1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/MachineValueType.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/ValueTypes.h" 61 #include "llvm/CodeGen/WinEHFuncInfo.h" 62 #include "llvm/IR/Argument.h" 63 #include "llvm/IR/Attributes.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/CFG.h" 66 #include "llvm/IR/CallSite.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Constant.h" 69 #include "llvm/IR/ConstantRange.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfoMetadata.h" 73 #include "llvm/IR/DebugLoc.h" 74 #include "llvm/IR/DerivedTypes.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/GetElementPtrTypeIterator.h" 77 #include "llvm/IR/InlineAsm.h" 78 #include "llvm/IR/InstrTypes.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Instructions.h" 81 #include "llvm/IR/IntrinsicInst.h" 82 #include "llvm/IR/Intrinsics.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/Statepoint.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/MC/MCContext.h" 92 #include "llvm/MC/MCSymbol.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/BranchProbability.h" 95 #include "llvm/Support/Casting.h" 96 #include "llvm/Support/CodeGen.h" 97 #include "llvm/Support/CommandLine.h" 98 #include "llvm/Support/Compiler.h" 99 #include "llvm/Support/Debug.h" 100 #include "llvm/Support/ErrorHandling.h" 101 #include "llvm/Support/MathExtras.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Target/TargetIntrinsicInfo.h" 104 #include "llvm/Target/TargetLowering.h" 105 #include "llvm/Target/TargetMachine.h" 106 #include "llvm/Target/TargetOpcodes.h" 107 #include "llvm/Target/TargetOptions.h" 108 #include "llvm/Target/TargetRegisterInfo.h" 109 #include "llvm/Target/TargetSubtargetInfo.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <cstring> 115 #include <iterator> 116 #include <limits> 117 #include <numeric> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "isel" 125 126 /// LimitFloatPrecision - Generate low-precision inline sequences for 127 /// some float libcalls (6, 8 or 12 bits). 128 static unsigned LimitFloatPrecision; 129 130 static cl::opt<unsigned, true> 131 LimitFPPrecision("limit-float-precision", 132 cl::desc("Generate low-precision inline sequences " 133 "for some float libcalls"), 134 cl::location(LimitFloatPrecision), 135 cl::init(0)); 136 137 // Limit the width of DAG chains. This is important in general to prevent 138 // DAG-based analysis from blowing up. For example, alias analysis and 139 // load clustering may not complete in reasonable time. It is difficult to 140 // recognize and avoid this situation within each individual analysis, and 141 // future analyses are likely to have the same behavior. Limiting DAG width is 142 // the safe approach and will be especially important with global DAGs. 143 // 144 // MaxParallelChains default is arbitrarily high to avoid affecting 145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 146 // sequence over this should have been converted to llvm.memcpy by the 147 // frontend. It is easy to induce this behavior with .ll code such as: 148 // %buffer = alloca [4096 x i8] 149 // %data = load [4096 x i8]* %argPtr 150 // store [4096 x i8] %data, [4096 x i8]* %buffer 151 static const unsigned MaxParallelChains = 64; 152 153 // True if the Value passed requires ABI mangling as it is a parameter to a 154 // function or a return value from a function which is not an intrinsic. 155 static bool isABIRegCopy(const Value *V) { 156 const bool IsRetInst = V && isa<ReturnInst>(V); 157 const bool IsCallInst = V && isa<CallInst>(V); 158 const bool IsInLineAsm = 159 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 160 const bool IsIndirectFunctionCall = 161 IsCallInst && !IsInLineAsm && 162 !static_cast<const CallInst *>(V)->getCalledFunction(); 163 // It is possible that the call instruction is an inline asm statement or an 164 // indirect function call in which case the return value of 165 // getCalledFunction() would be nullptr. 166 const bool IsInstrinsicCall = 167 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 168 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 169 Intrinsic::not_intrinsic; 170 171 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 172 } 173 174 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 175 const SDValue *Parts, unsigned NumParts, 176 MVT PartVT, EVT ValueVT, const Value *V, 177 bool IsABIRegCopy); 178 179 /// getCopyFromParts - Create a value that contains the specified legal parts 180 /// combined into the value they represent. If the parts combine to a type 181 /// larger than ValueVT then AssertOp can be used to specify whether the extra 182 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 183 /// (ISD::AssertSext). 184 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 185 const SDValue *Parts, unsigned NumParts, 186 MVT PartVT, EVT ValueVT, const Value *V, 187 Optional<ISD::NodeType> AssertOp = None, 188 bool IsABIRegCopy = false) { 189 if (ValueVT.isVector()) 190 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 191 PartVT, ValueVT, V, IsABIRegCopy); 192 193 assert(NumParts > 0 && "No parts to assemble!"); 194 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 195 SDValue Val = Parts[0]; 196 197 if (NumParts > 1) { 198 // Assemble the value from multiple parts. 199 if (ValueVT.isInteger()) { 200 unsigned PartBits = PartVT.getSizeInBits(); 201 unsigned ValueBits = ValueVT.getSizeInBits(); 202 203 // Assemble the power of 2 part. 204 unsigned RoundParts = NumParts & (NumParts - 1) ? 205 1 << Log2_32(NumParts) : NumParts; 206 unsigned RoundBits = PartBits * RoundParts; 207 EVT RoundVT = RoundBits == ValueBits ? 208 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 209 SDValue Lo, Hi; 210 211 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 212 213 if (RoundParts > 2) { 214 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 215 PartVT, HalfVT, V); 216 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 217 RoundParts / 2, PartVT, HalfVT, V); 218 } else { 219 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 220 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 221 } 222 223 if (DAG.getDataLayout().isBigEndian()) 224 std::swap(Lo, Hi); 225 226 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 227 228 if (RoundParts < NumParts) { 229 // Assemble the trailing non-power-of-2 part. 230 unsigned OddParts = NumParts - RoundParts; 231 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 232 Hi = getCopyFromParts(DAG, DL, 233 Parts + RoundParts, OddParts, PartVT, OddVT, V); 234 235 // Combine the round and odd parts. 236 Lo = Val; 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 240 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 241 Hi = 242 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 243 DAG.getConstant(Lo.getValueSizeInBits(), DL, 244 TLI.getPointerTy(DAG.getDataLayout()))); 245 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 246 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 247 } 248 } else if (PartVT.isFloatingPoint()) { 249 // FP split into multiple FP parts (for ppcf128) 250 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 251 "Unexpected split"); 252 SDValue Lo, Hi; 253 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 254 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 255 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 256 std::swap(Lo, Hi); 257 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 258 } else { 259 // FP split into integer parts (soft fp) 260 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 261 !PartVT.isVector() && "Unexpected split"); 262 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 263 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 264 } 265 } 266 267 // There is now one part, held in Val. Correct it to match ValueVT. 268 // PartEVT is the type of the register class that holds the value. 269 // ValueVT is the type of the inline asm operation. 270 EVT PartEVT = Val.getValueType(); 271 272 if (PartEVT == ValueVT) 273 return Val; 274 275 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 276 ValueVT.bitsLT(PartEVT)) { 277 // For an FP value in an integer part, we need to truncate to the right 278 // width first. 279 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 280 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 281 } 282 283 // Handle types that have the same size. 284 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 285 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 286 287 // Handle types with different sizes. 288 if (PartEVT.isInteger() && ValueVT.isInteger()) { 289 if (ValueVT.bitsLT(PartEVT)) { 290 // For a truncate, see if we have any information to 291 // indicate whether the truncated bits will always be 292 // zero or sign-extension. 293 if (AssertOp.hasValue()) 294 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 295 DAG.getValueType(ValueVT)); 296 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 297 } 298 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 299 } 300 301 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 302 // FP_ROUND's are always exact here. 303 if (ValueVT.bitsLT(Val.getValueType())) 304 return DAG.getNode( 305 ISD::FP_ROUND, DL, ValueVT, Val, 306 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 307 308 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 309 } 310 311 llvm_unreachable("Unknown mismatch!"); 312 } 313 314 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 315 const Twine &ErrMsg) { 316 const Instruction *I = dyn_cast_or_null<Instruction>(V); 317 if (!V) 318 return Ctx.emitError(ErrMsg); 319 320 const char *AsmError = ", possible invalid constraint for vector type"; 321 if (const CallInst *CI = dyn_cast<CallInst>(I)) 322 if (isa<InlineAsm>(CI->getCalledValue())) 323 return Ctx.emitError(I, ErrMsg + AsmError); 324 325 return Ctx.emitError(I, ErrMsg); 326 } 327 328 /// getCopyFromPartsVector - Create a value that contains the specified legal 329 /// parts combined into the value they represent. If the parts combine to a 330 /// type larger than ValueVT then AssertOp can be used to specify whether the 331 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 332 /// ValueVT (ISD::AssertSext). 333 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 334 const SDValue *Parts, unsigned NumParts, 335 MVT PartVT, EVT ValueVT, const Value *V, 336 bool IsABIRegCopy) { 337 assert(ValueVT.isVector() && "Not a vector value"); 338 assert(NumParts > 0 && "No parts to assemble!"); 339 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 340 SDValue Val = Parts[0]; 341 342 // Handle a multi-element vector. 343 if (NumParts > 1) { 344 EVT IntermediateVT; 345 MVT RegisterVT; 346 unsigned NumIntermediates; 347 unsigned NumRegs; 348 349 if (IsABIRegCopy) { 350 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 351 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 352 RegisterVT); 353 } else { 354 NumRegs = 355 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 356 NumIntermediates, RegisterVT); 357 } 358 359 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 360 NumParts = NumRegs; // Silence a compiler warning. 361 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 362 assert(RegisterVT.getSizeInBits() == 363 Parts[0].getSimpleValueType().getSizeInBits() && 364 "Part type sizes don't match!"); 365 366 // Assemble the parts into intermediate operands. 367 SmallVector<SDValue, 8> Ops(NumIntermediates); 368 if (NumIntermediates == NumParts) { 369 // If the register was not expanded, truncate or copy the value, 370 // as appropriate. 371 for (unsigned i = 0; i != NumParts; ++i) 372 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 373 PartVT, IntermediateVT, V); 374 } else if (NumParts > 0) { 375 // If the intermediate type was expanded, build the intermediate 376 // operands from the parts. 377 assert(NumParts % NumIntermediates == 0 && 378 "Must expand into a divisible number of parts!"); 379 unsigned Factor = NumParts / NumIntermediates; 380 for (unsigned i = 0; i != NumIntermediates; ++i) 381 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 382 PartVT, IntermediateVT, V); 383 } 384 385 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 386 // intermediate operands. 387 EVT BuiltVectorTy = 388 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 389 (IntermediateVT.isVector() 390 ? IntermediateVT.getVectorNumElements() * NumParts 391 : NumIntermediates)); 392 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 393 : ISD::BUILD_VECTOR, 394 DL, BuiltVectorTy, Ops); 395 } 396 397 // There is now one part, held in Val. Correct it to match ValueVT. 398 EVT PartEVT = Val.getValueType(); 399 400 if (PartEVT == ValueVT) 401 return Val; 402 403 if (PartEVT.isVector()) { 404 // If the element type of the source/dest vectors are the same, but the 405 // parts vector has more elements than the value vector, then we have a 406 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 407 // elements we want. 408 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 409 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 410 "Cannot narrow, it would be a lossy transformation"); 411 return DAG.getNode( 412 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 413 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 414 } 415 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 421 "Cannot handle this kind of promotion"); 422 // Promoted vector extract 423 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 424 425 } 426 427 // Trivial bitcast if the types are the same size and the destination 428 // vector type is legal. 429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 430 TLI.isTypeLegal(ValueVT)) 431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 432 433 if (ValueVT.getVectorNumElements() != 1) { 434 // Certain ABIs require that vectors are passed as integers. For vectors 435 // are the same size, this is an obvious bitcast. 436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 439 // Bitcast Val back the original type and extract the corresponding 440 // vector we want. 441 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 442 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 443 ValueVT.getVectorElementType(), Elts); 444 Val = DAG.getBitcast(WiderVecType, Val); 445 return DAG.getNode( 446 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 447 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 448 } 449 450 diagnosePossiblyInvalidConstraint( 451 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 452 return DAG.getUNDEF(ValueVT); 453 } 454 455 // Handle cases such as i8 -> <1 x i1> 456 EVT ValueSVT = ValueVT.getVectorElementType(); 457 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 458 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 459 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 460 461 return DAG.getBuildVector(ValueVT, DL, Val); 462 } 463 464 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 465 SDValue Val, SDValue *Parts, unsigned NumParts, 466 MVT PartVT, const Value *V, bool IsABIRegCopy); 467 468 /// getCopyToParts - Create a series of nodes that contain the specified value 469 /// split into legal parts. If the parts contain more bits than Val, then, for 470 /// integers, ExtendKind can be used to specify how to generate the extra bits. 471 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 472 SDValue *Parts, unsigned NumParts, MVT PartVT, 473 const Value *V, 474 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 475 bool IsABIRegCopy = false) { 476 EVT ValueVT = Val.getValueType(); 477 478 // Handle the vector case separately. 479 if (ValueVT.isVector()) 480 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 481 IsABIRegCopy); 482 483 unsigned PartBits = PartVT.getSizeInBits(); 484 unsigned OrigNumParts = NumParts; 485 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 486 "Copying to an illegal type!"); 487 488 if (NumParts == 0) 489 return; 490 491 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 492 EVT PartEVT = PartVT; 493 if (PartEVT == ValueVT) { 494 assert(NumParts == 1 && "No-op copy with multiple parts!"); 495 Parts[0] = Val; 496 return; 497 } 498 499 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 500 // If the parts cover more bits than the value has, promote the value. 501 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 502 assert(NumParts == 1 && "Do not know what to promote to!"); 503 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 504 } else { 505 if (ValueVT.isFloatingPoint()) { 506 // FP values need to be bitcast, then extended if they are being put 507 // into a larger container. 508 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 509 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 510 } 511 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 512 ValueVT.isInteger() && 513 "Unknown mismatch!"); 514 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 515 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 516 if (PartVT == MVT::x86mmx) 517 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 518 } 519 } else if (PartBits == ValueVT.getSizeInBits()) { 520 // Different types of the same size. 521 assert(NumParts == 1 && PartEVT != ValueVT); 522 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 523 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 524 // If the parts cover less bits than value has, truncate the value. 525 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 526 ValueVT.isInteger() && 527 "Unknown mismatch!"); 528 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 529 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 530 if (PartVT == MVT::x86mmx) 531 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 532 } 533 534 // The value may have changed - recompute ValueVT. 535 ValueVT = Val.getValueType(); 536 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 537 "Failed to tile the value with PartVT!"); 538 539 if (NumParts == 1) { 540 if (PartEVT != ValueVT) { 541 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 542 "scalar-to-vector conversion failed"); 543 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Expand the value into multiple parts. 551 if (NumParts & (NumParts - 1)) { 552 // The number of parts is not a power of 2. Split off and copy the tail. 553 assert(PartVT.isInteger() && ValueVT.isInteger() && 554 "Do not know what to expand to!"); 555 unsigned RoundParts = 1 << Log2_32(NumParts); 556 unsigned RoundBits = RoundParts * PartBits; 557 unsigned OddParts = NumParts - RoundParts; 558 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 559 DAG.getIntPtrConstant(RoundBits, DL)); 560 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 561 562 if (DAG.getDataLayout().isBigEndian()) 563 // The odd parts were reversed by getCopyToParts - unreverse them. 564 std::reverse(Parts + RoundParts, Parts + NumParts); 565 566 NumParts = RoundParts; 567 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 568 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 569 } 570 571 // The number of parts is a power of 2. Repeatedly bisect the value using 572 // EXTRACT_ELEMENT. 573 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 574 EVT::getIntegerVT(*DAG.getContext(), 575 ValueVT.getSizeInBits()), 576 Val); 577 578 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 579 for (unsigned i = 0; i < NumParts; i += StepSize) { 580 unsigned ThisBits = StepSize * PartBits / 2; 581 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 582 SDValue &Part0 = Parts[i]; 583 SDValue &Part1 = Parts[i+StepSize/2]; 584 585 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 586 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 587 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 588 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 589 590 if (ThisBits == PartBits && ThisVT != PartVT) { 591 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 592 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 593 } 594 } 595 } 596 597 if (DAG.getDataLayout().isBigEndian()) 598 std::reverse(Parts, Parts + OrigNumParts); 599 } 600 601 602 /// getCopyToPartsVector - Create a series of nodes that contain the specified 603 /// value split into legal parts. 604 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 605 SDValue Val, SDValue *Parts, unsigned NumParts, 606 MVT PartVT, const Value *V, 607 bool IsABIRegCopy) { 608 EVT ValueVT = Val.getValueType(); 609 assert(ValueVT.isVector() && "Not a vector"); 610 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 611 612 if (NumParts == 1) { 613 EVT PartEVT = PartVT; 614 if (PartEVT == ValueVT) { 615 // Nothing to do. 616 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 617 // Bitconvert vector->vector case. 618 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 619 } else if (PartVT.isVector() && 620 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 621 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 622 EVT ElementVT = PartVT.getVectorElementType(); 623 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 624 // undef elements. 625 SmallVector<SDValue, 16> Ops; 626 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 627 Ops.push_back(DAG.getNode( 628 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 629 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 630 631 for (unsigned i = ValueVT.getVectorNumElements(), 632 e = PartVT.getVectorNumElements(); i != e; ++i) 633 Ops.push_back(DAG.getUNDEF(ElementVT)); 634 635 Val = DAG.getBuildVector(PartVT, DL, Ops); 636 637 // FIXME: Use CONCAT for 2x -> 4x. 638 639 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 640 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 641 } else if (PartVT.isVector() && 642 PartEVT.getVectorElementType().bitsGE( 643 ValueVT.getVectorElementType()) && 644 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 645 646 // Promoted vector extract 647 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 648 } else { 649 if (ValueVT.getVectorNumElements() == 1) { 650 Val = DAG.getNode( 651 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 652 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 653 } else { 654 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 655 "lossy conversion of vector to scalar type"); 656 EVT IntermediateType = 657 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 658 Val = DAG.getBitcast(IntermediateType, Val); 659 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 660 } 661 } 662 663 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 664 Parts[0] = Val; 665 return; 666 } 667 668 // Handle a multi-element vector. 669 EVT IntermediateVT; 670 MVT RegisterVT; 671 unsigned NumIntermediates; 672 unsigned NumRegs; 673 if (IsABIRegCopy) { 674 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 675 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 676 RegisterVT); 677 } else { 678 NumRegs = 679 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 680 NumIntermediates, RegisterVT); 681 } 682 unsigned NumElements = ValueVT.getVectorNumElements(); 683 684 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 685 NumParts = NumRegs; // Silence a compiler warning. 686 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 687 688 // Convert the vector to the appropiate type if necessary. 689 unsigned DestVectorNoElts = 690 NumIntermediates * 691 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 692 EVT BuiltVectorTy = EVT::getVectorVT( 693 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 694 if (Val.getValueType() != BuiltVectorTy) 695 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 696 697 // Split the vector into intermediate operands. 698 SmallVector<SDValue, 8> Ops(NumIntermediates); 699 for (unsigned i = 0; i != NumIntermediates; ++i) { 700 if (IntermediateVT.isVector()) 701 Ops[i] = 702 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 703 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 704 TLI.getVectorIdxTy(DAG.getDataLayout()))); 705 else 706 Ops[i] = DAG.getNode( 707 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 708 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 709 } 710 711 // Split the intermediate operands into legal parts. 712 if (NumParts == NumIntermediates) { 713 // If the register was not expanded, promote or copy the value, 714 // as appropriate. 715 for (unsigned i = 0; i != NumParts; ++i) 716 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 717 } else if (NumParts > 0) { 718 // If the intermediate type was expanded, split each the value into 719 // legal parts. 720 assert(NumIntermediates != 0 && "division by zero"); 721 assert(NumParts % NumIntermediates == 0 && 722 "Must expand into a divisible number of parts!"); 723 unsigned Factor = NumParts / NumIntermediates; 724 for (unsigned i = 0; i != NumIntermediates; ++i) 725 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 726 } 727 } 728 729 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 730 EVT valuevt, bool IsABIMangledValue) 731 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 732 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 733 734 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 735 const DataLayout &DL, unsigned Reg, Type *Ty, 736 bool IsABIMangledValue) { 737 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 738 739 IsABIMangled = IsABIMangledValue; 740 741 for (EVT ValueVT : ValueVTs) { 742 unsigned NumRegs = IsABIMangledValue 743 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 744 : TLI.getNumRegisters(Context, ValueVT); 745 MVT RegisterVT = IsABIMangledValue 746 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 747 : TLI.getRegisterType(Context, ValueVT); 748 for (unsigned i = 0; i != NumRegs; ++i) 749 Regs.push_back(Reg + i); 750 RegVTs.push_back(RegisterVT); 751 RegCount.push_back(NumRegs); 752 Reg += NumRegs; 753 } 754 } 755 756 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 757 FunctionLoweringInfo &FuncInfo, 758 const SDLoc &dl, SDValue &Chain, 759 SDValue *Flag, const Value *V) const { 760 // A Value with type {} or [0 x %t] needs no registers. 761 if (ValueVTs.empty()) 762 return SDValue(); 763 764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 765 766 // Assemble the legal parts into the final values. 767 SmallVector<SDValue, 4> Values(ValueVTs.size()); 768 SmallVector<SDValue, 8> Parts; 769 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 770 // Copy the legal parts from the registers. 771 EVT ValueVT = ValueVTs[Value]; 772 unsigned NumRegs = RegCount[Value]; 773 MVT RegisterVT = IsABIMangled 774 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 775 : RegVTs[Value]; 776 777 Parts.resize(NumRegs); 778 for (unsigned i = 0; i != NumRegs; ++i) { 779 SDValue P; 780 if (!Flag) { 781 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 782 } else { 783 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 784 *Flag = P.getValue(2); 785 } 786 787 Chain = P.getValue(1); 788 Parts[i] = P; 789 790 // If the source register was virtual and if we know something about it, 791 // add an assert node. 792 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 793 !RegisterVT.isInteger() || RegisterVT.isVector()) 794 continue; 795 796 const FunctionLoweringInfo::LiveOutInfo *LOI = 797 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 798 if (!LOI) 799 continue; 800 801 unsigned RegSize = RegisterVT.getSizeInBits(); 802 unsigned NumSignBits = LOI->NumSignBits; 803 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 804 805 if (NumZeroBits == RegSize) { 806 // The current value is a zero. 807 // Explicitly express that as it would be easier for 808 // optimizations to kick in. 809 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 810 continue; 811 } 812 813 // FIXME: We capture more information than the dag can represent. For 814 // now, just use the tightest assertzext/assertsext possible. 815 bool isSExt = true; 816 EVT FromVT(MVT::Other); 817 if (NumSignBits == RegSize) { 818 isSExt = true; // ASSERT SEXT 1 819 FromVT = MVT::i1; 820 } else if (NumZeroBits >= RegSize - 1) { 821 isSExt = false; // ASSERT ZEXT 1 822 FromVT = MVT::i1; 823 } else if (NumSignBits > RegSize - 8) { 824 isSExt = true; // ASSERT SEXT 8 825 FromVT = MVT::i8; 826 } else if (NumZeroBits >= RegSize - 8) { 827 isSExt = false; // ASSERT ZEXT 8 828 FromVT = MVT::i8; 829 } else if (NumSignBits > RegSize - 16) { 830 isSExt = true; // ASSERT SEXT 16 831 FromVT = MVT::i16; 832 } else if (NumZeroBits >= RegSize - 16) { 833 isSExt = false; // ASSERT ZEXT 16 834 FromVT = MVT::i16; 835 } else if (NumSignBits > RegSize - 32) { 836 isSExt = true; // ASSERT SEXT 32 837 FromVT = MVT::i32; 838 } else if (NumZeroBits >= RegSize - 32) { 839 isSExt = false; // ASSERT ZEXT 32 840 FromVT = MVT::i32; 841 } else { 842 continue; 843 } 844 // Add an assertion node. 845 assert(FromVT != MVT::Other); 846 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 847 RegisterVT, P, DAG.getValueType(FromVT)); 848 } 849 850 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 851 NumRegs, RegisterVT, ValueVT, V); 852 Part += NumRegs; 853 Parts.clear(); 854 } 855 856 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 857 } 858 859 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 860 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 861 const Value *V, 862 ISD::NodeType PreferredExtendType) const { 863 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 864 ISD::NodeType ExtendKind = PreferredExtendType; 865 866 // Get the list of the values's legal parts. 867 unsigned NumRegs = Regs.size(); 868 SmallVector<SDValue, 8> Parts(NumRegs); 869 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 870 unsigned NumParts = RegCount[Value]; 871 872 MVT RegisterVT = IsABIMangled 873 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 874 : RegVTs[Value]; 875 876 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 877 ExtendKind = ISD::ZERO_EXTEND; 878 879 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 880 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 881 Part += NumParts; 882 } 883 884 // Copy the parts into the registers. 885 SmallVector<SDValue, 8> Chains(NumRegs); 886 for (unsigned i = 0; i != NumRegs; ++i) { 887 SDValue Part; 888 if (!Flag) { 889 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 890 } else { 891 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 892 *Flag = Part.getValue(1); 893 } 894 895 Chains[i] = Part.getValue(0); 896 } 897 898 if (NumRegs == 1 || Flag) 899 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 900 // flagged to it. That is the CopyToReg nodes and the user are considered 901 // a single scheduling unit. If we create a TokenFactor and return it as 902 // chain, then the TokenFactor is both a predecessor (operand) of the 903 // user as well as a successor (the TF operands are flagged to the user). 904 // c1, f1 = CopyToReg 905 // c2, f2 = CopyToReg 906 // c3 = TokenFactor c1, c2 907 // ... 908 // = op c3, ..., f2 909 Chain = Chains[NumRegs-1]; 910 else 911 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 912 } 913 914 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 915 unsigned MatchingIdx, const SDLoc &dl, 916 SelectionDAG &DAG, 917 std::vector<SDValue> &Ops) const { 918 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 919 920 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 921 if (HasMatching) 922 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 923 else if (!Regs.empty() && 924 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 925 // Put the register class of the virtual registers in the flag word. That 926 // way, later passes can recompute register class constraints for inline 927 // assembly as well as normal instructions. 928 // Don't do this for tied operands that can use the regclass information 929 // from the def. 930 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 931 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 932 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 933 } 934 935 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 936 Ops.push_back(Res); 937 938 if (Code == InlineAsm::Kind_Clobber) { 939 // Clobbers should always have a 1:1 mapping with registers, and may 940 // reference registers that have illegal (e.g. vector) types. Hence, we 941 // shouldn't try to apply any sort of splitting logic to them. 942 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 943 "No 1:1 mapping from clobbers to regs?"); 944 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 945 (void)SP; 946 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 947 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 948 assert( 949 (Regs[I] != SP || 950 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 951 "If we clobbered the stack pointer, MFI should know about it."); 952 } 953 return; 954 } 955 956 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 957 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 958 MVT RegisterVT = RegVTs[Value]; 959 for (unsigned i = 0; i != NumRegs; ++i) { 960 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 961 unsigned TheReg = Regs[Reg++]; 962 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 963 } 964 } 965 } 966 967 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 968 const TargetLibraryInfo *li) { 969 AA = aa; 970 GFI = gfi; 971 LibInfo = li; 972 DL = &DAG.getDataLayout(); 973 Context = DAG.getContext(); 974 LPadToCallSiteMap.clear(); 975 } 976 977 void SelectionDAGBuilder::clear() { 978 NodeMap.clear(); 979 UnusedArgNodeMap.clear(); 980 PendingLoads.clear(); 981 PendingExports.clear(); 982 CurInst = nullptr; 983 HasTailCall = false; 984 SDNodeOrder = LowestSDNodeOrder; 985 StatepointLowering.clear(); 986 } 987 988 void SelectionDAGBuilder::clearDanglingDebugInfo() { 989 DanglingDebugInfoMap.clear(); 990 } 991 992 SDValue SelectionDAGBuilder::getRoot() { 993 if (PendingLoads.empty()) 994 return DAG.getRoot(); 995 996 if (PendingLoads.size() == 1) { 997 SDValue Root = PendingLoads[0]; 998 DAG.setRoot(Root); 999 PendingLoads.clear(); 1000 return Root; 1001 } 1002 1003 // Otherwise, we have to make a token factor node. 1004 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1005 PendingLoads); 1006 PendingLoads.clear(); 1007 DAG.setRoot(Root); 1008 return Root; 1009 } 1010 1011 SDValue SelectionDAGBuilder::getControlRoot() { 1012 SDValue Root = DAG.getRoot(); 1013 1014 if (PendingExports.empty()) 1015 return Root; 1016 1017 // Turn all of the CopyToReg chains into one factored node. 1018 if (Root.getOpcode() != ISD::EntryToken) { 1019 unsigned i = 0, e = PendingExports.size(); 1020 for (; i != e; ++i) { 1021 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1022 if (PendingExports[i].getNode()->getOperand(0) == Root) 1023 break; // Don't add the root if we already indirectly depend on it. 1024 } 1025 1026 if (i == e) 1027 PendingExports.push_back(Root); 1028 } 1029 1030 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1031 PendingExports); 1032 PendingExports.clear(); 1033 DAG.setRoot(Root); 1034 return Root; 1035 } 1036 1037 void SelectionDAGBuilder::visit(const Instruction &I) { 1038 // Set up outgoing PHI node register values before emitting the terminator. 1039 if (isa<TerminatorInst>(&I)) { 1040 HandlePHINodesInSuccessorBlocks(I.getParent()); 1041 } 1042 1043 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1044 if (!isa<DbgInfoIntrinsic>(I)) 1045 ++SDNodeOrder; 1046 1047 CurInst = &I; 1048 1049 visit(I.getOpcode(), I); 1050 1051 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1052 !isStatepoint(&I)) // statepoints handle their exports internally 1053 CopyToExportRegsIfNeeded(&I); 1054 1055 CurInst = nullptr; 1056 } 1057 1058 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1059 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1060 } 1061 1062 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1063 // Note: this doesn't use InstVisitor, because it has to work with 1064 // ConstantExpr's in addition to instructions. 1065 switch (Opcode) { 1066 default: llvm_unreachable("Unknown instruction type encountered!"); 1067 // Build the switch statement using the Instruction.def file. 1068 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1069 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1070 #include "llvm/IR/Instruction.def" 1071 } 1072 } 1073 1074 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1075 // generate the debug data structures now that we've seen its definition. 1076 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1077 SDValue Val) { 1078 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1079 if (DDI.getDI()) { 1080 const DbgValueInst *DI = DDI.getDI(); 1081 DebugLoc dl = DDI.getdl(); 1082 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1083 DILocalVariable *Variable = DI->getVariable(); 1084 DIExpression *Expr = DI->getExpression(); 1085 assert(Variable->isValidLocationForIntrinsic(dl) && 1086 "Expected inlined-at fields to agree"); 1087 SDDbgValue *SDV; 1088 if (Val.getNode()) { 1089 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1090 SDV = getDbgValue(Val, Variable, Expr, dl, DbgSDNodeOrder); 1091 DAG.AddDbgValue(SDV, Val.getNode(), false); 1092 } 1093 } else 1094 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1095 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1096 } 1097 } 1098 1099 /// getCopyFromRegs - If there was virtual register allocated for the value V 1100 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1101 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1102 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1103 SDValue Result; 1104 1105 if (It != FuncInfo.ValueMap.end()) { 1106 unsigned InReg = It->second; 1107 1108 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1109 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1110 SDValue Chain = DAG.getEntryNode(); 1111 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1112 V); 1113 resolveDanglingDebugInfo(V, Result); 1114 } 1115 1116 return Result; 1117 } 1118 1119 /// getValue - Return an SDValue for the given Value. 1120 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1121 // If we already have an SDValue for this value, use it. It's important 1122 // to do this first, so that we don't create a CopyFromReg if we already 1123 // have a regular SDValue. 1124 SDValue &N = NodeMap[V]; 1125 if (N.getNode()) return N; 1126 1127 // If there's a virtual register allocated and initialized for this 1128 // value, use it. 1129 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1130 return copyFromReg; 1131 1132 // Otherwise create a new SDValue and remember it. 1133 SDValue Val = getValueImpl(V); 1134 NodeMap[V] = Val; 1135 resolveDanglingDebugInfo(V, Val); 1136 return Val; 1137 } 1138 1139 // Return true if SDValue exists for the given Value 1140 bool SelectionDAGBuilder::findValue(const Value *V) const { 1141 return (NodeMap.find(V) != NodeMap.end()) || 1142 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1143 } 1144 1145 /// getNonRegisterValue - Return an SDValue for the given Value, but 1146 /// don't look in FuncInfo.ValueMap for a virtual register. 1147 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1148 // If we already have an SDValue for this value, use it. 1149 SDValue &N = NodeMap[V]; 1150 if (N.getNode()) { 1151 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1152 // Remove the debug location from the node as the node is about to be used 1153 // in a location which may differ from the original debug location. This 1154 // is relevant to Constant and ConstantFP nodes because they can appear 1155 // as constant expressions inside PHI nodes. 1156 N->setDebugLoc(DebugLoc()); 1157 } 1158 return N; 1159 } 1160 1161 // Otherwise create a new SDValue and remember it. 1162 SDValue Val = getValueImpl(V); 1163 NodeMap[V] = Val; 1164 resolveDanglingDebugInfo(V, Val); 1165 return Val; 1166 } 1167 1168 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1169 /// Create an SDValue for the given value. 1170 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1172 1173 if (const Constant *C = dyn_cast<Constant>(V)) { 1174 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1175 1176 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1177 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1178 1179 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1180 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1181 1182 if (isa<ConstantPointerNull>(C)) { 1183 unsigned AS = V->getType()->getPointerAddressSpace(); 1184 return DAG.getConstant(0, getCurSDLoc(), 1185 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1186 } 1187 1188 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1189 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1190 1191 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1192 return DAG.getUNDEF(VT); 1193 1194 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1195 visit(CE->getOpcode(), *CE); 1196 SDValue N1 = NodeMap[V]; 1197 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1198 return N1; 1199 } 1200 1201 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1202 SmallVector<SDValue, 4> Constants; 1203 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1204 OI != OE; ++OI) { 1205 SDNode *Val = getValue(*OI).getNode(); 1206 // If the operand is an empty aggregate, there are no values. 1207 if (!Val) continue; 1208 // Add each leaf value from the operand to the Constants list 1209 // to form a flattened list of all the values. 1210 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1211 Constants.push_back(SDValue(Val, i)); 1212 } 1213 1214 return DAG.getMergeValues(Constants, getCurSDLoc()); 1215 } 1216 1217 if (const ConstantDataSequential *CDS = 1218 dyn_cast<ConstantDataSequential>(C)) { 1219 SmallVector<SDValue, 4> Ops; 1220 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1221 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1222 // Add each leaf value from the operand to the Constants list 1223 // to form a flattened list of all the values. 1224 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1225 Ops.push_back(SDValue(Val, i)); 1226 } 1227 1228 if (isa<ArrayType>(CDS->getType())) 1229 return DAG.getMergeValues(Ops, getCurSDLoc()); 1230 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1231 } 1232 1233 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1234 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1235 "Unknown struct or array constant!"); 1236 1237 SmallVector<EVT, 4> ValueVTs; 1238 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1239 unsigned NumElts = ValueVTs.size(); 1240 if (NumElts == 0) 1241 return SDValue(); // empty struct 1242 SmallVector<SDValue, 4> Constants(NumElts); 1243 for (unsigned i = 0; i != NumElts; ++i) { 1244 EVT EltVT = ValueVTs[i]; 1245 if (isa<UndefValue>(C)) 1246 Constants[i] = DAG.getUNDEF(EltVT); 1247 else if (EltVT.isFloatingPoint()) 1248 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1249 else 1250 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1251 } 1252 1253 return DAG.getMergeValues(Constants, getCurSDLoc()); 1254 } 1255 1256 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1257 return DAG.getBlockAddress(BA, VT); 1258 1259 VectorType *VecTy = cast<VectorType>(V->getType()); 1260 unsigned NumElements = VecTy->getNumElements(); 1261 1262 // Now that we know the number and type of the elements, get that number of 1263 // elements into the Ops array based on what kind of constant it is. 1264 SmallVector<SDValue, 16> Ops; 1265 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1266 for (unsigned i = 0; i != NumElements; ++i) 1267 Ops.push_back(getValue(CV->getOperand(i))); 1268 } else { 1269 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1270 EVT EltVT = 1271 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1272 1273 SDValue Op; 1274 if (EltVT.isFloatingPoint()) 1275 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1276 else 1277 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1278 Ops.assign(NumElements, Op); 1279 } 1280 1281 // Create a BUILD_VECTOR node. 1282 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1283 } 1284 1285 // If this is a static alloca, generate it as the frameindex instead of 1286 // computation. 1287 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1288 DenseMap<const AllocaInst*, int>::iterator SI = 1289 FuncInfo.StaticAllocaMap.find(AI); 1290 if (SI != FuncInfo.StaticAllocaMap.end()) 1291 return DAG.getFrameIndex(SI->second, 1292 TLI.getFrameIndexTy(DAG.getDataLayout())); 1293 } 1294 1295 // If this is an instruction which fast-isel has deferred, select it now. 1296 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1297 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1298 1299 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1300 Inst->getType(), isABIRegCopy(V)); 1301 SDValue Chain = DAG.getEntryNode(); 1302 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1303 } 1304 1305 llvm_unreachable("Can't get register for value!"); 1306 } 1307 1308 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1309 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1310 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1311 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1312 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1313 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1314 if (IsMSVCCXX || IsCoreCLR) 1315 CatchPadMBB->setIsEHFuncletEntry(); 1316 1317 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1318 } 1319 1320 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1321 // Update machine-CFG edge. 1322 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1323 FuncInfo.MBB->addSuccessor(TargetMBB); 1324 1325 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1326 bool IsSEH = isAsynchronousEHPersonality(Pers); 1327 if (IsSEH) { 1328 // If this is not a fall-through branch or optimizations are switched off, 1329 // emit the branch. 1330 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1331 TM.getOptLevel() == CodeGenOpt::None) 1332 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1333 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1334 return; 1335 } 1336 1337 // Figure out the funclet membership for the catchret's successor. 1338 // This will be used by the FuncletLayout pass to determine how to order the 1339 // BB's. 1340 // A 'catchret' returns to the outer scope's color. 1341 Value *ParentPad = I.getCatchSwitchParentPad(); 1342 const BasicBlock *SuccessorColor; 1343 if (isa<ConstantTokenNone>(ParentPad)) 1344 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1345 else 1346 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1347 assert(SuccessorColor && "No parent funclet for catchret!"); 1348 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1349 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1350 1351 // Create the terminator node. 1352 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1353 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1354 DAG.getBasicBlock(SuccessorColorMBB)); 1355 DAG.setRoot(Ret); 1356 } 1357 1358 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1359 // Don't emit any special code for the cleanuppad instruction. It just marks 1360 // the start of a funclet. 1361 FuncInfo.MBB->setIsEHFuncletEntry(); 1362 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1363 } 1364 1365 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1366 /// many places it could ultimately go. In the IR, we have a single unwind 1367 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1368 /// This function skips over imaginary basic blocks that hold catchswitch 1369 /// instructions, and finds all the "real" machine 1370 /// basic block destinations. As those destinations may not be successors of 1371 /// EHPadBB, here we also calculate the edge probability to those destinations. 1372 /// The passed-in Prob is the edge probability to EHPadBB. 1373 static void findUnwindDestinations( 1374 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1375 BranchProbability Prob, 1376 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1377 &UnwindDests) { 1378 EHPersonality Personality = 1379 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1380 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1381 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1382 1383 while (EHPadBB) { 1384 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1385 BasicBlock *NewEHPadBB = nullptr; 1386 if (isa<LandingPadInst>(Pad)) { 1387 // Stop on landingpads. They are not funclets. 1388 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1389 break; 1390 } else if (isa<CleanupPadInst>(Pad)) { 1391 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1392 // personalities. 1393 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1394 UnwindDests.back().first->setIsEHFuncletEntry(); 1395 break; 1396 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1397 // Add the catchpad handlers to the possible destinations. 1398 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1399 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1400 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1401 if (IsMSVCCXX || IsCoreCLR) 1402 UnwindDests.back().first->setIsEHFuncletEntry(); 1403 } 1404 NewEHPadBB = CatchSwitch->getUnwindDest(); 1405 } else { 1406 continue; 1407 } 1408 1409 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1410 if (BPI && NewEHPadBB) 1411 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1412 EHPadBB = NewEHPadBB; 1413 } 1414 } 1415 1416 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1417 // Update successor info. 1418 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1419 auto UnwindDest = I.getUnwindDest(); 1420 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1421 BranchProbability UnwindDestProb = 1422 (BPI && UnwindDest) 1423 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1424 : BranchProbability::getZero(); 1425 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1426 for (auto &UnwindDest : UnwindDests) { 1427 UnwindDest.first->setIsEHPad(); 1428 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1429 } 1430 FuncInfo.MBB->normalizeSuccProbs(); 1431 1432 // Create the terminator node. 1433 SDValue Ret = 1434 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1435 DAG.setRoot(Ret); 1436 } 1437 1438 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1439 report_fatal_error("visitCatchSwitch not yet implemented!"); 1440 } 1441 1442 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1444 auto &DL = DAG.getDataLayout(); 1445 SDValue Chain = getControlRoot(); 1446 SmallVector<ISD::OutputArg, 8> Outs; 1447 SmallVector<SDValue, 8> OutVals; 1448 1449 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1450 // lower 1451 // 1452 // %val = call <ty> @llvm.experimental.deoptimize() 1453 // ret <ty> %val 1454 // 1455 // differently. 1456 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1457 LowerDeoptimizingReturn(); 1458 return; 1459 } 1460 1461 if (!FuncInfo.CanLowerReturn) { 1462 unsigned DemoteReg = FuncInfo.DemoteRegister; 1463 const Function *F = I.getParent()->getParent(); 1464 1465 // Emit a store of the return value through the virtual register. 1466 // Leave Outs empty so that LowerReturn won't try to load return 1467 // registers the usual way. 1468 SmallVector<EVT, 1> PtrValueVTs; 1469 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1470 PtrValueVTs); 1471 1472 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1473 DemoteReg, PtrValueVTs[0]); 1474 SDValue RetOp = getValue(I.getOperand(0)); 1475 1476 SmallVector<EVT, 4> ValueVTs; 1477 SmallVector<uint64_t, 4> Offsets; 1478 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1479 unsigned NumValues = ValueVTs.size(); 1480 1481 // An aggregate return value cannot wrap around the address space, so 1482 // offsets to its parts don't wrap either. 1483 SDNodeFlags Flags; 1484 Flags.setNoUnsignedWrap(true); 1485 1486 SmallVector<SDValue, 4> Chains(NumValues); 1487 for (unsigned i = 0; i != NumValues; ++i) { 1488 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1489 RetPtr.getValueType(), RetPtr, 1490 DAG.getIntPtrConstant(Offsets[i], 1491 getCurSDLoc()), 1492 Flags); 1493 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1494 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1495 // FIXME: better loc info would be nice. 1496 Add, MachinePointerInfo()); 1497 } 1498 1499 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1500 MVT::Other, Chains); 1501 } else if (I.getNumOperands() != 0) { 1502 SmallVector<EVT, 4> ValueVTs; 1503 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1504 unsigned NumValues = ValueVTs.size(); 1505 if (NumValues) { 1506 SDValue RetOp = getValue(I.getOperand(0)); 1507 1508 const Function *F = I.getParent()->getParent(); 1509 1510 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1511 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1512 Attribute::SExt)) 1513 ExtendKind = ISD::SIGN_EXTEND; 1514 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1515 Attribute::ZExt)) 1516 ExtendKind = ISD::ZERO_EXTEND; 1517 1518 LLVMContext &Context = F->getContext(); 1519 bool RetInReg = F->getAttributes().hasAttribute( 1520 AttributeList::ReturnIndex, Attribute::InReg); 1521 1522 for (unsigned j = 0; j != NumValues; ++j) { 1523 EVT VT = ValueVTs[j]; 1524 1525 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1526 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1527 1528 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1529 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1530 SmallVector<SDValue, 4> Parts(NumParts); 1531 getCopyToParts(DAG, getCurSDLoc(), 1532 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1533 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1534 1535 // 'inreg' on function refers to return value 1536 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1537 if (RetInReg) 1538 Flags.setInReg(); 1539 1540 // Propagate extension type if any 1541 if (ExtendKind == ISD::SIGN_EXTEND) 1542 Flags.setSExt(); 1543 else if (ExtendKind == ISD::ZERO_EXTEND) 1544 Flags.setZExt(); 1545 1546 for (unsigned i = 0; i < NumParts; ++i) { 1547 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1548 VT, /*isfixed=*/true, 0, 0)); 1549 OutVals.push_back(Parts[i]); 1550 } 1551 } 1552 } 1553 } 1554 1555 // Push in swifterror virtual register as the last element of Outs. This makes 1556 // sure swifterror virtual register will be returned in the swifterror 1557 // physical register. 1558 const Function *F = I.getParent()->getParent(); 1559 if (TLI.supportSwiftError() && 1560 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1561 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1562 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1563 Flags.setSwiftError(); 1564 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1565 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1566 true /*isfixed*/, 1 /*origidx*/, 1567 0 /*partOffs*/)); 1568 // Create SDNode for the swifterror virtual register. 1569 OutVals.push_back( 1570 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1571 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1572 EVT(TLI.getPointerTy(DL)))); 1573 } 1574 1575 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1576 CallingConv::ID CallConv = 1577 DAG.getMachineFunction().getFunction()->getCallingConv(); 1578 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1579 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1580 1581 // Verify that the target's LowerReturn behaved as expected. 1582 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1583 "LowerReturn didn't return a valid chain!"); 1584 1585 // Update the DAG with the new chain value resulting from return lowering. 1586 DAG.setRoot(Chain); 1587 } 1588 1589 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1590 /// created for it, emit nodes to copy the value into the virtual 1591 /// registers. 1592 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1593 // Skip empty types 1594 if (V->getType()->isEmptyTy()) 1595 return; 1596 1597 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1598 if (VMI != FuncInfo.ValueMap.end()) { 1599 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1600 CopyValueToVirtualRegister(V, VMI->second); 1601 } 1602 } 1603 1604 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1605 /// the current basic block, add it to ValueMap now so that we'll get a 1606 /// CopyTo/FromReg. 1607 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1608 // No need to export constants. 1609 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1610 1611 // Already exported? 1612 if (FuncInfo.isExportedInst(V)) return; 1613 1614 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1615 CopyValueToVirtualRegister(V, Reg); 1616 } 1617 1618 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1619 const BasicBlock *FromBB) { 1620 // The operands of the setcc have to be in this block. We don't know 1621 // how to export them from some other block. 1622 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1623 // Can export from current BB. 1624 if (VI->getParent() == FromBB) 1625 return true; 1626 1627 // Is already exported, noop. 1628 return FuncInfo.isExportedInst(V); 1629 } 1630 1631 // If this is an argument, we can export it if the BB is the entry block or 1632 // if it is already exported. 1633 if (isa<Argument>(V)) { 1634 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1635 return true; 1636 1637 // Otherwise, can only export this if it is already exported. 1638 return FuncInfo.isExportedInst(V); 1639 } 1640 1641 // Otherwise, constants can always be exported. 1642 return true; 1643 } 1644 1645 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1646 BranchProbability 1647 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1648 const MachineBasicBlock *Dst) const { 1649 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1650 const BasicBlock *SrcBB = Src->getBasicBlock(); 1651 const BasicBlock *DstBB = Dst->getBasicBlock(); 1652 if (!BPI) { 1653 // If BPI is not available, set the default probability as 1 / N, where N is 1654 // the number of successors. 1655 auto SuccSize = std::max<uint32_t>( 1656 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1657 return BranchProbability(1, SuccSize); 1658 } 1659 return BPI->getEdgeProbability(SrcBB, DstBB); 1660 } 1661 1662 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1663 MachineBasicBlock *Dst, 1664 BranchProbability Prob) { 1665 if (!FuncInfo.BPI) 1666 Src->addSuccessorWithoutProb(Dst); 1667 else { 1668 if (Prob.isUnknown()) 1669 Prob = getEdgeProbability(Src, Dst); 1670 Src->addSuccessor(Dst, Prob); 1671 } 1672 } 1673 1674 static bool InBlock(const Value *V, const BasicBlock *BB) { 1675 if (const Instruction *I = dyn_cast<Instruction>(V)) 1676 return I->getParent() == BB; 1677 return true; 1678 } 1679 1680 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1681 /// This function emits a branch and is used at the leaves of an OR or an 1682 /// AND operator tree. 1683 void 1684 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1685 MachineBasicBlock *TBB, 1686 MachineBasicBlock *FBB, 1687 MachineBasicBlock *CurBB, 1688 MachineBasicBlock *SwitchBB, 1689 BranchProbability TProb, 1690 BranchProbability FProb, 1691 bool InvertCond) { 1692 const BasicBlock *BB = CurBB->getBasicBlock(); 1693 1694 // If the leaf of the tree is a comparison, merge the condition into 1695 // the caseblock. 1696 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1697 // The operands of the cmp have to be in this block. We don't know 1698 // how to export them from some other block. If this is the first block 1699 // of the sequence, no exporting is needed. 1700 if (CurBB == SwitchBB || 1701 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1702 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1703 ISD::CondCode Condition; 1704 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1705 ICmpInst::Predicate Pred = 1706 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1707 Condition = getICmpCondCode(Pred); 1708 } else { 1709 const FCmpInst *FC = cast<FCmpInst>(Cond); 1710 FCmpInst::Predicate Pred = 1711 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1712 Condition = getFCmpCondCode(Pred); 1713 if (TM.Options.NoNaNsFPMath) 1714 Condition = getFCmpCodeWithoutNaN(Condition); 1715 } 1716 1717 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1718 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1719 SwitchCases.push_back(CB); 1720 return; 1721 } 1722 } 1723 1724 // Create a CaseBlock record representing this branch. 1725 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1726 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1727 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1728 SwitchCases.push_back(CB); 1729 } 1730 1731 /// FindMergedConditions - If Cond is an expression like 1732 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1733 MachineBasicBlock *TBB, 1734 MachineBasicBlock *FBB, 1735 MachineBasicBlock *CurBB, 1736 MachineBasicBlock *SwitchBB, 1737 Instruction::BinaryOps Opc, 1738 BranchProbability TProb, 1739 BranchProbability FProb, 1740 bool InvertCond) { 1741 // Skip over not part of the tree and remember to invert op and operands at 1742 // next level. 1743 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1744 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1745 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1746 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1747 !InvertCond); 1748 return; 1749 } 1750 } 1751 1752 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1753 // Compute the effective opcode for Cond, taking into account whether it needs 1754 // to be inverted, e.g. 1755 // and (not (or A, B)), C 1756 // gets lowered as 1757 // and (and (not A, not B), C) 1758 unsigned BOpc = 0; 1759 if (BOp) { 1760 BOpc = BOp->getOpcode(); 1761 if (InvertCond) { 1762 if (BOpc == Instruction::And) 1763 BOpc = Instruction::Or; 1764 else if (BOpc == Instruction::Or) 1765 BOpc = Instruction::And; 1766 } 1767 } 1768 1769 // If this node is not part of the or/and tree, emit it as a branch. 1770 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1771 BOpc != Opc || !BOp->hasOneUse() || 1772 BOp->getParent() != CurBB->getBasicBlock() || 1773 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1774 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1775 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1776 TProb, FProb, InvertCond); 1777 return; 1778 } 1779 1780 // Create TmpBB after CurBB. 1781 MachineFunction::iterator BBI(CurBB); 1782 MachineFunction &MF = DAG.getMachineFunction(); 1783 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1784 CurBB->getParent()->insert(++BBI, TmpBB); 1785 1786 if (Opc == Instruction::Or) { 1787 // Codegen X | Y as: 1788 // BB1: 1789 // jmp_if_X TBB 1790 // jmp TmpBB 1791 // TmpBB: 1792 // jmp_if_Y TBB 1793 // jmp FBB 1794 // 1795 1796 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1797 // The requirement is that 1798 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1799 // = TrueProb for original BB. 1800 // Assuming the original probabilities are A and B, one choice is to set 1801 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1802 // A/(1+B) and 2B/(1+B). This choice assumes that 1803 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1804 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1805 // TmpBB, but the math is more complicated. 1806 1807 auto NewTrueProb = TProb / 2; 1808 auto NewFalseProb = TProb / 2 + FProb; 1809 // Emit the LHS condition. 1810 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1811 NewTrueProb, NewFalseProb, InvertCond); 1812 1813 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1814 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1815 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1816 // Emit the RHS condition into TmpBB. 1817 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1818 Probs[0], Probs[1], InvertCond); 1819 } else { 1820 assert(Opc == Instruction::And && "Unknown merge op!"); 1821 // Codegen X & Y as: 1822 // BB1: 1823 // jmp_if_X TmpBB 1824 // jmp FBB 1825 // TmpBB: 1826 // jmp_if_Y TBB 1827 // jmp FBB 1828 // 1829 // This requires creation of TmpBB after CurBB. 1830 1831 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1832 // The requirement is that 1833 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1834 // = FalseProb for original BB. 1835 // Assuming the original probabilities are A and B, one choice is to set 1836 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1837 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1838 // TrueProb for BB1 * FalseProb for TmpBB. 1839 1840 auto NewTrueProb = TProb + FProb / 2; 1841 auto NewFalseProb = FProb / 2; 1842 // Emit the LHS condition. 1843 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1844 NewTrueProb, NewFalseProb, InvertCond); 1845 1846 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1847 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1848 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1849 // Emit the RHS condition into TmpBB. 1850 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1851 Probs[0], Probs[1], InvertCond); 1852 } 1853 } 1854 1855 /// If the set of cases should be emitted as a series of branches, return true. 1856 /// If we should emit this as a bunch of and/or'd together conditions, return 1857 /// false. 1858 bool 1859 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1860 if (Cases.size() != 2) return true; 1861 1862 // If this is two comparisons of the same values or'd or and'd together, they 1863 // will get folded into a single comparison, so don't emit two blocks. 1864 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1865 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1866 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1867 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1868 return false; 1869 } 1870 1871 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1872 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1873 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1874 Cases[0].CC == Cases[1].CC && 1875 isa<Constant>(Cases[0].CmpRHS) && 1876 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1877 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1878 return false; 1879 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1880 return false; 1881 } 1882 1883 return true; 1884 } 1885 1886 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1887 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1888 1889 // Update machine-CFG edges. 1890 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1891 1892 if (I.isUnconditional()) { 1893 // Update machine-CFG edges. 1894 BrMBB->addSuccessor(Succ0MBB); 1895 1896 // If this is not a fall-through branch or optimizations are switched off, 1897 // emit the branch. 1898 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1899 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1900 MVT::Other, getControlRoot(), 1901 DAG.getBasicBlock(Succ0MBB))); 1902 1903 return; 1904 } 1905 1906 // If this condition is one of the special cases we handle, do special stuff 1907 // now. 1908 const Value *CondVal = I.getCondition(); 1909 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1910 1911 // If this is a series of conditions that are or'd or and'd together, emit 1912 // this as a sequence of branches instead of setcc's with and/or operations. 1913 // As long as jumps are not expensive, this should improve performance. 1914 // For example, instead of something like: 1915 // cmp A, B 1916 // C = seteq 1917 // cmp D, E 1918 // F = setle 1919 // or C, F 1920 // jnz foo 1921 // Emit: 1922 // cmp A, B 1923 // je foo 1924 // cmp D, E 1925 // jle foo 1926 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1927 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1928 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1929 !I.getMetadata(LLVMContext::MD_unpredictable) && 1930 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1931 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1932 Opcode, 1933 getEdgeProbability(BrMBB, Succ0MBB), 1934 getEdgeProbability(BrMBB, Succ1MBB), 1935 /*InvertCond=*/false); 1936 // If the compares in later blocks need to use values not currently 1937 // exported from this block, export them now. This block should always 1938 // be the first entry. 1939 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1940 1941 // Allow some cases to be rejected. 1942 if (ShouldEmitAsBranches(SwitchCases)) { 1943 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1944 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1945 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1946 } 1947 1948 // Emit the branch for this block. 1949 visitSwitchCase(SwitchCases[0], BrMBB); 1950 SwitchCases.erase(SwitchCases.begin()); 1951 return; 1952 } 1953 1954 // Okay, we decided not to do this, remove any inserted MBB's and clear 1955 // SwitchCases. 1956 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1957 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1958 1959 SwitchCases.clear(); 1960 } 1961 } 1962 1963 // Create a CaseBlock record representing this branch. 1964 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1965 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 1966 1967 // Use visitSwitchCase to actually insert the fast branch sequence for this 1968 // cond branch. 1969 visitSwitchCase(CB, BrMBB); 1970 } 1971 1972 /// visitSwitchCase - Emits the necessary code to represent a single node in 1973 /// the binary search tree resulting from lowering a switch instruction. 1974 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1975 MachineBasicBlock *SwitchBB) { 1976 SDValue Cond; 1977 SDValue CondLHS = getValue(CB.CmpLHS); 1978 SDLoc dl = CB.DL; 1979 1980 // Build the setcc now. 1981 if (!CB.CmpMHS) { 1982 // Fold "(X == true)" to X and "(X == false)" to !X to 1983 // handle common cases produced by branch lowering. 1984 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1985 CB.CC == ISD::SETEQ) 1986 Cond = CondLHS; 1987 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1988 CB.CC == ISD::SETEQ) { 1989 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1990 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1991 } else 1992 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1993 } else { 1994 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1995 1996 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1997 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1998 1999 SDValue CmpOp = getValue(CB.CmpMHS); 2000 EVT VT = CmpOp.getValueType(); 2001 2002 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2003 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2004 ISD::SETLE); 2005 } else { 2006 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2007 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2008 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2009 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2010 } 2011 } 2012 2013 // Update successor info 2014 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2015 // TrueBB and FalseBB are always different unless the incoming IR is 2016 // degenerate. This only happens when running llc on weird IR. 2017 if (CB.TrueBB != CB.FalseBB) 2018 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2019 SwitchBB->normalizeSuccProbs(); 2020 2021 // If the lhs block is the next block, invert the condition so that we can 2022 // fall through to the lhs instead of the rhs block. 2023 if (CB.TrueBB == NextBlock(SwitchBB)) { 2024 std::swap(CB.TrueBB, CB.FalseBB); 2025 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2026 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2027 } 2028 2029 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2030 MVT::Other, getControlRoot(), Cond, 2031 DAG.getBasicBlock(CB.TrueBB)); 2032 2033 // Insert the false branch. Do this even if it's a fall through branch, 2034 // this makes it easier to do DAG optimizations which require inverting 2035 // the branch condition. 2036 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2037 DAG.getBasicBlock(CB.FalseBB)); 2038 2039 DAG.setRoot(BrCond); 2040 } 2041 2042 /// visitJumpTable - Emit JumpTable node in the current MBB 2043 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2044 // Emit the code for the jump table 2045 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2046 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2047 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2048 JT.Reg, PTy); 2049 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2050 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2051 MVT::Other, Index.getValue(1), 2052 Table, Index); 2053 DAG.setRoot(BrJumpTable); 2054 } 2055 2056 /// visitJumpTableHeader - This function emits necessary code to produce index 2057 /// in the JumpTable from switch case. 2058 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2059 JumpTableHeader &JTH, 2060 MachineBasicBlock *SwitchBB) { 2061 SDLoc dl = getCurSDLoc(); 2062 2063 // Subtract the lowest switch case value from the value being switched on and 2064 // conditional branch to default mbb if the result is greater than the 2065 // difference between smallest and largest cases. 2066 SDValue SwitchOp = getValue(JTH.SValue); 2067 EVT VT = SwitchOp.getValueType(); 2068 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2069 DAG.getConstant(JTH.First, dl, VT)); 2070 2071 // The SDNode we just created, which holds the value being switched on minus 2072 // the smallest case value, needs to be copied to a virtual register so it 2073 // can be used as an index into the jump table in a subsequent basic block. 2074 // This value may be smaller or larger than the target's pointer type, and 2075 // therefore require extension or truncating. 2076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2077 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2078 2079 unsigned JumpTableReg = 2080 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2081 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2082 JumpTableReg, SwitchOp); 2083 JT.Reg = JumpTableReg; 2084 2085 // Emit the range check for the jump table, and branch to the default block 2086 // for the switch statement if the value being switched on exceeds the largest 2087 // case in the switch. 2088 SDValue CMP = DAG.getSetCC( 2089 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2090 Sub.getValueType()), 2091 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2092 2093 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2094 MVT::Other, CopyTo, CMP, 2095 DAG.getBasicBlock(JT.Default)); 2096 2097 // Avoid emitting unnecessary branches to the next block. 2098 if (JT.MBB != NextBlock(SwitchBB)) 2099 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2100 DAG.getBasicBlock(JT.MBB)); 2101 2102 DAG.setRoot(BrCond); 2103 } 2104 2105 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2106 /// variable if there exists one. 2107 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2108 SDValue &Chain) { 2109 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2110 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2111 MachineFunction &MF = DAG.getMachineFunction(); 2112 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 2113 MachineSDNode *Node = 2114 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2115 if (Global) { 2116 MachinePointerInfo MPInfo(Global); 2117 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2118 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2119 MachineMemOperand::MODereferenceable; 2120 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2121 DAG.getEVTAlignment(PtrTy)); 2122 Node->setMemRefs(MemRefs, MemRefs + 1); 2123 } 2124 return SDValue(Node, 0); 2125 } 2126 2127 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2128 /// tail spliced into a stack protector check success bb. 2129 /// 2130 /// For a high level explanation of how this fits into the stack protector 2131 /// generation see the comment on the declaration of class 2132 /// StackProtectorDescriptor. 2133 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2134 MachineBasicBlock *ParentBB) { 2135 2136 // First create the loads to the guard/stack slot for the comparison. 2137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2138 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2139 2140 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2141 int FI = MFI.getStackProtectorIndex(); 2142 2143 SDValue Guard; 2144 SDLoc dl = getCurSDLoc(); 2145 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2146 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2147 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2148 2149 // Generate code to load the content of the guard slot. 2150 SDValue StackSlot = DAG.getLoad( 2151 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2152 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2153 MachineMemOperand::MOVolatile); 2154 2155 // Retrieve guard check function, nullptr if instrumentation is inlined. 2156 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2157 // The target provides a guard check function to validate the guard value. 2158 // Generate a call to that function with the content of the guard slot as 2159 // argument. 2160 auto *Fn = cast<Function>(GuardCheck); 2161 FunctionType *FnTy = Fn->getFunctionType(); 2162 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2163 2164 TargetLowering::ArgListTy Args; 2165 TargetLowering::ArgListEntry Entry; 2166 Entry.Node = StackSlot; 2167 Entry.Ty = FnTy->getParamType(0); 2168 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2169 Entry.IsInReg = true; 2170 Args.push_back(Entry); 2171 2172 TargetLowering::CallLoweringInfo CLI(DAG); 2173 CLI.setDebugLoc(getCurSDLoc()) 2174 .setChain(DAG.getEntryNode()) 2175 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2176 getValue(GuardCheck), std::move(Args)); 2177 2178 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2179 DAG.setRoot(Result.second); 2180 return; 2181 } 2182 2183 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2184 // Otherwise, emit a volatile load to retrieve the stack guard value. 2185 SDValue Chain = DAG.getEntryNode(); 2186 if (TLI.useLoadStackGuardNode()) { 2187 Guard = getLoadStackGuard(DAG, dl, Chain); 2188 } else { 2189 const Value *IRGuard = TLI.getSDagStackGuard(M); 2190 SDValue GuardPtr = getValue(IRGuard); 2191 2192 Guard = 2193 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2194 Align, MachineMemOperand::MOVolatile); 2195 } 2196 2197 // Perform the comparison via a subtract/getsetcc. 2198 EVT VT = Guard.getValueType(); 2199 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2200 2201 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2202 *DAG.getContext(), 2203 Sub.getValueType()), 2204 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2205 2206 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2207 // branch to failure MBB. 2208 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2209 MVT::Other, StackSlot.getOperand(0), 2210 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2211 // Otherwise branch to success MBB. 2212 SDValue Br = DAG.getNode(ISD::BR, dl, 2213 MVT::Other, BrCond, 2214 DAG.getBasicBlock(SPD.getSuccessMBB())); 2215 2216 DAG.setRoot(Br); 2217 } 2218 2219 /// Codegen the failure basic block for a stack protector check. 2220 /// 2221 /// A failure stack protector machine basic block consists simply of a call to 2222 /// __stack_chk_fail(). 2223 /// 2224 /// For a high level explanation of how this fits into the stack protector 2225 /// generation see the comment on the declaration of class 2226 /// StackProtectorDescriptor. 2227 void 2228 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2229 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2230 SDValue Chain = 2231 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2232 None, false, getCurSDLoc(), false, false).second; 2233 DAG.setRoot(Chain); 2234 } 2235 2236 /// visitBitTestHeader - This function emits necessary code to produce value 2237 /// suitable for "bit tests" 2238 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2239 MachineBasicBlock *SwitchBB) { 2240 SDLoc dl = getCurSDLoc(); 2241 2242 // Subtract the minimum value 2243 SDValue SwitchOp = getValue(B.SValue); 2244 EVT VT = SwitchOp.getValueType(); 2245 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2246 DAG.getConstant(B.First, dl, VT)); 2247 2248 // Check range 2249 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2250 SDValue RangeCmp = DAG.getSetCC( 2251 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2252 Sub.getValueType()), 2253 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2254 2255 // Determine the type of the test operands. 2256 bool UsePtrType = false; 2257 if (!TLI.isTypeLegal(VT)) 2258 UsePtrType = true; 2259 else { 2260 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2261 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2262 // Switch table case range are encoded into series of masks. 2263 // Just use pointer type, it's guaranteed to fit. 2264 UsePtrType = true; 2265 break; 2266 } 2267 } 2268 if (UsePtrType) { 2269 VT = TLI.getPointerTy(DAG.getDataLayout()); 2270 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2271 } 2272 2273 B.RegVT = VT.getSimpleVT(); 2274 B.Reg = FuncInfo.CreateReg(B.RegVT); 2275 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2276 2277 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2278 2279 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2280 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2281 SwitchBB->normalizeSuccProbs(); 2282 2283 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2284 MVT::Other, CopyTo, RangeCmp, 2285 DAG.getBasicBlock(B.Default)); 2286 2287 // Avoid emitting unnecessary branches to the next block. 2288 if (MBB != NextBlock(SwitchBB)) 2289 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2290 DAG.getBasicBlock(MBB)); 2291 2292 DAG.setRoot(BrRange); 2293 } 2294 2295 /// visitBitTestCase - this function produces one "bit test" 2296 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2297 MachineBasicBlock* NextMBB, 2298 BranchProbability BranchProbToNext, 2299 unsigned Reg, 2300 BitTestCase &B, 2301 MachineBasicBlock *SwitchBB) { 2302 SDLoc dl = getCurSDLoc(); 2303 MVT VT = BB.RegVT; 2304 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2305 SDValue Cmp; 2306 unsigned PopCount = countPopulation(B.Mask); 2307 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2308 if (PopCount == 1) { 2309 // Testing for a single bit; just compare the shift count with what it 2310 // would need to be to shift a 1 bit in that position. 2311 Cmp = DAG.getSetCC( 2312 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2313 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2314 ISD::SETEQ); 2315 } else if (PopCount == BB.Range) { 2316 // There is only one zero bit in the range, test for it directly. 2317 Cmp = DAG.getSetCC( 2318 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2319 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2320 ISD::SETNE); 2321 } else { 2322 // Make desired shift 2323 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2324 DAG.getConstant(1, dl, VT), ShiftOp); 2325 2326 // Emit bit tests and jumps 2327 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2328 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2329 Cmp = DAG.getSetCC( 2330 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2331 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2332 } 2333 2334 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2335 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2336 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2337 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2338 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2339 // one as they are relative probabilities (and thus work more like weights), 2340 // and hence we need to normalize them to let the sum of them become one. 2341 SwitchBB->normalizeSuccProbs(); 2342 2343 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2344 MVT::Other, getControlRoot(), 2345 Cmp, DAG.getBasicBlock(B.TargetBB)); 2346 2347 // Avoid emitting unnecessary branches to the next block. 2348 if (NextMBB != NextBlock(SwitchBB)) 2349 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2350 DAG.getBasicBlock(NextMBB)); 2351 2352 DAG.setRoot(BrAnd); 2353 } 2354 2355 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2356 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2357 2358 // Retrieve successors. Look through artificial IR level blocks like 2359 // catchswitch for successors. 2360 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2361 const BasicBlock *EHPadBB = I.getSuccessor(1); 2362 2363 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2364 // have to do anything here to lower funclet bundles. 2365 assert(!I.hasOperandBundlesOtherThan( 2366 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2367 "Cannot lower invokes with arbitrary operand bundles yet!"); 2368 2369 const Value *Callee(I.getCalledValue()); 2370 const Function *Fn = dyn_cast<Function>(Callee); 2371 if (isa<InlineAsm>(Callee)) 2372 visitInlineAsm(&I); 2373 else if (Fn && Fn->isIntrinsic()) { 2374 switch (Fn->getIntrinsicID()) { 2375 default: 2376 llvm_unreachable("Cannot invoke this intrinsic"); 2377 case Intrinsic::donothing: 2378 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2379 break; 2380 case Intrinsic::experimental_patchpoint_void: 2381 case Intrinsic::experimental_patchpoint_i64: 2382 visitPatchpoint(&I, EHPadBB); 2383 break; 2384 case Intrinsic::experimental_gc_statepoint: 2385 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2386 break; 2387 } 2388 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2389 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2390 // Eventually we will support lowering the @llvm.experimental.deoptimize 2391 // intrinsic, and right now there are no plans to support other intrinsics 2392 // with deopt state. 2393 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2394 } else { 2395 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2396 } 2397 2398 // If the value of the invoke is used outside of its defining block, make it 2399 // available as a virtual register. 2400 // We already took care of the exported value for the statepoint instruction 2401 // during call to the LowerStatepoint. 2402 if (!isStatepoint(I)) { 2403 CopyToExportRegsIfNeeded(&I); 2404 } 2405 2406 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2407 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2408 BranchProbability EHPadBBProb = 2409 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2410 : BranchProbability::getZero(); 2411 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2412 2413 // Update successor info. 2414 addSuccessorWithProb(InvokeMBB, Return); 2415 for (auto &UnwindDest : UnwindDests) { 2416 UnwindDest.first->setIsEHPad(); 2417 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2418 } 2419 InvokeMBB->normalizeSuccProbs(); 2420 2421 // Drop into normal successor. 2422 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2423 MVT::Other, getControlRoot(), 2424 DAG.getBasicBlock(Return))); 2425 } 2426 2427 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2428 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2429 } 2430 2431 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2432 assert(FuncInfo.MBB->isEHPad() && 2433 "Call to landingpad not in landing pad!"); 2434 2435 MachineBasicBlock *MBB = FuncInfo.MBB; 2436 addLandingPadInfo(LP, *MBB); 2437 2438 // If there aren't registers to copy the values into (e.g., during SjLj 2439 // exceptions), then don't bother to create these DAG nodes. 2440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2441 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2442 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2443 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2444 return; 2445 2446 // If landingpad's return type is token type, we don't create DAG nodes 2447 // for its exception pointer and selector value. The extraction of exception 2448 // pointer or selector value from token type landingpads is not currently 2449 // supported. 2450 if (LP.getType()->isTokenTy()) 2451 return; 2452 2453 SmallVector<EVT, 2> ValueVTs; 2454 SDLoc dl = getCurSDLoc(); 2455 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2456 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2457 2458 // Get the two live-in registers as SDValues. The physregs have already been 2459 // copied into virtual registers. 2460 SDValue Ops[2]; 2461 if (FuncInfo.ExceptionPointerVirtReg) { 2462 Ops[0] = DAG.getZExtOrTrunc( 2463 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2464 FuncInfo.ExceptionPointerVirtReg, 2465 TLI.getPointerTy(DAG.getDataLayout())), 2466 dl, ValueVTs[0]); 2467 } else { 2468 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2469 } 2470 Ops[1] = DAG.getZExtOrTrunc( 2471 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2472 FuncInfo.ExceptionSelectorVirtReg, 2473 TLI.getPointerTy(DAG.getDataLayout())), 2474 dl, ValueVTs[1]); 2475 2476 // Merge into one. 2477 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2478 DAG.getVTList(ValueVTs), Ops); 2479 setValue(&LP, Res); 2480 } 2481 2482 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2483 #ifndef NDEBUG 2484 for (const CaseCluster &CC : Clusters) 2485 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2486 #endif 2487 2488 std::sort(Clusters.begin(), Clusters.end(), 2489 [](const CaseCluster &a, const CaseCluster &b) { 2490 return a.Low->getValue().slt(b.Low->getValue()); 2491 }); 2492 2493 // Merge adjacent clusters with the same destination. 2494 const unsigned N = Clusters.size(); 2495 unsigned DstIndex = 0; 2496 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2497 CaseCluster &CC = Clusters[SrcIndex]; 2498 const ConstantInt *CaseVal = CC.Low; 2499 MachineBasicBlock *Succ = CC.MBB; 2500 2501 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2502 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2503 // If this case has the same successor and is a neighbour, merge it into 2504 // the previous cluster. 2505 Clusters[DstIndex - 1].High = CaseVal; 2506 Clusters[DstIndex - 1].Prob += CC.Prob; 2507 } else { 2508 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2509 sizeof(Clusters[SrcIndex])); 2510 } 2511 } 2512 Clusters.resize(DstIndex); 2513 } 2514 2515 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2516 MachineBasicBlock *Last) { 2517 // Update JTCases. 2518 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2519 if (JTCases[i].first.HeaderBB == First) 2520 JTCases[i].first.HeaderBB = Last; 2521 2522 // Update BitTestCases. 2523 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2524 if (BitTestCases[i].Parent == First) 2525 BitTestCases[i].Parent = Last; 2526 } 2527 2528 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2529 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2530 2531 // Update machine-CFG edges with unique successors. 2532 SmallSet<BasicBlock*, 32> Done; 2533 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2534 BasicBlock *BB = I.getSuccessor(i); 2535 bool Inserted = Done.insert(BB).second; 2536 if (!Inserted) 2537 continue; 2538 2539 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2540 addSuccessorWithProb(IndirectBrMBB, Succ); 2541 } 2542 IndirectBrMBB->normalizeSuccProbs(); 2543 2544 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2545 MVT::Other, getControlRoot(), 2546 getValue(I.getAddress()))); 2547 } 2548 2549 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2550 if (DAG.getTarget().Options.TrapUnreachable) 2551 DAG.setRoot( 2552 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2553 } 2554 2555 void SelectionDAGBuilder::visitFSub(const User &I) { 2556 // -0.0 - X --> fneg 2557 Type *Ty = I.getType(); 2558 if (isa<Constant>(I.getOperand(0)) && 2559 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2560 SDValue Op2 = getValue(I.getOperand(1)); 2561 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2562 Op2.getValueType(), Op2)); 2563 return; 2564 } 2565 2566 visitBinary(I, ISD::FSUB); 2567 } 2568 2569 /// Checks if the given instruction performs a vector reduction, in which case 2570 /// we have the freedom to alter the elements in the result as long as the 2571 /// reduction of them stays unchanged. 2572 static bool isVectorReductionOp(const User *I) { 2573 const Instruction *Inst = dyn_cast<Instruction>(I); 2574 if (!Inst || !Inst->getType()->isVectorTy()) 2575 return false; 2576 2577 auto OpCode = Inst->getOpcode(); 2578 switch (OpCode) { 2579 case Instruction::Add: 2580 case Instruction::Mul: 2581 case Instruction::And: 2582 case Instruction::Or: 2583 case Instruction::Xor: 2584 break; 2585 case Instruction::FAdd: 2586 case Instruction::FMul: 2587 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2588 if (FPOp->getFastMathFlags().isFast()) 2589 break; 2590 LLVM_FALLTHROUGH; 2591 default: 2592 return false; 2593 } 2594 2595 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2596 unsigned ElemNumToReduce = ElemNum; 2597 2598 // Do DFS search on the def-use chain from the given instruction. We only 2599 // allow four kinds of operations during the search until we reach the 2600 // instruction that extracts the first element from the vector: 2601 // 2602 // 1. The reduction operation of the same opcode as the given instruction. 2603 // 2604 // 2. PHI node. 2605 // 2606 // 3. ShuffleVector instruction together with a reduction operation that 2607 // does a partial reduction. 2608 // 2609 // 4. ExtractElement that extracts the first element from the vector, and we 2610 // stop searching the def-use chain here. 2611 // 2612 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2613 // from 1-3 to the stack to continue the DFS. The given instruction is not 2614 // a reduction operation if we meet any other instructions other than those 2615 // listed above. 2616 2617 SmallVector<const User *, 16> UsersToVisit{Inst}; 2618 SmallPtrSet<const User *, 16> Visited; 2619 bool ReduxExtracted = false; 2620 2621 while (!UsersToVisit.empty()) { 2622 auto User = UsersToVisit.back(); 2623 UsersToVisit.pop_back(); 2624 if (!Visited.insert(User).second) 2625 continue; 2626 2627 for (const auto &U : User->users()) { 2628 auto Inst = dyn_cast<Instruction>(U); 2629 if (!Inst) 2630 return false; 2631 2632 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2633 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2634 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2635 return false; 2636 UsersToVisit.push_back(U); 2637 } else if (const ShuffleVectorInst *ShufInst = 2638 dyn_cast<ShuffleVectorInst>(U)) { 2639 // Detect the following pattern: A ShuffleVector instruction together 2640 // with a reduction that do partial reduction on the first and second 2641 // ElemNumToReduce / 2 elements, and store the result in 2642 // ElemNumToReduce / 2 elements in another vector. 2643 2644 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2645 if (ResultElements < ElemNum) 2646 return false; 2647 2648 if (ElemNumToReduce == 1) 2649 return false; 2650 if (!isa<UndefValue>(U->getOperand(1))) 2651 return false; 2652 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2653 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2654 return false; 2655 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2656 if (ShufInst->getMaskValue(i) != -1) 2657 return false; 2658 2659 // There is only one user of this ShuffleVector instruction, which 2660 // must be a reduction operation. 2661 if (!U->hasOneUse()) 2662 return false; 2663 2664 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2665 if (!U2 || U2->getOpcode() != OpCode) 2666 return false; 2667 2668 // Check operands of the reduction operation. 2669 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2670 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2671 UsersToVisit.push_back(U2); 2672 ElemNumToReduce /= 2; 2673 } else 2674 return false; 2675 } else if (isa<ExtractElementInst>(U)) { 2676 // At this moment we should have reduced all elements in the vector. 2677 if (ElemNumToReduce != 1) 2678 return false; 2679 2680 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2681 if (!Val || Val->getZExtValue() != 0) 2682 return false; 2683 2684 ReduxExtracted = true; 2685 } else 2686 return false; 2687 } 2688 } 2689 return ReduxExtracted; 2690 } 2691 2692 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2693 SDValue Op1 = getValue(I.getOperand(0)); 2694 SDValue Op2 = getValue(I.getOperand(1)); 2695 2696 bool nuw = false; 2697 bool nsw = false; 2698 bool exact = false; 2699 bool vec_redux = false; 2700 FastMathFlags FMF; 2701 2702 if (const OverflowingBinaryOperator *OFBinOp = 2703 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2704 nuw = OFBinOp->hasNoUnsignedWrap(); 2705 nsw = OFBinOp->hasNoSignedWrap(); 2706 } 2707 if (const PossiblyExactOperator *ExactOp = 2708 dyn_cast<const PossiblyExactOperator>(&I)) 2709 exact = ExactOp->isExact(); 2710 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2711 FMF = FPOp->getFastMathFlags(); 2712 2713 if (isVectorReductionOp(&I)) { 2714 vec_redux = true; 2715 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2716 } 2717 2718 SDNodeFlags Flags; 2719 Flags.setExact(exact); 2720 Flags.setNoSignedWrap(nsw); 2721 Flags.setNoUnsignedWrap(nuw); 2722 Flags.setVectorReduction(vec_redux); 2723 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2724 Flags.setAllowContract(FMF.allowContract()); 2725 Flags.setNoInfs(FMF.noInfs()); 2726 Flags.setNoNaNs(FMF.noNaNs()); 2727 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2728 Flags.setUnsafeAlgebra(FMF.isFast()); 2729 2730 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2731 Op1, Op2, Flags); 2732 setValue(&I, BinNodeValue); 2733 } 2734 2735 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2736 SDValue Op1 = getValue(I.getOperand(0)); 2737 SDValue Op2 = getValue(I.getOperand(1)); 2738 2739 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2740 Op2.getValueType(), DAG.getDataLayout()); 2741 2742 // Coerce the shift amount to the right type if we can. 2743 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2744 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2745 unsigned Op2Size = Op2.getValueSizeInBits(); 2746 SDLoc DL = getCurSDLoc(); 2747 2748 // If the operand is smaller than the shift count type, promote it. 2749 if (ShiftSize > Op2Size) 2750 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2751 2752 // If the operand is larger than the shift count type but the shift 2753 // count type has enough bits to represent any shift value, truncate 2754 // it now. This is a common case and it exposes the truncate to 2755 // optimization early. 2756 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2757 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2758 // Otherwise we'll need to temporarily settle for some other convenient 2759 // type. Type legalization will make adjustments once the shiftee is split. 2760 else 2761 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2762 } 2763 2764 bool nuw = false; 2765 bool nsw = false; 2766 bool exact = false; 2767 2768 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2769 2770 if (const OverflowingBinaryOperator *OFBinOp = 2771 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2772 nuw = OFBinOp->hasNoUnsignedWrap(); 2773 nsw = OFBinOp->hasNoSignedWrap(); 2774 } 2775 if (const PossiblyExactOperator *ExactOp = 2776 dyn_cast<const PossiblyExactOperator>(&I)) 2777 exact = ExactOp->isExact(); 2778 } 2779 SDNodeFlags Flags; 2780 Flags.setExact(exact); 2781 Flags.setNoSignedWrap(nsw); 2782 Flags.setNoUnsignedWrap(nuw); 2783 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2784 Flags); 2785 setValue(&I, Res); 2786 } 2787 2788 void SelectionDAGBuilder::visitSDiv(const User &I) { 2789 SDValue Op1 = getValue(I.getOperand(0)); 2790 SDValue Op2 = getValue(I.getOperand(1)); 2791 2792 SDNodeFlags Flags; 2793 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2794 cast<PossiblyExactOperator>(&I)->isExact()); 2795 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2796 Op2, Flags)); 2797 } 2798 2799 void SelectionDAGBuilder::visitICmp(const User &I) { 2800 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2801 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2802 predicate = IC->getPredicate(); 2803 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2804 predicate = ICmpInst::Predicate(IC->getPredicate()); 2805 SDValue Op1 = getValue(I.getOperand(0)); 2806 SDValue Op2 = getValue(I.getOperand(1)); 2807 ISD::CondCode Opcode = getICmpCondCode(predicate); 2808 2809 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2810 I.getType()); 2811 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2812 } 2813 2814 void SelectionDAGBuilder::visitFCmp(const User &I) { 2815 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2816 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2817 predicate = FC->getPredicate(); 2818 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2819 predicate = FCmpInst::Predicate(FC->getPredicate()); 2820 SDValue Op1 = getValue(I.getOperand(0)); 2821 SDValue Op2 = getValue(I.getOperand(1)); 2822 ISD::CondCode Condition = getFCmpCondCode(predicate); 2823 2824 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2825 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2826 // further optimization, but currently FMF is only applicable to binary nodes. 2827 if (TM.Options.NoNaNsFPMath) 2828 Condition = getFCmpCodeWithoutNaN(Condition); 2829 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2830 I.getType()); 2831 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2832 } 2833 2834 // Check if the condition of the select has one use or two users that are both 2835 // selects with the same condition. 2836 static bool hasOnlySelectUsers(const Value *Cond) { 2837 return llvm::all_of(Cond->users(), [](const Value *V) { 2838 return isa<SelectInst>(V); 2839 }); 2840 } 2841 2842 void SelectionDAGBuilder::visitSelect(const User &I) { 2843 SmallVector<EVT, 4> ValueVTs; 2844 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2845 ValueVTs); 2846 unsigned NumValues = ValueVTs.size(); 2847 if (NumValues == 0) return; 2848 2849 SmallVector<SDValue, 4> Values(NumValues); 2850 SDValue Cond = getValue(I.getOperand(0)); 2851 SDValue LHSVal = getValue(I.getOperand(1)); 2852 SDValue RHSVal = getValue(I.getOperand(2)); 2853 auto BaseOps = {Cond}; 2854 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2855 ISD::VSELECT : ISD::SELECT; 2856 2857 // Min/max matching is only viable if all output VTs are the same. 2858 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2859 EVT VT = ValueVTs[0]; 2860 LLVMContext &Ctx = *DAG.getContext(); 2861 auto &TLI = DAG.getTargetLoweringInfo(); 2862 2863 // We care about the legality of the operation after it has been type 2864 // legalized. 2865 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2866 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2867 VT = TLI.getTypeToTransformTo(Ctx, VT); 2868 2869 // If the vselect is legal, assume we want to leave this as a vector setcc + 2870 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2871 // min/max is legal on the scalar type. 2872 bool UseScalarMinMax = VT.isVector() && 2873 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2874 2875 Value *LHS, *RHS; 2876 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2877 ISD::NodeType Opc = ISD::DELETED_NODE; 2878 switch (SPR.Flavor) { 2879 case SPF_UMAX: Opc = ISD::UMAX; break; 2880 case SPF_UMIN: Opc = ISD::UMIN; break; 2881 case SPF_SMAX: Opc = ISD::SMAX; break; 2882 case SPF_SMIN: Opc = ISD::SMIN; break; 2883 case SPF_FMINNUM: 2884 switch (SPR.NaNBehavior) { 2885 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2886 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2887 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2888 case SPNB_RETURNS_ANY: { 2889 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2890 Opc = ISD::FMINNUM; 2891 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2892 Opc = ISD::FMINNAN; 2893 else if (UseScalarMinMax) 2894 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2895 ISD::FMINNUM : ISD::FMINNAN; 2896 break; 2897 } 2898 } 2899 break; 2900 case SPF_FMAXNUM: 2901 switch (SPR.NaNBehavior) { 2902 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2903 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2904 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2905 case SPNB_RETURNS_ANY: 2906 2907 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2908 Opc = ISD::FMAXNUM; 2909 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2910 Opc = ISD::FMAXNAN; 2911 else if (UseScalarMinMax) 2912 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2913 ISD::FMAXNUM : ISD::FMAXNAN; 2914 break; 2915 } 2916 break; 2917 default: break; 2918 } 2919 2920 if (Opc != ISD::DELETED_NODE && 2921 (TLI.isOperationLegalOrCustom(Opc, VT) || 2922 (UseScalarMinMax && 2923 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2924 // If the underlying comparison instruction is used by any other 2925 // instruction, the consumed instructions won't be destroyed, so it is 2926 // not profitable to convert to a min/max. 2927 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2928 OpCode = Opc; 2929 LHSVal = getValue(LHS); 2930 RHSVal = getValue(RHS); 2931 BaseOps = {}; 2932 } 2933 } 2934 2935 for (unsigned i = 0; i != NumValues; ++i) { 2936 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2937 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2938 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2939 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2940 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2941 Ops); 2942 } 2943 2944 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2945 DAG.getVTList(ValueVTs), Values)); 2946 } 2947 2948 void SelectionDAGBuilder::visitTrunc(const User &I) { 2949 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2950 SDValue N = getValue(I.getOperand(0)); 2951 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2952 I.getType()); 2953 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2954 } 2955 2956 void SelectionDAGBuilder::visitZExt(const User &I) { 2957 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2958 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2959 SDValue N = getValue(I.getOperand(0)); 2960 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2961 I.getType()); 2962 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2963 } 2964 2965 void SelectionDAGBuilder::visitSExt(const User &I) { 2966 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2967 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2968 SDValue N = getValue(I.getOperand(0)); 2969 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2970 I.getType()); 2971 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2972 } 2973 2974 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2975 // FPTrunc is never a no-op cast, no need to check 2976 SDValue N = getValue(I.getOperand(0)); 2977 SDLoc dl = getCurSDLoc(); 2978 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2979 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2980 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2981 DAG.getTargetConstant( 2982 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2983 } 2984 2985 void SelectionDAGBuilder::visitFPExt(const User &I) { 2986 // FPExt is never a no-op cast, no need to check 2987 SDValue N = getValue(I.getOperand(0)); 2988 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2989 I.getType()); 2990 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2991 } 2992 2993 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2994 // FPToUI is never a no-op cast, no need to check 2995 SDValue N = getValue(I.getOperand(0)); 2996 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2997 I.getType()); 2998 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2999 } 3000 3001 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3002 // FPToSI is never a no-op cast, no need to check 3003 SDValue N = getValue(I.getOperand(0)); 3004 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3005 I.getType()); 3006 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3007 } 3008 3009 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3010 // UIToFP is never a no-op cast, no need to check 3011 SDValue N = getValue(I.getOperand(0)); 3012 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3013 I.getType()); 3014 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3015 } 3016 3017 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3018 // SIToFP is never a no-op cast, no need to check 3019 SDValue N = getValue(I.getOperand(0)); 3020 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3021 I.getType()); 3022 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3023 } 3024 3025 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3026 // What to do depends on the size of the integer and the size of the pointer. 3027 // We can either truncate, zero extend, or no-op, accordingly. 3028 SDValue N = getValue(I.getOperand(0)); 3029 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3030 I.getType()); 3031 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3032 } 3033 3034 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3035 // What to do depends on the size of the integer and the size of the pointer. 3036 // We can either truncate, zero extend, or no-op, accordingly. 3037 SDValue N = getValue(I.getOperand(0)); 3038 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3039 I.getType()); 3040 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3041 } 3042 3043 void SelectionDAGBuilder::visitBitCast(const User &I) { 3044 SDValue N = getValue(I.getOperand(0)); 3045 SDLoc dl = getCurSDLoc(); 3046 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3047 I.getType()); 3048 3049 // BitCast assures us that source and destination are the same size so this is 3050 // either a BITCAST or a no-op. 3051 if (DestVT != N.getValueType()) 3052 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3053 DestVT, N)); // convert types. 3054 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3055 // might fold any kind of constant expression to an integer constant and that 3056 // is not what we are looking for. Only recognize a bitcast of a genuine 3057 // constant integer as an opaque constant. 3058 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3059 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3060 /*isOpaque*/true)); 3061 else 3062 setValue(&I, N); // noop cast. 3063 } 3064 3065 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3067 const Value *SV = I.getOperand(0); 3068 SDValue N = getValue(SV); 3069 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3070 3071 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3072 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3073 3074 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3075 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3076 3077 setValue(&I, N); 3078 } 3079 3080 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3082 SDValue InVec = getValue(I.getOperand(0)); 3083 SDValue InVal = getValue(I.getOperand(1)); 3084 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3085 TLI.getVectorIdxTy(DAG.getDataLayout())); 3086 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3087 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3088 InVec, InVal, InIdx)); 3089 } 3090 3091 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3093 SDValue InVec = getValue(I.getOperand(0)); 3094 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3095 TLI.getVectorIdxTy(DAG.getDataLayout())); 3096 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3097 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3098 InVec, InIdx)); 3099 } 3100 3101 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3102 SDValue Src1 = getValue(I.getOperand(0)); 3103 SDValue Src2 = getValue(I.getOperand(1)); 3104 SDLoc DL = getCurSDLoc(); 3105 3106 SmallVector<int, 8> Mask; 3107 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3108 unsigned MaskNumElts = Mask.size(); 3109 3110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3111 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3112 EVT SrcVT = Src1.getValueType(); 3113 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3114 3115 if (SrcNumElts == MaskNumElts) { 3116 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3117 return; 3118 } 3119 3120 // Normalize the shuffle vector since mask and vector length don't match. 3121 if (SrcNumElts < MaskNumElts) { 3122 // Mask is longer than the source vectors. We can use concatenate vector to 3123 // make the mask and vectors lengths match. 3124 3125 if (MaskNumElts % SrcNumElts == 0) { 3126 // Mask length is a multiple of the source vector length. 3127 // Check if the shuffle is some kind of concatenation of the input 3128 // vectors. 3129 unsigned NumConcat = MaskNumElts / SrcNumElts; 3130 bool IsConcat = true; 3131 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3132 for (unsigned i = 0; i != MaskNumElts; ++i) { 3133 int Idx = Mask[i]; 3134 if (Idx < 0) 3135 continue; 3136 // Ensure the indices in each SrcVT sized piece are sequential and that 3137 // the same source is used for the whole piece. 3138 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3139 (ConcatSrcs[i / SrcNumElts] >= 0 && 3140 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3141 IsConcat = false; 3142 break; 3143 } 3144 // Remember which source this index came from. 3145 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3146 } 3147 3148 // The shuffle is concatenating multiple vectors together. Just emit 3149 // a CONCAT_VECTORS operation. 3150 if (IsConcat) { 3151 SmallVector<SDValue, 8> ConcatOps; 3152 for (auto Src : ConcatSrcs) { 3153 if (Src < 0) 3154 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3155 else if (Src == 0) 3156 ConcatOps.push_back(Src1); 3157 else 3158 ConcatOps.push_back(Src2); 3159 } 3160 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3161 return; 3162 } 3163 } 3164 3165 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3166 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3167 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3168 PaddedMaskNumElts); 3169 3170 // Pad both vectors with undefs to make them the same length as the mask. 3171 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3172 3173 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3174 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3175 MOps1[0] = Src1; 3176 MOps2[0] = Src2; 3177 3178 Src1 = Src1.isUndef() 3179 ? DAG.getUNDEF(PaddedVT) 3180 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3181 Src2 = Src2.isUndef() 3182 ? DAG.getUNDEF(PaddedVT) 3183 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3184 3185 // Readjust mask for new input vector length. 3186 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3187 for (unsigned i = 0; i != MaskNumElts; ++i) { 3188 int Idx = Mask[i]; 3189 if (Idx >= (int)SrcNumElts) 3190 Idx -= SrcNumElts - PaddedMaskNumElts; 3191 MappedOps[i] = Idx; 3192 } 3193 3194 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3195 3196 // If the concatenated vector was padded, extract a subvector with the 3197 // correct number of elements. 3198 if (MaskNumElts != PaddedMaskNumElts) 3199 Result = DAG.getNode( 3200 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3201 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3202 3203 setValue(&I, Result); 3204 return; 3205 } 3206 3207 if (SrcNumElts > MaskNumElts) { 3208 // Analyze the access pattern of the vector to see if we can extract 3209 // two subvectors and do the shuffle. 3210 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3211 bool CanExtract = true; 3212 for (int Idx : Mask) { 3213 unsigned Input = 0; 3214 if (Idx < 0) 3215 continue; 3216 3217 if (Idx >= (int)SrcNumElts) { 3218 Input = 1; 3219 Idx -= SrcNumElts; 3220 } 3221 3222 // If all the indices come from the same MaskNumElts sized portion of 3223 // the sources we can use extract. Also make sure the extract wouldn't 3224 // extract past the end of the source. 3225 int NewStartIdx = alignDown(Idx, MaskNumElts); 3226 if (NewStartIdx + MaskNumElts > SrcNumElts || 3227 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3228 CanExtract = false; 3229 // Make sure we always update StartIdx as we use it to track if all 3230 // elements are undef. 3231 StartIdx[Input] = NewStartIdx; 3232 } 3233 3234 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3235 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3236 return; 3237 } 3238 if (CanExtract) { 3239 // Extract appropriate subvector and generate a vector shuffle 3240 for (unsigned Input = 0; Input < 2; ++Input) { 3241 SDValue &Src = Input == 0 ? Src1 : Src2; 3242 if (StartIdx[Input] < 0) 3243 Src = DAG.getUNDEF(VT); 3244 else { 3245 Src = DAG.getNode( 3246 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3247 DAG.getConstant(StartIdx[Input], DL, 3248 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3249 } 3250 } 3251 3252 // Calculate new mask. 3253 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3254 for (int &Idx : MappedOps) { 3255 if (Idx >= (int)SrcNumElts) 3256 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3257 else if (Idx >= 0) 3258 Idx -= StartIdx[0]; 3259 } 3260 3261 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3262 return; 3263 } 3264 } 3265 3266 // We can't use either concat vectors or extract subvectors so fall back to 3267 // replacing the shuffle with extract and build vector. 3268 // to insert and build vector. 3269 EVT EltVT = VT.getVectorElementType(); 3270 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3271 SmallVector<SDValue,8> Ops; 3272 for (int Idx : Mask) { 3273 SDValue Res; 3274 3275 if (Idx < 0) { 3276 Res = DAG.getUNDEF(EltVT); 3277 } else { 3278 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3279 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3280 3281 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3282 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3283 } 3284 3285 Ops.push_back(Res); 3286 } 3287 3288 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3289 } 3290 3291 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3292 ArrayRef<unsigned> Indices; 3293 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3294 Indices = IV->getIndices(); 3295 else 3296 Indices = cast<ConstantExpr>(&I)->getIndices(); 3297 3298 const Value *Op0 = I.getOperand(0); 3299 const Value *Op1 = I.getOperand(1); 3300 Type *AggTy = I.getType(); 3301 Type *ValTy = Op1->getType(); 3302 bool IntoUndef = isa<UndefValue>(Op0); 3303 bool FromUndef = isa<UndefValue>(Op1); 3304 3305 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3306 3307 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3308 SmallVector<EVT, 4> AggValueVTs; 3309 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3310 SmallVector<EVT, 4> ValValueVTs; 3311 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3312 3313 unsigned NumAggValues = AggValueVTs.size(); 3314 unsigned NumValValues = ValValueVTs.size(); 3315 SmallVector<SDValue, 4> Values(NumAggValues); 3316 3317 // Ignore an insertvalue that produces an empty object 3318 if (!NumAggValues) { 3319 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3320 return; 3321 } 3322 3323 SDValue Agg = getValue(Op0); 3324 unsigned i = 0; 3325 // Copy the beginning value(s) from the original aggregate. 3326 for (; i != LinearIndex; ++i) 3327 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3328 SDValue(Agg.getNode(), Agg.getResNo() + i); 3329 // Copy values from the inserted value(s). 3330 if (NumValValues) { 3331 SDValue Val = getValue(Op1); 3332 for (; i != LinearIndex + NumValValues; ++i) 3333 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3334 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3335 } 3336 // Copy remaining value(s) from the original aggregate. 3337 for (; i != NumAggValues; ++i) 3338 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3339 SDValue(Agg.getNode(), Agg.getResNo() + i); 3340 3341 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3342 DAG.getVTList(AggValueVTs), Values)); 3343 } 3344 3345 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3346 ArrayRef<unsigned> Indices; 3347 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3348 Indices = EV->getIndices(); 3349 else 3350 Indices = cast<ConstantExpr>(&I)->getIndices(); 3351 3352 const Value *Op0 = I.getOperand(0); 3353 Type *AggTy = Op0->getType(); 3354 Type *ValTy = I.getType(); 3355 bool OutOfUndef = isa<UndefValue>(Op0); 3356 3357 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3358 3359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3360 SmallVector<EVT, 4> ValValueVTs; 3361 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3362 3363 unsigned NumValValues = ValValueVTs.size(); 3364 3365 // Ignore a extractvalue that produces an empty object 3366 if (!NumValValues) { 3367 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3368 return; 3369 } 3370 3371 SmallVector<SDValue, 4> Values(NumValValues); 3372 3373 SDValue Agg = getValue(Op0); 3374 // Copy out the selected value(s). 3375 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3376 Values[i - LinearIndex] = 3377 OutOfUndef ? 3378 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3379 SDValue(Agg.getNode(), Agg.getResNo() + i); 3380 3381 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3382 DAG.getVTList(ValValueVTs), Values)); 3383 } 3384 3385 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3386 Value *Op0 = I.getOperand(0); 3387 // Note that the pointer operand may be a vector of pointers. Take the scalar 3388 // element which holds a pointer. 3389 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3390 SDValue N = getValue(Op0); 3391 SDLoc dl = getCurSDLoc(); 3392 3393 // Normalize Vector GEP - all scalar operands should be converted to the 3394 // splat vector. 3395 unsigned VectorWidth = I.getType()->isVectorTy() ? 3396 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3397 3398 if (VectorWidth && !N.getValueType().isVector()) { 3399 LLVMContext &Context = *DAG.getContext(); 3400 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3401 N = DAG.getSplatBuildVector(VT, dl, N); 3402 } 3403 3404 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3405 GTI != E; ++GTI) { 3406 const Value *Idx = GTI.getOperand(); 3407 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3408 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3409 if (Field) { 3410 // N = N + Offset 3411 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3412 3413 // In an inbounds GEP with an offset that is nonnegative even when 3414 // interpreted as signed, assume there is no unsigned overflow. 3415 SDNodeFlags Flags; 3416 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3417 Flags.setNoUnsignedWrap(true); 3418 3419 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3420 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3421 } 3422 } else { 3423 MVT PtrTy = 3424 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3425 unsigned PtrSize = PtrTy.getSizeInBits(); 3426 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3427 3428 // If this is a scalar constant or a splat vector of constants, 3429 // handle it quickly. 3430 const auto *CI = dyn_cast<ConstantInt>(Idx); 3431 if (!CI && isa<ConstantDataVector>(Idx) && 3432 cast<ConstantDataVector>(Idx)->getSplatValue()) 3433 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3434 3435 if (CI) { 3436 if (CI->isZero()) 3437 continue; 3438 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3439 LLVMContext &Context = *DAG.getContext(); 3440 SDValue OffsVal = VectorWidth ? 3441 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3442 DAG.getConstant(Offs, dl, PtrTy); 3443 3444 // In an inbouds GEP with an offset that is nonnegative even when 3445 // interpreted as signed, assume there is no unsigned overflow. 3446 SDNodeFlags Flags; 3447 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3448 Flags.setNoUnsignedWrap(true); 3449 3450 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3451 continue; 3452 } 3453 3454 // N = N + Idx * ElementSize; 3455 SDValue IdxN = getValue(Idx); 3456 3457 if (!IdxN.getValueType().isVector() && VectorWidth) { 3458 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3459 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3460 } 3461 3462 // If the index is smaller or larger than intptr_t, truncate or extend 3463 // it. 3464 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3465 3466 // If this is a multiply by a power of two, turn it into a shl 3467 // immediately. This is a very common case. 3468 if (ElementSize != 1) { 3469 if (ElementSize.isPowerOf2()) { 3470 unsigned Amt = ElementSize.logBase2(); 3471 IdxN = DAG.getNode(ISD::SHL, dl, 3472 N.getValueType(), IdxN, 3473 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3474 } else { 3475 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3476 IdxN = DAG.getNode(ISD::MUL, dl, 3477 N.getValueType(), IdxN, Scale); 3478 } 3479 } 3480 3481 N = DAG.getNode(ISD::ADD, dl, 3482 N.getValueType(), N, IdxN); 3483 } 3484 } 3485 3486 setValue(&I, N); 3487 } 3488 3489 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3490 // If this is a fixed sized alloca in the entry block of the function, 3491 // allocate it statically on the stack. 3492 if (FuncInfo.StaticAllocaMap.count(&I)) 3493 return; // getValue will auto-populate this. 3494 3495 SDLoc dl = getCurSDLoc(); 3496 Type *Ty = I.getAllocatedType(); 3497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3498 auto &DL = DAG.getDataLayout(); 3499 uint64_t TySize = DL.getTypeAllocSize(Ty); 3500 unsigned Align = 3501 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3502 3503 SDValue AllocSize = getValue(I.getArraySize()); 3504 3505 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3506 if (AllocSize.getValueType() != IntPtr) 3507 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3508 3509 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3510 AllocSize, 3511 DAG.getConstant(TySize, dl, IntPtr)); 3512 3513 // Handle alignment. If the requested alignment is less than or equal to 3514 // the stack alignment, ignore it. If the size is greater than or equal to 3515 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3516 unsigned StackAlign = 3517 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3518 if (Align <= StackAlign) 3519 Align = 0; 3520 3521 // Round the size of the allocation up to the stack alignment size 3522 // by add SA-1 to the size. This doesn't overflow because we're computing 3523 // an address inside an alloca. 3524 SDNodeFlags Flags; 3525 Flags.setNoUnsignedWrap(true); 3526 AllocSize = DAG.getNode(ISD::ADD, dl, 3527 AllocSize.getValueType(), AllocSize, 3528 DAG.getIntPtrConstant(StackAlign - 1, dl), Flags); 3529 3530 // Mask out the low bits for alignment purposes. 3531 AllocSize = DAG.getNode(ISD::AND, dl, 3532 AllocSize.getValueType(), AllocSize, 3533 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3534 dl)); 3535 3536 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3537 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3538 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3539 setValue(&I, DSA); 3540 DAG.setRoot(DSA.getValue(1)); 3541 3542 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3543 } 3544 3545 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3546 if (I.isAtomic()) 3547 return visitAtomicLoad(I); 3548 3549 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3550 const Value *SV = I.getOperand(0); 3551 if (TLI.supportSwiftError()) { 3552 // Swifterror values can come from either a function parameter with 3553 // swifterror attribute or an alloca with swifterror attribute. 3554 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3555 if (Arg->hasSwiftErrorAttr()) 3556 return visitLoadFromSwiftError(I); 3557 } 3558 3559 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3560 if (Alloca->isSwiftError()) 3561 return visitLoadFromSwiftError(I); 3562 } 3563 } 3564 3565 SDValue Ptr = getValue(SV); 3566 3567 Type *Ty = I.getType(); 3568 3569 bool isVolatile = I.isVolatile(); 3570 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3571 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3572 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3573 unsigned Alignment = I.getAlignment(); 3574 3575 AAMDNodes AAInfo; 3576 I.getAAMetadata(AAInfo); 3577 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3578 3579 SmallVector<EVT, 4> ValueVTs; 3580 SmallVector<uint64_t, 4> Offsets; 3581 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3582 unsigned NumValues = ValueVTs.size(); 3583 if (NumValues == 0) 3584 return; 3585 3586 SDValue Root; 3587 bool ConstantMemory = false; 3588 if (isVolatile || NumValues > MaxParallelChains) 3589 // Serialize volatile loads with other side effects. 3590 Root = getRoot(); 3591 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3592 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3593 // Do not serialize (non-volatile) loads of constant memory with anything. 3594 Root = DAG.getEntryNode(); 3595 ConstantMemory = true; 3596 } else { 3597 // Do not serialize non-volatile loads against each other. 3598 Root = DAG.getRoot(); 3599 } 3600 3601 SDLoc dl = getCurSDLoc(); 3602 3603 if (isVolatile) 3604 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3605 3606 // An aggregate load cannot wrap around the address space, so offsets to its 3607 // parts don't wrap either. 3608 SDNodeFlags Flags; 3609 Flags.setNoUnsignedWrap(true); 3610 3611 SmallVector<SDValue, 4> Values(NumValues); 3612 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3613 EVT PtrVT = Ptr.getValueType(); 3614 unsigned ChainI = 0; 3615 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3616 // Serializing loads here may result in excessive register pressure, and 3617 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3618 // could recover a bit by hoisting nodes upward in the chain by recognizing 3619 // they are side-effect free or do not alias. The optimizer should really 3620 // avoid this case by converting large object/array copies to llvm.memcpy 3621 // (MaxParallelChains should always remain as failsafe). 3622 if (ChainI == MaxParallelChains) { 3623 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3624 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3625 makeArrayRef(Chains.data(), ChainI)); 3626 Root = Chain; 3627 ChainI = 0; 3628 } 3629 SDValue A = DAG.getNode(ISD::ADD, dl, 3630 PtrVT, Ptr, 3631 DAG.getConstant(Offsets[i], dl, PtrVT), 3632 Flags); 3633 auto MMOFlags = MachineMemOperand::MONone; 3634 if (isVolatile) 3635 MMOFlags |= MachineMemOperand::MOVolatile; 3636 if (isNonTemporal) 3637 MMOFlags |= MachineMemOperand::MONonTemporal; 3638 if (isInvariant) 3639 MMOFlags |= MachineMemOperand::MOInvariant; 3640 if (isDereferenceable) 3641 MMOFlags |= MachineMemOperand::MODereferenceable; 3642 MMOFlags |= TLI.getMMOFlags(I); 3643 3644 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3645 MachinePointerInfo(SV, Offsets[i]), Alignment, 3646 MMOFlags, AAInfo, Ranges); 3647 3648 Values[i] = L; 3649 Chains[ChainI] = L.getValue(1); 3650 } 3651 3652 if (!ConstantMemory) { 3653 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3654 makeArrayRef(Chains.data(), ChainI)); 3655 if (isVolatile) 3656 DAG.setRoot(Chain); 3657 else 3658 PendingLoads.push_back(Chain); 3659 } 3660 3661 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3662 DAG.getVTList(ValueVTs), Values)); 3663 } 3664 3665 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3666 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3667 "call visitStoreToSwiftError when backend supports swifterror"); 3668 3669 SmallVector<EVT, 4> ValueVTs; 3670 SmallVector<uint64_t, 4> Offsets; 3671 const Value *SrcV = I.getOperand(0); 3672 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3673 SrcV->getType(), ValueVTs, &Offsets); 3674 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3675 "expect a single EVT for swifterror"); 3676 3677 SDValue Src = getValue(SrcV); 3678 // Create a virtual register, then update the virtual register. 3679 unsigned VReg; bool CreatedVReg; 3680 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3681 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3682 // Chain can be getRoot or getControlRoot. 3683 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3684 SDValue(Src.getNode(), Src.getResNo())); 3685 DAG.setRoot(CopyNode); 3686 if (CreatedVReg) 3687 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3688 } 3689 3690 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3691 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3692 "call visitLoadFromSwiftError when backend supports swifterror"); 3693 3694 assert(!I.isVolatile() && 3695 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3696 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3697 "Support volatile, non temporal, invariant for load_from_swift_error"); 3698 3699 const Value *SV = I.getOperand(0); 3700 Type *Ty = I.getType(); 3701 AAMDNodes AAInfo; 3702 I.getAAMetadata(AAInfo); 3703 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3704 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3705 "load_from_swift_error should not be constant memory"); 3706 3707 SmallVector<EVT, 4> ValueVTs; 3708 SmallVector<uint64_t, 4> Offsets; 3709 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3710 ValueVTs, &Offsets); 3711 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3712 "expect a single EVT for swifterror"); 3713 3714 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3715 SDValue L = DAG.getCopyFromReg( 3716 getRoot(), getCurSDLoc(), 3717 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3718 ValueVTs[0]); 3719 3720 setValue(&I, L); 3721 } 3722 3723 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3724 if (I.isAtomic()) 3725 return visitAtomicStore(I); 3726 3727 const Value *SrcV = I.getOperand(0); 3728 const Value *PtrV = I.getOperand(1); 3729 3730 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3731 if (TLI.supportSwiftError()) { 3732 // Swifterror values can come from either a function parameter with 3733 // swifterror attribute or an alloca with swifterror attribute. 3734 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3735 if (Arg->hasSwiftErrorAttr()) 3736 return visitStoreToSwiftError(I); 3737 } 3738 3739 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3740 if (Alloca->isSwiftError()) 3741 return visitStoreToSwiftError(I); 3742 } 3743 } 3744 3745 SmallVector<EVT, 4> ValueVTs; 3746 SmallVector<uint64_t, 4> Offsets; 3747 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3748 SrcV->getType(), ValueVTs, &Offsets); 3749 unsigned NumValues = ValueVTs.size(); 3750 if (NumValues == 0) 3751 return; 3752 3753 // Get the lowered operands. Note that we do this after 3754 // checking if NumResults is zero, because with zero results 3755 // the operands won't have values in the map. 3756 SDValue Src = getValue(SrcV); 3757 SDValue Ptr = getValue(PtrV); 3758 3759 SDValue Root = getRoot(); 3760 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3761 SDLoc dl = getCurSDLoc(); 3762 EVT PtrVT = Ptr.getValueType(); 3763 unsigned Alignment = I.getAlignment(); 3764 AAMDNodes AAInfo; 3765 I.getAAMetadata(AAInfo); 3766 3767 auto MMOFlags = MachineMemOperand::MONone; 3768 if (I.isVolatile()) 3769 MMOFlags |= MachineMemOperand::MOVolatile; 3770 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3771 MMOFlags |= MachineMemOperand::MONonTemporal; 3772 MMOFlags |= TLI.getMMOFlags(I); 3773 3774 // An aggregate load cannot wrap around the address space, so offsets to its 3775 // parts don't wrap either. 3776 SDNodeFlags Flags; 3777 Flags.setNoUnsignedWrap(true); 3778 3779 unsigned ChainI = 0; 3780 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3781 // See visitLoad comments. 3782 if (ChainI == MaxParallelChains) { 3783 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3784 makeArrayRef(Chains.data(), ChainI)); 3785 Root = Chain; 3786 ChainI = 0; 3787 } 3788 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3789 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3790 SDValue St = DAG.getStore( 3791 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3792 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3793 Chains[ChainI] = St; 3794 } 3795 3796 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3797 makeArrayRef(Chains.data(), ChainI)); 3798 DAG.setRoot(StoreNode); 3799 } 3800 3801 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3802 bool IsCompressing) { 3803 SDLoc sdl = getCurSDLoc(); 3804 3805 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3806 unsigned& Alignment) { 3807 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3808 Src0 = I.getArgOperand(0); 3809 Ptr = I.getArgOperand(1); 3810 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3811 Mask = I.getArgOperand(3); 3812 }; 3813 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3814 unsigned& Alignment) { 3815 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3816 Src0 = I.getArgOperand(0); 3817 Ptr = I.getArgOperand(1); 3818 Mask = I.getArgOperand(2); 3819 Alignment = 0; 3820 }; 3821 3822 Value *PtrOperand, *MaskOperand, *Src0Operand; 3823 unsigned Alignment; 3824 if (IsCompressing) 3825 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3826 else 3827 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3828 3829 SDValue Ptr = getValue(PtrOperand); 3830 SDValue Src0 = getValue(Src0Operand); 3831 SDValue Mask = getValue(MaskOperand); 3832 3833 EVT VT = Src0.getValueType(); 3834 if (!Alignment) 3835 Alignment = DAG.getEVTAlignment(VT); 3836 3837 AAMDNodes AAInfo; 3838 I.getAAMetadata(AAInfo); 3839 3840 MachineMemOperand *MMO = 3841 DAG.getMachineFunction(). 3842 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3843 MachineMemOperand::MOStore, VT.getStoreSize(), 3844 Alignment, AAInfo); 3845 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3846 MMO, false /* Truncating */, 3847 IsCompressing); 3848 DAG.setRoot(StoreNode); 3849 setValue(&I, StoreNode); 3850 } 3851 3852 // Get a uniform base for the Gather/Scatter intrinsic. 3853 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3854 // We try to represent it as a base pointer + vector of indices. 3855 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3856 // The first operand of the GEP may be a single pointer or a vector of pointers 3857 // Example: 3858 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3859 // or 3860 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3861 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3862 // 3863 // When the first GEP operand is a single pointer - it is the uniform base we 3864 // are looking for. If first operand of the GEP is a splat vector - we 3865 // extract the splat value and use it as a uniform base. 3866 // In all other cases the function returns 'false'. 3867 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3868 SelectionDAGBuilder* SDB) { 3869 SelectionDAG& DAG = SDB->DAG; 3870 LLVMContext &Context = *DAG.getContext(); 3871 3872 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3873 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3874 if (!GEP) 3875 return false; 3876 3877 const Value *GEPPtr = GEP->getPointerOperand(); 3878 if (!GEPPtr->getType()->isVectorTy()) 3879 Ptr = GEPPtr; 3880 else if (!(Ptr = getSplatValue(GEPPtr))) 3881 return false; 3882 3883 unsigned FinalIndex = GEP->getNumOperands() - 1; 3884 Value *IndexVal = GEP->getOperand(FinalIndex); 3885 3886 // Ensure all the other indices are 0. 3887 for (unsigned i = 1; i < FinalIndex; ++i) { 3888 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3889 if (!C || !C->isZero()) 3890 return false; 3891 } 3892 3893 // The operands of the GEP may be defined in another basic block. 3894 // In this case we'll not find nodes for the operands. 3895 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3896 return false; 3897 3898 Base = SDB->getValue(Ptr); 3899 Index = SDB->getValue(IndexVal); 3900 3901 // Suppress sign extension. 3902 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3903 if (SDB->findValue(Sext->getOperand(0))) { 3904 IndexVal = Sext->getOperand(0); 3905 Index = SDB->getValue(IndexVal); 3906 } 3907 } 3908 if (!Index.getValueType().isVector()) { 3909 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3910 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3911 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3912 } 3913 return true; 3914 } 3915 3916 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3917 SDLoc sdl = getCurSDLoc(); 3918 3919 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3920 const Value *Ptr = I.getArgOperand(1); 3921 SDValue Src0 = getValue(I.getArgOperand(0)); 3922 SDValue Mask = getValue(I.getArgOperand(3)); 3923 EVT VT = Src0.getValueType(); 3924 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3925 if (!Alignment) 3926 Alignment = DAG.getEVTAlignment(VT); 3927 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3928 3929 AAMDNodes AAInfo; 3930 I.getAAMetadata(AAInfo); 3931 3932 SDValue Base; 3933 SDValue Index; 3934 const Value *BasePtr = Ptr; 3935 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3936 3937 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3938 MachineMemOperand *MMO = DAG.getMachineFunction(). 3939 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3940 MachineMemOperand::MOStore, VT.getStoreSize(), 3941 Alignment, AAInfo); 3942 if (!UniformBase) { 3943 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3944 Index = getValue(Ptr); 3945 } 3946 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3947 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3948 Ops, MMO); 3949 DAG.setRoot(Scatter); 3950 setValue(&I, Scatter); 3951 } 3952 3953 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3954 SDLoc sdl = getCurSDLoc(); 3955 3956 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3957 unsigned& Alignment) { 3958 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3959 Ptr = I.getArgOperand(0); 3960 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3961 Mask = I.getArgOperand(2); 3962 Src0 = I.getArgOperand(3); 3963 }; 3964 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3965 unsigned& Alignment) { 3966 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3967 Ptr = I.getArgOperand(0); 3968 Alignment = 0; 3969 Mask = I.getArgOperand(1); 3970 Src0 = I.getArgOperand(2); 3971 }; 3972 3973 Value *PtrOperand, *MaskOperand, *Src0Operand; 3974 unsigned Alignment; 3975 if (IsExpanding) 3976 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3977 else 3978 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3979 3980 SDValue Ptr = getValue(PtrOperand); 3981 SDValue Src0 = getValue(Src0Operand); 3982 SDValue Mask = getValue(MaskOperand); 3983 3984 EVT VT = Src0.getValueType(); 3985 if (!Alignment) 3986 Alignment = DAG.getEVTAlignment(VT); 3987 3988 AAMDNodes AAInfo; 3989 I.getAAMetadata(AAInfo); 3990 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3991 3992 // Do not serialize masked loads of constant memory with anything. 3993 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 3994 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3995 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3996 3997 MachineMemOperand *MMO = 3998 DAG.getMachineFunction(). 3999 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4000 MachineMemOperand::MOLoad, VT.getStoreSize(), 4001 Alignment, AAInfo, Ranges); 4002 4003 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4004 ISD::NON_EXTLOAD, IsExpanding); 4005 if (AddToChain) { 4006 SDValue OutChain = Load.getValue(1); 4007 DAG.setRoot(OutChain); 4008 } 4009 setValue(&I, Load); 4010 } 4011 4012 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4013 SDLoc sdl = getCurSDLoc(); 4014 4015 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4016 const Value *Ptr = I.getArgOperand(0); 4017 SDValue Src0 = getValue(I.getArgOperand(3)); 4018 SDValue Mask = getValue(I.getArgOperand(2)); 4019 4020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4021 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4022 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4023 if (!Alignment) 4024 Alignment = DAG.getEVTAlignment(VT); 4025 4026 AAMDNodes AAInfo; 4027 I.getAAMetadata(AAInfo); 4028 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4029 4030 SDValue Root = DAG.getRoot(); 4031 SDValue Base; 4032 SDValue Index; 4033 const Value *BasePtr = Ptr; 4034 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 4035 bool ConstantMemory = false; 4036 if (UniformBase && 4037 AA && AA->pointsToConstantMemory(MemoryLocation( 4038 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4039 AAInfo))) { 4040 // Do not serialize (non-volatile) loads of constant memory with anything. 4041 Root = DAG.getEntryNode(); 4042 ConstantMemory = true; 4043 } 4044 4045 MachineMemOperand *MMO = 4046 DAG.getMachineFunction(). 4047 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4048 MachineMemOperand::MOLoad, VT.getStoreSize(), 4049 Alignment, AAInfo, Ranges); 4050 4051 if (!UniformBase) { 4052 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4053 Index = getValue(Ptr); 4054 } 4055 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 4056 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4057 Ops, MMO); 4058 4059 SDValue OutChain = Gather.getValue(1); 4060 if (!ConstantMemory) 4061 PendingLoads.push_back(OutChain); 4062 setValue(&I, Gather); 4063 } 4064 4065 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4066 SDLoc dl = getCurSDLoc(); 4067 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4068 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4069 SyncScope::ID SSID = I.getSyncScopeID(); 4070 4071 SDValue InChain = getRoot(); 4072 4073 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4074 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4075 SDValue L = DAG.getAtomicCmpSwap( 4076 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4077 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4078 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4079 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4080 4081 SDValue OutChain = L.getValue(2); 4082 4083 setValue(&I, L); 4084 DAG.setRoot(OutChain); 4085 } 4086 4087 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4088 SDLoc dl = getCurSDLoc(); 4089 ISD::NodeType NT; 4090 switch (I.getOperation()) { 4091 default: llvm_unreachable("Unknown atomicrmw operation"); 4092 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4093 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4094 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4095 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4096 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4097 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4098 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4099 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4100 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4101 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4102 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4103 } 4104 AtomicOrdering Order = I.getOrdering(); 4105 SyncScope::ID SSID = I.getSyncScopeID(); 4106 4107 SDValue InChain = getRoot(); 4108 4109 SDValue L = 4110 DAG.getAtomic(NT, dl, 4111 getValue(I.getValOperand()).getSimpleValueType(), 4112 InChain, 4113 getValue(I.getPointerOperand()), 4114 getValue(I.getValOperand()), 4115 I.getPointerOperand(), 4116 /* Alignment=*/ 0, Order, SSID); 4117 4118 SDValue OutChain = L.getValue(1); 4119 4120 setValue(&I, L); 4121 DAG.setRoot(OutChain); 4122 } 4123 4124 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4125 SDLoc dl = getCurSDLoc(); 4126 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4127 SDValue Ops[3]; 4128 Ops[0] = getRoot(); 4129 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4130 TLI.getFenceOperandTy(DAG.getDataLayout())); 4131 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4132 TLI.getFenceOperandTy(DAG.getDataLayout())); 4133 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4134 } 4135 4136 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4137 SDLoc dl = getCurSDLoc(); 4138 AtomicOrdering Order = I.getOrdering(); 4139 SyncScope::ID SSID = I.getSyncScopeID(); 4140 4141 SDValue InChain = getRoot(); 4142 4143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4144 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4145 4146 if (I.getAlignment() < VT.getSizeInBits() / 8) 4147 report_fatal_error("Cannot generate unaligned atomic load"); 4148 4149 MachineMemOperand *MMO = 4150 DAG.getMachineFunction(). 4151 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4152 MachineMemOperand::MOVolatile | 4153 MachineMemOperand::MOLoad, 4154 VT.getStoreSize(), 4155 I.getAlignment() ? I.getAlignment() : 4156 DAG.getEVTAlignment(VT), 4157 AAMDNodes(), nullptr, SSID, Order); 4158 4159 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4160 SDValue L = 4161 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4162 getValue(I.getPointerOperand()), MMO); 4163 4164 SDValue OutChain = L.getValue(1); 4165 4166 setValue(&I, L); 4167 DAG.setRoot(OutChain); 4168 } 4169 4170 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4171 SDLoc dl = getCurSDLoc(); 4172 4173 AtomicOrdering Order = I.getOrdering(); 4174 SyncScope::ID SSID = I.getSyncScopeID(); 4175 4176 SDValue InChain = getRoot(); 4177 4178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4179 EVT VT = 4180 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4181 4182 if (I.getAlignment() < VT.getSizeInBits() / 8) 4183 report_fatal_error("Cannot generate unaligned atomic store"); 4184 4185 SDValue OutChain = 4186 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4187 InChain, 4188 getValue(I.getPointerOperand()), 4189 getValue(I.getValueOperand()), 4190 I.getPointerOperand(), I.getAlignment(), 4191 Order, SSID); 4192 4193 DAG.setRoot(OutChain); 4194 } 4195 4196 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4197 /// node. 4198 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4199 unsigned Intrinsic) { 4200 // Ignore the callsite's attributes. A specific call site may be marked with 4201 // readnone, but the lowering code will expect the chain based on the 4202 // definition. 4203 const Function *F = I.getCalledFunction(); 4204 bool HasChain = !F->doesNotAccessMemory(); 4205 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4206 4207 // Build the operand list. 4208 SmallVector<SDValue, 8> Ops; 4209 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4210 if (OnlyLoad) { 4211 // We don't need to serialize loads against other loads. 4212 Ops.push_back(DAG.getRoot()); 4213 } else { 4214 Ops.push_back(getRoot()); 4215 } 4216 } 4217 4218 // Info is set by getTgtMemInstrinsic 4219 TargetLowering::IntrinsicInfo Info; 4220 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4221 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4222 4223 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4224 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4225 Info.opc == ISD::INTRINSIC_W_CHAIN) 4226 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4227 TLI.getPointerTy(DAG.getDataLayout()))); 4228 4229 // Add all operands of the call to the operand list. 4230 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4231 SDValue Op = getValue(I.getArgOperand(i)); 4232 Ops.push_back(Op); 4233 } 4234 4235 SmallVector<EVT, 4> ValueVTs; 4236 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4237 4238 if (HasChain) 4239 ValueVTs.push_back(MVT::Other); 4240 4241 SDVTList VTs = DAG.getVTList(ValueVTs); 4242 4243 // Create the node. 4244 SDValue Result; 4245 if (IsTgtIntrinsic) { 4246 // This is target intrinsic that touches memory 4247 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4248 VTs, Ops, Info.memVT, 4249 MachinePointerInfo(Info.ptrVal, Info.offset), 4250 Info.align, Info.vol, 4251 Info.readMem, Info.writeMem, Info.size); 4252 } else if (!HasChain) { 4253 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4254 } else if (!I.getType()->isVoidTy()) { 4255 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4256 } else { 4257 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4258 } 4259 4260 if (HasChain) { 4261 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4262 if (OnlyLoad) 4263 PendingLoads.push_back(Chain); 4264 else 4265 DAG.setRoot(Chain); 4266 } 4267 4268 if (!I.getType()->isVoidTy()) { 4269 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4270 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4271 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4272 } else 4273 Result = lowerRangeToAssertZExt(DAG, I, Result); 4274 4275 setValue(&I, Result); 4276 } 4277 } 4278 4279 /// GetSignificand - Get the significand and build it into a floating-point 4280 /// number with exponent of 1: 4281 /// 4282 /// Op = (Op & 0x007fffff) | 0x3f800000; 4283 /// 4284 /// where Op is the hexadecimal representation of floating point value. 4285 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4286 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4287 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4288 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4289 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4290 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4291 } 4292 4293 /// GetExponent - Get the exponent: 4294 /// 4295 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4296 /// 4297 /// where Op is the hexadecimal representation of floating point value. 4298 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4299 const TargetLowering &TLI, const SDLoc &dl) { 4300 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4301 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4302 SDValue t1 = DAG.getNode( 4303 ISD::SRL, dl, MVT::i32, t0, 4304 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4305 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4306 DAG.getConstant(127, dl, MVT::i32)); 4307 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4308 } 4309 4310 /// getF32Constant - Get 32-bit floating point constant. 4311 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4312 const SDLoc &dl) { 4313 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4314 MVT::f32); 4315 } 4316 4317 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4318 SelectionDAG &DAG) { 4319 // TODO: What fast-math-flags should be set on the floating-point nodes? 4320 4321 // IntegerPartOfX = ((int32_t)(t0); 4322 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4323 4324 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4325 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4326 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4327 4328 // IntegerPartOfX <<= 23; 4329 IntegerPartOfX = DAG.getNode( 4330 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4331 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4332 DAG.getDataLayout()))); 4333 4334 SDValue TwoToFractionalPartOfX; 4335 if (LimitFloatPrecision <= 6) { 4336 // For floating-point precision of 6: 4337 // 4338 // TwoToFractionalPartOfX = 4339 // 0.997535578f + 4340 // (0.735607626f + 0.252464424f * x) * x; 4341 // 4342 // error 0.0144103317, which is 6 bits 4343 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4344 getF32Constant(DAG, 0x3e814304, dl)); 4345 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4346 getF32Constant(DAG, 0x3f3c50c8, dl)); 4347 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4348 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4349 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4350 } else if (LimitFloatPrecision <= 12) { 4351 // For floating-point precision of 12: 4352 // 4353 // TwoToFractionalPartOfX = 4354 // 0.999892986f + 4355 // (0.696457318f + 4356 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4357 // 4358 // error 0.000107046256, which is 13 to 14 bits 4359 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4360 getF32Constant(DAG, 0x3da235e3, dl)); 4361 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4362 getF32Constant(DAG, 0x3e65b8f3, dl)); 4363 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4364 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4365 getF32Constant(DAG, 0x3f324b07, dl)); 4366 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4367 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4368 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4369 } else { // LimitFloatPrecision <= 18 4370 // For floating-point precision of 18: 4371 // 4372 // TwoToFractionalPartOfX = 4373 // 0.999999982f + 4374 // (0.693148872f + 4375 // (0.240227044f + 4376 // (0.554906021e-1f + 4377 // (0.961591928e-2f + 4378 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4379 // error 2.47208000*10^(-7), which is better than 18 bits 4380 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4381 getF32Constant(DAG, 0x3924b03e, dl)); 4382 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4383 getF32Constant(DAG, 0x3ab24b87, dl)); 4384 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4385 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4386 getF32Constant(DAG, 0x3c1d8c17, dl)); 4387 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4388 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4389 getF32Constant(DAG, 0x3d634a1d, dl)); 4390 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4391 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4392 getF32Constant(DAG, 0x3e75fe14, dl)); 4393 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4394 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4395 getF32Constant(DAG, 0x3f317234, dl)); 4396 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4397 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4398 getF32Constant(DAG, 0x3f800000, dl)); 4399 } 4400 4401 // Add the exponent into the result in integer domain. 4402 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4403 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4404 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4405 } 4406 4407 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4408 /// limited-precision mode. 4409 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4410 const TargetLowering &TLI) { 4411 if (Op.getValueType() == MVT::f32 && 4412 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4413 4414 // Put the exponent in the right bit position for later addition to the 4415 // final result: 4416 // 4417 // #define LOG2OFe 1.4426950f 4418 // t0 = Op * LOG2OFe 4419 4420 // TODO: What fast-math-flags should be set here? 4421 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4422 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4423 return getLimitedPrecisionExp2(t0, dl, DAG); 4424 } 4425 4426 // No special expansion. 4427 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4428 } 4429 4430 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4431 /// limited-precision mode. 4432 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4433 const TargetLowering &TLI) { 4434 // TODO: What fast-math-flags should be set on the floating-point nodes? 4435 4436 if (Op.getValueType() == MVT::f32 && 4437 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4438 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4439 4440 // Scale the exponent by log(2) [0.69314718f]. 4441 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4442 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4443 getF32Constant(DAG, 0x3f317218, dl)); 4444 4445 // Get the significand and build it into a floating-point number with 4446 // exponent of 1. 4447 SDValue X = GetSignificand(DAG, Op1, dl); 4448 4449 SDValue LogOfMantissa; 4450 if (LimitFloatPrecision <= 6) { 4451 // For floating-point precision of 6: 4452 // 4453 // LogofMantissa = 4454 // -1.1609546f + 4455 // (1.4034025f - 0.23903021f * x) * x; 4456 // 4457 // error 0.0034276066, which is better than 8 bits 4458 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4459 getF32Constant(DAG, 0xbe74c456, dl)); 4460 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4461 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4462 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4463 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4464 getF32Constant(DAG, 0x3f949a29, dl)); 4465 } else if (LimitFloatPrecision <= 12) { 4466 // For floating-point precision of 12: 4467 // 4468 // LogOfMantissa = 4469 // -1.7417939f + 4470 // (2.8212026f + 4471 // (-1.4699568f + 4472 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4473 // 4474 // error 0.000061011436, which is 14 bits 4475 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4476 getF32Constant(DAG, 0xbd67b6d6, dl)); 4477 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4478 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4479 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4480 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4481 getF32Constant(DAG, 0x3fbc278b, dl)); 4482 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4483 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4484 getF32Constant(DAG, 0x40348e95, dl)); 4485 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4486 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4487 getF32Constant(DAG, 0x3fdef31a, dl)); 4488 } else { // LimitFloatPrecision <= 18 4489 // For floating-point precision of 18: 4490 // 4491 // LogOfMantissa = 4492 // -2.1072184f + 4493 // (4.2372794f + 4494 // (-3.7029485f + 4495 // (2.2781945f + 4496 // (-0.87823314f + 4497 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4498 // 4499 // error 0.0000023660568, which is better than 18 bits 4500 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4501 getF32Constant(DAG, 0xbc91e5ac, dl)); 4502 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4503 getF32Constant(DAG, 0x3e4350aa, dl)); 4504 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4505 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4506 getF32Constant(DAG, 0x3f60d3e3, dl)); 4507 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4508 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4509 getF32Constant(DAG, 0x4011cdf0, dl)); 4510 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4511 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4512 getF32Constant(DAG, 0x406cfd1c, dl)); 4513 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4514 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4515 getF32Constant(DAG, 0x408797cb, dl)); 4516 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4517 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4518 getF32Constant(DAG, 0x4006dcab, dl)); 4519 } 4520 4521 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4522 } 4523 4524 // No special expansion. 4525 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4526 } 4527 4528 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4529 /// limited-precision mode. 4530 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4531 const TargetLowering &TLI) { 4532 // TODO: What fast-math-flags should be set on the floating-point nodes? 4533 4534 if (Op.getValueType() == MVT::f32 && 4535 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4536 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4537 4538 // Get the exponent. 4539 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4540 4541 // Get the significand and build it into a floating-point number with 4542 // exponent of 1. 4543 SDValue X = GetSignificand(DAG, Op1, dl); 4544 4545 // Different possible minimax approximations of significand in 4546 // floating-point for various degrees of accuracy over [1,2]. 4547 SDValue Log2ofMantissa; 4548 if (LimitFloatPrecision <= 6) { 4549 // For floating-point precision of 6: 4550 // 4551 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4552 // 4553 // error 0.0049451742, which is more than 7 bits 4554 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4555 getF32Constant(DAG, 0xbeb08fe0, dl)); 4556 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4557 getF32Constant(DAG, 0x40019463, dl)); 4558 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4559 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4560 getF32Constant(DAG, 0x3fd6633d, dl)); 4561 } else if (LimitFloatPrecision <= 12) { 4562 // For floating-point precision of 12: 4563 // 4564 // Log2ofMantissa = 4565 // -2.51285454f + 4566 // (4.07009056f + 4567 // (-2.12067489f + 4568 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4569 // 4570 // error 0.0000876136000, which is better than 13 bits 4571 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4572 getF32Constant(DAG, 0xbda7262e, dl)); 4573 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4574 getF32Constant(DAG, 0x3f25280b, dl)); 4575 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4576 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4577 getF32Constant(DAG, 0x4007b923, dl)); 4578 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4579 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4580 getF32Constant(DAG, 0x40823e2f, dl)); 4581 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4582 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4583 getF32Constant(DAG, 0x4020d29c, dl)); 4584 } else { // LimitFloatPrecision <= 18 4585 // For floating-point precision of 18: 4586 // 4587 // Log2ofMantissa = 4588 // -3.0400495f + 4589 // (6.1129976f + 4590 // (-5.3420409f + 4591 // (3.2865683f + 4592 // (-1.2669343f + 4593 // (0.27515199f - 4594 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4595 // 4596 // error 0.0000018516, which is better than 18 bits 4597 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4598 getF32Constant(DAG, 0xbcd2769e, dl)); 4599 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4600 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4601 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4602 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4603 getF32Constant(DAG, 0x3fa22ae7, dl)); 4604 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4605 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4606 getF32Constant(DAG, 0x40525723, dl)); 4607 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4608 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4609 getF32Constant(DAG, 0x40aaf200, dl)); 4610 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4611 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4612 getF32Constant(DAG, 0x40c39dad, dl)); 4613 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4614 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4615 getF32Constant(DAG, 0x4042902c, dl)); 4616 } 4617 4618 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4619 } 4620 4621 // No special expansion. 4622 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4623 } 4624 4625 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4626 /// limited-precision mode. 4627 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4628 const TargetLowering &TLI) { 4629 // TODO: What fast-math-flags should be set on the floating-point nodes? 4630 4631 if (Op.getValueType() == MVT::f32 && 4632 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4633 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4634 4635 // Scale the exponent by log10(2) [0.30102999f]. 4636 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4637 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4638 getF32Constant(DAG, 0x3e9a209a, dl)); 4639 4640 // Get the significand and build it into a floating-point number with 4641 // exponent of 1. 4642 SDValue X = GetSignificand(DAG, Op1, dl); 4643 4644 SDValue Log10ofMantissa; 4645 if (LimitFloatPrecision <= 6) { 4646 // For floating-point precision of 6: 4647 // 4648 // Log10ofMantissa = 4649 // -0.50419619f + 4650 // (0.60948995f - 0.10380950f * x) * x; 4651 // 4652 // error 0.0014886165, which is 6 bits 4653 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4654 getF32Constant(DAG, 0xbdd49a13, dl)); 4655 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4656 getF32Constant(DAG, 0x3f1c0789, dl)); 4657 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4658 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4659 getF32Constant(DAG, 0x3f011300, dl)); 4660 } else if (LimitFloatPrecision <= 12) { 4661 // For floating-point precision of 12: 4662 // 4663 // Log10ofMantissa = 4664 // -0.64831180f + 4665 // (0.91751397f + 4666 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4667 // 4668 // error 0.00019228036, which is better than 12 bits 4669 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4670 getF32Constant(DAG, 0x3d431f31, dl)); 4671 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4672 getF32Constant(DAG, 0x3ea21fb2, dl)); 4673 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4674 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4675 getF32Constant(DAG, 0x3f6ae232, dl)); 4676 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4677 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4678 getF32Constant(DAG, 0x3f25f7c3, dl)); 4679 } else { // LimitFloatPrecision <= 18 4680 // For floating-point precision of 18: 4681 // 4682 // Log10ofMantissa = 4683 // -0.84299375f + 4684 // (1.5327582f + 4685 // (-1.0688956f + 4686 // (0.49102474f + 4687 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4688 // 4689 // error 0.0000037995730, which is better than 18 bits 4690 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4691 getF32Constant(DAG, 0x3c5d51ce, dl)); 4692 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4693 getF32Constant(DAG, 0x3e00685a, dl)); 4694 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4695 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4696 getF32Constant(DAG, 0x3efb6798, dl)); 4697 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4698 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4699 getF32Constant(DAG, 0x3f88d192, dl)); 4700 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4701 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4702 getF32Constant(DAG, 0x3fc4316c, dl)); 4703 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4704 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4705 getF32Constant(DAG, 0x3f57ce70, dl)); 4706 } 4707 4708 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4709 } 4710 4711 // No special expansion. 4712 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4713 } 4714 4715 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4716 /// limited-precision mode. 4717 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4718 const TargetLowering &TLI) { 4719 if (Op.getValueType() == MVT::f32 && 4720 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4721 return getLimitedPrecisionExp2(Op, dl, DAG); 4722 4723 // No special expansion. 4724 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4725 } 4726 4727 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4728 /// limited-precision mode with x == 10.0f. 4729 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4730 SelectionDAG &DAG, const TargetLowering &TLI) { 4731 bool IsExp10 = false; 4732 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4733 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4734 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4735 APFloat Ten(10.0f); 4736 IsExp10 = LHSC->isExactlyValue(Ten); 4737 } 4738 } 4739 4740 // TODO: What fast-math-flags should be set on the FMUL node? 4741 if (IsExp10) { 4742 // Put the exponent in the right bit position for later addition to the 4743 // final result: 4744 // 4745 // #define LOG2OF10 3.3219281f 4746 // t0 = Op * LOG2OF10; 4747 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4748 getF32Constant(DAG, 0x40549a78, dl)); 4749 return getLimitedPrecisionExp2(t0, dl, DAG); 4750 } 4751 4752 // No special expansion. 4753 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4754 } 4755 4756 /// ExpandPowI - Expand a llvm.powi intrinsic. 4757 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4758 SelectionDAG &DAG) { 4759 // If RHS is a constant, we can expand this out to a multiplication tree, 4760 // otherwise we end up lowering to a call to __powidf2 (for example). When 4761 // optimizing for size, we only want to do this if the expansion would produce 4762 // a small number of multiplies, otherwise we do the full expansion. 4763 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4764 // Get the exponent as a positive value. 4765 unsigned Val = RHSC->getSExtValue(); 4766 if ((int)Val < 0) Val = -Val; 4767 4768 // powi(x, 0) -> 1.0 4769 if (Val == 0) 4770 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4771 4772 const Function *F = DAG.getMachineFunction().getFunction(); 4773 if (!F->optForSize() || 4774 // If optimizing for size, don't insert too many multiplies. 4775 // This inserts up to 5 multiplies. 4776 countPopulation(Val) + Log2_32(Val) < 7) { 4777 // We use the simple binary decomposition method to generate the multiply 4778 // sequence. There are more optimal ways to do this (for example, 4779 // powi(x,15) generates one more multiply than it should), but this has 4780 // the benefit of being both really simple and much better than a libcall. 4781 SDValue Res; // Logically starts equal to 1.0 4782 SDValue CurSquare = LHS; 4783 // TODO: Intrinsics should have fast-math-flags that propagate to these 4784 // nodes. 4785 while (Val) { 4786 if (Val & 1) { 4787 if (Res.getNode()) 4788 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4789 else 4790 Res = CurSquare; // 1.0*CurSquare. 4791 } 4792 4793 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4794 CurSquare, CurSquare); 4795 Val >>= 1; 4796 } 4797 4798 // If the original was negative, invert the result, producing 1/(x*x*x). 4799 if (RHSC->getSExtValue() < 0) 4800 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4801 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4802 return Res; 4803 } 4804 } 4805 4806 // Otherwise, expand to a libcall. 4807 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4808 } 4809 4810 // getUnderlyingArgReg - Find underlying register used for a truncated or 4811 // bitcasted argument. 4812 static unsigned getUnderlyingArgReg(const SDValue &N) { 4813 switch (N.getOpcode()) { 4814 case ISD::CopyFromReg: 4815 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4816 case ISD::BITCAST: 4817 case ISD::AssertZext: 4818 case ISD::AssertSext: 4819 case ISD::TRUNCATE: 4820 return getUnderlyingArgReg(N.getOperand(0)); 4821 default: 4822 return 0; 4823 } 4824 } 4825 4826 /// If the DbgValueInst is a dbg_value of a function argument, create the 4827 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4828 /// instruction selection, they will be inserted to the entry BB. 4829 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4830 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4831 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4832 const Argument *Arg = dyn_cast<Argument>(V); 4833 if (!Arg) 4834 return false; 4835 4836 MachineFunction &MF = DAG.getMachineFunction(); 4837 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4838 4839 bool IsIndirect = false; 4840 Optional<MachineOperand> Op; 4841 // Some arguments' frame index is recorded during argument lowering. 4842 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4843 if (FI != std::numeric_limits<int>::max()) 4844 Op = MachineOperand::CreateFI(FI); 4845 4846 if (!Op && N.getNode()) { 4847 unsigned Reg = getUnderlyingArgReg(N); 4848 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4849 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4850 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4851 if (PR) 4852 Reg = PR; 4853 } 4854 if (Reg) { 4855 Op = MachineOperand::CreateReg(Reg, false); 4856 IsIndirect = IsDbgDeclare; 4857 } 4858 } 4859 4860 if (!Op) { 4861 // Check if ValueMap has reg number. 4862 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4863 if (VMI != FuncInfo.ValueMap.end()) { 4864 const auto &TLI = DAG.getTargetLoweringInfo(); 4865 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4866 V->getType(), isABIRegCopy(V)); 4867 unsigned NumRegs = 4868 std::accumulate(RFV.RegCount.begin(), RFV.RegCount.end(), 0); 4869 if (NumRegs > 1) { 4870 unsigned I = 0; 4871 unsigned Offset = 0; 4872 auto RegisterVT = RFV.RegVTs.begin(); 4873 for (auto RegCount : RFV.RegCount) { 4874 unsigned RegisterSize = (RegisterVT++)->getSizeInBits(); 4875 for (unsigned E = I + RegCount; I != E; ++I) { 4876 // The vregs are guaranteed to be allocated in sequence. 4877 Op = MachineOperand::CreateReg(VMI->second + I, false); 4878 auto FragmentExpr = DIExpression::createFragmentExpression( 4879 Expr, Offset, RegisterSize); 4880 if (!FragmentExpr) 4881 continue; 4882 FuncInfo.ArgDbgValues.push_back( 4883 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4884 Op->getReg(), Variable, *FragmentExpr)); 4885 Offset += RegisterSize; 4886 } 4887 } 4888 return true; 4889 } 4890 Op = MachineOperand::CreateReg(VMI->second, false); 4891 IsIndirect = IsDbgDeclare; 4892 } 4893 } 4894 4895 if (!Op && N.getNode()) 4896 // Check if frame index is available. 4897 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4898 if (FrameIndexSDNode *FINode = 4899 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4900 Op = MachineOperand::CreateFI(FINode->getIndex()); 4901 4902 if (!Op) 4903 return false; 4904 4905 assert(Variable->isValidLocationForIntrinsic(DL) && 4906 "Expected inlined-at fields to agree"); 4907 if (Op->isReg()) 4908 FuncInfo.ArgDbgValues.push_back( 4909 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4910 Op->getReg(), Variable, Expr)); 4911 else 4912 FuncInfo.ArgDbgValues.push_back( 4913 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4914 .add(*Op) 4915 .addImm(0) 4916 .addMetadata(Variable) 4917 .addMetadata(Expr)); 4918 4919 return true; 4920 } 4921 4922 /// Return the appropriate SDDbgValue based on N. 4923 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4924 DILocalVariable *Variable, 4925 DIExpression *Expr, 4926 const DebugLoc &dl, 4927 unsigned DbgSDNodeOrder) { 4928 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4929 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4930 // stack slot locations as such instead of as indirectly addressed 4931 // locations. 4932 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4933 DbgSDNodeOrder); 4934 } 4935 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4936 DbgSDNodeOrder); 4937 } 4938 4939 // VisualStudio defines setjmp as _setjmp 4940 #if defined(_MSC_VER) && defined(setjmp) && \ 4941 !defined(setjmp_undefined_for_msvc) 4942 # pragma push_macro("setjmp") 4943 # undef setjmp 4944 # define setjmp_undefined_for_msvc 4945 #endif 4946 4947 /// Lower the call to the specified intrinsic function. If we want to emit this 4948 /// as a call to a named external function, return the name. Otherwise, lower it 4949 /// and return null. 4950 const char * 4951 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4953 SDLoc sdl = getCurSDLoc(); 4954 DebugLoc dl = getCurDebugLoc(); 4955 SDValue Res; 4956 4957 switch (Intrinsic) { 4958 default: 4959 // By default, turn this into a target intrinsic node. 4960 visitTargetIntrinsic(I, Intrinsic); 4961 return nullptr; 4962 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4963 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4964 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4965 case Intrinsic::returnaddress: 4966 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4967 TLI.getPointerTy(DAG.getDataLayout()), 4968 getValue(I.getArgOperand(0)))); 4969 return nullptr; 4970 case Intrinsic::addressofreturnaddress: 4971 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4972 TLI.getPointerTy(DAG.getDataLayout()))); 4973 return nullptr; 4974 case Intrinsic::frameaddress: 4975 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4976 TLI.getPointerTy(DAG.getDataLayout()), 4977 getValue(I.getArgOperand(0)))); 4978 return nullptr; 4979 case Intrinsic::read_register: { 4980 Value *Reg = I.getArgOperand(0); 4981 SDValue Chain = getRoot(); 4982 SDValue RegName = 4983 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4984 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4985 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4986 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4987 setValue(&I, Res); 4988 DAG.setRoot(Res.getValue(1)); 4989 return nullptr; 4990 } 4991 case Intrinsic::write_register: { 4992 Value *Reg = I.getArgOperand(0); 4993 Value *RegValue = I.getArgOperand(1); 4994 SDValue Chain = getRoot(); 4995 SDValue RegName = 4996 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4997 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4998 RegName, getValue(RegValue))); 4999 return nullptr; 5000 } 5001 case Intrinsic::setjmp: 5002 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5003 case Intrinsic::longjmp: 5004 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5005 case Intrinsic::memcpy: { 5006 SDValue Op1 = getValue(I.getArgOperand(0)); 5007 SDValue Op2 = getValue(I.getArgOperand(1)); 5008 SDValue Op3 = getValue(I.getArgOperand(2)); 5009 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5010 if (!Align) 5011 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5012 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5013 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5014 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5015 false, isTC, 5016 MachinePointerInfo(I.getArgOperand(0)), 5017 MachinePointerInfo(I.getArgOperand(1))); 5018 updateDAGForMaybeTailCall(MC); 5019 return nullptr; 5020 } 5021 case Intrinsic::memset: { 5022 SDValue Op1 = getValue(I.getArgOperand(0)); 5023 SDValue Op2 = getValue(I.getArgOperand(1)); 5024 SDValue Op3 = getValue(I.getArgOperand(2)); 5025 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5026 if (!Align) 5027 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 5028 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5029 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5030 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5031 isTC, MachinePointerInfo(I.getArgOperand(0))); 5032 updateDAGForMaybeTailCall(MS); 5033 return nullptr; 5034 } 5035 case Intrinsic::memmove: { 5036 SDValue Op1 = getValue(I.getArgOperand(0)); 5037 SDValue Op2 = getValue(I.getArgOperand(1)); 5038 SDValue Op3 = getValue(I.getArgOperand(2)); 5039 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5040 if (!Align) 5041 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 5042 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5043 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5044 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5045 isTC, MachinePointerInfo(I.getArgOperand(0)), 5046 MachinePointerInfo(I.getArgOperand(1))); 5047 updateDAGForMaybeTailCall(MM); 5048 return nullptr; 5049 } 5050 case Intrinsic::memcpy_element_unordered_atomic: { 5051 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5052 SDValue Dst = getValue(MI.getRawDest()); 5053 SDValue Src = getValue(MI.getRawSource()); 5054 SDValue Length = getValue(MI.getLength()); 5055 5056 // Emit a library call. 5057 TargetLowering::ArgListTy Args; 5058 TargetLowering::ArgListEntry Entry; 5059 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5060 Entry.Node = Dst; 5061 Args.push_back(Entry); 5062 5063 Entry.Node = Src; 5064 Args.push_back(Entry); 5065 5066 Entry.Ty = MI.getLength()->getType(); 5067 Entry.Node = Length; 5068 Args.push_back(Entry); 5069 5070 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5071 RTLIB::Libcall LibraryCall = 5072 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5073 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5074 report_fatal_error("Unsupported element size"); 5075 5076 TargetLowering::CallLoweringInfo CLI(DAG); 5077 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5078 TLI.getLibcallCallingConv(LibraryCall), 5079 Type::getVoidTy(*DAG.getContext()), 5080 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5081 TLI.getPointerTy(DAG.getDataLayout())), 5082 std::move(Args)); 5083 5084 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5085 DAG.setRoot(CallResult.second); 5086 return nullptr; 5087 } 5088 case Intrinsic::memmove_element_unordered_atomic: { 5089 auto &MI = cast<AtomicMemMoveInst>(I); 5090 SDValue Dst = getValue(MI.getRawDest()); 5091 SDValue Src = getValue(MI.getRawSource()); 5092 SDValue Length = getValue(MI.getLength()); 5093 5094 // Emit a library call. 5095 TargetLowering::ArgListTy Args; 5096 TargetLowering::ArgListEntry Entry; 5097 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5098 Entry.Node = Dst; 5099 Args.push_back(Entry); 5100 5101 Entry.Node = Src; 5102 Args.push_back(Entry); 5103 5104 Entry.Ty = MI.getLength()->getType(); 5105 Entry.Node = Length; 5106 Args.push_back(Entry); 5107 5108 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5109 RTLIB::Libcall LibraryCall = 5110 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5111 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5112 report_fatal_error("Unsupported element size"); 5113 5114 TargetLowering::CallLoweringInfo CLI(DAG); 5115 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5116 TLI.getLibcallCallingConv(LibraryCall), 5117 Type::getVoidTy(*DAG.getContext()), 5118 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5119 TLI.getPointerTy(DAG.getDataLayout())), 5120 std::move(Args)); 5121 5122 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5123 DAG.setRoot(CallResult.second); 5124 return nullptr; 5125 } 5126 case Intrinsic::memset_element_unordered_atomic: { 5127 auto &MI = cast<AtomicMemSetInst>(I); 5128 SDValue Dst = getValue(MI.getRawDest()); 5129 SDValue Val = getValue(MI.getValue()); 5130 SDValue Length = getValue(MI.getLength()); 5131 5132 // Emit a library call. 5133 TargetLowering::ArgListTy Args; 5134 TargetLowering::ArgListEntry Entry; 5135 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5136 Entry.Node = Dst; 5137 Args.push_back(Entry); 5138 5139 Entry.Ty = Type::getInt8Ty(*DAG.getContext()); 5140 Entry.Node = Val; 5141 Args.push_back(Entry); 5142 5143 Entry.Ty = MI.getLength()->getType(); 5144 Entry.Node = Length; 5145 Args.push_back(Entry); 5146 5147 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5148 RTLIB::Libcall LibraryCall = 5149 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5150 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5151 report_fatal_error("Unsupported element size"); 5152 5153 TargetLowering::CallLoweringInfo CLI(DAG); 5154 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5155 TLI.getLibcallCallingConv(LibraryCall), 5156 Type::getVoidTy(*DAG.getContext()), 5157 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5158 TLI.getPointerTy(DAG.getDataLayout())), 5159 std::move(Args)); 5160 5161 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5162 DAG.setRoot(CallResult.second); 5163 return nullptr; 5164 } 5165 case Intrinsic::dbg_addr: 5166 case Intrinsic::dbg_declare: { 5167 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5168 DILocalVariable *Variable = DI.getVariable(); 5169 DIExpression *Expression = DI.getExpression(); 5170 assert(Variable && "Missing variable"); 5171 5172 // Check if address has undef value. 5173 const Value *Address = DI.getVariableLocation(); 5174 if (!Address || isa<UndefValue>(Address) || 5175 (Address->use_empty() && !isa<Argument>(Address))) { 5176 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5177 return nullptr; 5178 } 5179 5180 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5181 5182 // Check if this variable can be described by a frame index, typically 5183 // either as a static alloca or a byval parameter. 5184 int FI = std::numeric_limits<int>::max(); 5185 if (const auto *AI = 5186 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5187 if (AI->isStaticAlloca()) { 5188 auto I = FuncInfo.StaticAllocaMap.find(AI); 5189 if (I != FuncInfo.StaticAllocaMap.end()) 5190 FI = I->second; 5191 } 5192 } else if (const auto *Arg = dyn_cast<Argument>( 5193 Address->stripInBoundsConstantOffsets())) { 5194 FI = FuncInfo.getArgumentFrameIndex(Arg); 5195 } 5196 5197 // llvm.dbg.addr is control dependent and always generates indirect 5198 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5199 // the MachineFunction variable table. 5200 if (FI != std::numeric_limits<int>::max()) { 5201 if (Intrinsic == Intrinsic::dbg_addr) 5202 DAG.AddDbgValue(DAG.getFrameIndexDbgValue(Variable, Expression, FI, dl, 5203 SDNodeOrder), 5204 getRoot().getNode(), isParameter); 5205 return nullptr; 5206 } 5207 5208 SDValue &N = NodeMap[Address]; 5209 if (!N.getNode() && isa<Argument>(Address)) 5210 // Check unused arguments map. 5211 N = UnusedArgNodeMap[Address]; 5212 SDDbgValue *SDV; 5213 if (N.getNode()) { 5214 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5215 Address = BCI->getOperand(0); 5216 // Parameters are handled specially. 5217 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5218 if (isParameter && FINode) { 5219 // Byval parameter. We have a frame index at this point. 5220 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5221 FINode->getIndex(), dl, SDNodeOrder); 5222 } else if (isa<Argument>(Address)) { 5223 // Address is an argument, so try to emit its dbg value using 5224 // virtual register info from the FuncInfo.ValueMap. 5225 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5226 return nullptr; 5227 } else { 5228 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5229 true, dl, SDNodeOrder); 5230 } 5231 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5232 } else { 5233 // If Address is an argument then try to emit its dbg value using 5234 // virtual register info from the FuncInfo.ValueMap. 5235 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5236 N)) { 5237 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5238 } 5239 } 5240 return nullptr; 5241 } 5242 case Intrinsic::dbg_value: { 5243 const DbgValueInst &DI = cast<DbgValueInst>(I); 5244 assert(DI.getVariable() && "Missing variable"); 5245 5246 DILocalVariable *Variable = DI.getVariable(); 5247 DIExpression *Expression = DI.getExpression(); 5248 const Value *V = DI.getValue(); 5249 if (!V) 5250 return nullptr; 5251 5252 SDDbgValue *SDV; 5253 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5254 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5255 DAG.AddDbgValue(SDV, nullptr, false); 5256 return nullptr; 5257 } 5258 5259 // Do not use getValue() in here; we don't want to generate code at 5260 // this point if it hasn't been done yet. 5261 SDValue N = NodeMap[V]; 5262 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5263 N = UnusedArgNodeMap[V]; 5264 if (N.getNode()) { 5265 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5266 return nullptr; 5267 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5268 DAG.AddDbgValue(SDV, N.getNode(), false); 5269 return nullptr; 5270 } 5271 5272 if (!V->use_empty() ) { 5273 // Do not call getValue(V) yet, as we don't want to generate code. 5274 // Remember it for later. 5275 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5276 DanglingDebugInfoMap[V] = DDI; 5277 return nullptr; 5278 } 5279 5280 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5281 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5282 return nullptr; 5283 } 5284 5285 case Intrinsic::eh_typeid_for: { 5286 // Find the type id for the given typeinfo. 5287 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5288 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5289 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5290 setValue(&I, Res); 5291 return nullptr; 5292 } 5293 5294 case Intrinsic::eh_return_i32: 5295 case Intrinsic::eh_return_i64: 5296 DAG.getMachineFunction().setCallsEHReturn(true); 5297 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5298 MVT::Other, 5299 getControlRoot(), 5300 getValue(I.getArgOperand(0)), 5301 getValue(I.getArgOperand(1)))); 5302 return nullptr; 5303 case Intrinsic::eh_unwind_init: 5304 DAG.getMachineFunction().setCallsUnwindInit(true); 5305 return nullptr; 5306 case Intrinsic::eh_dwarf_cfa: 5307 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5308 TLI.getPointerTy(DAG.getDataLayout()), 5309 getValue(I.getArgOperand(0)))); 5310 return nullptr; 5311 case Intrinsic::eh_sjlj_callsite: { 5312 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5313 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5314 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5315 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5316 5317 MMI.setCurrentCallSite(CI->getZExtValue()); 5318 return nullptr; 5319 } 5320 case Intrinsic::eh_sjlj_functioncontext: { 5321 // Get and store the index of the function context. 5322 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5323 AllocaInst *FnCtx = 5324 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5325 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5326 MFI.setFunctionContextIndex(FI); 5327 return nullptr; 5328 } 5329 case Intrinsic::eh_sjlj_setjmp: { 5330 SDValue Ops[2]; 5331 Ops[0] = getRoot(); 5332 Ops[1] = getValue(I.getArgOperand(0)); 5333 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5334 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5335 setValue(&I, Op.getValue(0)); 5336 DAG.setRoot(Op.getValue(1)); 5337 return nullptr; 5338 } 5339 case Intrinsic::eh_sjlj_longjmp: 5340 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5341 getRoot(), getValue(I.getArgOperand(0)))); 5342 return nullptr; 5343 case Intrinsic::eh_sjlj_setup_dispatch: 5344 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5345 getRoot())); 5346 return nullptr; 5347 case Intrinsic::masked_gather: 5348 visitMaskedGather(I); 5349 return nullptr; 5350 case Intrinsic::masked_load: 5351 visitMaskedLoad(I); 5352 return nullptr; 5353 case Intrinsic::masked_scatter: 5354 visitMaskedScatter(I); 5355 return nullptr; 5356 case Intrinsic::masked_store: 5357 visitMaskedStore(I); 5358 return nullptr; 5359 case Intrinsic::masked_expandload: 5360 visitMaskedLoad(I, true /* IsExpanding */); 5361 return nullptr; 5362 case Intrinsic::masked_compressstore: 5363 visitMaskedStore(I, true /* IsCompressing */); 5364 return nullptr; 5365 case Intrinsic::x86_mmx_pslli_w: 5366 case Intrinsic::x86_mmx_pslli_d: 5367 case Intrinsic::x86_mmx_pslli_q: 5368 case Intrinsic::x86_mmx_psrli_w: 5369 case Intrinsic::x86_mmx_psrli_d: 5370 case Intrinsic::x86_mmx_psrli_q: 5371 case Intrinsic::x86_mmx_psrai_w: 5372 case Intrinsic::x86_mmx_psrai_d: { 5373 SDValue ShAmt = getValue(I.getArgOperand(1)); 5374 if (isa<ConstantSDNode>(ShAmt)) { 5375 visitTargetIntrinsic(I, Intrinsic); 5376 return nullptr; 5377 } 5378 unsigned NewIntrinsic = 0; 5379 EVT ShAmtVT = MVT::v2i32; 5380 switch (Intrinsic) { 5381 case Intrinsic::x86_mmx_pslli_w: 5382 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5383 break; 5384 case Intrinsic::x86_mmx_pslli_d: 5385 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5386 break; 5387 case Intrinsic::x86_mmx_pslli_q: 5388 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5389 break; 5390 case Intrinsic::x86_mmx_psrli_w: 5391 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5392 break; 5393 case Intrinsic::x86_mmx_psrli_d: 5394 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5395 break; 5396 case Intrinsic::x86_mmx_psrli_q: 5397 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5398 break; 5399 case Intrinsic::x86_mmx_psrai_w: 5400 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5401 break; 5402 case Intrinsic::x86_mmx_psrai_d: 5403 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5404 break; 5405 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5406 } 5407 5408 // The vector shift intrinsics with scalars uses 32b shift amounts but 5409 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5410 // to be zero. 5411 // We must do this early because v2i32 is not a legal type. 5412 SDValue ShOps[2]; 5413 ShOps[0] = ShAmt; 5414 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5415 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5416 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5417 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5418 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5419 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5420 getValue(I.getArgOperand(0)), ShAmt); 5421 setValue(&I, Res); 5422 return nullptr; 5423 } 5424 case Intrinsic::powi: 5425 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5426 getValue(I.getArgOperand(1)), DAG)); 5427 return nullptr; 5428 case Intrinsic::log: 5429 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5430 return nullptr; 5431 case Intrinsic::log2: 5432 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5433 return nullptr; 5434 case Intrinsic::log10: 5435 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5436 return nullptr; 5437 case Intrinsic::exp: 5438 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5439 return nullptr; 5440 case Intrinsic::exp2: 5441 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5442 return nullptr; 5443 case Intrinsic::pow: 5444 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5445 getValue(I.getArgOperand(1)), DAG, TLI)); 5446 return nullptr; 5447 case Intrinsic::sqrt: 5448 case Intrinsic::fabs: 5449 case Intrinsic::sin: 5450 case Intrinsic::cos: 5451 case Intrinsic::floor: 5452 case Intrinsic::ceil: 5453 case Intrinsic::trunc: 5454 case Intrinsic::rint: 5455 case Intrinsic::nearbyint: 5456 case Intrinsic::round: 5457 case Intrinsic::canonicalize: { 5458 unsigned Opcode; 5459 switch (Intrinsic) { 5460 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5461 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5462 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5463 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5464 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5465 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5466 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5467 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5468 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5469 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5470 case Intrinsic::round: Opcode = ISD::FROUND; break; 5471 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5472 } 5473 5474 setValue(&I, DAG.getNode(Opcode, sdl, 5475 getValue(I.getArgOperand(0)).getValueType(), 5476 getValue(I.getArgOperand(0)))); 5477 return nullptr; 5478 } 5479 case Intrinsic::minnum: { 5480 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5481 unsigned Opc = 5482 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5483 ? ISD::FMINNAN 5484 : ISD::FMINNUM; 5485 setValue(&I, DAG.getNode(Opc, sdl, VT, 5486 getValue(I.getArgOperand(0)), 5487 getValue(I.getArgOperand(1)))); 5488 return nullptr; 5489 } 5490 case Intrinsic::maxnum: { 5491 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5492 unsigned Opc = 5493 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5494 ? ISD::FMAXNAN 5495 : ISD::FMAXNUM; 5496 setValue(&I, DAG.getNode(Opc, sdl, VT, 5497 getValue(I.getArgOperand(0)), 5498 getValue(I.getArgOperand(1)))); 5499 return nullptr; 5500 } 5501 case Intrinsic::copysign: 5502 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5503 getValue(I.getArgOperand(0)).getValueType(), 5504 getValue(I.getArgOperand(0)), 5505 getValue(I.getArgOperand(1)))); 5506 return nullptr; 5507 case Intrinsic::fma: 5508 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5509 getValue(I.getArgOperand(0)).getValueType(), 5510 getValue(I.getArgOperand(0)), 5511 getValue(I.getArgOperand(1)), 5512 getValue(I.getArgOperand(2)))); 5513 return nullptr; 5514 case Intrinsic::experimental_constrained_fadd: 5515 case Intrinsic::experimental_constrained_fsub: 5516 case Intrinsic::experimental_constrained_fmul: 5517 case Intrinsic::experimental_constrained_fdiv: 5518 case Intrinsic::experimental_constrained_frem: 5519 case Intrinsic::experimental_constrained_fma: 5520 case Intrinsic::experimental_constrained_sqrt: 5521 case Intrinsic::experimental_constrained_pow: 5522 case Intrinsic::experimental_constrained_powi: 5523 case Intrinsic::experimental_constrained_sin: 5524 case Intrinsic::experimental_constrained_cos: 5525 case Intrinsic::experimental_constrained_exp: 5526 case Intrinsic::experimental_constrained_exp2: 5527 case Intrinsic::experimental_constrained_log: 5528 case Intrinsic::experimental_constrained_log10: 5529 case Intrinsic::experimental_constrained_log2: 5530 case Intrinsic::experimental_constrained_rint: 5531 case Intrinsic::experimental_constrained_nearbyint: 5532 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5533 return nullptr; 5534 case Intrinsic::fmuladd: { 5535 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5536 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5537 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5538 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5539 getValue(I.getArgOperand(0)).getValueType(), 5540 getValue(I.getArgOperand(0)), 5541 getValue(I.getArgOperand(1)), 5542 getValue(I.getArgOperand(2)))); 5543 } else { 5544 // TODO: Intrinsic calls should have fast-math-flags. 5545 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5546 getValue(I.getArgOperand(0)).getValueType(), 5547 getValue(I.getArgOperand(0)), 5548 getValue(I.getArgOperand(1))); 5549 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5550 getValue(I.getArgOperand(0)).getValueType(), 5551 Mul, 5552 getValue(I.getArgOperand(2))); 5553 setValue(&I, Add); 5554 } 5555 return nullptr; 5556 } 5557 case Intrinsic::convert_to_fp16: 5558 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5559 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5560 getValue(I.getArgOperand(0)), 5561 DAG.getTargetConstant(0, sdl, 5562 MVT::i32)))); 5563 return nullptr; 5564 case Intrinsic::convert_from_fp16: 5565 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5566 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5567 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5568 getValue(I.getArgOperand(0))))); 5569 return nullptr; 5570 case Intrinsic::pcmarker: { 5571 SDValue Tmp = getValue(I.getArgOperand(0)); 5572 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5573 return nullptr; 5574 } 5575 case Intrinsic::readcyclecounter: { 5576 SDValue Op = getRoot(); 5577 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5578 DAG.getVTList(MVT::i64, MVT::Other), Op); 5579 setValue(&I, Res); 5580 DAG.setRoot(Res.getValue(1)); 5581 return nullptr; 5582 } 5583 case Intrinsic::bitreverse: 5584 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5585 getValue(I.getArgOperand(0)).getValueType(), 5586 getValue(I.getArgOperand(0)))); 5587 return nullptr; 5588 case Intrinsic::bswap: 5589 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5590 getValue(I.getArgOperand(0)).getValueType(), 5591 getValue(I.getArgOperand(0)))); 5592 return nullptr; 5593 case Intrinsic::cttz: { 5594 SDValue Arg = getValue(I.getArgOperand(0)); 5595 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5596 EVT Ty = Arg.getValueType(); 5597 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5598 sdl, Ty, Arg)); 5599 return nullptr; 5600 } 5601 case Intrinsic::ctlz: { 5602 SDValue Arg = getValue(I.getArgOperand(0)); 5603 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5604 EVT Ty = Arg.getValueType(); 5605 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5606 sdl, Ty, Arg)); 5607 return nullptr; 5608 } 5609 case Intrinsic::ctpop: { 5610 SDValue Arg = getValue(I.getArgOperand(0)); 5611 EVT Ty = Arg.getValueType(); 5612 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5613 return nullptr; 5614 } 5615 case Intrinsic::stacksave: { 5616 SDValue Op = getRoot(); 5617 Res = DAG.getNode( 5618 ISD::STACKSAVE, sdl, 5619 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5620 setValue(&I, Res); 5621 DAG.setRoot(Res.getValue(1)); 5622 return nullptr; 5623 } 5624 case Intrinsic::stackrestore: 5625 Res = getValue(I.getArgOperand(0)); 5626 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5627 return nullptr; 5628 case Intrinsic::get_dynamic_area_offset: { 5629 SDValue Op = getRoot(); 5630 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5631 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5632 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5633 // target. 5634 if (PtrTy != ResTy) 5635 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5636 " intrinsic!"); 5637 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5638 Op); 5639 DAG.setRoot(Op); 5640 setValue(&I, Res); 5641 return nullptr; 5642 } 5643 case Intrinsic::stackguard: { 5644 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5645 MachineFunction &MF = DAG.getMachineFunction(); 5646 const Module &M = *MF.getFunction()->getParent(); 5647 SDValue Chain = getRoot(); 5648 if (TLI.useLoadStackGuardNode()) { 5649 Res = getLoadStackGuard(DAG, sdl, Chain); 5650 } else { 5651 const Value *Global = TLI.getSDagStackGuard(M); 5652 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5653 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5654 MachinePointerInfo(Global, 0), Align, 5655 MachineMemOperand::MOVolatile); 5656 } 5657 DAG.setRoot(Chain); 5658 setValue(&I, Res); 5659 return nullptr; 5660 } 5661 case Intrinsic::stackprotector: { 5662 // Emit code into the DAG to store the stack guard onto the stack. 5663 MachineFunction &MF = DAG.getMachineFunction(); 5664 MachineFrameInfo &MFI = MF.getFrameInfo(); 5665 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5666 SDValue Src, Chain = getRoot(); 5667 5668 if (TLI.useLoadStackGuardNode()) 5669 Src = getLoadStackGuard(DAG, sdl, Chain); 5670 else 5671 Src = getValue(I.getArgOperand(0)); // The guard's value. 5672 5673 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5674 5675 int FI = FuncInfo.StaticAllocaMap[Slot]; 5676 MFI.setStackProtectorIndex(FI); 5677 5678 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5679 5680 // Store the stack protector onto the stack. 5681 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5682 DAG.getMachineFunction(), FI), 5683 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5684 setValue(&I, Res); 5685 DAG.setRoot(Res); 5686 return nullptr; 5687 } 5688 case Intrinsic::objectsize: { 5689 // If we don't know by now, we're never going to know. 5690 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5691 5692 assert(CI && "Non-constant type in __builtin_object_size?"); 5693 5694 SDValue Arg = getValue(I.getCalledValue()); 5695 EVT Ty = Arg.getValueType(); 5696 5697 if (CI->isZero()) 5698 Res = DAG.getConstant(-1ULL, sdl, Ty); 5699 else 5700 Res = DAG.getConstant(0, sdl, Ty); 5701 5702 setValue(&I, Res); 5703 return nullptr; 5704 } 5705 case Intrinsic::annotation: 5706 case Intrinsic::ptr_annotation: 5707 case Intrinsic::invariant_group_barrier: 5708 // Drop the intrinsic, but forward the value 5709 setValue(&I, getValue(I.getOperand(0))); 5710 return nullptr; 5711 case Intrinsic::assume: 5712 case Intrinsic::var_annotation: 5713 case Intrinsic::sideeffect: 5714 // Discard annotate attributes, assumptions, and artificial side-effects. 5715 return nullptr; 5716 5717 case Intrinsic::codeview_annotation: { 5718 // Emit a label associated with this metadata. 5719 MachineFunction &MF = DAG.getMachineFunction(); 5720 MCSymbol *Label = 5721 MF.getMMI().getContext().createTempSymbol("annotation", true); 5722 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5723 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5724 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5725 DAG.setRoot(Res); 5726 return nullptr; 5727 } 5728 5729 case Intrinsic::init_trampoline: { 5730 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5731 5732 SDValue Ops[6]; 5733 Ops[0] = getRoot(); 5734 Ops[1] = getValue(I.getArgOperand(0)); 5735 Ops[2] = getValue(I.getArgOperand(1)); 5736 Ops[3] = getValue(I.getArgOperand(2)); 5737 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5738 Ops[5] = DAG.getSrcValue(F); 5739 5740 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5741 5742 DAG.setRoot(Res); 5743 return nullptr; 5744 } 5745 case Intrinsic::adjust_trampoline: 5746 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5747 TLI.getPointerTy(DAG.getDataLayout()), 5748 getValue(I.getArgOperand(0)))); 5749 return nullptr; 5750 case Intrinsic::gcroot: { 5751 MachineFunction &MF = DAG.getMachineFunction(); 5752 const Function *F = MF.getFunction(); 5753 (void)F; 5754 assert(F->hasGC() && 5755 "only valid in functions with gc specified, enforced by Verifier"); 5756 assert(GFI && "implied by previous"); 5757 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5758 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5759 5760 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5761 GFI->addStackRoot(FI->getIndex(), TypeMap); 5762 return nullptr; 5763 } 5764 case Intrinsic::gcread: 5765 case Intrinsic::gcwrite: 5766 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5767 case Intrinsic::flt_rounds: 5768 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5769 return nullptr; 5770 5771 case Intrinsic::expect: 5772 // Just replace __builtin_expect(exp, c) with EXP. 5773 setValue(&I, getValue(I.getArgOperand(0))); 5774 return nullptr; 5775 5776 case Intrinsic::debugtrap: 5777 case Intrinsic::trap: { 5778 StringRef TrapFuncName = 5779 I.getAttributes() 5780 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5781 .getValueAsString(); 5782 if (TrapFuncName.empty()) { 5783 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5784 ISD::TRAP : ISD::DEBUGTRAP; 5785 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5786 return nullptr; 5787 } 5788 TargetLowering::ArgListTy Args; 5789 5790 TargetLowering::CallLoweringInfo CLI(DAG); 5791 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5792 CallingConv::C, I.getType(), 5793 DAG.getExternalSymbol(TrapFuncName.data(), 5794 TLI.getPointerTy(DAG.getDataLayout())), 5795 std::move(Args)); 5796 5797 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5798 DAG.setRoot(Result.second); 5799 return nullptr; 5800 } 5801 5802 case Intrinsic::uadd_with_overflow: 5803 case Intrinsic::sadd_with_overflow: 5804 case Intrinsic::usub_with_overflow: 5805 case Intrinsic::ssub_with_overflow: 5806 case Intrinsic::umul_with_overflow: 5807 case Intrinsic::smul_with_overflow: { 5808 ISD::NodeType Op; 5809 switch (Intrinsic) { 5810 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5811 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5812 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5813 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5814 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5815 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5816 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5817 } 5818 SDValue Op1 = getValue(I.getArgOperand(0)); 5819 SDValue Op2 = getValue(I.getArgOperand(1)); 5820 5821 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5822 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5823 return nullptr; 5824 } 5825 case Intrinsic::prefetch: { 5826 SDValue Ops[5]; 5827 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5828 Ops[0] = getRoot(); 5829 Ops[1] = getValue(I.getArgOperand(0)); 5830 Ops[2] = getValue(I.getArgOperand(1)); 5831 Ops[3] = getValue(I.getArgOperand(2)); 5832 Ops[4] = getValue(I.getArgOperand(3)); 5833 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5834 DAG.getVTList(MVT::Other), Ops, 5835 EVT::getIntegerVT(*Context, 8), 5836 MachinePointerInfo(I.getArgOperand(0)), 5837 0, /* align */ 5838 false, /* volatile */ 5839 rw==0, /* read */ 5840 rw==1)); /* write */ 5841 return nullptr; 5842 } 5843 case Intrinsic::lifetime_start: 5844 case Intrinsic::lifetime_end: { 5845 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5846 // Stack coloring is not enabled in O0, discard region information. 5847 if (TM.getOptLevel() == CodeGenOpt::None) 5848 return nullptr; 5849 5850 SmallVector<Value *, 4> Allocas; 5851 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5852 5853 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5854 E = Allocas.end(); Object != E; ++Object) { 5855 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5856 5857 // Could not find an Alloca. 5858 if (!LifetimeObject) 5859 continue; 5860 5861 // First check that the Alloca is static, otherwise it won't have a 5862 // valid frame index. 5863 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5864 if (SI == FuncInfo.StaticAllocaMap.end()) 5865 return nullptr; 5866 5867 int FI = SI->second; 5868 5869 SDValue Ops[2]; 5870 Ops[0] = getRoot(); 5871 Ops[1] = 5872 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5873 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5874 5875 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5876 DAG.setRoot(Res); 5877 } 5878 return nullptr; 5879 } 5880 case Intrinsic::invariant_start: 5881 // Discard region information. 5882 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5883 return nullptr; 5884 case Intrinsic::invariant_end: 5885 // Discard region information. 5886 return nullptr; 5887 case Intrinsic::clear_cache: 5888 return TLI.getClearCacheBuiltinName(); 5889 case Intrinsic::donothing: 5890 // ignore 5891 return nullptr; 5892 case Intrinsic::experimental_stackmap: 5893 visitStackmap(I); 5894 return nullptr; 5895 case Intrinsic::experimental_patchpoint_void: 5896 case Intrinsic::experimental_patchpoint_i64: 5897 visitPatchpoint(&I); 5898 return nullptr; 5899 case Intrinsic::experimental_gc_statepoint: 5900 LowerStatepoint(ImmutableStatepoint(&I)); 5901 return nullptr; 5902 case Intrinsic::experimental_gc_result: 5903 visitGCResult(cast<GCResultInst>(I)); 5904 return nullptr; 5905 case Intrinsic::experimental_gc_relocate: 5906 visitGCRelocate(cast<GCRelocateInst>(I)); 5907 return nullptr; 5908 case Intrinsic::instrprof_increment: 5909 llvm_unreachable("instrprof failed to lower an increment"); 5910 case Intrinsic::instrprof_value_profile: 5911 llvm_unreachable("instrprof failed to lower a value profiling call"); 5912 case Intrinsic::localescape: { 5913 MachineFunction &MF = DAG.getMachineFunction(); 5914 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5915 5916 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5917 // is the same on all targets. 5918 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5919 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5920 if (isa<ConstantPointerNull>(Arg)) 5921 continue; // Skip null pointers. They represent a hole in index space. 5922 AllocaInst *Slot = cast<AllocaInst>(Arg); 5923 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5924 "can only escape static allocas"); 5925 int FI = FuncInfo.StaticAllocaMap[Slot]; 5926 MCSymbol *FrameAllocSym = 5927 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5928 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5929 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5930 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5931 .addSym(FrameAllocSym) 5932 .addFrameIndex(FI); 5933 } 5934 5935 return nullptr; 5936 } 5937 5938 case Intrinsic::localrecover: { 5939 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5940 MachineFunction &MF = DAG.getMachineFunction(); 5941 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5942 5943 // Get the symbol that defines the frame offset. 5944 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5945 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5946 unsigned IdxVal = 5947 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 5948 MCSymbol *FrameAllocSym = 5949 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5950 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 5951 5952 // Create a MCSymbol for the label to avoid any target lowering 5953 // that would make this PC relative. 5954 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5955 SDValue OffsetVal = 5956 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5957 5958 // Add the offset to the FP. 5959 Value *FP = I.getArgOperand(1); 5960 SDValue FPVal = getValue(FP); 5961 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5962 setValue(&I, Add); 5963 5964 return nullptr; 5965 } 5966 5967 case Intrinsic::eh_exceptionpointer: 5968 case Intrinsic::eh_exceptioncode: { 5969 // Get the exception pointer vreg, copy from it, and resize it to fit. 5970 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5971 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5972 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5973 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5974 SDValue N = 5975 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5976 if (Intrinsic == Intrinsic::eh_exceptioncode) 5977 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5978 setValue(&I, N); 5979 return nullptr; 5980 } 5981 case Intrinsic::xray_customevent: { 5982 // Here we want to make sure that the intrinsic behaves as if it has a 5983 // specific calling convention, and only for x86_64. 5984 // FIXME: Support other platforms later. 5985 const auto &Triple = DAG.getTarget().getTargetTriple(); 5986 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 5987 return nullptr; 5988 5989 SDLoc DL = getCurSDLoc(); 5990 SmallVector<SDValue, 8> Ops; 5991 5992 // We want to say that we always want the arguments in registers. 5993 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 5994 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 5995 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 5996 SDValue Chain = getRoot(); 5997 Ops.push_back(LogEntryVal); 5998 Ops.push_back(StrSizeVal); 5999 Ops.push_back(Chain); 6000 6001 // We need to enforce the calling convention for the callsite, so that 6002 // argument ordering is enforced correctly, and that register allocation can 6003 // see that some registers may be assumed clobbered and have to preserve 6004 // them across calls to the intrinsic. 6005 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6006 DL, NodeTys, Ops); 6007 SDValue patchableNode = SDValue(MN, 0); 6008 DAG.setRoot(patchableNode); 6009 setValue(&I, patchableNode); 6010 return nullptr; 6011 } 6012 case Intrinsic::experimental_deoptimize: 6013 LowerDeoptimizeCall(&I); 6014 return nullptr; 6015 6016 case Intrinsic::experimental_vector_reduce_fadd: 6017 case Intrinsic::experimental_vector_reduce_fmul: 6018 case Intrinsic::experimental_vector_reduce_add: 6019 case Intrinsic::experimental_vector_reduce_mul: 6020 case Intrinsic::experimental_vector_reduce_and: 6021 case Intrinsic::experimental_vector_reduce_or: 6022 case Intrinsic::experimental_vector_reduce_xor: 6023 case Intrinsic::experimental_vector_reduce_smax: 6024 case Intrinsic::experimental_vector_reduce_smin: 6025 case Intrinsic::experimental_vector_reduce_umax: 6026 case Intrinsic::experimental_vector_reduce_umin: 6027 case Intrinsic::experimental_vector_reduce_fmax: 6028 case Intrinsic::experimental_vector_reduce_fmin: 6029 visitVectorReduce(I, Intrinsic); 6030 return nullptr; 6031 } 6032 } 6033 6034 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6035 const ConstrainedFPIntrinsic &FPI) { 6036 SDLoc sdl = getCurSDLoc(); 6037 unsigned Opcode; 6038 switch (FPI.getIntrinsicID()) { 6039 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6040 case Intrinsic::experimental_constrained_fadd: 6041 Opcode = ISD::STRICT_FADD; 6042 break; 6043 case Intrinsic::experimental_constrained_fsub: 6044 Opcode = ISD::STRICT_FSUB; 6045 break; 6046 case Intrinsic::experimental_constrained_fmul: 6047 Opcode = ISD::STRICT_FMUL; 6048 break; 6049 case Intrinsic::experimental_constrained_fdiv: 6050 Opcode = ISD::STRICT_FDIV; 6051 break; 6052 case Intrinsic::experimental_constrained_frem: 6053 Opcode = ISD::STRICT_FREM; 6054 break; 6055 case Intrinsic::experimental_constrained_fma: 6056 Opcode = ISD::STRICT_FMA; 6057 break; 6058 case Intrinsic::experimental_constrained_sqrt: 6059 Opcode = ISD::STRICT_FSQRT; 6060 break; 6061 case Intrinsic::experimental_constrained_pow: 6062 Opcode = ISD::STRICT_FPOW; 6063 break; 6064 case Intrinsic::experimental_constrained_powi: 6065 Opcode = ISD::STRICT_FPOWI; 6066 break; 6067 case Intrinsic::experimental_constrained_sin: 6068 Opcode = ISD::STRICT_FSIN; 6069 break; 6070 case Intrinsic::experimental_constrained_cos: 6071 Opcode = ISD::STRICT_FCOS; 6072 break; 6073 case Intrinsic::experimental_constrained_exp: 6074 Opcode = ISD::STRICT_FEXP; 6075 break; 6076 case Intrinsic::experimental_constrained_exp2: 6077 Opcode = ISD::STRICT_FEXP2; 6078 break; 6079 case Intrinsic::experimental_constrained_log: 6080 Opcode = ISD::STRICT_FLOG; 6081 break; 6082 case Intrinsic::experimental_constrained_log10: 6083 Opcode = ISD::STRICT_FLOG10; 6084 break; 6085 case Intrinsic::experimental_constrained_log2: 6086 Opcode = ISD::STRICT_FLOG2; 6087 break; 6088 case Intrinsic::experimental_constrained_rint: 6089 Opcode = ISD::STRICT_FRINT; 6090 break; 6091 case Intrinsic::experimental_constrained_nearbyint: 6092 Opcode = ISD::STRICT_FNEARBYINT; 6093 break; 6094 } 6095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6096 SDValue Chain = getRoot(); 6097 SmallVector<EVT, 4> ValueVTs; 6098 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6099 ValueVTs.push_back(MVT::Other); // Out chain 6100 6101 SDVTList VTs = DAG.getVTList(ValueVTs); 6102 SDValue Result; 6103 if (FPI.isUnaryOp()) 6104 Result = DAG.getNode(Opcode, sdl, VTs, 6105 { Chain, getValue(FPI.getArgOperand(0)) }); 6106 else if (FPI.isTernaryOp()) 6107 Result = DAG.getNode(Opcode, sdl, VTs, 6108 { Chain, getValue(FPI.getArgOperand(0)), 6109 getValue(FPI.getArgOperand(1)), 6110 getValue(FPI.getArgOperand(2)) }); 6111 else 6112 Result = DAG.getNode(Opcode, sdl, VTs, 6113 { Chain, getValue(FPI.getArgOperand(0)), 6114 getValue(FPI.getArgOperand(1)) }); 6115 6116 assert(Result.getNode()->getNumValues() == 2); 6117 SDValue OutChain = Result.getValue(1); 6118 DAG.setRoot(OutChain); 6119 SDValue FPResult = Result.getValue(0); 6120 setValue(&FPI, FPResult); 6121 } 6122 6123 std::pair<SDValue, SDValue> 6124 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6125 const BasicBlock *EHPadBB) { 6126 MachineFunction &MF = DAG.getMachineFunction(); 6127 MachineModuleInfo &MMI = MF.getMMI(); 6128 MCSymbol *BeginLabel = nullptr; 6129 6130 if (EHPadBB) { 6131 // Insert a label before the invoke call to mark the try range. This can be 6132 // used to detect deletion of the invoke via the MachineModuleInfo. 6133 BeginLabel = MMI.getContext().createTempSymbol(); 6134 6135 // For SjLj, keep track of which landing pads go with which invokes 6136 // so as to maintain the ordering of pads in the LSDA. 6137 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6138 if (CallSiteIndex) { 6139 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6140 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6141 6142 // Now that the call site is handled, stop tracking it. 6143 MMI.setCurrentCallSite(0); 6144 } 6145 6146 // Both PendingLoads and PendingExports must be flushed here; 6147 // this call might not return. 6148 (void)getRoot(); 6149 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6150 6151 CLI.setChain(getRoot()); 6152 } 6153 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6154 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6155 6156 assert((CLI.IsTailCall || Result.second.getNode()) && 6157 "Non-null chain expected with non-tail call!"); 6158 assert((Result.second.getNode() || !Result.first.getNode()) && 6159 "Null value expected with tail call!"); 6160 6161 if (!Result.second.getNode()) { 6162 // As a special case, a null chain means that a tail call has been emitted 6163 // and the DAG root is already updated. 6164 HasTailCall = true; 6165 6166 // Since there's no actual continuation from this block, nothing can be 6167 // relying on us setting vregs for them. 6168 PendingExports.clear(); 6169 } else { 6170 DAG.setRoot(Result.second); 6171 } 6172 6173 if (EHPadBB) { 6174 // Insert a label at the end of the invoke call to mark the try range. This 6175 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6176 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6177 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6178 6179 // Inform MachineModuleInfo of range. 6180 if (MF.hasEHFunclets()) { 6181 assert(CLI.CS); 6182 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6183 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6184 BeginLabel, EndLabel); 6185 } else { 6186 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6187 } 6188 } 6189 6190 return Result; 6191 } 6192 6193 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6194 bool isTailCall, 6195 const BasicBlock *EHPadBB) { 6196 auto &DL = DAG.getDataLayout(); 6197 FunctionType *FTy = CS.getFunctionType(); 6198 Type *RetTy = CS.getType(); 6199 6200 TargetLowering::ArgListTy Args; 6201 Args.reserve(CS.arg_size()); 6202 6203 const Value *SwiftErrorVal = nullptr; 6204 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6205 6206 // We can't tail call inside a function with a swifterror argument. Lowering 6207 // does not support this yet. It would have to move into the swifterror 6208 // register before the call. 6209 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6210 if (TLI.supportSwiftError() && 6211 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6212 isTailCall = false; 6213 6214 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6215 i != e; ++i) { 6216 TargetLowering::ArgListEntry Entry; 6217 const Value *V = *i; 6218 6219 // Skip empty types 6220 if (V->getType()->isEmptyTy()) 6221 continue; 6222 6223 SDValue ArgNode = getValue(V); 6224 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6225 6226 Entry.setAttributes(&CS, i - CS.arg_begin()); 6227 6228 // Use swifterror virtual register as input to the call. 6229 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6230 SwiftErrorVal = V; 6231 // We find the virtual register for the actual swifterror argument. 6232 // Instead of using the Value, we use the virtual register instead. 6233 Entry.Node = DAG.getRegister(FuncInfo 6234 .getOrCreateSwiftErrorVRegUseAt( 6235 CS.getInstruction(), FuncInfo.MBB, V) 6236 .first, 6237 EVT(TLI.getPointerTy(DL))); 6238 } 6239 6240 Args.push_back(Entry); 6241 6242 // If we have an explicit sret argument that is an Instruction, (i.e., it 6243 // might point to function-local memory), we can't meaningfully tail-call. 6244 if (Entry.IsSRet && isa<Instruction>(V)) 6245 isTailCall = false; 6246 } 6247 6248 // Check if target-independent constraints permit a tail call here. 6249 // Target-dependent constraints are checked within TLI->LowerCallTo. 6250 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6251 isTailCall = false; 6252 6253 // Disable tail calls if there is an swifterror argument. Targets have not 6254 // been updated to support tail calls. 6255 if (TLI.supportSwiftError() && SwiftErrorVal) 6256 isTailCall = false; 6257 6258 TargetLowering::CallLoweringInfo CLI(DAG); 6259 CLI.setDebugLoc(getCurSDLoc()) 6260 .setChain(getRoot()) 6261 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6262 .setTailCall(isTailCall) 6263 .setConvergent(CS.isConvergent()); 6264 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6265 6266 if (Result.first.getNode()) { 6267 const Instruction *Inst = CS.getInstruction(); 6268 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6269 setValue(Inst, Result.first); 6270 } 6271 6272 // The last element of CLI.InVals has the SDValue for swifterror return. 6273 // Here we copy it to a virtual register and update SwiftErrorMap for 6274 // book-keeping. 6275 if (SwiftErrorVal && TLI.supportSwiftError()) { 6276 // Get the last element of InVals. 6277 SDValue Src = CLI.InVals.back(); 6278 unsigned VReg; bool CreatedVReg; 6279 std::tie(VReg, CreatedVReg) = 6280 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6281 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6282 // We update the virtual register for the actual swifterror argument. 6283 if (CreatedVReg) 6284 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6285 DAG.setRoot(CopyNode); 6286 } 6287 } 6288 6289 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6290 SelectionDAGBuilder &Builder) { 6291 // Check to see if this load can be trivially constant folded, e.g. if the 6292 // input is from a string literal. 6293 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6294 // Cast pointer to the type we really want to load. 6295 Type *LoadTy = 6296 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6297 if (LoadVT.isVector()) 6298 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6299 6300 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6301 PointerType::getUnqual(LoadTy)); 6302 6303 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6304 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6305 return Builder.getValue(LoadCst); 6306 } 6307 6308 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6309 // still constant memory, the input chain can be the entry node. 6310 SDValue Root; 6311 bool ConstantMemory = false; 6312 6313 // Do not serialize (non-volatile) loads of constant memory with anything. 6314 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6315 Root = Builder.DAG.getEntryNode(); 6316 ConstantMemory = true; 6317 } else { 6318 // Do not serialize non-volatile loads against each other. 6319 Root = Builder.DAG.getRoot(); 6320 } 6321 6322 SDValue Ptr = Builder.getValue(PtrVal); 6323 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6324 Ptr, MachinePointerInfo(PtrVal), 6325 /* Alignment = */ 1); 6326 6327 if (!ConstantMemory) 6328 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6329 return LoadVal; 6330 } 6331 6332 /// Record the value for an instruction that produces an integer result, 6333 /// converting the type where necessary. 6334 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6335 SDValue Value, 6336 bool IsSigned) { 6337 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6338 I.getType(), true); 6339 if (IsSigned) 6340 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6341 else 6342 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6343 setValue(&I, Value); 6344 } 6345 6346 /// See if we can lower a memcmp call into an optimized form. If so, return 6347 /// true and lower it. Otherwise return false, and it will be lowered like a 6348 /// normal call. 6349 /// The caller already checked that \p I calls the appropriate LibFunc with a 6350 /// correct prototype. 6351 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6352 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6353 const Value *Size = I.getArgOperand(2); 6354 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6355 if (CSize && CSize->getZExtValue() == 0) { 6356 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6357 I.getType(), true); 6358 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6359 return true; 6360 } 6361 6362 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6363 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6364 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6365 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6366 if (Res.first.getNode()) { 6367 processIntegerCallValue(I, Res.first, true); 6368 PendingLoads.push_back(Res.second); 6369 return true; 6370 } 6371 6372 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6373 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6374 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6375 return false; 6376 6377 // If the target has a fast compare for the given size, it will return a 6378 // preferred load type for that size. Require that the load VT is legal and 6379 // that the target supports unaligned loads of that type. Otherwise, return 6380 // INVALID. 6381 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6382 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6383 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6384 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6385 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6386 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6387 // TODO: Check alignment of src and dest ptrs. 6388 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6389 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6390 if (!TLI.isTypeLegal(LVT) || 6391 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6392 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6393 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6394 } 6395 6396 return LVT; 6397 }; 6398 6399 // This turns into unaligned loads. We only do this if the target natively 6400 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6401 // we'll only produce a small number of byte loads. 6402 MVT LoadVT; 6403 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6404 switch (NumBitsToCompare) { 6405 default: 6406 return false; 6407 case 16: 6408 LoadVT = MVT::i16; 6409 break; 6410 case 32: 6411 LoadVT = MVT::i32; 6412 break; 6413 case 64: 6414 case 128: 6415 case 256: 6416 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6417 break; 6418 } 6419 6420 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6421 return false; 6422 6423 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6424 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6425 6426 // Bitcast to a wide integer type if the loads are vectors. 6427 if (LoadVT.isVector()) { 6428 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6429 LoadL = DAG.getBitcast(CmpVT, LoadL); 6430 LoadR = DAG.getBitcast(CmpVT, LoadR); 6431 } 6432 6433 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6434 processIntegerCallValue(I, Cmp, false); 6435 return true; 6436 } 6437 6438 /// See if we can lower a memchr call into an optimized form. If so, return 6439 /// true and lower it. Otherwise return false, and it will be lowered like a 6440 /// normal call. 6441 /// The caller already checked that \p I calls the appropriate LibFunc with a 6442 /// correct prototype. 6443 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6444 const Value *Src = I.getArgOperand(0); 6445 const Value *Char = I.getArgOperand(1); 6446 const Value *Length = I.getArgOperand(2); 6447 6448 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6449 std::pair<SDValue, SDValue> Res = 6450 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6451 getValue(Src), getValue(Char), getValue(Length), 6452 MachinePointerInfo(Src)); 6453 if (Res.first.getNode()) { 6454 setValue(&I, Res.first); 6455 PendingLoads.push_back(Res.second); 6456 return true; 6457 } 6458 6459 return false; 6460 } 6461 6462 /// See if we can lower a mempcpy call into an optimized form. If so, return 6463 /// true and lower it. Otherwise return false, and it will be lowered like a 6464 /// normal call. 6465 /// The caller already checked that \p I calls the appropriate LibFunc with a 6466 /// correct prototype. 6467 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6468 SDValue Dst = getValue(I.getArgOperand(0)); 6469 SDValue Src = getValue(I.getArgOperand(1)); 6470 SDValue Size = getValue(I.getArgOperand(2)); 6471 6472 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6473 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6474 unsigned Align = std::min(DstAlign, SrcAlign); 6475 if (Align == 0) // Alignment of one or both could not be inferred. 6476 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6477 6478 bool isVol = false; 6479 SDLoc sdl = getCurSDLoc(); 6480 6481 // In the mempcpy context we need to pass in a false value for isTailCall 6482 // because the return pointer needs to be adjusted by the size of 6483 // the copied memory. 6484 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6485 false, /*isTailCall=*/false, 6486 MachinePointerInfo(I.getArgOperand(0)), 6487 MachinePointerInfo(I.getArgOperand(1))); 6488 assert(MC.getNode() != nullptr && 6489 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6490 DAG.setRoot(MC); 6491 6492 // Check if Size needs to be truncated or extended. 6493 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6494 6495 // Adjust return pointer to point just past the last dst byte. 6496 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6497 Dst, Size); 6498 setValue(&I, DstPlusSize); 6499 return true; 6500 } 6501 6502 /// See if we can lower a strcpy call into an optimized form. If so, return 6503 /// true and lower it, otherwise return false and it will be lowered like a 6504 /// normal call. 6505 /// The caller already checked that \p I calls the appropriate LibFunc with a 6506 /// correct prototype. 6507 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6508 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6509 6510 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6511 std::pair<SDValue, SDValue> Res = 6512 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6513 getValue(Arg0), getValue(Arg1), 6514 MachinePointerInfo(Arg0), 6515 MachinePointerInfo(Arg1), isStpcpy); 6516 if (Res.first.getNode()) { 6517 setValue(&I, Res.first); 6518 DAG.setRoot(Res.second); 6519 return true; 6520 } 6521 6522 return false; 6523 } 6524 6525 /// See if we can lower a strcmp call into an optimized form. If so, return 6526 /// true and lower it, otherwise return false and it will be lowered like a 6527 /// normal call. 6528 /// The caller already checked that \p I calls the appropriate LibFunc with a 6529 /// correct prototype. 6530 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6531 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6532 6533 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6534 std::pair<SDValue, SDValue> Res = 6535 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6536 getValue(Arg0), getValue(Arg1), 6537 MachinePointerInfo(Arg0), 6538 MachinePointerInfo(Arg1)); 6539 if (Res.first.getNode()) { 6540 processIntegerCallValue(I, Res.first, true); 6541 PendingLoads.push_back(Res.second); 6542 return true; 6543 } 6544 6545 return false; 6546 } 6547 6548 /// See if we can lower a strlen call into an optimized form. If so, return 6549 /// true and lower it, otherwise return false and it will be lowered like a 6550 /// normal call. 6551 /// The caller already checked that \p I calls the appropriate LibFunc with a 6552 /// correct prototype. 6553 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6554 const Value *Arg0 = I.getArgOperand(0); 6555 6556 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6557 std::pair<SDValue, SDValue> Res = 6558 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6559 getValue(Arg0), MachinePointerInfo(Arg0)); 6560 if (Res.first.getNode()) { 6561 processIntegerCallValue(I, Res.first, false); 6562 PendingLoads.push_back(Res.second); 6563 return true; 6564 } 6565 6566 return false; 6567 } 6568 6569 /// See if we can lower a strnlen call into an optimized form. If so, return 6570 /// true and lower it, otherwise return false and it will be lowered like a 6571 /// normal call. 6572 /// The caller already checked that \p I calls the appropriate LibFunc with a 6573 /// correct prototype. 6574 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6575 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6576 6577 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6578 std::pair<SDValue, SDValue> Res = 6579 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6580 getValue(Arg0), getValue(Arg1), 6581 MachinePointerInfo(Arg0)); 6582 if (Res.first.getNode()) { 6583 processIntegerCallValue(I, Res.first, false); 6584 PendingLoads.push_back(Res.second); 6585 return true; 6586 } 6587 6588 return false; 6589 } 6590 6591 /// See if we can lower a unary floating-point operation into an SDNode with 6592 /// the specified Opcode. If so, return true and lower it, otherwise return 6593 /// false and it will be lowered like a normal call. 6594 /// The caller already checked that \p I calls the appropriate LibFunc with a 6595 /// correct prototype. 6596 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6597 unsigned Opcode) { 6598 // We already checked this call's prototype; verify it doesn't modify errno. 6599 if (!I.onlyReadsMemory()) 6600 return false; 6601 6602 SDValue Tmp = getValue(I.getArgOperand(0)); 6603 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6604 return true; 6605 } 6606 6607 /// See if we can lower a binary floating-point operation into an SDNode with 6608 /// the specified Opcode. If so, return true and lower it. Otherwise return 6609 /// false, and it will be lowered like a normal call. 6610 /// The caller already checked that \p I calls the appropriate LibFunc with a 6611 /// correct prototype. 6612 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6613 unsigned Opcode) { 6614 // We already checked this call's prototype; verify it doesn't modify errno. 6615 if (!I.onlyReadsMemory()) 6616 return false; 6617 6618 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6619 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6620 EVT VT = Tmp0.getValueType(); 6621 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6622 return true; 6623 } 6624 6625 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6626 // Handle inline assembly differently. 6627 if (isa<InlineAsm>(I.getCalledValue())) { 6628 visitInlineAsm(&I); 6629 return; 6630 } 6631 6632 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6633 computeUsesVAFloatArgument(I, MMI); 6634 6635 const char *RenameFn = nullptr; 6636 if (Function *F = I.getCalledFunction()) { 6637 if (F->isDeclaration()) { 6638 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6639 if (unsigned IID = II->getIntrinsicID(F)) { 6640 RenameFn = visitIntrinsicCall(I, IID); 6641 if (!RenameFn) 6642 return; 6643 } 6644 } 6645 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6646 RenameFn = visitIntrinsicCall(I, IID); 6647 if (!RenameFn) 6648 return; 6649 } 6650 } 6651 6652 // Check for well-known libc/libm calls. If the function is internal, it 6653 // can't be a library call. Don't do the check if marked as nobuiltin for 6654 // some reason or the call site requires strict floating point semantics. 6655 LibFunc Func; 6656 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6657 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6658 LibInfo->hasOptimizedCodeGen(Func)) { 6659 switch (Func) { 6660 default: break; 6661 case LibFunc_copysign: 6662 case LibFunc_copysignf: 6663 case LibFunc_copysignl: 6664 // We already checked this call's prototype; verify it doesn't modify 6665 // errno. 6666 if (I.onlyReadsMemory()) { 6667 SDValue LHS = getValue(I.getArgOperand(0)); 6668 SDValue RHS = getValue(I.getArgOperand(1)); 6669 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6670 LHS.getValueType(), LHS, RHS)); 6671 return; 6672 } 6673 break; 6674 case LibFunc_fabs: 6675 case LibFunc_fabsf: 6676 case LibFunc_fabsl: 6677 if (visitUnaryFloatCall(I, ISD::FABS)) 6678 return; 6679 break; 6680 case LibFunc_fmin: 6681 case LibFunc_fminf: 6682 case LibFunc_fminl: 6683 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6684 return; 6685 break; 6686 case LibFunc_fmax: 6687 case LibFunc_fmaxf: 6688 case LibFunc_fmaxl: 6689 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6690 return; 6691 break; 6692 case LibFunc_sin: 6693 case LibFunc_sinf: 6694 case LibFunc_sinl: 6695 if (visitUnaryFloatCall(I, ISD::FSIN)) 6696 return; 6697 break; 6698 case LibFunc_cos: 6699 case LibFunc_cosf: 6700 case LibFunc_cosl: 6701 if (visitUnaryFloatCall(I, ISD::FCOS)) 6702 return; 6703 break; 6704 case LibFunc_sqrt: 6705 case LibFunc_sqrtf: 6706 case LibFunc_sqrtl: 6707 case LibFunc_sqrt_finite: 6708 case LibFunc_sqrtf_finite: 6709 case LibFunc_sqrtl_finite: 6710 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6711 return; 6712 break; 6713 case LibFunc_floor: 6714 case LibFunc_floorf: 6715 case LibFunc_floorl: 6716 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6717 return; 6718 break; 6719 case LibFunc_nearbyint: 6720 case LibFunc_nearbyintf: 6721 case LibFunc_nearbyintl: 6722 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6723 return; 6724 break; 6725 case LibFunc_ceil: 6726 case LibFunc_ceilf: 6727 case LibFunc_ceill: 6728 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6729 return; 6730 break; 6731 case LibFunc_rint: 6732 case LibFunc_rintf: 6733 case LibFunc_rintl: 6734 if (visitUnaryFloatCall(I, ISD::FRINT)) 6735 return; 6736 break; 6737 case LibFunc_round: 6738 case LibFunc_roundf: 6739 case LibFunc_roundl: 6740 if (visitUnaryFloatCall(I, ISD::FROUND)) 6741 return; 6742 break; 6743 case LibFunc_trunc: 6744 case LibFunc_truncf: 6745 case LibFunc_truncl: 6746 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6747 return; 6748 break; 6749 case LibFunc_log2: 6750 case LibFunc_log2f: 6751 case LibFunc_log2l: 6752 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6753 return; 6754 break; 6755 case LibFunc_exp2: 6756 case LibFunc_exp2f: 6757 case LibFunc_exp2l: 6758 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6759 return; 6760 break; 6761 case LibFunc_memcmp: 6762 if (visitMemCmpCall(I)) 6763 return; 6764 break; 6765 case LibFunc_mempcpy: 6766 if (visitMemPCpyCall(I)) 6767 return; 6768 break; 6769 case LibFunc_memchr: 6770 if (visitMemChrCall(I)) 6771 return; 6772 break; 6773 case LibFunc_strcpy: 6774 if (visitStrCpyCall(I, false)) 6775 return; 6776 break; 6777 case LibFunc_stpcpy: 6778 if (visitStrCpyCall(I, true)) 6779 return; 6780 break; 6781 case LibFunc_strcmp: 6782 if (visitStrCmpCall(I)) 6783 return; 6784 break; 6785 case LibFunc_strlen: 6786 if (visitStrLenCall(I)) 6787 return; 6788 break; 6789 case LibFunc_strnlen: 6790 if (visitStrNLenCall(I)) 6791 return; 6792 break; 6793 } 6794 } 6795 } 6796 6797 SDValue Callee; 6798 if (!RenameFn) 6799 Callee = getValue(I.getCalledValue()); 6800 else 6801 Callee = DAG.getExternalSymbol( 6802 RenameFn, 6803 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6804 6805 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6806 // have to do anything here to lower funclet bundles. 6807 assert(!I.hasOperandBundlesOtherThan( 6808 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6809 "Cannot lower calls with arbitrary operand bundles!"); 6810 6811 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6812 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6813 else 6814 // Check if we can potentially perform a tail call. More detailed checking 6815 // is be done within LowerCallTo, after more information about the call is 6816 // known. 6817 LowerCallTo(&I, Callee, I.isTailCall()); 6818 } 6819 6820 namespace { 6821 6822 /// AsmOperandInfo - This contains information for each constraint that we are 6823 /// lowering. 6824 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6825 public: 6826 /// CallOperand - If this is the result output operand or a clobber 6827 /// this is null, otherwise it is the incoming operand to the CallInst. 6828 /// This gets modified as the asm is processed. 6829 SDValue CallOperand; 6830 6831 /// AssignedRegs - If this is a register or register class operand, this 6832 /// contains the set of register corresponding to the operand. 6833 RegsForValue AssignedRegs; 6834 6835 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6836 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 6837 } 6838 6839 /// Whether or not this operand accesses memory 6840 bool hasMemory(const TargetLowering &TLI) const { 6841 // Indirect operand accesses access memory. 6842 if (isIndirect) 6843 return true; 6844 6845 for (const auto &Code : Codes) 6846 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6847 return true; 6848 6849 return false; 6850 } 6851 6852 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6853 /// corresponds to. If there is no Value* for this operand, it returns 6854 /// MVT::Other. 6855 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6856 const DataLayout &DL) const { 6857 if (!CallOperandVal) return MVT::Other; 6858 6859 if (isa<BasicBlock>(CallOperandVal)) 6860 return TLI.getPointerTy(DL); 6861 6862 llvm::Type *OpTy = CallOperandVal->getType(); 6863 6864 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6865 // If this is an indirect operand, the operand is a pointer to the 6866 // accessed type. 6867 if (isIndirect) { 6868 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6869 if (!PtrTy) 6870 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6871 OpTy = PtrTy->getElementType(); 6872 } 6873 6874 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6875 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6876 if (STy->getNumElements() == 1) 6877 OpTy = STy->getElementType(0); 6878 6879 // If OpTy is not a single value, it may be a struct/union that we 6880 // can tile with integers. 6881 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6882 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6883 switch (BitSize) { 6884 default: break; 6885 case 1: 6886 case 8: 6887 case 16: 6888 case 32: 6889 case 64: 6890 case 128: 6891 OpTy = IntegerType::get(Context, BitSize); 6892 break; 6893 } 6894 } 6895 6896 return TLI.getValueType(DL, OpTy, true); 6897 } 6898 }; 6899 6900 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 6901 6902 } // end anonymous namespace 6903 6904 /// Make sure that the output operand \p OpInfo and its corresponding input 6905 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6906 /// out). 6907 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6908 SDISelAsmOperandInfo &MatchingOpInfo, 6909 SelectionDAG &DAG) { 6910 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6911 return; 6912 6913 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6914 const auto &TLI = DAG.getTargetLoweringInfo(); 6915 6916 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6917 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6918 OpInfo.ConstraintVT); 6919 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6920 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6921 MatchingOpInfo.ConstraintVT); 6922 if ((OpInfo.ConstraintVT.isInteger() != 6923 MatchingOpInfo.ConstraintVT.isInteger()) || 6924 (MatchRC.second != InputRC.second)) { 6925 // FIXME: error out in a more elegant fashion 6926 report_fatal_error("Unsupported asm: input constraint" 6927 " with a matching output constraint of" 6928 " incompatible type!"); 6929 } 6930 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6931 } 6932 6933 /// Get a direct memory input to behave well as an indirect operand. 6934 /// This may introduce stores, hence the need for a \p Chain. 6935 /// \return The (possibly updated) chain. 6936 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6937 SDISelAsmOperandInfo &OpInfo, 6938 SelectionDAG &DAG) { 6939 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6940 6941 // If we don't have an indirect input, put it in the constpool if we can, 6942 // otherwise spill it to a stack slot. 6943 // TODO: This isn't quite right. We need to handle these according to 6944 // the addressing mode that the constraint wants. Also, this may take 6945 // an additional register for the computation and we don't want that 6946 // either. 6947 6948 // If the operand is a float, integer, or vector constant, spill to a 6949 // constant pool entry to get its address. 6950 const Value *OpVal = OpInfo.CallOperandVal; 6951 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6952 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6953 OpInfo.CallOperand = DAG.getConstantPool( 6954 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6955 return Chain; 6956 } 6957 6958 // Otherwise, create a stack slot and emit a store to it before the asm. 6959 Type *Ty = OpVal->getType(); 6960 auto &DL = DAG.getDataLayout(); 6961 uint64_t TySize = DL.getTypeAllocSize(Ty); 6962 unsigned Align = DL.getPrefTypeAlignment(Ty); 6963 MachineFunction &MF = DAG.getMachineFunction(); 6964 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6965 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 6966 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6967 MachinePointerInfo::getFixedStack(MF, SSFI)); 6968 OpInfo.CallOperand = StackSlot; 6969 6970 return Chain; 6971 } 6972 6973 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6974 /// specified operand. We prefer to assign virtual registers, to allow the 6975 /// register allocator to handle the assignment process. However, if the asm 6976 /// uses features that we can't model on machineinstrs, we have SDISel do the 6977 /// allocation. This produces generally horrible, but correct, code. 6978 /// 6979 /// OpInfo describes the operand. 6980 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6981 const SDLoc &DL, 6982 SDISelAsmOperandInfo &OpInfo) { 6983 LLVMContext &Context = *DAG.getContext(); 6984 6985 MachineFunction &MF = DAG.getMachineFunction(); 6986 SmallVector<unsigned, 4> Regs; 6987 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6988 6989 // If this is a constraint for a single physreg, or a constraint for a 6990 // register class, find it. 6991 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6992 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 6993 OpInfo.ConstraintVT); 6994 6995 unsigned NumRegs = 1; 6996 if (OpInfo.ConstraintVT != MVT::Other) { 6997 // If this is a FP input in an integer register (or visa versa) insert a bit 6998 // cast of the input value. More generally, handle any case where the input 6999 // value disagrees with the register class we plan to stick this in. 7000 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 7001 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7002 // Try to convert to the first EVT that the reg class contains. If the 7003 // types are identical size, use a bitcast to convert (e.g. two differing 7004 // vector types). 7005 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7006 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 7007 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7008 RegVT, OpInfo.CallOperand); 7009 OpInfo.ConstraintVT = RegVT; 7010 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7011 // If the input is a FP value and we want it in FP registers, do a 7012 // bitcast to the corresponding integer type. This turns an f64 value 7013 // into i64, which can be passed with two i32 values on a 32-bit 7014 // machine. 7015 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7016 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7017 RegVT, OpInfo.CallOperand); 7018 OpInfo.ConstraintVT = RegVT; 7019 } 7020 } 7021 7022 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7023 } 7024 7025 MVT RegVT; 7026 EVT ValueVT = OpInfo.ConstraintVT; 7027 7028 // If this is a constraint for a specific physical register, like {r17}, 7029 // assign it now. 7030 if (unsigned AssignedReg = PhysReg.first) { 7031 const TargetRegisterClass *RC = PhysReg.second; 7032 if (OpInfo.ConstraintVT == MVT::Other) 7033 ValueVT = *TRI.legalclasstypes_begin(*RC); 7034 7035 // Get the actual register value type. This is important, because the user 7036 // may have asked for (e.g.) the AX register in i32 type. We need to 7037 // remember that AX is actually i16 to get the right extension. 7038 RegVT = *TRI.legalclasstypes_begin(*RC); 7039 7040 // This is a explicit reference to a physical register. 7041 Regs.push_back(AssignedReg); 7042 7043 // If this is an expanded reference, add the rest of the regs to Regs. 7044 if (NumRegs != 1) { 7045 TargetRegisterClass::iterator I = RC->begin(); 7046 for (; *I != AssignedReg; ++I) 7047 assert(I != RC->end() && "Didn't find reg!"); 7048 7049 // Already added the first reg. 7050 --NumRegs; ++I; 7051 for (; NumRegs; --NumRegs, ++I) { 7052 assert(I != RC->end() && "Ran out of registers to allocate!"); 7053 Regs.push_back(*I); 7054 } 7055 } 7056 7057 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7058 return; 7059 } 7060 7061 // Otherwise, if this was a reference to an LLVM register class, create vregs 7062 // for this reference. 7063 if (const TargetRegisterClass *RC = PhysReg.second) { 7064 RegVT = *TRI.legalclasstypes_begin(*RC); 7065 if (OpInfo.ConstraintVT == MVT::Other) 7066 ValueVT = RegVT; 7067 7068 // Create the appropriate number of virtual registers. 7069 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7070 for (; NumRegs; --NumRegs) 7071 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7072 7073 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7074 return; 7075 } 7076 7077 // Otherwise, we couldn't allocate enough registers for this. 7078 } 7079 7080 static unsigned 7081 findMatchingInlineAsmOperand(unsigned OperandNo, 7082 const std::vector<SDValue> &AsmNodeOperands) { 7083 // Scan until we find the definition we already emitted of this operand. 7084 unsigned CurOp = InlineAsm::Op_FirstOperand; 7085 for (; OperandNo; --OperandNo) { 7086 // Advance to the next operand. 7087 unsigned OpFlag = 7088 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7089 assert((InlineAsm::isRegDefKind(OpFlag) || 7090 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7091 InlineAsm::isMemKind(OpFlag)) && 7092 "Skipped past definitions?"); 7093 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7094 } 7095 return CurOp; 7096 } 7097 7098 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7099 /// \return true if it has succeeded, false otherwise 7100 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7101 MVT RegVT, SelectionDAG &DAG) { 7102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7103 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7104 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7105 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7106 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7107 else 7108 return false; 7109 } 7110 return true; 7111 } 7112 7113 namespace { 7114 7115 class ExtraFlags { 7116 unsigned Flags = 0; 7117 7118 public: 7119 explicit ExtraFlags(ImmutableCallSite CS) { 7120 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7121 if (IA->hasSideEffects()) 7122 Flags |= InlineAsm::Extra_HasSideEffects; 7123 if (IA->isAlignStack()) 7124 Flags |= InlineAsm::Extra_IsAlignStack; 7125 if (CS.isConvergent()) 7126 Flags |= InlineAsm::Extra_IsConvergent; 7127 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7128 } 7129 7130 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7131 // Ideally, we would only check against memory constraints. However, the 7132 // meaning of an Other constraint can be target-specific and we can't easily 7133 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7134 // for Other constraints as well. 7135 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7136 OpInfo.ConstraintType == TargetLowering::C_Other) { 7137 if (OpInfo.Type == InlineAsm::isInput) 7138 Flags |= InlineAsm::Extra_MayLoad; 7139 else if (OpInfo.Type == InlineAsm::isOutput) 7140 Flags |= InlineAsm::Extra_MayStore; 7141 else if (OpInfo.Type == InlineAsm::isClobber) 7142 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7143 } 7144 } 7145 7146 unsigned get() const { return Flags; } 7147 }; 7148 7149 } // end anonymous namespace 7150 7151 /// visitInlineAsm - Handle a call to an InlineAsm object. 7152 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7153 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7154 7155 /// ConstraintOperands - Information about all of the constraints. 7156 SDISelAsmOperandInfoVector ConstraintOperands; 7157 7158 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7159 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7160 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7161 7162 bool hasMemory = false; 7163 7164 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7165 ExtraFlags ExtraInfo(CS); 7166 7167 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7168 unsigned ResNo = 0; // ResNo - The result number of the next output. 7169 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7170 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7171 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7172 7173 MVT OpVT = MVT::Other; 7174 7175 // Compute the value type for each operand. 7176 if (OpInfo.Type == InlineAsm::isInput || 7177 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7178 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7179 7180 // Process the call argument. BasicBlocks are labels, currently appearing 7181 // only in asm's. 7182 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7183 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7184 } else { 7185 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7186 } 7187 7188 OpVT = 7189 OpInfo 7190 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7191 .getSimpleVT(); 7192 } 7193 7194 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7195 // The return value of the call is this value. As such, there is no 7196 // corresponding argument. 7197 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7198 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7199 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7200 STy->getElementType(ResNo)); 7201 } else { 7202 assert(ResNo == 0 && "Asm only has one result!"); 7203 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7204 } 7205 ++ResNo; 7206 } 7207 7208 OpInfo.ConstraintVT = OpVT; 7209 7210 if (!hasMemory) 7211 hasMemory = OpInfo.hasMemory(TLI); 7212 7213 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7214 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7215 auto TargetConstraint = TargetConstraints[i]; 7216 7217 // Compute the constraint code and ConstraintType to use. 7218 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7219 7220 ExtraInfo.update(TargetConstraint); 7221 } 7222 7223 SDValue Chain, Flag; 7224 7225 // We won't need to flush pending loads if this asm doesn't touch 7226 // memory and is nonvolatile. 7227 if (hasMemory || IA->hasSideEffects()) 7228 Chain = getRoot(); 7229 else 7230 Chain = DAG.getRoot(); 7231 7232 // Second pass over the constraints: compute which constraint option to use 7233 // and assign registers to constraints that want a specific physreg. 7234 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7235 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7236 7237 // If this is an output operand with a matching input operand, look up the 7238 // matching input. If their types mismatch, e.g. one is an integer, the 7239 // other is floating point, or their sizes are different, flag it as an 7240 // error. 7241 if (OpInfo.hasMatchingInput()) { 7242 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7243 patchMatchingInput(OpInfo, Input, DAG); 7244 } 7245 7246 // Compute the constraint code and ConstraintType to use. 7247 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7248 7249 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7250 OpInfo.Type == InlineAsm::isClobber) 7251 continue; 7252 7253 // If this is a memory input, and if the operand is not indirect, do what we 7254 // need to to provide an address for the memory input. 7255 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7256 !OpInfo.isIndirect) { 7257 assert((OpInfo.isMultipleAlternative || 7258 (OpInfo.Type == InlineAsm::isInput)) && 7259 "Can only indirectify direct input operands!"); 7260 7261 // Memory operands really want the address of the value. 7262 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7263 7264 // There is no longer a Value* corresponding to this operand. 7265 OpInfo.CallOperandVal = nullptr; 7266 7267 // It is now an indirect operand. 7268 OpInfo.isIndirect = true; 7269 } 7270 7271 // If this constraint is for a specific register, allocate it before 7272 // anything else. 7273 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7274 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7275 } 7276 7277 // Third pass - Loop over all of the operands, assigning virtual or physregs 7278 // to register class operands. 7279 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7280 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7281 7282 // C_Register operands have already been allocated, Other/Memory don't need 7283 // to be. 7284 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7285 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7286 } 7287 7288 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7289 std::vector<SDValue> AsmNodeOperands; 7290 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7291 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7292 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7293 7294 // If we have a !srcloc metadata node associated with it, we want to attach 7295 // this to the ultimately generated inline asm machineinstr. To do this, we 7296 // pass in the third operand as this (potentially null) inline asm MDNode. 7297 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7298 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7299 7300 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7301 // bits as operand 3. 7302 AsmNodeOperands.push_back(DAG.getTargetConstant( 7303 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7304 7305 // Loop over all of the inputs, copying the operand values into the 7306 // appropriate registers and processing the output regs. 7307 RegsForValue RetValRegs; 7308 7309 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7310 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7311 7312 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7313 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7314 7315 switch (OpInfo.Type) { 7316 case InlineAsm::isOutput: 7317 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7318 OpInfo.ConstraintType != TargetLowering::C_Register) { 7319 // Memory output, or 'other' output (e.g. 'X' constraint). 7320 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7321 7322 unsigned ConstraintID = 7323 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7324 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7325 "Failed to convert memory constraint code to constraint id."); 7326 7327 // Add information to the INLINEASM node to know about this output. 7328 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7329 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7330 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7331 MVT::i32)); 7332 AsmNodeOperands.push_back(OpInfo.CallOperand); 7333 break; 7334 } 7335 7336 // Otherwise, this is a register or register class output. 7337 7338 // Copy the output from the appropriate register. Find a register that 7339 // we can use. 7340 if (OpInfo.AssignedRegs.Regs.empty()) { 7341 emitInlineAsmError( 7342 CS, "couldn't allocate output register for constraint '" + 7343 Twine(OpInfo.ConstraintCode) + "'"); 7344 return; 7345 } 7346 7347 // If this is an indirect operand, store through the pointer after the 7348 // asm. 7349 if (OpInfo.isIndirect) { 7350 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7351 OpInfo.CallOperandVal)); 7352 } else { 7353 // This is the result value of the call. 7354 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7355 // Concatenate this output onto the outputs list. 7356 RetValRegs.append(OpInfo.AssignedRegs); 7357 } 7358 7359 // Add information to the INLINEASM node to know that this register is 7360 // set. 7361 OpInfo.AssignedRegs 7362 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7363 ? InlineAsm::Kind_RegDefEarlyClobber 7364 : InlineAsm::Kind_RegDef, 7365 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7366 break; 7367 7368 case InlineAsm::isInput: { 7369 SDValue InOperandVal = OpInfo.CallOperand; 7370 7371 if (OpInfo.isMatchingInputConstraint()) { 7372 // If this is required to match an output register we have already set, 7373 // just use its register. 7374 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7375 AsmNodeOperands); 7376 unsigned OpFlag = 7377 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7378 if (InlineAsm::isRegDefKind(OpFlag) || 7379 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7380 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7381 if (OpInfo.isIndirect) { 7382 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7383 emitInlineAsmError(CS, "inline asm not supported yet:" 7384 " don't know how to handle tied " 7385 "indirect register inputs"); 7386 return; 7387 } 7388 7389 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7390 SmallVector<unsigned, 4> Regs; 7391 7392 if (!createVirtualRegs(Regs, 7393 InlineAsm::getNumOperandRegisters(OpFlag), 7394 RegVT, DAG)) { 7395 emitInlineAsmError(CS, "inline asm error: This value type register " 7396 "class is not natively supported!"); 7397 return; 7398 } 7399 7400 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7401 7402 SDLoc dl = getCurSDLoc(); 7403 // Use the produced MatchedRegs object to 7404 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7405 CS.getInstruction()); 7406 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7407 true, OpInfo.getMatchedOperand(), dl, 7408 DAG, AsmNodeOperands); 7409 break; 7410 } 7411 7412 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7413 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7414 "Unexpected number of operands"); 7415 // Add information to the INLINEASM node to know about this input. 7416 // See InlineAsm.h isUseOperandTiedToDef. 7417 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7418 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7419 OpInfo.getMatchedOperand()); 7420 AsmNodeOperands.push_back(DAG.getTargetConstant( 7421 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7422 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7423 break; 7424 } 7425 7426 // Treat indirect 'X' constraint as memory. 7427 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7428 OpInfo.isIndirect) 7429 OpInfo.ConstraintType = TargetLowering::C_Memory; 7430 7431 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7432 std::vector<SDValue> Ops; 7433 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7434 Ops, DAG); 7435 if (Ops.empty()) { 7436 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7437 Twine(OpInfo.ConstraintCode) + "'"); 7438 return; 7439 } 7440 7441 // Add information to the INLINEASM node to know about this input. 7442 unsigned ResOpType = 7443 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7444 AsmNodeOperands.push_back(DAG.getTargetConstant( 7445 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7446 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7447 break; 7448 } 7449 7450 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7451 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7452 assert(InOperandVal.getValueType() == 7453 TLI.getPointerTy(DAG.getDataLayout()) && 7454 "Memory operands expect pointer values"); 7455 7456 unsigned ConstraintID = 7457 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7458 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7459 "Failed to convert memory constraint code to constraint id."); 7460 7461 // Add information to the INLINEASM node to know about this input. 7462 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7463 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7464 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7465 getCurSDLoc(), 7466 MVT::i32)); 7467 AsmNodeOperands.push_back(InOperandVal); 7468 break; 7469 } 7470 7471 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7472 OpInfo.ConstraintType == TargetLowering::C_Register) && 7473 "Unknown constraint type!"); 7474 7475 // TODO: Support this. 7476 if (OpInfo.isIndirect) { 7477 emitInlineAsmError( 7478 CS, "Don't know how to handle indirect register inputs yet " 7479 "for constraint '" + 7480 Twine(OpInfo.ConstraintCode) + "'"); 7481 return; 7482 } 7483 7484 // Copy the input into the appropriate registers. 7485 if (OpInfo.AssignedRegs.Regs.empty()) { 7486 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7487 Twine(OpInfo.ConstraintCode) + "'"); 7488 return; 7489 } 7490 7491 SDLoc dl = getCurSDLoc(); 7492 7493 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7494 Chain, &Flag, CS.getInstruction()); 7495 7496 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7497 dl, DAG, AsmNodeOperands); 7498 break; 7499 } 7500 case InlineAsm::isClobber: 7501 // Add the clobbered value to the operand list, so that the register 7502 // allocator is aware that the physreg got clobbered. 7503 if (!OpInfo.AssignedRegs.Regs.empty()) 7504 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7505 false, 0, getCurSDLoc(), DAG, 7506 AsmNodeOperands); 7507 break; 7508 } 7509 } 7510 7511 // Finish up input operands. Set the input chain and add the flag last. 7512 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7513 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7514 7515 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7516 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7517 Flag = Chain.getValue(1); 7518 7519 // If this asm returns a register value, copy the result from that register 7520 // and set it as the value of the call. 7521 if (!RetValRegs.Regs.empty()) { 7522 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7523 Chain, &Flag, CS.getInstruction()); 7524 7525 // FIXME: Why don't we do this for inline asms with MRVs? 7526 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7527 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7528 7529 // If any of the results of the inline asm is a vector, it may have the 7530 // wrong width/num elts. This can happen for register classes that can 7531 // contain multiple different value types. The preg or vreg allocated may 7532 // not have the same VT as was expected. Convert it to the right type 7533 // with bit_convert. 7534 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7535 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7536 ResultType, Val); 7537 7538 } else if (ResultType != Val.getValueType() && 7539 ResultType.isInteger() && Val.getValueType().isInteger()) { 7540 // If a result value was tied to an input value, the computed result may 7541 // have a wider width than the expected result. Extract the relevant 7542 // portion. 7543 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7544 } 7545 7546 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7547 } 7548 7549 setValue(CS.getInstruction(), Val); 7550 // Don't need to use this as a chain in this case. 7551 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7552 return; 7553 } 7554 7555 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7556 7557 // Process indirect outputs, first output all of the flagged copies out of 7558 // physregs. 7559 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7560 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7561 const Value *Ptr = IndirectStoresToEmit[i].second; 7562 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7563 Chain, &Flag, IA); 7564 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7565 } 7566 7567 // Emit the non-flagged stores from the physregs. 7568 SmallVector<SDValue, 8> OutChains; 7569 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7570 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7571 getValue(StoresToEmit[i].second), 7572 MachinePointerInfo(StoresToEmit[i].second)); 7573 OutChains.push_back(Val); 7574 } 7575 7576 if (!OutChains.empty()) 7577 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7578 7579 DAG.setRoot(Chain); 7580 } 7581 7582 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7583 const Twine &Message) { 7584 LLVMContext &Ctx = *DAG.getContext(); 7585 Ctx.emitError(CS.getInstruction(), Message); 7586 7587 // Make sure we leave the DAG in a valid state 7588 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7589 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7590 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7591 } 7592 7593 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7594 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7595 MVT::Other, getRoot(), 7596 getValue(I.getArgOperand(0)), 7597 DAG.getSrcValue(I.getArgOperand(0)))); 7598 } 7599 7600 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7602 const DataLayout &DL = DAG.getDataLayout(); 7603 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7604 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7605 DAG.getSrcValue(I.getOperand(0)), 7606 DL.getABITypeAlignment(I.getType())); 7607 setValue(&I, V); 7608 DAG.setRoot(V.getValue(1)); 7609 } 7610 7611 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7612 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7613 MVT::Other, getRoot(), 7614 getValue(I.getArgOperand(0)), 7615 DAG.getSrcValue(I.getArgOperand(0)))); 7616 } 7617 7618 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7619 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7620 MVT::Other, getRoot(), 7621 getValue(I.getArgOperand(0)), 7622 getValue(I.getArgOperand(1)), 7623 DAG.getSrcValue(I.getArgOperand(0)), 7624 DAG.getSrcValue(I.getArgOperand(1)))); 7625 } 7626 7627 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7628 const Instruction &I, 7629 SDValue Op) { 7630 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7631 if (!Range) 7632 return Op; 7633 7634 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7635 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7636 return Op; 7637 7638 APInt Lo = CR.getUnsignedMin(); 7639 if (!Lo.isMinValue()) 7640 return Op; 7641 7642 APInt Hi = CR.getUnsignedMax(); 7643 unsigned Bits = Hi.getActiveBits(); 7644 7645 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7646 7647 SDLoc SL = getCurSDLoc(); 7648 7649 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7650 DAG.getValueType(SmallVT)); 7651 unsigned NumVals = Op.getNode()->getNumValues(); 7652 if (NumVals == 1) 7653 return ZExt; 7654 7655 SmallVector<SDValue, 4> Ops; 7656 7657 Ops.push_back(ZExt); 7658 for (unsigned I = 1; I != NumVals; ++I) 7659 Ops.push_back(Op.getValue(I)); 7660 7661 return DAG.getMergeValues(Ops, SL); 7662 } 7663 7664 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7665 /// the call being lowered. 7666 /// 7667 /// This is a helper for lowering intrinsics that follow a target calling 7668 /// convention or require stack pointer adjustment. Only a subset of the 7669 /// intrinsic's operands need to participate in the calling convention. 7670 void SelectionDAGBuilder::populateCallLoweringInfo( 7671 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7672 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7673 bool IsPatchPoint) { 7674 TargetLowering::ArgListTy Args; 7675 Args.reserve(NumArgs); 7676 7677 // Populate the argument list. 7678 // Attributes for args start at offset 1, after the return attribute. 7679 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7680 ArgI != ArgE; ++ArgI) { 7681 const Value *V = CS->getOperand(ArgI); 7682 7683 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7684 7685 TargetLowering::ArgListEntry Entry; 7686 Entry.Node = getValue(V); 7687 Entry.Ty = V->getType(); 7688 Entry.setAttributes(&CS, ArgIdx); 7689 Args.push_back(Entry); 7690 } 7691 7692 CLI.setDebugLoc(getCurSDLoc()) 7693 .setChain(getRoot()) 7694 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7695 .setDiscardResult(CS->use_empty()) 7696 .setIsPatchPoint(IsPatchPoint); 7697 } 7698 7699 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7700 /// or patchpoint target node's operand list. 7701 /// 7702 /// Constants are converted to TargetConstants purely as an optimization to 7703 /// avoid constant materialization and register allocation. 7704 /// 7705 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7706 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7707 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7708 /// address materialization and register allocation, but may also be required 7709 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7710 /// alloca in the entry block, then the runtime may assume that the alloca's 7711 /// StackMap location can be read immediately after compilation and that the 7712 /// location is valid at any point during execution (this is similar to the 7713 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7714 /// only available in a register, then the runtime would need to trap when 7715 /// execution reaches the StackMap in order to read the alloca's location. 7716 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7717 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7718 SelectionDAGBuilder &Builder) { 7719 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7720 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7721 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7722 Ops.push_back( 7723 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7724 Ops.push_back( 7725 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7726 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7727 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7728 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7729 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7730 } else 7731 Ops.push_back(OpVal); 7732 } 7733 } 7734 7735 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7736 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7737 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7738 // [live variables...]) 7739 7740 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7741 7742 SDValue Chain, InFlag, Callee, NullPtr; 7743 SmallVector<SDValue, 32> Ops; 7744 7745 SDLoc DL = getCurSDLoc(); 7746 Callee = getValue(CI.getCalledValue()); 7747 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7748 7749 // The stackmap intrinsic only records the live variables (the arguemnts 7750 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7751 // intrinsic, this won't be lowered to a function call. This means we don't 7752 // have to worry about calling conventions and target specific lowering code. 7753 // Instead we perform the call lowering right here. 7754 // 7755 // chain, flag = CALLSEQ_START(chain, 0, 0) 7756 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7757 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7758 // 7759 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7760 InFlag = Chain.getValue(1); 7761 7762 // Add the <id> and <numBytes> constants. 7763 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7764 Ops.push_back(DAG.getTargetConstant( 7765 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7766 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7767 Ops.push_back(DAG.getTargetConstant( 7768 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7769 MVT::i32)); 7770 7771 // Push live variables for the stack map. 7772 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7773 7774 // We are not pushing any register mask info here on the operands list, 7775 // because the stackmap doesn't clobber anything. 7776 7777 // Push the chain and the glue flag. 7778 Ops.push_back(Chain); 7779 Ops.push_back(InFlag); 7780 7781 // Create the STACKMAP node. 7782 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7783 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7784 Chain = SDValue(SM, 0); 7785 InFlag = Chain.getValue(1); 7786 7787 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7788 7789 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7790 7791 // Set the root to the target-lowered call chain. 7792 DAG.setRoot(Chain); 7793 7794 // Inform the Frame Information that we have a stackmap in this function. 7795 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7796 } 7797 7798 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7799 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7800 const BasicBlock *EHPadBB) { 7801 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7802 // i32 <numBytes>, 7803 // i8* <target>, 7804 // i32 <numArgs>, 7805 // [Args...], 7806 // [live variables...]) 7807 7808 CallingConv::ID CC = CS.getCallingConv(); 7809 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7810 bool HasDef = !CS->getType()->isVoidTy(); 7811 SDLoc dl = getCurSDLoc(); 7812 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7813 7814 // Handle immediate and symbolic callees. 7815 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7816 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7817 /*isTarget=*/true); 7818 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7819 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7820 SDLoc(SymbolicCallee), 7821 SymbolicCallee->getValueType(0)); 7822 7823 // Get the real number of arguments participating in the call <numArgs> 7824 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7825 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7826 7827 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7828 // Intrinsics include all meta-operands up to but not including CC. 7829 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7830 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7831 "Not enough arguments provided to the patchpoint intrinsic"); 7832 7833 // For AnyRegCC the arguments are lowered later on manually. 7834 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7835 Type *ReturnTy = 7836 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7837 7838 TargetLowering::CallLoweringInfo CLI(DAG); 7839 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7840 true); 7841 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7842 7843 SDNode *CallEnd = Result.second.getNode(); 7844 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7845 CallEnd = CallEnd->getOperand(0).getNode(); 7846 7847 /// Get a call instruction from the call sequence chain. 7848 /// Tail calls are not allowed. 7849 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7850 "Expected a callseq node."); 7851 SDNode *Call = CallEnd->getOperand(0).getNode(); 7852 bool HasGlue = Call->getGluedNode(); 7853 7854 // Replace the target specific call node with the patchable intrinsic. 7855 SmallVector<SDValue, 8> Ops; 7856 7857 // Add the <id> and <numBytes> constants. 7858 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7859 Ops.push_back(DAG.getTargetConstant( 7860 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7861 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7862 Ops.push_back(DAG.getTargetConstant( 7863 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7864 MVT::i32)); 7865 7866 // Add the callee. 7867 Ops.push_back(Callee); 7868 7869 // Adjust <numArgs> to account for any arguments that have been passed on the 7870 // stack instead. 7871 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7872 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7873 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7874 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7875 7876 // Add the calling convention 7877 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7878 7879 // Add the arguments we omitted previously. The register allocator should 7880 // place these in any free register. 7881 if (IsAnyRegCC) 7882 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7883 Ops.push_back(getValue(CS.getArgument(i))); 7884 7885 // Push the arguments from the call instruction up to the register mask. 7886 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7887 Ops.append(Call->op_begin() + 2, e); 7888 7889 // Push live variables for the stack map. 7890 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7891 7892 // Push the register mask info. 7893 if (HasGlue) 7894 Ops.push_back(*(Call->op_end()-2)); 7895 else 7896 Ops.push_back(*(Call->op_end()-1)); 7897 7898 // Push the chain (this is originally the first operand of the call, but 7899 // becomes now the last or second to last operand). 7900 Ops.push_back(*(Call->op_begin())); 7901 7902 // Push the glue flag (last operand). 7903 if (HasGlue) 7904 Ops.push_back(*(Call->op_end()-1)); 7905 7906 SDVTList NodeTys; 7907 if (IsAnyRegCC && HasDef) { 7908 // Create the return types based on the intrinsic definition 7909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7910 SmallVector<EVT, 3> ValueVTs; 7911 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7912 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7913 7914 // There is always a chain and a glue type at the end 7915 ValueVTs.push_back(MVT::Other); 7916 ValueVTs.push_back(MVT::Glue); 7917 NodeTys = DAG.getVTList(ValueVTs); 7918 } else 7919 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7920 7921 // Replace the target specific call node with a PATCHPOINT node. 7922 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7923 dl, NodeTys, Ops); 7924 7925 // Update the NodeMap. 7926 if (HasDef) { 7927 if (IsAnyRegCC) 7928 setValue(CS.getInstruction(), SDValue(MN, 0)); 7929 else 7930 setValue(CS.getInstruction(), Result.first); 7931 } 7932 7933 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7934 // call sequence. Furthermore the location of the chain and glue can change 7935 // when the AnyReg calling convention is used and the intrinsic returns a 7936 // value. 7937 if (IsAnyRegCC && HasDef) { 7938 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7939 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7940 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7941 } else 7942 DAG.ReplaceAllUsesWith(Call, MN); 7943 DAG.DeleteNode(Call); 7944 7945 // Inform the Frame Information that we have a patchpoint in this function. 7946 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7947 } 7948 7949 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 7950 unsigned Intrinsic) { 7951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7952 SDValue Op1 = getValue(I.getArgOperand(0)); 7953 SDValue Op2; 7954 if (I.getNumArgOperands() > 1) 7955 Op2 = getValue(I.getArgOperand(1)); 7956 SDLoc dl = getCurSDLoc(); 7957 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7958 SDValue Res; 7959 FastMathFlags FMF; 7960 if (isa<FPMathOperator>(I)) 7961 FMF = I.getFastMathFlags(); 7962 SDNodeFlags SDFlags; 7963 SDFlags.setNoNaNs(FMF.noNaNs()); 7964 7965 switch (Intrinsic) { 7966 case Intrinsic::experimental_vector_reduce_fadd: 7967 if (FMF.isFast()) 7968 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 7969 else 7970 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 7971 break; 7972 case Intrinsic::experimental_vector_reduce_fmul: 7973 if (FMF.isFast()) 7974 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 7975 else 7976 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 7977 break; 7978 case Intrinsic::experimental_vector_reduce_add: 7979 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 7980 break; 7981 case Intrinsic::experimental_vector_reduce_mul: 7982 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 7983 break; 7984 case Intrinsic::experimental_vector_reduce_and: 7985 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 7986 break; 7987 case Intrinsic::experimental_vector_reduce_or: 7988 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 7989 break; 7990 case Intrinsic::experimental_vector_reduce_xor: 7991 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 7992 break; 7993 case Intrinsic::experimental_vector_reduce_smax: 7994 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 7995 break; 7996 case Intrinsic::experimental_vector_reduce_smin: 7997 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 7998 break; 7999 case Intrinsic::experimental_vector_reduce_umax: 8000 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8001 break; 8002 case Intrinsic::experimental_vector_reduce_umin: 8003 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8004 break; 8005 case Intrinsic::experimental_vector_reduce_fmax: 8006 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 8007 break; 8008 case Intrinsic::experimental_vector_reduce_fmin: 8009 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 8010 break; 8011 default: 8012 llvm_unreachable("Unhandled vector reduce intrinsic"); 8013 } 8014 setValue(&I, Res); 8015 } 8016 8017 /// Returns an AttributeList representing the attributes applied to the return 8018 /// value of the given call. 8019 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8020 SmallVector<Attribute::AttrKind, 2> Attrs; 8021 if (CLI.RetSExt) 8022 Attrs.push_back(Attribute::SExt); 8023 if (CLI.RetZExt) 8024 Attrs.push_back(Attribute::ZExt); 8025 if (CLI.IsInReg) 8026 Attrs.push_back(Attribute::InReg); 8027 8028 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8029 Attrs); 8030 } 8031 8032 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8033 /// implementation, which just calls LowerCall. 8034 /// FIXME: When all targets are 8035 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8036 std::pair<SDValue, SDValue> 8037 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8038 // Handle the incoming return values from the call. 8039 CLI.Ins.clear(); 8040 Type *OrigRetTy = CLI.RetTy; 8041 SmallVector<EVT, 4> RetTys; 8042 SmallVector<uint64_t, 4> Offsets; 8043 auto &DL = CLI.DAG.getDataLayout(); 8044 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8045 8046 if (CLI.IsPostTypeLegalization) { 8047 // If we are lowering a libcall after legalization, split the return type. 8048 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8049 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8050 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8051 EVT RetVT = OldRetTys[i]; 8052 uint64_t Offset = OldOffsets[i]; 8053 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8054 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8055 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8056 RetTys.append(NumRegs, RegisterVT); 8057 for (unsigned j = 0; j != NumRegs; ++j) 8058 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8059 } 8060 } 8061 8062 SmallVector<ISD::OutputArg, 4> Outs; 8063 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8064 8065 bool CanLowerReturn = 8066 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8067 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8068 8069 SDValue DemoteStackSlot; 8070 int DemoteStackIdx = -100; 8071 if (!CanLowerReturn) { 8072 // FIXME: equivalent assert? 8073 // assert(!CS.hasInAllocaArgument() && 8074 // "sret demotion is incompatible with inalloca"); 8075 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8076 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8077 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8078 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8079 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8080 8081 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8082 ArgListEntry Entry; 8083 Entry.Node = DemoteStackSlot; 8084 Entry.Ty = StackSlotPtrType; 8085 Entry.IsSExt = false; 8086 Entry.IsZExt = false; 8087 Entry.IsInReg = false; 8088 Entry.IsSRet = true; 8089 Entry.IsNest = false; 8090 Entry.IsByVal = false; 8091 Entry.IsReturned = false; 8092 Entry.IsSwiftSelf = false; 8093 Entry.IsSwiftError = false; 8094 Entry.Alignment = Align; 8095 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8096 CLI.NumFixedArgs += 1; 8097 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8098 8099 // sret demotion isn't compatible with tail-calls, since the sret argument 8100 // points into the callers stack frame. 8101 CLI.IsTailCall = false; 8102 } else { 8103 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8104 EVT VT = RetTys[I]; 8105 MVT RegisterVT = 8106 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8107 unsigned NumRegs = 8108 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8109 for (unsigned i = 0; i != NumRegs; ++i) { 8110 ISD::InputArg MyFlags; 8111 MyFlags.VT = RegisterVT; 8112 MyFlags.ArgVT = VT; 8113 MyFlags.Used = CLI.IsReturnValueUsed; 8114 if (CLI.RetSExt) 8115 MyFlags.Flags.setSExt(); 8116 if (CLI.RetZExt) 8117 MyFlags.Flags.setZExt(); 8118 if (CLI.IsInReg) 8119 MyFlags.Flags.setInReg(); 8120 CLI.Ins.push_back(MyFlags); 8121 } 8122 } 8123 } 8124 8125 // We push in swifterror return as the last element of CLI.Ins. 8126 ArgListTy &Args = CLI.getArgs(); 8127 if (supportSwiftError()) { 8128 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8129 if (Args[i].IsSwiftError) { 8130 ISD::InputArg MyFlags; 8131 MyFlags.VT = getPointerTy(DL); 8132 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8133 MyFlags.Flags.setSwiftError(); 8134 CLI.Ins.push_back(MyFlags); 8135 } 8136 } 8137 } 8138 8139 // Handle all of the outgoing arguments. 8140 CLI.Outs.clear(); 8141 CLI.OutVals.clear(); 8142 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8143 SmallVector<EVT, 4> ValueVTs; 8144 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8145 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8146 Type *FinalType = Args[i].Ty; 8147 if (Args[i].IsByVal) 8148 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8149 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8150 FinalType, CLI.CallConv, CLI.IsVarArg); 8151 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8152 ++Value) { 8153 EVT VT = ValueVTs[Value]; 8154 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8155 SDValue Op = SDValue(Args[i].Node.getNode(), 8156 Args[i].Node.getResNo() + Value); 8157 ISD::ArgFlagsTy Flags; 8158 8159 // Certain targets (such as MIPS), may have a different ABI alignment 8160 // for a type depending on the context. Give the target a chance to 8161 // specify the alignment it wants. 8162 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8163 8164 if (Args[i].IsZExt) 8165 Flags.setZExt(); 8166 if (Args[i].IsSExt) 8167 Flags.setSExt(); 8168 if (Args[i].IsInReg) { 8169 // If we are using vectorcall calling convention, a structure that is 8170 // passed InReg - is surely an HVA 8171 if (CLI.CallConv == CallingConv::X86_VectorCall && 8172 isa<StructType>(FinalType)) { 8173 // The first value of a structure is marked 8174 if (0 == Value) 8175 Flags.setHvaStart(); 8176 Flags.setHva(); 8177 } 8178 // Set InReg Flag 8179 Flags.setInReg(); 8180 } 8181 if (Args[i].IsSRet) 8182 Flags.setSRet(); 8183 if (Args[i].IsSwiftSelf) 8184 Flags.setSwiftSelf(); 8185 if (Args[i].IsSwiftError) 8186 Flags.setSwiftError(); 8187 if (Args[i].IsByVal) 8188 Flags.setByVal(); 8189 if (Args[i].IsInAlloca) { 8190 Flags.setInAlloca(); 8191 // Set the byval flag for CCAssignFn callbacks that don't know about 8192 // inalloca. This way we can know how many bytes we should've allocated 8193 // and how many bytes a callee cleanup function will pop. If we port 8194 // inalloca to more targets, we'll have to add custom inalloca handling 8195 // in the various CC lowering callbacks. 8196 Flags.setByVal(); 8197 } 8198 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8199 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8200 Type *ElementTy = Ty->getElementType(); 8201 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8202 // For ByVal, alignment should come from FE. BE will guess if this 8203 // info is not there but there are cases it cannot get right. 8204 unsigned FrameAlign; 8205 if (Args[i].Alignment) 8206 FrameAlign = Args[i].Alignment; 8207 else 8208 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8209 Flags.setByValAlign(FrameAlign); 8210 } 8211 if (Args[i].IsNest) 8212 Flags.setNest(); 8213 if (NeedsRegBlock) 8214 Flags.setInConsecutiveRegs(); 8215 Flags.setOrigAlign(OriginalAlignment); 8216 8217 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8218 unsigned NumParts = 8219 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8220 SmallVector<SDValue, 4> Parts(NumParts); 8221 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8222 8223 if (Args[i].IsSExt) 8224 ExtendKind = ISD::SIGN_EXTEND; 8225 else if (Args[i].IsZExt) 8226 ExtendKind = ISD::ZERO_EXTEND; 8227 8228 // Conservatively only handle 'returned' on non-vectors for now 8229 if (Args[i].IsReturned && !Op.getValueType().isVector()) { 8230 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8231 "unexpected use of 'returned'"); 8232 // Before passing 'returned' to the target lowering code, ensure that 8233 // either the register MVT and the actual EVT are the same size or that 8234 // the return value and argument are extended in the same way; in these 8235 // cases it's safe to pass the argument register value unchanged as the 8236 // return register value (although it's at the target's option whether 8237 // to do so) 8238 // TODO: allow code generation to take advantage of partially preserved 8239 // registers rather than clobbering the entire register when the 8240 // parameter extension method is not compatible with the return 8241 // extension method 8242 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8243 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8244 CLI.RetZExt == Args[i].IsZExt)) 8245 Flags.setReturned(); 8246 } 8247 8248 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8249 CLI.CS.getInstruction(), ExtendKind, true); 8250 8251 for (unsigned j = 0; j != NumParts; ++j) { 8252 // if it isn't first piece, alignment must be 1 8253 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8254 i < CLI.NumFixedArgs, 8255 i, j*Parts[j].getValueType().getStoreSize()); 8256 if (NumParts > 1 && j == 0) 8257 MyFlags.Flags.setSplit(); 8258 else if (j != 0) { 8259 MyFlags.Flags.setOrigAlign(1); 8260 if (j == NumParts - 1) 8261 MyFlags.Flags.setSplitEnd(); 8262 } 8263 8264 CLI.Outs.push_back(MyFlags); 8265 CLI.OutVals.push_back(Parts[j]); 8266 } 8267 8268 if (NeedsRegBlock && Value == NumValues - 1) 8269 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8270 } 8271 } 8272 8273 SmallVector<SDValue, 4> InVals; 8274 CLI.Chain = LowerCall(CLI, InVals); 8275 8276 // Update CLI.InVals to use outside of this function. 8277 CLI.InVals = InVals; 8278 8279 // Verify that the target's LowerCall behaved as expected. 8280 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8281 "LowerCall didn't return a valid chain!"); 8282 assert((!CLI.IsTailCall || InVals.empty()) && 8283 "LowerCall emitted a return value for a tail call!"); 8284 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8285 "LowerCall didn't emit the correct number of values!"); 8286 8287 // For a tail call, the return value is merely live-out and there aren't 8288 // any nodes in the DAG representing it. Return a special value to 8289 // indicate that a tail call has been emitted and no more Instructions 8290 // should be processed in the current block. 8291 if (CLI.IsTailCall) { 8292 CLI.DAG.setRoot(CLI.Chain); 8293 return std::make_pair(SDValue(), SDValue()); 8294 } 8295 8296 #ifndef NDEBUG 8297 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8298 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8299 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8300 "LowerCall emitted a value with the wrong type!"); 8301 } 8302 #endif 8303 8304 SmallVector<SDValue, 4> ReturnValues; 8305 if (!CanLowerReturn) { 8306 // The instruction result is the result of loading from the 8307 // hidden sret parameter. 8308 SmallVector<EVT, 1> PVTs; 8309 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 8310 8311 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8312 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8313 EVT PtrVT = PVTs[0]; 8314 8315 unsigned NumValues = RetTys.size(); 8316 ReturnValues.resize(NumValues); 8317 SmallVector<SDValue, 4> Chains(NumValues); 8318 8319 // An aggregate return value cannot wrap around the address space, so 8320 // offsets to its parts don't wrap either. 8321 SDNodeFlags Flags; 8322 Flags.setNoUnsignedWrap(true); 8323 8324 for (unsigned i = 0; i < NumValues; ++i) { 8325 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8326 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8327 PtrVT), Flags); 8328 SDValue L = CLI.DAG.getLoad( 8329 RetTys[i], CLI.DL, CLI.Chain, Add, 8330 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8331 DemoteStackIdx, Offsets[i]), 8332 /* Alignment = */ 1); 8333 ReturnValues[i] = L; 8334 Chains[i] = L.getValue(1); 8335 } 8336 8337 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8338 } else { 8339 // Collect the legal value parts into potentially illegal values 8340 // that correspond to the original function's return values. 8341 Optional<ISD::NodeType> AssertOp; 8342 if (CLI.RetSExt) 8343 AssertOp = ISD::AssertSext; 8344 else if (CLI.RetZExt) 8345 AssertOp = ISD::AssertZext; 8346 unsigned CurReg = 0; 8347 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8348 EVT VT = RetTys[I]; 8349 MVT RegisterVT = 8350 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8351 unsigned NumRegs = 8352 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8353 8354 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8355 NumRegs, RegisterVT, VT, nullptr, 8356 AssertOp, true)); 8357 CurReg += NumRegs; 8358 } 8359 8360 // For a function returning void, there is no return value. We can't create 8361 // such a node, so we just return a null return value in that case. In 8362 // that case, nothing will actually look at the value. 8363 if (ReturnValues.empty()) 8364 return std::make_pair(SDValue(), CLI.Chain); 8365 } 8366 8367 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8368 CLI.DAG.getVTList(RetTys), ReturnValues); 8369 return std::make_pair(Res, CLI.Chain); 8370 } 8371 8372 void TargetLowering::LowerOperationWrapper(SDNode *N, 8373 SmallVectorImpl<SDValue> &Results, 8374 SelectionDAG &DAG) const { 8375 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8376 Results.push_back(Res); 8377 } 8378 8379 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8380 llvm_unreachable("LowerOperation not implemented for this target!"); 8381 } 8382 8383 void 8384 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8385 SDValue Op = getNonRegisterValue(V); 8386 assert((Op.getOpcode() != ISD::CopyFromReg || 8387 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8388 "Copy from a reg to the same reg!"); 8389 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8390 8391 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8392 // If this is an InlineAsm we have to match the registers required, not the 8393 // notional registers required by the type. 8394 8395 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8396 V->getType(), isABIRegCopy(V)); 8397 SDValue Chain = DAG.getEntryNode(); 8398 8399 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8400 FuncInfo.PreferredExtendType.end()) 8401 ? ISD::ANY_EXTEND 8402 : FuncInfo.PreferredExtendType[V]; 8403 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8404 PendingExports.push_back(Chain); 8405 } 8406 8407 #include "llvm/CodeGen/SelectionDAGISel.h" 8408 8409 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8410 /// entry block, return true. This includes arguments used by switches, since 8411 /// the switch may expand into multiple basic blocks. 8412 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8413 // With FastISel active, we may be splitting blocks, so force creation 8414 // of virtual registers for all non-dead arguments. 8415 if (FastISel) 8416 return A->use_empty(); 8417 8418 const BasicBlock &Entry = A->getParent()->front(); 8419 for (const User *U : A->users()) 8420 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8421 return false; // Use not in entry block. 8422 8423 return true; 8424 } 8425 8426 using ArgCopyElisionMapTy = 8427 DenseMap<const Argument *, 8428 std::pair<const AllocaInst *, const StoreInst *>>; 8429 8430 /// Scan the entry block of the function in FuncInfo for arguments that look 8431 /// like copies into a local alloca. Record any copied arguments in 8432 /// ArgCopyElisionCandidates. 8433 static void 8434 findArgumentCopyElisionCandidates(const DataLayout &DL, 8435 FunctionLoweringInfo *FuncInfo, 8436 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8437 // Record the state of every static alloca used in the entry block. Argument 8438 // allocas are all used in the entry block, so we need approximately as many 8439 // entries as we have arguments. 8440 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8441 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8442 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8443 StaticAllocas.reserve(NumArgs * 2); 8444 8445 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8446 if (!V) 8447 return nullptr; 8448 V = V->stripPointerCasts(); 8449 const auto *AI = dyn_cast<AllocaInst>(V); 8450 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8451 return nullptr; 8452 auto Iter = StaticAllocas.insert({AI, Unknown}); 8453 return &Iter.first->second; 8454 }; 8455 8456 // Look for stores of arguments to static allocas. Look through bitcasts and 8457 // GEPs to handle type coercions, as long as the alloca is fully initialized 8458 // by the store. Any non-store use of an alloca escapes it and any subsequent 8459 // unanalyzed store might write it. 8460 // FIXME: Handle structs initialized with multiple stores. 8461 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8462 // Look for stores, and handle non-store uses conservatively. 8463 const auto *SI = dyn_cast<StoreInst>(&I); 8464 if (!SI) { 8465 // We will look through cast uses, so ignore them completely. 8466 if (I.isCast()) 8467 continue; 8468 // Ignore debug info intrinsics, they don't escape or store to allocas. 8469 if (isa<DbgInfoIntrinsic>(I)) 8470 continue; 8471 // This is an unknown instruction. Assume it escapes or writes to all 8472 // static alloca operands. 8473 for (const Use &U : I.operands()) { 8474 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8475 *Info = StaticAllocaInfo::Clobbered; 8476 } 8477 continue; 8478 } 8479 8480 // If the stored value is a static alloca, mark it as escaped. 8481 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8482 *Info = StaticAllocaInfo::Clobbered; 8483 8484 // Check if the destination is a static alloca. 8485 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8486 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8487 if (!Info) 8488 continue; 8489 const AllocaInst *AI = cast<AllocaInst>(Dst); 8490 8491 // Skip allocas that have been initialized or clobbered. 8492 if (*Info != StaticAllocaInfo::Unknown) 8493 continue; 8494 8495 // Check if the stored value is an argument, and that this store fully 8496 // initializes the alloca. Don't elide copies from the same argument twice. 8497 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8498 const auto *Arg = dyn_cast<Argument>(Val); 8499 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8500 Arg->getType()->isEmptyTy() || 8501 DL.getTypeStoreSize(Arg->getType()) != 8502 DL.getTypeAllocSize(AI->getAllocatedType()) || 8503 ArgCopyElisionCandidates.count(Arg)) { 8504 *Info = StaticAllocaInfo::Clobbered; 8505 continue; 8506 } 8507 8508 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8509 8510 // Mark this alloca and store for argument copy elision. 8511 *Info = StaticAllocaInfo::Elidable; 8512 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8513 8514 // Stop scanning if we've seen all arguments. This will happen early in -O0 8515 // builds, which is useful, because -O0 builds have large entry blocks and 8516 // many allocas. 8517 if (ArgCopyElisionCandidates.size() == NumArgs) 8518 break; 8519 } 8520 } 8521 8522 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8523 /// ArgVal is a load from a suitable fixed stack object. 8524 static void tryToElideArgumentCopy( 8525 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8526 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8527 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8528 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8529 SDValue ArgVal, bool &ArgHasUses) { 8530 // Check if this is a load from a fixed stack object. 8531 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8532 if (!LNode) 8533 return; 8534 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8535 if (!FINode) 8536 return; 8537 8538 // Check that the fixed stack object is the right size and alignment. 8539 // Look at the alignment that the user wrote on the alloca instead of looking 8540 // at the stack object. 8541 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8542 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8543 const AllocaInst *AI = ArgCopyIter->second.first; 8544 int FixedIndex = FINode->getIndex(); 8545 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8546 int OldIndex = AllocaIndex; 8547 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8548 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8549 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8550 "object size\n"); 8551 return; 8552 } 8553 unsigned RequiredAlignment = AI->getAlignment(); 8554 if (!RequiredAlignment) { 8555 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8556 AI->getAllocatedType()); 8557 } 8558 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8559 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8560 "greater than stack argument alignment (" 8561 << RequiredAlignment << " vs " 8562 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8563 return; 8564 } 8565 8566 // Perform the elision. Delete the old stack object and replace its only use 8567 // in the variable info map. Mark the stack object as mutable. 8568 DEBUG({ 8569 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8570 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8571 << '\n'; 8572 }); 8573 MFI.RemoveStackObject(OldIndex); 8574 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8575 AllocaIndex = FixedIndex; 8576 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8577 Chains.push_back(ArgVal.getValue(1)); 8578 8579 // Avoid emitting code for the store implementing the copy. 8580 const StoreInst *SI = ArgCopyIter->second.second; 8581 ElidedArgCopyInstrs.insert(SI); 8582 8583 // Check for uses of the argument again so that we can avoid exporting ArgVal 8584 // if it is't used by anything other than the store. 8585 for (const Value *U : Arg.users()) { 8586 if (U != SI) { 8587 ArgHasUses = true; 8588 break; 8589 } 8590 } 8591 } 8592 8593 void SelectionDAGISel::LowerArguments(const Function &F) { 8594 SelectionDAG &DAG = SDB->DAG; 8595 SDLoc dl = SDB->getCurSDLoc(); 8596 const DataLayout &DL = DAG.getDataLayout(); 8597 SmallVector<ISD::InputArg, 16> Ins; 8598 8599 if (!FuncInfo->CanLowerReturn) { 8600 // Put in an sret pointer parameter before all the other parameters. 8601 SmallVector<EVT, 1> ValueVTs; 8602 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8603 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8604 8605 // NOTE: Assuming that a pointer will never break down to more than one VT 8606 // or one register. 8607 ISD::ArgFlagsTy Flags; 8608 Flags.setSRet(); 8609 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8610 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8611 ISD::InputArg::NoArgIndex, 0); 8612 Ins.push_back(RetArg); 8613 } 8614 8615 // Look for stores of arguments to static allocas. Mark such arguments with a 8616 // flag to ask the target to give us the memory location of that argument if 8617 // available. 8618 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8619 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8620 8621 // Set up the incoming argument description vector. 8622 for (const Argument &Arg : F.args()) { 8623 unsigned ArgNo = Arg.getArgNo(); 8624 SmallVector<EVT, 4> ValueVTs; 8625 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8626 bool isArgValueUsed = !Arg.use_empty(); 8627 unsigned PartBase = 0; 8628 Type *FinalType = Arg.getType(); 8629 if (Arg.hasAttribute(Attribute::ByVal)) 8630 FinalType = cast<PointerType>(FinalType)->getElementType(); 8631 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8632 FinalType, F.getCallingConv(), F.isVarArg()); 8633 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8634 Value != NumValues; ++Value) { 8635 EVT VT = ValueVTs[Value]; 8636 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8637 ISD::ArgFlagsTy Flags; 8638 8639 // Certain targets (such as MIPS), may have a different ABI alignment 8640 // for a type depending on the context. Give the target a chance to 8641 // specify the alignment it wants. 8642 unsigned OriginalAlignment = 8643 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8644 8645 if (Arg.hasAttribute(Attribute::ZExt)) 8646 Flags.setZExt(); 8647 if (Arg.hasAttribute(Attribute::SExt)) 8648 Flags.setSExt(); 8649 if (Arg.hasAttribute(Attribute::InReg)) { 8650 // If we are using vectorcall calling convention, a structure that is 8651 // passed InReg - is surely an HVA 8652 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8653 isa<StructType>(Arg.getType())) { 8654 // The first value of a structure is marked 8655 if (0 == Value) 8656 Flags.setHvaStart(); 8657 Flags.setHva(); 8658 } 8659 // Set InReg Flag 8660 Flags.setInReg(); 8661 } 8662 if (Arg.hasAttribute(Attribute::StructRet)) 8663 Flags.setSRet(); 8664 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8665 Flags.setSwiftSelf(); 8666 if (Arg.hasAttribute(Attribute::SwiftError)) 8667 Flags.setSwiftError(); 8668 if (Arg.hasAttribute(Attribute::ByVal)) 8669 Flags.setByVal(); 8670 if (Arg.hasAttribute(Attribute::InAlloca)) { 8671 Flags.setInAlloca(); 8672 // Set the byval flag for CCAssignFn callbacks that don't know about 8673 // inalloca. This way we can know how many bytes we should've allocated 8674 // and how many bytes a callee cleanup function will pop. If we port 8675 // inalloca to more targets, we'll have to add custom inalloca handling 8676 // in the various CC lowering callbacks. 8677 Flags.setByVal(); 8678 } 8679 if (F.getCallingConv() == CallingConv::X86_INTR) { 8680 // IA Interrupt passes frame (1st parameter) by value in the stack. 8681 if (ArgNo == 0) 8682 Flags.setByVal(); 8683 } 8684 if (Flags.isByVal() || Flags.isInAlloca()) { 8685 PointerType *Ty = cast<PointerType>(Arg.getType()); 8686 Type *ElementTy = Ty->getElementType(); 8687 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8688 // For ByVal, alignment should be passed from FE. BE will guess if 8689 // this info is not there but there are cases it cannot get right. 8690 unsigned FrameAlign; 8691 if (Arg.getParamAlignment()) 8692 FrameAlign = Arg.getParamAlignment(); 8693 else 8694 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8695 Flags.setByValAlign(FrameAlign); 8696 } 8697 if (Arg.hasAttribute(Attribute::Nest)) 8698 Flags.setNest(); 8699 if (NeedsRegBlock) 8700 Flags.setInConsecutiveRegs(); 8701 Flags.setOrigAlign(OriginalAlignment); 8702 if (ArgCopyElisionCandidates.count(&Arg)) 8703 Flags.setCopyElisionCandidate(); 8704 8705 MVT RegisterVT = 8706 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8707 unsigned NumRegs = 8708 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8709 for (unsigned i = 0; i != NumRegs; ++i) { 8710 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8711 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8712 if (NumRegs > 1 && i == 0) 8713 MyFlags.Flags.setSplit(); 8714 // if it isn't first piece, alignment must be 1 8715 else if (i > 0) { 8716 MyFlags.Flags.setOrigAlign(1); 8717 if (i == NumRegs - 1) 8718 MyFlags.Flags.setSplitEnd(); 8719 } 8720 Ins.push_back(MyFlags); 8721 } 8722 if (NeedsRegBlock && Value == NumValues - 1) 8723 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8724 PartBase += VT.getStoreSize(); 8725 } 8726 } 8727 8728 // Call the target to set up the argument values. 8729 SmallVector<SDValue, 8> InVals; 8730 SDValue NewRoot = TLI->LowerFormalArguments( 8731 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8732 8733 // Verify that the target's LowerFormalArguments behaved as expected. 8734 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8735 "LowerFormalArguments didn't return a valid chain!"); 8736 assert(InVals.size() == Ins.size() && 8737 "LowerFormalArguments didn't emit the correct number of values!"); 8738 DEBUG({ 8739 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8740 assert(InVals[i].getNode() && 8741 "LowerFormalArguments emitted a null value!"); 8742 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8743 "LowerFormalArguments emitted a value with the wrong type!"); 8744 } 8745 }); 8746 8747 // Update the DAG with the new chain value resulting from argument lowering. 8748 DAG.setRoot(NewRoot); 8749 8750 // Set up the argument values. 8751 unsigned i = 0; 8752 if (!FuncInfo->CanLowerReturn) { 8753 // Create a virtual register for the sret pointer, and put in a copy 8754 // from the sret argument into it. 8755 SmallVector<EVT, 1> ValueVTs; 8756 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8757 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8758 MVT VT = ValueVTs[0].getSimpleVT(); 8759 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8760 Optional<ISD::NodeType> AssertOp = None; 8761 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8762 RegVT, VT, nullptr, AssertOp); 8763 8764 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8765 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8766 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8767 FuncInfo->DemoteRegister = SRetReg; 8768 NewRoot = 8769 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8770 DAG.setRoot(NewRoot); 8771 8772 // i indexes lowered arguments. Bump it past the hidden sret argument. 8773 ++i; 8774 } 8775 8776 SmallVector<SDValue, 4> Chains; 8777 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8778 for (const Argument &Arg : F.args()) { 8779 SmallVector<SDValue, 4> ArgValues; 8780 SmallVector<EVT, 4> ValueVTs; 8781 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8782 unsigned NumValues = ValueVTs.size(); 8783 if (NumValues == 0) 8784 continue; 8785 8786 bool ArgHasUses = !Arg.use_empty(); 8787 8788 // Elide the copying store if the target loaded this argument from a 8789 // suitable fixed stack object. 8790 if (Ins[i].Flags.isCopyElisionCandidate()) { 8791 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8792 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8793 InVals[i], ArgHasUses); 8794 } 8795 8796 // If this argument is unused then remember its value. It is used to generate 8797 // debugging information. 8798 bool isSwiftErrorArg = 8799 TLI->supportSwiftError() && 8800 Arg.hasAttribute(Attribute::SwiftError); 8801 if (!ArgHasUses && !isSwiftErrorArg) { 8802 SDB->setUnusedArgValue(&Arg, InVals[i]); 8803 8804 // Also remember any frame index for use in FastISel. 8805 if (FrameIndexSDNode *FI = 8806 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8807 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8808 } 8809 8810 for (unsigned Val = 0; Val != NumValues; ++Val) { 8811 EVT VT = ValueVTs[Val]; 8812 MVT PartVT = 8813 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8814 unsigned NumParts = 8815 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8816 8817 // Even an apparant 'unused' swifterror argument needs to be returned. So 8818 // we do generate a copy for it that can be used on return from the 8819 // function. 8820 if (ArgHasUses || isSwiftErrorArg) { 8821 Optional<ISD::NodeType> AssertOp; 8822 if (Arg.hasAttribute(Attribute::SExt)) 8823 AssertOp = ISD::AssertSext; 8824 else if (Arg.hasAttribute(Attribute::ZExt)) 8825 AssertOp = ISD::AssertZext; 8826 8827 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8828 PartVT, VT, nullptr, AssertOp, 8829 true)); 8830 } 8831 8832 i += NumParts; 8833 } 8834 8835 // We don't need to do anything else for unused arguments. 8836 if (ArgValues.empty()) 8837 continue; 8838 8839 // Note down frame index. 8840 if (FrameIndexSDNode *FI = 8841 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8842 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8843 8844 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8845 SDB->getCurSDLoc()); 8846 8847 SDB->setValue(&Arg, Res); 8848 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8849 // We want to associate the argument with the frame index, among 8850 // involved operands, that correspond to the lowest address. The 8851 // getCopyFromParts function, called earlier, is swapping the order of 8852 // the operands to BUILD_PAIR depending on endianness. The result of 8853 // that swapping is that the least significant bits of the argument will 8854 // be in the first operand of the BUILD_PAIR node, and the most 8855 // significant bits will be in the second operand. 8856 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 8857 if (LoadSDNode *LNode = 8858 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 8859 if (FrameIndexSDNode *FI = 8860 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8861 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8862 } 8863 8864 // Update the SwiftErrorVRegDefMap. 8865 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8866 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8867 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8868 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8869 FuncInfo->SwiftErrorArg, Reg); 8870 } 8871 8872 // If this argument is live outside of the entry block, insert a copy from 8873 // wherever we got it to the vreg that other BB's will reference it as. 8874 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8875 // If we can, though, try to skip creating an unnecessary vreg. 8876 // FIXME: This isn't very clean... it would be nice to make this more 8877 // general. It's also subtly incompatible with the hacks FastISel 8878 // uses with vregs. 8879 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8880 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8881 FuncInfo->ValueMap[&Arg] = Reg; 8882 continue; 8883 } 8884 } 8885 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8886 FuncInfo->InitializeRegForValue(&Arg); 8887 SDB->CopyToExportRegsIfNeeded(&Arg); 8888 } 8889 } 8890 8891 if (!Chains.empty()) { 8892 Chains.push_back(NewRoot); 8893 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8894 } 8895 8896 DAG.setRoot(NewRoot); 8897 8898 assert(i == InVals.size() && "Argument register count mismatch!"); 8899 8900 // If any argument copy elisions occurred and we have debug info, update the 8901 // stale frame indices used in the dbg.declare variable info table. 8902 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8903 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8904 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8905 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8906 if (I != ArgCopyElisionFrameIndexMap.end()) 8907 VI.Slot = I->second; 8908 } 8909 } 8910 8911 // Finally, if the target has anything special to do, allow it to do so. 8912 EmitFunctionEntryCode(); 8913 } 8914 8915 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8916 /// ensure constants are generated when needed. Remember the virtual registers 8917 /// that need to be added to the Machine PHI nodes as input. We cannot just 8918 /// directly add them, because expansion might result in multiple MBB's for one 8919 /// BB. As such, the start of the BB might correspond to a different MBB than 8920 /// the end. 8921 void 8922 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8923 const TerminatorInst *TI = LLVMBB->getTerminator(); 8924 8925 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8926 8927 // Check PHI nodes in successors that expect a value to be available from this 8928 // block. 8929 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8930 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8931 if (!isa<PHINode>(SuccBB->begin())) continue; 8932 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8933 8934 // If this terminator has multiple identical successors (common for 8935 // switches), only handle each succ once. 8936 if (!SuccsHandled.insert(SuccMBB).second) 8937 continue; 8938 8939 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8940 8941 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8942 // nodes and Machine PHI nodes, but the incoming operands have not been 8943 // emitted yet. 8944 for (BasicBlock::const_iterator I = SuccBB->begin(); 8945 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8946 // Ignore dead phi's. 8947 if (PN->use_empty()) continue; 8948 8949 // Skip empty types 8950 if (PN->getType()->isEmptyTy()) 8951 continue; 8952 8953 unsigned Reg; 8954 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8955 8956 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8957 unsigned &RegOut = ConstantsOut[C]; 8958 if (RegOut == 0) { 8959 RegOut = FuncInfo.CreateRegs(C->getType()); 8960 CopyValueToVirtualRegister(C, RegOut); 8961 } 8962 Reg = RegOut; 8963 } else { 8964 DenseMap<const Value *, unsigned>::iterator I = 8965 FuncInfo.ValueMap.find(PHIOp); 8966 if (I != FuncInfo.ValueMap.end()) 8967 Reg = I->second; 8968 else { 8969 assert(isa<AllocaInst>(PHIOp) && 8970 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8971 "Didn't codegen value into a register!??"); 8972 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8973 CopyValueToVirtualRegister(PHIOp, Reg); 8974 } 8975 } 8976 8977 // Remember that this register needs to added to the machine PHI node as 8978 // the input for this MBB. 8979 SmallVector<EVT, 4> ValueVTs; 8980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8981 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8982 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8983 EVT VT = ValueVTs[vti]; 8984 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8985 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8986 FuncInfo.PHINodesToUpdate.push_back( 8987 std::make_pair(&*MBBI++, Reg + i)); 8988 Reg += NumRegisters; 8989 } 8990 } 8991 } 8992 8993 ConstantsOut.clear(); 8994 } 8995 8996 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8997 /// is 0. 8998 MachineBasicBlock * 8999 SelectionDAGBuilder::StackProtectorDescriptor:: 9000 AddSuccessorMBB(const BasicBlock *BB, 9001 MachineBasicBlock *ParentMBB, 9002 bool IsLikely, 9003 MachineBasicBlock *SuccMBB) { 9004 // If SuccBB has not been created yet, create it. 9005 if (!SuccMBB) { 9006 MachineFunction *MF = ParentMBB->getParent(); 9007 MachineFunction::iterator BBI(ParentMBB); 9008 SuccMBB = MF->CreateMachineBasicBlock(BB); 9009 MF->insert(++BBI, SuccMBB); 9010 } 9011 // Add it as a successor of ParentMBB. 9012 ParentMBB->addSuccessor( 9013 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9014 return SuccMBB; 9015 } 9016 9017 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9018 MachineFunction::iterator I(MBB); 9019 if (++I == FuncInfo.MF->end()) 9020 return nullptr; 9021 return &*I; 9022 } 9023 9024 /// During lowering new call nodes can be created (such as memset, etc.). 9025 /// Those will become new roots of the current DAG, but complications arise 9026 /// when they are tail calls. In such cases, the call lowering will update 9027 /// the root, but the builder still needs to know that a tail call has been 9028 /// lowered in order to avoid generating an additional return. 9029 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9030 // If the node is null, we do have a tail call. 9031 if (MaybeTC.getNode() != nullptr) 9032 DAG.setRoot(MaybeTC); 9033 else 9034 HasTailCall = true; 9035 } 9036 9037 uint64_t 9038 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9039 unsigned First, unsigned Last) const { 9040 assert(Last >= First); 9041 const APInt &LowCase = Clusters[First].Low->getValue(); 9042 const APInt &HighCase = Clusters[Last].High->getValue(); 9043 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9044 9045 // FIXME: A range of consecutive cases has 100% density, but only requires one 9046 // comparison to lower. We should discriminate against such consecutive ranges 9047 // in jump tables. 9048 9049 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9050 } 9051 9052 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9053 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9054 unsigned Last) const { 9055 assert(Last >= First); 9056 assert(TotalCases[Last] >= TotalCases[First]); 9057 uint64_t NumCases = 9058 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9059 return NumCases; 9060 } 9061 9062 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9063 unsigned First, unsigned Last, 9064 const SwitchInst *SI, 9065 MachineBasicBlock *DefaultMBB, 9066 CaseCluster &JTCluster) { 9067 assert(First <= Last); 9068 9069 auto Prob = BranchProbability::getZero(); 9070 unsigned NumCmps = 0; 9071 std::vector<MachineBasicBlock*> Table; 9072 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9073 9074 // Initialize probabilities in JTProbs. 9075 for (unsigned I = First; I <= Last; ++I) 9076 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9077 9078 for (unsigned I = First; I <= Last; ++I) { 9079 assert(Clusters[I].Kind == CC_Range); 9080 Prob += Clusters[I].Prob; 9081 const APInt &Low = Clusters[I].Low->getValue(); 9082 const APInt &High = Clusters[I].High->getValue(); 9083 NumCmps += (Low == High) ? 1 : 2; 9084 if (I != First) { 9085 // Fill the gap between this and the previous cluster. 9086 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9087 assert(PreviousHigh.slt(Low)); 9088 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9089 for (uint64_t J = 0; J < Gap; J++) 9090 Table.push_back(DefaultMBB); 9091 } 9092 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9093 for (uint64_t J = 0; J < ClusterSize; ++J) 9094 Table.push_back(Clusters[I].MBB); 9095 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9096 } 9097 9098 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9099 unsigned NumDests = JTProbs.size(); 9100 if (TLI.isSuitableForBitTests( 9101 NumDests, NumCmps, Clusters[First].Low->getValue(), 9102 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9103 // Clusters[First..Last] should be lowered as bit tests instead. 9104 return false; 9105 } 9106 9107 // Create the MBB that will load from and jump through the table. 9108 // Note: We create it here, but it's not inserted into the function yet. 9109 MachineFunction *CurMF = FuncInfo.MF; 9110 MachineBasicBlock *JumpTableMBB = 9111 CurMF->CreateMachineBasicBlock(SI->getParent()); 9112 9113 // Add successors. Note: use table order for determinism. 9114 SmallPtrSet<MachineBasicBlock *, 8> Done; 9115 for (MachineBasicBlock *Succ : Table) { 9116 if (Done.count(Succ)) 9117 continue; 9118 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9119 Done.insert(Succ); 9120 } 9121 JumpTableMBB->normalizeSuccProbs(); 9122 9123 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9124 ->createJumpTableIndex(Table); 9125 9126 // Set up the jump table info. 9127 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9128 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9129 Clusters[Last].High->getValue(), SI->getCondition(), 9130 nullptr, false); 9131 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9132 9133 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9134 JTCases.size() - 1, Prob); 9135 return true; 9136 } 9137 9138 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9139 const SwitchInst *SI, 9140 MachineBasicBlock *DefaultMBB) { 9141 #ifndef NDEBUG 9142 // Clusters must be non-empty, sorted, and only contain Range clusters. 9143 assert(!Clusters.empty()); 9144 for (CaseCluster &C : Clusters) 9145 assert(C.Kind == CC_Range); 9146 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9147 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9148 #endif 9149 9150 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9151 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9152 return; 9153 9154 const int64_t N = Clusters.size(); 9155 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9156 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9157 9158 if (N < 2 || N < MinJumpTableEntries) 9159 return; 9160 9161 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9162 SmallVector<unsigned, 8> TotalCases(N); 9163 for (unsigned i = 0; i < N; ++i) { 9164 const APInt &Hi = Clusters[i].High->getValue(); 9165 const APInt &Lo = Clusters[i].Low->getValue(); 9166 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9167 if (i != 0) 9168 TotalCases[i] += TotalCases[i - 1]; 9169 } 9170 9171 // Cheap case: the whole range may be suitable for jump table. 9172 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9173 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9174 assert(NumCases < UINT64_MAX / 100); 9175 assert(Range >= NumCases); 9176 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9177 CaseCluster JTCluster; 9178 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9179 Clusters[0] = JTCluster; 9180 Clusters.resize(1); 9181 return; 9182 } 9183 } 9184 9185 // The algorithm below is not suitable for -O0. 9186 if (TM.getOptLevel() == CodeGenOpt::None) 9187 return; 9188 9189 // Split Clusters into minimum number of dense partitions. The algorithm uses 9190 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9191 // for the Case Statement'" (1994), but builds the MinPartitions array in 9192 // reverse order to make it easier to reconstruct the partitions in ascending 9193 // order. In the choice between two optimal partitionings, it picks the one 9194 // which yields more jump tables. 9195 9196 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9197 SmallVector<unsigned, 8> MinPartitions(N); 9198 // LastElement[i] is the last element of the partition starting at i. 9199 SmallVector<unsigned, 8> LastElement(N); 9200 // PartitionsScore[i] is used to break ties when choosing between two 9201 // partitionings resulting in the same number of partitions. 9202 SmallVector<unsigned, 8> PartitionsScore(N); 9203 // For PartitionsScore, a small number of comparisons is considered as good as 9204 // a jump table and a single comparison is considered better than a jump 9205 // table. 9206 enum PartitionScores : unsigned { 9207 NoTable = 0, 9208 Table = 1, 9209 FewCases = 1, 9210 SingleCase = 2 9211 }; 9212 9213 // Base case: There is only one way to partition Clusters[N-1]. 9214 MinPartitions[N - 1] = 1; 9215 LastElement[N - 1] = N - 1; 9216 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9217 9218 // Note: loop indexes are signed to avoid underflow. 9219 for (int64_t i = N - 2; i >= 0; i--) { 9220 // Find optimal partitioning of Clusters[i..N-1]. 9221 // Baseline: Put Clusters[i] into a partition on its own. 9222 MinPartitions[i] = MinPartitions[i + 1] + 1; 9223 LastElement[i] = i; 9224 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9225 9226 // Search for a solution that results in fewer partitions. 9227 for (int64_t j = N - 1; j > i; j--) { 9228 // Try building a partition from Clusters[i..j]. 9229 uint64_t Range = getJumpTableRange(Clusters, i, j); 9230 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9231 assert(NumCases < UINT64_MAX / 100); 9232 assert(Range >= NumCases); 9233 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9234 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9235 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9236 int64_t NumEntries = j - i + 1; 9237 9238 if (NumEntries == 1) 9239 Score += PartitionScores::SingleCase; 9240 else if (NumEntries <= SmallNumberOfEntries) 9241 Score += PartitionScores::FewCases; 9242 else if (NumEntries >= MinJumpTableEntries) 9243 Score += PartitionScores::Table; 9244 9245 // If this leads to fewer partitions, or to the same number of 9246 // partitions with better score, it is a better partitioning. 9247 if (NumPartitions < MinPartitions[i] || 9248 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9249 MinPartitions[i] = NumPartitions; 9250 LastElement[i] = j; 9251 PartitionsScore[i] = Score; 9252 } 9253 } 9254 } 9255 } 9256 9257 // Iterate over the partitions, replacing some with jump tables in-place. 9258 unsigned DstIndex = 0; 9259 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9260 Last = LastElement[First]; 9261 assert(Last >= First); 9262 assert(DstIndex <= First); 9263 unsigned NumClusters = Last - First + 1; 9264 9265 CaseCluster JTCluster; 9266 if (NumClusters >= MinJumpTableEntries && 9267 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9268 Clusters[DstIndex++] = JTCluster; 9269 } else { 9270 for (unsigned I = First; I <= Last; ++I) 9271 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9272 } 9273 } 9274 Clusters.resize(DstIndex); 9275 } 9276 9277 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9278 unsigned First, unsigned Last, 9279 const SwitchInst *SI, 9280 CaseCluster &BTCluster) { 9281 assert(First <= Last); 9282 if (First == Last) 9283 return false; 9284 9285 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9286 unsigned NumCmps = 0; 9287 for (int64_t I = First; I <= Last; ++I) { 9288 assert(Clusters[I].Kind == CC_Range); 9289 Dests.set(Clusters[I].MBB->getNumber()); 9290 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9291 } 9292 unsigned NumDests = Dests.count(); 9293 9294 APInt Low = Clusters[First].Low->getValue(); 9295 APInt High = Clusters[Last].High->getValue(); 9296 assert(Low.slt(High)); 9297 9298 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9299 const DataLayout &DL = DAG.getDataLayout(); 9300 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9301 return false; 9302 9303 APInt LowBound; 9304 APInt CmpRange; 9305 9306 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9307 assert(TLI.rangeFitsInWord(Low, High, DL) && 9308 "Case range must fit in bit mask!"); 9309 9310 // Check if the clusters cover a contiguous range such that no value in the 9311 // range will jump to the default statement. 9312 bool ContiguousRange = true; 9313 for (int64_t I = First + 1; I <= Last; ++I) { 9314 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9315 ContiguousRange = false; 9316 break; 9317 } 9318 } 9319 9320 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9321 // Optimize the case where all the case values fit in a word without having 9322 // to subtract minValue. In this case, we can optimize away the subtraction. 9323 LowBound = APInt::getNullValue(Low.getBitWidth()); 9324 CmpRange = High; 9325 ContiguousRange = false; 9326 } else { 9327 LowBound = Low; 9328 CmpRange = High - Low; 9329 } 9330 9331 CaseBitsVector CBV; 9332 auto TotalProb = BranchProbability::getZero(); 9333 for (unsigned i = First; i <= Last; ++i) { 9334 // Find the CaseBits for this destination. 9335 unsigned j; 9336 for (j = 0; j < CBV.size(); ++j) 9337 if (CBV[j].BB == Clusters[i].MBB) 9338 break; 9339 if (j == CBV.size()) 9340 CBV.push_back( 9341 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9342 CaseBits *CB = &CBV[j]; 9343 9344 // Update Mask, Bits and ExtraProb. 9345 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9346 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9347 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9348 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9349 CB->Bits += Hi - Lo + 1; 9350 CB->ExtraProb += Clusters[i].Prob; 9351 TotalProb += Clusters[i].Prob; 9352 } 9353 9354 BitTestInfo BTI; 9355 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9356 // Sort by probability first, number of bits second. 9357 if (a.ExtraProb != b.ExtraProb) 9358 return a.ExtraProb > b.ExtraProb; 9359 return a.Bits > b.Bits; 9360 }); 9361 9362 for (auto &CB : CBV) { 9363 MachineBasicBlock *BitTestBB = 9364 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9365 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9366 } 9367 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9368 SI->getCondition(), -1U, MVT::Other, false, 9369 ContiguousRange, nullptr, nullptr, std::move(BTI), 9370 TotalProb); 9371 9372 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9373 BitTestCases.size() - 1, TotalProb); 9374 return true; 9375 } 9376 9377 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9378 const SwitchInst *SI) { 9379 // Partition Clusters into as few subsets as possible, where each subset has a 9380 // range that fits in a machine word and has <= 3 unique destinations. 9381 9382 #ifndef NDEBUG 9383 // Clusters must be sorted and contain Range or JumpTable clusters. 9384 assert(!Clusters.empty()); 9385 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9386 for (const CaseCluster &C : Clusters) 9387 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9388 for (unsigned i = 1; i < Clusters.size(); ++i) 9389 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9390 #endif 9391 9392 // The algorithm below is not suitable for -O0. 9393 if (TM.getOptLevel() == CodeGenOpt::None) 9394 return; 9395 9396 // If target does not have legal shift left, do not emit bit tests at all. 9397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9398 const DataLayout &DL = DAG.getDataLayout(); 9399 9400 EVT PTy = TLI.getPointerTy(DL); 9401 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9402 return; 9403 9404 int BitWidth = PTy.getSizeInBits(); 9405 const int64_t N = Clusters.size(); 9406 9407 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9408 SmallVector<unsigned, 8> MinPartitions(N); 9409 // LastElement[i] is the last element of the partition starting at i. 9410 SmallVector<unsigned, 8> LastElement(N); 9411 9412 // FIXME: This might not be the best algorithm for finding bit test clusters. 9413 9414 // Base case: There is only one way to partition Clusters[N-1]. 9415 MinPartitions[N - 1] = 1; 9416 LastElement[N - 1] = N - 1; 9417 9418 // Note: loop indexes are signed to avoid underflow. 9419 for (int64_t i = N - 2; i >= 0; --i) { 9420 // Find optimal partitioning of Clusters[i..N-1]. 9421 // Baseline: Put Clusters[i] into a partition on its own. 9422 MinPartitions[i] = MinPartitions[i + 1] + 1; 9423 LastElement[i] = i; 9424 9425 // Search for a solution that results in fewer partitions. 9426 // Note: the search is limited by BitWidth, reducing time complexity. 9427 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9428 // Try building a partition from Clusters[i..j]. 9429 9430 // Check the range. 9431 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9432 Clusters[j].High->getValue(), DL)) 9433 continue; 9434 9435 // Check nbr of destinations and cluster types. 9436 // FIXME: This works, but doesn't seem very efficient. 9437 bool RangesOnly = true; 9438 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9439 for (int64_t k = i; k <= j; k++) { 9440 if (Clusters[k].Kind != CC_Range) { 9441 RangesOnly = false; 9442 break; 9443 } 9444 Dests.set(Clusters[k].MBB->getNumber()); 9445 } 9446 if (!RangesOnly || Dests.count() > 3) 9447 break; 9448 9449 // Check if it's a better partition. 9450 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9451 if (NumPartitions < MinPartitions[i]) { 9452 // Found a better partition. 9453 MinPartitions[i] = NumPartitions; 9454 LastElement[i] = j; 9455 } 9456 } 9457 } 9458 9459 // Iterate over the partitions, replacing with bit-test clusters in-place. 9460 unsigned DstIndex = 0; 9461 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9462 Last = LastElement[First]; 9463 assert(First <= Last); 9464 assert(DstIndex <= First); 9465 9466 CaseCluster BitTestCluster; 9467 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9468 Clusters[DstIndex++] = BitTestCluster; 9469 } else { 9470 size_t NumClusters = Last - First + 1; 9471 std::memmove(&Clusters[DstIndex], &Clusters[First], 9472 sizeof(Clusters[0]) * NumClusters); 9473 DstIndex += NumClusters; 9474 } 9475 } 9476 Clusters.resize(DstIndex); 9477 } 9478 9479 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9480 MachineBasicBlock *SwitchMBB, 9481 MachineBasicBlock *DefaultMBB) { 9482 MachineFunction *CurMF = FuncInfo.MF; 9483 MachineBasicBlock *NextMBB = nullptr; 9484 MachineFunction::iterator BBI(W.MBB); 9485 if (++BBI != FuncInfo.MF->end()) 9486 NextMBB = &*BBI; 9487 9488 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9489 9490 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9491 9492 if (Size == 2 && W.MBB == SwitchMBB) { 9493 // If any two of the cases has the same destination, and if one value 9494 // is the same as the other, but has one bit unset that the other has set, 9495 // use bit manipulation to do two compares at once. For example: 9496 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9497 // TODO: This could be extended to merge any 2 cases in switches with 3 9498 // cases. 9499 // TODO: Handle cases where W.CaseBB != SwitchBB. 9500 CaseCluster &Small = *W.FirstCluster; 9501 CaseCluster &Big = *W.LastCluster; 9502 9503 if (Small.Low == Small.High && Big.Low == Big.High && 9504 Small.MBB == Big.MBB) { 9505 const APInt &SmallValue = Small.Low->getValue(); 9506 const APInt &BigValue = Big.Low->getValue(); 9507 9508 // Check that there is only one bit different. 9509 APInt CommonBit = BigValue ^ SmallValue; 9510 if (CommonBit.isPowerOf2()) { 9511 SDValue CondLHS = getValue(Cond); 9512 EVT VT = CondLHS.getValueType(); 9513 SDLoc DL = getCurSDLoc(); 9514 9515 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9516 DAG.getConstant(CommonBit, DL, VT)); 9517 SDValue Cond = DAG.getSetCC( 9518 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9519 ISD::SETEQ); 9520 9521 // Update successor info. 9522 // Both Small and Big will jump to Small.BB, so we sum up the 9523 // probabilities. 9524 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9525 if (BPI) 9526 addSuccessorWithProb( 9527 SwitchMBB, DefaultMBB, 9528 // The default destination is the first successor in IR. 9529 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9530 else 9531 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9532 9533 // Insert the true branch. 9534 SDValue BrCond = 9535 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9536 DAG.getBasicBlock(Small.MBB)); 9537 // Insert the false branch. 9538 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9539 DAG.getBasicBlock(DefaultMBB)); 9540 9541 DAG.setRoot(BrCond); 9542 return; 9543 } 9544 } 9545 } 9546 9547 if (TM.getOptLevel() != CodeGenOpt::None) { 9548 // Order cases by probability so the most likely case will be checked first. 9549 std::sort(W.FirstCluster, W.LastCluster + 1, 9550 [](const CaseCluster &a, const CaseCluster &b) { 9551 return a.Prob > b.Prob; 9552 }); 9553 9554 // Rearrange the case blocks so that the last one falls through if possible 9555 // without without changing the order of probabilities. 9556 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9557 --I; 9558 if (I->Prob > W.LastCluster->Prob) 9559 break; 9560 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9561 std::swap(*I, *W.LastCluster); 9562 break; 9563 } 9564 } 9565 } 9566 9567 // Compute total probability. 9568 BranchProbability DefaultProb = W.DefaultProb; 9569 BranchProbability UnhandledProbs = DefaultProb; 9570 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9571 UnhandledProbs += I->Prob; 9572 9573 MachineBasicBlock *CurMBB = W.MBB; 9574 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9575 MachineBasicBlock *Fallthrough; 9576 if (I == W.LastCluster) { 9577 // For the last cluster, fall through to the default destination. 9578 Fallthrough = DefaultMBB; 9579 } else { 9580 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9581 CurMF->insert(BBI, Fallthrough); 9582 // Put Cond in a virtual register to make it available from the new blocks. 9583 ExportFromCurrentBlock(Cond); 9584 } 9585 UnhandledProbs -= I->Prob; 9586 9587 switch (I->Kind) { 9588 case CC_JumpTable: { 9589 // FIXME: Optimize away range check based on pivot comparisons. 9590 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9591 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9592 9593 // The jump block hasn't been inserted yet; insert it here. 9594 MachineBasicBlock *JumpMBB = JT->MBB; 9595 CurMF->insert(BBI, JumpMBB); 9596 9597 auto JumpProb = I->Prob; 9598 auto FallthroughProb = UnhandledProbs; 9599 9600 // If the default statement is a target of the jump table, we evenly 9601 // distribute the default probability to successors of CurMBB. Also 9602 // update the probability on the edge from JumpMBB to Fallthrough. 9603 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9604 SE = JumpMBB->succ_end(); 9605 SI != SE; ++SI) { 9606 if (*SI == DefaultMBB) { 9607 JumpProb += DefaultProb / 2; 9608 FallthroughProb -= DefaultProb / 2; 9609 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9610 JumpMBB->normalizeSuccProbs(); 9611 break; 9612 } 9613 } 9614 9615 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9616 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9617 CurMBB->normalizeSuccProbs(); 9618 9619 // The jump table header will be inserted in our current block, do the 9620 // range check, and fall through to our fallthrough block. 9621 JTH->HeaderBB = CurMBB; 9622 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9623 9624 // If we're in the right place, emit the jump table header right now. 9625 if (CurMBB == SwitchMBB) { 9626 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9627 JTH->Emitted = true; 9628 } 9629 break; 9630 } 9631 case CC_BitTests: { 9632 // FIXME: Optimize away range check based on pivot comparisons. 9633 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9634 9635 // The bit test blocks haven't been inserted yet; insert them here. 9636 for (BitTestCase &BTC : BTB->Cases) 9637 CurMF->insert(BBI, BTC.ThisBB); 9638 9639 // Fill in fields of the BitTestBlock. 9640 BTB->Parent = CurMBB; 9641 BTB->Default = Fallthrough; 9642 9643 BTB->DefaultProb = UnhandledProbs; 9644 // If the cases in bit test don't form a contiguous range, we evenly 9645 // distribute the probability on the edge to Fallthrough to two 9646 // successors of CurMBB. 9647 if (!BTB->ContiguousRange) { 9648 BTB->Prob += DefaultProb / 2; 9649 BTB->DefaultProb -= DefaultProb / 2; 9650 } 9651 9652 // If we're in the right place, emit the bit test header right now. 9653 if (CurMBB == SwitchMBB) { 9654 visitBitTestHeader(*BTB, SwitchMBB); 9655 BTB->Emitted = true; 9656 } 9657 break; 9658 } 9659 case CC_Range: { 9660 const Value *RHS, *LHS, *MHS; 9661 ISD::CondCode CC; 9662 if (I->Low == I->High) { 9663 // Check Cond == I->Low. 9664 CC = ISD::SETEQ; 9665 LHS = Cond; 9666 RHS=I->Low; 9667 MHS = nullptr; 9668 } else { 9669 // Check I->Low <= Cond <= I->High. 9670 CC = ISD::SETLE; 9671 LHS = I->Low; 9672 MHS = Cond; 9673 RHS = I->High; 9674 } 9675 9676 // The false probability is the sum of all unhandled cases. 9677 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9678 getCurSDLoc(), I->Prob, UnhandledProbs); 9679 9680 if (CurMBB == SwitchMBB) 9681 visitSwitchCase(CB, SwitchMBB); 9682 else 9683 SwitchCases.push_back(CB); 9684 9685 break; 9686 } 9687 } 9688 CurMBB = Fallthrough; 9689 } 9690 } 9691 9692 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9693 CaseClusterIt First, 9694 CaseClusterIt Last) { 9695 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9696 if (X.Prob != CC.Prob) 9697 return X.Prob > CC.Prob; 9698 9699 // Ties are broken by comparing the case value. 9700 return X.Low->getValue().slt(CC.Low->getValue()); 9701 }); 9702 } 9703 9704 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9705 const SwitchWorkListItem &W, 9706 Value *Cond, 9707 MachineBasicBlock *SwitchMBB) { 9708 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9709 "Clusters not sorted?"); 9710 9711 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9712 9713 // Balance the tree based on branch probabilities to create a near-optimal (in 9714 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9715 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9716 CaseClusterIt LastLeft = W.FirstCluster; 9717 CaseClusterIt FirstRight = W.LastCluster; 9718 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9719 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9720 9721 // Move LastLeft and FirstRight towards each other from opposite directions to 9722 // find a partitioning of the clusters which balances the probability on both 9723 // sides. If LeftProb and RightProb are equal, alternate which side is 9724 // taken to ensure 0-probability nodes are distributed evenly. 9725 unsigned I = 0; 9726 while (LastLeft + 1 < FirstRight) { 9727 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9728 LeftProb += (++LastLeft)->Prob; 9729 else 9730 RightProb += (--FirstRight)->Prob; 9731 I++; 9732 } 9733 9734 while (true) { 9735 // Our binary search tree differs from a typical BST in that ours can have up 9736 // to three values in each leaf. The pivot selection above doesn't take that 9737 // into account, which means the tree might require more nodes and be less 9738 // efficient. We compensate for this here. 9739 9740 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9741 unsigned NumRight = W.LastCluster - FirstRight + 1; 9742 9743 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9744 // If one side has less than 3 clusters, and the other has more than 3, 9745 // consider taking a cluster from the other side. 9746 9747 if (NumLeft < NumRight) { 9748 // Consider moving the first cluster on the right to the left side. 9749 CaseCluster &CC = *FirstRight; 9750 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9751 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9752 if (LeftSideRank <= RightSideRank) { 9753 // Moving the cluster to the left does not demote it. 9754 ++LastLeft; 9755 ++FirstRight; 9756 continue; 9757 } 9758 } else { 9759 assert(NumRight < NumLeft); 9760 // Consider moving the last element on the left to the right side. 9761 CaseCluster &CC = *LastLeft; 9762 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9763 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9764 if (RightSideRank <= LeftSideRank) { 9765 // Moving the cluster to the right does not demot it. 9766 --LastLeft; 9767 --FirstRight; 9768 continue; 9769 } 9770 } 9771 } 9772 break; 9773 } 9774 9775 assert(LastLeft + 1 == FirstRight); 9776 assert(LastLeft >= W.FirstCluster); 9777 assert(FirstRight <= W.LastCluster); 9778 9779 // Use the first element on the right as pivot since we will make less-than 9780 // comparisons against it. 9781 CaseClusterIt PivotCluster = FirstRight; 9782 assert(PivotCluster > W.FirstCluster); 9783 assert(PivotCluster <= W.LastCluster); 9784 9785 CaseClusterIt FirstLeft = W.FirstCluster; 9786 CaseClusterIt LastRight = W.LastCluster; 9787 9788 const ConstantInt *Pivot = PivotCluster->Low; 9789 9790 // New blocks will be inserted immediately after the current one. 9791 MachineFunction::iterator BBI(W.MBB); 9792 ++BBI; 9793 9794 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9795 // we can branch to its destination directly if it's squeezed exactly in 9796 // between the known lower bound and Pivot - 1. 9797 MachineBasicBlock *LeftMBB; 9798 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9799 FirstLeft->Low == W.GE && 9800 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9801 LeftMBB = FirstLeft->MBB; 9802 } else { 9803 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9804 FuncInfo.MF->insert(BBI, LeftMBB); 9805 WorkList.push_back( 9806 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9807 // Put Cond in a virtual register to make it available from the new blocks. 9808 ExportFromCurrentBlock(Cond); 9809 } 9810 9811 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9812 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9813 // directly if RHS.High equals the current upper bound. 9814 MachineBasicBlock *RightMBB; 9815 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9816 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9817 RightMBB = FirstRight->MBB; 9818 } else { 9819 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9820 FuncInfo.MF->insert(BBI, RightMBB); 9821 WorkList.push_back( 9822 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9823 // Put Cond in a virtual register to make it available from the new blocks. 9824 ExportFromCurrentBlock(Cond); 9825 } 9826 9827 // Create the CaseBlock record that will be used to lower the branch. 9828 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9829 getCurSDLoc(), LeftProb, RightProb); 9830 9831 if (W.MBB == SwitchMBB) 9832 visitSwitchCase(CB, SwitchMBB); 9833 else 9834 SwitchCases.push_back(CB); 9835 } 9836 9837 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9838 // Extract cases from the switch. 9839 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9840 CaseClusterVector Clusters; 9841 Clusters.reserve(SI.getNumCases()); 9842 for (auto I : SI.cases()) { 9843 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9844 const ConstantInt *CaseVal = I.getCaseValue(); 9845 BranchProbability Prob = 9846 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9847 : BranchProbability(1, SI.getNumCases() + 1); 9848 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9849 } 9850 9851 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9852 9853 // Cluster adjacent cases with the same destination. We do this at all 9854 // optimization levels because it's cheap to do and will make codegen faster 9855 // if there are many clusters. 9856 sortAndRangeify(Clusters); 9857 9858 if (TM.getOptLevel() != CodeGenOpt::None) { 9859 // Replace an unreachable default with the most popular destination. 9860 // FIXME: Exploit unreachable default more aggressively. 9861 bool UnreachableDefault = 9862 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9863 if (UnreachableDefault && !Clusters.empty()) { 9864 DenseMap<const BasicBlock *, unsigned> Popularity; 9865 unsigned MaxPop = 0; 9866 const BasicBlock *MaxBB = nullptr; 9867 for (auto I : SI.cases()) { 9868 const BasicBlock *BB = I.getCaseSuccessor(); 9869 if (++Popularity[BB] > MaxPop) { 9870 MaxPop = Popularity[BB]; 9871 MaxBB = BB; 9872 } 9873 } 9874 // Set new default. 9875 assert(MaxPop > 0 && MaxBB); 9876 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9877 9878 // Remove cases that were pointing to the destination that is now the 9879 // default. 9880 CaseClusterVector New; 9881 New.reserve(Clusters.size()); 9882 for (CaseCluster &CC : Clusters) { 9883 if (CC.MBB != DefaultMBB) 9884 New.push_back(CC); 9885 } 9886 Clusters = std::move(New); 9887 } 9888 } 9889 9890 // If there is only the default destination, jump there directly. 9891 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9892 if (Clusters.empty()) { 9893 SwitchMBB->addSuccessor(DefaultMBB); 9894 if (DefaultMBB != NextBlock(SwitchMBB)) { 9895 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9896 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9897 } 9898 return; 9899 } 9900 9901 findJumpTables(Clusters, &SI, DefaultMBB); 9902 findBitTestClusters(Clusters, &SI); 9903 9904 DEBUG({ 9905 dbgs() << "Case clusters: "; 9906 for (const CaseCluster &C : Clusters) { 9907 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9908 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9909 9910 C.Low->getValue().print(dbgs(), true); 9911 if (C.Low != C.High) { 9912 dbgs() << '-'; 9913 C.High->getValue().print(dbgs(), true); 9914 } 9915 dbgs() << ' '; 9916 } 9917 dbgs() << '\n'; 9918 }); 9919 9920 assert(!Clusters.empty()); 9921 SwitchWorkList WorkList; 9922 CaseClusterIt First = Clusters.begin(); 9923 CaseClusterIt Last = Clusters.end() - 1; 9924 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9925 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9926 9927 while (!WorkList.empty()) { 9928 SwitchWorkListItem W = WorkList.back(); 9929 WorkList.pop_back(); 9930 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9931 9932 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 9933 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 9934 // For optimized builds, lower large range as a balanced binary tree. 9935 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9936 continue; 9937 } 9938 9939 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9940 } 9941 } 9942