (Global) { 2011 MachinePointerInfo MPInfo(Global); 2012 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2013 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant; 2014 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2015 DAG.getEVTAlignment(PtrTy)); 2016 Node->setMemRefs(MemRefs, MemRefs + 1); 2017 } 2018 return SDValue(Node, 0); 2019 } 2020 2021 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2022 /// tail spliced into a stack protector check success bb. 2023 /// 2024 /// For a high level explanation of how this fits into the stack protector 2025 /// generation see the comment on the declaration of class 2026 /// StackProtectorDescriptor. 2027 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2028 MachineBasicBlock *ParentBB) { 2029 2030 // First create the loads to the guard/stack slot for the comparison. 2031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2032 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2033 2034 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 2035 int FI = MFI->getStackProtectorIndex(); 2036 2037 SDValue Guard; 2038 SDLoc dl = getCurSDLoc(); 2039 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2040 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2041 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2042 2043 // Generate code to load the content of the guard slot. 2044 SDValue StackSlot = DAG.getLoad( 2045 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2046 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 2047 false, false, Align); 2048 2049 // Retrieve guard check function, nullptr if instrumentation is inlined. 2050 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2051 // The target provides a guard check function to validate the guard value. 2052 // Generate a call to that function with the content of the guard slot as 2053 // argument. 2054 auto *Fn = cast<Function>(GuardCheck); 2055 FunctionType *FnTy = Fn->getFunctionType(); 2056 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2057 2058 TargetLowering::ArgListTy Args; 2059 TargetLowering::ArgListEntry Entry; 2060 Entry.Node = StackSlot; 2061 Entry.Ty = FnTy->getParamType(0); 2062 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2063 Entry.isInReg = true; 2064 Args.push_back(Entry); 2065 2066 TargetLowering::CallLoweringInfo CLI(DAG); 2067 CLI.setDebugLoc(getCurSDLoc()) 2068 .setChain(DAG.getEntryNode()) 2069 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2070 getValue(GuardCheck), std::move(Args)); 2071 2072 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2073 DAG.setRoot(Result.second); 2074 return; 2075 } 2076 2077 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2078 // Otherwise, emit a volatile load to retrieve the stack guard value. 2079 SDValue Chain = DAG.getEntryNode(); 2080 if (TLI.useLoadStackGuardNode()) { 2081 Guard = getLoadStackGuard(DAG, dl, Chain); 2082 } else { 2083 const Value *IRGuard = TLI.getSDagStackGuard(M); 2084 SDValue GuardPtr = getValue(IRGuard); 2085 2086 Guard = 2087 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2088 true, false, false, Align); 2089 } 2090 2091 // Perform the comparison via a subtract/getsetcc. 2092 EVT VT = Guard.getValueType(); 2093 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2094 2095 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2096 *DAG.getContext(), 2097 Sub.getValueType()), 2098 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2099 2100 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2101 // branch to failure MBB. 2102 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2103 MVT::Other, StackSlot.getOperand(0), 2104 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2105 // Otherwise branch to success MBB. 2106 SDValue Br = DAG.getNode(ISD::BR, dl, 2107 MVT::Other, BrCond, 2108 DAG.getBasicBlock(SPD.getSuccessMBB())); 2109 2110 DAG.setRoot(Br); 2111 } 2112 2113 /// Codegen the failure basic block for a stack protector check. 2114 /// 2115 /// A failure stack protector machine basic block consists simply of a call to 2116 /// __stack_chk_fail(). 2117 /// 2118 /// For a high level explanation of how this fits into the stack protector 2119 /// generation see the comment on the declaration of class 2120 /// StackProtectorDescriptor. 2121 void 2122 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2124 SDValue Chain = 2125 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2126 None, false, getCurSDLoc(), false, false).second; 2127 DAG.setRoot(Chain); 2128 } 2129 2130 /// visitBitTestHeader - This function emits necessary code to produce value 2131 /// suitable for "bit tests" 2132 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2133 MachineBasicBlock *SwitchBB) { 2134 SDLoc dl = getCurSDLoc(); 2135 2136 // Subtract the minimum value 2137 SDValue SwitchOp = getValue(B.SValue); 2138 EVT VT = SwitchOp.getValueType(); 2139 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2140 DAG.getConstant(B.First, dl, VT)); 2141 2142 // Check range 2143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2144 SDValue RangeCmp = DAG.getSetCC( 2145 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2146 Sub.getValueType()), 2147 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2148 2149 // Determine the type of the test operands. 2150 bool UsePtrType = false; 2151 if (!TLI.isTypeLegal(VT)) 2152 UsePtrType = true; 2153 else { 2154 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2155 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2156 // Switch table case range are encoded into series of masks. 2157 // Just use pointer type, it's guaranteed to fit. 2158 UsePtrType = true; 2159 break; 2160 } 2161 } 2162 if (UsePtrType) { 2163 VT = TLI.getPointerTy(DAG.getDataLayout()); 2164 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2165 } 2166 2167 B.RegVT = VT.getSimpleVT(); 2168 B.Reg = FuncInfo.CreateReg(B.RegVT); 2169 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2170 2171 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2172 2173 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2174 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2175 SwitchBB->normalizeSuccProbs(); 2176 2177 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2178 MVT::Other, CopyTo, RangeCmp, 2179 DAG.getBasicBlock(B.Default)); 2180 2181 // Avoid emitting unnecessary branches to the next block. 2182 if (MBB != NextBlock(SwitchBB)) 2183 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2184 DAG.getBasicBlock(MBB)); 2185 2186 DAG.setRoot(BrRange); 2187 } 2188 2189 /// visitBitTestCase - this function produces one "bit test" 2190 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2191 MachineBasicBlock* NextMBB, 2192 BranchProbability BranchProbToNext, 2193 unsigned Reg, 2194 BitTestCase &B, 2195 MachineBasicBlock *SwitchBB) { 2196 SDLoc dl = getCurSDLoc(); 2197 MVT VT = BB.RegVT; 2198 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2199 SDValue Cmp; 2200 unsigned PopCount = countPopulation(B.Mask); 2201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2202 if (PopCount == 1) { 2203 // Testing for a single bit; just compare the shift count with what it 2204 // would need to be to shift a 1 bit in that position. 2205 Cmp = DAG.getSetCC( 2206 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2207 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2208 ISD::SETEQ); 2209 } else if (PopCount == BB.Range) { 2210 // There is only one zero bit in the range, test for it directly. 2211 Cmp = DAG.getSetCC( 2212 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2213 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2214 ISD::SETNE); 2215 } else { 2216 // Make desired shift 2217 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2218 DAG.getConstant(1, dl, VT), ShiftOp); 2219 2220 // Emit bit tests and jumps 2221 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2222 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2223 Cmp = DAG.getSetCC( 2224 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2225 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2226 } 2227 2228 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2229 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2230 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2231 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2232 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2233 // one as they are relative probabilities (and thus work more like weights), 2234 // and hence we need to normalize them to let the sum of them become one. 2235 SwitchBB->normalizeSuccProbs(); 2236 2237 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2238 MVT::Other, getControlRoot(), 2239 Cmp, DAG.getBasicBlock(B.TargetBB)); 2240 2241 // Avoid emitting unnecessary branches to the next block. 2242 if (NextMBB != NextBlock(SwitchBB)) 2243 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2244 DAG.getBasicBlock(NextMBB)); 2245 2246 DAG.setRoot(BrAnd); 2247 } 2248 2249 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2250 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2251 2252 // Retrieve successors. Look through artificial IR level blocks like 2253 // catchswitch for successors. 2254 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2255 const BasicBlock *EHPadBB = I.getSuccessor(1); 2256 2257 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2258 // have to do anything here to lower funclet bundles. 2259 assert(!I.hasOperandBundlesOtherThan( 2260 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2261 "Cannot lower invokes with arbitrary operand bundles yet!"); 2262 2263 const Value *Callee(I.getCalledValue()); 2264 const Function *Fn = dyn_cast<Function>(Callee); 2265 if (isa<InlineAsm>(Callee)) 2266 visitInlineAsm(&I); 2267 else if (Fn && Fn->isIntrinsic()) { 2268 switch (Fn->getIntrinsicID()) { 2269 default: 2270 llvm_unreachable("Cannot invoke this intrinsic"); 2271 case Intrinsic::donothing: 2272 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2273 break; 2274 case Intrinsic::experimental_patchpoint_void: 2275 case Intrinsic::experimental_patchpoint_i64: 2276 visitPatchpoint(&I, EHPadBB); 2277 break; 2278 case Intrinsic::experimental_gc_statepoint: 2279 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2280 break; 2281 } 2282 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2283 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2284 // Eventually we will support lowering the @llvm.experimental.deoptimize 2285 // intrinsic, and right now there are no plans to support other intrinsics 2286 // with deopt state. 2287 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2288 } else { 2289 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2290 } 2291 2292 // If the value of the invoke is used outside of its defining block, make it 2293 // available as a virtual register. 2294 // We already took care of the exported value for the statepoint instruction 2295 // during call to the LowerStatepoint. 2296 if (!isStatepoint(I)) { 2297 CopyToExportRegsIfNeeded(&I); 2298 } 2299 2300 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2301 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2302 BranchProbability EHPadBBProb = 2303 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2304 : BranchProbability::getZero(); 2305 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2306 2307 // Update successor info. 2308 addSuccessorWithProb(InvokeMBB, Return); 2309 for (auto &UnwindDest : UnwindDests) { 2310 UnwindDest.first->setIsEHPad(); 2311 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2312 } 2313 InvokeMBB->normalizeSuccProbs(); 2314 2315 // Drop into normal successor. 2316 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2317 MVT::Other, getControlRoot(), 2318 DAG.getBasicBlock(Return))); 2319 } 2320 2321 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2322 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2323 } 2324 2325 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2326 assert(FuncInfo.MBB->isEHPad() && 2327 "Call to landingpad not in landing pad!"); 2328 2329 MachineBasicBlock *MBB = FuncInfo.MBB; 2330 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2331 AddLandingPadInfo(LP, MMI, MBB); 2332 2333 // If there aren't registers to copy the values into (e.g., during SjLj 2334 // exceptions), then don't bother to create these DAG nodes. 2335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2336 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2337 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2338 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2339 return; 2340 2341 // If landingpad's return type is token type, we don't create DAG nodes 2342 // for its exception pointer and selector value. The extraction of exception 2343 // pointer or selector value from token type landingpads is not currently 2344 // supported. 2345 if (LP.getType()->isTokenTy()) 2346 return; 2347 2348 SmallVector<EVT, 2> ValueVTs; 2349 SDLoc dl = getCurSDLoc(); 2350 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2351 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2352 2353 // Get the two live-in registers as SDValues. The physregs have already been 2354 // copied into virtual registers. 2355 SDValue Ops[2]; 2356 if (FuncInfo.ExceptionPointerVirtReg) { 2357 Ops[0] = DAG.getZExtOrTrunc( 2358 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2359 FuncInfo.ExceptionPointerVirtReg, 2360 TLI.getPointerTy(DAG.getDataLayout())), 2361 dl, ValueVTs[0]); 2362 } else { 2363 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2364 } 2365 Ops[1] = DAG.getZExtOrTrunc( 2366 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2367 FuncInfo.ExceptionSelectorVirtReg, 2368 TLI.getPointerTy(DAG.getDataLayout())), 2369 dl, ValueVTs[1]); 2370 2371 // Merge into one. 2372 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2373 DAG.getVTList(ValueVTs), Ops); 2374 setValue(&LP, Res); 2375 } 2376 2377 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2378 #ifndef NDEBUG 2379 for (const CaseCluster &CC : Clusters) 2380 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2381 #endif 2382 2383 std::sort(Clusters.begin(), Clusters.end(), 2384 [](const CaseCluster &a, const CaseCluster &b) { 2385 return a.Low->getValue().slt(b.Low->getValue()); 2386 }); 2387 2388 // Merge adjacent clusters with the same destination. 2389 const unsigned N = Clusters.size(); 2390 unsigned DstIndex = 0; 2391 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2392 CaseCluster &CC = Clusters[SrcIndex]; 2393 const ConstantInt *CaseVal = CC.Low; 2394 MachineBasicBlock *Succ = CC.MBB; 2395 2396 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2397 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2398 // If this case has the same successor and is a neighbour, merge it into 2399 // the previous cluster. 2400 Clusters[DstIndex - 1].High = CaseVal; 2401 Clusters[DstIndex - 1].Prob += CC.Prob; 2402 } else { 2403 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2404 sizeof(Clusters[SrcIndex])); 2405 } 2406 } 2407 Clusters.resize(DstIndex); 2408 } 2409 2410 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2411 MachineBasicBlock *Last) { 2412 // Update JTCases. 2413 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2414 if (JTCases[i].first.HeaderBB == First) 2415 JTCases[i].first.HeaderBB = Last; 2416 2417 // Update BitTestCases. 2418 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2419 if (BitTestCases[i].Parent == First) 2420 BitTestCases[i].Parent = Last; 2421 } 2422 2423 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2424 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2425 2426 // Update machine-CFG edges with unique successors. 2427 SmallSet<BasicBlock*, 32> Done; 2428 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2429 BasicBlock *BB = I.getSuccessor(i); 2430 bool Inserted = Done.insert(BB).second; 2431 if (!Inserted) 2432 continue; 2433 2434 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2435 addSuccessorWithProb(IndirectBrMBB, Succ); 2436 } 2437 IndirectBrMBB->normalizeSuccProbs(); 2438 2439 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2440 MVT::Other, getControlRoot(), 2441 getValue(I.getAddress()))); 2442 } 2443 2444 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2445 if (DAG.getTarget().Options.TrapUnreachable) 2446 DAG.setRoot( 2447 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2448 } 2449 2450 void SelectionDAGBuilder::visitFSub(const User &I) { 2451 // -0.0 - X --> fneg 2452 Type *Ty = I.getType(); 2453 if (isa<Constant>(I.getOperand(0)) && 2454 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2455 SDValue Op2 = getValue(I.getOperand(1)); 2456 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2457 Op2.getValueType(), Op2)); 2458 return; 2459 } 2460 2461 visitBinary(I, ISD::FSUB); 2462 } 2463 2464 /// Checks if the given instruction performs a vector reduction, in which case 2465 /// we have the freedom to alter the elements in the result as long as the 2466 /// reduction of them stays unchanged. 2467 static bool isVectorReductionOp(const User *I) { 2468 const Instruction *Inst = dyn_cast<Instruction>(I); 2469 if (!Inst || !Inst->getType()->isVectorTy()) 2470 return false; 2471 2472 auto OpCode = Inst->getOpcode(); 2473 switch (OpCode) { 2474 case Instruction::Add: 2475 case Instruction::Mul: 2476 case Instruction::And: 2477 case Instruction::Or: 2478 case Instruction::Xor: 2479 break; 2480 case Instruction::FAdd: 2481 case Instruction::FMul: 2482 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2483 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2484 break; 2485 // Fall through. 2486 default: 2487 return false; 2488 } 2489 2490 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2491 unsigned ElemNumToReduce = ElemNum; 2492 2493 // Do DFS search on the def-use chain from the given instruction. We only 2494 // allow four kinds of operations during the search until we reach the 2495 // instruction that extracts the first element from the vector: 2496 // 2497 // 1. The reduction operation of the same opcode as the given instruction. 2498 // 2499 // 2. PHI node. 2500 // 2501 // 3. ShuffleVector instruction together with a reduction operation that 2502 // does a partial reduction. 2503 // 2504 // 4. ExtractElement that extracts the first element from the vector, and we 2505 // stop searching the def-use chain here. 2506 // 2507 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2508 // from 1-3 to the stack to continue the DFS. The given instruction is not 2509 // a reduction operation if we meet any other instructions other than those 2510 // listed above. 2511 2512 SmallVector<const User *, 16> UsersToVisit{Inst}; 2513 SmallPtrSet<const User *, 16> Visited; 2514 bool ReduxExtracted = false; 2515 2516 while (!UsersToVisit.empty()) { 2517 auto User = UsersToVisit.back(); 2518 UsersToVisit.pop_back(); 2519 if (!Visited.insert(User).second) 2520 continue; 2521 2522 for (const auto &U : User->users()) { 2523 auto Inst = dyn_cast<Instruction>(U); 2524 if (!Inst) 2525 return false; 2526 2527 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2528 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2529 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2530 return false; 2531 UsersToVisit.push_back(U); 2532 } else if (const ShuffleVectorInst *ShufInst = 2533 dyn_cast<ShuffleVectorInst>(U)) { 2534 // Detect the following pattern: A ShuffleVector instruction together 2535 // with a reduction that do partial reduction on the first and second 2536 // ElemNumToReduce / 2 elements, and store the result in 2537 // ElemNumToReduce / 2 elements in another vector. 2538 2539 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2540 if (ResultElements < ElemNum) 2541 return false; 2542 2543 if (ElemNumToReduce == 1) 2544 return false; 2545 if (!isa<UndefValue>(U->getOperand(1))) 2546 return false; 2547 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2548 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2549 return false; 2550 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2551 if (ShufInst->getMaskValue(i) != -1) 2552 return false; 2553 2554 // There is only one user of this ShuffleVector instruction, which 2555 // must be a reduction operation. 2556 if (!U->hasOneUse()) 2557 return false; 2558 2559 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2560 if (!U2 || U2->getOpcode() != OpCode) 2561 return false; 2562 2563 // Check operands of the reduction operation. 2564 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2565 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2566 UsersToVisit.push_back(U2); 2567 ElemNumToReduce /= 2; 2568 } else 2569 return false; 2570 } else if (isa<ExtractElementInst>(U)) { 2571 // At this moment we should have reduced all elements in the vector. 2572 if (ElemNumToReduce != 1) 2573 return false; 2574 2575 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2576 if (!Val || Val->getZExtValue() != 0) 2577 return false; 2578 2579 ReduxExtracted = true; 2580 } else 2581 return false; 2582 } 2583 } 2584 return ReduxExtracted; 2585 } 2586 2587 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2588 SDValue Op1 = getValue(I.getOperand(0)); 2589 SDValue Op2 = getValue(I.getOperand(1)); 2590 2591 bool nuw = false; 2592 bool nsw = false; 2593 bool exact = false; 2594 bool vec_redux = false; 2595 FastMathFlags FMF; 2596 2597 if (const OverflowingBinaryOperator *OFBinOp = 2598 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2599 nuw = OFBinOp->hasNoUnsignedWrap(); 2600 nsw = OFBinOp->hasNoSignedWrap(); 2601 } 2602 if (const PossiblyExactOperator *ExactOp = 2603 dyn_cast<const PossiblyExactOperator>(&I)) 2604 exact = ExactOp->isExact(); 2605 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2606 FMF = FPOp->getFastMathFlags(); 2607 2608 if (isVectorReductionOp(&I)) { 2609 vec_redux = true; 2610 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2611 } 2612 2613 SDNodeFlags Flags; 2614 Flags.setExact(exact); 2615 Flags.setNoSignedWrap(nsw); 2616 Flags.setNoUnsignedWrap(nuw); 2617 Flags.setVectorReduction(vec_redux); 2618 if (EnableFMFInDAG) { 2619 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2620 Flags.setNoInfs(FMF.noInfs()); 2621 Flags.setNoNaNs(FMF.noNaNs()); 2622 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2623 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2624 } 2625 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2626 Op1, Op2, &Flags); 2627 setValue(&I, BinNodeValue); 2628 } 2629 2630 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2631 SDValue Op1 = getValue(I.getOperand(0)); 2632 SDValue Op2 = getValue(I.getOperand(1)); 2633 2634 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2635 Op2.getValueType(), DAG.getDataLayout()); 2636 2637 // Coerce the shift amount to the right type if we can. 2638 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2639 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2640 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2641 SDLoc DL = getCurSDLoc(); 2642 2643 // If the operand is smaller than the shift count type, promote it. 2644 if (ShiftSize > Op2Size) 2645 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2646 2647 // If the operand is larger than the shift count type but the shift 2648 // count type has enough bits to represent any shift value, truncate 2649 // it now. This is a common case and it exposes the truncate to 2650 // optimization early. 2651 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2652 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2653 // Otherwise we'll need to temporarily settle for some other convenient 2654 // type. Type legalization will make adjustments once the shiftee is split. 2655 else 2656 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2657 } 2658 2659 bool nuw = false; 2660 bool nsw = false; 2661 bool exact = false; 2662 2663 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2664 2665 if (const OverflowingBinaryOperator *OFBinOp = 2666 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2667 nuw = OFBinOp->hasNoUnsignedWrap(); 2668 nsw = OFBinOp->hasNoSignedWrap(); 2669 } 2670 if (const PossiblyExactOperator *ExactOp = 2671 dyn_cast<const PossiblyExactOperator>(&I)) 2672 exact = ExactOp->isExact(); 2673 } 2674 SDNodeFlags Flags; 2675 Flags.setExact(exact); 2676 Flags.setNoSignedWrap(nsw); 2677 Flags.setNoUnsignedWrap(nuw); 2678 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2679 &Flags); 2680 setValue(&I, Res); 2681 } 2682 2683 void SelectionDAGBuilder::visitSDiv(const User &I) { 2684 SDValue Op1 = getValue(I.getOperand(0)); 2685 SDValue Op2 = getValue(I.getOperand(1)); 2686 2687 SDNodeFlags Flags; 2688 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2689 cast<PossiblyExactOperator>(&I)->isExact()); 2690 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2691 Op2, &Flags)); 2692 } 2693 2694 void SelectionDAGBuilder::visitICmp(const User &I) { 2695 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2696 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2697 predicate = IC->getPredicate(); 2698 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2699 predicate = ICmpInst::Predicate(IC->getPredicate()); 2700 SDValue Op1 = getValue(I.getOperand(0)); 2701 SDValue Op2 = getValue(I.getOperand(1)); 2702 ISD::CondCode Opcode = getICmpCondCode(predicate); 2703 2704 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2705 I.getType()); 2706 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2707 } 2708 2709 void SelectionDAGBuilder::visitFCmp(const User &I) { 2710 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2711 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2712 predicate = FC->getPredicate(); 2713 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2714 predicate = FCmpInst::Predicate(FC->getPredicate()); 2715 SDValue Op1 = getValue(I.getOperand(0)); 2716 SDValue Op2 = getValue(I.getOperand(1)); 2717 ISD::CondCode Condition = getFCmpCondCode(predicate); 2718 2719 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2720 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2721 // further optimization, but currently FMF is only applicable to binary nodes. 2722 if (TM.Options.NoNaNsFPMath) 2723 Condition = getFCmpCodeWithoutNaN(Condition); 2724 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2725 I.getType()); 2726 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2727 } 2728 2729 // Check if the condition of the select has one use or two users that are both 2730 // selects with the same condition. 2731 bool hasOnlySelectUsers(const Value *Cond) { 2732 return std::all_of(Cond->user_begin(), Cond->user_end(), [](const Value *V) { 2733 return isa<SelectInst>(V); 2734 }); 2735 } 2736 2737 void SelectionDAGBuilder::visitSelect(const User &I) { 2738 SmallVector<EVT, 4> ValueVTs; 2739 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2740 ValueVTs); 2741 unsigned NumValues = ValueVTs.size(); 2742 if (NumValues == 0) return; 2743 2744 SmallVector<SDValue, 4> Values(NumValues); 2745 SDValue Cond = getValue(I.getOperand(0)); 2746 SDValue LHSVal = getValue(I.getOperand(1)); 2747 SDValue RHSVal = getValue(I.getOperand(2)); 2748 auto BaseOps = {Cond}; 2749 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2750 ISD::VSELECT : ISD::SELECT; 2751 2752 // Min/max matching is only viable if all output VTs are the same. 2753 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2754 EVT VT = ValueVTs[0]; 2755 LLVMContext &Ctx = *DAG.getContext(); 2756 auto &TLI = DAG.getTargetLoweringInfo(); 2757 2758 // We care about the legality of the operation after it has been type 2759 // legalized. 2760 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2761 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2762 VT = TLI.getTypeToTransformTo(Ctx, VT); 2763 2764 // If the vselect is legal, assume we want to leave this as a vector setcc + 2765 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2766 // min/max is legal on the scalar type. 2767 bool UseScalarMinMax = VT.isVector() && 2768 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2769 2770 Value *LHS, *RHS; 2771 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2772 ISD::NodeType Opc = ISD::DELETED_NODE; 2773 switch (SPR.Flavor) { 2774 case SPF_UMAX: Opc = ISD::UMAX; break; 2775 case SPF_UMIN: Opc = ISD::UMIN; break; 2776 case SPF_SMAX: Opc = ISD::SMAX; break; 2777 case SPF_SMIN: Opc = ISD::SMIN; break; 2778 case SPF_FMINNUM: 2779 switch (SPR.NaNBehavior) { 2780 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2781 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2782 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2783 case SPNB_RETURNS_ANY: { 2784 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2785 Opc = ISD::FMINNUM; 2786 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2787 Opc = ISD::FMINNAN; 2788 else if (UseScalarMinMax) 2789 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2790 ISD::FMINNUM : ISD::FMINNAN; 2791 break; 2792 } 2793 } 2794 break; 2795 case SPF_FMAXNUM: 2796 switch (SPR.NaNBehavior) { 2797 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2798 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2799 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2800 case SPNB_RETURNS_ANY: 2801 2802 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2803 Opc = ISD::FMAXNUM; 2804 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2805 Opc = ISD::FMAXNAN; 2806 else if (UseScalarMinMax) 2807 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2808 ISD::FMAXNUM : ISD::FMAXNAN; 2809 break; 2810 } 2811 break; 2812 default: break; 2813 } 2814 2815 if (Opc != ISD::DELETED_NODE && 2816 (TLI.isOperationLegalOrCustom(Opc, VT) || 2817 (UseScalarMinMax && 2818 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2819 // If the underlying comparison instruction is used by any other 2820 // instruction, the consumed instructions won't be destroyed, so it is 2821 // not profitable to convert to a min/max. 2822 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2823 OpCode = Opc; 2824 LHSVal = getValue(LHS); 2825 RHSVal = getValue(RHS); 2826 BaseOps = {}; 2827 } 2828 } 2829 2830 for (unsigned i = 0; i != NumValues; ++i) { 2831 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2832 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2833 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2834 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2835 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2836 Ops); 2837 } 2838 2839 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2840 DAG.getVTList(ValueVTs), Values)); 2841 } 2842 2843 void SelectionDAGBuilder::visitTrunc(const User &I) { 2844 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2845 SDValue N = getValue(I.getOperand(0)); 2846 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2847 I.getType()); 2848 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2849 } 2850 2851 void SelectionDAGBuilder::visitZExt(const User &I) { 2852 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2853 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2854 SDValue N = getValue(I.getOperand(0)); 2855 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2856 I.getType()); 2857 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2858 } 2859 2860 void SelectionDAGBuilder::visitSExt(const User &I) { 2861 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2862 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2863 SDValue N = getValue(I.getOperand(0)); 2864 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2865 I.getType()); 2866 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2867 } 2868 2869 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2870 // FPTrunc is never a no-op cast, no need to check 2871 SDValue N = getValue(I.getOperand(0)); 2872 SDLoc dl = getCurSDLoc(); 2873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2874 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2875 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2876 DAG.getTargetConstant( 2877 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2878 } 2879 2880 void SelectionDAGBuilder::visitFPExt(const User &I) { 2881 // FPExt is never a no-op cast, no need to check 2882 SDValue N = getValue(I.getOperand(0)); 2883 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2884 I.getType()); 2885 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2886 } 2887 2888 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2889 // FPToUI is never a no-op cast, no need to check 2890 SDValue N = getValue(I.getOperand(0)); 2891 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2892 I.getType()); 2893 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2894 } 2895 2896 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2897 // FPToSI is never a no-op cast, no need to check 2898 SDValue N = getValue(I.getOperand(0)); 2899 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2900 I.getType()); 2901 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2902 } 2903 2904 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2905 // UIToFP is never a no-op cast, no need to check 2906 SDValue N = getValue(I.getOperand(0)); 2907 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2908 I.getType()); 2909 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2910 } 2911 2912 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2913 // SIToFP is never a no-op cast, no need to check 2914 SDValue N = getValue(I.getOperand(0)); 2915 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2916 I.getType()); 2917 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2918 } 2919 2920 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2921 // What to do depends on the size of the integer and the size of the pointer. 2922 // We can either truncate, zero extend, or no-op, accordingly. 2923 SDValue N = getValue(I.getOperand(0)); 2924 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2925 I.getType()); 2926 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2927 } 2928 2929 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2930 // What to do depends on the size of the integer and the size of the pointer. 2931 // We can either truncate, zero extend, or no-op, accordingly. 2932 SDValue N = getValue(I.getOperand(0)); 2933 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2934 I.getType()); 2935 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2936 } 2937 2938 void SelectionDAGBuilder::visitBitCast(const User &I) { 2939 SDValue N = getValue(I.getOperand(0)); 2940 SDLoc dl = getCurSDLoc(); 2941 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2942 I.getType()); 2943 2944 // BitCast assures us that source and destination are the same size so this is 2945 // either a BITCAST or a no-op. 2946 if (DestVT != N.getValueType()) 2947 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2948 DestVT, N)); // convert types. 2949 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2950 // might fold any kind of constant expression to an integer constant and that 2951 // is not what we are looking for. Only regcognize a bitcast of a genuine 2952 // constant integer as an opaque constant. 2953 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2954 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2955 /*isOpaque*/true)); 2956 else 2957 setValue(&I, N); // noop cast. 2958 } 2959 2960 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2961 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2962 const Value *SV = I.getOperand(0); 2963 SDValue N = getValue(SV); 2964 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2965 2966 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2967 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2968 2969 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2970 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2971 2972 setValue(&I, N); 2973 } 2974 2975 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2976 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2977 SDValue InVec = getValue(I.getOperand(0)); 2978 SDValue InVal = getValue(I.getOperand(1)); 2979 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2980 TLI.getVectorIdxTy(DAG.getDataLayout())); 2981 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2982 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2983 InVec, InVal, InIdx)); 2984 } 2985 2986 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2987 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2988 SDValue InVec = getValue(I.getOperand(0)); 2989 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2990 TLI.getVectorIdxTy(DAG.getDataLayout())); 2991 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2992 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2993 InVec, InIdx)); 2994 } 2995 2996 // Utility for visitShuffleVector - Return true if every element in Mask, 2997 // beginning from position Pos and ending in Pos+Size, falls within the 2998 // specified sequential range [L, L+Pos). or is undef. 2999 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3000 unsigned Pos, unsigned Size, int Low) { 3001 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3002 if (Mask[i] >= 0 && Mask[i] != Low) 3003 return false; 3004 return true; 3005 } 3006 3007 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3008 SDValue Src1 = getValue(I.getOperand(0)); 3009 SDValue Src2 = getValue(I.getOperand(1)); 3010 3011 SmallVector<int, 8> Mask; 3012 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3013 unsigned MaskNumElts = Mask.size(); 3014 3015 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3016 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3017 EVT SrcVT = Src1.getValueType(); 3018 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3019 3020 if (SrcNumElts == MaskNumElts) { 3021 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3022 &Mask[0])); 3023 return; 3024 } 3025 3026 // Normalize the shuffle vector since mask and vector length don't match. 3027 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3028 // Mask is longer than the source vectors and is a multiple of the source 3029 // vectors. We can use concatenate vector to make the mask and vectors 3030 // lengths match. 3031 if (SrcNumElts*2 == MaskNumElts) { 3032 // First check for Src1 in low and Src2 in high 3033 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3034 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3035 // The shuffle is concatenating two vectors together. 3036 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3037 VT, Src1, Src2)); 3038 return; 3039 } 3040 // Then check for Src2 in low and Src1 in high 3041 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3042 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3043 // The shuffle is concatenating two vectors together. 3044 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3045 VT, Src2, Src1)); 3046 return; 3047 } 3048 } 3049 3050 // Pad both vectors with undefs to make them the same length as the mask. 3051 unsigned NumConcat = MaskNumElts / SrcNumElts; 3052 bool Src1U = Src1.isUndef(); 3053 bool Src2U = Src2.isUndef(); 3054 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3055 3056 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3057 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3058 MOps1[0] = Src1; 3059 MOps2[0] = Src2; 3060 3061 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3062 getCurSDLoc(), VT, MOps1); 3063 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3064 getCurSDLoc(), VT, MOps2); 3065 3066 // Readjust mask for new input vector length. 3067 SmallVector<int, 8> MappedOps; 3068 for (unsigned i = 0; i != MaskNumElts; ++i) { 3069 int Idx = Mask[i]; 3070 if (Idx >= (int)SrcNumElts) 3071 Idx -= SrcNumElts - MaskNumElts; 3072 MappedOps.push_back(Idx); 3073 } 3074 3075 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3076 &MappedOps[0])); 3077 return; 3078 } 3079 3080 if (SrcNumElts > MaskNumElts) { 3081 // Analyze the access pattern of the vector to see if we can extract 3082 // two subvectors and do the shuffle. The analysis is done by calculating 3083 // the range of elements the mask access on both vectors. 3084 int MinRange[2] = { static_cast<int>(SrcNumElts), 3085 static_cast<int>(SrcNumElts)}; 3086 int MaxRange[2] = {-1, -1}; 3087 3088 for (unsigned i = 0; i != MaskNumElts; ++i) { 3089 int Idx = Mask[i]; 3090 unsigned Input = 0; 3091 if (Idx < 0) 3092 continue; 3093 3094 if (Idx >= (int)SrcNumElts) { 3095 Input = 1; 3096 Idx -= SrcNumElts; 3097 } 3098 if (Idx > MaxRange[Input]) 3099 MaxRange[Input] = Idx; 3100 if (Idx < MinRange[Input]) 3101 MinRange[Input] = Idx; 3102 } 3103 3104 // Check if the access is smaller than the vector size and can we find 3105 // a reasonable extract index. 3106 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3107 // Extract. 3108 int StartIdx[2]; // StartIdx to extract from 3109 for (unsigned Input = 0; Input < 2; ++Input) { 3110 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3111 RangeUse[Input] = 0; // Unused 3112 StartIdx[Input] = 0; 3113 continue; 3114 } 3115 3116 // Find a good start index that is a multiple of the mask length. Then 3117 // see if the rest of the elements are in range. 3118 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3119 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3120 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3121 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3122 } 3123 3124 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3125 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3126 return; 3127 } 3128 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3129 // Extract appropriate subvector and generate a vector shuffle 3130 for (unsigned Input = 0; Input < 2; ++Input) { 3131 SDValue &Src = Input == 0 ? Src1 : Src2; 3132 if (RangeUse[Input] == 0) 3133 Src = DAG.getUNDEF(VT); 3134 else { 3135 SDLoc dl = getCurSDLoc(); 3136 Src = DAG.getNode( 3137 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 3138 DAG.getConstant(StartIdx[Input], dl, 3139 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3140 } 3141 } 3142 3143 // Calculate new mask. 3144 SmallVector<int, 8> MappedOps; 3145 for (unsigned i = 0; i != MaskNumElts; ++i) { 3146 int Idx = Mask[i]; 3147 if (Idx >= 0) { 3148 if (Idx < (int)SrcNumElts) 3149 Idx -= StartIdx[0]; 3150 else 3151 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3152 } 3153 MappedOps.push_back(Idx); 3154 } 3155 3156 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3157 &MappedOps[0])); 3158 return; 3159 } 3160 } 3161 3162 // We can't use either concat vectors or extract subvectors so fall back to 3163 // replacing the shuffle with extract and build vector. 3164 // to insert and build vector. 3165 EVT EltVT = VT.getVectorElementType(); 3166 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3167 SDLoc dl = getCurSDLoc(); 3168 SmallVector<SDValue,8> Ops; 3169 for (unsigned i = 0; i != MaskNumElts; ++i) { 3170 int Idx = Mask[i]; 3171 SDValue Res; 3172 3173 if (Idx < 0) { 3174 Res = DAG.getUNDEF(EltVT); 3175 } else { 3176 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3177 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3178 3179 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3180 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 3181 } 3182 3183 Ops.push_back(Res); 3184 } 3185 3186 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 3187 } 3188 3189 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3190 const Value *Op0 = I.getOperand(0); 3191 const Value *Op1 = I.getOperand(1); 3192 Type *AggTy = I.getType(); 3193 Type *ValTy = Op1->getType(); 3194 bool IntoUndef = isa<UndefValue>(Op0); 3195 bool FromUndef = isa<UndefValue>(Op1); 3196 3197 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3198 3199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3200 SmallVector<EVT, 4> AggValueVTs; 3201 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3202 SmallVector<EVT, 4> ValValueVTs; 3203 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3204 3205 unsigned NumAggValues = AggValueVTs.size(); 3206 unsigned NumValValues = ValValueVTs.size(); 3207 SmallVector<SDValue, 4> Values(NumAggValues); 3208 3209 // Ignore an insertvalue that produces an empty object 3210 if (!NumAggValues) { 3211 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3212 return; 3213 } 3214 3215 SDValue Agg = getValue(Op0); 3216 unsigned i = 0; 3217 // Copy the beginning value(s) from the original aggregate. 3218 for (; i != LinearIndex; ++i) 3219 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3220 SDValue(Agg.getNode(), Agg.getResNo() + i); 3221 // Copy values from the inserted value(s). 3222 if (NumValValues) { 3223 SDValue Val = getValue(Op1); 3224 for (; i != LinearIndex + NumValValues; ++i) 3225 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3226 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3227 } 3228 // Copy remaining value(s) from the original aggregate. 3229 for (; i != NumAggValues; ++i) 3230 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3231 SDValue(Agg.getNode(), Agg.getResNo() + i); 3232 3233 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3234 DAG.getVTList(AggValueVTs), Values)); 3235 } 3236 3237 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3238 const Value *Op0 = I.getOperand(0); 3239 Type *AggTy = Op0->getType(); 3240 Type *ValTy = I.getType(); 3241 bool OutOfUndef = isa<UndefValue>(Op0); 3242 3243 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3244 3245 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3246 SmallVector<EVT, 4> ValValueVTs; 3247 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3248 3249 unsigned NumValValues = ValValueVTs.size(); 3250 3251 // Ignore a extractvalue that produces an empty object 3252 if (!NumValValues) { 3253 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3254 return; 3255 } 3256 3257 SmallVector<SDValue, 4> Values(NumValValues); 3258 3259 SDValue Agg = getValue(Op0); 3260 // Copy out the selected value(s). 3261 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3262 Values[i - LinearIndex] = 3263 OutOfUndef ? 3264 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3265 SDValue(Agg.getNode(), Agg.getResNo() + i); 3266 3267 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3268 DAG.getVTList(ValValueVTs), Values)); 3269 } 3270 3271 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3272 Value *Op0 = I.getOperand(0); 3273 // Note that the pointer operand may be a vector of pointers. Take the scalar 3274 // element which holds a pointer. 3275 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3276 SDValue N = getValue(Op0); 3277 SDLoc dl = getCurSDLoc(); 3278 3279 // Normalize Vector GEP - all scalar operands should be converted to the 3280 // splat vector. 3281 unsigned VectorWidth = I.getType()->isVectorTy() ? 3282 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3283 3284 if (VectorWidth && !N.getValueType().isVector()) { 3285 LLVMContext &Context = *DAG.getContext(); 3286 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3287 SmallVector<SDValue, 16> Ops(VectorWidth, N); 3288 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3289 } 3290 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3291 GTI != E; ++GTI) { 3292 const Value *Idx = GTI.getOperand(); 3293 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 3294 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3295 if (Field) { 3296 // N = N + Offset 3297 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3298 3299 // In an inbouds GEP with an offset that is nonnegative even when 3300 // interpreted as signed, assume there is no unsigned overflow. 3301 SDNodeFlags Flags; 3302 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3303 Flags.setNoUnsignedWrap(true); 3304 3305 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3306 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3307 } 3308 } else { 3309 MVT PtrTy = 3310 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3311 unsigned PtrSize = PtrTy.getSizeInBits(); 3312 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3313 3314 // If this is a scalar constant or a splat vector of constants, 3315 // handle it quickly. 3316 const auto *CI = dyn_cast<ConstantInt>(Idx); 3317 if (!CI && isa<ConstantDataVector>(Idx) && 3318 cast<ConstantDataVector>(Idx)->getSplatValue()) 3319 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3320 3321 if (CI) { 3322 if (CI->isZero()) 3323 continue; 3324 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3325 SDValue OffsVal = VectorWidth ? 3326 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3327 DAG.getConstant(Offs, dl, PtrTy); 3328 3329 // In an inbouds GEP with an offset that is nonnegative even when 3330 // interpreted as signed, assume there is no unsigned overflow. 3331 SDNodeFlags Flags; 3332 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3333 Flags.setNoUnsignedWrap(true); 3334 3335 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3336 continue; 3337 } 3338 3339 // N = N + Idx * ElementSize; 3340 SDValue IdxN = getValue(Idx); 3341 3342 if (!IdxN.getValueType().isVector() && VectorWidth) { 3343 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3344 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3345 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3346 } 3347 // If the index is smaller or larger than intptr_t, truncate or extend 3348 // it. 3349 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3350 3351 // If this is a multiply by a power of two, turn it into a shl 3352 // immediately. This is a very common case. 3353 if (ElementSize != 1) { 3354 if (ElementSize.isPowerOf2()) { 3355 unsigned Amt = ElementSize.logBase2(); 3356 IdxN = DAG.getNode(ISD::SHL, dl, 3357 N.getValueType(), IdxN, 3358 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3359 } else { 3360 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3361 IdxN = DAG.getNode(ISD::MUL, dl, 3362 N.getValueType(), IdxN, Scale); 3363 } 3364 } 3365 3366 N = DAG.getNode(ISD::ADD, dl, 3367 N.getValueType(), N, IdxN); 3368 } 3369 } 3370 3371 setValue(&I, N); 3372 } 3373 3374 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3375 // If this is a fixed sized alloca in the entry block of the function, 3376 // allocate it statically on the stack. 3377 if (FuncInfo.StaticAllocaMap.count(&I)) 3378 return; // getValue will auto-populate this. 3379 3380 SDLoc dl = getCurSDLoc(); 3381 Type *Ty = I.getAllocatedType(); 3382 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3383 auto &DL = DAG.getDataLayout(); 3384 uint64_t TySize = DL.getTypeAllocSize(Ty); 3385 unsigned Align = 3386 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3387 3388 SDValue AllocSize = getValue(I.getArraySize()); 3389 3390 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3391 if (AllocSize.getValueType() != IntPtr) 3392 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3393 3394 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3395 AllocSize, 3396 DAG.getConstant(TySize, dl, IntPtr)); 3397 3398 // Handle alignment. If the requested alignment is less than or equal to 3399 // the stack alignment, ignore it. If the size is greater than or equal to 3400 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3401 unsigned StackAlign = 3402 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3403 if (Align <= StackAlign) 3404 Align = 0; 3405 3406 // Round the size of the allocation up to the stack alignment size 3407 // by add SA-1 to the size. This doesn't overflow because we're computing 3408 // an address inside an alloca. 3409 SDNodeFlags Flags; 3410 Flags.setNoUnsignedWrap(true); 3411 AllocSize = DAG.getNode(ISD::ADD, dl, 3412 AllocSize.getValueType(), AllocSize, 3413 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3414 3415 // Mask out the low bits for alignment purposes. 3416 AllocSize = DAG.getNode(ISD::AND, dl, 3417 AllocSize.getValueType(), AllocSize, 3418 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3419 dl)); 3420 3421 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3422 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3423 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3424 setValue(&I, DSA); 3425 DAG.setRoot(DSA.getValue(1)); 3426 3427 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3428 } 3429 3430 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3431 if (I.isAtomic()) 3432 return visitAtomicLoad(I); 3433 3434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3435 const Value *SV = I.getOperand(0); 3436 if (TLI.supportSwiftError()) { 3437 // Swifterror values can come from either a function parameter with 3438 // swifterror attribute or an alloca with swifterror attribute. 3439 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3440 if (Arg->hasSwiftErrorAttr()) 3441 return visitLoadFromSwiftError(I); 3442 } 3443 3444 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3445 if (Alloca->isSwiftError()) 3446 return visitLoadFromSwiftError(I); 3447 } 3448 } 3449 3450 SDValue Ptr = getValue(SV); 3451 3452 Type *Ty = I.getType(); 3453 3454 bool isVolatile = I.isVolatile(); 3455 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3456 3457 // The IR notion of invariant_load only guarantees that all *non-faulting* 3458 // invariant loads result in the same value. The MI notion of invariant load 3459 // guarantees that the load can be legally moved to any location within its 3460 // containing function. The MI notion of invariant_load is stronger than the 3461 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3462 // with a guarantee that the location being loaded from is dereferenceable 3463 // throughout the function's lifetime. 3464 3465 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3466 isDereferenceablePointer(SV, DAG.getDataLayout()); 3467 unsigned Alignment = I.getAlignment(); 3468 3469 AAMDNodes AAInfo; 3470 I.getAAMetadata(AAInfo); 3471 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3472 3473 SmallVector<EVT, 4> ValueVTs; 3474 SmallVector<uint64_t, 4> Offsets; 3475 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3476 unsigned NumValues = ValueVTs.size(); 3477 if (NumValues == 0) 3478 return; 3479 3480 SDValue Root; 3481 bool ConstantMemory = false; 3482 if (isVolatile || NumValues > MaxParallelChains) 3483 // Serialize volatile loads with other side effects. 3484 Root = getRoot(); 3485 else if (AA->pointsToConstantMemory(MemoryLocation( 3486 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3487 // Do not serialize (non-volatile) loads of constant memory with anything. 3488 Root = DAG.getEntryNode(); 3489 ConstantMemory = true; 3490 } else { 3491 // Do not serialize non-volatile loads against each other. 3492 Root = DAG.getRoot(); 3493 } 3494 3495 SDLoc dl = getCurSDLoc(); 3496 3497 if (isVolatile) 3498 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3499 3500 // An aggregate load cannot wrap around the address space, so offsets to its 3501 // parts don't wrap either. 3502 SDNodeFlags Flags; 3503 Flags.setNoUnsignedWrap(true); 3504 3505 SmallVector<SDValue, 4> Values(NumValues); 3506 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3507 EVT PtrVT = Ptr.getValueType(); 3508 unsigned ChainI = 0; 3509 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3510 // Serializing loads here may result in excessive register pressure, and 3511 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3512 // could recover a bit by hoisting nodes upward in the chain by recognizing 3513 // they are side-effect free or do not alias. The optimizer should really 3514 // avoid this case by converting large object/array copies to llvm.memcpy 3515 // (MaxParallelChains should always remain as failsafe). 3516 if (ChainI == MaxParallelChains) { 3517 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3518 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3519 makeArrayRef(Chains.data(), ChainI)); 3520 Root = Chain; 3521 ChainI = 0; 3522 } 3523 SDValue A = DAG.getNode(ISD::ADD, dl, 3524 PtrVT, Ptr, 3525 DAG.getConstant(Offsets[i], dl, PtrVT), 3526 &Flags); 3527 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3528 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3529 isNonTemporal, isInvariant, Alignment, AAInfo, 3530 Ranges); 3531 3532 Values[i] = L; 3533 Chains[ChainI] = L.getValue(1); 3534 } 3535 3536 if (!ConstantMemory) { 3537 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3538 makeArrayRef(Chains.data(), ChainI)); 3539 if (isVolatile) 3540 DAG.setRoot(Chain); 3541 else 3542 PendingLoads.push_back(Chain); 3543 } 3544 3545 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3546 DAG.getVTList(ValueVTs), Values)); 3547 } 3548 3549 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3551 assert(TLI.supportSwiftError() && 3552 "call visitStoreToSwiftError when backend supports swifterror"); 3553 3554 SmallVector<EVT, 4> ValueVTs; 3555 SmallVector<uint64_t, 4> Offsets; 3556 const Value *SrcV = I.getOperand(0); 3557 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3558 SrcV->getType(), ValueVTs, &Offsets); 3559 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3560 "expect a single EVT for swifterror"); 3561 3562 SDValue Src = getValue(SrcV); 3563 // Create a virtual register, then update the virtual register. 3564 auto &DL = DAG.getDataLayout(); 3565 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3566 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3567 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3568 // Chain can be getRoot or getControlRoot. 3569 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3570 SDValue(Src.getNode(), Src.getResNo())); 3571 DAG.setRoot(CopyNode); 3572 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3573 } 3574 3575 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3576 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3577 "call visitLoadFromSwiftError when backend supports swifterror"); 3578 3579 assert(!I.isVolatile() && 3580 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3581 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3582 "Support volatile, non temporal, invariant for load_from_swift_error"); 3583 3584 const Value *SV = I.getOperand(0); 3585 Type *Ty = I.getType(); 3586 AAMDNodes AAInfo; 3587 I.getAAMetadata(AAInfo); 3588 assert(!AA->pointsToConstantMemory(MemoryLocation( 3589 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3590 "load_from_swift_error should not be constant memory"); 3591 3592 SmallVector<EVT, 4> ValueVTs; 3593 SmallVector<uint64_t, 4> Offsets; 3594 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3595 ValueVTs, &Offsets); 3596 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3597 "expect a single EVT for swifterror"); 3598 3599 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3600 SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(), 3601 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV), 3602 ValueVTs[0]); 3603 3604 setValue(&I, L); 3605 } 3606 3607 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3608 if (I.isAtomic()) 3609 return visitAtomicStore(I); 3610 3611 const Value *SrcV = I.getOperand(0); 3612 const Value *PtrV = I.getOperand(1); 3613 3614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3615 if (TLI.supportSwiftError()) { 3616 // Swifterror values can come from either a function parameter with 3617 // swifterror attribute or an alloca with swifterror attribute. 3618 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3619 if (Arg->hasSwiftErrorAttr()) 3620 return visitStoreToSwiftError(I); 3621 } 3622 3623 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3624 if (Alloca->isSwiftError()) 3625 return visitStoreToSwiftError(I); 3626 } 3627 } 3628 3629 SmallVector<EVT, 4> ValueVTs; 3630 SmallVector<uint64_t, 4> Offsets; 3631 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3632 SrcV->getType(), ValueVTs, &Offsets); 3633 unsigned NumValues = ValueVTs.size(); 3634 if (NumValues == 0) 3635 return; 3636 3637 // Get the lowered operands. Note that we do this after 3638 // checking if NumResults is zero, because with zero results 3639 // the operands won't have values in the map. 3640 SDValue Src = getValue(SrcV); 3641 SDValue Ptr = getValue(PtrV); 3642 3643 SDValue Root = getRoot(); 3644 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3645 EVT PtrVT = Ptr.getValueType(); 3646 bool isVolatile = I.isVolatile(); 3647 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3648 unsigned Alignment = I.getAlignment(); 3649 SDLoc dl = getCurSDLoc(); 3650 3651 AAMDNodes AAInfo; 3652 I.getAAMetadata(AAInfo); 3653 3654 // An aggregate load cannot wrap around the address space, so offsets to its 3655 // parts don't wrap either. 3656 SDNodeFlags Flags; 3657 Flags.setNoUnsignedWrap(true); 3658 3659 unsigned ChainI = 0; 3660 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3661 // See visitLoad comments. 3662 if (ChainI == MaxParallelChains) { 3663 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3664 makeArrayRef(Chains.data(), ChainI)); 3665 Root = Chain; 3666 ChainI = 0; 3667 } 3668 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3669 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3670 SDValue St = DAG.getStore(Root, dl, 3671 SDValue(Src.getNode(), Src.getResNo() + i), 3672 Add, MachinePointerInfo(PtrV, Offsets[i]), 3673 isVolatile, isNonTemporal, Alignment, AAInfo); 3674 Chains[ChainI] = St; 3675 } 3676 3677 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3678 makeArrayRef(Chains.data(), ChainI)); 3679 DAG.setRoot(StoreNode); 3680 } 3681 3682 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3683 SDLoc sdl = getCurSDLoc(); 3684 3685 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3686 Value *PtrOperand = I.getArgOperand(1); 3687 SDValue Ptr = getValue(PtrOperand); 3688 SDValue Src0 = getValue(I.getArgOperand(0)); 3689 SDValue Mask = getValue(I.getArgOperand(3)); 3690 EVT VT = Src0.getValueType(); 3691 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3692 if (!Alignment) 3693 Alignment = DAG.getEVTAlignment(VT); 3694 3695 AAMDNodes AAInfo; 3696 I.getAAMetadata(AAInfo); 3697 3698 MachineMemOperand *MMO = 3699 DAG.getMachineFunction(). 3700 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3701 MachineMemOperand::MOStore, VT.getStoreSize(), 3702 Alignment, AAInfo); 3703 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3704 MMO, false); 3705 DAG.setRoot(StoreNode); 3706 setValue(&I, StoreNode); 3707 } 3708 3709 // Get a uniform base for the Gather/Scatter intrinsic. 3710 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3711 // We try to represent it as a base pointer + vector of indices. 3712 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3713 // The first operand of the GEP may be a single pointer or a vector of pointers 3714 // Example: 3715 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3716 // or 3717 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3718 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3719 // 3720 // When the first GEP operand is a single pointer - it is the uniform base we 3721 // are looking for. If first operand of the GEP is a splat vector - we 3722 // extract the spalt value and use it as a uniform base. 3723 // In all other cases the function returns 'false'. 3724 // 3725 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3726 SelectionDAGBuilder* SDB) { 3727 3728 SelectionDAG& DAG = SDB->DAG; 3729 LLVMContext &Context = *DAG.getContext(); 3730 3731 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3732 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3733 if (!GEP || GEP->getNumOperands() > 2) 3734 return false; 3735 3736 const Value *GEPPtr = GEP->getPointerOperand(); 3737 if (!GEPPtr->getType()->isVectorTy()) 3738 Ptr = GEPPtr; 3739 else if (!(Ptr = getSplatValue(GEPPtr))) 3740 return false; 3741 3742 Value *IndexVal = GEP->getOperand(1); 3743 3744 // The operands of the GEP may be defined in another basic block. 3745 // In this case we'll not find nodes for the operands. 3746 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3747 return false; 3748 3749 Base = SDB->getValue(Ptr); 3750 Index = SDB->getValue(IndexVal); 3751 3752 // Suppress sign extension. 3753 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3754 if (SDB->findValue(Sext->getOperand(0))) { 3755 IndexVal = Sext->getOperand(0); 3756 Index = SDB->getValue(IndexVal); 3757 } 3758 } 3759 if (!Index.getValueType().isVector()) { 3760 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3761 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3762 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3763 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3764 } 3765 return true; 3766 } 3767 3768 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3769 SDLoc sdl = getCurSDLoc(); 3770 3771 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3772 const Value *Ptr = I.getArgOperand(1); 3773 SDValue Src0 = getValue(I.getArgOperand(0)); 3774 SDValue Mask = getValue(I.getArgOperand(3)); 3775 EVT VT = Src0.getValueType(); 3776 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3777 if (!Alignment) 3778 Alignment = DAG.getEVTAlignment(VT); 3779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3780 3781 AAMDNodes AAInfo; 3782 I.getAAMetadata(AAInfo); 3783 3784 SDValue Base; 3785 SDValue Index; 3786 const Value *BasePtr = Ptr; 3787 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3788 3789 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3790 MachineMemOperand *MMO = DAG.getMachineFunction(). 3791 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3792 MachineMemOperand::MOStore, VT.getStoreSize(), 3793 Alignment, AAInfo); 3794 if (!UniformBase) { 3795 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3796 Index = getValue(Ptr); 3797 } 3798 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3799 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3800 Ops, MMO); 3801 DAG.setRoot(Scatter); 3802 setValue(&I, Scatter); 3803 } 3804 3805 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3806 SDLoc sdl = getCurSDLoc(); 3807 3808 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3809 Value *PtrOperand = I.getArgOperand(0); 3810 SDValue Ptr = getValue(PtrOperand); 3811 SDValue Src0 = getValue(I.getArgOperand(3)); 3812 SDValue Mask = getValue(I.getArgOperand(2)); 3813 3814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3815 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3816 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3817 if (!Alignment) 3818 Alignment = DAG.getEVTAlignment(VT); 3819 3820 AAMDNodes AAInfo; 3821 I.getAAMetadata(AAInfo); 3822 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3823 3824 SDValue InChain = DAG.getRoot(); 3825 if (AA->pointsToConstantMemory(MemoryLocation( 3826 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3827 AAInfo))) { 3828 // Do not serialize (non-volatile) loads of constant memory with anything. 3829 InChain = DAG.getEntryNode(); 3830 } 3831 3832 MachineMemOperand *MMO = 3833 DAG.getMachineFunction(). 3834 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3835 MachineMemOperand::MOLoad, VT.getStoreSize(), 3836 Alignment, AAInfo, Ranges); 3837 3838 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3839 ISD::NON_EXTLOAD); 3840 SDValue OutChain = Load.getValue(1); 3841 DAG.setRoot(OutChain); 3842 setValue(&I, Load); 3843 } 3844 3845 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3846 SDLoc sdl = getCurSDLoc(); 3847 3848 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3849 const Value *Ptr = I.getArgOperand(0); 3850 SDValue Src0 = getValue(I.getArgOperand(3)); 3851 SDValue Mask = getValue(I.getArgOperand(2)); 3852 3853 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3854 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3855 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3856 if (!Alignment) 3857 Alignment = DAG.getEVTAlignment(VT); 3858 3859 AAMDNodes AAInfo; 3860 I.getAAMetadata(AAInfo); 3861 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3862 3863 SDValue Root = DAG.getRoot(); 3864 SDValue Base; 3865 SDValue Index; 3866 const Value *BasePtr = Ptr; 3867 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3868 bool ConstantMemory = false; 3869 if (UniformBase && 3870 AA->pointsToConstantMemory(MemoryLocation( 3871 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3872 AAInfo))) { 3873 // Do not serialize (non-volatile) loads of constant memory with anything. 3874 Root = DAG.getEntryNode(); 3875 ConstantMemory = true; 3876 } 3877 3878 MachineMemOperand *MMO = 3879 DAG.getMachineFunction(). 3880 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3881 MachineMemOperand::MOLoad, VT.getStoreSize(), 3882 Alignment, AAInfo, Ranges); 3883 3884 if (!UniformBase) { 3885 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3886 Index = getValue(Ptr); 3887 } 3888 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3889 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3890 Ops, MMO); 3891 3892 SDValue OutChain = Gather.getValue(1); 3893 if (!ConstantMemory) 3894 PendingLoads.push_back(OutChain); 3895 setValue(&I, Gather); 3896 } 3897 3898 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3899 SDLoc dl = getCurSDLoc(); 3900 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3901 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3902 SynchronizationScope Scope = I.getSynchScope(); 3903 3904 SDValue InChain = getRoot(); 3905 3906 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3907 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3908 SDValue L = DAG.getAtomicCmpSwap( 3909 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3910 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3911 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3912 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3913 3914 SDValue OutChain = L.getValue(2); 3915 3916 setValue(&I, L); 3917 DAG.setRoot(OutChain); 3918 } 3919 3920 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3921 SDLoc dl = getCurSDLoc(); 3922 ISD::NodeType NT; 3923 switch (I.getOperation()) { 3924 default: llvm_unreachable("Unknown atomicrmw operation"); 3925 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3926 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3927 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3928 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3929 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3930 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3931 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3932 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3933 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3934 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3935 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3936 } 3937 AtomicOrdering Order = I.getOrdering(); 3938 SynchronizationScope Scope = I.getSynchScope(); 3939 3940 SDValue InChain = getRoot(); 3941 3942 SDValue L = 3943 DAG.getAtomic(NT, dl, 3944 getValue(I.getValOperand()).getSimpleValueType(), 3945 InChain, 3946 getValue(I.getPointerOperand()), 3947 getValue(I.getValOperand()), 3948 I.getPointerOperand(), 3949 /* Alignment=*/ 0, Order, Scope); 3950 3951 SDValue OutChain = L.getValue(1); 3952 3953 setValue(&I, L); 3954 DAG.setRoot(OutChain); 3955 } 3956 3957 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3958 SDLoc dl = getCurSDLoc(); 3959 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3960 SDValue Ops[3]; 3961 Ops[0] = getRoot(); 3962 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 3963 TLI.getPointerTy(DAG.getDataLayout())); 3964 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3965 TLI.getPointerTy(DAG.getDataLayout())); 3966 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3967 } 3968 3969 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3970 SDLoc dl = getCurSDLoc(); 3971 AtomicOrdering Order = I.getOrdering(); 3972 SynchronizationScope Scope = I.getSynchScope(); 3973 3974 SDValue InChain = getRoot(); 3975 3976 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3977 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3978 3979 if (I.getAlignment() < VT.getSizeInBits() / 8) 3980 report_fatal_error("Cannot generate unaligned atomic load"); 3981 3982 MachineMemOperand *MMO = 3983 DAG.getMachineFunction(). 3984 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3985 MachineMemOperand::MOVolatile | 3986 MachineMemOperand::MOLoad, 3987 VT.getStoreSize(), 3988 I.getAlignment() ? I.getAlignment() : 3989 DAG.getEVTAlignment(VT)); 3990 3991 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3992 SDValue L = 3993 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3994 getValue(I.getPointerOperand()), MMO, 3995 Order, Scope); 3996 3997 SDValue OutChain = L.getValue(1); 3998 3999 setValue(&I, L); 4000 DAG.setRoot(OutChain); 4001 } 4002 4003 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4004 SDLoc dl = getCurSDLoc(); 4005 4006 AtomicOrdering Order = I.getOrdering(); 4007 SynchronizationScope Scope = I.getSynchScope(); 4008 4009 SDValue InChain = getRoot(); 4010 4011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4012 EVT VT = 4013 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4014 4015 if (I.getAlignment() < VT.getSizeInBits() / 8) 4016 report_fatal_error("Cannot generate unaligned atomic store"); 4017 4018 SDValue OutChain = 4019 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4020 InChain, 4021 getValue(I.getPointerOperand()), 4022 getValue(I.getValueOperand()), 4023 I.getPointerOperand(), I.getAlignment(), 4024 Order, Scope); 4025 4026 DAG.setRoot(OutChain); 4027 } 4028 4029 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4030 /// node. 4031 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4032 unsigned Intrinsic) { 4033 bool HasChain = !I.doesNotAccessMemory(); 4034 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 4035 4036 // Build the operand list. 4037 SmallVector<SDValue, 8> Ops; 4038 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4039 if (OnlyLoad) { 4040 // We don't need to serialize loads against other loads. 4041 Ops.push_back(DAG.getRoot()); 4042 } else { 4043 Ops.push_back(getRoot()); 4044 } 4045 } 4046 4047 // Info is set by getTgtMemInstrinsic 4048 TargetLowering::IntrinsicInfo Info; 4049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4050 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4051 4052 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4053 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4054 Info.opc == ISD::INTRINSIC_W_CHAIN) 4055 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4056 TLI.getPointerTy(DAG.getDataLayout()))); 4057 4058 // Add all operands of the call to the operand list. 4059 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4060 SDValue Op = getValue(I.getArgOperand(i)); 4061 Ops.push_back(Op); 4062 } 4063 4064 SmallVector<EVT, 4> ValueVTs; 4065 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4066 4067 if (HasChain) 4068 ValueVTs.push_back(MVT::Other); 4069 4070 SDVTList VTs = DAG.getVTList(ValueVTs); 4071 4072 // Create the node. 4073 SDValue Result; 4074 if (IsTgtIntrinsic) { 4075 // This is target intrinsic that touches memory 4076 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4077 VTs, Ops, Info.memVT, 4078 MachinePointerInfo(Info.ptrVal, Info.offset), 4079 Info.align, Info.vol, 4080 Info.readMem, Info.writeMem, Info.size); 4081 } else if (!HasChain) { 4082 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4083 } else if (!I.getType()->isVoidTy()) { 4084 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4085 } else { 4086 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4087 } 4088 4089 if (HasChain) { 4090 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4091 if (OnlyLoad) 4092 PendingLoads.push_back(Chain); 4093 else 4094 DAG.setRoot(Chain); 4095 } 4096 4097 if (!I.getType()->isVoidTy()) { 4098 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4099 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4100 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4101 } else 4102 Result = lowerRangeToAssertZExt(DAG, I, Result); 4103 4104 setValue(&I, Result); 4105 } 4106 } 4107 4108 /// GetSignificand - Get the significand and build it into a floating-point 4109 /// number with exponent of 1: 4110 /// 4111 /// Op = (Op & 0x007fffff) | 0x3f800000; 4112 /// 4113 /// where Op is the hexadecimal representation of floating point value. 4114 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4115 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4116 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4117 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4118 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4119 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4120 } 4121 4122 /// GetExponent - Get the exponent: 4123 /// 4124 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4125 /// 4126 /// where Op is the hexadecimal representation of floating point value. 4127 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4128 const TargetLowering &TLI, const SDLoc &dl) { 4129 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4130 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4131 SDValue t1 = DAG.getNode( 4132 ISD::SRL, dl, MVT::i32, t0, 4133 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4134 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4135 DAG.getConstant(127, dl, MVT::i32)); 4136 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4137 } 4138 4139 /// getF32Constant - Get 32-bit floating point constant. 4140 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4141 const SDLoc &dl) { 4142 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 4143 MVT::f32); 4144 } 4145 4146 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4147 SelectionDAG &DAG) { 4148 // TODO: What fast-math-flags should be set on the floating-point nodes? 4149 4150 // IntegerPartOfX = ((int32_t)(t0); 4151 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4152 4153 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4154 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4155 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4156 4157 // IntegerPartOfX <<= 23; 4158 IntegerPartOfX = DAG.getNode( 4159 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4160 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4161 DAG.getDataLayout()))); 4162 4163 SDValue TwoToFractionalPartOfX; 4164 if (LimitFloatPrecision <= 6) { 4165 // For floating-point precision of 6: 4166 // 4167 // TwoToFractionalPartOfX = 4168 // 0.997535578f + 4169 // (0.735607626f + 0.252464424f * x) * x; 4170 // 4171 // error 0.0144103317, which is 6 bits 4172 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4173 getF32Constant(DAG, 0x3e814304, dl)); 4174 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4175 getF32Constant(DAG, 0x3f3c50c8, dl)); 4176 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4177 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4178 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4179 } else if (LimitFloatPrecision <= 12) { 4180 // For floating-point precision of 12: 4181 // 4182 // TwoToFractionalPartOfX = 4183 // 0.999892986f + 4184 // (0.696457318f + 4185 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4186 // 4187 // error 0.000107046256, which is 13 to 14 bits 4188 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4189 getF32Constant(DAG, 0x3da235e3, dl)); 4190 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4191 getF32Constant(DAG, 0x3e65b8f3, dl)); 4192 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4193 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4194 getF32Constant(DAG, 0x3f324b07, dl)); 4195 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4196 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4197 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4198 } else { // LimitFloatPrecision <= 18 4199 // For floating-point precision of 18: 4200 // 4201 // TwoToFractionalPartOfX = 4202 // 0.999999982f + 4203 // (0.693148872f + 4204 // (0.240227044f + 4205 // (0.554906021e-1f + 4206 // (0.961591928e-2f + 4207 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4208 // error 2.47208000*10^(-7), which is better than 18 bits 4209 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4210 getF32Constant(DAG, 0x3924b03e, dl)); 4211 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4212 getF32Constant(DAG, 0x3ab24b87, dl)); 4213 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4214 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4215 getF32Constant(DAG, 0x3c1d8c17, dl)); 4216 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4217 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4218 getF32Constant(DAG, 0x3d634a1d, dl)); 4219 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4220 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4221 getF32Constant(DAG, 0x3e75fe14, dl)); 4222 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4223 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4224 getF32Constant(DAG, 0x3f317234, dl)); 4225 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4226 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4227 getF32Constant(DAG, 0x3f800000, dl)); 4228 } 4229 4230 // Add the exponent into the result in integer domain. 4231 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4232 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4233 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4234 } 4235 4236 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4237 /// limited-precision mode. 4238 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4239 const TargetLowering &TLI) { 4240 if (Op.getValueType() == MVT::f32 && 4241 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4242 4243 // Put the exponent in the right bit position for later addition to the 4244 // final result: 4245 // 4246 // #define LOG2OFe 1.4426950f 4247 // t0 = Op * LOG2OFe 4248 4249 // TODO: What fast-math-flags should be set here? 4250 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4251 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4252 return getLimitedPrecisionExp2(t0, dl, DAG); 4253 } 4254 4255 // No special expansion. 4256 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4257 } 4258 4259 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4260 /// limited-precision mode. 4261 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4262 const TargetLowering &TLI) { 4263 4264 // TODO: What fast-math-flags should be set on the floating-point nodes? 4265 4266 if (Op.getValueType() == MVT::f32 && 4267 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4268 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4269 4270 // Scale the exponent by log(2) [0.69314718f]. 4271 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4272 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4273 getF32Constant(DAG, 0x3f317218, dl)); 4274 4275 // Get the significand and build it into a floating-point number with 4276 // exponent of 1. 4277 SDValue X = GetSignificand(DAG, Op1, dl); 4278 4279 SDValue LogOfMantissa; 4280 if (LimitFloatPrecision <= 6) { 4281 // For floating-point precision of 6: 4282 // 4283 // LogofMantissa = 4284 // -1.1609546f + 4285 // (1.4034025f - 0.23903021f * x) * x; 4286 // 4287 // error 0.0034276066, which is better than 8 bits 4288 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4289 getF32Constant(DAG, 0xbe74c456, dl)); 4290 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4291 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4292 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4293 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4294 getF32Constant(DAG, 0x3f949a29, dl)); 4295 } else if (LimitFloatPrecision <= 12) { 4296 // For floating-point precision of 12: 4297 // 4298 // LogOfMantissa = 4299 // -1.7417939f + 4300 // (2.8212026f + 4301 // (-1.4699568f + 4302 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4303 // 4304 // error 0.000061011436, which is 14 bits 4305 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4306 getF32Constant(DAG, 0xbd67b6d6, dl)); 4307 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4308 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4309 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4310 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4311 getF32Constant(DAG, 0x3fbc278b, dl)); 4312 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4313 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4314 getF32Constant(DAG, 0x40348e95, dl)); 4315 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4316 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4317 getF32Constant(DAG, 0x3fdef31a, dl)); 4318 } else { // LimitFloatPrecision <= 18 4319 // For floating-point precision of 18: 4320 // 4321 // LogOfMantissa = 4322 // -2.1072184f + 4323 // (4.2372794f + 4324 // (-3.7029485f + 4325 // (2.2781945f + 4326 // (-0.87823314f + 4327 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4328 // 4329 // error 0.0000023660568, which is better than 18 bits 4330 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4331 getF32Constant(DAG, 0xbc91e5ac, dl)); 4332 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4333 getF32Constant(DAG, 0x3e4350aa, dl)); 4334 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4335 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4336 getF32Constant(DAG, 0x3f60d3e3, dl)); 4337 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4338 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4339 getF32Constant(DAG, 0x4011cdf0, dl)); 4340 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4341 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4342 getF32Constant(DAG, 0x406cfd1c, dl)); 4343 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4344 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4345 getF32Constant(DAG, 0x408797cb, dl)); 4346 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4347 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4348 getF32Constant(DAG, 0x4006dcab, dl)); 4349 } 4350 4351 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4352 } 4353 4354 // No special expansion. 4355 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4356 } 4357 4358 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4359 /// limited-precision mode. 4360 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4361 const TargetLowering &TLI) { 4362 4363 // TODO: What fast-math-flags should be set on the floating-point nodes? 4364 4365 if (Op.getValueType() == MVT::f32 && 4366 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4367 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4368 4369 // Get the exponent. 4370 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4371 4372 // Get the significand and build it into a floating-point number with 4373 // exponent of 1. 4374 SDValue X = GetSignificand(DAG, Op1, dl); 4375 4376 // Different possible minimax approximations of significand in 4377 // floating-point for various degrees of accuracy over [1,2]. 4378 SDValue Log2ofMantissa; 4379 if (LimitFloatPrecision <= 6) { 4380 // For floating-point precision of 6: 4381 // 4382 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4383 // 4384 // error 0.0049451742, which is more than 7 bits 4385 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4386 getF32Constant(DAG, 0xbeb08fe0, dl)); 4387 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4388 getF32Constant(DAG, 0x40019463, dl)); 4389 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4390 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4391 getF32Constant(DAG, 0x3fd6633d, dl)); 4392 } else if (LimitFloatPrecision <= 12) { 4393 // For floating-point precision of 12: 4394 // 4395 // Log2ofMantissa = 4396 // -2.51285454f + 4397 // (4.07009056f + 4398 // (-2.12067489f + 4399 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4400 // 4401 // error 0.0000876136000, which is better than 13 bits 4402 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4403 getF32Constant(DAG, 0xbda7262e, dl)); 4404 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4405 getF32Constant(DAG, 0x3f25280b, dl)); 4406 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4407 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4408 getF32Constant(DAG, 0x4007b923, dl)); 4409 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4410 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4411 getF32Constant(DAG, 0x40823e2f, dl)); 4412 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4413 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4414 getF32Constant(DAG, 0x4020d29c, dl)); 4415 } else { // LimitFloatPrecision <= 18 4416 // For floating-point precision of 18: 4417 // 4418 // Log2ofMantissa = 4419 // -3.0400495f + 4420 // (6.1129976f + 4421 // (-5.3420409f + 4422 // (3.2865683f + 4423 // (-1.2669343f + 4424 // (0.27515199f - 4425 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4426 // 4427 // error 0.0000018516, which is better than 18 bits 4428 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4429 getF32Constant(DAG, 0xbcd2769e, dl)); 4430 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4431 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4432 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4433 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4434 getF32Constant(DAG, 0x3fa22ae7, dl)); 4435 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4436 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4437 getF32Constant(DAG, 0x40525723, dl)); 4438 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4439 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4440 getF32Constant(DAG, 0x40aaf200, dl)); 4441 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4442 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4443 getF32Constant(DAG, 0x40c39dad, dl)); 4444 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4445 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4446 getF32Constant(DAG, 0x4042902c, dl)); 4447 } 4448 4449 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4450 } 4451 4452 // No special expansion. 4453 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4454 } 4455 4456 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4457 /// limited-precision mode. 4458 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4459 const TargetLowering &TLI) { 4460 4461 // TODO: What fast-math-flags should be set on the floating-point nodes? 4462 4463 if (Op.getValueType() == MVT::f32 && 4464 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4465 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4466 4467 // Scale the exponent by log10(2) [0.30102999f]. 4468 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4469 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4470 getF32Constant(DAG, 0x3e9a209a, dl)); 4471 4472 // Get the significand and build it into a floating-point number with 4473 // exponent of 1. 4474 SDValue X = GetSignificand(DAG, Op1, dl); 4475 4476 SDValue Log10ofMantissa; 4477 if (LimitFloatPrecision <= 6) { 4478 // For floating-point precision of 6: 4479 // 4480 // Log10ofMantissa = 4481 // -0.50419619f + 4482 // (0.60948995f - 0.10380950f * x) * x; 4483 // 4484 // error 0.0014886165, which is 6 bits 4485 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4486 getF32Constant(DAG, 0xbdd49a13, dl)); 4487 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4488 getF32Constant(DAG, 0x3f1c0789, dl)); 4489 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4490 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4491 getF32Constant(DAG, 0x3f011300, dl)); 4492 } else if (LimitFloatPrecision <= 12) { 4493 // For floating-point precision of 12: 4494 // 4495 // Log10ofMantissa = 4496 // -0.64831180f + 4497 // (0.91751397f + 4498 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4499 // 4500 // error 0.00019228036, which is better than 12 bits 4501 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4502 getF32Constant(DAG, 0x3d431f31, dl)); 4503 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4504 getF32Constant(DAG, 0x3ea21fb2, dl)); 4505 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4506 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4507 getF32Constant(DAG, 0x3f6ae232, dl)); 4508 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4509 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4510 getF32Constant(DAG, 0x3f25f7c3, dl)); 4511 } else { // LimitFloatPrecision <= 18 4512 // For floating-point precision of 18: 4513 // 4514 // Log10ofMantissa = 4515 // -0.84299375f + 4516 // (1.5327582f + 4517 // (-1.0688956f + 4518 // (0.49102474f + 4519 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4520 // 4521 // error 0.0000037995730, which is better than 18 bits 4522 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4523 getF32Constant(DAG, 0x3c5d51ce, dl)); 4524 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4525 getF32Constant(DAG, 0x3e00685a, dl)); 4526 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4527 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4528 getF32Constant(DAG, 0x3efb6798, dl)); 4529 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4530 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4531 getF32Constant(DAG, 0x3f88d192, dl)); 4532 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4533 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4534 getF32Constant(DAG, 0x3fc4316c, dl)); 4535 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4536 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4537 getF32Constant(DAG, 0x3f57ce70, dl)); 4538 } 4539 4540 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4541 } 4542 4543 // No special expansion. 4544 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4545 } 4546 4547 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4548 /// limited-precision mode. 4549 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4550 const TargetLowering &TLI) { 4551 if (Op.getValueType() == MVT::f32 && 4552 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4553 return getLimitedPrecisionExp2(Op, dl, DAG); 4554 4555 // No special expansion. 4556 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4557 } 4558 4559 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4560 /// limited-precision mode with x == 10.0f. 4561 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4562 SelectionDAG &DAG, const TargetLowering &TLI) { 4563 bool IsExp10 = false; 4564 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4565 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4566 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4567 APFloat Ten(10.0f); 4568 IsExp10 = LHSC->isExactlyValue(Ten); 4569 } 4570 } 4571 4572 // TODO: What fast-math-flags should be set on the FMUL node? 4573 if (IsExp10) { 4574 // Put the exponent in the right bit position for later addition to the 4575 // final result: 4576 // 4577 // #define LOG2OF10 3.3219281f 4578 // t0 = Op * LOG2OF10; 4579 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4580 getF32Constant(DAG, 0x40549a78, dl)); 4581 return getLimitedPrecisionExp2(t0, dl, DAG); 4582 } 4583 4584 // No special expansion. 4585 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4586 } 4587 4588 4589 /// ExpandPowI - Expand a llvm.powi intrinsic. 4590 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4591 SelectionDAG &DAG) { 4592 // If RHS is a constant, we can expand this out to a multiplication tree, 4593 // otherwise we end up lowering to a call to __powidf2 (for example). When 4594 // optimizing for size, we only want to do this if the expansion would produce 4595 // a small number of multiplies, otherwise we do the full expansion. 4596 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4597 // Get the exponent as a positive value. 4598 unsigned Val = RHSC->getSExtValue(); 4599 if ((int)Val < 0) Val = -Val; 4600 4601 // powi(x, 0) -> 1.0 4602 if (Val == 0) 4603 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4604 4605 const Function *F = DAG.getMachineFunction().getFunction(); 4606 if (!F->optForSize() || 4607 // If optimizing for size, don't insert too many multiplies. 4608 // This inserts up to 5 multiplies. 4609 countPopulation(Val) + Log2_32(Val) < 7) { 4610 // We use the simple binary decomposition method to generate the multiply 4611 // sequence. There are more optimal ways to do this (for example, 4612 // powi(x,15) generates one more multiply than it should), but this has 4613 // the benefit of being both really simple and much better than a libcall. 4614 SDValue Res; // Logically starts equal to 1.0 4615 SDValue CurSquare = LHS; 4616 // TODO: Intrinsics should have fast-math-flags that propagate to these 4617 // nodes. 4618 while (Val) { 4619 if (Val & 1) { 4620 if (Res.getNode()) 4621 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4622 else 4623 Res = CurSquare; // 1.0*CurSquare. 4624 } 4625 4626 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4627 CurSquare, CurSquare); 4628 Val >>= 1; 4629 } 4630 4631 // If the original was negative, invert the result, producing 1/(x*x*x). 4632 if (RHSC->getSExtValue() < 0) 4633 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4634 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4635 return Res; 4636 } 4637 } 4638 4639 // Otherwise, expand to a libcall. 4640 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4641 } 4642 4643 // getUnderlyingArgReg - Find underlying register used for a truncated or 4644 // bitcasted argument. 4645 static unsigned getUnderlyingArgReg(const SDValue &N) { 4646 switch (N.getOpcode()) { 4647 case ISD::CopyFromReg: 4648 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4649 case ISD::BITCAST: 4650 case ISD::AssertZext: 4651 case ISD::AssertSext: 4652 case ISD::TRUNCATE: 4653 return getUnderlyingArgReg(N.getOperand(0)); 4654 default: 4655 return 0; 4656 } 4657 } 4658 4659 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4660 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4661 /// At the end of instruction selection, they will be inserted to the entry BB. 4662 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4663 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4664 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4665 const Argument *Arg = dyn_cast<Argument>(V); 4666 if (!Arg) 4667 return false; 4668 4669 MachineFunction &MF = DAG.getMachineFunction(); 4670 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4671 4672 // Ignore inlined function arguments here. 4673 // 4674 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4675 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4676 return false; 4677 4678 Optional<MachineOperand> Op; 4679 // Some arguments' frame index is recorded during argument lowering. 4680 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4681 Op = MachineOperand::CreateFI(FI); 4682 4683 if (!Op && N.getNode()) { 4684 unsigned Reg = getUnderlyingArgReg(N); 4685 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4686 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4687 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4688 if (PR) 4689 Reg = PR; 4690 } 4691 if (Reg) 4692 Op = MachineOperand::CreateReg(Reg, false); 4693 } 4694 4695 if (!Op) { 4696 // Check if ValueMap has reg number. 4697 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4698 if (VMI != FuncInfo.ValueMap.end()) 4699 Op = MachineOperand::CreateReg(VMI->second, false); 4700 } 4701 4702 if (!Op && N.getNode()) 4703 // Check if frame index is available. 4704 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4705 if (FrameIndexSDNode *FINode = 4706 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4707 Op = MachineOperand::CreateFI(FINode->getIndex()); 4708 4709 if (!Op) 4710 return false; 4711 4712 assert(Variable->isValidLocationForIntrinsic(DL) && 4713 "Expected inlined-at fields to agree"); 4714 if (Op->isReg()) 4715 FuncInfo.ArgDbgValues.push_back( 4716 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4717 Op->getReg(), Offset, Variable, Expr)); 4718 else 4719 FuncInfo.ArgDbgValues.push_back( 4720 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4721 .addOperand(*Op) 4722 .addImm(Offset) 4723 .addMetadata(Variable) 4724 .addMetadata(Expr)); 4725 4726 return true; 4727 } 4728 4729 // VisualStudio defines setjmp as _setjmp 4730 #if defined(_MSC_VER) && defined(setjmp) && \ 4731 !defined(setjmp_undefined_for_msvc) 4732 # pragma push_macro("setjmp") 4733 # undef setjmp 4734 # define setjmp_undefined_for_msvc 4735 #endif 4736 4737 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4738 /// we want to emit this as a call to a named external function, return the name 4739 /// otherwise lower it and return null. 4740 const char * 4741 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4742 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4743 SDLoc sdl = getCurSDLoc(); 4744 DebugLoc dl = getCurDebugLoc(); 4745 SDValue Res; 4746 4747 switch (Intrinsic) { 4748 default: 4749 // By default, turn this into a target intrinsic node. 4750 visitTargetIntrinsic(I, Intrinsic); 4751 return nullptr; 4752 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4753 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4754 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4755 case Intrinsic::returnaddress: 4756 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4757 TLI.getPointerTy(DAG.getDataLayout()), 4758 getValue(I.getArgOperand(0)))); 4759 return nullptr; 4760 case Intrinsic::frameaddress: 4761 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4762 TLI.getPointerTy(DAG.getDataLayout()), 4763 getValue(I.getArgOperand(0)))); 4764 return nullptr; 4765 case Intrinsic::read_register: { 4766 Value *Reg = I.getArgOperand(0); 4767 SDValue Chain = getRoot(); 4768 SDValue RegName = 4769 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4770 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4771 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4772 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4773 setValue(&I, Res); 4774 DAG.setRoot(Res.getValue(1)); 4775 return nullptr; 4776 } 4777 case Intrinsic::write_register: { 4778 Value *Reg = I.getArgOperand(0); 4779 Value *RegValue = I.getArgOperand(1); 4780 SDValue Chain = getRoot(); 4781 SDValue RegName = 4782 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4783 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4784 RegName, getValue(RegValue))); 4785 return nullptr; 4786 } 4787 case Intrinsic::setjmp: 4788 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4789 case Intrinsic::longjmp: 4790 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4791 case Intrinsic::memcpy: { 4792 SDValue Op1 = getValue(I.getArgOperand(0)); 4793 SDValue Op2 = getValue(I.getArgOperand(1)); 4794 SDValue Op3 = getValue(I.getArgOperand(2)); 4795 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4796 if (!Align) 4797 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4798 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4799 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4800 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4801 false, isTC, 4802 MachinePointerInfo(I.getArgOperand(0)), 4803 MachinePointerInfo(I.getArgOperand(1))); 4804 updateDAGForMaybeTailCall(MC); 4805 return nullptr; 4806 } 4807 case Intrinsic::memset: { 4808 SDValue Op1 = getValue(I.getArgOperand(0)); 4809 SDValue Op2 = getValue(I.getArgOperand(1)); 4810 SDValue Op3 = getValue(I.getArgOperand(2)); 4811 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4812 if (!Align) 4813 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4814 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4815 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4816 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4817 isTC, MachinePointerInfo(I.getArgOperand(0))); 4818 updateDAGForMaybeTailCall(MS); 4819 return nullptr; 4820 } 4821 case Intrinsic::memmove: { 4822 SDValue Op1 = getValue(I.getArgOperand(0)); 4823 SDValue Op2 = getValue(I.getArgOperand(1)); 4824 SDValue Op3 = getValue(I.getArgOperand(2)); 4825 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4826 if (!Align) 4827 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4828 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4829 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4830 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4831 isTC, MachinePointerInfo(I.getArgOperand(0)), 4832 MachinePointerInfo(I.getArgOperand(1))); 4833 updateDAGForMaybeTailCall(MM); 4834 return nullptr; 4835 } 4836 case Intrinsic::dbg_declare: { 4837 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4838 DILocalVariable *Variable = DI.getVariable(); 4839 DIExpression *Expression = DI.getExpression(); 4840 const Value *Address = DI.getAddress(); 4841 assert(Variable && "Missing variable"); 4842 if (!Address) { 4843 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4844 return nullptr; 4845 } 4846 4847 // Check if address has undef value. 4848 if (isa<UndefValue>(Address) || 4849 (Address->use_empty() && !isa<Argument>(Address))) { 4850 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4851 return nullptr; 4852 } 4853 4854 SDValue &N = NodeMap[Address]; 4855 if (!N.getNode() && isa<Argument>(Address)) 4856 // Check unused arguments map. 4857 N = UnusedArgNodeMap[Address]; 4858 SDDbgValue *SDV; 4859 if (N.getNode()) { 4860 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4861 Address = BCI->getOperand(0); 4862 // Parameters are handled specially. 4863 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4864 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4865 if (isParameter && FINode) { 4866 // Byval parameter. We have a frame index at this point. 4867 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4868 FINode->getIndex(), 0, dl, SDNodeOrder); 4869 } else if (isa<Argument>(Address)) { 4870 // Address is an argument, so try to emit its dbg value using 4871 // virtual register info from the FuncInfo.ValueMap. 4872 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4873 N); 4874 return nullptr; 4875 } else { 4876 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4877 true, 0, dl, SDNodeOrder); 4878 } 4879 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4880 } else { 4881 // If Address is an argument then try to emit its dbg value using 4882 // virtual register info from the FuncInfo.ValueMap. 4883 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4884 N)) { 4885 // If variable is pinned by a alloca in dominating bb then 4886 // use StaticAllocaMap. 4887 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4888 if (AI->getParent() != DI.getParent()) { 4889 DenseMap<const AllocaInst*, int>::iterator SI = 4890 FuncInfo.StaticAllocaMap.find(AI); 4891 if (SI != FuncInfo.StaticAllocaMap.end()) { 4892 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4893 0, dl, SDNodeOrder); 4894 DAG.AddDbgValue(SDV, nullptr, false); 4895 return nullptr; 4896 } 4897 } 4898 } 4899 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4900 } 4901 } 4902 return nullptr; 4903 } 4904 case Intrinsic::dbg_value: { 4905 const DbgValueInst &DI = cast<DbgValueInst>(I); 4906 assert(DI.getVariable() && "Missing variable"); 4907 4908 DILocalVariable *Variable = DI.getVariable(); 4909 DIExpression *Expression = DI.getExpression(); 4910 uint64_t Offset = DI.getOffset(); 4911 const Value *V = DI.getValue(); 4912 if (!V) 4913 return nullptr; 4914 4915 SDDbgValue *SDV; 4916 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4917 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4918 SDNodeOrder); 4919 DAG.AddDbgValue(SDV, nullptr, false); 4920 } else { 4921 // Do not use getValue() in here; we don't want to generate code at 4922 // this point if it hasn't been done yet. 4923 SDValue N = NodeMap[V]; 4924 if (!N.getNode() && isa<Argument>(V)) 4925 // Check unused arguments map. 4926 N = UnusedArgNodeMap[V]; 4927 if (N.getNode()) { 4928 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4929 false, N)) { 4930 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4931 false, Offset, dl, SDNodeOrder); 4932 DAG.AddDbgValue(SDV, N.getNode(), false); 4933 } 4934 } else if (!V->use_empty() ) { 4935 // Do not call getValue(V) yet, as we don't want to generate code. 4936 // Remember it for later. 4937 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4938 DanglingDebugInfoMap[V] = DDI; 4939 } else { 4940 // We may expand this to cover more cases. One case where we have no 4941 // data available is an unreferenced parameter. 4942 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4943 } 4944 } 4945 4946 // Build a debug info table entry. 4947 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4948 V = BCI->getOperand(0); 4949 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4950 // Don't handle byval struct arguments or VLAs, for example. 4951 if (!AI) { 4952 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4953 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4954 return nullptr; 4955 } 4956 DenseMap<const AllocaInst*, int>::iterator SI = 4957 FuncInfo.StaticAllocaMap.find(AI); 4958 if (SI == FuncInfo.StaticAllocaMap.end()) 4959 return nullptr; // VLAs. 4960 return nullptr; 4961 } 4962 4963 case Intrinsic::eh_typeid_for: { 4964 // Find the type id for the given typeinfo. 4965 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4966 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4967 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4968 setValue(&I, Res); 4969 return nullptr; 4970 } 4971 4972 case Intrinsic::eh_return_i32: 4973 case Intrinsic::eh_return_i64: 4974 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4975 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4976 MVT::Other, 4977 getControlRoot(), 4978 getValue(I.getArgOperand(0)), 4979 getValue(I.getArgOperand(1)))); 4980 return nullptr; 4981 case Intrinsic::eh_unwind_init: 4982 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4983 return nullptr; 4984 case Intrinsic::eh_dwarf_cfa: { 4985 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4986 TLI.getPointerTy(DAG.getDataLayout())); 4987 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4988 CfaArg.getValueType(), 4989 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4990 CfaArg.getValueType()), 4991 CfaArg); 4992 SDValue FA = DAG.getNode( 4993 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4994 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4995 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4996 FA, Offset)); 4997 return nullptr; 4998 } 4999 case Intrinsic::eh_sjlj_callsite: { 5000 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5001 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5002 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5003 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5004 5005 MMI.setCurrentCallSite(CI->getZExtValue()); 5006 return nullptr; 5007 } 5008 case Intrinsic::eh_sjlj_functioncontext: { 5009 // Get and store the index of the function context. 5010 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 5011 AllocaInst *FnCtx = 5012 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5013 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5014 MFI->setFunctionContextIndex(FI); 5015 return nullptr; 5016 } 5017 case Intrinsic::eh_sjlj_setjmp: { 5018 SDValue Ops[2]; 5019 Ops[0] = getRoot(); 5020 Ops[1] = getValue(I.getArgOperand(0)); 5021 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5022 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5023 setValue(&I, Op.getValue(0)); 5024 DAG.setRoot(Op.getValue(1)); 5025 return nullptr; 5026 } 5027 case Intrinsic::eh_sjlj_longjmp: { 5028 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5029 getRoot(), getValue(I.getArgOperand(0)))); 5030 return nullptr; 5031 } 5032 case Intrinsic::eh_sjlj_setup_dispatch: { 5033 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5034 getRoot())); 5035 return nullptr; 5036 } 5037 5038 case Intrinsic::masked_gather: 5039 visitMaskedGather(I); 5040 return nullptr; 5041 case Intrinsic::masked_load: 5042 visitMaskedLoad(I); 5043 return nullptr; 5044 case Intrinsic::masked_scatter: 5045 visitMaskedScatter(I); 5046 return nullptr; 5047 case Intrinsic::masked_store: 5048 visitMaskedStore(I); 5049 return nullptr; 5050 case Intrinsic::x86_mmx_pslli_w: 5051 case Intrinsic::x86_mmx_pslli_d: 5052 case Intrinsic::x86_mmx_pslli_q: 5053 case Intrinsic::x86_mmx_psrli_w: 5054 case Intrinsic::x86_mmx_psrli_d: 5055 case Intrinsic::x86_mmx_psrli_q: 5056 case Intrinsic::x86_mmx_psrai_w: 5057 case Intrinsic::x86_mmx_psrai_d: { 5058 SDValue ShAmt = getValue(I.getArgOperand(1)); 5059 if (isa<ConstantSDNode>(ShAmt)) { 5060 visitTargetIntrinsic(I, Intrinsic); 5061 return nullptr; 5062 } 5063 unsigned NewIntrinsic = 0; 5064 EVT ShAmtVT = MVT::v2i32; 5065 switch (Intrinsic) { 5066 case Intrinsic::x86_mmx_pslli_w: 5067 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5068 break; 5069 case Intrinsic::x86_mmx_pslli_d: 5070 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5071 break; 5072 case Intrinsic::x86_mmx_pslli_q: 5073 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5074 break; 5075 case Intrinsic::x86_mmx_psrli_w: 5076 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5077 break; 5078 case Intrinsic::x86_mmx_psrli_d: 5079 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5080 break; 5081 case Intrinsic::x86_mmx_psrli_q: 5082 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5083 break; 5084 case Intrinsic::x86_mmx_psrai_w: 5085 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5086 break; 5087 case Intrinsic::x86_mmx_psrai_d: 5088 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5089 break; 5090 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5091 } 5092 5093 // The vector shift intrinsics with scalars uses 32b shift amounts but 5094 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5095 // to be zero. 5096 // We must do this early because v2i32 is not a legal type. 5097 SDValue ShOps[2]; 5098 ShOps[0] = ShAmt; 5099 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5100 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5101 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5102 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5103 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5104 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5105 getValue(I.getArgOperand(0)), ShAmt); 5106 setValue(&I, Res); 5107 return nullptr; 5108 } 5109 case Intrinsic::convertff: 5110 case Intrinsic::convertfsi: 5111 case Intrinsic::convertfui: 5112 case Intrinsic::convertsif: 5113 case Intrinsic::convertuif: 5114 case Intrinsic::convertss: 5115 case Intrinsic::convertsu: 5116 case Intrinsic::convertus: 5117 case Intrinsic::convertuu: { 5118 ISD::CvtCode Code = ISD::CVT_INVALID; 5119 switch (Intrinsic) { 5120 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5121 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5122 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5123 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5124 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5125 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5126 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5127 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5128 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5129 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5130 } 5131 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5132 const Value *Op1 = I.getArgOperand(0); 5133 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5134 DAG.getValueType(DestVT), 5135 DAG.getValueType(getValue(Op1).getValueType()), 5136 getValue(I.getArgOperand(1)), 5137 getValue(I.getArgOperand(2)), 5138 Code); 5139 setValue(&I, Res); 5140 return nullptr; 5141 } 5142 case Intrinsic::powi: 5143 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5144 getValue(I.getArgOperand(1)), DAG)); 5145 return nullptr; 5146 case Intrinsic::log: 5147 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5148 return nullptr; 5149 case Intrinsic::log2: 5150 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5151 return nullptr; 5152 case Intrinsic::log10: 5153 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5154 return nullptr; 5155 case Intrinsic::exp: 5156 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5157 return nullptr; 5158 case Intrinsic::exp2: 5159 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5160 return nullptr; 5161 case Intrinsic::pow: 5162 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5163 getValue(I.getArgOperand(1)), DAG, TLI)); 5164 return nullptr; 5165 case Intrinsic::sqrt: 5166 case Intrinsic::fabs: 5167 case Intrinsic::sin: 5168 case Intrinsic::cos: 5169 case Intrinsic::floor: 5170 case Intrinsic::ceil: 5171 case Intrinsic::trunc: 5172 case Intrinsic::rint: 5173 case Intrinsic::nearbyint: 5174 case Intrinsic::round: 5175 case Intrinsic::canonicalize: { 5176 unsigned Opcode; 5177 switch (Intrinsic) { 5178 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5179 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5180 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5181 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5182 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5183 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5184 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5185 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5186 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5187 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5188 case Intrinsic::round: Opcode = ISD::FROUND; break; 5189 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5190 } 5191 5192 setValue(&I, DAG.getNode(Opcode, sdl, 5193 getValue(I.getArgOperand(0)).getValueType(), 5194 getValue(I.getArgOperand(0)))); 5195 return nullptr; 5196 } 5197 case Intrinsic::minnum: { 5198 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5199 unsigned Opc = 5200 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5201 ? ISD::FMINNAN 5202 : ISD::FMINNUM; 5203 setValue(&I, DAG.getNode(Opc, sdl, VT, 5204 getValue(I.getArgOperand(0)), 5205 getValue(I.getArgOperand(1)))); 5206 return nullptr; 5207 } 5208 case Intrinsic::maxnum: { 5209 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5210 unsigned Opc = 5211 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5212 ? ISD::FMAXNAN 5213 : ISD::FMAXNUM; 5214 setValue(&I, DAG.getNode(Opc, sdl, VT, 5215 getValue(I.getArgOperand(0)), 5216 getValue(I.getArgOperand(1)))); 5217 return nullptr; 5218 } 5219 case Intrinsic::copysign: 5220 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5221 getValue(I.getArgOperand(0)).getValueType(), 5222 getValue(I.getArgOperand(0)), 5223 getValue(I.getArgOperand(1)))); 5224 return nullptr; 5225 case Intrinsic::fma: 5226 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5227 getValue(I.getArgOperand(0)).getValueType(), 5228 getValue(I.getArgOperand(0)), 5229 getValue(I.getArgOperand(1)), 5230 getValue(I.getArgOperand(2)))); 5231 return nullptr; 5232 case Intrinsic::fmuladd: { 5233 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5234 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5235 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5236 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5237 getValue(I.getArgOperand(0)).getValueType(), 5238 getValue(I.getArgOperand(0)), 5239 getValue(I.getArgOperand(1)), 5240 getValue(I.getArgOperand(2)))); 5241 } else { 5242 // TODO: Intrinsic calls should have fast-math-flags. 5243 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5244 getValue(I.getArgOperand(0)).getValueType(), 5245 getValue(I.getArgOperand(0)), 5246 getValue(I.getArgOperand(1))); 5247 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5248 getValue(I.getArgOperand(0)).getValueType(), 5249 Mul, 5250 getValue(I.getArgOperand(2))); 5251 setValue(&I, Add); 5252 } 5253 return nullptr; 5254 } 5255 case Intrinsic::convert_to_fp16: 5256 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5257 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5258 getValue(I.getArgOperand(0)), 5259 DAG.getTargetConstant(0, sdl, 5260 MVT::i32)))); 5261 return nullptr; 5262 case Intrinsic::convert_from_fp16: 5263 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5264 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5265 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5266 getValue(I.getArgOperand(0))))); 5267 return nullptr; 5268 case Intrinsic::pcmarker: { 5269 SDValue Tmp = getValue(I.getArgOperand(0)); 5270 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5271 return nullptr; 5272 } 5273 case Intrinsic::readcyclecounter: { 5274 SDValue Op = getRoot(); 5275 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5276 DAG.getVTList(MVT::i64, MVT::Other), Op); 5277 setValue(&I, Res); 5278 DAG.setRoot(Res.getValue(1)); 5279 return nullptr; 5280 } 5281 case Intrinsic::bitreverse: 5282 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5283 getValue(I.getArgOperand(0)).getValueType(), 5284 getValue(I.getArgOperand(0)))); 5285 return nullptr; 5286 case Intrinsic::bswap: 5287 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5288 getValue(I.getArgOperand(0)).getValueType(), 5289 getValue(I.getArgOperand(0)))); 5290 return nullptr; 5291 case Intrinsic::cttz: { 5292 SDValue Arg = getValue(I.getArgOperand(0)); 5293 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5294 EVT Ty = Arg.getValueType(); 5295 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5296 sdl, Ty, Arg)); 5297 return nullptr; 5298 } 5299 case Intrinsic::ctlz: { 5300 SDValue Arg = getValue(I.getArgOperand(0)); 5301 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5302 EVT Ty = Arg.getValueType(); 5303 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5304 sdl, Ty, Arg)); 5305 return nullptr; 5306 } 5307 case Intrinsic::ctpop: { 5308 SDValue Arg = getValue(I.getArgOperand(0)); 5309 EVT Ty = Arg.getValueType(); 5310 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5311 return nullptr; 5312 } 5313 case Intrinsic::stacksave: { 5314 SDValue Op = getRoot(); 5315 Res = DAG.getNode( 5316 ISD::STACKSAVE, sdl, 5317 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5318 setValue(&I, Res); 5319 DAG.setRoot(Res.getValue(1)); 5320 return nullptr; 5321 } 5322 case Intrinsic::stackrestore: { 5323 Res = getValue(I.getArgOperand(0)); 5324 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5325 return nullptr; 5326 } 5327 case Intrinsic::get_dynamic_area_offset: { 5328 SDValue Op = getRoot(); 5329 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5330 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5331 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5332 // target. 5333 if (PtrTy != ResTy) 5334 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5335 " intrinsic!"); 5336 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5337 Op); 5338 DAG.setRoot(Op); 5339 setValue(&I, Res); 5340 return nullptr; 5341 } 5342 case Intrinsic::stackguard: { 5343 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5344 MachineFunction &MF = DAG.getMachineFunction(); 5345 const Module &M = *MF.getFunction()->getParent(); 5346 SDValue Chain = getRoot(); 5347 if (TLI.useLoadStackGuardNode()) { 5348 Res = getLoadStackGuard(DAG, sdl, Chain); 5349 } else { 5350 const Value *Global = TLI.getSDagStackGuard(M); 5351 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5352 Res = 5353 DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5354 MachinePointerInfo(Global, 0), true, false, false, Align); 5355 } 5356 DAG.setRoot(Chain); 5357 setValue(&I, Res); 5358 return nullptr; 5359 } 5360 case Intrinsic::stackprotector: { 5361 // Emit code into the DAG to store the stack guard onto the stack. 5362 MachineFunction &MF = DAG.getMachineFunction(); 5363 MachineFrameInfo *MFI = MF.getFrameInfo(); 5364 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5365 SDValue Src, Chain = getRoot(); 5366 5367 if (TLI.useLoadStackGuardNode()) 5368 Src = getLoadStackGuard(DAG, sdl, Chain); 5369 else 5370 Src = getValue(I.getArgOperand(0)); // The guard's value. 5371 5372 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5373 5374 int FI = FuncInfo.StaticAllocaMap[Slot]; 5375 MFI->setStackProtectorIndex(FI); 5376 5377 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5378 5379 // Store the stack protector onto the stack. 5380 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5381 DAG.getMachineFunction(), FI), 5382 true, false, 0); 5383 setValue(&I, Res); 5384 DAG.setRoot(Res); 5385 return nullptr; 5386 } 5387 case Intrinsic::objectsize: { 5388 // If we don't know by now, we're never going to know. 5389 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5390 5391 assert(CI && "Non-constant type in __builtin_object_size?"); 5392 5393 SDValue Arg = getValue(I.getCalledValue()); 5394 EVT Ty = Arg.getValueType(); 5395 5396 if (CI->isZero()) 5397 Res = DAG.getConstant(-1ULL, sdl, Ty); 5398 else 5399 Res = DAG.getConstant(0, sdl, Ty); 5400 5401 setValue(&I, Res); 5402 return nullptr; 5403 } 5404 case Intrinsic::annotation: 5405 case Intrinsic::ptr_annotation: 5406 // Drop the intrinsic, but forward the value 5407 setValue(&I, getValue(I.getOperand(0))); 5408 return nullptr; 5409 case Intrinsic::assume: 5410 case Intrinsic::var_annotation: 5411 // Discard annotate attributes and assumptions 5412 return nullptr; 5413 5414 case Intrinsic::init_trampoline: { 5415 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5416 5417 SDValue Ops[6]; 5418 Ops[0] = getRoot(); 5419 Ops[1] = getValue(I.getArgOperand(0)); 5420 Ops[2] = getValue(I.getArgOperand(1)); 5421 Ops[3] = getValue(I.getArgOperand(2)); 5422 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5423 Ops[5] = DAG.getSrcValue(F); 5424 5425 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5426 5427 DAG.setRoot(Res); 5428 return nullptr; 5429 } 5430 case Intrinsic::adjust_trampoline: { 5431 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5432 TLI.getPointerTy(DAG.getDataLayout()), 5433 getValue(I.getArgOperand(0)))); 5434 return nullptr; 5435 } 5436 case Intrinsic::gcroot: { 5437 MachineFunction &MF = DAG.getMachineFunction(); 5438 const Function *F = MF.getFunction(); 5439 (void)F; 5440 assert(F->hasGC() && 5441 "only valid in functions with gc specified, enforced by Verifier"); 5442 assert(GFI && "implied by previous"); 5443 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5444 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5445 5446 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5447 GFI->addStackRoot(FI->getIndex(), TypeMap); 5448 return nullptr; 5449 } 5450 case Intrinsic::gcread: 5451 case Intrinsic::gcwrite: 5452 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5453 case Intrinsic::flt_rounds: 5454 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5455 return nullptr; 5456 5457 case Intrinsic::expect: { 5458 // Just replace __builtin_expect(exp, c) with EXP. 5459 setValue(&I, getValue(I.getArgOperand(0))); 5460 return nullptr; 5461 } 5462 5463 case Intrinsic::debugtrap: 5464 case Intrinsic::trap: { 5465 StringRef TrapFuncName = 5466 I.getAttributes() 5467 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5468 .getValueAsString(); 5469 if (TrapFuncName.empty()) { 5470 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5471 ISD::TRAP : ISD::DEBUGTRAP; 5472 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5473 return nullptr; 5474 } 5475 TargetLowering::ArgListTy Args; 5476 5477 TargetLowering::CallLoweringInfo CLI(DAG); 5478 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5479 CallingConv::C, I.getType(), 5480 DAG.getExternalSymbol(TrapFuncName.data(), 5481 TLI.getPointerTy(DAG.getDataLayout())), 5482 std::move(Args), 0); 5483 5484 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5485 DAG.setRoot(Result.second); 5486 return nullptr; 5487 } 5488 5489 case Intrinsic::uadd_with_overflow: 5490 case Intrinsic::sadd_with_overflow: 5491 case Intrinsic::usub_with_overflow: 5492 case Intrinsic::ssub_with_overflow: 5493 case Intrinsic::umul_with_overflow: 5494 case Intrinsic::smul_with_overflow: { 5495 ISD::NodeType Op; 5496 switch (Intrinsic) { 5497 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5498 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5499 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5500 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5501 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5502 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5503 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5504 } 5505 SDValue Op1 = getValue(I.getArgOperand(0)); 5506 SDValue Op2 = getValue(I.getArgOperand(1)); 5507 5508 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5509 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5510 return nullptr; 5511 } 5512 case Intrinsic::prefetch: { 5513 SDValue Ops[5]; 5514 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5515 Ops[0] = getRoot(); 5516 Ops[1] = getValue(I.getArgOperand(0)); 5517 Ops[2] = getValue(I.getArgOperand(1)); 5518 Ops[3] = getValue(I.getArgOperand(2)); 5519 Ops[4] = getValue(I.getArgOperand(3)); 5520 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5521 DAG.getVTList(MVT::Other), Ops, 5522 EVT::getIntegerVT(*Context, 8), 5523 MachinePointerInfo(I.getArgOperand(0)), 5524 0, /* align */ 5525 false, /* volatile */ 5526 rw==0, /* read */ 5527 rw==1)); /* write */ 5528 return nullptr; 5529 } 5530 case Intrinsic::lifetime_start: 5531 case Intrinsic::lifetime_end: { 5532 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5533 // Stack coloring is not enabled in O0, discard region information. 5534 if (TM.getOptLevel() == CodeGenOpt::None) 5535 return nullptr; 5536 5537 SmallVector<Value *, 4> Allocas; 5538 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5539 5540 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5541 E = Allocas.end(); Object != E; ++Object) { 5542 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5543 5544 // Could not find an Alloca. 5545 if (!LifetimeObject) 5546 continue; 5547 5548 // First check that the Alloca is static, otherwise it won't have a 5549 // valid frame index. 5550 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5551 if (SI == FuncInfo.StaticAllocaMap.end()) 5552 return nullptr; 5553 5554 int FI = SI->second; 5555 5556 SDValue Ops[2]; 5557 Ops[0] = getRoot(); 5558 Ops[1] = 5559 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5560 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5561 5562 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5563 DAG.setRoot(Res); 5564 } 5565 return nullptr; 5566 } 5567 case Intrinsic::invariant_start: 5568 // Discard region information. 5569 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5570 return nullptr; 5571 case Intrinsic::invariant_end: 5572 // Discard region information. 5573 return nullptr; 5574 case Intrinsic::clear_cache: 5575 return TLI.getClearCacheBuiltinName(); 5576 case Intrinsic::donothing: 5577 // ignore 5578 return nullptr; 5579 case Intrinsic::experimental_stackmap: { 5580 visitStackmap(I); 5581 return nullptr; 5582 } 5583 case Intrinsic::experimental_patchpoint_void: 5584 case Intrinsic::experimental_patchpoint_i64: { 5585 visitPatchpoint(&I); 5586 return nullptr; 5587 } 5588 case Intrinsic::experimental_gc_statepoint: { 5589 LowerStatepoint(ImmutableStatepoint(&I)); 5590 return nullptr; 5591 } 5592 case Intrinsic::experimental_gc_result: { 5593 visitGCResult(cast<GCResultInst>(I)); 5594 return nullptr; 5595 } 5596 case Intrinsic::experimental_gc_relocate: { 5597 visitGCRelocate(cast<GCRelocateInst>(I)); 5598 return nullptr; 5599 } 5600 case Intrinsic::instrprof_increment: 5601 llvm_unreachable("instrprof failed to lower an increment"); 5602 case Intrinsic::instrprof_value_profile: 5603 llvm_unreachable("instrprof failed to lower a value profiling call"); 5604 case Intrinsic::localescape: { 5605 MachineFunction &MF = DAG.getMachineFunction(); 5606 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5607 5608 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5609 // is the same on all targets. 5610 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5611 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5612 if (isa<ConstantPointerNull>(Arg)) 5613 continue; // Skip null pointers. They represent a hole in index space. 5614 AllocaInst *Slot = cast<AllocaInst>(Arg); 5615 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5616 "can only escape static allocas"); 5617 int FI = FuncInfo.StaticAllocaMap[Slot]; 5618 MCSymbol *FrameAllocSym = 5619 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5620 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5621 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5622 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5623 .addSym(FrameAllocSym) 5624 .addFrameIndex(FI); 5625 } 5626 5627 return nullptr; 5628 } 5629 5630 case Intrinsic::localrecover: { 5631 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5632 MachineFunction &MF = DAG.getMachineFunction(); 5633 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5634 5635 // Get the symbol that defines the frame offset. 5636 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5637 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5638 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5639 MCSymbol *FrameAllocSym = 5640 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5641 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5642 5643 // Create a MCSymbol for the label to avoid any target lowering 5644 // that would make this PC relative. 5645 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5646 SDValue OffsetVal = 5647 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5648 5649 // Add the offset to the FP. 5650 Value *FP = I.getArgOperand(1); 5651 SDValue FPVal = getValue(FP); 5652 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5653 setValue(&I, Add); 5654 5655 return nullptr; 5656 } 5657 5658 case Intrinsic::eh_exceptionpointer: 5659 case Intrinsic::eh_exceptioncode: { 5660 // Get the exception pointer vreg, copy from it, and resize it to fit. 5661 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5662 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5663 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5664 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5665 SDValue N = 5666 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5667 if (Intrinsic == Intrinsic::eh_exceptioncode) 5668 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5669 setValue(&I, N); 5670 return nullptr; 5671 } 5672 5673 case Intrinsic::experimental_deoptimize: 5674 LowerDeoptimizeCall(&I); 5675 return nullptr; 5676 } 5677 } 5678 5679 std::pair<SDValue, SDValue> 5680 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5681 const BasicBlock *EHPadBB) { 5682 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5683 MCSymbol *BeginLabel = nullptr; 5684 5685 if (EHPadBB) { 5686 // Insert a label before the invoke call to mark the try range. This can be 5687 // used to detect deletion of the invoke via the MachineModuleInfo. 5688 BeginLabel = MMI.getContext().createTempSymbol(); 5689 5690 // For SjLj, keep track of which landing pads go with which invokes 5691 // so as to maintain the ordering of pads in the LSDA. 5692 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5693 if (CallSiteIndex) { 5694 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5695 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5696 5697 // Now that the call site is handled, stop tracking it. 5698 MMI.setCurrentCallSite(0); 5699 } 5700 5701 // Both PendingLoads and PendingExports must be flushed here; 5702 // this call might not return. 5703 (void)getRoot(); 5704 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5705 5706 CLI.setChain(getRoot()); 5707 } 5708 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5709 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5710 5711 assert((CLI.IsTailCall || Result.second.getNode()) && 5712 "Non-null chain expected with non-tail call!"); 5713 assert((Result.second.getNode() || !Result.first.getNode()) && 5714 "Null value expected with tail call!"); 5715 5716 if (!Result.second.getNode()) { 5717 // As a special case, a null chain means that a tail call has been emitted 5718 // and the DAG root is already updated. 5719 HasTailCall = true; 5720 5721 // Since there's no actual continuation from this block, nothing can be 5722 // relying on us setting vregs for them. 5723 PendingExports.clear(); 5724 } else { 5725 DAG.setRoot(Result.second); 5726 } 5727 5728 if (EHPadBB) { 5729 // Insert a label at the end of the invoke call to mark the try range. This 5730 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5731 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5732 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5733 5734 // Inform MachineModuleInfo of range. 5735 if (MMI.hasEHFunclets()) { 5736 assert(CLI.CS); 5737 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5738 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5739 BeginLabel, EndLabel); 5740 } else { 5741 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5742 } 5743 } 5744 5745 return Result; 5746 } 5747 5748 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5749 bool isTailCall, 5750 const BasicBlock *EHPadBB) { 5751 auto &DL = DAG.getDataLayout(); 5752 FunctionType *FTy = CS.getFunctionType(); 5753 Type *RetTy = CS.getType(); 5754 5755 TargetLowering::ArgListTy Args; 5756 TargetLowering::ArgListEntry Entry; 5757 Args.reserve(CS.arg_size()); 5758 5759 const Value *SwiftErrorVal = nullptr; 5760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5761 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5762 i != e; ++i) { 5763 const Value *V = *i; 5764 5765 // Skip empty types 5766 if (V->getType()->isEmptyTy()) 5767 continue; 5768 5769 SDValue ArgNode = getValue(V); 5770 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5771 5772 // Skip the first return-type Attribute to get to params. 5773 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5774 5775 // Use swifterror virtual register as input to the call. 5776 if (Entry.isSwiftError && TLI.supportSwiftError()) { 5777 SwiftErrorVal = V; 5778 // We find the virtual register for the actual swifterror argument. 5779 // Instead of using the Value, we use the virtual register instead. 5780 Entry.Node = DAG.getRegister( 5781 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V), 5782 EVT(TLI.getPointerTy(DL))); 5783 } 5784 5785 Args.push_back(Entry); 5786 5787 // If we have an explicit sret argument that is an Instruction, (i.e., it 5788 // might point to function-local memory), we can't meaningfully tail-call. 5789 if (Entry.isSRet && isa<Instruction>(V)) 5790 isTailCall = false; 5791 } 5792 5793 // Check if target-independent constraints permit a tail call here. 5794 // Target-dependent constraints are checked within TLI->LowerCallTo. 5795 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5796 isTailCall = false; 5797 5798 TargetLowering::CallLoweringInfo CLI(DAG); 5799 CLI.setDebugLoc(getCurSDLoc()) 5800 .setChain(getRoot()) 5801 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5802 .setTailCall(isTailCall) 5803 .setConvergent(CS.isConvergent()); 5804 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5805 5806 if (Result.first.getNode()) { 5807 const Instruction *Inst = CS.getInstruction(); 5808 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5809 setValue(Inst, Result.first); 5810 } 5811 5812 // The last element of CLI.InVals has the SDValue for swifterror return. 5813 // Here we copy it to a virtual register and update SwiftErrorMap for 5814 // book-keeping. 5815 if (SwiftErrorVal && TLI.supportSwiftError()) { 5816 // Get the last element of InVals. 5817 SDValue Src = CLI.InVals.back(); 5818 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5819 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5820 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5821 // We update the virtual register for the actual swifterror argument. 5822 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5823 DAG.setRoot(CopyNode); 5824 } 5825 } 5826 5827 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5828 /// value is equal or not-equal to zero. 5829 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5830 for (const User *U : V->users()) { 5831 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5832 if (IC->isEquality()) 5833 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5834 if (C->isNullValue()) 5835 continue; 5836 // Unknown instruction. 5837 return false; 5838 } 5839 return true; 5840 } 5841 5842 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5843 Type *LoadTy, 5844 SelectionDAGBuilder &Builder) { 5845 5846 // Check to see if this load can be trivially constant folded, e.g. if the 5847 // input is from a string literal. 5848 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5849 // Cast pointer to the type we really want to load. 5850 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5851 PointerType::getUnqual(LoadTy)); 5852 5853 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5854 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5855 return Builder.getValue(LoadCst); 5856 } 5857 5858 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5859 // still constant memory, the input chain can be the entry node. 5860 SDValue Root; 5861 bool ConstantMemory = false; 5862 5863 // Do not serialize (non-volatile) loads of constant memory with anything. 5864 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5865 Root = Builder.DAG.getEntryNode(); 5866 ConstantMemory = true; 5867 } else { 5868 // Do not serialize non-volatile loads against each other. 5869 Root = Builder.DAG.getRoot(); 5870 } 5871 5872 SDValue Ptr = Builder.getValue(PtrVal); 5873 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5874 Ptr, MachinePointerInfo(PtrVal), 5875 false /*volatile*/, 5876 false /*nontemporal*/, 5877 false /*isinvariant*/, 1 /* align=1 */); 5878 5879 if (!ConstantMemory) 5880 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5881 return LoadVal; 5882 } 5883 5884 /// processIntegerCallValue - Record the value for an instruction that 5885 /// produces an integer result, converting the type where necessary. 5886 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5887 SDValue Value, 5888 bool IsSigned) { 5889 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5890 I.getType(), true); 5891 if (IsSigned) 5892 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5893 else 5894 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5895 setValue(&I, Value); 5896 } 5897 5898 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5899 /// If so, return true and lower it, otherwise return false and it will be 5900 /// lowered like a normal call. 5901 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5902 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5903 if (I.getNumArgOperands() != 3) 5904 return false; 5905 5906 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5907 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5908 !I.getArgOperand(2)->getType()->isIntegerTy() || 5909 !I.getType()->isIntegerTy()) 5910 return false; 5911 5912 const Value *Size = I.getArgOperand(2); 5913 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5914 if (CSize && CSize->getZExtValue() == 0) { 5915 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5916 I.getType(), true); 5917 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5918 return true; 5919 } 5920 5921 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5922 std::pair<SDValue, SDValue> Res = 5923 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5924 getValue(LHS), getValue(RHS), getValue(Size), 5925 MachinePointerInfo(LHS), 5926 MachinePointerInfo(RHS)); 5927 if (Res.first.getNode()) { 5928 processIntegerCallValue(I, Res.first, true); 5929 PendingLoads.push_back(Res.second); 5930 return true; 5931 } 5932 5933 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5934 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5935 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5936 bool ActuallyDoIt = true; 5937 MVT LoadVT; 5938 Type *LoadTy; 5939 switch (CSize->getZExtValue()) { 5940 default: 5941 LoadVT = MVT::Other; 5942 LoadTy = nullptr; 5943 ActuallyDoIt = false; 5944 break; 5945 case 2: 5946 LoadVT = MVT::i16; 5947 LoadTy = Type::getInt16Ty(CSize->getContext()); 5948 break; 5949 case 4: 5950 LoadVT = MVT::i32; 5951 LoadTy = Type::getInt32Ty(CSize->getContext()); 5952 break; 5953 case 8: 5954 LoadVT = MVT::i64; 5955 LoadTy = Type::getInt64Ty(CSize->getContext()); 5956 break; 5957 /* 5958 case 16: 5959 LoadVT = MVT::v4i32; 5960 LoadTy = Type::getInt32Ty(CSize->getContext()); 5961 LoadTy = VectorType::get(LoadTy, 4); 5962 break; 5963 */ 5964 } 5965 5966 // This turns into unaligned loads. We only do this if the target natively 5967 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5968 // we'll only produce a small number of byte loads. 5969 5970 // Require that we can find a legal MVT, and only do this if the target 5971 // supports unaligned loads of that type. Expanding into byte loads would 5972 // bloat the code. 5973 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5974 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5975 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5976 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5977 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5978 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5979 // TODO: Check alignment of src and dest ptrs. 5980 if (!TLI.isTypeLegal(LoadVT) || 5981 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5982 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5983 ActuallyDoIt = false; 5984 } 5985 5986 if (ActuallyDoIt) { 5987 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5988 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5989 5990 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5991 ISD::SETNE); 5992 processIntegerCallValue(I, Res, false); 5993 return true; 5994 } 5995 } 5996 5997 5998 return false; 5999 } 6000 6001 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 6002 /// form. If so, return true and lower it, otherwise return false and it 6003 /// will be lowered like a normal call. 6004 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6005 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 6006 if (I.getNumArgOperands() != 3) 6007 return false; 6008 6009 const Value *Src = I.getArgOperand(0); 6010 const Value *Char = I.getArgOperand(1); 6011 const Value *Length = I.getArgOperand(2); 6012 if (!Src->getType()->isPointerTy() || 6013 !Char->getType()->isIntegerTy() || 6014 !Length->getType()->isIntegerTy() || 6015 !I.getType()->isPointerTy()) 6016 return false; 6017 6018 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6019 std::pair<SDValue, SDValue> Res = 6020 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6021 getValue(Src), getValue(Char), getValue(Length), 6022 MachinePointerInfo(Src)); 6023 if (Res.first.getNode()) { 6024 setValue(&I, Res.first); 6025 PendingLoads.push_back(Res.second); 6026 return true; 6027 } 6028 6029 return false; 6030 } 6031 6032 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 6033 /// optimized form. If so, return true and lower it, otherwise return false 6034 /// and it will be lowered like a normal call. 6035 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6036 // Verify that the prototype makes sense. char *strcpy(char *, char *) 6037 if (I.getNumArgOperands() != 2) 6038 return false; 6039 6040 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6041 if (!Arg0->getType()->isPointerTy() || 6042 !Arg1->getType()->isPointerTy() || 6043 !I.getType()->isPointerTy()) 6044 return false; 6045 6046 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6047 std::pair<SDValue, SDValue> Res = 6048 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6049 getValue(Arg0), getValue(Arg1), 6050 MachinePointerInfo(Arg0), 6051 MachinePointerInfo(Arg1), isStpcpy); 6052 if (Res.first.getNode()) { 6053 setValue(&I, Res.first); 6054 DAG.setRoot(Res.second); 6055 return true; 6056 } 6057 6058 return false; 6059 } 6060 6061 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 6062 /// If so, return true and lower it, otherwise return false and it will be 6063 /// lowered like a normal call. 6064 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6065 // Verify that the prototype makes sense. int strcmp(void*,void*) 6066 if (I.getNumArgOperands() != 2) 6067 return false; 6068 6069 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6070 if (!Arg0->getType()->isPointerTy() || 6071 !Arg1->getType()->isPointerTy() || 6072 !I.getType()->isIntegerTy()) 6073 return false; 6074 6075 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6076 std::pair<SDValue, SDValue> Res = 6077 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6078 getValue(Arg0), getValue(Arg1), 6079 MachinePointerInfo(Arg0), 6080 MachinePointerInfo(Arg1)); 6081 if (Res.first.getNode()) { 6082 processIntegerCallValue(I, Res.first, true); 6083 PendingLoads.push_back(Res.second); 6084 return true; 6085 } 6086 6087 return false; 6088 } 6089 6090 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6091 /// form. If so, return true and lower it, otherwise return false and it 6092 /// will be lowered like a normal call. 6093 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6094 // Verify that the prototype makes sense. size_t strlen(char *) 6095 if (I.getNumArgOperands() != 1) 6096 return false; 6097 6098 const Value *Arg0 = I.getArgOperand(0); 6099 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6100 return false; 6101 6102 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6103 std::pair<SDValue, SDValue> Res = 6104 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6105 getValue(Arg0), MachinePointerInfo(Arg0)); 6106 if (Res.first.getNode()) { 6107 processIntegerCallValue(I, Res.first, false); 6108 PendingLoads.push_back(Res.second); 6109 return true; 6110 } 6111 6112 return false; 6113 } 6114 6115 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6116 /// form. If so, return true and lower it, otherwise return false and it 6117 /// will be lowered like a normal call. 6118 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6119 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6120 if (I.getNumArgOperands() != 2) 6121 return false; 6122 6123 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6124 if (!Arg0->getType()->isPointerTy() || 6125 !Arg1->getType()->isIntegerTy() || 6126 !I.getType()->isIntegerTy()) 6127 return false; 6128 6129 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6130 std::pair<SDValue, SDValue> Res = 6131 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6132 getValue(Arg0), getValue(Arg1), 6133 MachinePointerInfo(Arg0)); 6134 if (Res.first.getNode()) { 6135 processIntegerCallValue(I, Res.first, false); 6136 PendingLoads.push_back(Res.second); 6137 return true; 6138 } 6139 6140 return false; 6141 } 6142 6143 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6144 /// operation (as expected), translate it to an SDNode with the specified opcode 6145 /// and return true. 6146 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6147 unsigned Opcode) { 6148 // Sanity check that it really is a unary floating-point call. 6149 if (I.getNumArgOperands() != 1 || 6150 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6151 I.getType() != I.getArgOperand(0)->getType() || 6152 !I.onlyReadsMemory()) 6153 return false; 6154 6155 SDValue Tmp = getValue(I.getArgOperand(0)); 6156 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6157 return true; 6158 } 6159 6160 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6161 /// operation (as expected), translate it to an SDNode with the specified opcode 6162 /// and return true. 6163 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6164 unsigned Opcode) { 6165 // Sanity check that it really is a binary floating-point call. 6166 if (I.getNumArgOperands() != 2 || 6167 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6168 I.getType() != I.getArgOperand(0)->getType() || 6169 I.getType() != I.getArgOperand(1)->getType() || 6170 !I.onlyReadsMemory()) 6171 return false; 6172 6173 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6174 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6175 EVT VT = Tmp0.getValueType(); 6176 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6177 return true; 6178 } 6179 6180 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6181 // Handle inline assembly differently. 6182 if (isa<InlineAsm>(I.getCalledValue())) { 6183 visitInlineAsm(&I); 6184 return; 6185 } 6186 6187 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6188 ComputeUsesVAFloatArgument(I, &MMI); 6189 6190 const char *RenameFn = nullptr; 6191 if (Function *F = I.getCalledFunction()) { 6192 if (F->isDeclaration()) { 6193 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6194 if (unsigned IID = II->getIntrinsicID(F)) { 6195 RenameFn = visitIntrinsicCall(I, IID); 6196 if (!RenameFn) 6197 return; 6198 } 6199 } 6200 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6201 RenameFn = visitIntrinsicCall(I, IID); 6202 if (!RenameFn) 6203 return; 6204 } 6205 } 6206 6207 // Check for well-known libc/libm calls. If the function is internal, it 6208 // can't be a library call. 6209 LibFunc::Func Func; 6210 if (!F->hasLocalLinkage() && F->hasName() && 6211 LibInfo->getLibFunc(F->getName(), Func) && 6212 LibInfo->hasOptimizedCodeGen(Func)) { 6213 switch (Func) { 6214 default: break; 6215 case LibFunc::copysign: 6216 case LibFunc::copysignf: 6217 case LibFunc::copysignl: 6218 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6219 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6220 I.getType() == I.getArgOperand(0)->getType() && 6221 I.getType() == I.getArgOperand(1)->getType() && 6222 I.onlyReadsMemory()) { 6223 SDValue LHS = getValue(I.getArgOperand(0)); 6224 SDValue RHS = getValue(I.getArgOperand(1)); 6225 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6226 LHS.getValueType(), LHS, RHS)); 6227 return; 6228 } 6229 break; 6230 case LibFunc::fabs: 6231 case LibFunc::fabsf: 6232 case LibFunc::fabsl: 6233 if (visitUnaryFloatCall(I, ISD::FABS)) 6234 return; 6235 break; 6236 case LibFunc::fmin: 6237 case LibFunc::fminf: 6238 case LibFunc::fminl: 6239 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6240 return; 6241 break; 6242 case LibFunc::fmax: 6243 case LibFunc::fmaxf: 6244 case LibFunc::fmaxl: 6245 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6246 return; 6247 break; 6248 case LibFunc::sin: 6249 case LibFunc::sinf: 6250 case LibFunc::sinl: 6251 if (visitUnaryFloatCall(I, ISD::FSIN)) 6252 return; 6253 break; 6254 case LibFunc::cos: 6255 case LibFunc::cosf: 6256 case LibFunc::cosl: 6257 if (visitUnaryFloatCall(I, ISD::FCOS)) 6258 return; 6259 break; 6260 case LibFunc::sqrt: 6261 case LibFunc::sqrtf: 6262 case LibFunc::sqrtl: 6263 case LibFunc::sqrt_finite: 6264 case LibFunc::sqrtf_finite: 6265 case LibFunc::sqrtl_finite: 6266 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6267 return; 6268 break; 6269 case LibFunc::floor: 6270 case LibFunc::floorf: 6271 case LibFunc::floorl: 6272 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6273 return; 6274 break; 6275 case LibFunc::nearbyint: 6276 case LibFunc::nearbyintf: 6277 case LibFunc::nearbyintl: 6278 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6279 return; 6280 break; 6281 case LibFunc::ceil: 6282 case LibFunc::ceilf: 6283 case LibFunc::ceill: 6284 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6285 return; 6286 break; 6287 case LibFunc::rint: 6288 case LibFunc::rintf: 6289 case LibFunc::rintl: 6290 if (visitUnaryFloatCall(I, ISD::FRINT)) 6291 return; 6292 break; 6293 case LibFunc::round: 6294 case LibFunc::roundf: 6295 case LibFunc::roundl: 6296 if (visitUnaryFloatCall(I, ISD::FROUND)) 6297 return; 6298 break; 6299 case LibFunc::trunc: 6300 case LibFunc::truncf: 6301 case LibFunc::truncl: 6302 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6303 return; 6304 break; 6305 case LibFunc::log2: 6306 case LibFunc::log2f: 6307 case LibFunc::log2l: 6308 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6309 return; 6310 break; 6311 case LibFunc::exp2: 6312 case LibFunc::exp2f: 6313 case LibFunc::exp2l: 6314 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6315 return; 6316 break; 6317 case LibFunc::memcmp: 6318 if (visitMemCmpCall(I)) 6319 return; 6320 break; 6321 case LibFunc::memchr: 6322 if (visitMemChrCall(I)) 6323 return; 6324 break; 6325 case LibFunc::strcpy: 6326 if (visitStrCpyCall(I, false)) 6327 return; 6328 break; 6329 case LibFunc::stpcpy: 6330 if (visitStrCpyCall(I, true)) 6331 return; 6332 break; 6333 case LibFunc::strcmp: 6334 if (visitStrCmpCall(I)) 6335 return; 6336 break; 6337 case LibFunc::strlen: 6338 if (visitStrLenCall(I)) 6339 return; 6340 break; 6341 case LibFunc::strnlen: 6342 if (visitStrNLenCall(I)) 6343 return; 6344 break; 6345 } 6346 } 6347 } 6348 6349 SDValue Callee; 6350 if (!RenameFn) 6351 Callee = getValue(I.getCalledValue()); 6352 else 6353 Callee = DAG.getExternalSymbol( 6354 RenameFn, 6355 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6356 6357 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6358 // have to do anything here to lower funclet bundles. 6359 assert(!I.hasOperandBundlesOtherThan( 6360 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6361 "Cannot lower calls with arbitrary operand bundles!"); 6362 6363 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6364 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6365 else 6366 // Check if we can potentially perform a tail call. More detailed checking 6367 // is be done within LowerCallTo, after more information about the call is 6368 // known. 6369 LowerCallTo(&I, Callee, I.isTailCall()); 6370 } 6371 6372 namespace { 6373 6374 /// AsmOperandInfo - This contains information for each constraint that we are 6375 /// lowering. 6376 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6377 public: 6378 /// CallOperand - If this is the result output operand or a clobber 6379 /// this is null, otherwise it is the incoming operand to the CallInst. 6380 /// This gets modified as the asm is processed. 6381 SDValue CallOperand; 6382 6383 /// AssignedRegs - If this is a register or register class operand, this 6384 /// contains the set of register corresponding to the operand. 6385 RegsForValue AssignedRegs; 6386 6387 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6388 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6389 } 6390 6391 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6392 /// corresponds to. If there is no Value* for this operand, it returns 6393 /// MVT::Other. 6394 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6395 const DataLayout &DL) const { 6396 if (!CallOperandVal) return MVT::Other; 6397 6398 if (isa<BasicBlock>(CallOperandVal)) 6399 return TLI.getPointerTy(DL); 6400 6401 llvm::Type *OpTy = CallOperandVal->getType(); 6402 6403 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6404 // If this is an indirect operand, the operand is a pointer to the 6405 // accessed type. 6406 if (isIndirect) { 6407 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6408 if (!PtrTy) 6409 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6410 OpTy = PtrTy->getElementType(); 6411 } 6412 6413 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6414 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6415 if (STy->getNumElements() == 1) 6416 OpTy = STy->getElementType(0); 6417 6418 // If OpTy is not a single value, it may be a struct/union that we 6419 // can tile with integers. 6420 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6421 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6422 switch (BitSize) { 6423 default: break; 6424 case 1: 6425 case 8: 6426 case 16: 6427 case 32: 6428 case 64: 6429 case 128: 6430 OpTy = IntegerType::get(Context, BitSize); 6431 break; 6432 } 6433 } 6434 6435 return TLI.getValueType(DL, OpTy, true); 6436 } 6437 }; 6438 6439 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6440 6441 } // end anonymous namespace 6442 6443 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6444 /// specified operand. We prefer to assign virtual registers, to allow the 6445 /// register allocator to handle the assignment process. However, if the asm 6446 /// uses features that we can't model on machineinstrs, we have SDISel do the 6447 /// allocation. This produces generally horrible, but correct, code. 6448 /// 6449 /// OpInfo describes the operand. 6450 /// 6451 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6452 const SDLoc &DL, 6453 SDISelAsmOperandInfo &OpInfo) { 6454 LLVMContext &Context = *DAG.getContext(); 6455 6456 MachineFunction &MF = DAG.getMachineFunction(); 6457 SmallVector<unsigned, 4> Regs; 6458 6459 // If this is a constraint for a single physreg, or a constraint for a 6460 // register class, find it. 6461 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6462 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6463 OpInfo.ConstraintCode, 6464 OpInfo.ConstraintVT); 6465 6466 unsigned NumRegs = 1; 6467 if (OpInfo.ConstraintVT != MVT::Other) { 6468 // If this is a FP input in an integer register (or visa versa) insert a bit 6469 // cast of the input value. More generally, handle any case where the input 6470 // value disagrees with the register class we plan to stick this in. 6471 if (OpInfo.Type == InlineAsm::isInput && 6472 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6473 // Try to convert to the first EVT that the reg class contains. If the 6474 // types are identical size, use a bitcast to convert (e.g. two differing 6475 // vector types). 6476 MVT RegVT = *PhysReg.second->vt_begin(); 6477 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6478 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6479 RegVT, OpInfo.CallOperand); 6480 OpInfo.ConstraintVT = RegVT; 6481 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6482 // If the input is a FP value and we want it in FP registers, do a 6483 // bitcast to the corresponding integer type. This turns an f64 value 6484 // into i64, which can be passed with two i32 values on a 32-bit 6485 // machine. 6486 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6487 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6488 RegVT, OpInfo.CallOperand); 6489 OpInfo.ConstraintVT = RegVT; 6490 } 6491 } 6492 6493 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6494 } 6495 6496 MVT RegVT; 6497 EVT ValueVT = OpInfo.ConstraintVT; 6498 6499 // If this is a constraint for a specific physical register, like {r17}, 6500 // assign it now. 6501 if (unsigned AssignedReg = PhysReg.first) { 6502 const TargetRegisterClass *RC = PhysReg.second; 6503 if (OpInfo.ConstraintVT == MVT::Other) 6504 ValueVT = *RC->vt_begin(); 6505 6506 // Get the actual register value type. This is important, because the user 6507 // may have asked for (e.g.) the AX register in i32 type. We need to 6508 // remember that AX is actually i16 to get the right extension. 6509 RegVT = *RC->vt_begin(); 6510 6511 // This is a explicit reference to a physical register. 6512 Regs.push_back(AssignedReg); 6513 6514 // If this is an expanded reference, add the rest of the regs to Regs. 6515 if (NumRegs != 1) { 6516 TargetRegisterClass::iterator I = RC->begin(); 6517 for (; *I != AssignedReg; ++I) 6518 assert(I != RC->end() && "Didn't find reg!"); 6519 6520 // Already added the first reg. 6521 --NumRegs; ++I; 6522 for (; NumRegs; --NumRegs, ++I) { 6523 assert(I != RC->end() && "Ran out of registers to allocate!"); 6524 Regs.push_back(*I); 6525 } 6526 } 6527 6528 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6529 return; 6530 } 6531 6532 // Otherwise, if this was a reference to an LLVM register class, create vregs 6533 // for this reference. 6534 if (const TargetRegisterClass *RC = PhysReg.second) { 6535 RegVT = *RC->vt_begin(); 6536 if (OpInfo.ConstraintVT == MVT::Other) 6537 ValueVT = RegVT; 6538 6539 // Create the appropriate number of virtual registers. 6540 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6541 for (; NumRegs; --NumRegs) 6542 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6543 6544 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6545 return; 6546 } 6547 6548 // Otherwise, we couldn't allocate enough registers for this. 6549 } 6550 6551 /// visitInlineAsm - Handle a call to an InlineAsm object. 6552 /// 6553 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6554 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6555 6556 /// ConstraintOperands - Information about all of the constraints. 6557 SDISelAsmOperandInfoVector ConstraintOperands; 6558 6559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6560 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6561 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6562 6563 bool hasMemory = false; 6564 6565 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6566 unsigned ResNo = 0; // ResNo - The result number of the next output. 6567 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6568 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6569 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6570 6571 MVT OpVT = MVT::Other; 6572 6573 // Compute the value type for each operand. 6574 switch (OpInfo.Type) { 6575 case InlineAsm::isOutput: 6576 // Indirect outputs just consume an argument. 6577 if (OpInfo.isIndirect) { 6578 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6579 break; 6580 } 6581 6582 // The return value of the call is this value. As such, there is no 6583 // corresponding argument. 6584 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6585 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6586 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6587 STy->getElementType(ResNo)); 6588 } else { 6589 assert(ResNo == 0 && "Asm only has one result!"); 6590 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6591 } 6592 ++ResNo; 6593 break; 6594 case InlineAsm::isInput: 6595 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6596 break; 6597 case InlineAsm::isClobber: 6598 // Nothing to do. 6599 break; 6600 } 6601 6602 // If this is an input or an indirect output, process the call argument. 6603 // BasicBlocks are labels, currently appearing only in asm's. 6604 if (OpInfo.CallOperandVal) { 6605 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6606 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6607 } else { 6608 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6609 } 6610 6611 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6612 DAG.getDataLayout()).getSimpleVT(); 6613 } 6614 6615 OpInfo.ConstraintVT = OpVT; 6616 6617 // Indirect operand accesses access memory. 6618 if (OpInfo.isIndirect) 6619 hasMemory = true; 6620 else { 6621 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6622 TargetLowering::ConstraintType 6623 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6624 if (CType == TargetLowering::C_Memory) { 6625 hasMemory = true; 6626 break; 6627 } 6628 } 6629 } 6630 } 6631 6632 SDValue Chain, Flag; 6633 6634 // We won't need to flush pending loads if this asm doesn't touch 6635 // memory and is nonvolatile. 6636 if (hasMemory || IA->hasSideEffects()) 6637 Chain = getRoot(); 6638 else 6639 Chain = DAG.getRoot(); 6640 6641 // Second pass over the constraints: compute which constraint option to use 6642 // and assign registers to constraints that want a specific physreg. 6643 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6644 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6645 6646 // If this is an output operand with a matching input operand, look up the 6647 // matching input. If their types mismatch, e.g. one is an integer, the 6648 // other is floating point, or their sizes are different, flag it as an 6649 // error. 6650 if (OpInfo.hasMatchingInput()) { 6651 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6652 6653 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6654 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6655 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6656 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6657 OpInfo.ConstraintVT); 6658 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6659 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6660 Input.ConstraintVT); 6661 if ((OpInfo.ConstraintVT.isInteger() != 6662 Input.ConstraintVT.isInteger()) || 6663 (MatchRC.second != InputRC.second)) { 6664 report_fatal_error("Unsupported asm: input constraint" 6665 " with a matching output constraint of" 6666 " incompatible type!"); 6667 } 6668 Input.ConstraintVT = OpInfo.ConstraintVT; 6669 } 6670 } 6671 6672 // Compute the constraint code and ConstraintType to use. 6673 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6674 6675 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6676 OpInfo.Type == InlineAsm::isClobber) 6677 continue; 6678 6679 // If this is a memory input, and if the operand is not indirect, do what we 6680 // need to to provide an address for the memory input. 6681 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6682 !OpInfo.isIndirect) { 6683 assert((OpInfo.isMultipleAlternative || 6684 (OpInfo.Type == InlineAsm::isInput)) && 6685 "Can only indirectify direct input operands!"); 6686 6687 // Memory operands really want the address of the value. If we don't have 6688 // an indirect input, put it in the constpool if we can, otherwise spill 6689 // it to a stack slot. 6690 // TODO: This isn't quite right. We need to handle these according to 6691 // the addressing mode that the constraint wants. Also, this may take 6692 // an additional register for the computation and we don't want that 6693 // either. 6694 6695 // If the operand is a float, integer, or vector constant, spill to a 6696 // constant pool entry to get its address. 6697 const Value *OpVal = OpInfo.CallOperandVal; 6698 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6699 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6700 OpInfo.CallOperand = DAG.getConstantPool( 6701 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6702 } else { 6703 // Otherwise, create a stack slot and emit a store to it before the 6704 // asm. 6705 Type *Ty = OpVal->getType(); 6706 auto &DL = DAG.getDataLayout(); 6707 uint64_t TySize = DL.getTypeAllocSize(Ty); 6708 unsigned Align = DL.getPrefTypeAlignment(Ty); 6709 MachineFunction &MF = DAG.getMachineFunction(); 6710 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6711 SDValue StackSlot = 6712 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6713 Chain = DAG.getStore( 6714 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6715 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6716 false, false, 0); 6717 OpInfo.CallOperand = StackSlot; 6718 } 6719 6720 // There is no longer a Value* corresponding to this operand. 6721 OpInfo.CallOperandVal = nullptr; 6722 6723 // It is now an indirect operand. 6724 OpInfo.isIndirect = true; 6725 } 6726 6727 // If this constraint is for a specific register, allocate it before 6728 // anything else. 6729 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6730 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6731 } 6732 6733 // Second pass - Loop over all of the operands, assigning virtual or physregs 6734 // to register class operands. 6735 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6736 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6737 6738 // C_Register operands have already been allocated, Other/Memory don't need 6739 // to be. 6740 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6741 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6742 } 6743 6744 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6745 std::vector<SDValue> AsmNodeOperands; 6746 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6747 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6748 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6749 6750 // If we have a !srcloc metadata node associated with it, we want to attach 6751 // this to the ultimately generated inline asm machineinstr. To do this, we 6752 // pass in the third operand as this (potentially null) inline asm MDNode. 6753 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6754 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6755 6756 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6757 // bits as operand 3. 6758 unsigned ExtraInfo = 0; 6759 if (IA->hasSideEffects()) 6760 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6761 if (IA->isAlignStack()) 6762 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6763 // Set the asm dialect. 6764 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6765 6766 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6767 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6768 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6769 6770 // Compute the constraint code and ConstraintType to use. 6771 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6772 6773 // Ideally, we would only check against memory constraints. However, the 6774 // meaning of an other constraint can be target-specific and we can't easily 6775 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6776 // for other constriants as well. 6777 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6778 OpInfo.ConstraintType == TargetLowering::C_Other) { 6779 if (OpInfo.Type == InlineAsm::isInput) 6780 ExtraInfo |= InlineAsm::Extra_MayLoad; 6781 else if (OpInfo.Type == InlineAsm::isOutput) 6782 ExtraInfo |= InlineAsm::Extra_MayStore; 6783 else if (OpInfo.Type == InlineAsm::isClobber) 6784 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6785 } 6786 } 6787 6788 AsmNodeOperands.push_back(DAG.getTargetConstant( 6789 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6790 6791 // Loop over all of the inputs, copying the operand values into the 6792 // appropriate registers and processing the output regs. 6793 RegsForValue RetValRegs; 6794 6795 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6796 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6797 6798 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6799 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6800 6801 switch (OpInfo.Type) { 6802 case InlineAsm::isOutput: { 6803 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6804 OpInfo.ConstraintType != TargetLowering::C_Register) { 6805 // Memory output, or 'other' output (e.g. 'X' constraint). 6806 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6807 6808 unsigned ConstraintID = 6809 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6810 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6811 "Failed to convert memory constraint code to constraint id."); 6812 6813 // Add information to the INLINEASM node to know about this output. 6814 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6815 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6816 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6817 MVT::i32)); 6818 AsmNodeOperands.push_back(OpInfo.CallOperand); 6819 break; 6820 } 6821 6822 // Otherwise, this is a register or register class output. 6823 6824 // Copy the output from the appropriate register. Find a register that 6825 // we can use. 6826 if (OpInfo.AssignedRegs.Regs.empty()) { 6827 emitInlineAsmError( 6828 CS, "couldn't allocate output register for constraint '" + 6829 Twine(OpInfo.ConstraintCode) + "'"); 6830 return; 6831 } 6832 6833 // If this is an indirect operand, store through the pointer after the 6834 // asm. 6835 if (OpInfo.isIndirect) { 6836 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6837 OpInfo.CallOperandVal)); 6838 } else { 6839 // This is the result value of the call. 6840 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6841 // Concatenate this output onto the outputs list. 6842 RetValRegs.append(OpInfo.AssignedRegs); 6843 } 6844 6845 // Add information to the INLINEASM node to know that this register is 6846 // set. 6847 OpInfo.AssignedRegs 6848 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6849 ? InlineAsm::Kind_RegDefEarlyClobber 6850 : InlineAsm::Kind_RegDef, 6851 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6852 break; 6853 } 6854 case InlineAsm::isInput: { 6855 SDValue InOperandVal = OpInfo.CallOperand; 6856 6857 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6858 // If this is required to match an output register we have already set, 6859 // just use its register. 6860 unsigned OperandNo = OpInfo.getMatchedOperand(); 6861 6862 // Scan until we find the definition we already emitted of this operand. 6863 // When we find it, create a RegsForValue operand. 6864 unsigned CurOp = InlineAsm::Op_FirstOperand; 6865 for (; OperandNo; --OperandNo) { 6866 // Advance to the next operand. 6867 unsigned OpFlag = 6868 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6869 assert((InlineAsm::isRegDefKind(OpFlag) || 6870 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6871 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6872 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6873 } 6874 6875 unsigned OpFlag = 6876 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6877 if (InlineAsm::isRegDefKind(OpFlag) || 6878 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6879 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6880 if (OpInfo.isIndirect) { 6881 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6882 emitInlineAsmError(CS, "inline asm not supported yet:" 6883 " don't know how to handle tied " 6884 "indirect register inputs"); 6885 return; 6886 } 6887 6888 RegsForValue MatchedRegs; 6889 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6890 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6891 MatchedRegs.RegVTs.push_back(RegVT); 6892 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6893 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6894 i != e; ++i) { 6895 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6896 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6897 else { 6898 emitInlineAsmError( 6899 CS, "inline asm error: This value" 6900 " type register class is not natively supported!"); 6901 return; 6902 } 6903 } 6904 SDLoc dl = getCurSDLoc(); 6905 // Use the produced MatchedRegs object to 6906 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6907 Chain, &Flag, CS.getInstruction()); 6908 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6909 true, OpInfo.getMatchedOperand(), dl, 6910 DAG, AsmNodeOperands); 6911 break; 6912 } 6913 6914 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6915 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6916 "Unexpected number of operands"); 6917 // Add information to the INLINEASM node to know about this input. 6918 // See InlineAsm.h isUseOperandTiedToDef. 6919 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6920 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6921 OpInfo.getMatchedOperand()); 6922 AsmNodeOperands.push_back(DAG.getTargetConstant( 6923 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6924 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6925 break; 6926 } 6927 6928 // Treat indirect 'X' constraint as memory. 6929 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6930 OpInfo.isIndirect) 6931 OpInfo.ConstraintType = TargetLowering::C_Memory; 6932 6933 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6934 std::vector<SDValue> Ops; 6935 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6936 Ops, DAG); 6937 if (Ops.empty()) { 6938 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 6939 Twine(OpInfo.ConstraintCode) + "'"); 6940 return; 6941 } 6942 6943 // Add information to the INLINEASM node to know about this input. 6944 unsigned ResOpType = 6945 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6946 AsmNodeOperands.push_back(DAG.getTargetConstant( 6947 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6948 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6949 break; 6950 } 6951 6952 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6953 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6954 assert(InOperandVal.getValueType() == 6955 TLI.getPointerTy(DAG.getDataLayout()) && 6956 "Memory operands expect pointer values"); 6957 6958 unsigned ConstraintID = 6959 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6960 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6961 "Failed to convert memory constraint code to constraint id."); 6962 6963 // Add information to the INLINEASM node to know about this input. 6964 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6965 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6966 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6967 getCurSDLoc(), 6968 MVT::i32)); 6969 AsmNodeOperands.push_back(InOperandVal); 6970 break; 6971 } 6972 6973 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6974 OpInfo.ConstraintType == TargetLowering::C_Register) && 6975 "Unknown constraint type!"); 6976 6977 // TODO: Support this. 6978 if (OpInfo.isIndirect) { 6979 emitInlineAsmError( 6980 CS, "Don't know how to handle indirect register inputs yet " 6981 "for constraint '" + 6982 Twine(OpInfo.ConstraintCode) + "'"); 6983 return; 6984 } 6985 6986 // Copy the input into the appropriate registers. 6987 if (OpInfo.AssignedRegs.Regs.empty()) { 6988 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 6989 Twine(OpInfo.ConstraintCode) + "'"); 6990 return; 6991 } 6992 6993 SDLoc dl = getCurSDLoc(); 6994 6995 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6996 Chain, &Flag, CS.getInstruction()); 6997 6998 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6999 dl, DAG, AsmNodeOperands); 7000 break; 7001 } 7002 case InlineAsm::isClobber: { 7003 // Add the clobbered value to the operand list, so that the register 7004 // allocator is aware that the physreg got clobbered. 7005 if (!OpInfo.AssignedRegs.Regs.empty()) 7006 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7007 false, 0, getCurSDLoc(), DAG, 7008 AsmNodeOperands); 7009 break; 7010 } 7011 } 7012 } 7013 7014 // Finish up input operands. Set the input chain and add the flag last. 7015 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7016 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7017 7018 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7019 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7020 Flag = Chain.getValue(1); 7021 7022 // If this asm returns a register value, copy the result from that register 7023 // and set it as the value of the call. 7024 if (!RetValRegs.Regs.empty()) { 7025 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7026 Chain, &Flag, CS.getInstruction()); 7027 7028 // FIXME: Why don't we do this for inline asms with MRVs? 7029 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7030 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7031 7032 // If any of the results of the inline asm is a vector, it may have the 7033 // wrong width/num elts. This can happen for register classes that can 7034 // contain multiple different value types. The preg or vreg allocated may 7035 // not have the same VT as was expected. Convert it to the right type 7036 // with bit_convert. 7037 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7038 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7039 ResultType, Val); 7040 7041 } else if (ResultType != Val.getValueType() && 7042 ResultType.isInteger() && Val.getValueType().isInteger()) { 7043 // If a result value was tied to an input value, the computed result may 7044 // have a wider width than the expected result. Extract the relevant 7045 // portion. 7046 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7047 } 7048 7049 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7050 } 7051 7052 setValue(CS.getInstruction(), Val); 7053 // Don't need to use this as a chain in this case. 7054 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7055 return; 7056 } 7057 7058 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7059 7060 // Process indirect outputs, first output all of the flagged copies out of 7061 // physregs. 7062 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7063 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7064 const Value *Ptr = IndirectStoresToEmit[i].second; 7065 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7066 Chain, &Flag, IA); 7067 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7068 } 7069 7070 // Emit the non-flagged stores from the physregs. 7071 SmallVector<SDValue, 8> OutChains; 7072 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7073 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 7074 StoresToEmit[i].first, 7075 getValue(StoresToEmit[i].second), 7076 MachinePointerInfo(StoresToEmit[i].second), 7077 false, false, 0); 7078 OutChains.push_back(Val); 7079 } 7080 7081 if (!OutChains.empty()) 7082 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7083 7084 DAG.setRoot(Chain); 7085 } 7086 7087 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7088 const Twine &Message) { 7089 LLVMContext &Ctx = *DAG.getContext(); 7090 Ctx.emitError(CS.getInstruction(), Message); 7091 7092 // Make sure we leave the DAG in a valid state 7093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7094 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7095 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7096 } 7097 7098 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7099 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7100 MVT::Other, getRoot(), 7101 getValue(I.getArgOperand(0)), 7102 DAG.getSrcValue(I.getArgOperand(0)))); 7103 } 7104 7105 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7107 const DataLayout &DL = DAG.getDataLayout(); 7108 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7109 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7110 DAG.getSrcValue(I.getOperand(0)), 7111 DL.getABITypeAlignment(I.getType())); 7112 setValue(&I, V); 7113 DAG.setRoot(V.getValue(1)); 7114 } 7115 7116 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7117 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7118 MVT::Other, getRoot(), 7119 getValue(I.getArgOperand(0)), 7120 DAG.getSrcValue(I.getArgOperand(0)))); 7121 } 7122 7123 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7124 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7125 MVT::Other, getRoot(), 7126 getValue(I.getArgOperand(0)), 7127 getValue(I.getArgOperand(1)), 7128 DAG.getSrcValue(I.getArgOperand(0)), 7129 DAG.getSrcValue(I.getArgOperand(1)))); 7130 } 7131 7132 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7133 const Instruction &I, 7134 SDValue Op) { 7135 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7136 if (!Range) 7137 return Op; 7138 7139 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); 7140 if (!Lo->isNullValue()) 7141 return Op; 7142 7143 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); 7144 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); 7145 7146 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7147 7148 SDLoc SL = getCurSDLoc(); 7149 7150 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), 7151 Op, DAG.getValueType(SmallVT)); 7152 unsigned NumVals = Op.getNode()->getNumValues(); 7153 if (NumVals == 1) 7154 return ZExt; 7155 7156 SmallVector<SDValue, 4> Ops; 7157 7158 Ops.push_back(ZExt); 7159 for (unsigned I = 1; I != NumVals; ++I) 7160 Ops.push_back(Op.getValue(I)); 7161 7162 return DAG.getMergeValues(Ops, SL); 7163 } 7164 7165 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7166 /// the call being lowered. 7167 /// 7168 /// This is a helper for lowering intrinsics that follow a target calling 7169 /// convention or require stack pointer adjustment. Only a subset of the 7170 /// intrinsic's operands need to participate in the calling convention. 7171 void SelectionDAGBuilder::populateCallLoweringInfo( 7172 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7173 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7174 bool IsPatchPoint) { 7175 TargetLowering::ArgListTy Args; 7176 Args.reserve(NumArgs); 7177 7178 // Populate the argument list. 7179 // Attributes for args start at offset 1, after the return attribute. 7180 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7181 ArgI != ArgE; ++ArgI) { 7182 const Value *V = CS->getOperand(ArgI); 7183 7184 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7185 7186 TargetLowering::ArgListEntry Entry; 7187 Entry.Node = getValue(V); 7188 Entry.Ty = V->getType(); 7189 Entry.setAttributes(&CS, AttrI); 7190 Args.push_back(Entry); 7191 } 7192 7193 CLI.setDebugLoc(getCurSDLoc()) 7194 .setChain(getRoot()) 7195 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), 7196 NumArgs) 7197 .setDiscardResult(CS->use_empty()) 7198 .setIsPatchPoint(IsPatchPoint); 7199 } 7200 7201 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7202 /// or patchpoint target node's operand list. 7203 /// 7204 /// Constants are converted to TargetConstants purely as an optimization to 7205 /// avoid constant materialization and register allocation. 7206 /// 7207 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7208 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7209 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7210 /// address materialization and register allocation, but may also be required 7211 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7212 /// alloca in the entry block, then the runtime may assume that the alloca's 7213 /// StackMap location can be read immediately after compilation and that the 7214 /// location is valid at any point during execution (this is similar to the 7215 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7216 /// only available in a register, then the runtime would need to trap when 7217 /// execution reaches the StackMap in order to read the alloca's location. 7218 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7219 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7220 SelectionDAGBuilder &Builder) { 7221 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7222 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7223 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7224 Ops.push_back( 7225 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7226 Ops.push_back( 7227 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7228 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7229 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7230 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7231 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7232 } else 7233 Ops.push_back(OpVal); 7234 } 7235 } 7236 7237 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7238 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7239 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7240 // [live variables...]) 7241 7242 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7243 7244 SDValue Chain, InFlag, Callee, NullPtr; 7245 SmallVector<SDValue, 32> Ops; 7246 7247 SDLoc DL = getCurSDLoc(); 7248 Callee = getValue(CI.getCalledValue()); 7249 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7250 7251 // The stackmap intrinsic only records the live variables (the arguemnts 7252 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7253 // intrinsic, this won't be lowered to a function call. This means we don't 7254 // have to worry about calling conventions and target specific lowering code. 7255 // Instead we perform the call lowering right here. 7256 // 7257 // chain, flag = CALLSEQ_START(chain, 0) 7258 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7259 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7260 // 7261 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7262 InFlag = Chain.getValue(1); 7263 7264 // Add the <id> and <numBytes> constants. 7265 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7266 Ops.push_back(DAG.getTargetConstant( 7267 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7268 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7269 Ops.push_back(DAG.getTargetConstant( 7270 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7271 MVT::i32)); 7272 7273 // Push live variables for the stack map. 7274 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7275 7276 // We are not pushing any register mask info here on the operands list, 7277 // because the stackmap doesn't clobber anything. 7278 7279 // Push the chain and the glue flag. 7280 Ops.push_back(Chain); 7281 Ops.push_back(InFlag); 7282 7283 // Create the STACKMAP node. 7284 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7285 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7286 Chain = SDValue(SM, 0); 7287 InFlag = Chain.getValue(1); 7288 7289 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7290 7291 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7292 7293 // Set the root to the target-lowered call chain. 7294 DAG.setRoot(Chain); 7295 7296 // Inform the Frame Information that we have a stackmap in this function. 7297 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7298 } 7299 7300 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7301 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7302 const BasicBlock *EHPadBB) { 7303 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7304 // i32 <numBytes>, 7305 // i8* <target>, 7306 // i32 <numArgs>, 7307 // [Args...], 7308 // [live variables...]) 7309 7310 CallingConv::ID CC = CS.getCallingConv(); 7311 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7312 bool HasDef = !CS->getType()->isVoidTy(); 7313 SDLoc dl = getCurSDLoc(); 7314 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7315 7316 // Handle immediate and symbolic callees. 7317 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7318 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7319 /*isTarget=*/true); 7320 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7321 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7322 SDLoc(SymbolicCallee), 7323 SymbolicCallee->getValueType(0)); 7324 7325 // Get the real number of arguments participating in the call <numArgs> 7326 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7327 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7328 7329 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7330 // Intrinsics include all meta-operands up to but not including CC. 7331 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7332 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7333 "Not enough arguments provided to the patchpoint intrinsic"); 7334 7335 // For AnyRegCC the arguments are lowered later on manually. 7336 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7337 Type *ReturnTy = 7338 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7339 7340 TargetLowering::CallLoweringInfo CLI(DAG); 7341 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7342 true); 7343 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7344 7345 SDNode *CallEnd = Result.second.getNode(); 7346 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7347 CallEnd = CallEnd->getOperand(0).getNode(); 7348 7349 /// Get a call instruction from the call sequence chain. 7350 /// Tail calls are not allowed. 7351 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7352 "Expected a callseq node."); 7353 SDNode *Call = CallEnd->getOperand(0).getNode(); 7354 bool HasGlue = Call->getGluedNode(); 7355 7356 // Replace the target specific call node with the patchable intrinsic. 7357 SmallVector<SDValue, 8> Ops; 7358 7359 // Add the <id> and <numBytes> constants. 7360 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7361 Ops.push_back(DAG.getTargetConstant( 7362 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7363 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7364 Ops.push_back(DAG.getTargetConstant( 7365 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7366 MVT::i32)); 7367 7368 // Add the callee. 7369 Ops.push_back(Callee); 7370 7371 // Adjust <numArgs> to account for any arguments that have been passed on the 7372 // stack instead. 7373 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7374 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7375 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7376 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7377 7378 // Add the calling convention 7379 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7380 7381 // Add the arguments we omitted previously. The register allocator should 7382 // place these in any free register. 7383 if (IsAnyRegCC) 7384 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7385 Ops.push_back(getValue(CS.getArgument(i))); 7386 7387 // Push the arguments from the call instruction up to the register mask. 7388 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7389 Ops.append(Call->op_begin() + 2, e); 7390 7391 // Push live variables for the stack map. 7392 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7393 7394 // Push the register mask info. 7395 if (HasGlue) 7396 Ops.push_back(*(Call->op_end()-2)); 7397 else 7398 Ops.push_back(*(Call->op_end()-1)); 7399 7400 // Push the chain (this is originally the first operand of the call, but 7401 // becomes now the last or second to last operand). 7402 Ops.push_back(*(Call->op_begin())); 7403 7404 // Push the glue flag (last operand). 7405 if (HasGlue) 7406 Ops.push_back(*(Call->op_end()-1)); 7407 7408 SDVTList NodeTys; 7409 if (IsAnyRegCC && HasDef) { 7410 // Create the return types based on the intrinsic definition 7411 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7412 SmallVector<EVT, 3> ValueVTs; 7413 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7414 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7415 7416 // There is always a chain and a glue type at the end 7417 ValueVTs.push_back(MVT::Other); 7418 ValueVTs.push_back(MVT::Glue); 7419 NodeTys = DAG.getVTList(ValueVTs); 7420 } else 7421 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7422 7423 // Replace the target specific call node with a PATCHPOINT node. 7424 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7425 dl, NodeTys, Ops); 7426 7427 // Update the NodeMap. 7428 if (HasDef) { 7429 if (IsAnyRegCC) 7430 setValue(CS.getInstruction(), SDValue(MN, 0)); 7431 else 7432 setValue(CS.getInstruction(), Result.first); 7433 } 7434 7435 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7436 // call sequence. Furthermore the location of the chain and glue can change 7437 // when the AnyReg calling convention is used and the intrinsic returns a 7438 // value. 7439 if (IsAnyRegCC && HasDef) { 7440 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7441 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7442 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7443 } else 7444 DAG.ReplaceAllUsesWith(Call, MN); 7445 DAG.DeleteNode(Call); 7446 7447 // Inform the Frame Information that we have a patchpoint in this function. 7448 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7449 } 7450 7451 /// Returns an AttributeSet representing the attributes applied to the return 7452 /// value of the given call. 7453 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7454 SmallVector<Attribute::AttrKind, 2> Attrs; 7455 if (CLI.RetSExt) 7456 Attrs.push_back(Attribute::SExt); 7457 if (CLI.RetZExt) 7458 Attrs.push_back(Attribute::ZExt); 7459 if (CLI.IsInReg) 7460 Attrs.push_back(Attribute::InReg); 7461 7462 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7463 Attrs); 7464 } 7465 7466 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7467 /// implementation, which just calls LowerCall. 7468 /// FIXME: When all targets are 7469 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7470 std::pair<SDValue, SDValue> 7471 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7472 // Handle the incoming return values from the call. 7473 CLI.Ins.clear(); 7474 Type *OrigRetTy = CLI.RetTy; 7475 SmallVector<EVT, 4> RetTys; 7476 SmallVector<uint64_t, 4> Offsets; 7477 auto &DL = CLI.DAG.getDataLayout(); 7478 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7479 7480 SmallVector<ISD::OutputArg, 4> Outs; 7481 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7482 7483 bool CanLowerReturn = 7484 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7485 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7486 7487 SDValue DemoteStackSlot; 7488 int DemoteStackIdx = -100; 7489 if (!CanLowerReturn) { 7490 // FIXME: equivalent assert? 7491 // assert(!CS.hasInAllocaArgument() && 7492 // "sret demotion is incompatible with inalloca"); 7493 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7494 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7495 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7496 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7497 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7498 7499 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7500 ArgListEntry Entry; 7501 Entry.Node = DemoteStackSlot; 7502 Entry.Ty = StackSlotPtrType; 7503 Entry.isSExt = false; 7504 Entry.isZExt = false; 7505 Entry.isInReg = false; 7506 Entry.isSRet = true; 7507 Entry.isNest = false; 7508 Entry.isByVal = false; 7509 Entry.isReturned = false; 7510 Entry.isSwiftSelf = false; 7511 Entry.isSwiftError = false; 7512 Entry.Alignment = Align; 7513 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7514 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7515 7516 // sret demotion isn't compatible with tail-calls, since the sret argument 7517 // points into the callers stack frame. 7518 CLI.IsTailCall = false; 7519 } else { 7520 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7521 EVT VT = RetTys[I]; 7522 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7523 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7524 for (unsigned i = 0; i != NumRegs; ++i) { 7525 ISD::InputArg MyFlags; 7526 MyFlags.VT = RegisterVT; 7527 MyFlags.ArgVT = VT; 7528 MyFlags.Used = CLI.IsReturnValueUsed; 7529 if (CLI.RetSExt) 7530 MyFlags.Flags.setSExt(); 7531 if (CLI.RetZExt) 7532 MyFlags.Flags.setZExt(); 7533 if (CLI.IsInReg) 7534 MyFlags.Flags.setInReg(); 7535 CLI.Ins.push_back(MyFlags); 7536 } 7537 } 7538 } 7539 7540 // We push in swifterror return as the last element of CLI.Ins. 7541 ArgListTy &Args = CLI.getArgs(); 7542 if (supportSwiftError()) { 7543 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7544 if (Args[i].isSwiftError) { 7545 ISD::InputArg MyFlags; 7546 MyFlags.VT = getPointerTy(DL); 7547 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7548 MyFlags.Flags.setSwiftError(); 7549 CLI.Ins.push_back(MyFlags); 7550 } 7551 } 7552 } 7553 7554 // Handle all of the outgoing arguments. 7555 CLI.Outs.clear(); 7556 CLI.OutVals.clear(); 7557 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7558 SmallVector<EVT, 4> ValueVTs; 7559 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7560 Type *FinalType = Args[i].Ty; 7561 if (Args[i].isByVal) 7562 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7563 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7564 FinalType, CLI.CallConv, CLI.IsVarArg); 7565 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7566 ++Value) { 7567 EVT VT = ValueVTs[Value]; 7568 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7569 SDValue Op = SDValue(Args[i].Node.getNode(), 7570 Args[i].Node.getResNo() + Value); 7571 ISD::ArgFlagsTy Flags; 7572 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7573 7574 if (Args[i].isZExt) 7575 Flags.setZExt(); 7576 if (Args[i].isSExt) 7577 Flags.setSExt(); 7578 if (Args[i].isInReg) 7579 Flags.setInReg(); 7580 if (Args[i].isSRet) 7581 Flags.setSRet(); 7582 if (Args[i].isSwiftSelf) 7583 Flags.setSwiftSelf(); 7584 if (Args[i].isSwiftError) 7585 Flags.setSwiftError(); 7586 if (Args[i].isByVal) 7587 Flags.setByVal(); 7588 if (Args[i].isInAlloca) { 7589 Flags.setInAlloca(); 7590 // Set the byval flag for CCAssignFn callbacks that don't know about 7591 // inalloca. This way we can know how many bytes we should've allocated 7592 // and how many bytes a callee cleanup function will pop. If we port 7593 // inalloca to more targets, we'll have to add custom inalloca handling 7594 // in the various CC lowering callbacks. 7595 Flags.setByVal(); 7596 } 7597 if (Args[i].isByVal || Args[i].isInAlloca) { 7598 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7599 Type *ElementTy = Ty->getElementType(); 7600 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7601 // For ByVal, alignment should come from FE. BE will guess if this 7602 // info is not there but there are cases it cannot get right. 7603 unsigned FrameAlign; 7604 if (Args[i].Alignment) 7605 FrameAlign = Args[i].Alignment; 7606 else 7607 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7608 Flags.setByValAlign(FrameAlign); 7609 } 7610 if (Args[i].isNest) 7611 Flags.setNest(); 7612 if (NeedsRegBlock) 7613 Flags.setInConsecutiveRegs(); 7614 Flags.setOrigAlign(OriginalAlignment); 7615 7616 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7617 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7618 SmallVector<SDValue, 4> Parts(NumParts); 7619 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7620 7621 if (Args[i].isSExt) 7622 ExtendKind = ISD::SIGN_EXTEND; 7623 else if (Args[i].isZExt) 7624 ExtendKind = ISD::ZERO_EXTEND; 7625 7626 // Conservatively only handle 'returned' on non-vectors for now 7627 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7628 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7629 "unexpected use of 'returned'"); 7630 // Before passing 'returned' to the target lowering code, ensure that 7631 // either the register MVT and the actual EVT are the same size or that 7632 // the return value and argument are extended in the same way; in these 7633 // cases it's safe to pass the argument register value unchanged as the 7634 // return register value (although it's at the target's option whether 7635 // to do so) 7636 // TODO: allow code generation to take advantage of partially preserved 7637 // registers rather than clobbering the entire register when the 7638 // parameter extension method is not compatible with the return 7639 // extension method 7640 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7641 (ExtendKind != ISD::ANY_EXTEND && 7642 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7643 Flags.setReturned(); 7644 } 7645 7646 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7647 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7648 7649 for (unsigned j = 0; j != NumParts; ++j) { 7650 // if it isn't first piece, alignment must be 1 7651 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7652 i < CLI.NumFixedArgs, 7653 i, j*Parts[j].getValueType().getStoreSize()); 7654 if (NumParts > 1 && j == 0) 7655 MyFlags.Flags.setSplit(); 7656 else if (j != 0) { 7657 MyFlags.Flags.setOrigAlign(1); 7658 if (j == NumParts - 1) 7659 MyFlags.Flags.setSplitEnd(); 7660 } 7661 7662 CLI.Outs.push_back(MyFlags); 7663 CLI.OutVals.push_back(Parts[j]); 7664 } 7665 7666 if (NeedsRegBlock && Value == NumValues - 1) 7667 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7668 } 7669 } 7670 7671 SmallVector<SDValue, 4> InVals; 7672 CLI.Chain = LowerCall(CLI, InVals); 7673 7674 // Update CLI.InVals to use outside of this function. 7675 CLI.InVals = InVals; 7676 7677 // Verify that the target's LowerCall behaved as expected. 7678 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7679 "LowerCall didn't return a valid chain!"); 7680 assert((!CLI.IsTailCall || InVals.empty()) && 7681 "LowerCall emitted a return value for a tail call!"); 7682 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7683 "LowerCall didn't emit the correct number of values!"); 7684 7685 // For a tail call, the return value is merely live-out and there aren't 7686 // any nodes in the DAG representing it. Return a special value to 7687 // indicate that a tail call has been emitted and no more Instructions 7688 // should be processed in the current block. 7689 if (CLI.IsTailCall) { 7690 CLI.DAG.setRoot(CLI.Chain); 7691 return std::make_pair(SDValue(), SDValue()); 7692 } 7693 7694 #ifndef NDEBUG 7695 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7696 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7697 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7698 "LowerCall emitted a value with the wrong type!"); 7699 } 7700 #endif 7701 7702 SmallVector<SDValue, 4> ReturnValues; 7703 if (!CanLowerReturn) { 7704 // The instruction result is the result of loading from the 7705 // hidden sret parameter. 7706 SmallVector<EVT, 1> PVTs; 7707 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7708 7709 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7710 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7711 EVT PtrVT = PVTs[0]; 7712 7713 unsigned NumValues = RetTys.size(); 7714 ReturnValues.resize(NumValues); 7715 SmallVector<SDValue, 4> Chains(NumValues); 7716 7717 // An aggregate return value cannot wrap around the address space, so 7718 // offsets to its parts don't wrap either. 7719 SDNodeFlags Flags; 7720 Flags.setNoUnsignedWrap(true); 7721 7722 for (unsigned i = 0; i < NumValues; ++i) { 7723 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7724 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7725 PtrVT), &Flags); 7726 SDValue L = CLI.DAG.getLoad( 7727 RetTys[i], CLI.DL, CLI.Chain, Add, 7728 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7729 DemoteStackIdx, Offsets[i]), 7730 false, false, false, 1); 7731 ReturnValues[i] = L; 7732 Chains[i] = L.getValue(1); 7733 } 7734 7735 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7736 } else { 7737 // Collect the legal value parts into potentially illegal values 7738 // that correspond to the original function's return values. 7739 Optional<ISD::NodeType> AssertOp; 7740 if (CLI.RetSExt) 7741 AssertOp = ISD::AssertSext; 7742 else if (CLI.RetZExt) 7743 AssertOp = ISD::AssertZext; 7744 unsigned CurReg = 0; 7745 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7746 EVT VT = RetTys[I]; 7747 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7748 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7749 7750 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7751 NumRegs, RegisterVT, VT, nullptr, 7752 AssertOp)); 7753 CurReg += NumRegs; 7754 } 7755 7756 // For a function returning void, there is no return value. We can't create 7757 // such a node, so we just return a null return value in that case. In 7758 // that case, nothing will actually look at the value. 7759 if (ReturnValues.empty()) 7760 return std::make_pair(SDValue(), CLI.Chain); 7761 } 7762 7763 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7764 CLI.DAG.getVTList(RetTys), ReturnValues); 7765 return std::make_pair(Res, CLI.Chain); 7766 } 7767 7768 void TargetLowering::LowerOperationWrapper(SDNode *N, 7769 SmallVectorImpl<SDValue> &Results, 7770 SelectionDAG &DAG) const { 7771 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7772 Results.push_back(Res); 7773 } 7774 7775 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7776 llvm_unreachable("LowerOperation not implemented for this target!"); 7777 } 7778 7779 void 7780 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7781 SDValue Op = getNonRegisterValue(V); 7782 assert((Op.getOpcode() != ISD::CopyFromReg || 7783 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7784 "Copy from a reg to the same reg!"); 7785 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7786 7787 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7788 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7789 V->getType()); 7790 SDValue Chain = DAG.getEntryNode(); 7791 7792 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7793 FuncInfo.PreferredExtendType.end()) 7794 ? ISD::ANY_EXTEND 7795 : FuncInfo.PreferredExtendType[V]; 7796 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7797 PendingExports.push_back(Chain); 7798 } 7799 7800 #include "llvm/CodeGen/SelectionDAGISel.h" 7801 7802 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7803 /// entry block, return true. This includes arguments used by switches, since 7804 /// the switch may expand into multiple basic blocks. 7805 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7806 // With FastISel active, we may be splitting blocks, so force creation 7807 // of virtual registers for all non-dead arguments. 7808 if (FastISel) 7809 return A->use_empty(); 7810 7811 const BasicBlock &Entry = A->getParent()->front(); 7812 for (const User *U : A->users()) 7813 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7814 return false; // Use not in entry block. 7815 7816 return true; 7817 } 7818 7819 void SelectionDAGISel::LowerArguments(const Function &F) { 7820 SelectionDAG &DAG = SDB->DAG; 7821 SDLoc dl = SDB->getCurSDLoc(); 7822 const DataLayout &DL = DAG.getDataLayout(); 7823 SmallVector<ISD::InputArg, 16> Ins; 7824 7825 if (!FuncInfo->CanLowerReturn) { 7826 // Put in an sret pointer parameter before all the other parameters. 7827 SmallVector<EVT, 1> ValueVTs; 7828 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7829 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7830 7831 // NOTE: Assuming that a pointer will never break down to more than one VT 7832 // or one register. 7833 ISD::ArgFlagsTy Flags; 7834 Flags.setSRet(); 7835 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7836 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7837 ISD::InputArg::NoArgIndex, 0); 7838 Ins.push_back(RetArg); 7839 } 7840 7841 // Set up the incoming argument description vector. 7842 unsigned Idx = 1; 7843 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7844 I != E; ++I, ++Idx) { 7845 SmallVector<EVT, 4> ValueVTs; 7846 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7847 bool isArgValueUsed = !I->use_empty(); 7848 unsigned PartBase = 0; 7849 Type *FinalType = I->getType(); 7850 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7851 FinalType = cast<PointerType>(FinalType)->getElementType(); 7852 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7853 FinalType, F.getCallingConv(), F.isVarArg()); 7854 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7855 Value != NumValues; ++Value) { 7856 EVT VT = ValueVTs[Value]; 7857 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7858 ISD::ArgFlagsTy Flags; 7859 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7860 7861 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7862 Flags.setZExt(); 7863 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7864 Flags.setSExt(); 7865 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7866 Flags.setInReg(); 7867 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7868 Flags.setSRet(); 7869 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 7870 Flags.setSwiftSelf(); 7871 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 7872 Flags.setSwiftError(); 7873 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7874 Flags.setByVal(); 7875 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7876 Flags.setInAlloca(); 7877 // Set the byval flag for CCAssignFn callbacks that don't know about 7878 // inalloca. This way we can know how many bytes we should've allocated 7879 // and how many bytes a callee cleanup function will pop. If we port 7880 // inalloca to more targets, we'll have to add custom inalloca handling 7881 // in the various CC lowering callbacks. 7882 Flags.setByVal(); 7883 } 7884 if (F.getCallingConv() == CallingConv::X86_INTR) { 7885 // IA Interrupt passes frame (1st parameter) by value in the stack. 7886 if (Idx == 1) 7887 Flags.setByVal(); 7888 } 7889 if (Flags.isByVal() || Flags.isInAlloca()) { 7890 PointerType *Ty = cast<PointerType>(I->getType()); 7891 Type *ElementTy = Ty->getElementType(); 7892 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7893 // For ByVal, alignment should be passed from FE. BE will guess if 7894 // this info is not there but there are cases it cannot get right. 7895 unsigned FrameAlign; 7896 if (F.getParamAlignment(Idx)) 7897 FrameAlign = F.getParamAlignment(Idx); 7898 else 7899 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7900 Flags.setByValAlign(FrameAlign); 7901 } 7902 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7903 Flags.setNest(); 7904 if (NeedsRegBlock) 7905 Flags.setInConsecutiveRegs(); 7906 Flags.setOrigAlign(OriginalAlignment); 7907 7908 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7909 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7910 for (unsigned i = 0; i != NumRegs; ++i) { 7911 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7912 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7913 if (NumRegs > 1 && i == 0) 7914 MyFlags.Flags.setSplit(); 7915 // if it isn't first piece, alignment must be 1 7916 else if (i > 0) { 7917 MyFlags.Flags.setOrigAlign(1); 7918 if (i == NumRegs - 1) 7919 MyFlags.Flags.setSplitEnd(); 7920 } 7921 Ins.push_back(MyFlags); 7922 } 7923 if (NeedsRegBlock && Value == NumValues - 1) 7924 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7925 PartBase += VT.getStoreSize(); 7926 } 7927 } 7928 7929 // Call the target to set up the argument values. 7930 SmallVector<SDValue, 8> InVals; 7931 SDValue NewRoot = TLI->LowerFormalArguments( 7932 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7933 7934 // Verify that the target's LowerFormalArguments behaved as expected. 7935 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7936 "LowerFormalArguments didn't return a valid chain!"); 7937 assert(InVals.size() == Ins.size() && 7938 "LowerFormalArguments didn't emit the correct number of values!"); 7939 DEBUG({ 7940 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7941 assert(InVals[i].getNode() && 7942 "LowerFormalArguments emitted a null value!"); 7943 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7944 "LowerFormalArguments emitted a value with the wrong type!"); 7945 } 7946 }); 7947 7948 // Update the DAG with the new chain value resulting from argument lowering. 7949 DAG.setRoot(NewRoot); 7950 7951 // Set up the argument values. 7952 unsigned i = 0; 7953 Idx = 1; 7954 if (!FuncInfo->CanLowerReturn) { 7955 // Create a virtual register for the sret pointer, and put in a copy 7956 // from the sret argument into it. 7957 SmallVector<EVT, 1> ValueVTs; 7958 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7959 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7960 MVT VT = ValueVTs[0].getSimpleVT(); 7961 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7962 Optional<ISD::NodeType> AssertOp = None; 7963 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7964 RegVT, VT, nullptr, AssertOp); 7965 7966 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7967 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7968 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7969 FuncInfo->DemoteRegister = SRetReg; 7970 NewRoot = 7971 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7972 DAG.setRoot(NewRoot); 7973 7974 // i indexes lowered arguments. Bump it past the hidden sret argument. 7975 // Idx indexes LLVM arguments. Don't touch it. 7976 ++i; 7977 } 7978 7979 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7980 ++I, ++Idx) { 7981 SmallVector<SDValue, 4> ArgValues; 7982 SmallVector<EVT, 4> ValueVTs; 7983 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7984 unsigned NumValues = ValueVTs.size(); 7985 7986 // If this argument is unused then remember its value. It is used to generate 7987 // debugging information. 7988 if (I->use_empty() && NumValues) { 7989 SDB->setUnusedArgValue(&*I, InVals[i]); 7990 7991 // Also remember any frame index for use in FastISel. 7992 if (FrameIndexSDNode *FI = 7993 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7994 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7995 } 7996 7997 for (unsigned Val = 0; Val != NumValues; ++Val) { 7998 EVT VT = ValueVTs[Val]; 7999 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8000 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8001 8002 if (!I->use_empty()) { 8003 Optional<ISD::NodeType> AssertOp; 8004 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8005 AssertOp = ISD::AssertSext; 8006 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8007 AssertOp = ISD::AssertZext; 8008 8009 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 8010 NumParts, PartVT, VT, 8011 nullptr, AssertOp)); 8012 } 8013 8014 i += NumParts; 8015 } 8016 8017 // We don't need to do anything else for unused arguments. 8018 if (ArgValues.empty()) 8019 continue; 8020 8021 // Note down frame index. 8022 if (FrameIndexSDNode *FI = 8023 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8024 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8025 8026 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8027 SDB->getCurSDLoc()); 8028 8029 SDB->setValue(&*I, Res); 8030 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8031 if (LoadSDNode *LNode = 8032 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 8033 if (FrameIndexSDNode *FI = 8034 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8035 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8036 } 8037 8038 // Update SwiftErrorMap. 8039 if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() && 8040 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) { 8041 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8042 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8043 FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg; 8044 } 8045 8046 // If this argument is live outside of the entry block, insert a copy from 8047 // wherever we got it to the vreg that other BB's will reference it as. 8048 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8049 // If we can, though, try to skip creating an unnecessary vreg. 8050 // FIXME: This isn't very clean... it would be nice to make this more 8051 // general. It's also subtly incompatible with the hacks FastISel 8052 // uses with vregs. 8053 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8054 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8055 FuncInfo->ValueMap[&*I] = Reg; 8056 continue; 8057 } 8058 } 8059 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 8060 FuncInfo->InitializeRegForValue(&*I); 8061 SDB->CopyToExportRegsIfNeeded(&*I); 8062 } 8063 } 8064 8065 assert(i == InVals.size() && "Argument register count mismatch!"); 8066 8067 // Finally, if the target has anything special to do, allow it to do so. 8068 EmitFunctionEntryCode(); 8069 } 8070 8071 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8072 /// ensure constants are generated when needed. Remember the virtual registers 8073 /// that need to be added to the Machine PHI nodes as input. We cannot just 8074 /// directly add them, because expansion might result in multiple MBB's for one 8075 /// BB. As such, the start of the BB might correspond to a different MBB than 8076 /// the end. 8077 /// 8078 void 8079 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8080 const TerminatorInst *TI = LLVMBB->getTerminator(); 8081 8082 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8083 8084 // Check PHI nodes in successors that expect a value to be available from this 8085 // block. 8086 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8087 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8088 if (!isa<PHINode>(SuccBB->begin())) continue; 8089 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8090 8091 // If this terminator has multiple identical successors (common for 8092 // switches), only handle each succ once. 8093 if (!SuccsHandled.insert(SuccMBB).second) 8094 continue; 8095 8096 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8097 8098 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8099 // nodes and Machine PHI nodes, but the incoming operands have not been 8100 // emitted yet. 8101 for (BasicBlock::const_iterator I = SuccBB->begin(); 8102 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8103 // Ignore dead phi's. 8104 if (PN->use_empty()) continue; 8105 8106 // Skip empty types 8107 if (PN->getType()->isEmptyTy()) 8108 continue; 8109 8110 unsigned Reg; 8111 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8112 8113 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8114 unsigned &RegOut = ConstantsOut[C]; 8115 if (RegOut == 0) { 8116 RegOut = FuncInfo.CreateRegs(C->getType()); 8117 CopyValueToVirtualRegister(C, RegOut); 8118 } 8119 Reg = RegOut; 8120 } else { 8121 DenseMap<const Value *, unsigned>::iterator I = 8122 FuncInfo.ValueMap.find(PHIOp); 8123 if (I != FuncInfo.ValueMap.end()) 8124 Reg = I->second; 8125 else { 8126 assert(isa<AllocaInst>(PHIOp) && 8127 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8128 "Didn't codegen value into a register!??"); 8129 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8130 CopyValueToVirtualRegister(PHIOp, Reg); 8131 } 8132 } 8133 8134 // Remember that this register needs to added to the machine PHI node as 8135 // the input for this MBB. 8136 SmallVector<EVT, 4> ValueVTs; 8137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8138 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8139 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8140 EVT VT = ValueVTs[vti]; 8141 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8142 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8143 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 8144 Reg += NumRegisters; 8145 } 8146 } 8147 } 8148 8149 ConstantsOut.clear(); 8150 } 8151 8152 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8153 /// is 0. 8154 MachineBasicBlock * 8155 SelectionDAGBuilder::StackProtectorDescriptor:: 8156 AddSuccessorMBB(const BasicBlock *BB, 8157 MachineBasicBlock *ParentMBB, 8158 bool IsLikely, 8159 MachineBasicBlock *SuccMBB) { 8160 // If SuccBB has not been created yet, create it. 8161 if (!SuccMBB) { 8162 MachineFunction *MF = ParentMBB->getParent(); 8163 MachineFunction::iterator BBI(ParentMBB); 8164 SuccMBB = MF->CreateMachineBasicBlock(BB); 8165 MF->insert(++BBI, SuccMBB); 8166 } 8167 // Add it as a successor of ParentMBB. 8168 ParentMBB->addSuccessor( 8169 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8170 return SuccMBB; 8171 } 8172 8173 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8174 MachineFunction::iterator I(MBB); 8175 if (++I == FuncInfo.MF->end()) 8176 return nullptr; 8177 return &*I; 8178 } 8179 8180 /// During lowering new call nodes can be created (such as memset, etc.). 8181 /// Those will become new roots of the current DAG, but complications arise 8182 /// when they are tail calls. In such cases, the call lowering will update 8183 /// the root, but the builder still needs to know that a tail call has been 8184 /// lowered in order to avoid generating an additional return. 8185 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8186 // If the node is null, we do have a tail call. 8187 if (MaybeTC.getNode() != nullptr) 8188 DAG.setRoot(MaybeTC); 8189 else 8190 HasTailCall = true; 8191 } 8192 8193 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8194 unsigned *TotalCases, unsigned First, 8195 unsigned Last, 8196 unsigned Density) { 8197 assert(Last >= First); 8198 assert(TotalCases[Last] >= TotalCases[First]); 8199 8200 APInt LowCase = Clusters[First].Low->getValue(); 8201 APInt HighCase = Clusters[Last].High->getValue(); 8202 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8203 8204 // FIXME: A range of consecutive cases has 100% density, but only requires one 8205 // comparison to lower. We should discriminate against such consecutive ranges 8206 // in jump tables. 8207 8208 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8209 uint64_t Range = Diff + 1; 8210 8211 uint64_t NumCases = 8212 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8213 8214 assert(NumCases < UINT64_MAX / 100); 8215 assert(Range >= NumCases); 8216 8217 return NumCases * 100 >= Range * Density; 8218 } 8219 8220 static inline bool areJTsAllowed(const TargetLowering &TLI, 8221 const SwitchInst *SI) { 8222 const Function *Fn = SI->getParent()->getParent(); 8223 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8224 return false; 8225 8226 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8227 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8228 } 8229 8230 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 8231 unsigned First, unsigned Last, 8232 const SwitchInst *SI, 8233 MachineBasicBlock *DefaultMBB, 8234 CaseCluster &JTCluster) { 8235 assert(First <= Last); 8236 8237 auto Prob = BranchProbability::getZero(); 8238 unsigned NumCmps = 0; 8239 std::vector<MachineBasicBlock*> Table; 8240 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8241 8242 // Initialize probabilities in JTProbs. 8243 for (unsigned I = First; I <= Last; ++I) 8244 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8245 8246 for (unsigned I = First; I <= Last; ++I) { 8247 assert(Clusters[I].Kind == CC_Range); 8248 Prob += Clusters[I].Prob; 8249 APInt Low = Clusters[I].Low->getValue(); 8250 APInt High = Clusters[I].High->getValue(); 8251 NumCmps += (Low == High) ? 1 : 2; 8252 if (I != First) { 8253 // Fill the gap between this and the previous cluster. 8254 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 8255 assert(PreviousHigh.slt(Low)); 8256 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8257 for (uint64_t J = 0; J < Gap; J++) 8258 Table.push_back(DefaultMBB); 8259 } 8260 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8261 for (uint64_t J = 0; J < ClusterSize; ++J) 8262 Table.push_back(Clusters[I].MBB); 8263 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8264 } 8265 8266 unsigned NumDests = JTProbs.size(); 8267 if (isSuitableForBitTests(NumDests, NumCmps, 8268 Clusters[First].Low->getValue(), 8269 Clusters[Last].High->getValue())) { 8270 // Clusters[First..Last] should be lowered as bit tests instead. 8271 return false; 8272 } 8273 8274 // Create the MBB that will load from and jump through the table. 8275 // Note: We create it here, but it's not inserted into the function yet. 8276 MachineFunction *CurMF = FuncInfo.MF; 8277 MachineBasicBlock *JumpTableMBB = 8278 CurMF->CreateMachineBasicBlock(SI->getParent()); 8279 8280 // Add successors. Note: use table order for determinism. 8281 SmallPtrSet<MachineBasicBlock *, 8> Done; 8282 for (MachineBasicBlock *Succ : Table) { 8283 if (Done.count(Succ)) 8284 continue; 8285 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8286 Done.insert(Succ); 8287 } 8288 JumpTableMBB->normalizeSuccProbs(); 8289 8290 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8291 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8292 ->createJumpTableIndex(Table); 8293 8294 // Set up the jump table info. 8295 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8296 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8297 Clusters[Last].High->getValue(), SI->getCondition(), 8298 nullptr, false); 8299 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8300 8301 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8302 JTCases.size() - 1, Prob); 8303 return true; 8304 } 8305 8306 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8307 const SwitchInst *SI, 8308 MachineBasicBlock *DefaultMBB) { 8309 #ifndef NDEBUG 8310 // Clusters must be non-empty, sorted, and only contain Range clusters. 8311 assert(!Clusters.empty()); 8312 for (CaseCluster &C : Clusters) 8313 assert(C.Kind == CC_Range); 8314 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8315 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8316 #endif 8317 8318 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8319 if (!areJTsAllowed(TLI, SI)) 8320 return; 8321 8322 const int64_t N = Clusters.size(); 8323 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 8324 8325 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8326 SmallVector<unsigned, 8> TotalCases(N); 8327 8328 for (unsigned i = 0; i < N; ++i) { 8329 APInt Hi = Clusters[i].High->getValue(); 8330 APInt Lo = Clusters[i].Low->getValue(); 8331 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8332 if (i != 0) 8333 TotalCases[i] += TotalCases[i - 1]; 8334 } 8335 8336 unsigned MinDensity = JumpTableDensity; 8337 if (DefaultMBB->getParent()->getFunction()->optForSize()) 8338 MinDensity = OptsizeJumpTableDensity; 8339 if (N >= MinJumpTableSize 8340 && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) { 8341 // Cheap case: the whole range might be suitable for jump table. 8342 CaseCluster JTCluster; 8343 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8344 Clusters[0] = JTCluster; 8345 Clusters.resize(1); 8346 return; 8347 } 8348 } 8349 8350 // The algorithm below is not suitable for -O0. 8351 if (TM.getOptLevel() == CodeGenOpt::None) 8352 return; 8353 8354 // Split Clusters into minimum number of dense partitions. The algorithm uses 8355 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8356 // for the Case Statement'" (1994), but builds the MinPartitions array in 8357 // reverse order to make it easier to reconstruct the partitions in ascending 8358 // order. In the choice between two optimal partitionings, it picks the one 8359 // which yields more jump tables. 8360 8361 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8362 SmallVector<unsigned, 8> MinPartitions(N); 8363 // LastElement[i] is the last element of the partition starting at i. 8364 SmallVector<unsigned, 8> LastElement(N); 8365 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 8366 SmallVector<unsigned, 8> NumTables(N); 8367 8368 // Base case: There is only one way to partition Clusters[N-1]. 8369 MinPartitions[N - 1] = 1; 8370 LastElement[N - 1] = N - 1; 8371 assert(MinJumpTableSize > 1); 8372 NumTables[N - 1] = 0; 8373 8374 // Note: loop indexes are signed to avoid underflow. 8375 for (int64_t i = N - 2; i >= 0; i--) { 8376 // Find optimal partitioning of Clusters[i..N-1]. 8377 // Baseline: Put Clusters[i] into a partition on its own. 8378 MinPartitions[i] = MinPartitions[i + 1] + 1; 8379 LastElement[i] = i; 8380 NumTables[i] = NumTables[i + 1]; 8381 8382 // Search for a solution that results in fewer partitions. 8383 for (int64_t j = N - 1; j > i; j--) { 8384 // Try building a partition from Clusters[i..j]. 8385 if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) { 8386 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8387 bool IsTable = j - i + 1 >= MinJumpTableSize; 8388 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 8389 8390 // If this j leads to fewer partitions, or same number of partitions 8391 // with more lookup tables, it is a better partitioning. 8392 if (NumPartitions < MinPartitions[i] || 8393 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 8394 MinPartitions[i] = NumPartitions; 8395 LastElement[i] = j; 8396 NumTables[i] = Tables; 8397 } 8398 } 8399 } 8400 } 8401 8402 // Iterate over the partitions, replacing some with jump tables in-place. 8403 unsigned DstIndex = 0; 8404 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8405 Last = LastElement[First]; 8406 assert(Last >= First); 8407 assert(DstIndex <= First); 8408 unsigned NumClusters = Last - First + 1; 8409 8410 CaseCluster JTCluster; 8411 if (NumClusters >= MinJumpTableSize && 8412 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8413 Clusters[DstIndex++] = JTCluster; 8414 } else { 8415 for (unsigned I = First; I <= Last; ++I) 8416 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8417 } 8418 } 8419 Clusters.resize(DstIndex); 8420 } 8421 8422 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8423 // FIXME: Using the pointer type doesn't seem ideal. 8424 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8425 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8426 return Range <= BW; 8427 } 8428 8429 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8430 unsigned NumCmps, 8431 const APInt &Low, 8432 const APInt &High) { 8433 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8434 // range of cases both require only one branch to lower. Just looking at the 8435 // number of clusters and destinations should be enough to decide whether to 8436 // build bit tests. 8437 8438 // To lower a range with bit tests, the range must fit the bitwidth of a 8439 // machine word. 8440 if (!rangeFitsInWord(Low, High)) 8441 return false; 8442 8443 // Decide whether it's profitable to lower this range with bit tests. Each 8444 // destination requires a bit test and branch, and there is an overall range 8445 // check branch. For a small number of clusters, separate comparisons might be 8446 // cheaper, and for many destinations, splitting the range might be better. 8447 return (NumDests == 1 && NumCmps >= 3) || 8448 (NumDests == 2 && NumCmps >= 5) || 8449 (NumDests == 3 && NumCmps >= 6); 8450 } 8451 8452 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8453 unsigned First, unsigned Last, 8454 const SwitchInst *SI, 8455 CaseCluster &BTCluster) { 8456 assert(First <= Last); 8457 if (First == Last) 8458 return false; 8459 8460 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8461 unsigned NumCmps = 0; 8462 for (int64_t I = First; I <= Last; ++I) { 8463 assert(Clusters[I].Kind == CC_Range); 8464 Dests.set(Clusters[I].MBB->getNumber()); 8465 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8466 } 8467 unsigned NumDests = Dests.count(); 8468 8469 APInt Low = Clusters[First].Low->getValue(); 8470 APInt High = Clusters[Last].High->getValue(); 8471 assert(Low.slt(High)); 8472 8473 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8474 return false; 8475 8476 APInt LowBound; 8477 APInt CmpRange; 8478 8479 const int BitWidth = DAG.getTargetLoweringInfo() 8480 .getPointerTy(DAG.getDataLayout()) 8481 .getSizeInBits(); 8482 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8483 8484 // Check if the clusters cover a contiguous range such that no value in the 8485 // range will jump to the default statement. 8486 bool ContiguousRange = true; 8487 for (int64_t I = First + 1; I <= Last; ++I) { 8488 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8489 ContiguousRange = false; 8490 break; 8491 } 8492 } 8493 8494 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8495 // Optimize the case where all the case values fit in a word without having 8496 // to subtract minValue. In this case, we can optimize away the subtraction. 8497 LowBound = APInt::getNullValue(Low.getBitWidth()); 8498 CmpRange = High; 8499 ContiguousRange = false; 8500 } else { 8501 LowBound = Low; 8502 CmpRange = High - Low; 8503 } 8504 8505 CaseBitsVector CBV; 8506 auto TotalProb = BranchProbability::getZero(); 8507 for (unsigned i = First; i <= Last; ++i) { 8508 // Find the CaseBits for this destination. 8509 unsigned j; 8510 for (j = 0; j < CBV.size(); ++j) 8511 if (CBV[j].BB == Clusters[i].MBB) 8512 break; 8513 if (j == CBV.size()) 8514 CBV.push_back( 8515 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8516 CaseBits *CB = &CBV[j]; 8517 8518 // Update Mask, Bits and ExtraProb. 8519 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8520 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8521 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8522 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8523 CB->Bits += Hi - Lo + 1; 8524 CB->ExtraProb += Clusters[i].Prob; 8525 TotalProb += Clusters[i].Prob; 8526 } 8527 8528 BitTestInfo BTI; 8529 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8530 // Sort by probability first, number of bits second. 8531 if (a.ExtraProb != b.ExtraProb) 8532 return a.ExtraProb > b.ExtraProb; 8533 return a.Bits > b.Bits; 8534 }); 8535 8536 for (auto &CB : CBV) { 8537 MachineBasicBlock *BitTestBB = 8538 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8539 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8540 } 8541 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8542 SI->getCondition(), -1U, MVT::Other, false, 8543 ContiguousRange, nullptr, nullptr, std::move(BTI), 8544 TotalProb); 8545 8546 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8547 BitTestCases.size() - 1, TotalProb); 8548 return true; 8549 } 8550 8551 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8552 const SwitchInst *SI) { 8553 // Partition Clusters into as few subsets as possible, where each subset has a 8554 // range that fits in a machine word and has <= 3 unique destinations. 8555 8556 #ifndef NDEBUG 8557 // Clusters must be sorted and contain Range or JumpTable clusters. 8558 assert(!Clusters.empty()); 8559 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8560 for (const CaseCluster &C : Clusters) 8561 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8562 for (unsigned i = 1; i < Clusters.size(); ++i) 8563 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8564 #endif 8565 8566 // The algorithm below is not suitable for -O0. 8567 if (TM.getOptLevel() == CodeGenOpt::None) 8568 return; 8569 8570 // If target does not have legal shift left, do not emit bit tests at all. 8571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8572 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8573 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8574 return; 8575 8576 int BitWidth = PTy.getSizeInBits(); 8577 const int64_t N = Clusters.size(); 8578 8579 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8580 SmallVector<unsigned, 8> MinPartitions(N); 8581 // LastElement[i] is the last element of the partition starting at i. 8582 SmallVector<unsigned, 8> LastElement(N); 8583 8584 // FIXME: This might not be the best algorithm for finding bit test clusters. 8585 8586 // Base case: There is only one way to partition Clusters[N-1]. 8587 MinPartitions[N - 1] = 1; 8588 LastElement[N - 1] = N - 1; 8589 8590 // Note: loop indexes are signed to avoid underflow. 8591 for (int64_t i = N - 2; i >= 0; --i) { 8592 // Find optimal partitioning of Clusters[i..N-1]. 8593 // Baseline: Put Clusters[i] into a partition on its own. 8594 MinPartitions[i] = MinPartitions[i + 1] + 1; 8595 LastElement[i] = i; 8596 8597 // Search for a solution that results in fewer partitions. 8598 // Note: the search is limited by BitWidth, reducing time complexity. 8599 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8600 // Try building a partition from Clusters[i..j]. 8601 8602 // Check the range. 8603 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8604 Clusters[j].High->getValue())) 8605 continue; 8606 8607 // Check nbr of destinations and cluster types. 8608 // FIXME: This works, but doesn't seem very efficient. 8609 bool RangesOnly = true; 8610 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8611 for (int64_t k = i; k <= j; k++) { 8612 if (Clusters[k].Kind != CC_Range) { 8613 RangesOnly = false; 8614 break; 8615 } 8616 Dests.set(Clusters[k].MBB->getNumber()); 8617 } 8618 if (!RangesOnly || Dests.count() > 3) 8619 break; 8620 8621 // Check if it's a better partition. 8622 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8623 if (NumPartitions < MinPartitions[i]) { 8624 // Found a better partition. 8625 MinPartitions[i] = NumPartitions; 8626 LastElement[i] = j; 8627 } 8628 } 8629 } 8630 8631 // Iterate over the partitions, replacing with bit-test clusters in-place. 8632 unsigned DstIndex = 0; 8633 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8634 Last = LastElement[First]; 8635 assert(First <= Last); 8636 assert(DstIndex <= First); 8637 8638 CaseCluster BitTestCluster; 8639 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8640 Clusters[DstIndex++] = BitTestCluster; 8641 } else { 8642 size_t NumClusters = Last - First + 1; 8643 std::memmove(&Clusters[DstIndex], &Clusters[First], 8644 sizeof(Clusters[0]) * NumClusters); 8645 DstIndex += NumClusters; 8646 } 8647 } 8648 Clusters.resize(DstIndex); 8649 } 8650 8651 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8652 MachineBasicBlock *SwitchMBB, 8653 MachineBasicBlock *DefaultMBB) { 8654 MachineFunction *CurMF = FuncInfo.MF; 8655 MachineBasicBlock *NextMBB = nullptr; 8656 MachineFunction::iterator BBI(W.MBB); 8657 if (++BBI != FuncInfo.MF->end()) 8658 NextMBB = &*BBI; 8659 8660 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8661 8662 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8663 8664 if (Size == 2 && W.MBB == SwitchMBB) { 8665 // If any two of the cases has the same destination, and if one value 8666 // is the same as the other, but has one bit unset that the other has set, 8667 // use bit manipulation to do two compares at once. For example: 8668 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8669 // TODO: This could be extended to merge any 2 cases in switches with 3 8670 // cases. 8671 // TODO: Handle cases where W.CaseBB != SwitchBB. 8672 CaseCluster &Small = *W.FirstCluster; 8673 CaseCluster &Big = *W.LastCluster; 8674 8675 if (Small.Low == Small.High && Big.Low == Big.High && 8676 Small.MBB == Big.MBB) { 8677 const APInt &SmallValue = Small.Low->getValue(); 8678 const APInt &BigValue = Big.Low->getValue(); 8679 8680 // Check that there is only one bit different. 8681 APInt CommonBit = BigValue ^ SmallValue; 8682 if (CommonBit.isPowerOf2()) { 8683 SDValue CondLHS = getValue(Cond); 8684 EVT VT = CondLHS.getValueType(); 8685 SDLoc DL = getCurSDLoc(); 8686 8687 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8688 DAG.getConstant(CommonBit, DL, VT)); 8689 SDValue Cond = DAG.getSetCC( 8690 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8691 ISD::SETEQ); 8692 8693 // Update successor info. 8694 // Both Small and Big will jump to Small.BB, so we sum up the 8695 // probabilities. 8696 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8697 if (BPI) 8698 addSuccessorWithProb( 8699 SwitchMBB, DefaultMBB, 8700 // The default destination is the first successor in IR. 8701 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8702 else 8703 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8704 8705 // Insert the true branch. 8706 SDValue BrCond = 8707 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8708 DAG.getBasicBlock(Small.MBB)); 8709 // Insert the false branch. 8710 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8711 DAG.getBasicBlock(DefaultMBB)); 8712 8713 DAG.setRoot(BrCond); 8714 return; 8715 } 8716 } 8717 } 8718 8719 if (TM.getOptLevel() != CodeGenOpt::None) { 8720 // Order cases by probability so the most likely case will be checked first. 8721 std::sort(W.FirstCluster, W.LastCluster + 1, 8722 [](const CaseCluster &a, const CaseCluster &b) { 8723 return a.Prob > b.Prob; 8724 }); 8725 8726 // Rearrange the case blocks so that the last one falls through if possible 8727 // without without changing the order of probabilities. 8728 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8729 --I; 8730 if (I->Prob > W.LastCluster->Prob) 8731 break; 8732 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8733 std::swap(*I, *W.LastCluster); 8734 break; 8735 } 8736 } 8737 } 8738 8739 // Compute total probability. 8740 BranchProbability DefaultProb = W.DefaultProb; 8741 BranchProbability UnhandledProbs = DefaultProb; 8742 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8743 UnhandledProbs += I->Prob; 8744 8745 MachineBasicBlock *CurMBB = W.MBB; 8746 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8747 MachineBasicBlock *Fallthrough; 8748 if (I == W.LastCluster) { 8749 // For the last cluster, fall through to the default destination. 8750 Fallthrough = DefaultMBB; 8751 } else { 8752 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8753 CurMF->insert(BBI, Fallthrough); 8754 // Put Cond in a virtual register to make it available from the new blocks. 8755 ExportFromCurrentBlock(Cond); 8756 } 8757 UnhandledProbs -= I->Prob; 8758 8759 switch (I->Kind) { 8760 case CC_JumpTable: { 8761 // FIXME: Optimize away range check based on pivot comparisons. 8762 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8763 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8764 8765 // The jump block hasn't been inserted yet; insert it here. 8766 MachineBasicBlock *JumpMBB = JT->MBB; 8767 CurMF->insert(BBI, JumpMBB); 8768 8769 auto JumpProb = I->Prob; 8770 auto FallthroughProb = UnhandledProbs; 8771 8772 // If the default statement is a target of the jump table, we evenly 8773 // distribute the default probability to successors of CurMBB. Also 8774 // update the probability on the edge from JumpMBB to Fallthrough. 8775 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8776 SE = JumpMBB->succ_end(); 8777 SI != SE; ++SI) { 8778 if (*SI == DefaultMBB) { 8779 JumpProb += DefaultProb / 2; 8780 FallthroughProb -= DefaultProb / 2; 8781 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8782 JumpMBB->normalizeSuccProbs(); 8783 break; 8784 } 8785 } 8786 8787 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8788 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8789 CurMBB->normalizeSuccProbs(); 8790 8791 // The jump table header will be inserted in our current block, do the 8792 // range check, and fall through to our fallthrough block. 8793 JTH->HeaderBB = CurMBB; 8794 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8795 8796 // If we're in the right place, emit the jump table header right now. 8797 if (CurMBB == SwitchMBB) { 8798 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8799 JTH->Emitted = true; 8800 } 8801 break; 8802 } 8803 case CC_BitTests: { 8804 // FIXME: Optimize away range check based on pivot comparisons. 8805 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8806 8807 // The bit test blocks haven't been inserted yet; insert them here. 8808 for (BitTestCase &BTC : BTB->Cases) 8809 CurMF->insert(BBI, BTC.ThisBB); 8810 8811 // Fill in fields of the BitTestBlock. 8812 BTB->Parent = CurMBB; 8813 BTB->Default = Fallthrough; 8814 8815 BTB->DefaultProb = UnhandledProbs; 8816 // If the cases in bit test don't form a contiguous range, we evenly 8817 // distribute the probability on the edge to Fallthrough to two 8818 // successors of CurMBB. 8819 if (!BTB->ContiguousRange) { 8820 BTB->Prob += DefaultProb / 2; 8821 BTB->DefaultProb -= DefaultProb / 2; 8822 } 8823 8824 // If we're in the right place, emit the bit test header right now. 8825 if (CurMBB == SwitchMBB) { 8826 visitBitTestHeader(*BTB, SwitchMBB); 8827 BTB->Emitted = true; 8828 } 8829 break; 8830 } 8831 case CC_Range: { 8832 const Value *RHS, *LHS, *MHS; 8833 ISD::CondCode CC; 8834 if (I->Low == I->High) { 8835 // Check Cond == I->Low. 8836 CC = ISD::SETEQ; 8837 LHS = Cond; 8838 RHS=I->Low; 8839 MHS = nullptr; 8840 } else { 8841 // Check I->Low <= Cond <= I->High. 8842 CC = ISD::SETLE; 8843 LHS = I->Low; 8844 MHS = Cond; 8845 RHS = I->High; 8846 } 8847 8848 // The false probability is the sum of all unhandled cases. 8849 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8850 UnhandledProbs); 8851 8852 if (CurMBB == SwitchMBB) 8853 visitSwitchCase(CB, SwitchMBB); 8854 else 8855 SwitchCases.push_back(CB); 8856 8857 break; 8858 } 8859 } 8860 CurMBB = Fallthrough; 8861 } 8862 } 8863 8864 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8865 CaseClusterIt First, 8866 CaseClusterIt Last) { 8867 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8868 if (X.Prob != CC.Prob) 8869 return X.Prob > CC.Prob; 8870 8871 // Ties are broken by comparing the case value. 8872 return X.Low->getValue().slt(CC.Low->getValue()); 8873 }); 8874 } 8875 8876 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8877 const SwitchWorkListItem &W, 8878 Value *Cond, 8879 MachineBasicBlock *SwitchMBB) { 8880 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8881 "Clusters not sorted?"); 8882 8883 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8884 8885 // Balance the tree based on branch probabilities to create a near-optimal (in 8886 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8887 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8888 CaseClusterIt LastLeft = W.FirstCluster; 8889 CaseClusterIt FirstRight = W.LastCluster; 8890 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8891 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8892 8893 // Move LastLeft and FirstRight towards each other from opposite directions to 8894 // find a partitioning of the clusters which balances the probability on both 8895 // sides. If LeftProb and RightProb are equal, alternate which side is 8896 // taken to ensure 0-probability nodes are distributed evenly. 8897 unsigned I = 0; 8898 while (LastLeft + 1 < FirstRight) { 8899 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8900 LeftProb += (++LastLeft)->Prob; 8901 else 8902 RightProb += (--FirstRight)->Prob; 8903 I++; 8904 } 8905 8906 for (;;) { 8907 // Our binary search tree differs from a typical BST in that ours can have up 8908 // to three values in each leaf. The pivot selection above doesn't take that 8909 // into account, which means the tree might require more nodes and be less 8910 // efficient. We compensate for this here. 8911 8912 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8913 unsigned NumRight = W.LastCluster - FirstRight + 1; 8914 8915 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8916 // If one side has less than 3 clusters, and the other has more than 3, 8917 // consider taking a cluster from the other side. 8918 8919 if (NumLeft < NumRight) { 8920 // Consider moving the first cluster on the right to the left side. 8921 CaseCluster &CC = *FirstRight; 8922 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8923 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8924 if (LeftSideRank <= RightSideRank) { 8925 // Moving the cluster to the left does not demote it. 8926 ++LastLeft; 8927 ++FirstRight; 8928 continue; 8929 } 8930 } else { 8931 assert(NumRight < NumLeft); 8932 // Consider moving the last element on the left to the right side. 8933 CaseCluster &CC = *LastLeft; 8934 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8935 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8936 if (RightSideRank <= LeftSideRank) { 8937 // Moving the cluster to the right does not demot it. 8938 --LastLeft; 8939 --FirstRight; 8940 continue; 8941 } 8942 } 8943 } 8944 break; 8945 } 8946 8947 assert(LastLeft + 1 == FirstRight); 8948 assert(LastLeft >= W.FirstCluster); 8949 assert(FirstRight <= W.LastCluster); 8950 8951 // Use the first element on the right as pivot since we will make less-than 8952 // comparisons against it. 8953 CaseClusterIt PivotCluster = FirstRight; 8954 assert(PivotCluster > W.FirstCluster); 8955 assert(PivotCluster <= W.LastCluster); 8956 8957 CaseClusterIt FirstLeft = W.FirstCluster; 8958 CaseClusterIt LastRight = W.LastCluster; 8959 8960 const ConstantInt *Pivot = PivotCluster->Low; 8961 8962 // New blocks will be inserted immediately after the current one. 8963 MachineFunction::iterator BBI(W.MBB); 8964 ++BBI; 8965 8966 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8967 // we can branch to its destination directly if it's squeezed exactly in 8968 // between the known lower bound and Pivot - 1. 8969 MachineBasicBlock *LeftMBB; 8970 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8971 FirstLeft->Low == W.GE && 8972 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8973 LeftMBB = FirstLeft->MBB; 8974 } else { 8975 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8976 FuncInfo.MF->insert(BBI, LeftMBB); 8977 WorkList.push_back( 8978 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8979 // Put Cond in a virtual register to make it available from the new blocks. 8980 ExportFromCurrentBlock(Cond); 8981 } 8982 8983 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8984 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8985 // directly if RHS.High equals the current upper bound. 8986 MachineBasicBlock *RightMBB; 8987 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8988 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8989 RightMBB = FirstRight->MBB; 8990 } else { 8991 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8992 FuncInfo.MF->insert(BBI, RightMBB); 8993 WorkList.push_back( 8994 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8995 // Put Cond in a virtual register to make it available from the new blocks. 8996 ExportFromCurrentBlock(Cond); 8997 } 8998 8999 // Create the CaseBlock record that will be used to lower the branch. 9000 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9001 LeftProb, RightProb); 9002 9003 if (W.MBB == SwitchMBB) 9004 visitSwitchCase(CB, SwitchMBB); 9005 else 9006 SwitchCases.push_back(CB); 9007 } 9008 9009 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9010 // Extract cases from the switch. 9011 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9012 CaseClusterVector Clusters; 9013 Clusters.reserve(SI.getNumCases()); 9014 for (auto I : SI.cases()) { 9015 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9016 const ConstantInt *CaseVal = I.getCaseValue(); 9017 BranchProbability Prob = 9018 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9019 : BranchProbability(1, SI.getNumCases() + 1); 9020 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9021 } 9022 9023 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9024 9025 // Cluster adjacent cases with the same destination. We do this at all 9026 // optimization levels because it's cheap to do and will make codegen faster 9027 // if there are many clusters. 9028 sortAndRangeify(Clusters); 9029 9030 if (TM.getOptLevel() != CodeGenOpt::None) { 9031 // Replace an unreachable default with the most popular destination. 9032 // FIXME: Exploit unreachable default more aggressively. 9033 bool UnreachableDefault = 9034 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9035 if (UnreachableDefault && !Clusters.empty()) { 9036 DenseMap<const BasicBlock *, unsigned> Popularity; 9037 unsigned MaxPop = 0; 9038 const BasicBlock *MaxBB = nullptr; 9039 for (auto I : SI.cases()) { 9040 const BasicBlock *BB = I.getCaseSuccessor(); 9041 if (++Popularity[BB] > MaxPop) { 9042 MaxPop = Popularity[BB]; 9043 MaxBB = BB; 9044 } 9045 } 9046 // Set new default. 9047 assert(MaxPop > 0 && MaxBB); 9048 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9049 9050 // Remove cases that were pointing to the destination that is now the 9051 // default. 9052 CaseClusterVector New; 9053 New.reserve(Clusters.size()); 9054 for (CaseCluster &CC : Clusters) { 9055 if (CC.MBB != DefaultMBB) 9056 New.push_back(CC); 9057 } 9058 Clusters = std::move(New); 9059 } 9060 } 9061 9062 // If there is only the default destination, jump there directly. 9063 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9064 if (Clusters.empty()) { 9065 SwitchMBB->addSuccessor(DefaultMBB); 9066 if (DefaultMBB != NextBlock(SwitchMBB)) { 9067 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9068 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9069 } 9070 return; 9071 } 9072 9073 findJumpTables(Clusters, &SI, DefaultMBB); 9074 findBitTestClusters(Clusters, &SI); 9075 9076 DEBUG({ 9077 dbgs() << "Case clusters: "; 9078 for (const CaseCluster &C : Clusters) { 9079 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9080 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9081 9082 C.Low->getValue().print(dbgs(), true); 9083 if (C.Low != C.High) { 9084 dbgs() << '-'; 9085 C.High->getValue().print(dbgs(), true); 9086 } 9087 dbgs() << ' '; 9088 } 9089 dbgs() << '\n'; 9090 }); 9091 9092 assert(!Clusters.empty()); 9093 SwitchWorkList WorkList; 9094 CaseClusterIt First = Clusters.begin(); 9095 CaseClusterIt Last = Clusters.end() - 1; 9096 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9097 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9098 9099 while (!WorkList.empty()) { 9100 SwitchWorkListItem W = WorkList.back(); 9101 WorkList.pop_back(); 9102 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9103 9104 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 9105 // For optimized builds, lower large range as a balanced binary tree. 9106 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9107 continue; 9108 } 9109 9110 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9111 } 9112 } 9113