xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision bc7d15c61da78864b35e3c114294d6e4db645611)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // If the element type of the source/dest vectors are the same, but the
403     // parts vector has more elements than the value vector, then we have a
404     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
405     // elements we want.
406     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413                          DAG.getVectorIdxConstant(0, DL));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.bitsLT(PartEVT)) {
439        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
440        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
441        // Drop the extra bits.
442        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
443        return DAG.getBitcast(ValueVT, Val);
444      }
445 
446      diagnosePossiblyInvalidConstraint(
447          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
448      return DAG.getUNDEF(ValueVT);
449   }
450 
451   // Handle cases such as i8 -> <1 x i1>
452   EVT ValueSVT = ValueVT.getVectorElementType();
453   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
454     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
455       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
456     else
457       Val = ValueVT.isFloatingPoint()
458                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
459                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
460   }
461 
462   return DAG.getBuildVector(ValueVT, DL, Val);
463 }
464 
465 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
466                                  SDValue Val, SDValue *Parts, unsigned NumParts,
467                                  MVT PartVT, const Value *V,
468                                  Optional<CallingConv::ID> CallConv);
469 
470 /// getCopyToParts - Create a series of nodes that contain the specified value
471 /// split into legal parts.  If the parts contain more bits than Val, then, for
472 /// integers, ExtendKind can be used to specify how to generate the extra bits.
473 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
474                            SDValue *Parts, unsigned NumParts, MVT PartVT,
475                            const Value *V,
476                            Optional<CallingConv::ID> CallConv = None,
477                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
478   // Let the target split the parts if it wants to
479   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
480   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
481                                       CallConv))
482     return;
483   EVT ValueVT = Val.getValueType();
484 
485   // Handle the vector case separately.
486   if (ValueVT.isVector())
487     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
488                                 CallConv);
489 
490   unsigned PartBits = PartVT.getSizeInBits();
491   unsigned OrigNumParts = NumParts;
492   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
493          "Copying to an illegal type!");
494 
495   if (NumParts == 0)
496     return;
497 
498   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
499   EVT PartEVT = PartVT;
500   if (PartEVT == ValueVT) {
501     assert(NumParts == 1 && "No-op copy with multiple parts!");
502     Parts[0] = Val;
503     return;
504   }
505 
506   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
507     // If the parts cover more bits than the value has, promote the value.
508     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
509       assert(NumParts == 1 && "Do not know what to promote to!");
510       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
511     } else {
512       if (ValueVT.isFloatingPoint()) {
513         // FP values need to be bitcast, then extended if they are being put
514         // into a larger container.
515         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
516         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
517       }
518       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
519              ValueVT.isInteger() &&
520              "Unknown mismatch!");
521       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
522       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
523       if (PartVT == MVT::x86mmx)
524         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     }
526   } else if (PartBits == ValueVT.getSizeInBits()) {
527     // Different types of the same size.
528     assert(NumParts == 1 && PartEVT != ValueVT);
529     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
530   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
531     // If the parts cover less bits than value has, truncate the value.
532     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533            ValueVT.isInteger() &&
534            "Unknown mismatch!");
535     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
537     if (PartVT == MVT::x86mmx)
538       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   }
540 
541   // The value may have changed - recompute ValueVT.
542   ValueVT = Val.getValueType();
543   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
544          "Failed to tile the value with PartVT!");
545 
546   if (NumParts == 1) {
547     if (PartEVT != ValueVT) {
548       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
549                                         "scalar-to-vector conversion failed");
550       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551     }
552 
553     Parts[0] = Val;
554     return;
555   }
556 
557   // Expand the value into multiple parts.
558   if (NumParts & (NumParts - 1)) {
559     // The number of parts is not a power of 2.  Split off and copy the tail.
560     assert(PartVT.isInteger() && ValueVT.isInteger() &&
561            "Do not know what to expand to!");
562     unsigned RoundParts = 1 << Log2_32(NumParts);
563     unsigned RoundBits = RoundParts * PartBits;
564     unsigned OddParts = NumParts - RoundParts;
565     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
566       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
567 
568     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
569                    CallConv);
570 
571     if (DAG.getDataLayout().isBigEndian())
572       // The odd parts were reversed by getCopyToParts - unreverse them.
573       std::reverse(Parts + RoundParts, Parts + NumParts);
574 
575     NumParts = RoundParts;
576     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
577     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
578   }
579 
580   // The number of parts is a power of 2.  Repeatedly bisect the value using
581   // EXTRACT_ELEMENT.
582   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
583                          EVT::getIntegerVT(*DAG.getContext(),
584                                            ValueVT.getSizeInBits()),
585                          Val);
586 
587   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
588     for (unsigned i = 0; i < NumParts; i += StepSize) {
589       unsigned ThisBits = StepSize * PartBits / 2;
590       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
591       SDValue &Part0 = Parts[i];
592       SDValue &Part1 = Parts[i+StepSize/2];
593 
594       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
595                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
596       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
597                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
598 
599       if (ThisBits == PartBits && ThisVT != PartVT) {
600         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
601         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
602       }
603     }
604   }
605 
606   if (DAG.getDataLayout().isBigEndian())
607     std::reverse(Parts, Parts + OrigNumParts);
608 }
609 
610 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
611                                      const SDLoc &DL, EVT PartVT) {
612   if (!PartVT.isVector())
613     return SDValue();
614 
615   EVT ValueVT = Val.getValueType();
616   ElementCount PartNumElts = PartVT.getVectorElementCount();
617   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
618 
619   // We only support widening vectors with equivalent element types and
620   // fixed/scalable properties. If a target needs to widen a fixed-length type
621   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
622   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
623       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
624       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
625     return SDValue();
626 
627   // Widening a scalable vector to another scalable vector is done by inserting
628   // the vector into a larger undef one.
629   if (PartNumElts.isScalable())
630     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
631                        Val, DAG.getVectorIdxConstant(0, DL));
632 
633   EVT ElementVT = PartVT.getVectorElementType();
634   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
635   // undef elements.
636   SmallVector<SDValue, 16> Ops;
637   DAG.ExtractVectorElements(Val, Ops);
638   SDValue EltUndef = DAG.getUNDEF(ElementVT);
639   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
640 
641   // FIXME: Use CONCAT for 2x -> 4x.
642   return DAG.getBuildVector(PartVT, DL, Ops);
643 }
644 
645 /// getCopyToPartsVector - Create a series of nodes that contain the specified
646 /// value split into legal parts.
647 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
648                                  SDValue Val, SDValue *Parts, unsigned NumParts,
649                                  MVT PartVT, const Value *V,
650                                  Optional<CallingConv::ID> CallConv) {
651   EVT ValueVT = Val.getValueType();
652   assert(ValueVT.isVector() && "Not a vector");
653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
654   const bool IsABIRegCopy = CallConv.hasValue();
655 
656   if (NumParts == 1) {
657     EVT PartEVT = PartVT;
658     if (PartEVT == ValueVT) {
659       // Nothing to do.
660     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
661       // Bitconvert vector->vector case.
662       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
663     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
664       Val = Widened;
665     } else if (PartVT.isVector() &&
666                PartEVT.getVectorElementType().bitsGE(
667                    ValueVT.getVectorElementType()) &&
668                PartEVT.getVectorElementCount() ==
669                    ValueVT.getVectorElementCount()) {
670 
671       // Promoted vector extract
672       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
673     } else {
674       if (ValueVT.getVectorElementCount().isScalar()) {
675         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
676                           DAG.getVectorIdxConstant(0, DL));
677       } else {
678         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
679         assert(PartVT.getFixedSizeInBits() > ValueSize &&
680                "lossy conversion of vector to scalar type");
681         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
682         Val = DAG.getBitcast(IntermediateType, Val);
683         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
684       }
685     }
686 
687     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
688     Parts[0] = Val;
689     return;
690   }
691 
692   // Handle a multi-element vector.
693   EVT IntermediateVT;
694   MVT RegisterVT;
695   unsigned NumIntermediates;
696   unsigned NumRegs;
697   if (IsABIRegCopy) {
698     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
699         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
700         NumIntermediates, RegisterVT);
701   } else {
702     NumRegs =
703         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
704                                    NumIntermediates, RegisterVT);
705   }
706 
707   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
708   NumParts = NumRegs; // Silence a compiler warning.
709   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
710 
711   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
712          "Mixing scalable and fixed vectors when copying in parts");
713 
714   Optional<ElementCount> DestEltCnt;
715 
716   if (IntermediateVT.isVector())
717     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
718   else
719     DestEltCnt = ElementCount::getFixed(NumIntermediates);
720 
721   EVT BuiltVectorTy = EVT::getVectorVT(
722       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
723 
724   if (ValueVT == BuiltVectorTy) {
725     // Nothing to do.
726   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
727     // Bitconvert vector->vector case.
728     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
729   } else if (SDValue Widened =
730                  widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
731     Val = Widened;
732   } else if (BuiltVectorTy.getVectorElementType().bitsGE(
733                  ValueVT.getVectorElementType()) &&
734              BuiltVectorTy.getVectorElementCount() ==
735                  ValueVT.getVectorElementCount()) {
736     // Promoted vector extract
737     Val = DAG.getAnyExtOrTrunc(Val, DL, BuiltVectorTy);
738   }
739 
740   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
741 
742   // Split the vector into intermediate operands.
743   SmallVector<SDValue, 8> Ops(NumIntermediates);
744   for (unsigned i = 0; i != NumIntermediates; ++i) {
745     if (IntermediateVT.isVector()) {
746       // This does something sensible for scalable vectors - see the
747       // definition of EXTRACT_SUBVECTOR for further details.
748       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
749       Ops[i] =
750           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
751                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
752     } else {
753       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
754                            DAG.getVectorIdxConstant(i, DL));
755     }
756   }
757 
758   // Split the intermediate operands into legal parts.
759   if (NumParts == NumIntermediates) {
760     // If the register was not expanded, promote or copy the value,
761     // as appropriate.
762     for (unsigned i = 0; i != NumParts; ++i)
763       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
764   } else if (NumParts > 0) {
765     // If the intermediate type was expanded, split each the value into
766     // legal parts.
767     assert(NumIntermediates != 0 && "division by zero");
768     assert(NumParts % NumIntermediates == 0 &&
769            "Must expand into a divisible number of parts!");
770     unsigned Factor = NumParts / NumIntermediates;
771     for (unsigned i = 0; i != NumIntermediates; ++i)
772       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
773                      CallConv);
774   }
775 }
776 
777 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
778                            EVT valuevt, Optional<CallingConv::ID> CC)
779     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
780       RegCount(1, regs.size()), CallConv(CC) {}
781 
782 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
783                            const DataLayout &DL, unsigned Reg, Type *Ty,
784                            Optional<CallingConv::ID> CC) {
785   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
786 
787   CallConv = CC;
788 
789   for (EVT ValueVT : ValueVTs) {
790     unsigned NumRegs =
791         isABIMangled()
792             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
793             : TLI.getNumRegisters(Context, ValueVT);
794     MVT RegisterVT =
795         isABIMangled()
796             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
797             : TLI.getRegisterType(Context, ValueVT);
798     for (unsigned i = 0; i != NumRegs; ++i)
799       Regs.push_back(Reg + i);
800     RegVTs.push_back(RegisterVT);
801     RegCount.push_back(NumRegs);
802     Reg += NumRegs;
803   }
804 }
805 
806 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
807                                       FunctionLoweringInfo &FuncInfo,
808                                       const SDLoc &dl, SDValue &Chain,
809                                       SDValue *Flag, const Value *V) const {
810   // A Value with type {} or [0 x %t] needs no registers.
811   if (ValueVTs.empty())
812     return SDValue();
813 
814   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
815 
816   // Assemble the legal parts into the final values.
817   SmallVector<SDValue, 4> Values(ValueVTs.size());
818   SmallVector<SDValue, 8> Parts;
819   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
820     // Copy the legal parts from the registers.
821     EVT ValueVT = ValueVTs[Value];
822     unsigned NumRegs = RegCount[Value];
823     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
824                                           *DAG.getContext(),
825                                           CallConv.getValue(), RegVTs[Value])
826                                     : RegVTs[Value];
827 
828     Parts.resize(NumRegs);
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       SDValue P;
831       if (!Flag) {
832         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
833       } else {
834         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
835         *Flag = P.getValue(2);
836       }
837 
838       Chain = P.getValue(1);
839       Parts[i] = P;
840 
841       // If the source register was virtual and if we know something about it,
842       // add an assert node.
843       if (!Register::isVirtualRegister(Regs[Part + i]) ||
844           !RegisterVT.isInteger())
845         continue;
846 
847       const FunctionLoweringInfo::LiveOutInfo *LOI =
848         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
849       if (!LOI)
850         continue;
851 
852       unsigned RegSize = RegisterVT.getScalarSizeInBits();
853       unsigned NumSignBits = LOI->NumSignBits;
854       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
855 
856       if (NumZeroBits == RegSize) {
857         // The current value is a zero.
858         // Explicitly express that as it would be easier for
859         // optimizations to kick in.
860         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
861         continue;
862       }
863 
864       // FIXME: We capture more information than the dag can represent.  For
865       // now, just use the tightest assertzext/assertsext possible.
866       bool isSExt;
867       EVT FromVT(MVT::Other);
868       if (NumZeroBits) {
869         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
870         isSExt = false;
871       } else if (NumSignBits > 1) {
872         FromVT =
873             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
874         isSExt = true;
875       } else {
876         continue;
877       }
878       // Add an assertion node.
879       assert(FromVT != MVT::Other);
880       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
881                              RegisterVT, P, DAG.getValueType(FromVT));
882     }
883 
884     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
885                                      RegisterVT, ValueVT, V, CallConv);
886     Part += NumRegs;
887     Parts.clear();
888   }
889 
890   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
891 }
892 
893 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
894                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
895                                  const Value *V,
896                                  ISD::NodeType PreferredExtendType) const {
897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
898   ISD::NodeType ExtendKind = PreferredExtendType;
899 
900   // Get the list of the values's legal parts.
901   unsigned NumRegs = Regs.size();
902   SmallVector<SDValue, 8> Parts(NumRegs);
903   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
904     unsigned NumParts = RegCount[Value];
905 
906     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
907                                           *DAG.getContext(),
908                                           CallConv.getValue(), RegVTs[Value])
909                                     : RegVTs[Value];
910 
911     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
912       ExtendKind = ISD::ZERO_EXTEND;
913 
914     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
915                    NumParts, RegisterVT, V, CallConv, ExtendKind);
916     Part += NumParts;
917   }
918 
919   // Copy the parts into the registers.
920   SmallVector<SDValue, 8> Chains(NumRegs);
921   for (unsigned i = 0; i != NumRegs; ++i) {
922     SDValue Part;
923     if (!Flag) {
924       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
925     } else {
926       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
927       *Flag = Part.getValue(1);
928     }
929 
930     Chains[i] = Part.getValue(0);
931   }
932 
933   if (NumRegs == 1 || Flag)
934     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
935     // flagged to it. That is the CopyToReg nodes and the user are considered
936     // a single scheduling unit. If we create a TokenFactor and return it as
937     // chain, then the TokenFactor is both a predecessor (operand) of the
938     // user as well as a successor (the TF operands are flagged to the user).
939     // c1, f1 = CopyToReg
940     // c2, f2 = CopyToReg
941     // c3     = TokenFactor c1, c2
942     // ...
943     //        = op c3, ..., f2
944     Chain = Chains[NumRegs-1];
945   else
946     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
947 }
948 
949 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
950                                         unsigned MatchingIdx, const SDLoc &dl,
951                                         SelectionDAG &DAG,
952                                         std::vector<SDValue> &Ops) const {
953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
954 
955   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
956   if (HasMatching)
957     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
958   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
959     // Put the register class of the virtual registers in the flag word.  That
960     // way, later passes can recompute register class constraints for inline
961     // assembly as well as normal instructions.
962     // Don't do this for tied operands that can use the regclass information
963     // from the def.
964     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
965     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
966     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
967   }
968 
969   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
970   Ops.push_back(Res);
971 
972   if (Code == InlineAsm::Kind_Clobber) {
973     // Clobbers should always have a 1:1 mapping with registers, and may
974     // reference registers that have illegal (e.g. vector) types. Hence, we
975     // shouldn't try to apply any sort of splitting logic to them.
976     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
977            "No 1:1 mapping from clobbers to regs?");
978     Register SP = TLI.getStackPointerRegisterToSaveRestore();
979     (void)SP;
980     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
981       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
982       assert(
983           (Regs[I] != SP ||
984            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
985           "If we clobbered the stack pointer, MFI should know about it.");
986     }
987     return;
988   }
989 
990   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
991     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
992     MVT RegisterVT = RegVTs[Value];
993     for (unsigned i = 0; i != NumRegs; ++i) {
994       assert(Reg < Regs.size() && "Mismatch in # registers expected");
995       unsigned TheReg = Regs[Reg++];
996       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
997     }
998   }
999 }
1000 
1001 SmallVector<std::pair<unsigned, TypeSize>, 4>
1002 RegsForValue::getRegsAndSizes() const {
1003   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1004   unsigned I = 0;
1005   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1006     unsigned RegCount = std::get<0>(CountAndVT);
1007     MVT RegisterVT = std::get<1>(CountAndVT);
1008     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1009     for (unsigned E = I + RegCount; I != E; ++I)
1010       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1011   }
1012   return OutVec;
1013 }
1014 
1015 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1016                                const TargetLibraryInfo *li) {
1017   AA = aa;
1018   GFI = gfi;
1019   LibInfo = li;
1020   DL = &DAG.getDataLayout();
1021   Context = DAG.getContext();
1022   LPadToCallSiteMap.clear();
1023   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1024 }
1025 
1026 void SelectionDAGBuilder::clear() {
1027   NodeMap.clear();
1028   UnusedArgNodeMap.clear();
1029   PendingLoads.clear();
1030   PendingExports.clear();
1031   PendingConstrainedFP.clear();
1032   PendingConstrainedFPStrict.clear();
1033   CurInst = nullptr;
1034   HasTailCall = false;
1035   SDNodeOrder = LowestSDNodeOrder;
1036   StatepointLowering.clear();
1037 }
1038 
1039 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1040   DanglingDebugInfoMap.clear();
1041 }
1042 
1043 // Update DAG root to include dependencies on Pending chains.
1044 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1045   SDValue Root = DAG.getRoot();
1046 
1047   if (Pending.empty())
1048     return Root;
1049 
1050   // Add current root to PendingChains, unless we already indirectly
1051   // depend on it.
1052   if (Root.getOpcode() != ISD::EntryToken) {
1053     unsigned i = 0, e = Pending.size();
1054     for (; i != e; ++i) {
1055       assert(Pending[i].getNode()->getNumOperands() > 1);
1056       if (Pending[i].getNode()->getOperand(0) == Root)
1057         break;  // Don't add the root if we already indirectly depend on it.
1058     }
1059 
1060     if (i == e)
1061       Pending.push_back(Root);
1062   }
1063 
1064   if (Pending.size() == 1)
1065     Root = Pending[0];
1066   else
1067     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1068 
1069   DAG.setRoot(Root);
1070   Pending.clear();
1071   return Root;
1072 }
1073 
1074 SDValue SelectionDAGBuilder::getMemoryRoot() {
1075   return updateRoot(PendingLoads);
1076 }
1077 
1078 SDValue SelectionDAGBuilder::getRoot() {
1079   // Chain up all pending constrained intrinsics together with all
1080   // pending loads, by simply appending them to PendingLoads and
1081   // then calling getMemoryRoot().
1082   PendingLoads.reserve(PendingLoads.size() +
1083                        PendingConstrainedFP.size() +
1084                        PendingConstrainedFPStrict.size());
1085   PendingLoads.append(PendingConstrainedFP.begin(),
1086                       PendingConstrainedFP.end());
1087   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1088                       PendingConstrainedFPStrict.end());
1089   PendingConstrainedFP.clear();
1090   PendingConstrainedFPStrict.clear();
1091   return getMemoryRoot();
1092 }
1093 
1094 SDValue SelectionDAGBuilder::getControlRoot() {
1095   // We need to emit pending fpexcept.strict constrained intrinsics,
1096   // so append them to the PendingExports list.
1097   PendingExports.append(PendingConstrainedFPStrict.begin(),
1098                         PendingConstrainedFPStrict.end());
1099   PendingConstrainedFPStrict.clear();
1100   return updateRoot(PendingExports);
1101 }
1102 
1103 void SelectionDAGBuilder::visit(const Instruction &I) {
1104   // Set up outgoing PHI node register values before emitting the terminator.
1105   if (I.isTerminator()) {
1106     HandlePHINodesInSuccessorBlocks(I.getParent());
1107   }
1108 
1109   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1110   if (!isa<DbgInfoIntrinsic>(I))
1111     ++SDNodeOrder;
1112 
1113   CurInst = &I;
1114 
1115   visit(I.getOpcode(), I);
1116 
1117   if (!I.isTerminator() && !HasTailCall &&
1118       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1119     CopyToExportRegsIfNeeded(&I);
1120 
1121   CurInst = nullptr;
1122 }
1123 
1124 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1125   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1126 }
1127 
1128 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1129   // Note: this doesn't use InstVisitor, because it has to work with
1130   // ConstantExpr's in addition to instructions.
1131   switch (Opcode) {
1132   default: llvm_unreachable("Unknown instruction type encountered!");
1133     // Build the switch statement using the Instruction.def file.
1134 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1135     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1136 #include "llvm/IR/Instruction.def"
1137   }
1138 }
1139 
1140 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1141                                                DebugLoc DL, unsigned Order) {
1142   // We treat variadic dbg_values differently at this stage.
1143   if (DI->hasArgList()) {
1144     // For variadic dbg_values we will now insert an undef.
1145     // FIXME: We can potentially recover these!
1146     SmallVector<SDDbgOperand, 2> Locs;
1147     for (const Value *V : DI->getValues()) {
1148       auto Undef = UndefValue::get(V->getType());
1149       Locs.push_back(SDDbgOperand::fromConst(Undef));
1150     }
1151     SDDbgValue *SDV = DAG.getDbgValueList(
1152         DI->getVariable(), DI->getExpression(), Locs, {},
1153         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1154     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1155   } else {
1156     // TODO: Dangling debug info will eventually either be resolved or produce
1157     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1158     // between the original dbg.value location and its resolved DBG_VALUE,
1159     // which we should ideally fill with an extra Undef DBG_VALUE.
1160     assert(DI->getNumVariableLocationOps() == 1 &&
1161            "DbgValueInst without an ArgList should have a single location "
1162            "operand.");
1163     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1164   }
1165 }
1166 
1167 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1168                                                 const DIExpression *Expr) {
1169   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1170     const DbgValueInst *DI = DDI.getDI();
1171     DIVariable *DanglingVariable = DI->getVariable();
1172     DIExpression *DanglingExpr = DI->getExpression();
1173     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1174       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1175       return true;
1176     }
1177     return false;
1178   };
1179 
1180   for (auto &DDIMI : DanglingDebugInfoMap) {
1181     DanglingDebugInfoVector &DDIV = DDIMI.second;
1182 
1183     // If debug info is to be dropped, run it through final checks to see
1184     // whether it can be salvaged.
1185     for (auto &DDI : DDIV)
1186       if (isMatchingDbgValue(DDI))
1187         salvageUnresolvedDbgValue(DDI);
1188 
1189     erase_if(DDIV, isMatchingDbgValue);
1190   }
1191 }
1192 
1193 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1194 // generate the debug data structures now that we've seen its definition.
1195 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1196                                                    SDValue Val) {
1197   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1198   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1199     return;
1200 
1201   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1202   for (auto &DDI : DDIV) {
1203     const DbgValueInst *DI = DDI.getDI();
1204     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1205     assert(DI && "Ill-formed DanglingDebugInfo");
1206     DebugLoc dl = DDI.getdl();
1207     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1208     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1209     DILocalVariable *Variable = DI->getVariable();
1210     DIExpression *Expr = DI->getExpression();
1211     assert(Variable->isValidLocationForIntrinsic(dl) &&
1212            "Expected inlined-at fields to agree");
1213     SDDbgValue *SDV;
1214     if (Val.getNode()) {
1215       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1216       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1217       // we couldn't resolve it directly when examining the DbgValue intrinsic
1218       // in the first place we should not be more successful here). Unless we
1219       // have some test case that prove this to be correct we should avoid
1220       // calling EmitFuncArgumentDbgValue here.
1221       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1222         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1223                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1224         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1225         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1226         // inserted after the definition of Val when emitting the instructions
1227         // after ISel. An alternative could be to teach
1228         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1229         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1230                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1231                    << ValSDNodeOrder << "\n");
1232         SDV = getDbgValue(Val, Variable, Expr, dl,
1233                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1234         DAG.AddDbgValue(SDV, false);
1235       } else
1236         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1237                           << "in EmitFuncArgumentDbgValue\n");
1238     } else {
1239       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1240       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1241       auto SDV =
1242           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1243       DAG.AddDbgValue(SDV, false);
1244     }
1245   }
1246   DDIV.clear();
1247 }
1248 
1249 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1250   assert(!DDI.getDI()->hasArgList() &&
1251          "Not implemented for variadic dbg_values");
1252   Value *V = DDI.getDI()->getValue(0);
1253   DILocalVariable *Var = DDI.getDI()->getVariable();
1254   DIExpression *Expr = DDI.getDI()->getExpression();
1255   DebugLoc DL = DDI.getdl();
1256   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1257   unsigned SDOrder = DDI.getSDNodeOrder();
1258   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1259   // that DW_OP_stack_value is desired.
1260   assert(isa<DbgValueInst>(DDI.getDI()));
1261   bool StackValue = true;
1262 
1263   // Can this Value can be encoded without any further work?
1264   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1265     return;
1266 
1267   // Attempt to salvage back through as many instructions as possible. Bail if
1268   // a non-instruction is seen, such as a constant expression or global
1269   // variable. FIXME: Further work could recover those too.
1270   while (isa<Instruction>(V)) {
1271     Instruction &VAsInst = *cast<Instruction>(V);
1272     // Temporary "0", awaiting real implementation.
1273     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue, 0);
1274 
1275     // If we cannot salvage any further, and haven't yet found a suitable debug
1276     // expression, bail out.
1277     if (!NewExpr)
1278       break;
1279 
1280     // New value and expr now represent this debuginfo.
1281     V = VAsInst.getOperand(0);
1282     Expr = NewExpr;
1283 
1284     // Some kind of simplification occurred: check whether the operand of the
1285     // salvaged debug expression can be encoded in this DAG.
1286     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1287                          /*IsVariadic=*/false)) {
1288       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1289                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1290       return;
1291     }
1292   }
1293 
1294   // This was the final opportunity to salvage this debug information, and it
1295   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1296   // any earlier variable location.
1297   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1298   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1299   DAG.AddDbgValue(SDV, false);
1300 
1301   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1302                     << "\n");
1303   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1304                     << "\n");
1305 }
1306 
1307 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1308                                            DILocalVariable *Var,
1309                                            DIExpression *Expr, DebugLoc dl,
1310                                            DebugLoc InstDL, unsigned Order,
1311                                            bool IsVariadic) {
1312   if (Values.empty())
1313     return true;
1314   SmallVector<SDDbgOperand> LocationOps;
1315   SmallVector<SDNode *> Dependencies;
1316   for (const Value *V : Values) {
1317     // Constant value.
1318     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1319         isa<ConstantPointerNull>(V)) {
1320       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1321       continue;
1322     }
1323 
1324     // If the Value is a frame index, we can create a FrameIndex debug value
1325     // without relying on the DAG at all.
1326     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1327       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1328       if (SI != FuncInfo.StaticAllocaMap.end()) {
1329         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1330         continue;
1331       }
1332     }
1333 
1334     // Do not use getValue() in here; we don't want to generate code at
1335     // this point if it hasn't been done yet.
1336     SDValue N = NodeMap[V];
1337     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1338       N = UnusedArgNodeMap[V];
1339     if (N.getNode()) {
1340       // Only emit func arg dbg value for non-variadic dbg.values for now.
1341       if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1342         return true;
1343       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1344         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1345         // describe stack slot locations.
1346         //
1347         // Consider "int x = 0; int *px = &x;". There are two kinds of
1348         // interesting debug values here after optimization:
1349         //
1350         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1351         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1352         //
1353         // Both describe the direct values of their associated variables.
1354         Dependencies.push_back(N.getNode());
1355         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1356         continue;
1357       }
1358       LocationOps.emplace_back(
1359           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1360       continue;
1361     }
1362 
1363     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1364     // Special rules apply for the first dbg.values of parameter variables in a
1365     // function. Identify them by the fact they reference Argument Values, that
1366     // they're parameters, and they are parameters of the current function. We
1367     // need to let them dangle until they get an SDNode.
1368     bool IsParamOfFunc =
1369         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1370     if (IsParamOfFunc)
1371       return false;
1372 
1373     // The value is not used in this block yet (or it would have an SDNode).
1374     // We still want the value to appear for the user if possible -- if it has
1375     // an associated VReg, we can refer to that instead.
1376     auto VMI = FuncInfo.ValueMap.find(V);
1377     if (VMI != FuncInfo.ValueMap.end()) {
1378       unsigned Reg = VMI->second;
1379       // If this is a PHI node, it may be split up into several MI PHI nodes
1380       // (in FunctionLoweringInfo::set).
1381       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1382                        V->getType(), None);
1383       if (RFV.occupiesMultipleRegs()) {
1384         // FIXME: We could potentially support variadic dbg_values here.
1385         if (IsVariadic)
1386           return false;
1387         unsigned Offset = 0;
1388         unsigned BitsToDescribe = 0;
1389         if (auto VarSize = Var->getSizeInBits())
1390           BitsToDescribe = *VarSize;
1391         if (auto Fragment = Expr->getFragmentInfo())
1392           BitsToDescribe = Fragment->SizeInBits;
1393         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1394           // Bail out if all bits are described already.
1395           if (Offset >= BitsToDescribe)
1396             break;
1397           // TODO: handle scalable vectors.
1398           unsigned RegisterSize = RegAndSize.second;
1399           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1400                                       ? BitsToDescribe - Offset
1401                                       : RegisterSize;
1402           auto FragmentExpr = DIExpression::createFragmentExpression(
1403               Expr, Offset, FragmentSize);
1404           if (!FragmentExpr)
1405             continue;
1406           SDDbgValue *SDV = DAG.getVRegDbgValue(
1407               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1408           DAG.AddDbgValue(SDV, false);
1409           Offset += RegisterSize;
1410         }
1411         return true;
1412       }
1413       // We can use simple vreg locations for variadic dbg_values as well.
1414       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1415       continue;
1416     }
1417     // We failed to create a SDDbgOperand for V.
1418     return false;
1419   }
1420 
1421   // We have created a SDDbgOperand for each Value in Values.
1422   // Should use Order instead of SDNodeOrder?
1423   assert(!LocationOps.empty());
1424   SDDbgValue *SDV =
1425       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1426                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1427   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1428   return true;
1429 }
1430 
1431 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1432   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1433   for (auto &Pair : DanglingDebugInfoMap)
1434     for (auto &DDI : Pair.second)
1435       salvageUnresolvedDbgValue(DDI);
1436   clearDanglingDebugInfo();
1437 }
1438 
1439 /// getCopyFromRegs - If there was virtual register allocated for the value V
1440 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1441 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1442   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1443   SDValue Result;
1444 
1445   if (It != FuncInfo.ValueMap.end()) {
1446     Register InReg = It->second;
1447 
1448     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1449                      DAG.getDataLayout(), InReg, Ty,
1450                      None); // This is not an ABI copy.
1451     SDValue Chain = DAG.getEntryNode();
1452     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1453                                  V);
1454     resolveDanglingDebugInfo(V, Result);
1455   }
1456 
1457   return Result;
1458 }
1459 
1460 /// getValue - Return an SDValue for the given Value.
1461 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1462   // If we already have an SDValue for this value, use it. It's important
1463   // to do this first, so that we don't create a CopyFromReg if we already
1464   // have a regular SDValue.
1465   SDValue &N = NodeMap[V];
1466   if (N.getNode()) return N;
1467 
1468   // If there's a virtual register allocated and initialized for this
1469   // value, use it.
1470   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1471     return copyFromReg;
1472 
1473   // Otherwise create a new SDValue and remember it.
1474   SDValue Val = getValueImpl(V);
1475   NodeMap[V] = Val;
1476   resolveDanglingDebugInfo(V, Val);
1477   return Val;
1478 }
1479 
1480 /// getNonRegisterValue - Return an SDValue for the given Value, but
1481 /// don't look in FuncInfo.ValueMap for a virtual register.
1482 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1483   // If we already have an SDValue for this value, use it.
1484   SDValue &N = NodeMap[V];
1485   if (N.getNode()) {
1486     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1487       // Remove the debug location from the node as the node is about to be used
1488       // in a location which may differ from the original debug location.  This
1489       // is relevant to Constant and ConstantFP nodes because they can appear
1490       // as constant expressions inside PHI nodes.
1491       N->setDebugLoc(DebugLoc());
1492     }
1493     return N;
1494   }
1495 
1496   // Otherwise create a new SDValue and remember it.
1497   SDValue Val = getValueImpl(V);
1498   NodeMap[V] = Val;
1499   resolveDanglingDebugInfo(V, Val);
1500   return Val;
1501 }
1502 
1503 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1504 /// Create an SDValue for the given value.
1505 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1507 
1508   if (const Constant *C = dyn_cast<Constant>(V)) {
1509     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1510 
1511     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1512       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1513 
1514     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1515       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1516 
1517     if (isa<ConstantPointerNull>(C)) {
1518       unsigned AS = V->getType()->getPointerAddressSpace();
1519       return DAG.getConstant(0, getCurSDLoc(),
1520                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1521     }
1522 
1523     if (match(C, m_VScale(DAG.getDataLayout())))
1524       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1525 
1526     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1527       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1528 
1529     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1530       return DAG.getUNDEF(VT);
1531 
1532     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1533       visit(CE->getOpcode(), *CE);
1534       SDValue N1 = NodeMap[V];
1535       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1536       return N1;
1537     }
1538 
1539     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1540       SmallVector<SDValue, 4> Constants;
1541       for (const Use &U : C->operands()) {
1542         SDNode *Val = getValue(U).getNode();
1543         // If the operand is an empty aggregate, there are no values.
1544         if (!Val) continue;
1545         // Add each leaf value from the operand to the Constants list
1546         // to form a flattened list of all the values.
1547         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1548           Constants.push_back(SDValue(Val, i));
1549       }
1550 
1551       return DAG.getMergeValues(Constants, getCurSDLoc());
1552     }
1553 
1554     if (const ConstantDataSequential *CDS =
1555           dyn_cast<ConstantDataSequential>(C)) {
1556       SmallVector<SDValue, 4> Ops;
1557       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1558         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1559         // Add each leaf value from the operand to the Constants list
1560         // to form a flattened list of all the values.
1561         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1562           Ops.push_back(SDValue(Val, i));
1563       }
1564 
1565       if (isa<ArrayType>(CDS->getType()))
1566         return DAG.getMergeValues(Ops, getCurSDLoc());
1567       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1568     }
1569 
1570     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1571       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1572              "Unknown struct or array constant!");
1573 
1574       SmallVector<EVT, 4> ValueVTs;
1575       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1576       unsigned NumElts = ValueVTs.size();
1577       if (NumElts == 0)
1578         return SDValue(); // empty struct
1579       SmallVector<SDValue, 4> Constants(NumElts);
1580       for (unsigned i = 0; i != NumElts; ++i) {
1581         EVT EltVT = ValueVTs[i];
1582         if (isa<UndefValue>(C))
1583           Constants[i] = DAG.getUNDEF(EltVT);
1584         else if (EltVT.isFloatingPoint())
1585           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1586         else
1587           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1588       }
1589 
1590       return DAG.getMergeValues(Constants, getCurSDLoc());
1591     }
1592 
1593     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1594       return DAG.getBlockAddress(BA, VT);
1595 
1596     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1597       return getValue(Equiv->getGlobalValue());
1598 
1599     VectorType *VecTy = cast<VectorType>(V->getType());
1600 
1601     // Now that we know the number and type of the elements, get that number of
1602     // elements into the Ops array based on what kind of constant it is.
1603     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1604       SmallVector<SDValue, 16> Ops;
1605       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1606       for (unsigned i = 0; i != NumElements; ++i)
1607         Ops.push_back(getValue(CV->getOperand(i)));
1608 
1609       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1610     } else if (isa<ConstantAggregateZero>(C)) {
1611       EVT EltVT =
1612           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1613 
1614       SDValue Op;
1615       if (EltVT.isFloatingPoint())
1616         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1617       else
1618         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1619 
1620       if (isa<ScalableVectorType>(VecTy))
1621         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1622       else {
1623         SmallVector<SDValue, 16> Ops;
1624         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1625         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1626       }
1627     }
1628     llvm_unreachable("Unknown vector constant");
1629   }
1630 
1631   // If this is a static alloca, generate it as the frameindex instead of
1632   // computation.
1633   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1634     DenseMap<const AllocaInst*, int>::iterator SI =
1635       FuncInfo.StaticAllocaMap.find(AI);
1636     if (SI != FuncInfo.StaticAllocaMap.end())
1637       return DAG.getFrameIndex(SI->second,
1638                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1639   }
1640 
1641   // If this is an instruction which fast-isel has deferred, select it now.
1642   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1643     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1644 
1645     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1646                      Inst->getType(), None);
1647     SDValue Chain = DAG.getEntryNode();
1648     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1649   }
1650 
1651   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1652     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1653   }
1654   llvm_unreachable("Can't get register for value!");
1655 }
1656 
1657 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1658   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1659   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1660   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1661   bool IsSEH = isAsynchronousEHPersonality(Pers);
1662   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1663   if (!IsSEH)
1664     CatchPadMBB->setIsEHScopeEntry();
1665   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1666   if (IsMSVCCXX || IsCoreCLR)
1667     CatchPadMBB->setIsEHFuncletEntry();
1668 }
1669 
1670 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1671   // Update machine-CFG edge.
1672   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1673   FuncInfo.MBB->addSuccessor(TargetMBB);
1674   TargetMBB->setIsEHCatchretTarget(true);
1675   DAG.getMachineFunction().setHasEHCatchret(true);
1676 
1677   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1678   bool IsSEH = isAsynchronousEHPersonality(Pers);
1679   if (IsSEH) {
1680     // If this is not a fall-through branch or optimizations are switched off,
1681     // emit the branch.
1682     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1683         TM.getOptLevel() == CodeGenOpt::None)
1684       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1685                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1686     return;
1687   }
1688 
1689   // Figure out the funclet membership for the catchret's successor.
1690   // This will be used by the FuncletLayout pass to determine how to order the
1691   // BB's.
1692   // A 'catchret' returns to the outer scope's color.
1693   Value *ParentPad = I.getCatchSwitchParentPad();
1694   const BasicBlock *SuccessorColor;
1695   if (isa<ConstantTokenNone>(ParentPad))
1696     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1697   else
1698     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1699   assert(SuccessorColor && "No parent funclet for catchret!");
1700   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1701   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1702 
1703   // Create the terminator node.
1704   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1705                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1706                             DAG.getBasicBlock(SuccessorColorMBB));
1707   DAG.setRoot(Ret);
1708 }
1709 
1710 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1711   // Don't emit any special code for the cleanuppad instruction. It just marks
1712   // the start of an EH scope/funclet.
1713   FuncInfo.MBB->setIsEHScopeEntry();
1714   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1715   if (Pers != EHPersonality::Wasm_CXX) {
1716     FuncInfo.MBB->setIsEHFuncletEntry();
1717     FuncInfo.MBB->setIsCleanupFuncletEntry();
1718   }
1719 }
1720 
1721 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1722 // not match, it is OK to add only the first unwind destination catchpad to the
1723 // successors, because there will be at least one invoke instruction within the
1724 // catch scope that points to the next unwind destination, if one exists, so
1725 // CFGSort cannot mess up with BB sorting order.
1726 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1727 // call within them, and catchpads only consisting of 'catch (...)' have a
1728 // '__cxa_end_catch' call within them, both of which generate invokes in case
1729 // the next unwind destination exists, i.e., the next unwind destination is not
1730 // the caller.)
1731 //
1732 // Having at most one EH pad successor is also simpler and helps later
1733 // transformations.
1734 //
1735 // For example,
1736 // current:
1737 //   invoke void @foo to ... unwind label %catch.dispatch
1738 // catch.dispatch:
1739 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1740 // catch.start:
1741 //   ...
1742 //   ... in this BB or some other child BB dominated by this BB there will be an
1743 //   invoke that points to 'next' BB as an unwind destination
1744 //
1745 // next: ; We don't need to add this to 'current' BB's successor
1746 //   ...
1747 static void findWasmUnwindDestinations(
1748     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1749     BranchProbability Prob,
1750     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1751         &UnwindDests) {
1752   while (EHPadBB) {
1753     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1754     if (isa<CleanupPadInst>(Pad)) {
1755       // Stop on cleanup pads.
1756       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1757       UnwindDests.back().first->setIsEHScopeEntry();
1758       break;
1759     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1760       // Add the catchpad handlers to the possible destinations. We don't
1761       // continue to the unwind destination of the catchswitch for wasm.
1762       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1763         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1764         UnwindDests.back().first->setIsEHScopeEntry();
1765       }
1766       break;
1767     } else {
1768       continue;
1769     }
1770   }
1771 }
1772 
1773 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1774 /// many places it could ultimately go. In the IR, we have a single unwind
1775 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1776 /// This function skips over imaginary basic blocks that hold catchswitch
1777 /// instructions, and finds all the "real" machine
1778 /// basic block destinations. As those destinations may not be successors of
1779 /// EHPadBB, here we also calculate the edge probability to those destinations.
1780 /// The passed-in Prob is the edge probability to EHPadBB.
1781 static void findUnwindDestinations(
1782     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1783     BranchProbability Prob,
1784     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1785         &UnwindDests) {
1786   EHPersonality Personality =
1787     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1788   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1789   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1790   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1791   bool IsSEH = isAsynchronousEHPersonality(Personality);
1792 
1793   if (IsWasmCXX) {
1794     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1795     assert(UnwindDests.size() <= 1 &&
1796            "There should be at most one unwind destination for wasm");
1797     return;
1798   }
1799 
1800   while (EHPadBB) {
1801     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1802     BasicBlock *NewEHPadBB = nullptr;
1803     if (isa<LandingPadInst>(Pad)) {
1804       // Stop on landingpads. They are not funclets.
1805       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1806       break;
1807     } else if (isa<CleanupPadInst>(Pad)) {
1808       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1809       // personalities.
1810       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1811       UnwindDests.back().first->setIsEHScopeEntry();
1812       UnwindDests.back().first->setIsEHFuncletEntry();
1813       break;
1814     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1815       // Add the catchpad handlers to the possible destinations.
1816       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1817         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1818         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1819         if (IsMSVCCXX || IsCoreCLR)
1820           UnwindDests.back().first->setIsEHFuncletEntry();
1821         if (!IsSEH)
1822           UnwindDests.back().first->setIsEHScopeEntry();
1823       }
1824       NewEHPadBB = CatchSwitch->getUnwindDest();
1825     } else {
1826       continue;
1827     }
1828 
1829     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1830     if (BPI && NewEHPadBB)
1831       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1832     EHPadBB = NewEHPadBB;
1833   }
1834 }
1835 
1836 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1837   // Update successor info.
1838   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1839   auto UnwindDest = I.getUnwindDest();
1840   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1841   BranchProbability UnwindDestProb =
1842       (BPI && UnwindDest)
1843           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1844           : BranchProbability::getZero();
1845   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1846   for (auto &UnwindDest : UnwindDests) {
1847     UnwindDest.first->setIsEHPad();
1848     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1849   }
1850   FuncInfo.MBB->normalizeSuccProbs();
1851 
1852   // Create the terminator node.
1853   SDValue Ret =
1854       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1855   DAG.setRoot(Ret);
1856 }
1857 
1858 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1859   report_fatal_error("visitCatchSwitch not yet implemented!");
1860 }
1861 
1862 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1864   auto &DL = DAG.getDataLayout();
1865   SDValue Chain = getControlRoot();
1866   SmallVector<ISD::OutputArg, 8> Outs;
1867   SmallVector<SDValue, 8> OutVals;
1868 
1869   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1870   // lower
1871   //
1872   //   %val = call <ty> @llvm.experimental.deoptimize()
1873   //   ret <ty> %val
1874   //
1875   // differently.
1876   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1877     LowerDeoptimizingReturn();
1878     return;
1879   }
1880 
1881   if (!FuncInfo.CanLowerReturn) {
1882     unsigned DemoteReg = FuncInfo.DemoteRegister;
1883     const Function *F = I.getParent()->getParent();
1884 
1885     // Emit a store of the return value through the virtual register.
1886     // Leave Outs empty so that LowerReturn won't try to load return
1887     // registers the usual way.
1888     SmallVector<EVT, 1> PtrValueVTs;
1889     ComputeValueVTs(TLI, DL,
1890                     F->getReturnType()->getPointerTo(
1891                         DAG.getDataLayout().getAllocaAddrSpace()),
1892                     PtrValueVTs);
1893 
1894     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1895                                         DemoteReg, PtrValueVTs[0]);
1896     SDValue RetOp = getValue(I.getOperand(0));
1897 
1898     SmallVector<EVT, 4> ValueVTs, MemVTs;
1899     SmallVector<uint64_t, 4> Offsets;
1900     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1901                     &Offsets);
1902     unsigned NumValues = ValueVTs.size();
1903 
1904     SmallVector<SDValue, 4> Chains(NumValues);
1905     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1906     for (unsigned i = 0; i != NumValues; ++i) {
1907       // An aggregate return value cannot wrap around the address space, so
1908       // offsets to its parts don't wrap either.
1909       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1910                                            TypeSize::Fixed(Offsets[i]));
1911 
1912       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1913       if (MemVTs[i] != ValueVTs[i])
1914         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1915       Chains[i] = DAG.getStore(
1916           Chain, getCurSDLoc(), Val,
1917           // FIXME: better loc info would be nice.
1918           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1919           commonAlignment(BaseAlign, Offsets[i]));
1920     }
1921 
1922     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1923                         MVT::Other, Chains);
1924   } else if (I.getNumOperands() != 0) {
1925     SmallVector<EVT, 4> ValueVTs;
1926     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1927     unsigned NumValues = ValueVTs.size();
1928     if (NumValues) {
1929       SDValue RetOp = getValue(I.getOperand(0));
1930 
1931       const Function *F = I.getParent()->getParent();
1932 
1933       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1934           I.getOperand(0)->getType(), F->getCallingConv(),
1935           /*IsVarArg*/ false);
1936 
1937       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1938       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1939                                           Attribute::SExt))
1940         ExtendKind = ISD::SIGN_EXTEND;
1941       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1942                                                Attribute::ZExt))
1943         ExtendKind = ISD::ZERO_EXTEND;
1944 
1945       LLVMContext &Context = F->getContext();
1946       bool RetInReg = F->getAttributes().hasAttribute(
1947           AttributeList::ReturnIndex, Attribute::InReg);
1948 
1949       for (unsigned j = 0; j != NumValues; ++j) {
1950         EVT VT = ValueVTs[j];
1951 
1952         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1953           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1954 
1955         CallingConv::ID CC = F->getCallingConv();
1956 
1957         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1958         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1959         SmallVector<SDValue, 4> Parts(NumParts);
1960         getCopyToParts(DAG, getCurSDLoc(),
1961                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1962                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1963 
1964         // 'inreg' on function refers to return value
1965         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1966         if (RetInReg)
1967           Flags.setInReg();
1968 
1969         if (I.getOperand(0)->getType()->isPointerTy()) {
1970           Flags.setPointer();
1971           Flags.setPointerAddrSpace(
1972               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1973         }
1974 
1975         if (NeedsRegBlock) {
1976           Flags.setInConsecutiveRegs();
1977           if (j == NumValues - 1)
1978             Flags.setInConsecutiveRegsLast();
1979         }
1980 
1981         // Propagate extension type if any
1982         if (ExtendKind == ISD::SIGN_EXTEND)
1983           Flags.setSExt();
1984         else if (ExtendKind == ISD::ZERO_EXTEND)
1985           Flags.setZExt();
1986 
1987         for (unsigned i = 0; i < NumParts; ++i) {
1988           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1989                                         VT, /*isfixed=*/true, 0, 0));
1990           OutVals.push_back(Parts[i]);
1991         }
1992       }
1993     }
1994   }
1995 
1996   // Push in swifterror virtual register as the last element of Outs. This makes
1997   // sure swifterror virtual register will be returned in the swifterror
1998   // physical register.
1999   const Function *F = I.getParent()->getParent();
2000   if (TLI.supportSwiftError() &&
2001       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2002     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2003     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2004     Flags.setSwiftError();
2005     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
2006                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
2007                                   true /*isfixed*/, 1 /*origidx*/,
2008                                   0 /*partOffs*/));
2009     // Create SDNode for the swifterror virtual register.
2010     OutVals.push_back(
2011         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2012                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2013                         EVT(TLI.getPointerTy(DL))));
2014   }
2015 
2016   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2017   CallingConv::ID CallConv =
2018     DAG.getMachineFunction().getFunction().getCallingConv();
2019   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2020       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2021 
2022   // Verify that the target's LowerReturn behaved as expected.
2023   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2024          "LowerReturn didn't return a valid chain!");
2025 
2026   // Update the DAG with the new chain value resulting from return lowering.
2027   DAG.setRoot(Chain);
2028 }
2029 
2030 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2031 /// created for it, emit nodes to copy the value into the virtual
2032 /// registers.
2033 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2034   // Skip empty types
2035   if (V->getType()->isEmptyTy())
2036     return;
2037 
2038   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2039   if (VMI != FuncInfo.ValueMap.end()) {
2040     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2041     CopyValueToVirtualRegister(V, VMI->second);
2042   }
2043 }
2044 
2045 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2046 /// the current basic block, add it to ValueMap now so that we'll get a
2047 /// CopyTo/FromReg.
2048 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2049   // No need to export constants.
2050   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2051 
2052   // Already exported?
2053   if (FuncInfo.isExportedInst(V)) return;
2054 
2055   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2056   CopyValueToVirtualRegister(V, Reg);
2057 }
2058 
2059 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2060                                                      const BasicBlock *FromBB) {
2061   // The operands of the setcc have to be in this block.  We don't know
2062   // how to export them from some other block.
2063   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2064     // Can export from current BB.
2065     if (VI->getParent() == FromBB)
2066       return true;
2067 
2068     // Is already exported, noop.
2069     return FuncInfo.isExportedInst(V);
2070   }
2071 
2072   // If this is an argument, we can export it if the BB is the entry block or
2073   // if it is already exported.
2074   if (isa<Argument>(V)) {
2075     if (FromBB->isEntryBlock())
2076       return true;
2077 
2078     // Otherwise, can only export this if it is already exported.
2079     return FuncInfo.isExportedInst(V);
2080   }
2081 
2082   // Otherwise, constants can always be exported.
2083   return true;
2084 }
2085 
2086 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2087 BranchProbability
2088 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2089                                         const MachineBasicBlock *Dst) const {
2090   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2091   const BasicBlock *SrcBB = Src->getBasicBlock();
2092   const BasicBlock *DstBB = Dst->getBasicBlock();
2093   if (!BPI) {
2094     // If BPI is not available, set the default probability as 1 / N, where N is
2095     // the number of successors.
2096     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2097     return BranchProbability(1, SuccSize);
2098   }
2099   return BPI->getEdgeProbability(SrcBB, DstBB);
2100 }
2101 
2102 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2103                                                MachineBasicBlock *Dst,
2104                                                BranchProbability Prob) {
2105   if (!FuncInfo.BPI)
2106     Src->addSuccessorWithoutProb(Dst);
2107   else {
2108     if (Prob.isUnknown())
2109       Prob = getEdgeProbability(Src, Dst);
2110     Src->addSuccessor(Dst, Prob);
2111   }
2112 }
2113 
2114 static bool InBlock(const Value *V, const BasicBlock *BB) {
2115   if (const Instruction *I = dyn_cast<Instruction>(V))
2116     return I->getParent() == BB;
2117   return true;
2118 }
2119 
2120 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2121 /// This function emits a branch and is used at the leaves of an OR or an
2122 /// AND operator tree.
2123 void
2124 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2125                                                   MachineBasicBlock *TBB,
2126                                                   MachineBasicBlock *FBB,
2127                                                   MachineBasicBlock *CurBB,
2128                                                   MachineBasicBlock *SwitchBB,
2129                                                   BranchProbability TProb,
2130                                                   BranchProbability FProb,
2131                                                   bool InvertCond) {
2132   const BasicBlock *BB = CurBB->getBasicBlock();
2133 
2134   // If the leaf of the tree is a comparison, merge the condition into
2135   // the caseblock.
2136   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2137     // The operands of the cmp have to be in this block.  We don't know
2138     // how to export them from some other block.  If this is the first block
2139     // of the sequence, no exporting is needed.
2140     if (CurBB == SwitchBB ||
2141         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2142          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2143       ISD::CondCode Condition;
2144       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2145         ICmpInst::Predicate Pred =
2146             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2147         Condition = getICmpCondCode(Pred);
2148       } else {
2149         const FCmpInst *FC = cast<FCmpInst>(Cond);
2150         FCmpInst::Predicate Pred =
2151             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2152         Condition = getFCmpCondCode(Pred);
2153         if (TM.Options.NoNaNsFPMath)
2154           Condition = getFCmpCodeWithoutNaN(Condition);
2155       }
2156 
2157       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2158                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2159       SL->SwitchCases.push_back(CB);
2160       return;
2161     }
2162   }
2163 
2164   // Create a CaseBlock record representing this branch.
2165   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2166   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2167                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2168   SL->SwitchCases.push_back(CB);
2169 }
2170 
2171 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2172                                                MachineBasicBlock *TBB,
2173                                                MachineBasicBlock *FBB,
2174                                                MachineBasicBlock *CurBB,
2175                                                MachineBasicBlock *SwitchBB,
2176                                                Instruction::BinaryOps Opc,
2177                                                BranchProbability TProb,
2178                                                BranchProbability FProb,
2179                                                bool InvertCond) {
2180   // Skip over not part of the tree and remember to invert op and operands at
2181   // next level.
2182   Value *NotCond;
2183   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2184       InBlock(NotCond, CurBB->getBasicBlock())) {
2185     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2186                          !InvertCond);
2187     return;
2188   }
2189 
2190   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2191   const Value *BOpOp0, *BOpOp1;
2192   // Compute the effective opcode for Cond, taking into account whether it needs
2193   // to be inverted, e.g.
2194   //   and (not (or A, B)), C
2195   // gets lowered as
2196   //   and (and (not A, not B), C)
2197   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2198   if (BOp) {
2199     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2200                ? Instruction::And
2201                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2202                       ? Instruction::Or
2203                       : (Instruction::BinaryOps)0);
2204     if (InvertCond) {
2205       if (BOpc == Instruction::And)
2206         BOpc = Instruction::Or;
2207       else if (BOpc == Instruction::Or)
2208         BOpc = Instruction::And;
2209     }
2210   }
2211 
2212   // If this node is not part of the or/and tree, emit it as a branch.
2213   // Note that all nodes in the tree should have same opcode.
2214   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2215   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2216       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2217       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2218     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2219                                  TProb, FProb, InvertCond);
2220     return;
2221   }
2222 
2223   //  Create TmpBB after CurBB.
2224   MachineFunction::iterator BBI(CurBB);
2225   MachineFunction &MF = DAG.getMachineFunction();
2226   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2227   CurBB->getParent()->insert(++BBI, TmpBB);
2228 
2229   if (Opc == Instruction::Or) {
2230     // Codegen X | Y as:
2231     // BB1:
2232     //   jmp_if_X TBB
2233     //   jmp TmpBB
2234     // TmpBB:
2235     //   jmp_if_Y TBB
2236     //   jmp FBB
2237     //
2238 
2239     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2240     // The requirement is that
2241     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2242     //     = TrueProb for original BB.
2243     // Assuming the original probabilities are A and B, one choice is to set
2244     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2245     // A/(1+B) and 2B/(1+B). This choice assumes that
2246     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2247     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2248     // TmpBB, but the math is more complicated.
2249 
2250     auto NewTrueProb = TProb / 2;
2251     auto NewFalseProb = TProb / 2 + FProb;
2252     // Emit the LHS condition.
2253     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2254                          NewFalseProb, InvertCond);
2255 
2256     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2257     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2258     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2259     // Emit the RHS condition into TmpBB.
2260     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2261                          Probs[1], InvertCond);
2262   } else {
2263     assert(Opc == Instruction::And && "Unknown merge op!");
2264     // Codegen X & Y as:
2265     // BB1:
2266     //   jmp_if_X TmpBB
2267     //   jmp FBB
2268     // TmpBB:
2269     //   jmp_if_Y TBB
2270     //   jmp FBB
2271     //
2272     //  This requires creation of TmpBB after CurBB.
2273 
2274     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2275     // The requirement is that
2276     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2277     //     = FalseProb for original BB.
2278     // Assuming the original probabilities are A and B, one choice is to set
2279     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2280     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2281     // TrueProb for BB1 * FalseProb for TmpBB.
2282 
2283     auto NewTrueProb = TProb + FProb / 2;
2284     auto NewFalseProb = FProb / 2;
2285     // Emit the LHS condition.
2286     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2287                          NewFalseProb, InvertCond);
2288 
2289     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2290     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2291     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2292     // Emit the RHS condition into TmpBB.
2293     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2294                          Probs[1], InvertCond);
2295   }
2296 }
2297 
2298 /// If the set of cases should be emitted as a series of branches, return true.
2299 /// If we should emit this as a bunch of and/or'd together conditions, return
2300 /// false.
2301 bool
2302 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2303   if (Cases.size() != 2) return true;
2304 
2305   // If this is two comparisons of the same values or'd or and'd together, they
2306   // will get folded into a single comparison, so don't emit two blocks.
2307   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2308        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2309       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2310        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2311     return false;
2312   }
2313 
2314   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2315   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2316   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2317       Cases[0].CC == Cases[1].CC &&
2318       isa<Constant>(Cases[0].CmpRHS) &&
2319       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2320     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2321       return false;
2322     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2323       return false;
2324   }
2325 
2326   return true;
2327 }
2328 
2329 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2330   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2331 
2332   // Update machine-CFG edges.
2333   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2334 
2335   if (I.isUnconditional()) {
2336     // Update machine-CFG edges.
2337     BrMBB->addSuccessor(Succ0MBB);
2338 
2339     // If this is not a fall-through branch or optimizations are switched off,
2340     // emit the branch.
2341     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2342       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2343                               MVT::Other, getControlRoot(),
2344                               DAG.getBasicBlock(Succ0MBB)));
2345 
2346     return;
2347   }
2348 
2349   // If this condition is one of the special cases we handle, do special stuff
2350   // now.
2351   const Value *CondVal = I.getCondition();
2352   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2353 
2354   // If this is a series of conditions that are or'd or and'd together, emit
2355   // this as a sequence of branches instead of setcc's with and/or operations.
2356   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2357   // unpredictable branches, and vector extracts because those jumps are likely
2358   // expensive for any target), this should improve performance.
2359   // For example, instead of something like:
2360   //     cmp A, B
2361   //     C = seteq
2362   //     cmp D, E
2363   //     F = setle
2364   //     or C, F
2365   //     jnz foo
2366   // Emit:
2367   //     cmp A, B
2368   //     je foo
2369   //     cmp D, E
2370   //     jle foo
2371   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2372   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2373       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2374     Value *Vec;
2375     const Value *BOp0, *BOp1;
2376     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2377     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2378       Opcode = Instruction::And;
2379     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2380       Opcode = Instruction::Or;
2381 
2382     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2383                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2384       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2385                            getEdgeProbability(BrMBB, Succ0MBB),
2386                            getEdgeProbability(BrMBB, Succ1MBB),
2387                            /*InvertCond=*/false);
2388       // If the compares in later blocks need to use values not currently
2389       // exported from this block, export them now.  This block should always
2390       // be the first entry.
2391       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2392 
2393       // Allow some cases to be rejected.
2394       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2395         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2396           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2397           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2398         }
2399 
2400         // Emit the branch for this block.
2401         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2402         SL->SwitchCases.erase(SL->SwitchCases.begin());
2403         return;
2404       }
2405 
2406       // Okay, we decided not to do this, remove any inserted MBB's and clear
2407       // SwitchCases.
2408       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2409         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2410 
2411       SL->SwitchCases.clear();
2412     }
2413   }
2414 
2415   // Create a CaseBlock record representing this branch.
2416   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2417                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2418 
2419   // Use visitSwitchCase to actually insert the fast branch sequence for this
2420   // cond branch.
2421   visitSwitchCase(CB, BrMBB);
2422 }
2423 
2424 /// visitSwitchCase - Emits the necessary code to represent a single node in
2425 /// the binary search tree resulting from lowering a switch instruction.
2426 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2427                                           MachineBasicBlock *SwitchBB) {
2428   SDValue Cond;
2429   SDValue CondLHS = getValue(CB.CmpLHS);
2430   SDLoc dl = CB.DL;
2431 
2432   if (CB.CC == ISD::SETTRUE) {
2433     // Branch or fall through to TrueBB.
2434     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2435     SwitchBB->normalizeSuccProbs();
2436     if (CB.TrueBB != NextBlock(SwitchBB)) {
2437       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2438                               DAG.getBasicBlock(CB.TrueBB)));
2439     }
2440     return;
2441   }
2442 
2443   auto &TLI = DAG.getTargetLoweringInfo();
2444   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2445 
2446   // Build the setcc now.
2447   if (!CB.CmpMHS) {
2448     // Fold "(X == true)" to X and "(X == false)" to !X to
2449     // handle common cases produced by branch lowering.
2450     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2451         CB.CC == ISD::SETEQ)
2452       Cond = CondLHS;
2453     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2454              CB.CC == ISD::SETEQ) {
2455       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2456       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2457     } else {
2458       SDValue CondRHS = getValue(CB.CmpRHS);
2459 
2460       // If a pointer's DAG type is larger than its memory type then the DAG
2461       // values are zero-extended. This breaks signed comparisons so truncate
2462       // back to the underlying type before doing the compare.
2463       if (CondLHS.getValueType() != MemVT) {
2464         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2465         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2466       }
2467       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2468     }
2469   } else {
2470     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2471 
2472     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2473     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2474 
2475     SDValue CmpOp = getValue(CB.CmpMHS);
2476     EVT VT = CmpOp.getValueType();
2477 
2478     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2479       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2480                           ISD::SETLE);
2481     } else {
2482       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2483                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2484       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2485                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2486     }
2487   }
2488 
2489   // Update successor info
2490   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2491   // TrueBB and FalseBB are always different unless the incoming IR is
2492   // degenerate. This only happens when running llc on weird IR.
2493   if (CB.TrueBB != CB.FalseBB)
2494     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2495   SwitchBB->normalizeSuccProbs();
2496 
2497   // If the lhs block is the next block, invert the condition so that we can
2498   // fall through to the lhs instead of the rhs block.
2499   if (CB.TrueBB == NextBlock(SwitchBB)) {
2500     std::swap(CB.TrueBB, CB.FalseBB);
2501     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2502     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2503   }
2504 
2505   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2506                                MVT::Other, getControlRoot(), Cond,
2507                                DAG.getBasicBlock(CB.TrueBB));
2508 
2509   // Insert the false branch. Do this even if it's a fall through branch,
2510   // this makes it easier to do DAG optimizations which require inverting
2511   // the branch condition.
2512   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2513                        DAG.getBasicBlock(CB.FalseBB));
2514 
2515   DAG.setRoot(BrCond);
2516 }
2517 
2518 /// visitJumpTable - Emit JumpTable node in the current MBB
2519 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2520   // Emit the code for the jump table
2521   assert(JT.Reg != -1U && "Should lower JT Header first!");
2522   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2523   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2524                                      JT.Reg, PTy);
2525   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2526   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2527                                     MVT::Other, Index.getValue(1),
2528                                     Table, Index);
2529   DAG.setRoot(BrJumpTable);
2530 }
2531 
2532 /// visitJumpTableHeader - This function emits necessary code to produce index
2533 /// in the JumpTable from switch case.
2534 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2535                                                JumpTableHeader &JTH,
2536                                                MachineBasicBlock *SwitchBB) {
2537   SDLoc dl = getCurSDLoc();
2538 
2539   // Subtract the lowest switch case value from the value being switched on.
2540   SDValue SwitchOp = getValue(JTH.SValue);
2541   EVT VT = SwitchOp.getValueType();
2542   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2543                             DAG.getConstant(JTH.First, dl, VT));
2544 
2545   // The SDNode we just created, which holds the value being switched on minus
2546   // the smallest case value, needs to be copied to a virtual register so it
2547   // can be used as an index into the jump table in a subsequent basic block.
2548   // This value may be smaller or larger than the target's pointer type, and
2549   // therefore require extension or truncating.
2550   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2551   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2552 
2553   unsigned JumpTableReg =
2554       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2555   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2556                                     JumpTableReg, SwitchOp);
2557   JT.Reg = JumpTableReg;
2558 
2559   if (!JTH.OmitRangeCheck) {
2560     // Emit the range check for the jump table, and branch to the default block
2561     // for the switch statement if the value being switched on exceeds the
2562     // largest case in the switch.
2563     SDValue CMP = DAG.getSetCC(
2564         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2565                                    Sub.getValueType()),
2566         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2567 
2568     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2569                                  MVT::Other, CopyTo, CMP,
2570                                  DAG.getBasicBlock(JT.Default));
2571 
2572     // Avoid emitting unnecessary branches to the next block.
2573     if (JT.MBB != NextBlock(SwitchBB))
2574       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2575                            DAG.getBasicBlock(JT.MBB));
2576 
2577     DAG.setRoot(BrCond);
2578   } else {
2579     // Avoid emitting unnecessary branches to the next block.
2580     if (JT.MBB != NextBlock(SwitchBB))
2581       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2582                               DAG.getBasicBlock(JT.MBB)));
2583     else
2584       DAG.setRoot(CopyTo);
2585   }
2586 }
2587 
2588 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2589 /// variable if there exists one.
2590 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2591                                  SDValue &Chain) {
2592   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2593   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2594   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2595   MachineFunction &MF = DAG.getMachineFunction();
2596   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2597   MachineSDNode *Node =
2598       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2599   if (Global) {
2600     MachinePointerInfo MPInfo(Global);
2601     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2602                  MachineMemOperand::MODereferenceable;
2603     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2604         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2605     DAG.setNodeMemRefs(Node, {MemRef});
2606   }
2607   if (PtrTy != PtrMemTy)
2608     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2609   return SDValue(Node, 0);
2610 }
2611 
2612 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2613 /// tail spliced into a stack protector check success bb.
2614 ///
2615 /// For a high level explanation of how this fits into the stack protector
2616 /// generation see the comment on the declaration of class
2617 /// StackProtectorDescriptor.
2618 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2619                                                   MachineBasicBlock *ParentBB) {
2620 
2621   // First create the loads to the guard/stack slot for the comparison.
2622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2623   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2624   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2625 
2626   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2627   int FI = MFI.getStackProtectorIndex();
2628 
2629   SDValue Guard;
2630   SDLoc dl = getCurSDLoc();
2631   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2632   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2633   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2634 
2635   // Generate code to load the content of the guard slot.
2636   SDValue GuardVal = DAG.getLoad(
2637       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2638       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2639       MachineMemOperand::MOVolatile);
2640 
2641   if (TLI.useStackGuardXorFP())
2642     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2643 
2644   // Retrieve guard check function, nullptr if instrumentation is inlined.
2645   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2646     // The target provides a guard check function to validate the guard value.
2647     // Generate a call to that function with the content of the guard slot as
2648     // argument.
2649     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2650     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2651 
2652     TargetLowering::ArgListTy Args;
2653     TargetLowering::ArgListEntry Entry;
2654     Entry.Node = GuardVal;
2655     Entry.Ty = FnTy->getParamType(0);
2656     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2657       Entry.IsInReg = true;
2658     Args.push_back(Entry);
2659 
2660     TargetLowering::CallLoweringInfo CLI(DAG);
2661     CLI.setDebugLoc(getCurSDLoc())
2662         .setChain(DAG.getEntryNode())
2663         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2664                    getValue(GuardCheckFn), std::move(Args));
2665 
2666     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2667     DAG.setRoot(Result.second);
2668     return;
2669   }
2670 
2671   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2672   // Otherwise, emit a volatile load to retrieve the stack guard value.
2673   SDValue Chain = DAG.getEntryNode();
2674   if (TLI.useLoadStackGuardNode()) {
2675     Guard = getLoadStackGuard(DAG, dl, Chain);
2676   } else {
2677     const Value *IRGuard = TLI.getSDagStackGuard(M);
2678     SDValue GuardPtr = getValue(IRGuard);
2679 
2680     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2681                         MachinePointerInfo(IRGuard, 0), Align,
2682                         MachineMemOperand::MOVolatile);
2683   }
2684 
2685   // Perform the comparison via a getsetcc.
2686   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2687                                                         *DAG.getContext(),
2688                                                         Guard.getValueType()),
2689                              Guard, GuardVal, ISD::SETNE);
2690 
2691   // If the guard/stackslot do not equal, branch to failure MBB.
2692   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2693                                MVT::Other, GuardVal.getOperand(0),
2694                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2695   // Otherwise branch to success MBB.
2696   SDValue Br = DAG.getNode(ISD::BR, dl,
2697                            MVT::Other, BrCond,
2698                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2699 
2700   DAG.setRoot(Br);
2701 }
2702 
2703 /// Codegen the failure basic block for a stack protector check.
2704 ///
2705 /// A failure stack protector machine basic block consists simply of a call to
2706 /// __stack_chk_fail().
2707 ///
2708 /// For a high level explanation of how this fits into the stack protector
2709 /// generation see the comment on the declaration of class
2710 /// StackProtectorDescriptor.
2711 void
2712 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2713   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2714   TargetLowering::MakeLibCallOptions CallOptions;
2715   CallOptions.setDiscardResult(true);
2716   SDValue Chain =
2717       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2718                       None, CallOptions, getCurSDLoc()).second;
2719   // On PS4, the "return address" must still be within the calling function,
2720   // even if it's at the very end, so emit an explicit TRAP here.
2721   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2722   if (TM.getTargetTriple().isPS4CPU())
2723     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2724   // WebAssembly needs an unreachable instruction after a non-returning call,
2725   // because the function return type can be different from __stack_chk_fail's
2726   // return type (void).
2727   if (TM.getTargetTriple().isWasm())
2728     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2729 
2730   DAG.setRoot(Chain);
2731 }
2732 
2733 /// visitBitTestHeader - This function emits necessary code to produce value
2734 /// suitable for "bit tests"
2735 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2736                                              MachineBasicBlock *SwitchBB) {
2737   SDLoc dl = getCurSDLoc();
2738 
2739   // Subtract the minimum value.
2740   SDValue SwitchOp = getValue(B.SValue);
2741   EVT VT = SwitchOp.getValueType();
2742   SDValue RangeSub =
2743       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2744 
2745   // Determine the type of the test operands.
2746   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2747   bool UsePtrType = false;
2748   if (!TLI.isTypeLegal(VT)) {
2749     UsePtrType = true;
2750   } else {
2751     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2752       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2753         // Switch table case range are encoded into series of masks.
2754         // Just use pointer type, it's guaranteed to fit.
2755         UsePtrType = true;
2756         break;
2757       }
2758   }
2759   SDValue Sub = RangeSub;
2760   if (UsePtrType) {
2761     VT = TLI.getPointerTy(DAG.getDataLayout());
2762     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2763   }
2764 
2765   B.RegVT = VT.getSimpleVT();
2766   B.Reg = FuncInfo.CreateReg(B.RegVT);
2767   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2768 
2769   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2770 
2771   if (!B.OmitRangeCheck)
2772     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2773   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2774   SwitchBB->normalizeSuccProbs();
2775 
2776   SDValue Root = CopyTo;
2777   if (!B.OmitRangeCheck) {
2778     // Conditional branch to the default block.
2779     SDValue RangeCmp = DAG.getSetCC(dl,
2780         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2781                                RangeSub.getValueType()),
2782         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2783         ISD::SETUGT);
2784 
2785     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2786                        DAG.getBasicBlock(B.Default));
2787   }
2788 
2789   // Avoid emitting unnecessary branches to the next block.
2790   if (MBB != NextBlock(SwitchBB))
2791     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2792 
2793   DAG.setRoot(Root);
2794 }
2795 
2796 /// visitBitTestCase - this function produces one "bit test"
2797 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2798                                            MachineBasicBlock* NextMBB,
2799                                            BranchProbability BranchProbToNext,
2800                                            unsigned Reg,
2801                                            BitTestCase &B,
2802                                            MachineBasicBlock *SwitchBB) {
2803   SDLoc dl = getCurSDLoc();
2804   MVT VT = BB.RegVT;
2805   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2806   SDValue Cmp;
2807   unsigned PopCount = countPopulation(B.Mask);
2808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2809   if (PopCount == 1) {
2810     // Testing for a single bit; just compare the shift count with what it
2811     // would need to be to shift a 1 bit in that position.
2812     Cmp = DAG.getSetCC(
2813         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2814         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2815         ISD::SETEQ);
2816   } else if (PopCount == BB.Range) {
2817     // There is only one zero bit in the range, test for it directly.
2818     Cmp = DAG.getSetCC(
2819         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2820         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2821         ISD::SETNE);
2822   } else {
2823     // Make desired shift
2824     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2825                                     DAG.getConstant(1, dl, VT), ShiftOp);
2826 
2827     // Emit bit tests and jumps
2828     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2829                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2830     Cmp = DAG.getSetCC(
2831         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2832         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2833   }
2834 
2835   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2836   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2837   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2838   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2839   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2840   // one as they are relative probabilities (and thus work more like weights),
2841   // and hence we need to normalize them to let the sum of them become one.
2842   SwitchBB->normalizeSuccProbs();
2843 
2844   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2845                               MVT::Other, getControlRoot(),
2846                               Cmp, DAG.getBasicBlock(B.TargetBB));
2847 
2848   // Avoid emitting unnecessary branches to the next block.
2849   if (NextMBB != NextBlock(SwitchBB))
2850     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2851                         DAG.getBasicBlock(NextMBB));
2852 
2853   DAG.setRoot(BrAnd);
2854 }
2855 
2856 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2857   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2858 
2859   // Retrieve successors. Look through artificial IR level blocks like
2860   // catchswitch for successors.
2861   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2862   const BasicBlock *EHPadBB = I.getSuccessor(1);
2863 
2864   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2865   // have to do anything here to lower funclet bundles.
2866   assert(!I.hasOperandBundlesOtherThan(
2867              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2868               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2869               LLVMContext::OB_cfguardtarget,
2870               LLVMContext::OB_clang_arc_attachedcall}) &&
2871          "Cannot lower invokes with arbitrary operand bundles yet!");
2872 
2873   const Value *Callee(I.getCalledOperand());
2874   const Function *Fn = dyn_cast<Function>(Callee);
2875   if (isa<InlineAsm>(Callee))
2876     visitInlineAsm(I, EHPadBB);
2877   else if (Fn && Fn->isIntrinsic()) {
2878     switch (Fn->getIntrinsicID()) {
2879     default:
2880       llvm_unreachable("Cannot invoke this intrinsic");
2881     case Intrinsic::donothing:
2882       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2883     case Intrinsic::seh_try_begin:
2884     case Intrinsic::seh_scope_begin:
2885     case Intrinsic::seh_try_end:
2886     case Intrinsic::seh_scope_end:
2887       break;
2888     case Intrinsic::experimental_patchpoint_void:
2889     case Intrinsic::experimental_patchpoint_i64:
2890       visitPatchpoint(I, EHPadBB);
2891       break;
2892     case Intrinsic::experimental_gc_statepoint:
2893       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2894       break;
2895     case Intrinsic::wasm_rethrow: {
2896       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2897       // special because it can be invoked, so we manually lower it to a DAG
2898       // node here.
2899       SmallVector<SDValue, 8> Ops;
2900       Ops.push_back(getRoot()); // inchain
2901       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2902       Ops.push_back(
2903           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2904                                 TLI.getPointerTy(DAG.getDataLayout())));
2905       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2906       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2907       break;
2908     }
2909     }
2910   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2911     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2912     // Eventually we will support lowering the @llvm.experimental.deoptimize
2913     // intrinsic, and right now there are no plans to support other intrinsics
2914     // with deopt state.
2915     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2916   } else {
2917     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2918   }
2919 
2920   // If the value of the invoke is used outside of its defining block, make it
2921   // available as a virtual register.
2922   // We already took care of the exported value for the statepoint instruction
2923   // during call to the LowerStatepoint.
2924   if (!isa<GCStatepointInst>(I)) {
2925     CopyToExportRegsIfNeeded(&I);
2926   }
2927 
2928   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2929   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2930   BranchProbability EHPadBBProb =
2931       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2932           : BranchProbability::getZero();
2933   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2934 
2935   // Update successor info.
2936   addSuccessorWithProb(InvokeMBB, Return);
2937   for (auto &UnwindDest : UnwindDests) {
2938     UnwindDest.first->setIsEHPad();
2939     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2940   }
2941   InvokeMBB->normalizeSuccProbs();
2942 
2943   // Drop into normal successor.
2944   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2945                           DAG.getBasicBlock(Return)));
2946 }
2947 
2948 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2949   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2950 
2951   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2952   // have to do anything here to lower funclet bundles.
2953   assert(!I.hasOperandBundlesOtherThan(
2954              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2955          "Cannot lower callbrs with arbitrary operand bundles yet!");
2956 
2957   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2958   visitInlineAsm(I);
2959   CopyToExportRegsIfNeeded(&I);
2960 
2961   // Retrieve successors.
2962   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2963 
2964   // Update successor info.
2965   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2966   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2967     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2968     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2969     Target->setIsInlineAsmBrIndirectTarget();
2970   }
2971   CallBrMBB->normalizeSuccProbs();
2972 
2973   // Drop into default successor.
2974   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2975                           MVT::Other, getControlRoot(),
2976                           DAG.getBasicBlock(Return)));
2977 }
2978 
2979 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2980   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2981 }
2982 
2983 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2984   assert(FuncInfo.MBB->isEHPad() &&
2985          "Call to landingpad not in landing pad!");
2986 
2987   // If there aren't registers to copy the values into (e.g., during SjLj
2988   // exceptions), then don't bother to create these DAG nodes.
2989   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2990   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2991   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2992       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2993     return;
2994 
2995   // If landingpad's return type is token type, we don't create DAG nodes
2996   // for its exception pointer and selector value. The extraction of exception
2997   // pointer or selector value from token type landingpads is not currently
2998   // supported.
2999   if (LP.getType()->isTokenTy())
3000     return;
3001 
3002   SmallVector<EVT, 2> ValueVTs;
3003   SDLoc dl = getCurSDLoc();
3004   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3005   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3006 
3007   // Get the two live-in registers as SDValues. The physregs have already been
3008   // copied into virtual registers.
3009   SDValue Ops[2];
3010   if (FuncInfo.ExceptionPointerVirtReg) {
3011     Ops[0] = DAG.getZExtOrTrunc(
3012         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3013                            FuncInfo.ExceptionPointerVirtReg,
3014                            TLI.getPointerTy(DAG.getDataLayout())),
3015         dl, ValueVTs[0]);
3016   } else {
3017     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3018   }
3019   Ops[1] = DAG.getZExtOrTrunc(
3020       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3021                          FuncInfo.ExceptionSelectorVirtReg,
3022                          TLI.getPointerTy(DAG.getDataLayout())),
3023       dl, ValueVTs[1]);
3024 
3025   // Merge into one.
3026   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3027                             DAG.getVTList(ValueVTs), Ops);
3028   setValue(&LP, Res);
3029 }
3030 
3031 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3032                                            MachineBasicBlock *Last) {
3033   // Update JTCases.
3034   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
3035     if (SL->JTCases[i].first.HeaderBB == First)
3036       SL->JTCases[i].first.HeaderBB = Last;
3037 
3038   // Update BitTestCases.
3039   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
3040     if (SL->BitTestCases[i].Parent == First)
3041       SL->BitTestCases[i].Parent = Last;
3042 }
3043 
3044 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3045   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3046 
3047   // Update machine-CFG edges with unique successors.
3048   SmallSet<BasicBlock*, 32> Done;
3049   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3050     BasicBlock *BB = I.getSuccessor(i);
3051     bool Inserted = Done.insert(BB).second;
3052     if (!Inserted)
3053         continue;
3054 
3055     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3056     addSuccessorWithProb(IndirectBrMBB, Succ);
3057   }
3058   IndirectBrMBB->normalizeSuccProbs();
3059 
3060   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3061                           MVT::Other, getControlRoot(),
3062                           getValue(I.getAddress())));
3063 }
3064 
3065 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3066   if (!DAG.getTarget().Options.TrapUnreachable)
3067     return;
3068 
3069   // We may be able to ignore unreachable behind a noreturn call.
3070   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3071     const BasicBlock &BB = *I.getParent();
3072     if (&I != &BB.front()) {
3073       BasicBlock::const_iterator PredI =
3074         std::prev(BasicBlock::const_iterator(&I));
3075       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3076         if (Call->doesNotReturn())
3077           return;
3078       }
3079     }
3080   }
3081 
3082   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3083 }
3084 
3085 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3086   SDNodeFlags Flags;
3087 
3088   SDValue Op = getValue(I.getOperand(0));
3089   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3090                                     Op, Flags);
3091   setValue(&I, UnNodeValue);
3092 }
3093 
3094 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3095   SDNodeFlags Flags;
3096   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3097     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3098     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3099   }
3100   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3101     Flags.setExact(ExactOp->isExact());
3102   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3103     Flags.copyFMF(*FPOp);
3104 
3105   SDValue Op1 = getValue(I.getOperand(0));
3106   SDValue Op2 = getValue(I.getOperand(1));
3107   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3108                                      Op1, Op2, Flags);
3109   setValue(&I, BinNodeValue);
3110 }
3111 
3112 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3113   SDValue Op1 = getValue(I.getOperand(0));
3114   SDValue Op2 = getValue(I.getOperand(1));
3115 
3116   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3117       Op1.getValueType(), DAG.getDataLayout());
3118 
3119   // Coerce the shift amount to the right type if we can.
3120   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3121     unsigned ShiftSize = ShiftTy.getSizeInBits();
3122     unsigned Op2Size = Op2.getValueSizeInBits();
3123     SDLoc DL = getCurSDLoc();
3124 
3125     // If the operand is smaller than the shift count type, promote it.
3126     if (ShiftSize > Op2Size)
3127       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3128 
3129     // If the operand is larger than the shift count type but the shift
3130     // count type has enough bits to represent any shift value, truncate
3131     // it now. This is a common case and it exposes the truncate to
3132     // optimization early.
3133     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3134       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3135     // Otherwise we'll need to temporarily settle for some other convenient
3136     // type.  Type legalization will make adjustments once the shiftee is split.
3137     else
3138       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3139   }
3140 
3141   bool nuw = false;
3142   bool nsw = false;
3143   bool exact = false;
3144 
3145   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3146 
3147     if (const OverflowingBinaryOperator *OFBinOp =
3148             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3149       nuw = OFBinOp->hasNoUnsignedWrap();
3150       nsw = OFBinOp->hasNoSignedWrap();
3151     }
3152     if (const PossiblyExactOperator *ExactOp =
3153             dyn_cast<const PossiblyExactOperator>(&I))
3154       exact = ExactOp->isExact();
3155   }
3156   SDNodeFlags Flags;
3157   Flags.setExact(exact);
3158   Flags.setNoSignedWrap(nsw);
3159   Flags.setNoUnsignedWrap(nuw);
3160   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3161                             Flags);
3162   setValue(&I, Res);
3163 }
3164 
3165 void SelectionDAGBuilder::visitSDiv(const User &I) {
3166   SDValue Op1 = getValue(I.getOperand(0));
3167   SDValue Op2 = getValue(I.getOperand(1));
3168 
3169   SDNodeFlags Flags;
3170   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3171                  cast<PossiblyExactOperator>(&I)->isExact());
3172   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3173                            Op2, Flags));
3174 }
3175 
3176 void SelectionDAGBuilder::visitICmp(const User &I) {
3177   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3178   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3179     predicate = IC->getPredicate();
3180   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3181     predicate = ICmpInst::Predicate(IC->getPredicate());
3182   SDValue Op1 = getValue(I.getOperand(0));
3183   SDValue Op2 = getValue(I.getOperand(1));
3184   ISD::CondCode Opcode = getICmpCondCode(predicate);
3185 
3186   auto &TLI = DAG.getTargetLoweringInfo();
3187   EVT MemVT =
3188       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3189 
3190   // If a pointer's DAG type is larger than its memory type then the DAG values
3191   // are zero-extended. This breaks signed comparisons so truncate back to the
3192   // underlying type before doing the compare.
3193   if (Op1.getValueType() != MemVT) {
3194     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3195     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3196   }
3197 
3198   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3199                                                         I.getType());
3200   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3201 }
3202 
3203 void SelectionDAGBuilder::visitFCmp(const User &I) {
3204   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3205   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3206     predicate = FC->getPredicate();
3207   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3208     predicate = FCmpInst::Predicate(FC->getPredicate());
3209   SDValue Op1 = getValue(I.getOperand(0));
3210   SDValue Op2 = getValue(I.getOperand(1));
3211 
3212   ISD::CondCode Condition = getFCmpCondCode(predicate);
3213   auto *FPMO = cast<FPMathOperator>(&I);
3214   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3215     Condition = getFCmpCodeWithoutNaN(Condition);
3216 
3217   SDNodeFlags Flags;
3218   Flags.copyFMF(*FPMO);
3219   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3220 
3221   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3222                                                         I.getType());
3223   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3224 }
3225 
3226 // Check if the condition of the select has one use or two users that are both
3227 // selects with the same condition.
3228 static bool hasOnlySelectUsers(const Value *Cond) {
3229   return llvm::all_of(Cond->users(), [](const Value *V) {
3230     return isa<SelectInst>(V);
3231   });
3232 }
3233 
3234 void SelectionDAGBuilder::visitSelect(const User &I) {
3235   SmallVector<EVT, 4> ValueVTs;
3236   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3237                   ValueVTs);
3238   unsigned NumValues = ValueVTs.size();
3239   if (NumValues == 0) return;
3240 
3241   SmallVector<SDValue, 4> Values(NumValues);
3242   SDValue Cond     = getValue(I.getOperand(0));
3243   SDValue LHSVal   = getValue(I.getOperand(1));
3244   SDValue RHSVal   = getValue(I.getOperand(2));
3245   SmallVector<SDValue, 1> BaseOps(1, Cond);
3246   ISD::NodeType OpCode =
3247       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3248 
3249   bool IsUnaryAbs = false;
3250   bool Negate = false;
3251 
3252   SDNodeFlags Flags;
3253   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3254     Flags.copyFMF(*FPOp);
3255 
3256   // Min/max matching is only viable if all output VTs are the same.
3257   if (is_splat(ValueVTs)) {
3258     EVT VT = ValueVTs[0];
3259     LLVMContext &Ctx = *DAG.getContext();
3260     auto &TLI = DAG.getTargetLoweringInfo();
3261 
3262     // We care about the legality of the operation after it has been type
3263     // legalized.
3264     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3265       VT = TLI.getTypeToTransformTo(Ctx, VT);
3266 
3267     // If the vselect is legal, assume we want to leave this as a vector setcc +
3268     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3269     // min/max is legal on the scalar type.
3270     bool UseScalarMinMax = VT.isVector() &&
3271       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3272 
3273     Value *LHS, *RHS;
3274     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3275     ISD::NodeType Opc = ISD::DELETED_NODE;
3276     switch (SPR.Flavor) {
3277     case SPF_UMAX:    Opc = ISD::UMAX; break;
3278     case SPF_UMIN:    Opc = ISD::UMIN; break;
3279     case SPF_SMAX:    Opc = ISD::SMAX; break;
3280     case SPF_SMIN:    Opc = ISD::SMIN; break;
3281     case SPF_FMINNUM:
3282       switch (SPR.NaNBehavior) {
3283       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3284       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3285       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3286       case SPNB_RETURNS_ANY: {
3287         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3288           Opc = ISD::FMINNUM;
3289         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3290           Opc = ISD::FMINIMUM;
3291         else if (UseScalarMinMax)
3292           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3293             ISD::FMINNUM : ISD::FMINIMUM;
3294         break;
3295       }
3296       }
3297       break;
3298     case SPF_FMAXNUM:
3299       switch (SPR.NaNBehavior) {
3300       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3301       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3302       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3303       case SPNB_RETURNS_ANY:
3304 
3305         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3306           Opc = ISD::FMAXNUM;
3307         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3308           Opc = ISD::FMAXIMUM;
3309         else if (UseScalarMinMax)
3310           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3311             ISD::FMAXNUM : ISD::FMAXIMUM;
3312         break;
3313       }
3314       break;
3315     case SPF_NABS:
3316       Negate = true;
3317       LLVM_FALLTHROUGH;
3318     case SPF_ABS:
3319       IsUnaryAbs = true;
3320       Opc = ISD::ABS;
3321       break;
3322     default: break;
3323     }
3324 
3325     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3326         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3327          (UseScalarMinMax &&
3328           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3329         // If the underlying comparison instruction is used by any other
3330         // instruction, the consumed instructions won't be destroyed, so it is
3331         // not profitable to convert to a min/max.
3332         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3333       OpCode = Opc;
3334       LHSVal = getValue(LHS);
3335       RHSVal = getValue(RHS);
3336       BaseOps.clear();
3337     }
3338 
3339     if (IsUnaryAbs) {
3340       OpCode = Opc;
3341       LHSVal = getValue(LHS);
3342       BaseOps.clear();
3343     }
3344   }
3345 
3346   if (IsUnaryAbs) {
3347     for (unsigned i = 0; i != NumValues; ++i) {
3348       SDLoc dl = getCurSDLoc();
3349       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3350       Values[i] =
3351           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3352       if (Negate)
3353         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3354                                 Values[i]);
3355     }
3356   } else {
3357     for (unsigned i = 0; i != NumValues; ++i) {
3358       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3359       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3360       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3361       Values[i] = DAG.getNode(
3362           OpCode, getCurSDLoc(),
3363           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3364     }
3365   }
3366 
3367   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3368                            DAG.getVTList(ValueVTs), Values));
3369 }
3370 
3371 void SelectionDAGBuilder::visitTrunc(const User &I) {
3372   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3373   SDValue N = getValue(I.getOperand(0));
3374   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3375                                                         I.getType());
3376   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3377 }
3378 
3379 void SelectionDAGBuilder::visitZExt(const User &I) {
3380   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3381   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3382   SDValue N = getValue(I.getOperand(0));
3383   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3384                                                         I.getType());
3385   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3386 }
3387 
3388 void SelectionDAGBuilder::visitSExt(const User &I) {
3389   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3390   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3391   SDValue N = getValue(I.getOperand(0));
3392   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3393                                                         I.getType());
3394   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3395 }
3396 
3397 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3398   // FPTrunc is never a no-op cast, no need to check
3399   SDValue N = getValue(I.getOperand(0));
3400   SDLoc dl = getCurSDLoc();
3401   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3402   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3403   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3404                            DAG.getTargetConstant(
3405                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3406 }
3407 
3408 void SelectionDAGBuilder::visitFPExt(const User &I) {
3409   // FPExt is never a no-op cast, no need to check
3410   SDValue N = getValue(I.getOperand(0));
3411   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3412                                                         I.getType());
3413   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3414 }
3415 
3416 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3417   // FPToUI is never a no-op cast, no need to check
3418   SDValue N = getValue(I.getOperand(0));
3419   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3420                                                         I.getType());
3421   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3422 }
3423 
3424 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3425   // FPToSI is never a no-op cast, no need to check
3426   SDValue N = getValue(I.getOperand(0));
3427   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3428                                                         I.getType());
3429   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3430 }
3431 
3432 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3433   // UIToFP is never a no-op cast, no need to check
3434   SDValue N = getValue(I.getOperand(0));
3435   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3436                                                         I.getType());
3437   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3438 }
3439 
3440 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3441   // SIToFP is never a no-op cast, no need to check
3442   SDValue N = getValue(I.getOperand(0));
3443   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3444                                                         I.getType());
3445   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3446 }
3447 
3448 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3449   // What to do depends on the size of the integer and the size of the pointer.
3450   // We can either truncate, zero extend, or no-op, accordingly.
3451   SDValue N = getValue(I.getOperand(0));
3452   auto &TLI = DAG.getTargetLoweringInfo();
3453   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3454                                                         I.getType());
3455   EVT PtrMemVT =
3456       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3457   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3458   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3459   setValue(&I, N);
3460 }
3461 
3462 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3463   // What to do depends on the size of the integer and the size of the pointer.
3464   // We can either truncate, zero extend, or no-op, accordingly.
3465   SDValue N = getValue(I.getOperand(0));
3466   auto &TLI = DAG.getTargetLoweringInfo();
3467   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3468   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3469   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3470   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3471   setValue(&I, N);
3472 }
3473 
3474 void SelectionDAGBuilder::visitBitCast(const User &I) {
3475   SDValue N = getValue(I.getOperand(0));
3476   SDLoc dl = getCurSDLoc();
3477   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3478                                                         I.getType());
3479 
3480   // BitCast assures us that source and destination are the same size so this is
3481   // either a BITCAST or a no-op.
3482   if (DestVT != N.getValueType())
3483     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3484                              DestVT, N)); // convert types.
3485   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3486   // might fold any kind of constant expression to an integer constant and that
3487   // is not what we are looking for. Only recognize a bitcast of a genuine
3488   // constant integer as an opaque constant.
3489   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3490     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3491                                  /*isOpaque*/true));
3492   else
3493     setValue(&I, N);            // noop cast.
3494 }
3495 
3496 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3498   const Value *SV = I.getOperand(0);
3499   SDValue N = getValue(SV);
3500   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3501 
3502   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3503   unsigned DestAS = I.getType()->getPointerAddressSpace();
3504 
3505   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3506     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3507 
3508   setValue(&I, N);
3509 }
3510 
3511 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3512   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3513   SDValue InVec = getValue(I.getOperand(0));
3514   SDValue InVal = getValue(I.getOperand(1));
3515   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3516                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3517   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3518                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3519                            InVec, InVal, InIdx));
3520 }
3521 
3522 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3523   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3524   SDValue InVec = getValue(I.getOperand(0));
3525   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3526                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3527   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3528                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3529                            InVec, InIdx));
3530 }
3531 
3532 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3533   SDValue Src1 = getValue(I.getOperand(0));
3534   SDValue Src2 = getValue(I.getOperand(1));
3535   ArrayRef<int> Mask;
3536   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3537     Mask = SVI->getShuffleMask();
3538   else
3539     Mask = cast<ConstantExpr>(I).getShuffleMask();
3540   SDLoc DL = getCurSDLoc();
3541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3542   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3543   EVT SrcVT = Src1.getValueType();
3544 
3545   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3546       VT.isScalableVector()) {
3547     // Canonical splat form of first element of first input vector.
3548     SDValue FirstElt =
3549         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3550                     DAG.getVectorIdxConstant(0, DL));
3551     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3552     return;
3553   }
3554 
3555   // For now, we only handle splats for scalable vectors.
3556   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3557   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3558   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3559 
3560   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3561   unsigned MaskNumElts = Mask.size();
3562 
3563   if (SrcNumElts == MaskNumElts) {
3564     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3565     return;
3566   }
3567 
3568   // Normalize the shuffle vector since mask and vector length don't match.
3569   if (SrcNumElts < MaskNumElts) {
3570     // Mask is longer than the source vectors. We can use concatenate vector to
3571     // make the mask and vectors lengths match.
3572 
3573     if (MaskNumElts % SrcNumElts == 0) {
3574       // Mask length is a multiple of the source vector length.
3575       // Check if the shuffle is some kind of concatenation of the input
3576       // vectors.
3577       unsigned NumConcat = MaskNumElts / SrcNumElts;
3578       bool IsConcat = true;
3579       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3580       for (unsigned i = 0; i != MaskNumElts; ++i) {
3581         int Idx = Mask[i];
3582         if (Idx < 0)
3583           continue;
3584         // Ensure the indices in each SrcVT sized piece are sequential and that
3585         // the same source is used for the whole piece.
3586         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3587             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3588              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3589           IsConcat = false;
3590           break;
3591         }
3592         // Remember which source this index came from.
3593         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3594       }
3595 
3596       // The shuffle is concatenating multiple vectors together. Just emit
3597       // a CONCAT_VECTORS operation.
3598       if (IsConcat) {
3599         SmallVector<SDValue, 8> ConcatOps;
3600         for (auto Src : ConcatSrcs) {
3601           if (Src < 0)
3602             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3603           else if (Src == 0)
3604             ConcatOps.push_back(Src1);
3605           else
3606             ConcatOps.push_back(Src2);
3607         }
3608         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3609         return;
3610       }
3611     }
3612 
3613     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3614     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3615     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3616                                     PaddedMaskNumElts);
3617 
3618     // Pad both vectors with undefs to make them the same length as the mask.
3619     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3620 
3621     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3622     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3623     MOps1[0] = Src1;
3624     MOps2[0] = Src2;
3625 
3626     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3627     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3628 
3629     // Readjust mask for new input vector length.
3630     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3631     for (unsigned i = 0; i != MaskNumElts; ++i) {
3632       int Idx = Mask[i];
3633       if (Idx >= (int)SrcNumElts)
3634         Idx -= SrcNumElts - PaddedMaskNumElts;
3635       MappedOps[i] = Idx;
3636     }
3637 
3638     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3639 
3640     // If the concatenated vector was padded, extract a subvector with the
3641     // correct number of elements.
3642     if (MaskNumElts != PaddedMaskNumElts)
3643       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3644                            DAG.getVectorIdxConstant(0, DL));
3645 
3646     setValue(&I, Result);
3647     return;
3648   }
3649 
3650   if (SrcNumElts > MaskNumElts) {
3651     // Analyze the access pattern of the vector to see if we can extract
3652     // two subvectors and do the shuffle.
3653     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3654     bool CanExtract = true;
3655     for (int Idx : Mask) {
3656       unsigned Input = 0;
3657       if (Idx < 0)
3658         continue;
3659 
3660       if (Idx >= (int)SrcNumElts) {
3661         Input = 1;
3662         Idx -= SrcNumElts;
3663       }
3664 
3665       // If all the indices come from the same MaskNumElts sized portion of
3666       // the sources we can use extract. Also make sure the extract wouldn't
3667       // extract past the end of the source.
3668       int NewStartIdx = alignDown(Idx, MaskNumElts);
3669       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3670           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3671         CanExtract = false;
3672       // Make sure we always update StartIdx as we use it to track if all
3673       // elements are undef.
3674       StartIdx[Input] = NewStartIdx;
3675     }
3676 
3677     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3678       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3679       return;
3680     }
3681     if (CanExtract) {
3682       // Extract appropriate subvector and generate a vector shuffle
3683       for (unsigned Input = 0; Input < 2; ++Input) {
3684         SDValue &Src = Input == 0 ? Src1 : Src2;
3685         if (StartIdx[Input] < 0)
3686           Src = DAG.getUNDEF(VT);
3687         else {
3688           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3689                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3690         }
3691       }
3692 
3693       // Calculate new mask.
3694       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3695       for (int &Idx : MappedOps) {
3696         if (Idx >= (int)SrcNumElts)
3697           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3698         else if (Idx >= 0)
3699           Idx -= StartIdx[0];
3700       }
3701 
3702       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3703       return;
3704     }
3705   }
3706 
3707   // We can't use either concat vectors or extract subvectors so fall back to
3708   // replacing the shuffle with extract and build vector.
3709   // to insert and build vector.
3710   EVT EltVT = VT.getVectorElementType();
3711   SmallVector<SDValue,8> Ops;
3712   for (int Idx : Mask) {
3713     SDValue Res;
3714 
3715     if (Idx < 0) {
3716       Res = DAG.getUNDEF(EltVT);
3717     } else {
3718       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3719       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3720 
3721       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3722                         DAG.getVectorIdxConstant(Idx, DL));
3723     }
3724 
3725     Ops.push_back(Res);
3726   }
3727 
3728   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3729 }
3730 
3731 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3732   ArrayRef<unsigned> Indices;
3733   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3734     Indices = IV->getIndices();
3735   else
3736     Indices = cast<ConstantExpr>(&I)->getIndices();
3737 
3738   const Value *Op0 = I.getOperand(0);
3739   const Value *Op1 = I.getOperand(1);
3740   Type *AggTy = I.getType();
3741   Type *ValTy = Op1->getType();
3742   bool IntoUndef = isa<UndefValue>(Op0);
3743   bool FromUndef = isa<UndefValue>(Op1);
3744 
3745   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3746 
3747   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3748   SmallVector<EVT, 4> AggValueVTs;
3749   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3750   SmallVector<EVT, 4> ValValueVTs;
3751   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3752 
3753   unsigned NumAggValues = AggValueVTs.size();
3754   unsigned NumValValues = ValValueVTs.size();
3755   SmallVector<SDValue, 4> Values(NumAggValues);
3756 
3757   // Ignore an insertvalue that produces an empty object
3758   if (!NumAggValues) {
3759     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3760     return;
3761   }
3762 
3763   SDValue Agg = getValue(Op0);
3764   unsigned i = 0;
3765   // Copy the beginning value(s) from the original aggregate.
3766   for (; i != LinearIndex; ++i)
3767     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3768                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3769   // Copy values from the inserted value(s).
3770   if (NumValValues) {
3771     SDValue Val = getValue(Op1);
3772     for (; i != LinearIndex + NumValValues; ++i)
3773       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3774                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3775   }
3776   // Copy remaining value(s) from the original aggregate.
3777   for (; i != NumAggValues; ++i)
3778     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3779                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3780 
3781   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3782                            DAG.getVTList(AggValueVTs), Values));
3783 }
3784 
3785 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3786   ArrayRef<unsigned> Indices;
3787   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3788     Indices = EV->getIndices();
3789   else
3790     Indices = cast<ConstantExpr>(&I)->getIndices();
3791 
3792   const Value *Op0 = I.getOperand(0);
3793   Type *AggTy = Op0->getType();
3794   Type *ValTy = I.getType();
3795   bool OutOfUndef = isa<UndefValue>(Op0);
3796 
3797   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3798 
3799   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3800   SmallVector<EVT, 4> ValValueVTs;
3801   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3802 
3803   unsigned NumValValues = ValValueVTs.size();
3804 
3805   // Ignore a extractvalue that produces an empty object
3806   if (!NumValValues) {
3807     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3808     return;
3809   }
3810 
3811   SmallVector<SDValue, 4> Values(NumValValues);
3812 
3813   SDValue Agg = getValue(Op0);
3814   // Copy out the selected value(s).
3815   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3816     Values[i - LinearIndex] =
3817       OutOfUndef ?
3818         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3819         SDValue(Agg.getNode(), Agg.getResNo() + i);
3820 
3821   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3822                            DAG.getVTList(ValValueVTs), Values));
3823 }
3824 
3825 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3826   Value *Op0 = I.getOperand(0);
3827   // Note that the pointer operand may be a vector of pointers. Take the scalar
3828   // element which holds a pointer.
3829   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3830   SDValue N = getValue(Op0);
3831   SDLoc dl = getCurSDLoc();
3832   auto &TLI = DAG.getTargetLoweringInfo();
3833 
3834   // Normalize Vector GEP - all scalar operands should be converted to the
3835   // splat vector.
3836   bool IsVectorGEP = I.getType()->isVectorTy();
3837   ElementCount VectorElementCount =
3838       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3839                   : ElementCount::getFixed(0);
3840 
3841   if (IsVectorGEP && !N.getValueType().isVector()) {
3842     LLVMContext &Context = *DAG.getContext();
3843     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3844     if (VectorElementCount.isScalable())
3845       N = DAG.getSplatVector(VT, dl, N);
3846     else
3847       N = DAG.getSplatBuildVector(VT, dl, N);
3848   }
3849 
3850   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3851        GTI != E; ++GTI) {
3852     const Value *Idx = GTI.getOperand();
3853     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3854       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3855       if (Field) {
3856         // N = N + Offset
3857         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3858 
3859         // In an inbounds GEP with an offset that is nonnegative even when
3860         // interpreted as signed, assume there is no unsigned overflow.
3861         SDNodeFlags Flags;
3862         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3863           Flags.setNoUnsignedWrap(true);
3864 
3865         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3866                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3867       }
3868     } else {
3869       // IdxSize is the width of the arithmetic according to IR semantics.
3870       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3871       // (and fix up the result later).
3872       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3873       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3874       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3875       // We intentionally mask away the high bits here; ElementSize may not
3876       // fit in IdxTy.
3877       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3878       bool ElementScalable = ElementSize.isScalable();
3879 
3880       // If this is a scalar constant or a splat vector of constants,
3881       // handle it quickly.
3882       const auto *C = dyn_cast<Constant>(Idx);
3883       if (C && isa<VectorType>(C->getType()))
3884         C = C->getSplatValue();
3885 
3886       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3887       if (CI && CI->isZero())
3888         continue;
3889       if (CI && !ElementScalable) {
3890         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3891         LLVMContext &Context = *DAG.getContext();
3892         SDValue OffsVal;
3893         if (IsVectorGEP)
3894           OffsVal = DAG.getConstant(
3895               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3896         else
3897           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3898 
3899         // In an inbounds GEP with an offset that is nonnegative even when
3900         // interpreted as signed, assume there is no unsigned overflow.
3901         SDNodeFlags Flags;
3902         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3903           Flags.setNoUnsignedWrap(true);
3904 
3905         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3906 
3907         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3908         continue;
3909       }
3910 
3911       // N = N + Idx * ElementMul;
3912       SDValue IdxN = getValue(Idx);
3913 
3914       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3915         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3916                                   VectorElementCount);
3917         if (VectorElementCount.isScalable())
3918           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3919         else
3920           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3921       }
3922 
3923       // If the index is smaller or larger than intptr_t, truncate or extend
3924       // it.
3925       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3926 
3927       if (ElementScalable) {
3928         EVT VScaleTy = N.getValueType().getScalarType();
3929         SDValue VScale = DAG.getNode(
3930             ISD::VSCALE, dl, VScaleTy,
3931             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3932         if (IsVectorGEP)
3933           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3934         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3935       } else {
3936         // If this is a multiply by a power of two, turn it into a shl
3937         // immediately.  This is a very common case.
3938         if (ElementMul != 1) {
3939           if (ElementMul.isPowerOf2()) {
3940             unsigned Amt = ElementMul.logBase2();
3941             IdxN = DAG.getNode(ISD::SHL, dl,
3942                                N.getValueType(), IdxN,
3943                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3944           } else {
3945             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3946                                             IdxN.getValueType());
3947             IdxN = DAG.getNode(ISD::MUL, dl,
3948                                N.getValueType(), IdxN, Scale);
3949           }
3950         }
3951       }
3952 
3953       N = DAG.getNode(ISD::ADD, dl,
3954                       N.getValueType(), N, IdxN);
3955     }
3956   }
3957 
3958   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3959   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3960   if (IsVectorGEP) {
3961     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3962     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3963   }
3964 
3965   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3966     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3967 
3968   setValue(&I, N);
3969 }
3970 
3971 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3972   // If this is a fixed sized alloca in the entry block of the function,
3973   // allocate it statically on the stack.
3974   if (FuncInfo.StaticAllocaMap.count(&I))
3975     return;   // getValue will auto-populate this.
3976 
3977   SDLoc dl = getCurSDLoc();
3978   Type *Ty = I.getAllocatedType();
3979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3980   auto &DL = DAG.getDataLayout();
3981   uint64_t TySize = DL.getTypeAllocSize(Ty);
3982   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3983 
3984   SDValue AllocSize = getValue(I.getArraySize());
3985 
3986   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3987   if (AllocSize.getValueType() != IntPtr)
3988     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3989 
3990   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3991                           AllocSize,
3992                           DAG.getConstant(TySize, dl, IntPtr));
3993 
3994   // Handle alignment.  If the requested alignment is less than or equal to
3995   // the stack alignment, ignore it.  If the size is greater than or equal to
3996   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3997   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3998   if (*Alignment <= StackAlign)
3999     Alignment = None;
4000 
4001   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4002   // Round the size of the allocation up to the stack alignment size
4003   // by add SA-1 to the size. This doesn't overflow because we're computing
4004   // an address inside an alloca.
4005   SDNodeFlags Flags;
4006   Flags.setNoUnsignedWrap(true);
4007   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4008                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4009 
4010   // Mask out the low bits for alignment purposes.
4011   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4012                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4013 
4014   SDValue Ops[] = {
4015       getRoot(), AllocSize,
4016       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4017   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4018   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4019   setValue(&I, DSA);
4020   DAG.setRoot(DSA.getValue(1));
4021 
4022   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4023 }
4024 
4025 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4026   if (I.isAtomic())
4027     return visitAtomicLoad(I);
4028 
4029   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4030   const Value *SV = I.getOperand(0);
4031   if (TLI.supportSwiftError()) {
4032     // Swifterror values can come from either a function parameter with
4033     // swifterror attribute or an alloca with swifterror attribute.
4034     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4035       if (Arg->hasSwiftErrorAttr())
4036         return visitLoadFromSwiftError(I);
4037     }
4038 
4039     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4040       if (Alloca->isSwiftError())
4041         return visitLoadFromSwiftError(I);
4042     }
4043   }
4044 
4045   SDValue Ptr = getValue(SV);
4046 
4047   Type *Ty = I.getType();
4048   Align Alignment = I.getAlign();
4049 
4050   AAMDNodes AAInfo;
4051   I.getAAMetadata(AAInfo);
4052   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4053 
4054   SmallVector<EVT, 4> ValueVTs, MemVTs;
4055   SmallVector<uint64_t, 4> Offsets;
4056   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4057   unsigned NumValues = ValueVTs.size();
4058   if (NumValues == 0)
4059     return;
4060 
4061   bool isVolatile = I.isVolatile();
4062 
4063   SDValue Root;
4064   bool ConstantMemory = false;
4065   if (isVolatile)
4066     // Serialize volatile loads with other side effects.
4067     Root = getRoot();
4068   else if (NumValues > MaxParallelChains)
4069     Root = getMemoryRoot();
4070   else if (AA &&
4071            AA->pointsToConstantMemory(MemoryLocation(
4072                SV,
4073                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4074                AAInfo))) {
4075     // Do not serialize (non-volatile) loads of constant memory with anything.
4076     Root = DAG.getEntryNode();
4077     ConstantMemory = true;
4078   } else {
4079     // Do not serialize non-volatile loads against each other.
4080     Root = DAG.getRoot();
4081   }
4082 
4083   SDLoc dl = getCurSDLoc();
4084 
4085   if (isVolatile)
4086     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4087 
4088   // An aggregate load cannot wrap around the address space, so offsets to its
4089   // parts don't wrap either.
4090   SDNodeFlags Flags;
4091   Flags.setNoUnsignedWrap(true);
4092 
4093   SmallVector<SDValue, 4> Values(NumValues);
4094   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4095   EVT PtrVT = Ptr.getValueType();
4096 
4097   MachineMemOperand::Flags MMOFlags
4098     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4099 
4100   unsigned ChainI = 0;
4101   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4102     // Serializing loads here may result in excessive register pressure, and
4103     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4104     // could recover a bit by hoisting nodes upward in the chain by recognizing
4105     // they are side-effect free or do not alias. The optimizer should really
4106     // avoid this case by converting large object/array copies to llvm.memcpy
4107     // (MaxParallelChains should always remain as failsafe).
4108     if (ChainI == MaxParallelChains) {
4109       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4110       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4111                                   makeArrayRef(Chains.data(), ChainI));
4112       Root = Chain;
4113       ChainI = 0;
4114     }
4115     SDValue A = DAG.getNode(ISD::ADD, dl,
4116                             PtrVT, Ptr,
4117                             DAG.getConstant(Offsets[i], dl, PtrVT),
4118                             Flags);
4119 
4120     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4121                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4122                             MMOFlags, AAInfo, Ranges);
4123     Chains[ChainI] = L.getValue(1);
4124 
4125     if (MemVTs[i] != ValueVTs[i])
4126       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4127 
4128     Values[i] = L;
4129   }
4130 
4131   if (!ConstantMemory) {
4132     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4133                                 makeArrayRef(Chains.data(), ChainI));
4134     if (isVolatile)
4135       DAG.setRoot(Chain);
4136     else
4137       PendingLoads.push_back(Chain);
4138   }
4139 
4140   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4141                            DAG.getVTList(ValueVTs), Values));
4142 }
4143 
4144 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4145   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4146          "call visitStoreToSwiftError when backend supports swifterror");
4147 
4148   SmallVector<EVT, 4> ValueVTs;
4149   SmallVector<uint64_t, 4> Offsets;
4150   const Value *SrcV = I.getOperand(0);
4151   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4152                   SrcV->getType(), ValueVTs, &Offsets);
4153   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4154          "expect a single EVT for swifterror");
4155 
4156   SDValue Src = getValue(SrcV);
4157   // Create a virtual register, then update the virtual register.
4158   Register VReg =
4159       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4160   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4161   // Chain can be getRoot or getControlRoot.
4162   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4163                                       SDValue(Src.getNode(), Src.getResNo()));
4164   DAG.setRoot(CopyNode);
4165 }
4166 
4167 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4168   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4169          "call visitLoadFromSwiftError when backend supports swifterror");
4170 
4171   assert(!I.isVolatile() &&
4172          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4173          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4174          "Support volatile, non temporal, invariant for load_from_swift_error");
4175 
4176   const Value *SV = I.getOperand(0);
4177   Type *Ty = I.getType();
4178   AAMDNodes AAInfo;
4179   I.getAAMetadata(AAInfo);
4180   assert(
4181       (!AA ||
4182        !AA->pointsToConstantMemory(MemoryLocation(
4183            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4184            AAInfo))) &&
4185       "load_from_swift_error should not be constant memory");
4186 
4187   SmallVector<EVT, 4> ValueVTs;
4188   SmallVector<uint64_t, 4> Offsets;
4189   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4190                   ValueVTs, &Offsets);
4191   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4192          "expect a single EVT for swifterror");
4193 
4194   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4195   SDValue L = DAG.getCopyFromReg(
4196       getRoot(), getCurSDLoc(),
4197       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4198 
4199   setValue(&I, L);
4200 }
4201 
4202 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4203   if (I.isAtomic())
4204     return visitAtomicStore(I);
4205 
4206   const Value *SrcV = I.getOperand(0);
4207   const Value *PtrV = I.getOperand(1);
4208 
4209   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4210   if (TLI.supportSwiftError()) {
4211     // Swifterror values can come from either a function parameter with
4212     // swifterror attribute or an alloca with swifterror attribute.
4213     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4214       if (Arg->hasSwiftErrorAttr())
4215         return visitStoreToSwiftError(I);
4216     }
4217 
4218     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4219       if (Alloca->isSwiftError())
4220         return visitStoreToSwiftError(I);
4221     }
4222   }
4223 
4224   SmallVector<EVT, 4> ValueVTs, MemVTs;
4225   SmallVector<uint64_t, 4> Offsets;
4226   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4227                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4228   unsigned NumValues = ValueVTs.size();
4229   if (NumValues == 0)
4230     return;
4231 
4232   // Get the lowered operands. Note that we do this after
4233   // checking if NumResults is zero, because with zero results
4234   // the operands won't have values in the map.
4235   SDValue Src = getValue(SrcV);
4236   SDValue Ptr = getValue(PtrV);
4237 
4238   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4239   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4240   SDLoc dl = getCurSDLoc();
4241   Align Alignment = I.getAlign();
4242   AAMDNodes AAInfo;
4243   I.getAAMetadata(AAInfo);
4244 
4245   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4246 
4247   // An aggregate load cannot wrap around the address space, so offsets to its
4248   // parts don't wrap either.
4249   SDNodeFlags Flags;
4250   Flags.setNoUnsignedWrap(true);
4251 
4252   unsigned ChainI = 0;
4253   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4254     // See visitLoad comments.
4255     if (ChainI == MaxParallelChains) {
4256       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4257                                   makeArrayRef(Chains.data(), ChainI));
4258       Root = Chain;
4259       ChainI = 0;
4260     }
4261     SDValue Add =
4262         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4263     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4264     if (MemVTs[i] != ValueVTs[i])
4265       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4266     SDValue St =
4267         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4268                      Alignment, MMOFlags, AAInfo);
4269     Chains[ChainI] = St;
4270   }
4271 
4272   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4273                                   makeArrayRef(Chains.data(), ChainI));
4274   DAG.setRoot(StoreNode);
4275 }
4276 
4277 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4278                                            bool IsCompressing) {
4279   SDLoc sdl = getCurSDLoc();
4280 
4281   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4282                                MaybeAlign &Alignment) {
4283     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4284     Src0 = I.getArgOperand(0);
4285     Ptr = I.getArgOperand(1);
4286     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4287     Mask = I.getArgOperand(3);
4288   };
4289   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4290                                     MaybeAlign &Alignment) {
4291     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4292     Src0 = I.getArgOperand(0);
4293     Ptr = I.getArgOperand(1);
4294     Mask = I.getArgOperand(2);
4295     Alignment = None;
4296   };
4297 
4298   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4299   MaybeAlign Alignment;
4300   if (IsCompressing)
4301     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4302   else
4303     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4304 
4305   SDValue Ptr = getValue(PtrOperand);
4306   SDValue Src0 = getValue(Src0Operand);
4307   SDValue Mask = getValue(MaskOperand);
4308   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4309 
4310   EVT VT = Src0.getValueType();
4311   if (!Alignment)
4312     Alignment = DAG.getEVTAlign(VT);
4313 
4314   AAMDNodes AAInfo;
4315   I.getAAMetadata(AAInfo);
4316 
4317   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4318       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4319       // TODO: Make MachineMemOperands aware of scalable
4320       // vectors.
4321       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4322   SDValue StoreNode =
4323       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4324                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4325   DAG.setRoot(StoreNode);
4326   setValue(&I, StoreNode);
4327 }
4328 
4329 // Get a uniform base for the Gather/Scatter intrinsic.
4330 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4331 // We try to represent it as a base pointer + vector of indices.
4332 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4333 // The first operand of the GEP may be a single pointer or a vector of pointers
4334 // Example:
4335 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4336 //  or
4337 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4338 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4339 //
4340 // When the first GEP operand is a single pointer - it is the uniform base we
4341 // are looking for. If first operand of the GEP is a splat vector - we
4342 // extract the splat value and use it as a uniform base.
4343 // In all other cases the function returns 'false'.
4344 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4345                            ISD::MemIndexType &IndexType, SDValue &Scale,
4346                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4347   SelectionDAG& DAG = SDB->DAG;
4348   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4349   const DataLayout &DL = DAG.getDataLayout();
4350 
4351   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4352 
4353   // Handle splat constant pointer.
4354   if (auto *C = dyn_cast<Constant>(Ptr)) {
4355     C = C->getSplatValue();
4356     if (!C)
4357       return false;
4358 
4359     Base = SDB->getValue(C);
4360 
4361     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4362     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4363     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4364     IndexType = ISD::SIGNED_SCALED;
4365     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4366     return true;
4367   }
4368 
4369   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4370   if (!GEP || GEP->getParent() != CurBB)
4371     return false;
4372 
4373   if (GEP->getNumOperands() != 2)
4374     return false;
4375 
4376   const Value *BasePtr = GEP->getPointerOperand();
4377   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4378 
4379   // Make sure the base is scalar and the index is a vector.
4380   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4381     return false;
4382 
4383   Base = SDB->getValue(BasePtr);
4384   Index = SDB->getValue(IndexVal);
4385   IndexType = ISD::SIGNED_SCALED;
4386   Scale = DAG.getTargetConstant(
4387               DL.getTypeAllocSize(GEP->getResultElementType()),
4388               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4389   return true;
4390 }
4391 
4392 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4393   SDLoc sdl = getCurSDLoc();
4394 
4395   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4396   const Value *Ptr = I.getArgOperand(1);
4397   SDValue Src0 = getValue(I.getArgOperand(0));
4398   SDValue Mask = getValue(I.getArgOperand(3));
4399   EVT VT = Src0.getValueType();
4400   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4401                         ->getMaybeAlignValue()
4402                         .getValueOr(DAG.getEVTAlign(VT));
4403   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4404 
4405   AAMDNodes AAInfo;
4406   I.getAAMetadata(AAInfo);
4407 
4408   SDValue Base;
4409   SDValue Index;
4410   ISD::MemIndexType IndexType;
4411   SDValue Scale;
4412   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4413                                     I.getParent());
4414 
4415   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4416   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4417       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4418       // TODO: Make MachineMemOperands aware of scalable
4419       // vectors.
4420       MemoryLocation::UnknownSize, Alignment, AAInfo);
4421   if (!UniformBase) {
4422     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4423     Index = getValue(Ptr);
4424     IndexType = ISD::SIGNED_UNSCALED;
4425     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4426   }
4427 
4428   EVT IdxVT = Index.getValueType();
4429   EVT EltTy = IdxVT.getVectorElementType();
4430   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4431     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4432     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4433   }
4434 
4435   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4436   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4437                                          Ops, MMO, IndexType, false);
4438   DAG.setRoot(Scatter);
4439   setValue(&I, Scatter);
4440 }
4441 
4442 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4443   SDLoc sdl = getCurSDLoc();
4444 
4445   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4446                               MaybeAlign &Alignment) {
4447     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4448     Ptr = I.getArgOperand(0);
4449     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4450     Mask = I.getArgOperand(2);
4451     Src0 = I.getArgOperand(3);
4452   };
4453   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4454                                  MaybeAlign &Alignment) {
4455     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4456     Ptr = I.getArgOperand(0);
4457     Alignment = None;
4458     Mask = I.getArgOperand(1);
4459     Src0 = I.getArgOperand(2);
4460   };
4461 
4462   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4463   MaybeAlign Alignment;
4464   if (IsExpanding)
4465     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4466   else
4467     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4468 
4469   SDValue Ptr = getValue(PtrOperand);
4470   SDValue Src0 = getValue(Src0Operand);
4471   SDValue Mask = getValue(MaskOperand);
4472   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4473 
4474   EVT VT = Src0.getValueType();
4475   if (!Alignment)
4476     Alignment = DAG.getEVTAlign(VT);
4477 
4478   AAMDNodes AAInfo;
4479   I.getAAMetadata(AAInfo);
4480   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4481 
4482   // Do not serialize masked loads of constant memory with anything.
4483   MemoryLocation ML;
4484   if (VT.isScalableVector())
4485     ML = MemoryLocation::getAfter(PtrOperand);
4486   else
4487     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4488                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4489                            AAInfo);
4490   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4491 
4492   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4493 
4494   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4495       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4496       // TODO: Make MachineMemOperands aware of scalable
4497       // vectors.
4498       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4499 
4500   SDValue Load =
4501       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4502                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4503   if (AddToChain)
4504     PendingLoads.push_back(Load.getValue(1));
4505   setValue(&I, Load);
4506 }
4507 
4508 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4509   SDLoc sdl = getCurSDLoc();
4510 
4511   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4512   const Value *Ptr = I.getArgOperand(0);
4513   SDValue Src0 = getValue(I.getArgOperand(3));
4514   SDValue Mask = getValue(I.getArgOperand(2));
4515 
4516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4517   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4518   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4519                         ->getMaybeAlignValue()
4520                         .getValueOr(DAG.getEVTAlign(VT));
4521 
4522   AAMDNodes AAInfo;
4523   I.getAAMetadata(AAInfo);
4524   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4525 
4526   SDValue Root = DAG.getRoot();
4527   SDValue Base;
4528   SDValue Index;
4529   ISD::MemIndexType IndexType;
4530   SDValue Scale;
4531   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4532                                     I.getParent());
4533   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4534   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4535       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4536       // TODO: Make MachineMemOperands aware of scalable
4537       // vectors.
4538       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4539 
4540   if (!UniformBase) {
4541     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4542     Index = getValue(Ptr);
4543     IndexType = ISD::SIGNED_UNSCALED;
4544     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4545   }
4546 
4547   EVT IdxVT = Index.getValueType();
4548   EVT EltTy = IdxVT.getVectorElementType();
4549   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4550     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4551     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4552   }
4553 
4554   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4555   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4556                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4557 
4558   PendingLoads.push_back(Gather.getValue(1));
4559   setValue(&I, Gather);
4560 }
4561 
4562 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4563   SDLoc dl = getCurSDLoc();
4564   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4565   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4566   SyncScope::ID SSID = I.getSyncScopeID();
4567 
4568   SDValue InChain = getRoot();
4569 
4570   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4571   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4572 
4573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4574   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4575 
4576   MachineFunction &MF = DAG.getMachineFunction();
4577   MachineMemOperand *MMO = MF.getMachineMemOperand(
4578       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4579       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4580       FailureOrdering);
4581 
4582   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4583                                    dl, MemVT, VTs, InChain,
4584                                    getValue(I.getPointerOperand()),
4585                                    getValue(I.getCompareOperand()),
4586                                    getValue(I.getNewValOperand()), MMO);
4587 
4588   SDValue OutChain = L.getValue(2);
4589 
4590   setValue(&I, L);
4591   DAG.setRoot(OutChain);
4592 }
4593 
4594 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4595   SDLoc dl = getCurSDLoc();
4596   ISD::NodeType NT;
4597   switch (I.getOperation()) {
4598   default: llvm_unreachable("Unknown atomicrmw operation");
4599   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4600   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4601   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4602   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4603   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4604   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4605   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4606   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4607   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4608   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4609   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4610   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4611   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4612   }
4613   AtomicOrdering Ordering = I.getOrdering();
4614   SyncScope::ID SSID = I.getSyncScopeID();
4615 
4616   SDValue InChain = getRoot();
4617 
4618   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4619   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4620   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4621 
4622   MachineFunction &MF = DAG.getMachineFunction();
4623   MachineMemOperand *MMO = MF.getMachineMemOperand(
4624       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4625       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4626 
4627   SDValue L =
4628     DAG.getAtomic(NT, dl, MemVT, InChain,
4629                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4630                   MMO);
4631 
4632   SDValue OutChain = L.getValue(1);
4633 
4634   setValue(&I, L);
4635   DAG.setRoot(OutChain);
4636 }
4637 
4638 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4639   SDLoc dl = getCurSDLoc();
4640   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4641   SDValue Ops[3];
4642   Ops[0] = getRoot();
4643   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4644                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4645   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4646                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4647   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4648 }
4649 
4650 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4651   SDLoc dl = getCurSDLoc();
4652   AtomicOrdering Order = I.getOrdering();
4653   SyncScope::ID SSID = I.getSyncScopeID();
4654 
4655   SDValue InChain = getRoot();
4656 
4657   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4658   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4659   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4660 
4661   if (!TLI.supportsUnalignedAtomics() &&
4662       I.getAlignment() < MemVT.getSizeInBits() / 8)
4663     report_fatal_error("Cannot generate unaligned atomic load");
4664 
4665   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4666 
4667   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4668       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4669       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4670 
4671   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4672 
4673   SDValue Ptr = getValue(I.getPointerOperand());
4674 
4675   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4676     // TODO: Once this is better exercised by tests, it should be merged with
4677     // the normal path for loads to prevent future divergence.
4678     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4679     if (MemVT != VT)
4680       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4681 
4682     setValue(&I, L);
4683     SDValue OutChain = L.getValue(1);
4684     if (!I.isUnordered())
4685       DAG.setRoot(OutChain);
4686     else
4687       PendingLoads.push_back(OutChain);
4688     return;
4689   }
4690 
4691   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4692                             Ptr, MMO);
4693 
4694   SDValue OutChain = L.getValue(1);
4695   if (MemVT != VT)
4696     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4697 
4698   setValue(&I, L);
4699   DAG.setRoot(OutChain);
4700 }
4701 
4702 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4703   SDLoc dl = getCurSDLoc();
4704 
4705   AtomicOrdering Ordering = I.getOrdering();
4706   SyncScope::ID SSID = I.getSyncScopeID();
4707 
4708   SDValue InChain = getRoot();
4709 
4710   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4711   EVT MemVT =
4712       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4713 
4714   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4715     report_fatal_error("Cannot generate unaligned atomic store");
4716 
4717   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4718 
4719   MachineFunction &MF = DAG.getMachineFunction();
4720   MachineMemOperand *MMO = MF.getMachineMemOperand(
4721       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4722       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4723 
4724   SDValue Val = getValue(I.getValueOperand());
4725   if (Val.getValueType() != MemVT)
4726     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4727   SDValue Ptr = getValue(I.getPointerOperand());
4728 
4729   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4730     // TODO: Once this is better exercised by tests, it should be merged with
4731     // the normal path for stores to prevent future divergence.
4732     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4733     DAG.setRoot(S);
4734     return;
4735   }
4736   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4737                                    Ptr, Val, MMO);
4738 
4739 
4740   DAG.setRoot(OutChain);
4741 }
4742 
4743 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4744 /// node.
4745 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4746                                                unsigned Intrinsic) {
4747   // Ignore the callsite's attributes. A specific call site may be marked with
4748   // readnone, but the lowering code will expect the chain based on the
4749   // definition.
4750   const Function *F = I.getCalledFunction();
4751   bool HasChain = !F->doesNotAccessMemory();
4752   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4753 
4754   // Build the operand list.
4755   SmallVector<SDValue, 8> Ops;
4756   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4757     if (OnlyLoad) {
4758       // We don't need to serialize loads against other loads.
4759       Ops.push_back(DAG.getRoot());
4760     } else {
4761       Ops.push_back(getRoot());
4762     }
4763   }
4764 
4765   // Info is set by getTgtMemInstrinsic
4766   TargetLowering::IntrinsicInfo Info;
4767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4768   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4769                                                DAG.getMachineFunction(),
4770                                                Intrinsic);
4771 
4772   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4773   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4774       Info.opc == ISD::INTRINSIC_W_CHAIN)
4775     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4776                                         TLI.getPointerTy(DAG.getDataLayout())));
4777 
4778   // Add all operands of the call to the operand list.
4779   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4780     const Value *Arg = I.getArgOperand(i);
4781     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4782       Ops.push_back(getValue(Arg));
4783       continue;
4784     }
4785 
4786     // Use TargetConstant instead of a regular constant for immarg.
4787     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4788     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4789       assert(CI->getBitWidth() <= 64 &&
4790              "large intrinsic immediates not handled");
4791       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4792     } else {
4793       Ops.push_back(
4794           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4795     }
4796   }
4797 
4798   SmallVector<EVT, 4> ValueVTs;
4799   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4800 
4801   if (HasChain)
4802     ValueVTs.push_back(MVT::Other);
4803 
4804   SDVTList VTs = DAG.getVTList(ValueVTs);
4805 
4806   // Create the node.
4807   SDValue Result;
4808   if (IsTgtIntrinsic) {
4809     // This is target intrinsic that touches memory
4810     AAMDNodes AAInfo;
4811     I.getAAMetadata(AAInfo);
4812     Result =
4813         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4814                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4815                                 Info.align, Info.flags, Info.size, AAInfo);
4816   } else if (!HasChain) {
4817     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4818   } else if (!I.getType()->isVoidTy()) {
4819     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4820   } else {
4821     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4822   }
4823 
4824   if (HasChain) {
4825     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4826     if (OnlyLoad)
4827       PendingLoads.push_back(Chain);
4828     else
4829       DAG.setRoot(Chain);
4830   }
4831 
4832   if (!I.getType()->isVoidTy()) {
4833     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4834       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4835       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4836     } else
4837       Result = lowerRangeToAssertZExt(DAG, I, Result);
4838 
4839     MaybeAlign Alignment = I.getRetAlign();
4840     if (!Alignment)
4841       Alignment = F->getAttributes().getRetAlignment();
4842     // Insert `assertalign` node if there's an alignment.
4843     if (InsertAssertAlign && Alignment) {
4844       Result =
4845           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4846     }
4847 
4848     setValue(&I, Result);
4849   }
4850 }
4851 
4852 /// GetSignificand - Get the significand and build it into a floating-point
4853 /// number with exponent of 1:
4854 ///
4855 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4856 ///
4857 /// where Op is the hexadecimal representation of floating point value.
4858 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4859   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4860                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4861   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4862                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4863   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4864 }
4865 
4866 /// GetExponent - Get the exponent:
4867 ///
4868 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4869 ///
4870 /// where Op is the hexadecimal representation of floating point value.
4871 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4872                            const TargetLowering &TLI, const SDLoc &dl) {
4873   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4874                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4875   SDValue t1 = DAG.getNode(
4876       ISD::SRL, dl, MVT::i32, t0,
4877       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4878   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4879                            DAG.getConstant(127, dl, MVT::i32));
4880   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4881 }
4882 
4883 /// getF32Constant - Get 32-bit floating point constant.
4884 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4885                               const SDLoc &dl) {
4886   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4887                            MVT::f32);
4888 }
4889 
4890 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4891                                        SelectionDAG &DAG) {
4892   // TODO: What fast-math-flags should be set on the floating-point nodes?
4893 
4894   //   IntegerPartOfX = ((int32_t)(t0);
4895   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4896 
4897   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4898   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4899   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4900 
4901   //   IntegerPartOfX <<= 23;
4902   IntegerPartOfX = DAG.getNode(
4903       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4904       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4905                                   DAG.getDataLayout())));
4906 
4907   SDValue TwoToFractionalPartOfX;
4908   if (LimitFloatPrecision <= 6) {
4909     // For floating-point precision of 6:
4910     //
4911     //   TwoToFractionalPartOfX =
4912     //     0.997535578f +
4913     //       (0.735607626f + 0.252464424f * x) * x;
4914     //
4915     // error 0.0144103317, which is 6 bits
4916     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4917                              getF32Constant(DAG, 0x3e814304, dl));
4918     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4919                              getF32Constant(DAG, 0x3f3c50c8, dl));
4920     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4921     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4922                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4923   } else if (LimitFloatPrecision <= 12) {
4924     // For floating-point precision of 12:
4925     //
4926     //   TwoToFractionalPartOfX =
4927     //     0.999892986f +
4928     //       (0.696457318f +
4929     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4930     //
4931     // error 0.000107046256, which is 13 to 14 bits
4932     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4933                              getF32Constant(DAG, 0x3da235e3, dl));
4934     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4935                              getF32Constant(DAG, 0x3e65b8f3, dl));
4936     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4937     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4938                              getF32Constant(DAG, 0x3f324b07, dl));
4939     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4940     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4941                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4942   } else { // LimitFloatPrecision <= 18
4943     // For floating-point precision of 18:
4944     //
4945     //   TwoToFractionalPartOfX =
4946     //     0.999999982f +
4947     //       (0.693148872f +
4948     //         (0.240227044f +
4949     //           (0.554906021e-1f +
4950     //             (0.961591928e-2f +
4951     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4952     // error 2.47208000*10^(-7), which is better than 18 bits
4953     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4954                              getF32Constant(DAG, 0x3924b03e, dl));
4955     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4956                              getF32Constant(DAG, 0x3ab24b87, dl));
4957     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4958     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4959                              getF32Constant(DAG, 0x3c1d8c17, dl));
4960     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4961     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4962                              getF32Constant(DAG, 0x3d634a1d, dl));
4963     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4964     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4965                              getF32Constant(DAG, 0x3e75fe14, dl));
4966     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4967     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4968                               getF32Constant(DAG, 0x3f317234, dl));
4969     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4970     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4971                                          getF32Constant(DAG, 0x3f800000, dl));
4972   }
4973 
4974   // Add the exponent into the result in integer domain.
4975   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4976   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4977                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4978 }
4979 
4980 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4981 /// limited-precision mode.
4982 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4983                          const TargetLowering &TLI, SDNodeFlags Flags) {
4984   if (Op.getValueType() == MVT::f32 &&
4985       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4986 
4987     // Put the exponent in the right bit position for later addition to the
4988     // final result:
4989     //
4990     // t0 = Op * log2(e)
4991 
4992     // TODO: What fast-math-flags should be set here?
4993     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4994                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4995     return getLimitedPrecisionExp2(t0, dl, DAG);
4996   }
4997 
4998   // No special expansion.
4999   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5000 }
5001 
5002 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5003 /// limited-precision mode.
5004 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5005                          const TargetLowering &TLI, SDNodeFlags Flags) {
5006   // TODO: What fast-math-flags should be set on the floating-point nodes?
5007 
5008   if (Op.getValueType() == MVT::f32 &&
5009       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5010     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5011 
5012     // Scale the exponent by log(2).
5013     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5014     SDValue LogOfExponent =
5015         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5016                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5017 
5018     // Get the significand and build it into a floating-point number with
5019     // exponent of 1.
5020     SDValue X = GetSignificand(DAG, Op1, dl);
5021 
5022     SDValue LogOfMantissa;
5023     if (LimitFloatPrecision <= 6) {
5024       // For floating-point precision of 6:
5025       //
5026       //   LogofMantissa =
5027       //     -1.1609546f +
5028       //       (1.4034025f - 0.23903021f * x) * x;
5029       //
5030       // error 0.0034276066, which is better than 8 bits
5031       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5032                                getF32Constant(DAG, 0xbe74c456, dl));
5033       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5034                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5035       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5036       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5037                                   getF32Constant(DAG, 0x3f949a29, dl));
5038     } else if (LimitFloatPrecision <= 12) {
5039       // For floating-point precision of 12:
5040       //
5041       //   LogOfMantissa =
5042       //     -1.7417939f +
5043       //       (2.8212026f +
5044       //         (-1.4699568f +
5045       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5046       //
5047       // error 0.000061011436, which is 14 bits
5048       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5049                                getF32Constant(DAG, 0xbd67b6d6, dl));
5050       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5051                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5052       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5053       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5054                                getF32Constant(DAG, 0x3fbc278b, dl));
5055       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5056       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5057                                getF32Constant(DAG, 0x40348e95, dl));
5058       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5059       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5060                                   getF32Constant(DAG, 0x3fdef31a, dl));
5061     } else { // LimitFloatPrecision <= 18
5062       // For floating-point precision of 18:
5063       //
5064       //   LogOfMantissa =
5065       //     -2.1072184f +
5066       //       (4.2372794f +
5067       //         (-3.7029485f +
5068       //           (2.2781945f +
5069       //             (-0.87823314f +
5070       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5071       //
5072       // error 0.0000023660568, which is better than 18 bits
5073       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5074                                getF32Constant(DAG, 0xbc91e5ac, dl));
5075       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5076                                getF32Constant(DAG, 0x3e4350aa, dl));
5077       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5078       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5079                                getF32Constant(DAG, 0x3f60d3e3, dl));
5080       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5081       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5082                                getF32Constant(DAG, 0x4011cdf0, dl));
5083       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5084       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5085                                getF32Constant(DAG, 0x406cfd1c, dl));
5086       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5087       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5088                                getF32Constant(DAG, 0x408797cb, dl));
5089       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5090       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5091                                   getF32Constant(DAG, 0x4006dcab, dl));
5092     }
5093 
5094     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5095   }
5096 
5097   // No special expansion.
5098   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5099 }
5100 
5101 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5102 /// limited-precision mode.
5103 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5104                           const TargetLowering &TLI, SDNodeFlags Flags) {
5105   // TODO: What fast-math-flags should be set on the floating-point nodes?
5106 
5107   if (Op.getValueType() == MVT::f32 &&
5108       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5109     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5110 
5111     // Get the exponent.
5112     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5113 
5114     // Get the significand and build it into a floating-point number with
5115     // exponent of 1.
5116     SDValue X = GetSignificand(DAG, Op1, dl);
5117 
5118     // Different possible minimax approximations of significand in
5119     // floating-point for various degrees of accuracy over [1,2].
5120     SDValue Log2ofMantissa;
5121     if (LimitFloatPrecision <= 6) {
5122       // For floating-point precision of 6:
5123       //
5124       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5125       //
5126       // error 0.0049451742, which is more than 7 bits
5127       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5128                                getF32Constant(DAG, 0xbeb08fe0, dl));
5129       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5130                                getF32Constant(DAG, 0x40019463, dl));
5131       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5132       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5133                                    getF32Constant(DAG, 0x3fd6633d, dl));
5134     } else if (LimitFloatPrecision <= 12) {
5135       // For floating-point precision of 12:
5136       //
5137       //   Log2ofMantissa =
5138       //     -2.51285454f +
5139       //       (4.07009056f +
5140       //         (-2.12067489f +
5141       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5142       //
5143       // error 0.0000876136000, which is better than 13 bits
5144       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5145                                getF32Constant(DAG, 0xbda7262e, dl));
5146       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5147                                getF32Constant(DAG, 0x3f25280b, dl));
5148       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5149       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5150                                getF32Constant(DAG, 0x4007b923, dl));
5151       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5152       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5153                                getF32Constant(DAG, 0x40823e2f, dl));
5154       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5155       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5156                                    getF32Constant(DAG, 0x4020d29c, dl));
5157     } else { // LimitFloatPrecision <= 18
5158       // For floating-point precision of 18:
5159       //
5160       //   Log2ofMantissa =
5161       //     -3.0400495f +
5162       //       (6.1129976f +
5163       //         (-5.3420409f +
5164       //           (3.2865683f +
5165       //             (-1.2669343f +
5166       //               (0.27515199f -
5167       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5168       //
5169       // error 0.0000018516, which is better than 18 bits
5170       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5171                                getF32Constant(DAG, 0xbcd2769e, dl));
5172       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5173                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5174       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5175       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5176                                getF32Constant(DAG, 0x3fa22ae7, dl));
5177       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5178       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5179                                getF32Constant(DAG, 0x40525723, dl));
5180       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5181       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5182                                getF32Constant(DAG, 0x40aaf200, dl));
5183       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5184       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5185                                getF32Constant(DAG, 0x40c39dad, dl));
5186       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5187       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5188                                    getF32Constant(DAG, 0x4042902c, dl));
5189     }
5190 
5191     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5192   }
5193 
5194   // No special expansion.
5195   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5196 }
5197 
5198 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5199 /// limited-precision mode.
5200 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5201                            const TargetLowering &TLI, SDNodeFlags Flags) {
5202   // TODO: What fast-math-flags should be set on the floating-point nodes?
5203 
5204   if (Op.getValueType() == MVT::f32 &&
5205       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5206     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5207 
5208     // Scale the exponent by log10(2) [0.30102999f].
5209     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5210     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5211                                         getF32Constant(DAG, 0x3e9a209a, dl));
5212 
5213     // Get the significand and build it into a floating-point number with
5214     // exponent of 1.
5215     SDValue X = GetSignificand(DAG, Op1, dl);
5216 
5217     SDValue Log10ofMantissa;
5218     if (LimitFloatPrecision <= 6) {
5219       // For floating-point precision of 6:
5220       //
5221       //   Log10ofMantissa =
5222       //     -0.50419619f +
5223       //       (0.60948995f - 0.10380950f * x) * x;
5224       //
5225       // error 0.0014886165, which is 6 bits
5226       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5227                                getF32Constant(DAG, 0xbdd49a13, dl));
5228       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5229                                getF32Constant(DAG, 0x3f1c0789, dl));
5230       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5231       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5232                                     getF32Constant(DAG, 0x3f011300, dl));
5233     } else if (LimitFloatPrecision <= 12) {
5234       // For floating-point precision of 12:
5235       //
5236       //   Log10ofMantissa =
5237       //     -0.64831180f +
5238       //       (0.91751397f +
5239       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5240       //
5241       // error 0.00019228036, which is better than 12 bits
5242       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5243                                getF32Constant(DAG, 0x3d431f31, dl));
5244       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5245                                getF32Constant(DAG, 0x3ea21fb2, dl));
5246       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5247       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5248                                getF32Constant(DAG, 0x3f6ae232, dl));
5249       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5250       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5251                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5252     } else { // LimitFloatPrecision <= 18
5253       // For floating-point precision of 18:
5254       //
5255       //   Log10ofMantissa =
5256       //     -0.84299375f +
5257       //       (1.5327582f +
5258       //         (-1.0688956f +
5259       //           (0.49102474f +
5260       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5261       //
5262       // error 0.0000037995730, which is better than 18 bits
5263       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5264                                getF32Constant(DAG, 0x3c5d51ce, dl));
5265       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5266                                getF32Constant(DAG, 0x3e00685a, dl));
5267       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5268       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5269                                getF32Constant(DAG, 0x3efb6798, dl));
5270       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5271       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5272                                getF32Constant(DAG, 0x3f88d192, dl));
5273       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5274       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5275                                getF32Constant(DAG, 0x3fc4316c, dl));
5276       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5277       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5278                                     getF32Constant(DAG, 0x3f57ce70, dl));
5279     }
5280 
5281     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5282   }
5283 
5284   // No special expansion.
5285   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5286 }
5287 
5288 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5289 /// limited-precision mode.
5290 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5291                           const TargetLowering &TLI, SDNodeFlags Flags) {
5292   if (Op.getValueType() == MVT::f32 &&
5293       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5294     return getLimitedPrecisionExp2(Op, dl, DAG);
5295 
5296   // No special expansion.
5297   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5298 }
5299 
5300 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5301 /// limited-precision mode with x == 10.0f.
5302 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5303                          SelectionDAG &DAG, const TargetLowering &TLI,
5304                          SDNodeFlags Flags) {
5305   bool IsExp10 = false;
5306   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5307       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5308     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5309       APFloat Ten(10.0f);
5310       IsExp10 = LHSC->isExactlyValue(Ten);
5311     }
5312   }
5313 
5314   // TODO: What fast-math-flags should be set on the FMUL node?
5315   if (IsExp10) {
5316     // Put the exponent in the right bit position for later addition to the
5317     // final result:
5318     //
5319     //   #define LOG2OF10 3.3219281f
5320     //   t0 = Op * LOG2OF10;
5321     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5322                              getF32Constant(DAG, 0x40549a78, dl));
5323     return getLimitedPrecisionExp2(t0, dl, DAG);
5324   }
5325 
5326   // No special expansion.
5327   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5328 }
5329 
5330 /// ExpandPowI - Expand a llvm.powi intrinsic.
5331 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5332                           SelectionDAG &DAG) {
5333   // If RHS is a constant, we can expand this out to a multiplication tree,
5334   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5335   // optimizing for size, we only want to do this if the expansion would produce
5336   // a small number of multiplies, otherwise we do the full expansion.
5337   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5338     // Get the exponent as a positive value.
5339     unsigned Val = RHSC->getSExtValue();
5340     if ((int)Val < 0) Val = -Val;
5341 
5342     // powi(x, 0) -> 1.0
5343     if (Val == 0)
5344       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5345 
5346     bool OptForSize = DAG.shouldOptForSize();
5347     if (!OptForSize ||
5348         // If optimizing for size, don't insert too many multiplies.
5349         // This inserts up to 5 multiplies.
5350         countPopulation(Val) + Log2_32(Val) < 7) {
5351       // We use the simple binary decomposition method to generate the multiply
5352       // sequence.  There are more optimal ways to do this (for example,
5353       // powi(x,15) generates one more multiply than it should), but this has
5354       // the benefit of being both really simple and much better than a libcall.
5355       SDValue Res;  // Logically starts equal to 1.0
5356       SDValue CurSquare = LHS;
5357       // TODO: Intrinsics should have fast-math-flags that propagate to these
5358       // nodes.
5359       while (Val) {
5360         if (Val & 1) {
5361           if (Res.getNode())
5362             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5363           else
5364             Res = CurSquare;  // 1.0*CurSquare.
5365         }
5366 
5367         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5368                                 CurSquare, CurSquare);
5369         Val >>= 1;
5370       }
5371 
5372       // If the original was negative, invert the result, producing 1/(x*x*x).
5373       if (RHSC->getSExtValue() < 0)
5374         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5375                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5376       return Res;
5377     }
5378   }
5379 
5380   // Otherwise, expand to a libcall.
5381   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5382 }
5383 
5384 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5385                             SDValue LHS, SDValue RHS, SDValue Scale,
5386                             SelectionDAG &DAG, const TargetLowering &TLI) {
5387   EVT VT = LHS.getValueType();
5388   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5389   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5390   LLVMContext &Ctx = *DAG.getContext();
5391 
5392   // If the type is legal but the operation isn't, this node might survive all
5393   // the way to operation legalization. If we end up there and we do not have
5394   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5395   // node.
5396 
5397   // Coax the legalizer into expanding the node during type legalization instead
5398   // by bumping the size by one bit. This will force it to Promote, enabling the
5399   // early expansion and avoiding the need to expand later.
5400 
5401   // We don't have to do this if Scale is 0; that can always be expanded, unless
5402   // it's a saturating signed operation. Those can experience true integer
5403   // division overflow, a case which we must avoid.
5404 
5405   // FIXME: We wouldn't have to do this (or any of the early
5406   // expansion/promotion) if it was possible to expand a libcall of an
5407   // illegal type during operation legalization. But it's not, so things
5408   // get a bit hacky.
5409   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5410   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5411       (TLI.isTypeLegal(VT) ||
5412        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5413     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5414         Opcode, VT, ScaleInt);
5415     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5416       EVT PromVT;
5417       if (VT.isScalarInteger())
5418         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5419       else if (VT.isVector()) {
5420         PromVT = VT.getVectorElementType();
5421         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5422         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5423       } else
5424         llvm_unreachable("Wrong VT for DIVFIX?");
5425       if (Signed) {
5426         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5427         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5428       } else {
5429         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5430         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5431       }
5432       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5433       // For saturating operations, we need to shift up the LHS to get the
5434       // proper saturation width, and then shift down again afterwards.
5435       if (Saturating)
5436         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5437                           DAG.getConstant(1, DL, ShiftTy));
5438       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5439       if (Saturating)
5440         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5441                           DAG.getConstant(1, DL, ShiftTy));
5442       return DAG.getZExtOrTrunc(Res, DL, VT);
5443     }
5444   }
5445 
5446   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5447 }
5448 
5449 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5450 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5451 static void
5452 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5453                      const SDValue &N) {
5454   switch (N.getOpcode()) {
5455   case ISD::CopyFromReg: {
5456     SDValue Op = N.getOperand(1);
5457     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5458                       Op.getValueType().getSizeInBits());
5459     return;
5460   }
5461   case ISD::BITCAST:
5462   case ISD::AssertZext:
5463   case ISD::AssertSext:
5464   case ISD::TRUNCATE:
5465     getUnderlyingArgRegs(Regs, N.getOperand(0));
5466     return;
5467   case ISD::BUILD_PAIR:
5468   case ISD::BUILD_VECTOR:
5469   case ISD::CONCAT_VECTORS:
5470     for (SDValue Op : N->op_values())
5471       getUnderlyingArgRegs(Regs, Op);
5472     return;
5473   default:
5474     return;
5475   }
5476 }
5477 
5478 /// If the DbgValueInst is a dbg_value of a function argument, create the
5479 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5480 /// instruction selection, they will be inserted to the entry BB.
5481 /// We don't currently support this for variadic dbg_values, as they shouldn't
5482 /// appear for function arguments or in the prologue.
5483 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5484     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5485     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5486   const Argument *Arg = dyn_cast<Argument>(V);
5487   if (!Arg)
5488     return false;
5489 
5490   if (!IsDbgDeclare) {
5491     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5492     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5493     // the entry block.
5494     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5495     if (!IsInEntryBlock)
5496       return false;
5497 
5498     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5499     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5500     // variable that also is a param.
5501     //
5502     // Although, if we are at the top of the entry block already, we can still
5503     // emit using ArgDbgValue. This might catch some situations when the
5504     // dbg.value refers to an argument that isn't used in the entry block, so
5505     // any CopyToReg node would be optimized out and the only way to express
5506     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5507     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5508     // we should only emit as ArgDbgValue if the Variable is an argument to the
5509     // current function, and the dbg.value intrinsic is found in the entry
5510     // block.
5511     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5512         !DL->getInlinedAt();
5513     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5514     if (!IsInPrologue && !VariableIsFunctionInputArg)
5515       return false;
5516 
5517     // Here we assume that a function argument on IR level only can be used to
5518     // describe one input parameter on source level. If we for example have
5519     // source code like this
5520     //
5521     //    struct A { long x, y; };
5522     //    void foo(struct A a, long b) {
5523     //      ...
5524     //      b = a.x;
5525     //      ...
5526     //    }
5527     //
5528     // and IR like this
5529     //
5530     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5531     //  entry:
5532     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5533     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5534     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5535     //    ...
5536     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5537     //    ...
5538     //
5539     // then the last dbg.value is describing a parameter "b" using a value that
5540     // is an argument. But since we already has used %a1 to describe a parameter
5541     // we should not handle that last dbg.value here (that would result in an
5542     // incorrect hoisting of the DBG_VALUE to the function entry).
5543     // Notice that we allow one dbg.value per IR level argument, to accommodate
5544     // for the situation with fragments above.
5545     if (VariableIsFunctionInputArg) {
5546       unsigned ArgNo = Arg->getArgNo();
5547       if (ArgNo >= FuncInfo.DescribedArgs.size())
5548         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5549       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5550         return false;
5551       FuncInfo.DescribedArgs.set(ArgNo);
5552     }
5553   }
5554 
5555   MachineFunction &MF = DAG.getMachineFunction();
5556   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5557 
5558   bool IsIndirect = false;
5559   Optional<MachineOperand> Op;
5560   // Some arguments' frame index is recorded during argument lowering.
5561   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5562   if (FI != std::numeric_limits<int>::max())
5563     Op = MachineOperand::CreateFI(FI);
5564 
5565   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5566   if (!Op && N.getNode()) {
5567     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5568     Register Reg;
5569     if (ArgRegsAndSizes.size() == 1)
5570       Reg = ArgRegsAndSizes.front().first;
5571 
5572     if (Reg && Reg.isVirtual()) {
5573       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5574       Register PR = RegInfo.getLiveInPhysReg(Reg);
5575       if (PR)
5576         Reg = PR;
5577     }
5578     if (Reg) {
5579       Op = MachineOperand::CreateReg(Reg, false);
5580       IsIndirect = IsDbgDeclare;
5581     }
5582   }
5583 
5584   if (!Op && N.getNode()) {
5585     // Check if frame index is available.
5586     SDValue LCandidate = peekThroughBitcasts(N);
5587     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5588       if (FrameIndexSDNode *FINode =
5589           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5590         Op = MachineOperand::CreateFI(FINode->getIndex());
5591   }
5592 
5593   if (!Op) {
5594     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5595     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5596                                          SplitRegs) {
5597       unsigned Offset = 0;
5598       for (auto RegAndSize : SplitRegs) {
5599         // If the expression is already a fragment, the current register
5600         // offset+size might extend beyond the fragment. In this case, only
5601         // the register bits that are inside the fragment are relevant.
5602         int RegFragmentSizeInBits = RegAndSize.second;
5603         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5604           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5605           // The register is entirely outside the expression fragment,
5606           // so is irrelevant for debug info.
5607           if (Offset >= ExprFragmentSizeInBits)
5608             break;
5609           // The register is partially outside the expression fragment, only
5610           // the low bits within the fragment are relevant for debug info.
5611           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5612             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5613           }
5614         }
5615 
5616         auto FragmentExpr = DIExpression::createFragmentExpression(
5617             Expr, Offset, RegFragmentSizeInBits);
5618         Offset += RegAndSize.second;
5619         // If a valid fragment expression cannot be created, the variable's
5620         // correct value cannot be determined and so it is set as Undef.
5621         if (!FragmentExpr) {
5622           SDDbgValue *SDV = DAG.getConstantDbgValue(
5623               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5624           DAG.AddDbgValue(SDV, false);
5625           continue;
5626         }
5627         FuncInfo.ArgDbgValues.push_back(
5628           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5629                   RegAndSize.first, Variable, *FragmentExpr));
5630       }
5631     };
5632 
5633     // Check if ValueMap has reg number.
5634     DenseMap<const Value *, Register>::const_iterator
5635       VMI = FuncInfo.ValueMap.find(V);
5636     if (VMI != FuncInfo.ValueMap.end()) {
5637       const auto &TLI = DAG.getTargetLoweringInfo();
5638       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5639                        V->getType(), None);
5640       if (RFV.occupiesMultipleRegs()) {
5641         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5642         return true;
5643       }
5644 
5645       Op = MachineOperand::CreateReg(VMI->second, false);
5646       IsIndirect = IsDbgDeclare;
5647     } else if (ArgRegsAndSizes.size() > 1) {
5648       // This was split due to the calling convention, and no virtual register
5649       // mapping exists for the value.
5650       splitMultiRegDbgValue(ArgRegsAndSizes);
5651       return true;
5652     }
5653   }
5654 
5655   if (!Op)
5656     return false;
5657 
5658   assert(Variable->isValidLocationForIntrinsic(DL) &&
5659          "Expected inlined-at fields to agree");
5660   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5661   FuncInfo.ArgDbgValues.push_back(
5662       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5663               *Op, Variable, Expr));
5664 
5665   return true;
5666 }
5667 
5668 /// Return the appropriate SDDbgValue based on N.
5669 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5670                                              DILocalVariable *Variable,
5671                                              DIExpression *Expr,
5672                                              const DebugLoc &dl,
5673                                              unsigned DbgSDNodeOrder) {
5674   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5675     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5676     // stack slot locations.
5677     //
5678     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5679     // debug values here after optimization:
5680     //
5681     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5682     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5683     //
5684     // Both describe the direct values of their associated variables.
5685     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5686                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5687   }
5688   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5689                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5690 }
5691 
5692 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5693   switch (Intrinsic) {
5694   case Intrinsic::smul_fix:
5695     return ISD::SMULFIX;
5696   case Intrinsic::umul_fix:
5697     return ISD::UMULFIX;
5698   case Intrinsic::smul_fix_sat:
5699     return ISD::SMULFIXSAT;
5700   case Intrinsic::umul_fix_sat:
5701     return ISD::UMULFIXSAT;
5702   case Intrinsic::sdiv_fix:
5703     return ISD::SDIVFIX;
5704   case Intrinsic::udiv_fix:
5705     return ISD::UDIVFIX;
5706   case Intrinsic::sdiv_fix_sat:
5707     return ISD::SDIVFIXSAT;
5708   case Intrinsic::udiv_fix_sat:
5709     return ISD::UDIVFIXSAT;
5710   default:
5711     llvm_unreachable("Unhandled fixed point intrinsic");
5712   }
5713 }
5714 
5715 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5716                                            const char *FunctionName) {
5717   assert(FunctionName && "FunctionName must not be nullptr");
5718   SDValue Callee = DAG.getExternalSymbol(
5719       FunctionName,
5720       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5721   LowerCallTo(I, Callee, I.isTailCall());
5722 }
5723 
5724 /// Given a @llvm.call.preallocated.setup, return the corresponding
5725 /// preallocated call.
5726 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5727   assert(cast<CallBase>(PreallocatedSetup)
5728                  ->getCalledFunction()
5729                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5730          "expected call_preallocated_setup Value");
5731   for (auto *U : PreallocatedSetup->users()) {
5732     auto *UseCall = cast<CallBase>(U);
5733     const Function *Fn = UseCall->getCalledFunction();
5734     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5735       return UseCall;
5736     }
5737   }
5738   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5739 }
5740 
5741 /// Lower the call to the specified intrinsic function.
5742 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5743                                              unsigned Intrinsic) {
5744   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5745   SDLoc sdl = getCurSDLoc();
5746   DebugLoc dl = getCurDebugLoc();
5747   SDValue Res;
5748 
5749   SDNodeFlags Flags;
5750   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5751     Flags.copyFMF(*FPOp);
5752 
5753   switch (Intrinsic) {
5754   default:
5755     // By default, turn this into a target intrinsic node.
5756     visitTargetIntrinsic(I, Intrinsic);
5757     return;
5758   case Intrinsic::vscale: {
5759     match(&I, m_VScale(DAG.getDataLayout()));
5760     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5761     setValue(&I,
5762              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5763     return;
5764   }
5765   case Intrinsic::vastart:  visitVAStart(I); return;
5766   case Intrinsic::vaend:    visitVAEnd(I); return;
5767   case Intrinsic::vacopy:   visitVACopy(I); return;
5768   case Intrinsic::returnaddress:
5769     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5770                              TLI.getPointerTy(DAG.getDataLayout()),
5771                              getValue(I.getArgOperand(0))));
5772     return;
5773   case Intrinsic::addressofreturnaddress:
5774     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5775                              TLI.getPointerTy(DAG.getDataLayout())));
5776     return;
5777   case Intrinsic::sponentry:
5778     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5779                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5780     return;
5781   case Intrinsic::frameaddress:
5782     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5783                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5784                              getValue(I.getArgOperand(0))));
5785     return;
5786   case Intrinsic::read_volatile_register:
5787   case Intrinsic::read_register: {
5788     Value *Reg = I.getArgOperand(0);
5789     SDValue Chain = getRoot();
5790     SDValue RegName =
5791         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5792     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5793     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5794       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5795     setValue(&I, Res);
5796     DAG.setRoot(Res.getValue(1));
5797     return;
5798   }
5799   case Intrinsic::write_register: {
5800     Value *Reg = I.getArgOperand(0);
5801     Value *RegValue = I.getArgOperand(1);
5802     SDValue Chain = getRoot();
5803     SDValue RegName =
5804         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5805     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5806                             RegName, getValue(RegValue)));
5807     return;
5808   }
5809   case Intrinsic::memcpy: {
5810     const auto &MCI = cast<MemCpyInst>(I);
5811     SDValue Op1 = getValue(I.getArgOperand(0));
5812     SDValue Op2 = getValue(I.getArgOperand(1));
5813     SDValue Op3 = getValue(I.getArgOperand(2));
5814     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5815     Align DstAlign = MCI.getDestAlign().valueOrOne();
5816     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5817     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5818     bool isVol = MCI.isVolatile();
5819     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5820     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5821     // node.
5822     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5823     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5824                                /* AlwaysInline */ false, isTC,
5825                                MachinePointerInfo(I.getArgOperand(0)),
5826                                MachinePointerInfo(I.getArgOperand(1)));
5827     updateDAGForMaybeTailCall(MC);
5828     return;
5829   }
5830   case Intrinsic::memcpy_inline: {
5831     const auto &MCI = cast<MemCpyInlineInst>(I);
5832     SDValue Dst = getValue(I.getArgOperand(0));
5833     SDValue Src = getValue(I.getArgOperand(1));
5834     SDValue Size = getValue(I.getArgOperand(2));
5835     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5836     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5837     Align DstAlign = MCI.getDestAlign().valueOrOne();
5838     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5839     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5840     bool isVol = MCI.isVolatile();
5841     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5842     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5843     // node.
5844     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5845                                /* AlwaysInline */ true, isTC,
5846                                MachinePointerInfo(I.getArgOperand(0)),
5847                                MachinePointerInfo(I.getArgOperand(1)));
5848     updateDAGForMaybeTailCall(MC);
5849     return;
5850   }
5851   case Intrinsic::memset: {
5852     const auto &MSI = cast<MemSetInst>(I);
5853     SDValue Op1 = getValue(I.getArgOperand(0));
5854     SDValue Op2 = getValue(I.getArgOperand(1));
5855     SDValue Op3 = getValue(I.getArgOperand(2));
5856     // @llvm.memset defines 0 and 1 to both mean no alignment.
5857     Align Alignment = MSI.getDestAlign().valueOrOne();
5858     bool isVol = MSI.isVolatile();
5859     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5860     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5861     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5862                                MachinePointerInfo(I.getArgOperand(0)));
5863     updateDAGForMaybeTailCall(MS);
5864     return;
5865   }
5866   case Intrinsic::memmove: {
5867     const auto &MMI = cast<MemMoveInst>(I);
5868     SDValue Op1 = getValue(I.getArgOperand(0));
5869     SDValue Op2 = getValue(I.getArgOperand(1));
5870     SDValue Op3 = getValue(I.getArgOperand(2));
5871     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5872     Align DstAlign = MMI.getDestAlign().valueOrOne();
5873     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5874     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5875     bool isVol = MMI.isVolatile();
5876     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5877     // FIXME: Support passing different dest/src alignments to the memmove DAG
5878     // node.
5879     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5880     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5881                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5882                                 MachinePointerInfo(I.getArgOperand(1)));
5883     updateDAGForMaybeTailCall(MM);
5884     return;
5885   }
5886   case Intrinsic::memcpy_element_unordered_atomic: {
5887     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5888     SDValue Dst = getValue(MI.getRawDest());
5889     SDValue Src = getValue(MI.getRawSource());
5890     SDValue Length = getValue(MI.getLength());
5891 
5892     unsigned DstAlign = MI.getDestAlignment();
5893     unsigned SrcAlign = MI.getSourceAlignment();
5894     Type *LengthTy = MI.getLength()->getType();
5895     unsigned ElemSz = MI.getElementSizeInBytes();
5896     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5897     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5898                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5899                                      MachinePointerInfo(MI.getRawDest()),
5900                                      MachinePointerInfo(MI.getRawSource()));
5901     updateDAGForMaybeTailCall(MC);
5902     return;
5903   }
5904   case Intrinsic::memmove_element_unordered_atomic: {
5905     auto &MI = cast<AtomicMemMoveInst>(I);
5906     SDValue Dst = getValue(MI.getRawDest());
5907     SDValue Src = getValue(MI.getRawSource());
5908     SDValue Length = getValue(MI.getLength());
5909 
5910     unsigned DstAlign = MI.getDestAlignment();
5911     unsigned SrcAlign = MI.getSourceAlignment();
5912     Type *LengthTy = MI.getLength()->getType();
5913     unsigned ElemSz = MI.getElementSizeInBytes();
5914     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5915     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5916                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5917                                       MachinePointerInfo(MI.getRawDest()),
5918                                       MachinePointerInfo(MI.getRawSource()));
5919     updateDAGForMaybeTailCall(MC);
5920     return;
5921   }
5922   case Intrinsic::memset_element_unordered_atomic: {
5923     auto &MI = cast<AtomicMemSetInst>(I);
5924     SDValue Dst = getValue(MI.getRawDest());
5925     SDValue Val = getValue(MI.getValue());
5926     SDValue Length = getValue(MI.getLength());
5927 
5928     unsigned DstAlign = MI.getDestAlignment();
5929     Type *LengthTy = MI.getLength()->getType();
5930     unsigned ElemSz = MI.getElementSizeInBytes();
5931     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5932     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5933                                      LengthTy, ElemSz, isTC,
5934                                      MachinePointerInfo(MI.getRawDest()));
5935     updateDAGForMaybeTailCall(MC);
5936     return;
5937   }
5938   case Intrinsic::call_preallocated_setup: {
5939     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5940     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5941     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5942                               getRoot(), SrcValue);
5943     setValue(&I, Res);
5944     DAG.setRoot(Res);
5945     return;
5946   }
5947   case Intrinsic::call_preallocated_arg: {
5948     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5949     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5950     SDValue Ops[3];
5951     Ops[0] = getRoot();
5952     Ops[1] = SrcValue;
5953     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5954                                    MVT::i32); // arg index
5955     SDValue Res = DAG.getNode(
5956         ISD::PREALLOCATED_ARG, sdl,
5957         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5958     setValue(&I, Res);
5959     DAG.setRoot(Res.getValue(1));
5960     return;
5961   }
5962   case Intrinsic::dbg_addr:
5963   case Intrinsic::dbg_declare: {
5964     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
5965     // they are non-variadic.
5966     const auto &DI = cast<DbgVariableIntrinsic>(I);
5967     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
5968     DILocalVariable *Variable = DI.getVariable();
5969     DIExpression *Expression = DI.getExpression();
5970     dropDanglingDebugInfo(Variable, Expression);
5971     assert(Variable && "Missing variable");
5972     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5973                       << "\n");
5974     // Check if address has undef value.
5975     const Value *Address = DI.getVariableLocationOp(0);
5976     if (!Address || isa<UndefValue>(Address) ||
5977         (Address->use_empty() && !isa<Argument>(Address))) {
5978       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5979                         << " (bad/undef/unused-arg address)\n");
5980       return;
5981     }
5982 
5983     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5984 
5985     // Check if this variable can be described by a frame index, typically
5986     // either as a static alloca or a byval parameter.
5987     int FI = std::numeric_limits<int>::max();
5988     if (const auto *AI =
5989             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5990       if (AI->isStaticAlloca()) {
5991         auto I = FuncInfo.StaticAllocaMap.find(AI);
5992         if (I != FuncInfo.StaticAllocaMap.end())
5993           FI = I->second;
5994       }
5995     } else if (const auto *Arg = dyn_cast<Argument>(
5996                    Address->stripInBoundsConstantOffsets())) {
5997       FI = FuncInfo.getArgumentFrameIndex(Arg);
5998     }
5999 
6000     // llvm.dbg.addr is control dependent and always generates indirect
6001     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6002     // the MachineFunction variable table.
6003     if (FI != std::numeric_limits<int>::max()) {
6004       if (Intrinsic == Intrinsic::dbg_addr) {
6005         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6006             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6007             dl, SDNodeOrder);
6008         DAG.AddDbgValue(SDV, isParameter);
6009       } else {
6010         LLVM_DEBUG(dbgs() << "Skipping " << DI
6011                           << " (variable info stashed in MF side table)\n");
6012       }
6013       return;
6014     }
6015 
6016     SDValue &N = NodeMap[Address];
6017     if (!N.getNode() && isa<Argument>(Address))
6018       // Check unused arguments map.
6019       N = UnusedArgNodeMap[Address];
6020     SDDbgValue *SDV;
6021     if (N.getNode()) {
6022       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6023         Address = BCI->getOperand(0);
6024       // Parameters are handled specially.
6025       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6026       if (isParameter && FINode) {
6027         // Byval parameter. We have a frame index at this point.
6028         SDV =
6029             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6030                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6031       } else if (isa<Argument>(Address)) {
6032         // Address is an argument, so try to emit its dbg value using
6033         // virtual register info from the FuncInfo.ValueMap.
6034         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6035         return;
6036       } else {
6037         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6038                               true, dl, SDNodeOrder);
6039       }
6040       DAG.AddDbgValue(SDV, isParameter);
6041     } else {
6042       // If Address is an argument then try to emit its dbg value using
6043       // virtual register info from the FuncInfo.ValueMap.
6044       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6045                                     N)) {
6046         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6047                           << " (could not emit func-arg dbg_value)\n");
6048       }
6049     }
6050     return;
6051   }
6052   case Intrinsic::dbg_label: {
6053     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6054     DILabel *Label = DI.getLabel();
6055     assert(Label && "Missing label");
6056 
6057     SDDbgLabel *SDV;
6058     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6059     DAG.AddDbgLabel(SDV);
6060     return;
6061   }
6062   case Intrinsic::dbg_value: {
6063     const DbgValueInst &DI = cast<DbgValueInst>(I);
6064     assert(DI.getVariable() && "Missing variable");
6065 
6066     DILocalVariable *Variable = DI.getVariable();
6067     DIExpression *Expression = DI.getExpression();
6068     dropDanglingDebugInfo(Variable, Expression);
6069     SmallVector<Value *, 4> Values(DI.getValues());
6070     if (Values.empty())
6071       return;
6072 
6073     if (std::count(Values.begin(), Values.end(), nullptr))
6074       return;
6075 
6076     bool IsVariadic = DI.hasArgList();
6077     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6078                           SDNodeOrder, IsVariadic))
6079       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6080     return;
6081   }
6082 
6083   case Intrinsic::eh_typeid_for: {
6084     // Find the type id for the given typeinfo.
6085     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6086     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6087     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6088     setValue(&I, Res);
6089     return;
6090   }
6091 
6092   case Intrinsic::eh_return_i32:
6093   case Intrinsic::eh_return_i64:
6094     DAG.getMachineFunction().setCallsEHReturn(true);
6095     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6096                             MVT::Other,
6097                             getControlRoot(),
6098                             getValue(I.getArgOperand(0)),
6099                             getValue(I.getArgOperand(1))));
6100     return;
6101   case Intrinsic::eh_unwind_init:
6102     DAG.getMachineFunction().setCallsUnwindInit(true);
6103     return;
6104   case Intrinsic::eh_dwarf_cfa:
6105     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6106                              TLI.getPointerTy(DAG.getDataLayout()),
6107                              getValue(I.getArgOperand(0))));
6108     return;
6109   case Intrinsic::eh_sjlj_callsite: {
6110     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6111     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6112     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6113     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6114 
6115     MMI.setCurrentCallSite(CI->getZExtValue());
6116     return;
6117   }
6118   case Intrinsic::eh_sjlj_functioncontext: {
6119     // Get and store the index of the function context.
6120     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6121     AllocaInst *FnCtx =
6122       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6123     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6124     MFI.setFunctionContextIndex(FI);
6125     return;
6126   }
6127   case Intrinsic::eh_sjlj_setjmp: {
6128     SDValue Ops[2];
6129     Ops[0] = getRoot();
6130     Ops[1] = getValue(I.getArgOperand(0));
6131     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6132                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6133     setValue(&I, Op.getValue(0));
6134     DAG.setRoot(Op.getValue(1));
6135     return;
6136   }
6137   case Intrinsic::eh_sjlj_longjmp:
6138     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6139                             getRoot(), getValue(I.getArgOperand(0))));
6140     return;
6141   case Intrinsic::eh_sjlj_setup_dispatch:
6142     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6143                             getRoot()));
6144     return;
6145   case Intrinsic::masked_gather:
6146     visitMaskedGather(I);
6147     return;
6148   case Intrinsic::masked_load:
6149     visitMaskedLoad(I);
6150     return;
6151   case Intrinsic::masked_scatter:
6152     visitMaskedScatter(I);
6153     return;
6154   case Intrinsic::masked_store:
6155     visitMaskedStore(I);
6156     return;
6157   case Intrinsic::masked_expandload:
6158     visitMaskedLoad(I, true /* IsExpanding */);
6159     return;
6160   case Intrinsic::masked_compressstore:
6161     visitMaskedStore(I, true /* IsCompressing */);
6162     return;
6163   case Intrinsic::powi:
6164     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6165                             getValue(I.getArgOperand(1)), DAG));
6166     return;
6167   case Intrinsic::log:
6168     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6169     return;
6170   case Intrinsic::log2:
6171     setValue(&I,
6172              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6173     return;
6174   case Intrinsic::log10:
6175     setValue(&I,
6176              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6177     return;
6178   case Intrinsic::exp:
6179     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6180     return;
6181   case Intrinsic::exp2:
6182     setValue(&I,
6183              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6184     return;
6185   case Intrinsic::pow:
6186     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6187                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6188     return;
6189   case Intrinsic::sqrt:
6190   case Intrinsic::fabs:
6191   case Intrinsic::sin:
6192   case Intrinsic::cos:
6193   case Intrinsic::floor:
6194   case Intrinsic::ceil:
6195   case Intrinsic::trunc:
6196   case Intrinsic::rint:
6197   case Intrinsic::nearbyint:
6198   case Intrinsic::round:
6199   case Intrinsic::roundeven:
6200   case Intrinsic::canonicalize: {
6201     unsigned Opcode;
6202     switch (Intrinsic) {
6203     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6204     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6205     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6206     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6207     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6208     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6209     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6210     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6211     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6212     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6213     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6214     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6215     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6216     }
6217 
6218     setValue(&I, DAG.getNode(Opcode, sdl,
6219                              getValue(I.getArgOperand(0)).getValueType(),
6220                              getValue(I.getArgOperand(0)), Flags));
6221     return;
6222   }
6223   case Intrinsic::lround:
6224   case Intrinsic::llround:
6225   case Intrinsic::lrint:
6226   case Intrinsic::llrint: {
6227     unsigned Opcode;
6228     switch (Intrinsic) {
6229     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6230     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6231     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6232     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6233     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6234     }
6235 
6236     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6237     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6238                              getValue(I.getArgOperand(0))));
6239     return;
6240   }
6241   case Intrinsic::minnum:
6242     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6243                              getValue(I.getArgOperand(0)).getValueType(),
6244                              getValue(I.getArgOperand(0)),
6245                              getValue(I.getArgOperand(1)), Flags));
6246     return;
6247   case Intrinsic::maxnum:
6248     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6249                              getValue(I.getArgOperand(0)).getValueType(),
6250                              getValue(I.getArgOperand(0)),
6251                              getValue(I.getArgOperand(1)), Flags));
6252     return;
6253   case Intrinsic::minimum:
6254     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6255                              getValue(I.getArgOperand(0)).getValueType(),
6256                              getValue(I.getArgOperand(0)),
6257                              getValue(I.getArgOperand(1)), Flags));
6258     return;
6259   case Intrinsic::maximum:
6260     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6261                              getValue(I.getArgOperand(0)).getValueType(),
6262                              getValue(I.getArgOperand(0)),
6263                              getValue(I.getArgOperand(1)), Flags));
6264     return;
6265   case Intrinsic::copysign:
6266     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6267                              getValue(I.getArgOperand(0)).getValueType(),
6268                              getValue(I.getArgOperand(0)),
6269                              getValue(I.getArgOperand(1)), Flags));
6270     return;
6271   case Intrinsic::fma:
6272     setValue(&I, DAG.getNode(
6273                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6274                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6275                      getValue(I.getArgOperand(2)), Flags));
6276     return;
6277 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6278   case Intrinsic::INTRINSIC:
6279 #include "llvm/IR/ConstrainedOps.def"
6280     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6281     return;
6282 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6283 #include "llvm/IR/VPIntrinsics.def"
6284     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6285     return;
6286   case Intrinsic::fmuladd: {
6287     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6288     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6289         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6290       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6291                                getValue(I.getArgOperand(0)).getValueType(),
6292                                getValue(I.getArgOperand(0)),
6293                                getValue(I.getArgOperand(1)),
6294                                getValue(I.getArgOperand(2)), Flags));
6295     } else {
6296       // TODO: Intrinsic calls should have fast-math-flags.
6297       SDValue Mul = DAG.getNode(
6298           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6299           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6300       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6301                                 getValue(I.getArgOperand(0)).getValueType(),
6302                                 Mul, getValue(I.getArgOperand(2)), Flags);
6303       setValue(&I, Add);
6304     }
6305     return;
6306   }
6307   case Intrinsic::convert_to_fp16:
6308     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6309                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6310                                          getValue(I.getArgOperand(0)),
6311                                          DAG.getTargetConstant(0, sdl,
6312                                                                MVT::i32))));
6313     return;
6314   case Intrinsic::convert_from_fp16:
6315     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6316                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6317                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6318                                          getValue(I.getArgOperand(0)))));
6319     return;
6320   case Intrinsic::fptosi_sat: {
6321     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6322     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6323                              getValue(I.getArgOperand(0)),
6324                              DAG.getValueType(VT.getScalarType())));
6325     return;
6326   }
6327   case Intrinsic::fptoui_sat: {
6328     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6329     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6330                              getValue(I.getArgOperand(0)),
6331                              DAG.getValueType(VT.getScalarType())));
6332     return;
6333   }
6334   case Intrinsic::set_rounding:
6335     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6336                       {getRoot(), getValue(I.getArgOperand(0))});
6337     setValue(&I, Res);
6338     DAG.setRoot(Res.getValue(0));
6339     return;
6340   case Intrinsic::pcmarker: {
6341     SDValue Tmp = getValue(I.getArgOperand(0));
6342     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6343     return;
6344   }
6345   case Intrinsic::readcyclecounter: {
6346     SDValue Op = getRoot();
6347     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6348                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6349     setValue(&I, Res);
6350     DAG.setRoot(Res.getValue(1));
6351     return;
6352   }
6353   case Intrinsic::bitreverse:
6354     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6355                              getValue(I.getArgOperand(0)).getValueType(),
6356                              getValue(I.getArgOperand(0))));
6357     return;
6358   case Intrinsic::bswap:
6359     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6360                              getValue(I.getArgOperand(0)).getValueType(),
6361                              getValue(I.getArgOperand(0))));
6362     return;
6363   case Intrinsic::cttz: {
6364     SDValue Arg = getValue(I.getArgOperand(0));
6365     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6366     EVT Ty = Arg.getValueType();
6367     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6368                              sdl, Ty, Arg));
6369     return;
6370   }
6371   case Intrinsic::ctlz: {
6372     SDValue Arg = getValue(I.getArgOperand(0));
6373     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6374     EVT Ty = Arg.getValueType();
6375     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6376                              sdl, Ty, Arg));
6377     return;
6378   }
6379   case Intrinsic::ctpop: {
6380     SDValue Arg = getValue(I.getArgOperand(0));
6381     EVT Ty = Arg.getValueType();
6382     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6383     return;
6384   }
6385   case Intrinsic::fshl:
6386   case Intrinsic::fshr: {
6387     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6388     SDValue X = getValue(I.getArgOperand(0));
6389     SDValue Y = getValue(I.getArgOperand(1));
6390     SDValue Z = getValue(I.getArgOperand(2));
6391     EVT VT = X.getValueType();
6392 
6393     if (X == Y) {
6394       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6395       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6396     } else {
6397       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6398       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6399     }
6400     return;
6401   }
6402   case Intrinsic::sadd_sat: {
6403     SDValue Op1 = getValue(I.getArgOperand(0));
6404     SDValue Op2 = getValue(I.getArgOperand(1));
6405     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6406     return;
6407   }
6408   case Intrinsic::uadd_sat: {
6409     SDValue Op1 = getValue(I.getArgOperand(0));
6410     SDValue Op2 = getValue(I.getArgOperand(1));
6411     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6412     return;
6413   }
6414   case Intrinsic::ssub_sat: {
6415     SDValue Op1 = getValue(I.getArgOperand(0));
6416     SDValue Op2 = getValue(I.getArgOperand(1));
6417     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6418     return;
6419   }
6420   case Intrinsic::usub_sat: {
6421     SDValue Op1 = getValue(I.getArgOperand(0));
6422     SDValue Op2 = getValue(I.getArgOperand(1));
6423     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6424     return;
6425   }
6426   case Intrinsic::sshl_sat: {
6427     SDValue Op1 = getValue(I.getArgOperand(0));
6428     SDValue Op2 = getValue(I.getArgOperand(1));
6429     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6430     return;
6431   }
6432   case Intrinsic::ushl_sat: {
6433     SDValue Op1 = getValue(I.getArgOperand(0));
6434     SDValue Op2 = getValue(I.getArgOperand(1));
6435     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6436     return;
6437   }
6438   case Intrinsic::smul_fix:
6439   case Intrinsic::umul_fix:
6440   case Intrinsic::smul_fix_sat:
6441   case Intrinsic::umul_fix_sat: {
6442     SDValue Op1 = getValue(I.getArgOperand(0));
6443     SDValue Op2 = getValue(I.getArgOperand(1));
6444     SDValue Op3 = getValue(I.getArgOperand(2));
6445     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6446                              Op1.getValueType(), Op1, Op2, Op3));
6447     return;
6448   }
6449   case Intrinsic::sdiv_fix:
6450   case Intrinsic::udiv_fix:
6451   case Intrinsic::sdiv_fix_sat:
6452   case Intrinsic::udiv_fix_sat: {
6453     SDValue Op1 = getValue(I.getArgOperand(0));
6454     SDValue Op2 = getValue(I.getArgOperand(1));
6455     SDValue Op3 = getValue(I.getArgOperand(2));
6456     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6457                               Op1, Op2, Op3, DAG, TLI));
6458     return;
6459   }
6460   case Intrinsic::smax: {
6461     SDValue Op1 = getValue(I.getArgOperand(0));
6462     SDValue Op2 = getValue(I.getArgOperand(1));
6463     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6464     return;
6465   }
6466   case Intrinsic::smin: {
6467     SDValue Op1 = getValue(I.getArgOperand(0));
6468     SDValue Op2 = getValue(I.getArgOperand(1));
6469     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6470     return;
6471   }
6472   case Intrinsic::umax: {
6473     SDValue Op1 = getValue(I.getArgOperand(0));
6474     SDValue Op2 = getValue(I.getArgOperand(1));
6475     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6476     return;
6477   }
6478   case Intrinsic::umin: {
6479     SDValue Op1 = getValue(I.getArgOperand(0));
6480     SDValue Op2 = getValue(I.getArgOperand(1));
6481     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6482     return;
6483   }
6484   case Intrinsic::abs: {
6485     // TODO: Preserve "int min is poison" arg in SDAG?
6486     SDValue Op1 = getValue(I.getArgOperand(0));
6487     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6488     return;
6489   }
6490   case Intrinsic::stacksave: {
6491     SDValue Op = getRoot();
6492     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6493     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6494     setValue(&I, Res);
6495     DAG.setRoot(Res.getValue(1));
6496     return;
6497   }
6498   case Intrinsic::stackrestore:
6499     Res = getValue(I.getArgOperand(0));
6500     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6501     return;
6502   case Intrinsic::get_dynamic_area_offset: {
6503     SDValue Op = getRoot();
6504     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6505     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6506     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6507     // target.
6508     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6509       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6510                          " intrinsic!");
6511     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6512                       Op);
6513     DAG.setRoot(Op);
6514     setValue(&I, Res);
6515     return;
6516   }
6517   case Intrinsic::stackguard: {
6518     MachineFunction &MF = DAG.getMachineFunction();
6519     const Module &M = *MF.getFunction().getParent();
6520     SDValue Chain = getRoot();
6521     if (TLI.useLoadStackGuardNode()) {
6522       Res = getLoadStackGuard(DAG, sdl, Chain);
6523     } else {
6524       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6525       const Value *Global = TLI.getSDagStackGuard(M);
6526       Align Align = DL->getPrefTypeAlign(Global->getType());
6527       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6528                         MachinePointerInfo(Global, 0), Align,
6529                         MachineMemOperand::MOVolatile);
6530     }
6531     if (TLI.useStackGuardXorFP())
6532       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6533     DAG.setRoot(Chain);
6534     setValue(&I, Res);
6535     return;
6536   }
6537   case Intrinsic::stackprotector: {
6538     // Emit code into the DAG to store the stack guard onto the stack.
6539     MachineFunction &MF = DAG.getMachineFunction();
6540     MachineFrameInfo &MFI = MF.getFrameInfo();
6541     SDValue Src, Chain = getRoot();
6542 
6543     if (TLI.useLoadStackGuardNode())
6544       Src = getLoadStackGuard(DAG, sdl, Chain);
6545     else
6546       Src = getValue(I.getArgOperand(0));   // The guard's value.
6547 
6548     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6549 
6550     int FI = FuncInfo.StaticAllocaMap[Slot];
6551     MFI.setStackProtectorIndex(FI);
6552     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6553 
6554     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6555 
6556     // Store the stack protector onto the stack.
6557     Res = DAG.getStore(
6558         Chain, sdl, Src, FIN,
6559         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6560         MaybeAlign(), MachineMemOperand::MOVolatile);
6561     setValue(&I, Res);
6562     DAG.setRoot(Res);
6563     return;
6564   }
6565   case Intrinsic::objectsize:
6566     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6567 
6568   case Intrinsic::is_constant:
6569     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6570 
6571   case Intrinsic::annotation:
6572   case Intrinsic::ptr_annotation:
6573   case Intrinsic::launder_invariant_group:
6574   case Intrinsic::strip_invariant_group:
6575     // Drop the intrinsic, but forward the value
6576     setValue(&I, getValue(I.getOperand(0)));
6577     return;
6578 
6579   case Intrinsic::assume:
6580   case Intrinsic::experimental_noalias_scope_decl:
6581   case Intrinsic::var_annotation:
6582   case Intrinsic::sideeffect:
6583     // Discard annotate attributes, noalias scope declarations, assumptions, and
6584     // artificial side-effects.
6585     return;
6586 
6587   case Intrinsic::codeview_annotation: {
6588     // Emit a label associated with this metadata.
6589     MachineFunction &MF = DAG.getMachineFunction();
6590     MCSymbol *Label =
6591         MF.getMMI().getContext().createTempSymbol("annotation", true);
6592     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6593     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6594     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6595     DAG.setRoot(Res);
6596     return;
6597   }
6598 
6599   case Intrinsic::init_trampoline: {
6600     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6601 
6602     SDValue Ops[6];
6603     Ops[0] = getRoot();
6604     Ops[1] = getValue(I.getArgOperand(0));
6605     Ops[2] = getValue(I.getArgOperand(1));
6606     Ops[3] = getValue(I.getArgOperand(2));
6607     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6608     Ops[5] = DAG.getSrcValue(F);
6609 
6610     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6611 
6612     DAG.setRoot(Res);
6613     return;
6614   }
6615   case Intrinsic::adjust_trampoline:
6616     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6617                              TLI.getPointerTy(DAG.getDataLayout()),
6618                              getValue(I.getArgOperand(0))));
6619     return;
6620   case Intrinsic::gcroot: {
6621     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6622            "only valid in functions with gc specified, enforced by Verifier");
6623     assert(GFI && "implied by previous");
6624     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6625     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6626 
6627     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6628     GFI->addStackRoot(FI->getIndex(), TypeMap);
6629     return;
6630   }
6631   case Intrinsic::gcread:
6632   case Intrinsic::gcwrite:
6633     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6634   case Intrinsic::flt_rounds:
6635     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6636     setValue(&I, Res);
6637     DAG.setRoot(Res.getValue(1));
6638     return;
6639 
6640   case Intrinsic::expect:
6641     // Just replace __builtin_expect(exp, c) with EXP.
6642     setValue(&I, getValue(I.getArgOperand(0)));
6643     return;
6644 
6645   case Intrinsic::ubsantrap:
6646   case Intrinsic::debugtrap:
6647   case Intrinsic::trap: {
6648     StringRef TrapFuncName =
6649         I.getAttributes()
6650             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6651             .getValueAsString();
6652     if (TrapFuncName.empty()) {
6653       switch (Intrinsic) {
6654       case Intrinsic::trap:
6655         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6656         break;
6657       case Intrinsic::debugtrap:
6658         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6659         break;
6660       case Intrinsic::ubsantrap:
6661         DAG.setRoot(DAG.getNode(
6662             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6663             DAG.getTargetConstant(
6664                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6665                 MVT::i32)));
6666         break;
6667       default: llvm_unreachable("unknown trap intrinsic");
6668       }
6669       return;
6670     }
6671     TargetLowering::ArgListTy Args;
6672     if (Intrinsic == Intrinsic::ubsantrap) {
6673       Args.push_back(TargetLoweringBase::ArgListEntry());
6674       Args[0].Val = I.getArgOperand(0);
6675       Args[0].Node = getValue(Args[0].Val);
6676       Args[0].Ty = Args[0].Val->getType();
6677     }
6678 
6679     TargetLowering::CallLoweringInfo CLI(DAG);
6680     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6681         CallingConv::C, I.getType(),
6682         DAG.getExternalSymbol(TrapFuncName.data(),
6683                               TLI.getPointerTy(DAG.getDataLayout())),
6684         std::move(Args));
6685 
6686     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6687     DAG.setRoot(Result.second);
6688     return;
6689   }
6690 
6691   case Intrinsic::uadd_with_overflow:
6692   case Intrinsic::sadd_with_overflow:
6693   case Intrinsic::usub_with_overflow:
6694   case Intrinsic::ssub_with_overflow:
6695   case Intrinsic::umul_with_overflow:
6696   case Intrinsic::smul_with_overflow: {
6697     ISD::NodeType Op;
6698     switch (Intrinsic) {
6699     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6700     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6701     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6702     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6703     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6704     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6705     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6706     }
6707     SDValue Op1 = getValue(I.getArgOperand(0));
6708     SDValue Op2 = getValue(I.getArgOperand(1));
6709 
6710     EVT ResultVT = Op1.getValueType();
6711     EVT OverflowVT = MVT::i1;
6712     if (ResultVT.isVector())
6713       OverflowVT = EVT::getVectorVT(
6714           *Context, OverflowVT, ResultVT.getVectorElementCount());
6715 
6716     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6717     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6718     return;
6719   }
6720   case Intrinsic::prefetch: {
6721     SDValue Ops[5];
6722     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6723     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6724     Ops[0] = DAG.getRoot();
6725     Ops[1] = getValue(I.getArgOperand(0));
6726     Ops[2] = getValue(I.getArgOperand(1));
6727     Ops[3] = getValue(I.getArgOperand(2));
6728     Ops[4] = getValue(I.getArgOperand(3));
6729     SDValue Result = DAG.getMemIntrinsicNode(
6730         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6731         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6732         /* align */ None, Flags);
6733 
6734     // Chain the prefetch in parallell with any pending loads, to stay out of
6735     // the way of later optimizations.
6736     PendingLoads.push_back(Result);
6737     Result = getRoot();
6738     DAG.setRoot(Result);
6739     return;
6740   }
6741   case Intrinsic::lifetime_start:
6742   case Intrinsic::lifetime_end: {
6743     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6744     // Stack coloring is not enabled in O0, discard region information.
6745     if (TM.getOptLevel() == CodeGenOpt::None)
6746       return;
6747 
6748     const int64_t ObjectSize =
6749         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6750     Value *const ObjectPtr = I.getArgOperand(1);
6751     SmallVector<const Value *, 4> Allocas;
6752     getUnderlyingObjects(ObjectPtr, Allocas);
6753 
6754     for (const Value *Alloca : Allocas) {
6755       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6756 
6757       // Could not find an Alloca.
6758       if (!LifetimeObject)
6759         continue;
6760 
6761       // First check that the Alloca is static, otherwise it won't have a
6762       // valid frame index.
6763       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6764       if (SI == FuncInfo.StaticAllocaMap.end())
6765         return;
6766 
6767       const int FrameIndex = SI->second;
6768       int64_t Offset;
6769       if (GetPointerBaseWithConstantOffset(
6770               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6771         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6772       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6773                                 Offset);
6774       DAG.setRoot(Res);
6775     }
6776     return;
6777   }
6778   case Intrinsic::pseudoprobe: {
6779     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6780     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6781     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6782     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6783     DAG.setRoot(Res);
6784     return;
6785   }
6786   case Intrinsic::invariant_start:
6787     // Discard region information.
6788     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6789     return;
6790   case Intrinsic::invariant_end:
6791     // Discard region information.
6792     return;
6793   case Intrinsic::clear_cache:
6794     /// FunctionName may be null.
6795     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6796       lowerCallToExternalSymbol(I, FunctionName);
6797     return;
6798   case Intrinsic::donothing:
6799   case Intrinsic::seh_try_begin:
6800   case Intrinsic::seh_scope_begin:
6801   case Intrinsic::seh_try_end:
6802   case Intrinsic::seh_scope_end:
6803     // ignore
6804     return;
6805   case Intrinsic::experimental_stackmap:
6806     visitStackmap(I);
6807     return;
6808   case Intrinsic::experimental_patchpoint_void:
6809   case Intrinsic::experimental_patchpoint_i64:
6810     visitPatchpoint(I);
6811     return;
6812   case Intrinsic::experimental_gc_statepoint:
6813     LowerStatepoint(cast<GCStatepointInst>(I));
6814     return;
6815   case Intrinsic::experimental_gc_result:
6816     visitGCResult(cast<GCResultInst>(I));
6817     return;
6818   case Intrinsic::experimental_gc_relocate:
6819     visitGCRelocate(cast<GCRelocateInst>(I));
6820     return;
6821   case Intrinsic::instrprof_increment:
6822     llvm_unreachable("instrprof failed to lower an increment");
6823   case Intrinsic::instrprof_value_profile:
6824     llvm_unreachable("instrprof failed to lower a value profiling call");
6825   case Intrinsic::localescape: {
6826     MachineFunction &MF = DAG.getMachineFunction();
6827     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6828 
6829     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6830     // is the same on all targets.
6831     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6832       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6833       if (isa<ConstantPointerNull>(Arg))
6834         continue; // Skip null pointers. They represent a hole in index space.
6835       AllocaInst *Slot = cast<AllocaInst>(Arg);
6836       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6837              "can only escape static allocas");
6838       int FI = FuncInfo.StaticAllocaMap[Slot];
6839       MCSymbol *FrameAllocSym =
6840           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6841               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6842       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6843               TII->get(TargetOpcode::LOCAL_ESCAPE))
6844           .addSym(FrameAllocSym)
6845           .addFrameIndex(FI);
6846     }
6847 
6848     return;
6849   }
6850 
6851   case Intrinsic::localrecover: {
6852     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6853     MachineFunction &MF = DAG.getMachineFunction();
6854 
6855     // Get the symbol that defines the frame offset.
6856     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6857     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6858     unsigned IdxVal =
6859         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6860     MCSymbol *FrameAllocSym =
6861         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6862             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6863 
6864     Value *FP = I.getArgOperand(1);
6865     SDValue FPVal = getValue(FP);
6866     EVT PtrVT = FPVal.getValueType();
6867 
6868     // Create a MCSymbol for the label to avoid any target lowering
6869     // that would make this PC relative.
6870     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6871     SDValue OffsetVal =
6872         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6873 
6874     // Add the offset to the FP.
6875     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6876     setValue(&I, Add);
6877 
6878     return;
6879   }
6880 
6881   case Intrinsic::eh_exceptionpointer:
6882   case Intrinsic::eh_exceptioncode: {
6883     // Get the exception pointer vreg, copy from it, and resize it to fit.
6884     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6885     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6886     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6887     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6888     SDValue N =
6889         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6890     if (Intrinsic == Intrinsic::eh_exceptioncode)
6891       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6892     setValue(&I, N);
6893     return;
6894   }
6895   case Intrinsic::xray_customevent: {
6896     // Here we want to make sure that the intrinsic behaves as if it has a
6897     // specific calling convention, and only for x86_64.
6898     // FIXME: Support other platforms later.
6899     const auto &Triple = DAG.getTarget().getTargetTriple();
6900     if (Triple.getArch() != Triple::x86_64)
6901       return;
6902 
6903     SDLoc DL = getCurSDLoc();
6904     SmallVector<SDValue, 8> Ops;
6905 
6906     // We want to say that we always want the arguments in registers.
6907     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6908     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6909     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6910     SDValue Chain = getRoot();
6911     Ops.push_back(LogEntryVal);
6912     Ops.push_back(StrSizeVal);
6913     Ops.push_back(Chain);
6914 
6915     // We need to enforce the calling convention for the callsite, so that
6916     // argument ordering is enforced correctly, and that register allocation can
6917     // see that some registers may be assumed clobbered and have to preserve
6918     // them across calls to the intrinsic.
6919     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6920                                            DL, NodeTys, Ops);
6921     SDValue patchableNode = SDValue(MN, 0);
6922     DAG.setRoot(patchableNode);
6923     setValue(&I, patchableNode);
6924     return;
6925   }
6926   case Intrinsic::xray_typedevent: {
6927     // Here we want to make sure that the intrinsic behaves as if it has a
6928     // specific calling convention, and only for x86_64.
6929     // FIXME: Support other platforms later.
6930     const auto &Triple = DAG.getTarget().getTargetTriple();
6931     if (Triple.getArch() != Triple::x86_64)
6932       return;
6933 
6934     SDLoc DL = getCurSDLoc();
6935     SmallVector<SDValue, 8> Ops;
6936 
6937     // We want to say that we always want the arguments in registers.
6938     // It's unclear to me how manipulating the selection DAG here forces callers
6939     // to provide arguments in registers instead of on the stack.
6940     SDValue LogTypeId = getValue(I.getArgOperand(0));
6941     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6942     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6943     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6944     SDValue Chain = getRoot();
6945     Ops.push_back(LogTypeId);
6946     Ops.push_back(LogEntryVal);
6947     Ops.push_back(StrSizeVal);
6948     Ops.push_back(Chain);
6949 
6950     // We need to enforce the calling convention for the callsite, so that
6951     // argument ordering is enforced correctly, and that register allocation can
6952     // see that some registers may be assumed clobbered and have to preserve
6953     // them across calls to the intrinsic.
6954     MachineSDNode *MN = DAG.getMachineNode(
6955         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6956     SDValue patchableNode = SDValue(MN, 0);
6957     DAG.setRoot(patchableNode);
6958     setValue(&I, patchableNode);
6959     return;
6960   }
6961   case Intrinsic::experimental_deoptimize:
6962     LowerDeoptimizeCall(&I);
6963     return;
6964   case Intrinsic::experimental_stepvector:
6965     visitStepVector(I);
6966     return;
6967   case Intrinsic::vector_reduce_fadd:
6968   case Intrinsic::vector_reduce_fmul:
6969   case Intrinsic::vector_reduce_add:
6970   case Intrinsic::vector_reduce_mul:
6971   case Intrinsic::vector_reduce_and:
6972   case Intrinsic::vector_reduce_or:
6973   case Intrinsic::vector_reduce_xor:
6974   case Intrinsic::vector_reduce_smax:
6975   case Intrinsic::vector_reduce_smin:
6976   case Intrinsic::vector_reduce_umax:
6977   case Intrinsic::vector_reduce_umin:
6978   case Intrinsic::vector_reduce_fmax:
6979   case Intrinsic::vector_reduce_fmin:
6980     visitVectorReduce(I, Intrinsic);
6981     return;
6982 
6983   case Intrinsic::icall_branch_funnel: {
6984     SmallVector<SDValue, 16> Ops;
6985     Ops.push_back(getValue(I.getArgOperand(0)));
6986 
6987     int64_t Offset;
6988     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6989         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6990     if (!Base)
6991       report_fatal_error(
6992           "llvm.icall.branch.funnel operand must be a GlobalValue");
6993     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6994 
6995     struct BranchFunnelTarget {
6996       int64_t Offset;
6997       SDValue Target;
6998     };
6999     SmallVector<BranchFunnelTarget, 8> Targets;
7000 
7001     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
7002       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7003           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7004       if (ElemBase != Base)
7005         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7006                            "to the same GlobalValue");
7007 
7008       SDValue Val = getValue(I.getArgOperand(Op + 1));
7009       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7010       if (!GA)
7011         report_fatal_error(
7012             "llvm.icall.branch.funnel operand must be a GlobalValue");
7013       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7014                                      GA->getGlobal(), getCurSDLoc(),
7015                                      Val.getValueType(), GA->getOffset())});
7016     }
7017     llvm::sort(Targets,
7018                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7019                  return T1.Offset < T2.Offset;
7020                });
7021 
7022     for (auto &T : Targets) {
7023       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
7024       Ops.push_back(T.Target);
7025     }
7026 
7027     Ops.push_back(DAG.getRoot()); // Chain
7028     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
7029                                  getCurSDLoc(), MVT::Other, Ops),
7030               0);
7031     DAG.setRoot(N);
7032     setValue(&I, N);
7033     HasTailCall = true;
7034     return;
7035   }
7036 
7037   case Intrinsic::wasm_landingpad_index:
7038     // Information this intrinsic contained has been transferred to
7039     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7040     // delete it now.
7041     return;
7042 
7043   case Intrinsic::aarch64_settag:
7044   case Intrinsic::aarch64_settag_zero: {
7045     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7046     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7047     SDValue Val = TSI.EmitTargetCodeForSetTag(
7048         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
7049         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7050         ZeroMemory);
7051     DAG.setRoot(Val);
7052     setValue(&I, Val);
7053     return;
7054   }
7055   case Intrinsic::ptrmask: {
7056     SDValue Ptr = getValue(I.getOperand(0));
7057     SDValue Const = getValue(I.getOperand(1));
7058 
7059     EVT PtrVT = Ptr.getValueType();
7060     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
7061                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
7062     return;
7063   }
7064   case Intrinsic::get_active_lane_mask: {
7065     auto DL = getCurSDLoc();
7066     SDValue Index = getValue(I.getOperand(0));
7067     SDValue TripCount = getValue(I.getOperand(1));
7068     Type *ElementTy = I.getOperand(0)->getType();
7069     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7070     unsigned VecWidth = VT.getVectorNumElements();
7071 
7072     SmallVector<SDValue, 16> OpsTripCount;
7073     SmallVector<SDValue, 16> OpsIndex;
7074     SmallVector<SDValue, 16> OpsStepConstants;
7075     for (unsigned i = 0; i < VecWidth; i++) {
7076       OpsTripCount.push_back(TripCount);
7077       OpsIndex.push_back(Index);
7078       OpsStepConstants.push_back(
7079           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
7080     }
7081 
7082     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
7083 
7084     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
7085     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
7086     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
7087     SDValue VectorInduction = DAG.getNode(
7088        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
7089     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
7090     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
7091                                  VectorTripCount, ISD::CondCode::SETULT);
7092     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
7093                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
7094                              SetCC));
7095     return;
7096   }
7097   case Intrinsic::experimental_vector_insert: {
7098     auto DL = getCurSDLoc();
7099 
7100     SDValue Vec = getValue(I.getOperand(0));
7101     SDValue SubVec = getValue(I.getOperand(1));
7102     SDValue Index = getValue(I.getOperand(2));
7103 
7104     // The intrinsic's index type is i64, but the SDNode requires an index type
7105     // suitable for the target. Convert the index as required.
7106     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7107     if (Index.getValueType() != VectorIdxTy)
7108       Index = DAG.getVectorIdxConstant(
7109           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7110 
7111     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7112     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec,
7113                              Index));
7114     return;
7115   }
7116   case Intrinsic::experimental_vector_extract: {
7117     auto DL = getCurSDLoc();
7118 
7119     SDValue Vec = getValue(I.getOperand(0));
7120     SDValue Index = getValue(I.getOperand(1));
7121     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7122 
7123     // The intrinsic's index type is i64, but the SDNode requires an index type
7124     // suitable for the target. Convert the index as required.
7125     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7126     if (Index.getValueType() != VectorIdxTy)
7127       Index = DAG.getVectorIdxConstant(
7128           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7129 
7130     setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index));
7131     return;
7132   }
7133   case Intrinsic::experimental_vector_reverse:
7134     visitVectorReverse(I);
7135     return;
7136   case Intrinsic::experimental_vector_splice:
7137     visitVectorSplice(I);
7138     return;
7139   }
7140 }
7141 
7142 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7143     const ConstrainedFPIntrinsic &FPI) {
7144   SDLoc sdl = getCurSDLoc();
7145 
7146   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7147   SmallVector<EVT, 4> ValueVTs;
7148   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7149   ValueVTs.push_back(MVT::Other); // Out chain
7150 
7151   // We do not need to serialize constrained FP intrinsics against
7152   // each other or against (nonvolatile) loads, so they can be
7153   // chained like loads.
7154   SDValue Chain = DAG.getRoot();
7155   SmallVector<SDValue, 4> Opers;
7156   Opers.push_back(Chain);
7157   if (FPI.isUnaryOp()) {
7158     Opers.push_back(getValue(FPI.getArgOperand(0)));
7159   } else if (FPI.isTernaryOp()) {
7160     Opers.push_back(getValue(FPI.getArgOperand(0)));
7161     Opers.push_back(getValue(FPI.getArgOperand(1)));
7162     Opers.push_back(getValue(FPI.getArgOperand(2)));
7163   } else {
7164     Opers.push_back(getValue(FPI.getArgOperand(0)));
7165     Opers.push_back(getValue(FPI.getArgOperand(1)));
7166   }
7167 
7168   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7169     assert(Result.getNode()->getNumValues() == 2);
7170 
7171     // Push node to the appropriate list so that future instructions can be
7172     // chained up correctly.
7173     SDValue OutChain = Result.getValue(1);
7174     switch (EB) {
7175     case fp::ExceptionBehavior::ebIgnore:
7176       // The only reason why ebIgnore nodes still need to be chained is that
7177       // they might depend on the current rounding mode, and therefore must
7178       // not be moved across instruction that may change that mode.
7179       LLVM_FALLTHROUGH;
7180     case fp::ExceptionBehavior::ebMayTrap:
7181       // These must not be moved across calls or instructions that may change
7182       // floating-point exception masks.
7183       PendingConstrainedFP.push_back(OutChain);
7184       break;
7185     case fp::ExceptionBehavior::ebStrict:
7186       // These must not be moved across calls or instructions that may change
7187       // floating-point exception masks or read floating-point exception flags.
7188       // In addition, they cannot be optimized out even if unused.
7189       PendingConstrainedFPStrict.push_back(OutChain);
7190       break;
7191     }
7192   };
7193 
7194   SDVTList VTs = DAG.getVTList(ValueVTs);
7195   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7196 
7197   SDNodeFlags Flags;
7198   if (EB == fp::ExceptionBehavior::ebIgnore)
7199     Flags.setNoFPExcept(true);
7200 
7201   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7202     Flags.copyFMF(*FPOp);
7203 
7204   unsigned Opcode;
7205   switch (FPI.getIntrinsicID()) {
7206   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7207 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7208   case Intrinsic::INTRINSIC:                                                   \
7209     Opcode = ISD::STRICT_##DAGN;                                               \
7210     break;
7211 #include "llvm/IR/ConstrainedOps.def"
7212   case Intrinsic::experimental_constrained_fmuladd: {
7213     Opcode = ISD::STRICT_FMA;
7214     // Break fmuladd into fmul and fadd.
7215     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7216         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7217                                         ValueVTs[0])) {
7218       Opers.pop_back();
7219       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7220       pushOutChain(Mul, EB);
7221       Opcode = ISD::STRICT_FADD;
7222       Opers.clear();
7223       Opers.push_back(Mul.getValue(1));
7224       Opers.push_back(Mul.getValue(0));
7225       Opers.push_back(getValue(FPI.getArgOperand(2)));
7226     }
7227     break;
7228   }
7229   }
7230 
7231   // A few strict DAG nodes carry additional operands that are not
7232   // set up by the default code above.
7233   switch (Opcode) {
7234   default: break;
7235   case ISD::STRICT_FP_ROUND:
7236     Opers.push_back(
7237         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7238     break;
7239   case ISD::STRICT_FSETCC:
7240   case ISD::STRICT_FSETCCS: {
7241     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7242     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7243     if (TM.Options.NoNaNsFPMath)
7244       Condition = getFCmpCodeWithoutNaN(Condition);
7245     Opers.push_back(DAG.getCondCode(Condition));
7246     break;
7247   }
7248   }
7249 
7250   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7251   pushOutChain(Result, EB);
7252 
7253   SDValue FPResult = Result.getValue(0);
7254   setValue(&FPI, FPResult);
7255 }
7256 
7257 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7258   Optional<unsigned> ResOPC;
7259   switch (VPIntrin.getIntrinsicID()) {
7260 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7261 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7262 #define END_REGISTER_VP_INTRINSIC(...) break;
7263 #include "llvm/IR/VPIntrinsics.def"
7264   }
7265 
7266   if (!ResOPC.hasValue())
7267     llvm_unreachable(
7268         "Inconsistency: no SDNode available for this VPIntrinsic!");
7269 
7270   return ResOPC.getValue();
7271 }
7272 
7273 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7274     const VPIntrinsic &VPIntrin) {
7275   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7276 
7277   SmallVector<EVT, 4> ValueVTs;
7278   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7279   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7280   SDVTList VTs = DAG.getVTList(ValueVTs);
7281 
7282   // Request operands.
7283   SmallVector<SDValue, 7> OpValues;
7284   for (int i = 0; i < (int)VPIntrin.getNumArgOperands(); ++i)
7285     OpValues.push_back(getValue(VPIntrin.getArgOperand(i)));
7286 
7287   SDLoc DL = getCurSDLoc();
7288   SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7289   setValue(&VPIntrin, Result);
7290 }
7291 
7292 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7293                                           const BasicBlock *EHPadBB,
7294                                           MCSymbol *&BeginLabel) {
7295   MachineFunction &MF = DAG.getMachineFunction();
7296   MachineModuleInfo &MMI = MF.getMMI();
7297 
7298   // Insert a label before the invoke call to mark the try range.  This can be
7299   // used to detect deletion of the invoke via the MachineModuleInfo.
7300   BeginLabel = MMI.getContext().createTempSymbol();
7301 
7302   // For SjLj, keep track of which landing pads go with which invokes
7303   // so as to maintain the ordering of pads in the LSDA.
7304   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7305   if (CallSiteIndex) {
7306     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7307     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7308 
7309     // Now that the call site is handled, stop tracking it.
7310     MMI.setCurrentCallSite(0);
7311   }
7312 
7313   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7314 }
7315 
7316 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7317                                         const BasicBlock *EHPadBB,
7318                                         MCSymbol *BeginLabel) {
7319   assert(BeginLabel && "BeginLabel should've been set");
7320 
7321   MachineFunction &MF = DAG.getMachineFunction();
7322   MachineModuleInfo &MMI = MF.getMMI();
7323 
7324   // Insert a label at the end of the invoke call to mark the try range.  This
7325   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7326   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7327   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7328 
7329   // Inform MachineModuleInfo of range.
7330   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7331   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7332   // actually use outlined funclets and their LSDA info style.
7333   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7334     assert(II && "II should've been set");
7335     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7336     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7337   } else if (!isScopedEHPersonality(Pers)) {
7338     assert(EHPadBB);
7339     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7340   }
7341 
7342   return Chain;
7343 }
7344 
7345 std::pair<SDValue, SDValue>
7346 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7347                                     const BasicBlock *EHPadBB) {
7348   MCSymbol *BeginLabel = nullptr;
7349 
7350   if (EHPadBB) {
7351     // Both PendingLoads and PendingExports must be flushed here;
7352     // this call might not return.
7353     (void)getRoot();
7354     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7355     CLI.setChain(getRoot());
7356   }
7357 
7358   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7359   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7360 
7361   assert((CLI.IsTailCall || Result.second.getNode()) &&
7362          "Non-null chain expected with non-tail call!");
7363   assert((Result.second.getNode() || !Result.first.getNode()) &&
7364          "Null value expected with tail call!");
7365 
7366   if (!Result.second.getNode()) {
7367     // As a special case, a null chain means that a tail call has been emitted
7368     // and the DAG root is already updated.
7369     HasTailCall = true;
7370 
7371     // Since there's no actual continuation from this block, nothing can be
7372     // relying on us setting vregs for them.
7373     PendingExports.clear();
7374   } else {
7375     DAG.setRoot(Result.second);
7376   }
7377 
7378   if (EHPadBB) {
7379     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7380                            BeginLabel));
7381   }
7382 
7383   return Result;
7384 }
7385 
7386 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7387                                       bool isTailCall,
7388                                       const BasicBlock *EHPadBB) {
7389   auto &DL = DAG.getDataLayout();
7390   FunctionType *FTy = CB.getFunctionType();
7391   Type *RetTy = CB.getType();
7392 
7393   TargetLowering::ArgListTy Args;
7394   Args.reserve(CB.arg_size());
7395 
7396   const Value *SwiftErrorVal = nullptr;
7397   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7398 
7399   if (isTailCall) {
7400     // Avoid emitting tail calls in functions with the disable-tail-calls
7401     // attribute.
7402     auto *Caller = CB.getParent()->getParent();
7403     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7404         "true")
7405       isTailCall = false;
7406 
7407     // We can't tail call inside a function with a swifterror argument. Lowering
7408     // does not support this yet. It would have to move into the swifterror
7409     // register before the call.
7410     if (TLI.supportSwiftError() &&
7411         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7412       isTailCall = false;
7413   }
7414 
7415   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7416     TargetLowering::ArgListEntry Entry;
7417     const Value *V = *I;
7418 
7419     // Skip empty types
7420     if (V->getType()->isEmptyTy())
7421       continue;
7422 
7423     SDValue ArgNode = getValue(V);
7424     Entry.Node = ArgNode; Entry.Ty = V->getType();
7425 
7426     Entry.setAttributes(&CB, I - CB.arg_begin());
7427 
7428     // Use swifterror virtual register as input to the call.
7429     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7430       SwiftErrorVal = V;
7431       // We find the virtual register for the actual swifterror argument.
7432       // Instead of using the Value, we use the virtual register instead.
7433       Entry.Node =
7434           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7435                           EVT(TLI.getPointerTy(DL)));
7436     }
7437 
7438     Args.push_back(Entry);
7439 
7440     // If we have an explicit sret argument that is an Instruction, (i.e., it
7441     // might point to function-local memory), we can't meaningfully tail-call.
7442     if (Entry.IsSRet && isa<Instruction>(V))
7443       isTailCall = false;
7444   }
7445 
7446   // If call site has a cfguardtarget operand bundle, create and add an
7447   // additional ArgListEntry.
7448   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7449     TargetLowering::ArgListEntry Entry;
7450     Value *V = Bundle->Inputs[0];
7451     SDValue ArgNode = getValue(V);
7452     Entry.Node = ArgNode;
7453     Entry.Ty = V->getType();
7454     Entry.IsCFGuardTarget = true;
7455     Args.push_back(Entry);
7456   }
7457 
7458   // Check if target-independent constraints permit a tail call here.
7459   // Target-dependent constraints are checked within TLI->LowerCallTo.
7460   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7461     isTailCall = false;
7462 
7463   // Disable tail calls if there is an swifterror argument. Targets have not
7464   // been updated to support tail calls.
7465   if (TLI.supportSwiftError() && SwiftErrorVal)
7466     isTailCall = false;
7467 
7468   TargetLowering::CallLoweringInfo CLI(DAG);
7469   CLI.setDebugLoc(getCurSDLoc())
7470       .setChain(getRoot())
7471       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7472       .setTailCall(isTailCall)
7473       .setConvergent(CB.isConvergent())
7474       .setIsPreallocated(
7475           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7476   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7477 
7478   if (Result.first.getNode()) {
7479     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7480     setValue(&CB, Result.first);
7481   }
7482 
7483   // The last element of CLI.InVals has the SDValue for swifterror return.
7484   // Here we copy it to a virtual register and update SwiftErrorMap for
7485   // book-keeping.
7486   if (SwiftErrorVal && TLI.supportSwiftError()) {
7487     // Get the last element of InVals.
7488     SDValue Src = CLI.InVals.back();
7489     Register VReg =
7490         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7491     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7492     DAG.setRoot(CopyNode);
7493   }
7494 }
7495 
7496 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7497                              SelectionDAGBuilder &Builder) {
7498   // Check to see if this load can be trivially constant folded, e.g. if the
7499   // input is from a string literal.
7500   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7501     // Cast pointer to the type we really want to load.
7502     Type *LoadTy =
7503         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7504     if (LoadVT.isVector())
7505       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7506 
7507     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7508                                          PointerType::getUnqual(LoadTy));
7509 
7510     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7511             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7512       return Builder.getValue(LoadCst);
7513   }
7514 
7515   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7516   // still constant memory, the input chain can be the entry node.
7517   SDValue Root;
7518   bool ConstantMemory = false;
7519 
7520   // Do not serialize (non-volatile) loads of constant memory with anything.
7521   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7522     Root = Builder.DAG.getEntryNode();
7523     ConstantMemory = true;
7524   } else {
7525     // Do not serialize non-volatile loads against each other.
7526     Root = Builder.DAG.getRoot();
7527   }
7528 
7529   SDValue Ptr = Builder.getValue(PtrVal);
7530   SDValue LoadVal =
7531       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7532                           MachinePointerInfo(PtrVal), Align(1));
7533 
7534   if (!ConstantMemory)
7535     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7536   return LoadVal;
7537 }
7538 
7539 /// Record the value for an instruction that produces an integer result,
7540 /// converting the type where necessary.
7541 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7542                                                   SDValue Value,
7543                                                   bool IsSigned) {
7544   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7545                                                     I.getType(), true);
7546   if (IsSigned)
7547     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7548   else
7549     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7550   setValue(&I, Value);
7551 }
7552 
7553 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7554 /// true and lower it. Otherwise return false, and it will be lowered like a
7555 /// normal call.
7556 /// The caller already checked that \p I calls the appropriate LibFunc with a
7557 /// correct prototype.
7558 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7559   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7560   const Value *Size = I.getArgOperand(2);
7561   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7562   if (CSize && CSize->getZExtValue() == 0) {
7563     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7564                                                           I.getType(), true);
7565     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7566     return true;
7567   }
7568 
7569   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7570   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7571       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7572       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7573   if (Res.first.getNode()) {
7574     processIntegerCallValue(I, Res.first, true);
7575     PendingLoads.push_back(Res.second);
7576     return true;
7577   }
7578 
7579   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7580   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7581   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7582     return false;
7583 
7584   // If the target has a fast compare for the given size, it will return a
7585   // preferred load type for that size. Require that the load VT is legal and
7586   // that the target supports unaligned loads of that type. Otherwise, return
7587   // INVALID.
7588   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7589     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7590     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7591     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7592       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7593       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7594       // TODO: Check alignment of src and dest ptrs.
7595       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7596       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7597       if (!TLI.isTypeLegal(LVT) ||
7598           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7599           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7600         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7601     }
7602 
7603     return LVT;
7604   };
7605 
7606   // This turns into unaligned loads. We only do this if the target natively
7607   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7608   // we'll only produce a small number of byte loads.
7609   MVT LoadVT;
7610   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7611   switch (NumBitsToCompare) {
7612   default:
7613     return false;
7614   case 16:
7615     LoadVT = MVT::i16;
7616     break;
7617   case 32:
7618     LoadVT = MVT::i32;
7619     break;
7620   case 64:
7621   case 128:
7622   case 256:
7623     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7624     break;
7625   }
7626 
7627   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7628     return false;
7629 
7630   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7631   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7632 
7633   // Bitcast to a wide integer type if the loads are vectors.
7634   if (LoadVT.isVector()) {
7635     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7636     LoadL = DAG.getBitcast(CmpVT, LoadL);
7637     LoadR = DAG.getBitcast(CmpVT, LoadR);
7638   }
7639 
7640   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7641   processIntegerCallValue(I, Cmp, false);
7642   return true;
7643 }
7644 
7645 /// See if we can lower a memchr call into an optimized form. If so, return
7646 /// true and lower it. Otherwise return false, and it will be lowered like a
7647 /// normal call.
7648 /// The caller already checked that \p I calls the appropriate LibFunc with a
7649 /// correct prototype.
7650 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7651   const Value *Src = I.getArgOperand(0);
7652   const Value *Char = I.getArgOperand(1);
7653   const Value *Length = I.getArgOperand(2);
7654 
7655   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7656   std::pair<SDValue, SDValue> Res =
7657     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7658                                 getValue(Src), getValue(Char), getValue(Length),
7659                                 MachinePointerInfo(Src));
7660   if (Res.first.getNode()) {
7661     setValue(&I, Res.first);
7662     PendingLoads.push_back(Res.second);
7663     return true;
7664   }
7665 
7666   return false;
7667 }
7668 
7669 /// See if we can lower a mempcpy call into an optimized form. If so, return
7670 /// true and lower it. Otherwise return false, and it will be lowered like a
7671 /// normal call.
7672 /// The caller already checked that \p I calls the appropriate LibFunc with a
7673 /// correct prototype.
7674 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7675   SDValue Dst = getValue(I.getArgOperand(0));
7676   SDValue Src = getValue(I.getArgOperand(1));
7677   SDValue Size = getValue(I.getArgOperand(2));
7678 
7679   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7680   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7681   // DAG::getMemcpy needs Alignment to be defined.
7682   Align Alignment = std::min(DstAlign, SrcAlign);
7683 
7684   bool isVol = false;
7685   SDLoc sdl = getCurSDLoc();
7686 
7687   // In the mempcpy context we need to pass in a false value for isTailCall
7688   // because the return pointer needs to be adjusted by the size of
7689   // the copied memory.
7690   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7691   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7692                              /*isTailCall=*/false,
7693                              MachinePointerInfo(I.getArgOperand(0)),
7694                              MachinePointerInfo(I.getArgOperand(1)));
7695   assert(MC.getNode() != nullptr &&
7696          "** memcpy should not be lowered as TailCall in mempcpy context **");
7697   DAG.setRoot(MC);
7698 
7699   // Check if Size needs to be truncated or extended.
7700   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7701 
7702   // Adjust return pointer to point just past the last dst byte.
7703   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7704                                     Dst, Size);
7705   setValue(&I, DstPlusSize);
7706   return true;
7707 }
7708 
7709 /// See if we can lower a strcpy call into an optimized form.  If so, return
7710 /// true and lower it, otherwise return false and it will be lowered like a
7711 /// normal call.
7712 /// The caller already checked that \p I calls the appropriate LibFunc with a
7713 /// correct prototype.
7714 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7715   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7716 
7717   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7718   std::pair<SDValue, SDValue> Res =
7719     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7720                                 getValue(Arg0), getValue(Arg1),
7721                                 MachinePointerInfo(Arg0),
7722                                 MachinePointerInfo(Arg1), isStpcpy);
7723   if (Res.first.getNode()) {
7724     setValue(&I, Res.first);
7725     DAG.setRoot(Res.second);
7726     return true;
7727   }
7728 
7729   return false;
7730 }
7731 
7732 /// See if we can lower a strcmp call into an optimized form.  If so, return
7733 /// true and lower it, otherwise return false and it will be lowered like a
7734 /// normal call.
7735 /// The caller already checked that \p I calls the appropriate LibFunc with a
7736 /// correct prototype.
7737 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7738   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7739 
7740   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7741   std::pair<SDValue, SDValue> Res =
7742     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7743                                 getValue(Arg0), getValue(Arg1),
7744                                 MachinePointerInfo(Arg0),
7745                                 MachinePointerInfo(Arg1));
7746   if (Res.first.getNode()) {
7747     processIntegerCallValue(I, Res.first, true);
7748     PendingLoads.push_back(Res.second);
7749     return true;
7750   }
7751 
7752   return false;
7753 }
7754 
7755 /// See if we can lower a strlen call into an optimized form.  If so, return
7756 /// true and lower it, otherwise return false and it will be lowered like a
7757 /// normal call.
7758 /// The caller already checked that \p I calls the appropriate LibFunc with a
7759 /// correct prototype.
7760 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7761   const Value *Arg0 = I.getArgOperand(0);
7762 
7763   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7764   std::pair<SDValue, SDValue> Res =
7765     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7766                                 getValue(Arg0), MachinePointerInfo(Arg0));
7767   if (Res.first.getNode()) {
7768     processIntegerCallValue(I, Res.first, false);
7769     PendingLoads.push_back(Res.second);
7770     return true;
7771   }
7772 
7773   return false;
7774 }
7775 
7776 /// See if we can lower a strnlen call into an optimized form.  If so, return
7777 /// true and lower it, otherwise return false and it will be lowered like a
7778 /// normal call.
7779 /// The caller already checked that \p I calls the appropriate LibFunc with a
7780 /// correct prototype.
7781 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7782   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7783 
7784   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7785   std::pair<SDValue, SDValue> Res =
7786     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7787                                  getValue(Arg0), getValue(Arg1),
7788                                  MachinePointerInfo(Arg0));
7789   if (Res.first.getNode()) {
7790     processIntegerCallValue(I, Res.first, false);
7791     PendingLoads.push_back(Res.second);
7792     return true;
7793   }
7794 
7795   return false;
7796 }
7797 
7798 /// See if we can lower a unary floating-point operation into an SDNode with
7799 /// the specified Opcode.  If so, return true and lower it, otherwise return
7800 /// false and it will be lowered like a normal call.
7801 /// The caller already checked that \p I calls the appropriate LibFunc with a
7802 /// correct prototype.
7803 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7804                                               unsigned Opcode) {
7805   // We already checked this call's prototype; verify it doesn't modify errno.
7806   if (!I.onlyReadsMemory())
7807     return false;
7808 
7809   SDNodeFlags Flags;
7810   Flags.copyFMF(cast<FPMathOperator>(I));
7811 
7812   SDValue Tmp = getValue(I.getArgOperand(0));
7813   setValue(&I,
7814            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7815   return true;
7816 }
7817 
7818 /// See if we can lower a binary floating-point operation into an SDNode with
7819 /// the specified Opcode. If so, return true and lower it. Otherwise return
7820 /// false, and it will be lowered like a normal call.
7821 /// The caller already checked that \p I calls the appropriate LibFunc with a
7822 /// correct prototype.
7823 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7824                                                unsigned Opcode) {
7825   // We already checked this call's prototype; verify it doesn't modify errno.
7826   if (!I.onlyReadsMemory())
7827     return false;
7828 
7829   SDNodeFlags Flags;
7830   Flags.copyFMF(cast<FPMathOperator>(I));
7831 
7832   SDValue Tmp0 = getValue(I.getArgOperand(0));
7833   SDValue Tmp1 = getValue(I.getArgOperand(1));
7834   EVT VT = Tmp0.getValueType();
7835   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7836   return true;
7837 }
7838 
7839 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7840   // Handle inline assembly differently.
7841   if (I.isInlineAsm()) {
7842     visitInlineAsm(I);
7843     return;
7844   }
7845 
7846   if (Function *F = I.getCalledFunction()) {
7847     if (F->isDeclaration()) {
7848       // Is this an LLVM intrinsic or a target-specific intrinsic?
7849       unsigned IID = F->getIntrinsicID();
7850       if (!IID)
7851         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7852           IID = II->getIntrinsicID(F);
7853 
7854       if (IID) {
7855         visitIntrinsicCall(I, IID);
7856         return;
7857       }
7858     }
7859 
7860     // Check for well-known libc/libm calls.  If the function is internal, it
7861     // can't be a library call.  Don't do the check if marked as nobuiltin for
7862     // some reason or the call site requires strict floating point semantics.
7863     LibFunc Func;
7864     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7865         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7866         LibInfo->hasOptimizedCodeGen(Func)) {
7867       switch (Func) {
7868       default: break;
7869       case LibFunc_bcmp:
7870         if (visitMemCmpBCmpCall(I))
7871           return;
7872         break;
7873       case LibFunc_copysign:
7874       case LibFunc_copysignf:
7875       case LibFunc_copysignl:
7876         // We already checked this call's prototype; verify it doesn't modify
7877         // errno.
7878         if (I.onlyReadsMemory()) {
7879           SDValue LHS = getValue(I.getArgOperand(0));
7880           SDValue RHS = getValue(I.getArgOperand(1));
7881           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7882                                    LHS.getValueType(), LHS, RHS));
7883           return;
7884         }
7885         break;
7886       case LibFunc_fabs:
7887       case LibFunc_fabsf:
7888       case LibFunc_fabsl:
7889         if (visitUnaryFloatCall(I, ISD::FABS))
7890           return;
7891         break;
7892       case LibFunc_fmin:
7893       case LibFunc_fminf:
7894       case LibFunc_fminl:
7895         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7896           return;
7897         break;
7898       case LibFunc_fmax:
7899       case LibFunc_fmaxf:
7900       case LibFunc_fmaxl:
7901         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7902           return;
7903         break;
7904       case LibFunc_sin:
7905       case LibFunc_sinf:
7906       case LibFunc_sinl:
7907         if (visitUnaryFloatCall(I, ISD::FSIN))
7908           return;
7909         break;
7910       case LibFunc_cos:
7911       case LibFunc_cosf:
7912       case LibFunc_cosl:
7913         if (visitUnaryFloatCall(I, ISD::FCOS))
7914           return;
7915         break;
7916       case LibFunc_sqrt:
7917       case LibFunc_sqrtf:
7918       case LibFunc_sqrtl:
7919       case LibFunc_sqrt_finite:
7920       case LibFunc_sqrtf_finite:
7921       case LibFunc_sqrtl_finite:
7922         if (visitUnaryFloatCall(I, ISD::FSQRT))
7923           return;
7924         break;
7925       case LibFunc_floor:
7926       case LibFunc_floorf:
7927       case LibFunc_floorl:
7928         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7929           return;
7930         break;
7931       case LibFunc_nearbyint:
7932       case LibFunc_nearbyintf:
7933       case LibFunc_nearbyintl:
7934         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7935           return;
7936         break;
7937       case LibFunc_ceil:
7938       case LibFunc_ceilf:
7939       case LibFunc_ceill:
7940         if (visitUnaryFloatCall(I, ISD::FCEIL))
7941           return;
7942         break;
7943       case LibFunc_rint:
7944       case LibFunc_rintf:
7945       case LibFunc_rintl:
7946         if (visitUnaryFloatCall(I, ISD::FRINT))
7947           return;
7948         break;
7949       case LibFunc_round:
7950       case LibFunc_roundf:
7951       case LibFunc_roundl:
7952         if (visitUnaryFloatCall(I, ISD::FROUND))
7953           return;
7954         break;
7955       case LibFunc_trunc:
7956       case LibFunc_truncf:
7957       case LibFunc_truncl:
7958         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7959           return;
7960         break;
7961       case LibFunc_log2:
7962       case LibFunc_log2f:
7963       case LibFunc_log2l:
7964         if (visitUnaryFloatCall(I, ISD::FLOG2))
7965           return;
7966         break;
7967       case LibFunc_exp2:
7968       case LibFunc_exp2f:
7969       case LibFunc_exp2l:
7970         if (visitUnaryFloatCall(I, ISD::FEXP2))
7971           return;
7972         break;
7973       case LibFunc_memcmp:
7974         if (visitMemCmpBCmpCall(I))
7975           return;
7976         break;
7977       case LibFunc_mempcpy:
7978         if (visitMemPCpyCall(I))
7979           return;
7980         break;
7981       case LibFunc_memchr:
7982         if (visitMemChrCall(I))
7983           return;
7984         break;
7985       case LibFunc_strcpy:
7986         if (visitStrCpyCall(I, false))
7987           return;
7988         break;
7989       case LibFunc_stpcpy:
7990         if (visitStrCpyCall(I, true))
7991           return;
7992         break;
7993       case LibFunc_strcmp:
7994         if (visitStrCmpCall(I))
7995           return;
7996         break;
7997       case LibFunc_strlen:
7998         if (visitStrLenCall(I))
7999           return;
8000         break;
8001       case LibFunc_strnlen:
8002         if (visitStrNLenCall(I))
8003           return;
8004         break;
8005       }
8006     }
8007   }
8008 
8009   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8010   // have to do anything here to lower funclet bundles.
8011   // CFGuardTarget bundles are lowered in LowerCallTo.
8012   assert(!I.hasOperandBundlesOtherThan(
8013              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8014               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8015               LLVMContext::OB_clang_arc_attachedcall}) &&
8016          "Cannot lower calls with arbitrary operand bundles!");
8017 
8018   SDValue Callee = getValue(I.getCalledOperand());
8019 
8020   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8021     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8022   else
8023     // Check if we can potentially perform a tail call. More detailed checking
8024     // is be done within LowerCallTo, after more information about the call is
8025     // known.
8026     LowerCallTo(I, Callee, I.isTailCall());
8027 }
8028 
8029 namespace {
8030 
8031 /// AsmOperandInfo - This contains information for each constraint that we are
8032 /// lowering.
8033 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8034 public:
8035   /// CallOperand - If this is the result output operand or a clobber
8036   /// this is null, otherwise it is the incoming operand to the CallInst.
8037   /// This gets modified as the asm is processed.
8038   SDValue CallOperand;
8039 
8040   /// AssignedRegs - If this is a register or register class operand, this
8041   /// contains the set of register corresponding to the operand.
8042   RegsForValue AssignedRegs;
8043 
8044   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8045     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8046   }
8047 
8048   /// Whether or not this operand accesses memory
8049   bool hasMemory(const TargetLowering &TLI) const {
8050     // Indirect operand accesses access memory.
8051     if (isIndirect)
8052       return true;
8053 
8054     for (const auto &Code : Codes)
8055       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8056         return true;
8057 
8058     return false;
8059   }
8060 
8061   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8062   /// corresponds to.  If there is no Value* for this operand, it returns
8063   /// MVT::Other.
8064   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8065                            const DataLayout &DL) const {
8066     if (!CallOperandVal) return MVT::Other;
8067 
8068     if (isa<BasicBlock>(CallOperandVal))
8069       return TLI.getProgramPointerTy(DL);
8070 
8071     llvm::Type *OpTy = CallOperandVal->getType();
8072 
8073     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8074     // If this is an indirect operand, the operand is a pointer to the
8075     // accessed type.
8076     if (isIndirect) {
8077       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
8078       if (!PtrTy)
8079         report_fatal_error("Indirect operand for inline asm not a pointer!");
8080       OpTy = PtrTy->getElementType();
8081     }
8082 
8083     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8084     if (StructType *STy = dyn_cast<StructType>(OpTy))
8085       if (STy->getNumElements() == 1)
8086         OpTy = STy->getElementType(0);
8087 
8088     // If OpTy is not a single value, it may be a struct/union that we
8089     // can tile with integers.
8090     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8091       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8092       switch (BitSize) {
8093       default: break;
8094       case 1:
8095       case 8:
8096       case 16:
8097       case 32:
8098       case 64:
8099       case 128:
8100         OpTy = IntegerType::get(Context, BitSize);
8101         break;
8102       }
8103     }
8104 
8105     return TLI.getValueType(DL, OpTy, true);
8106   }
8107 };
8108 
8109 
8110 } // end anonymous namespace
8111 
8112 /// Make sure that the output operand \p OpInfo and its corresponding input
8113 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8114 /// out).
8115 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8116                                SDISelAsmOperandInfo &MatchingOpInfo,
8117                                SelectionDAG &DAG) {
8118   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8119     return;
8120 
8121   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8122   const auto &TLI = DAG.getTargetLoweringInfo();
8123 
8124   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8125       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8126                                        OpInfo.ConstraintVT);
8127   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8128       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8129                                        MatchingOpInfo.ConstraintVT);
8130   if ((OpInfo.ConstraintVT.isInteger() !=
8131        MatchingOpInfo.ConstraintVT.isInteger()) ||
8132       (MatchRC.second != InputRC.second)) {
8133     // FIXME: error out in a more elegant fashion
8134     report_fatal_error("Unsupported asm: input constraint"
8135                        " with a matching output constraint of"
8136                        " incompatible type!");
8137   }
8138   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8139 }
8140 
8141 /// Get a direct memory input to behave well as an indirect operand.
8142 /// This may introduce stores, hence the need for a \p Chain.
8143 /// \return The (possibly updated) chain.
8144 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8145                                         SDISelAsmOperandInfo &OpInfo,
8146                                         SelectionDAG &DAG) {
8147   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8148 
8149   // If we don't have an indirect input, put it in the constpool if we can,
8150   // otherwise spill it to a stack slot.
8151   // TODO: This isn't quite right. We need to handle these according to
8152   // the addressing mode that the constraint wants. Also, this may take
8153   // an additional register for the computation and we don't want that
8154   // either.
8155 
8156   // If the operand is a float, integer, or vector constant, spill to a
8157   // constant pool entry to get its address.
8158   const Value *OpVal = OpInfo.CallOperandVal;
8159   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8160       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8161     OpInfo.CallOperand = DAG.getConstantPool(
8162         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8163     return Chain;
8164   }
8165 
8166   // Otherwise, create a stack slot and emit a store to it before the asm.
8167   Type *Ty = OpVal->getType();
8168   auto &DL = DAG.getDataLayout();
8169   uint64_t TySize = DL.getTypeAllocSize(Ty);
8170   MachineFunction &MF = DAG.getMachineFunction();
8171   int SSFI = MF.getFrameInfo().CreateStackObject(
8172       TySize, DL.getPrefTypeAlign(Ty), false);
8173   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8174   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8175                             MachinePointerInfo::getFixedStack(MF, SSFI),
8176                             TLI.getMemValueType(DL, Ty));
8177   OpInfo.CallOperand = StackSlot;
8178 
8179   return Chain;
8180 }
8181 
8182 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8183 /// specified operand.  We prefer to assign virtual registers, to allow the
8184 /// register allocator to handle the assignment process.  However, if the asm
8185 /// uses features that we can't model on machineinstrs, we have SDISel do the
8186 /// allocation.  This produces generally horrible, but correct, code.
8187 ///
8188 ///   OpInfo describes the operand
8189 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8190 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8191                                  SDISelAsmOperandInfo &OpInfo,
8192                                  SDISelAsmOperandInfo &RefOpInfo) {
8193   LLVMContext &Context = *DAG.getContext();
8194   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8195 
8196   MachineFunction &MF = DAG.getMachineFunction();
8197   SmallVector<unsigned, 4> Regs;
8198   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8199 
8200   // No work to do for memory operations.
8201   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8202     return;
8203 
8204   // If this is a constraint for a single physreg, or a constraint for a
8205   // register class, find it.
8206   unsigned AssignedReg;
8207   const TargetRegisterClass *RC;
8208   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8209       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8210   // RC is unset only on failure. Return immediately.
8211   if (!RC)
8212     return;
8213 
8214   // Get the actual register value type.  This is important, because the user
8215   // may have asked for (e.g.) the AX register in i32 type.  We need to
8216   // remember that AX is actually i16 to get the right extension.
8217   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8218 
8219   if (OpInfo.ConstraintVT != MVT::Other) {
8220     // If this is an FP operand in an integer register (or visa versa), or more
8221     // generally if the operand value disagrees with the register class we plan
8222     // to stick it in, fix the operand type.
8223     //
8224     // If this is an input value, the bitcast to the new type is done now.
8225     // Bitcast for output value is done at the end of visitInlineAsm().
8226     if ((OpInfo.Type == InlineAsm::isOutput ||
8227          OpInfo.Type == InlineAsm::isInput) &&
8228         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8229       // Try to convert to the first EVT that the reg class contains.  If the
8230       // types are identical size, use a bitcast to convert (e.g. two differing
8231       // vector types).  Note: output bitcast is done at the end of
8232       // visitInlineAsm().
8233       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8234         // Exclude indirect inputs while they are unsupported because the code
8235         // to perform the load is missing and thus OpInfo.CallOperand still
8236         // refers to the input address rather than the pointed-to value.
8237         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8238           OpInfo.CallOperand =
8239               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8240         OpInfo.ConstraintVT = RegVT;
8241         // If the operand is an FP value and we want it in integer registers,
8242         // use the corresponding integer type. This turns an f64 value into
8243         // i64, which can be passed with two i32 values on a 32-bit machine.
8244       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8245         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8246         if (OpInfo.Type == InlineAsm::isInput)
8247           OpInfo.CallOperand =
8248               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8249         OpInfo.ConstraintVT = VT;
8250       }
8251     }
8252   }
8253 
8254   // No need to allocate a matching input constraint since the constraint it's
8255   // matching to has already been allocated.
8256   if (OpInfo.isMatchingInputConstraint())
8257     return;
8258 
8259   EVT ValueVT = OpInfo.ConstraintVT;
8260   if (OpInfo.ConstraintVT == MVT::Other)
8261     ValueVT = RegVT;
8262 
8263   // Initialize NumRegs.
8264   unsigned NumRegs = 1;
8265   if (OpInfo.ConstraintVT != MVT::Other)
8266     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8267 
8268   // If this is a constraint for a specific physical register, like {r17},
8269   // assign it now.
8270 
8271   // If this associated to a specific register, initialize iterator to correct
8272   // place. If virtual, make sure we have enough registers
8273 
8274   // Initialize iterator if necessary
8275   TargetRegisterClass::iterator I = RC->begin();
8276   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8277 
8278   // Do not check for single registers.
8279   if (AssignedReg) {
8280       for (; *I != AssignedReg; ++I)
8281         assert(I != RC->end() && "AssignedReg should be member of RC");
8282   }
8283 
8284   for (; NumRegs; --NumRegs, ++I) {
8285     assert(I != RC->end() && "Ran out of registers to allocate!");
8286     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8287     Regs.push_back(R);
8288   }
8289 
8290   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8291 }
8292 
8293 static unsigned
8294 findMatchingInlineAsmOperand(unsigned OperandNo,
8295                              const std::vector<SDValue> &AsmNodeOperands) {
8296   // Scan until we find the definition we already emitted of this operand.
8297   unsigned CurOp = InlineAsm::Op_FirstOperand;
8298   for (; OperandNo; --OperandNo) {
8299     // Advance to the next operand.
8300     unsigned OpFlag =
8301         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8302     assert((InlineAsm::isRegDefKind(OpFlag) ||
8303             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8304             InlineAsm::isMemKind(OpFlag)) &&
8305            "Skipped past definitions?");
8306     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8307   }
8308   return CurOp;
8309 }
8310 
8311 namespace {
8312 
8313 class ExtraFlags {
8314   unsigned Flags = 0;
8315 
8316 public:
8317   explicit ExtraFlags(const CallBase &Call) {
8318     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8319     if (IA->hasSideEffects())
8320       Flags |= InlineAsm::Extra_HasSideEffects;
8321     if (IA->isAlignStack())
8322       Flags |= InlineAsm::Extra_IsAlignStack;
8323     if (Call.isConvergent())
8324       Flags |= InlineAsm::Extra_IsConvergent;
8325     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8326   }
8327 
8328   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8329     // Ideally, we would only check against memory constraints.  However, the
8330     // meaning of an Other constraint can be target-specific and we can't easily
8331     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8332     // for Other constraints as well.
8333     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8334         OpInfo.ConstraintType == TargetLowering::C_Other) {
8335       if (OpInfo.Type == InlineAsm::isInput)
8336         Flags |= InlineAsm::Extra_MayLoad;
8337       else if (OpInfo.Type == InlineAsm::isOutput)
8338         Flags |= InlineAsm::Extra_MayStore;
8339       else if (OpInfo.Type == InlineAsm::isClobber)
8340         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8341     }
8342   }
8343 
8344   unsigned get() const { return Flags; }
8345 };
8346 
8347 } // end anonymous namespace
8348 
8349 /// visitInlineAsm - Handle a call to an InlineAsm object.
8350 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8351                                          const BasicBlock *EHPadBB) {
8352   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8353 
8354   /// ConstraintOperands - Information about all of the constraints.
8355   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8356 
8357   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8358   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8359       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8360 
8361   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8362   // AsmDialect, MayLoad, MayStore).
8363   bool HasSideEffect = IA->hasSideEffects();
8364   ExtraFlags ExtraInfo(Call);
8365 
8366   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8367   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8368   unsigned NumMatchingOps = 0;
8369   for (auto &T : TargetConstraints) {
8370     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8371     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8372 
8373     // Compute the value type for each operand.
8374     if (OpInfo.Type == InlineAsm::isInput ||
8375         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8376       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8377 
8378       // Process the call argument. BasicBlocks are labels, currently appearing
8379       // only in asm's.
8380       if (isa<CallBrInst>(Call) &&
8381           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8382                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8383                         NumMatchingOps) &&
8384           (NumMatchingOps == 0 ||
8385            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8386                         NumMatchingOps))) {
8387         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8388         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8389         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8390       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8391         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8392       } else {
8393         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8394       }
8395 
8396       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8397                                            DAG.getDataLayout());
8398       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8399     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8400       // The return value of the call is this value.  As such, there is no
8401       // corresponding argument.
8402       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8403       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8404         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8405             DAG.getDataLayout(), STy->getElementType(ResNo));
8406       } else {
8407         assert(ResNo == 0 && "Asm only has one result!");
8408         OpInfo.ConstraintVT =
8409             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8410       }
8411       ++ResNo;
8412     } else {
8413       OpInfo.ConstraintVT = MVT::Other;
8414     }
8415 
8416     if (OpInfo.hasMatchingInput())
8417       ++NumMatchingOps;
8418 
8419     if (!HasSideEffect)
8420       HasSideEffect = OpInfo.hasMemory(TLI);
8421 
8422     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8423     // FIXME: Could we compute this on OpInfo rather than T?
8424 
8425     // Compute the constraint code and ConstraintType to use.
8426     TLI.ComputeConstraintToUse(T, SDValue());
8427 
8428     if (T.ConstraintType == TargetLowering::C_Immediate &&
8429         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8430       // We've delayed emitting a diagnostic like the "n" constraint because
8431       // inlining could cause an integer showing up.
8432       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8433                                           "' expects an integer constant "
8434                                           "expression");
8435 
8436     ExtraInfo.update(T);
8437   }
8438 
8439   // We won't need to flush pending loads if this asm doesn't touch
8440   // memory and is nonvolatile.
8441   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8442 
8443   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8444   if (EmitEHLabels) {
8445     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8446   }
8447   bool IsCallBr = isa<CallBrInst>(Call);
8448 
8449   if (IsCallBr || EmitEHLabels) {
8450     // If this is a callbr or invoke we need to flush pending exports since
8451     // inlineasm_br and invoke are terminators.
8452     // We need to do this before nodes are glued to the inlineasm_br node.
8453     Chain = getControlRoot();
8454   }
8455 
8456   MCSymbol *BeginLabel = nullptr;
8457   if (EmitEHLabels) {
8458     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8459   }
8460 
8461   // Second pass over the constraints: compute which constraint option to use.
8462   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8463     // If this is an output operand with a matching input operand, look up the
8464     // matching input. If their types mismatch, e.g. one is an integer, the
8465     // other is floating point, or their sizes are different, flag it as an
8466     // error.
8467     if (OpInfo.hasMatchingInput()) {
8468       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8469       patchMatchingInput(OpInfo, Input, DAG);
8470     }
8471 
8472     // Compute the constraint code and ConstraintType to use.
8473     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8474 
8475     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8476         OpInfo.Type == InlineAsm::isClobber)
8477       continue;
8478 
8479     // If this is a memory input, and if the operand is not indirect, do what we
8480     // need to provide an address for the memory input.
8481     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8482         !OpInfo.isIndirect) {
8483       assert((OpInfo.isMultipleAlternative ||
8484               (OpInfo.Type == InlineAsm::isInput)) &&
8485              "Can only indirectify direct input operands!");
8486 
8487       // Memory operands really want the address of the value.
8488       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8489 
8490       // There is no longer a Value* corresponding to this operand.
8491       OpInfo.CallOperandVal = nullptr;
8492 
8493       // It is now an indirect operand.
8494       OpInfo.isIndirect = true;
8495     }
8496 
8497   }
8498 
8499   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8500   std::vector<SDValue> AsmNodeOperands;
8501   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8502   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8503       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8504 
8505   // If we have a !srcloc metadata node associated with it, we want to attach
8506   // this to the ultimately generated inline asm machineinstr.  To do this, we
8507   // pass in the third operand as this (potentially null) inline asm MDNode.
8508   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8509   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8510 
8511   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8512   // bits as operand 3.
8513   AsmNodeOperands.push_back(DAG.getTargetConstant(
8514       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8515 
8516   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8517   // this, assign virtual and physical registers for inputs and otput.
8518   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8519     // Assign Registers.
8520     SDISelAsmOperandInfo &RefOpInfo =
8521         OpInfo.isMatchingInputConstraint()
8522             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8523             : OpInfo;
8524     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8525 
8526     auto DetectWriteToReservedRegister = [&]() {
8527       const MachineFunction &MF = DAG.getMachineFunction();
8528       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8529       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8530         if (Register::isPhysicalRegister(Reg) &&
8531             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8532           const char *RegName = TRI.getName(Reg);
8533           emitInlineAsmError(Call, "write to reserved register '" +
8534                                        Twine(RegName) + "'");
8535           return true;
8536         }
8537       }
8538       return false;
8539     };
8540 
8541     switch (OpInfo.Type) {
8542     case InlineAsm::isOutput:
8543       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8544         unsigned ConstraintID =
8545             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8546         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8547                "Failed to convert memory constraint code to constraint id.");
8548 
8549         // Add information to the INLINEASM node to know about this output.
8550         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8551         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8552         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8553                                                         MVT::i32));
8554         AsmNodeOperands.push_back(OpInfo.CallOperand);
8555       } else {
8556         // Otherwise, this outputs to a register (directly for C_Register /
8557         // C_RegisterClass, and a target-defined fashion for
8558         // C_Immediate/C_Other). Find a register that we can use.
8559         if (OpInfo.AssignedRegs.Regs.empty()) {
8560           emitInlineAsmError(
8561               Call, "couldn't allocate output register for constraint '" +
8562                         Twine(OpInfo.ConstraintCode) + "'");
8563           return;
8564         }
8565 
8566         if (DetectWriteToReservedRegister())
8567           return;
8568 
8569         // Add information to the INLINEASM node to know that this register is
8570         // set.
8571         OpInfo.AssignedRegs.AddInlineAsmOperands(
8572             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8573                                   : InlineAsm::Kind_RegDef,
8574             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8575       }
8576       break;
8577 
8578     case InlineAsm::isInput: {
8579       SDValue InOperandVal = OpInfo.CallOperand;
8580 
8581       if (OpInfo.isMatchingInputConstraint()) {
8582         // If this is required to match an output register we have already set,
8583         // just use its register.
8584         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8585                                                   AsmNodeOperands);
8586         unsigned OpFlag =
8587           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8588         if (InlineAsm::isRegDefKind(OpFlag) ||
8589             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8590           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8591           if (OpInfo.isIndirect) {
8592             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8593             emitInlineAsmError(Call, "inline asm not supported yet: "
8594                                      "don't know how to handle tied "
8595                                      "indirect register inputs");
8596             return;
8597           }
8598 
8599           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8600           SmallVector<unsigned, 4> Regs;
8601 
8602           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8603             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8604             MachineRegisterInfo &RegInfo =
8605                 DAG.getMachineFunction().getRegInfo();
8606             for (unsigned i = 0; i != NumRegs; ++i)
8607               Regs.push_back(RegInfo.createVirtualRegister(RC));
8608           } else {
8609             emitInlineAsmError(Call,
8610                                "inline asm error: This value type register "
8611                                "class is not natively supported!");
8612             return;
8613           }
8614 
8615           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8616 
8617           SDLoc dl = getCurSDLoc();
8618           // Use the produced MatchedRegs object to
8619           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8620           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8621                                            true, OpInfo.getMatchedOperand(), dl,
8622                                            DAG, AsmNodeOperands);
8623           break;
8624         }
8625 
8626         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8627         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8628                "Unexpected number of operands");
8629         // Add information to the INLINEASM node to know about this input.
8630         // See InlineAsm.h isUseOperandTiedToDef.
8631         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8632         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8633                                                     OpInfo.getMatchedOperand());
8634         AsmNodeOperands.push_back(DAG.getTargetConstant(
8635             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8636         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8637         break;
8638       }
8639 
8640       // Treat indirect 'X' constraint as memory.
8641       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8642           OpInfo.isIndirect)
8643         OpInfo.ConstraintType = TargetLowering::C_Memory;
8644 
8645       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8646           OpInfo.ConstraintType == TargetLowering::C_Other) {
8647         std::vector<SDValue> Ops;
8648         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8649                                           Ops, DAG);
8650         if (Ops.empty()) {
8651           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8652             if (isa<ConstantSDNode>(InOperandVal)) {
8653               emitInlineAsmError(Call, "value out of range for constraint '" +
8654                                            Twine(OpInfo.ConstraintCode) + "'");
8655               return;
8656             }
8657 
8658           emitInlineAsmError(Call,
8659                              "invalid operand for inline asm constraint '" +
8660                                  Twine(OpInfo.ConstraintCode) + "'");
8661           return;
8662         }
8663 
8664         // Add information to the INLINEASM node to know about this input.
8665         unsigned ResOpType =
8666           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8667         AsmNodeOperands.push_back(DAG.getTargetConstant(
8668             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8669         llvm::append_range(AsmNodeOperands, Ops);
8670         break;
8671       }
8672 
8673       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8674         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8675         assert(InOperandVal.getValueType() ==
8676                    TLI.getPointerTy(DAG.getDataLayout()) &&
8677                "Memory operands expect pointer values");
8678 
8679         unsigned ConstraintID =
8680             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8681         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8682                "Failed to convert memory constraint code to constraint id.");
8683 
8684         // Add information to the INLINEASM node to know about this input.
8685         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8686         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8687         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8688                                                         getCurSDLoc(),
8689                                                         MVT::i32));
8690         AsmNodeOperands.push_back(InOperandVal);
8691         break;
8692       }
8693 
8694       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8695               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8696              "Unknown constraint type!");
8697 
8698       // TODO: Support this.
8699       if (OpInfo.isIndirect) {
8700         emitInlineAsmError(
8701             Call, "Don't know how to handle indirect register inputs yet "
8702                   "for constraint '" +
8703                       Twine(OpInfo.ConstraintCode) + "'");
8704         return;
8705       }
8706 
8707       // Copy the input into the appropriate registers.
8708       if (OpInfo.AssignedRegs.Regs.empty()) {
8709         emitInlineAsmError(Call,
8710                            "couldn't allocate input reg for constraint '" +
8711                                Twine(OpInfo.ConstraintCode) + "'");
8712         return;
8713       }
8714 
8715       if (DetectWriteToReservedRegister())
8716         return;
8717 
8718       SDLoc dl = getCurSDLoc();
8719 
8720       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8721                                         &Call);
8722 
8723       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8724                                                dl, DAG, AsmNodeOperands);
8725       break;
8726     }
8727     case InlineAsm::isClobber:
8728       // Add the clobbered value to the operand list, so that the register
8729       // allocator is aware that the physreg got clobbered.
8730       if (!OpInfo.AssignedRegs.Regs.empty())
8731         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8732                                                  false, 0, getCurSDLoc(), DAG,
8733                                                  AsmNodeOperands);
8734       break;
8735     }
8736   }
8737 
8738   // Finish up input operands.  Set the input chain and add the flag last.
8739   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8740   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8741 
8742   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8743   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8744                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8745   Flag = Chain.getValue(1);
8746 
8747   // Do additional work to generate outputs.
8748 
8749   SmallVector<EVT, 1> ResultVTs;
8750   SmallVector<SDValue, 1> ResultValues;
8751   SmallVector<SDValue, 8> OutChains;
8752 
8753   llvm::Type *CallResultType = Call.getType();
8754   ArrayRef<Type *> ResultTypes;
8755   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8756     ResultTypes = StructResult->elements();
8757   else if (!CallResultType->isVoidTy())
8758     ResultTypes = makeArrayRef(CallResultType);
8759 
8760   auto CurResultType = ResultTypes.begin();
8761   auto handleRegAssign = [&](SDValue V) {
8762     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8763     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8764     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8765     ++CurResultType;
8766     // If the type of the inline asm call site return value is different but has
8767     // same size as the type of the asm output bitcast it.  One example of this
8768     // is for vectors with different width / number of elements.  This can
8769     // happen for register classes that can contain multiple different value
8770     // types.  The preg or vreg allocated may not have the same VT as was
8771     // expected.
8772     //
8773     // This can also happen for a return value that disagrees with the register
8774     // class it is put in, eg. a double in a general-purpose register on a
8775     // 32-bit machine.
8776     if (ResultVT != V.getValueType() &&
8777         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8778       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8779     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8780              V.getValueType().isInteger()) {
8781       // If a result value was tied to an input value, the computed result
8782       // may have a wider width than the expected result.  Extract the
8783       // relevant portion.
8784       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8785     }
8786     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8787     ResultVTs.push_back(ResultVT);
8788     ResultValues.push_back(V);
8789   };
8790 
8791   // Deal with output operands.
8792   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8793     if (OpInfo.Type == InlineAsm::isOutput) {
8794       SDValue Val;
8795       // Skip trivial output operands.
8796       if (OpInfo.AssignedRegs.Regs.empty())
8797         continue;
8798 
8799       switch (OpInfo.ConstraintType) {
8800       case TargetLowering::C_Register:
8801       case TargetLowering::C_RegisterClass:
8802         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8803                                                   Chain, &Flag, &Call);
8804         break;
8805       case TargetLowering::C_Immediate:
8806       case TargetLowering::C_Other:
8807         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8808                                               OpInfo, DAG);
8809         break;
8810       case TargetLowering::C_Memory:
8811         break; // Already handled.
8812       case TargetLowering::C_Unknown:
8813         assert(false && "Unexpected unknown constraint");
8814       }
8815 
8816       // Indirect output manifest as stores. Record output chains.
8817       if (OpInfo.isIndirect) {
8818         const Value *Ptr = OpInfo.CallOperandVal;
8819         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8820         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8821                                      MachinePointerInfo(Ptr));
8822         OutChains.push_back(Store);
8823       } else {
8824         // generate CopyFromRegs to associated registers.
8825         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8826         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8827           for (const SDValue &V : Val->op_values())
8828             handleRegAssign(V);
8829         } else
8830           handleRegAssign(Val);
8831       }
8832     }
8833   }
8834 
8835   // Set results.
8836   if (!ResultValues.empty()) {
8837     assert(CurResultType == ResultTypes.end() &&
8838            "Mismatch in number of ResultTypes");
8839     assert(ResultValues.size() == ResultTypes.size() &&
8840            "Mismatch in number of output operands in asm result");
8841 
8842     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8843                             DAG.getVTList(ResultVTs), ResultValues);
8844     setValue(&Call, V);
8845   }
8846 
8847   // Collect store chains.
8848   if (!OutChains.empty())
8849     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8850 
8851   if (EmitEHLabels) {
8852     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
8853   }
8854 
8855   // Only Update Root if inline assembly has a memory effect.
8856   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
8857       EmitEHLabels)
8858     DAG.setRoot(Chain);
8859 }
8860 
8861 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8862                                              const Twine &Message) {
8863   LLVMContext &Ctx = *DAG.getContext();
8864   Ctx.emitError(&Call, Message);
8865 
8866   // Make sure we leave the DAG in a valid state
8867   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8868   SmallVector<EVT, 1> ValueVTs;
8869   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8870 
8871   if (ValueVTs.empty())
8872     return;
8873 
8874   SmallVector<SDValue, 1> Ops;
8875   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8876     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8877 
8878   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8879 }
8880 
8881 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8882   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8883                           MVT::Other, getRoot(),
8884                           getValue(I.getArgOperand(0)),
8885                           DAG.getSrcValue(I.getArgOperand(0))));
8886 }
8887 
8888 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8889   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8890   const DataLayout &DL = DAG.getDataLayout();
8891   SDValue V = DAG.getVAArg(
8892       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8893       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8894       DL.getABITypeAlign(I.getType()).value());
8895   DAG.setRoot(V.getValue(1));
8896 
8897   if (I.getType()->isPointerTy())
8898     V = DAG.getPtrExtOrTrunc(
8899         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8900   setValue(&I, V);
8901 }
8902 
8903 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8904   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8905                           MVT::Other, getRoot(),
8906                           getValue(I.getArgOperand(0)),
8907                           DAG.getSrcValue(I.getArgOperand(0))));
8908 }
8909 
8910 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8911   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8912                           MVT::Other, getRoot(),
8913                           getValue(I.getArgOperand(0)),
8914                           getValue(I.getArgOperand(1)),
8915                           DAG.getSrcValue(I.getArgOperand(0)),
8916                           DAG.getSrcValue(I.getArgOperand(1))));
8917 }
8918 
8919 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8920                                                     const Instruction &I,
8921                                                     SDValue Op) {
8922   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8923   if (!Range)
8924     return Op;
8925 
8926   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8927   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8928     return Op;
8929 
8930   APInt Lo = CR.getUnsignedMin();
8931   if (!Lo.isMinValue())
8932     return Op;
8933 
8934   APInt Hi = CR.getUnsignedMax();
8935   unsigned Bits = std::max(Hi.getActiveBits(),
8936                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8937 
8938   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8939 
8940   SDLoc SL = getCurSDLoc();
8941 
8942   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8943                              DAG.getValueType(SmallVT));
8944   unsigned NumVals = Op.getNode()->getNumValues();
8945   if (NumVals == 1)
8946     return ZExt;
8947 
8948   SmallVector<SDValue, 4> Ops;
8949 
8950   Ops.push_back(ZExt);
8951   for (unsigned I = 1; I != NumVals; ++I)
8952     Ops.push_back(Op.getValue(I));
8953 
8954   return DAG.getMergeValues(Ops, SL);
8955 }
8956 
8957 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8958 /// the call being lowered.
8959 ///
8960 /// This is a helper for lowering intrinsics that follow a target calling
8961 /// convention or require stack pointer adjustment. Only a subset of the
8962 /// intrinsic's operands need to participate in the calling convention.
8963 void SelectionDAGBuilder::populateCallLoweringInfo(
8964     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8965     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8966     bool IsPatchPoint) {
8967   TargetLowering::ArgListTy Args;
8968   Args.reserve(NumArgs);
8969 
8970   // Populate the argument list.
8971   // Attributes for args start at offset 1, after the return attribute.
8972   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8973        ArgI != ArgE; ++ArgI) {
8974     const Value *V = Call->getOperand(ArgI);
8975 
8976     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8977 
8978     TargetLowering::ArgListEntry Entry;
8979     Entry.Node = getValue(V);
8980     Entry.Ty = V->getType();
8981     Entry.setAttributes(Call, ArgI);
8982     Args.push_back(Entry);
8983   }
8984 
8985   CLI.setDebugLoc(getCurSDLoc())
8986       .setChain(getRoot())
8987       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8988       .setDiscardResult(Call->use_empty())
8989       .setIsPatchPoint(IsPatchPoint)
8990       .setIsPreallocated(
8991           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8992 }
8993 
8994 /// Add a stack map intrinsic call's live variable operands to a stackmap
8995 /// or patchpoint target node's operand list.
8996 ///
8997 /// Constants are converted to TargetConstants purely as an optimization to
8998 /// avoid constant materialization and register allocation.
8999 ///
9000 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9001 /// generate addess computation nodes, and so FinalizeISel can convert the
9002 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9003 /// address materialization and register allocation, but may also be required
9004 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9005 /// alloca in the entry block, then the runtime may assume that the alloca's
9006 /// StackMap location can be read immediately after compilation and that the
9007 /// location is valid at any point during execution (this is similar to the
9008 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9009 /// only available in a register, then the runtime would need to trap when
9010 /// execution reaches the StackMap in order to read the alloca's location.
9011 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9012                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9013                                 SelectionDAGBuilder &Builder) {
9014   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9015     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9016     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9017       Ops.push_back(
9018         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9019       Ops.push_back(
9020         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9021     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9022       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9023       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9024           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9025     } else
9026       Ops.push_back(OpVal);
9027   }
9028 }
9029 
9030 /// Lower llvm.experimental.stackmap directly to its target opcode.
9031 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9032   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9033   //                                  [live variables...])
9034 
9035   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9036 
9037   SDValue Chain, InFlag, Callee, NullPtr;
9038   SmallVector<SDValue, 32> Ops;
9039 
9040   SDLoc DL = getCurSDLoc();
9041   Callee = getValue(CI.getCalledOperand());
9042   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9043 
9044   // The stackmap intrinsic only records the live variables (the arguments
9045   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9046   // intrinsic, this won't be lowered to a function call. This means we don't
9047   // have to worry about calling conventions and target specific lowering code.
9048   // Instead we perform the call lowering right here.
9049   //
9050   // chain, flag = CALLSEQ_START(chain, 0, 0)
9051   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9052   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9053   //
9054   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9055   InFlag = Chain.getValue(1);
9056 
9057   // Add the <id> and <numBytes> constants.
9058   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9059   Ops.push_back(DAG.getTargetConstant(
9060                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9061   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9062   Ops.push_back(DAG.getTargetConstant(
9063                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9064                   MVT::i32));
9065 
9066   // Push live variables for the stack map.
9067   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9068 
9069   // We are not pushing any register mask info here on the operands list,
9070   // because the stackmap doesn't clobber anything.
9071 
9072   // Push the chain and the glue flag.
9073   Ops.push_back(Chain);
9074   Ops.push_back(InFlag);
9075 
9076   // Create the STACKMAP node.
9077   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9078   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9079   Chain = SDValue(SM, 0);
9080   InFlag = Chain.getValue(1);
9081 
9082   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9083 
9084   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9085 
9086   // Set the root to the target-lowered call chain.
9087   DAG.setRoot(Chain);
9088 
9089   // Inform the Frame Information that we have a stackmap in this function.
9090   FuncInfo.MF->getFrameInfo().setHasStackMap();
9091 }
9092 
9093 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9094 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9095                                           const BasicBlock *EHPadBB) {
9096   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9097   //                                                 i32 <numBytes>,
9098   //                                                 i8* <target>,
9099   //                                                 i32 <numArgs>,
9100   //                                                 [Args...],
9101   //                                                 [live variables...])
9102 
9103   CallingConv::ID CC = CB.getCallingConv();
9104   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9105   bool HasDef = !CB.getType()->isVoidTy();
9106   SDLoc dl = getCurSDLoc();
9107   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9108 
9109   // Handle immediate and symbolic callees.
9110   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9111     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9112                                    /*isTarget=*/true);
9113   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9114     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9115                                          SDLoc(SymbolicCallee),
9116                                          SymbolicCallee->getValueType(0));
9117 
9118   // Get the real number of arguments participating in the call <numArgs>
9119   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9120   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9121 
9122   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9123   // Intrinsics include all meta-operands up to but not including CC.
9124   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9125   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9126          "Not enough arguments provided to the patchpoint intrinsic");
9127 
9128   // For AnyRegCC the arguments are lowered later on manually.
9129   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9130   Type *ReturnTy =
9131       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9132 
9133   TargetLowering::CallLoweringInfo CLI(DAG);
9134   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9135                            ReturnTy, true);
9136   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9137 
9138   SDNode *CallEnd = Result.second.getNode();
9139   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9140     CallEnd = CallEnd->getOperand(0).getNode();
9141 
9142   /// Get a call instruction from the call sequence chain.
9143   /// Tail calls are not allowed.
9144   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9145          "Expected a callseq node.");
9146   SDNode *Call = CallEnd->getOperand(0).getNode();
9147   bool HasGlue = Call->getGluedNode();
9148 
9149   // Replace the target specific call node with the patchable intrinsic.
9150   SmallVector<SDValue, 8> Ops;
9151 
9152   // Add the <id> and <numBytes> constants.
9153   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9154   Ops.push_back(DAG.getTargetConstant(
9155                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9156   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9157   Ops.push_back(DAG.getTargetConstant(
9158                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9159                   MVT::i32));
9160 
9161   // Add the callee.
9162   Ops.push_back(Callee);
9163 
9164   // Adjust <numArgs> to account for any arguments that have been passed on the
9165   // stack instead.
9166   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9167   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9168   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9169   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9170 
9171   // Add the calling convention
9172   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9173 
9174   // Add the arguments we omitted previously. The register allocator should
9175   // place these in any free register.
9176   if (IsAnyRegCC)
9177     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9178       Ops.push_back(getValue(CB.getArgOperand(i)));
9179 
9180   // Push the arguments from the call instruction up to the register mask.
9181   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9182   Ops.append(Call->op_begin() + 2, e);
9183 
9184   // Push live variables for the stack map.
9185   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9186 
9187   // Push the register mask info.
9188   if (HasGlue)
9189     Ops.push_back(*(Call->op_end()-2));
9190   else
9191     Ops.push_back(*(Call->op_end()-1));
9192 
9193   // Push the chain (this is originally the first operand of the call, but
9194   // becomes now the last or second to last operand).
9195   Ops.push_back(*(Call->op_begin()));
9196 
9197   // Push the glue flag (last operand).
9198   if (HasGlue)
9199     Ops.push_back(*(Call->op_end()-1));
9200 
9201   SDVTList NodeTys;
9202   if (IsAnyRegCC && HasDef) {
9203     // Create the return types based on the intrinsic definition
9204     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9205     SmallVector<EVT, 3> ValueVTs;
9206     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9207     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9208 
9209     // There is always a chain and a glue type at the end
9210     ValueVTs.push_back(MVT::Other);
9211     ValueVTs.push_back(MVT::Glue);
9212     NodeTys = DAG.getVTList(ValueVTs);
9213   } else
9214     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9215 
9216   // Replace the target specific call node with a PATCHPOINT node.
9217   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9218                                          dl, NodeTys, Ops);
9219 
9220   // Update the NodeMap.
9221   if (HasDef) {
9222     if (IsAnyRegCC)
9223       setValue(&CB, SDValue(MN, 0));
9224     else
9225       setValue(&CB, Result.first);
9226   }
9227 
9228   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9229   // call sequence. Furthermore the location of the chain and glue can change
9230   // when the AnyReg calling convention is used and the intrinsic returns a
9231   // value.
9232   if (IsAnyRegCC && HasDef) {
9233     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9234     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9235     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9236   } else
9237     DAG.ReplaceAllUsesWith(Call, MN);
9238   DAG.DeleteNode(Call);
9239 
9240   // Inform the Frame Information that we have a patchpoint in this function.
9241   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9242 }
9243 
9244 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9245                                             unsigned Intrinsic) {
9246   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9247   SDValue Op1 = getValue(I.getArgOperand(0));
9248   SDValue Op2;
9249   if (I.getNumArgOperands() > 1)
9250     Op2 = getValue(I.getArgOperand(1));
9251   SDLoc dl = getCurSDLoc();
9252   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9253   SDValue Res;
9254   SDNodeFlags SDFlags;
9255   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9256     SDFlags.copyFMF(*FPMO);
9257 
9258   switch (Intrinsic) {
9259   case Intrinsic::vector_reduce_fadd:
9260     if (SDFlags.hasAllowReassociation())
9261       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9262                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9263                         SDFlags);
9264     else
9265       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9266     break;
9267   case Intrinsic::vector_reduce_fmul:
9268     if (SDFlags.hasAllowReassociation())
9269       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9270                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9271                         SDFlags);
9272     else
9273       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9274     break;
9275   case Intrinsic::vector_reduce_add:
9276     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9277     break;
9278   case Intrinsic::vector_reduce_mul:
9279     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9280     break;
9281   case Intrinsic::vector_reduce_and:
9282     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9283     break;
9284   case Intrinsic::vector_reduce_or:
9285     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9286     break;
9287   case Intrinsic::vector_reduce_xor:
9288     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9289     break;
9290   case Intrinsic::vector_reduce_smax:
9291     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9292     break;
9293   case Intrinsic::vector_reduce_smin:
9294     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9295     break;
9296   case Intrinsic::vector_reduce_umax:
9297     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9298     break;
9299   case Intrinsic::vector_reduce_umin:
9300     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9301     break;
9302   case Intrinsic::vector_reduce_fmax:
9303     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9304     break;
9305   case Intrinsic::vector_reduce_fmin:
9306     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9307     break;
9308   default:
9309     llvm_unreachable("Unhandled vector reduce intrinsic");
9310   }
9311   setValue(&I, Res);
9312 }
9313 
9314 /// Returns an AttributeList representing the attributes applied to the return
9315 /// value of the given call.
9316 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9317   SmallVector<Attribute::AttrKind, 2> Attrs;
9318   if (CLI.RetSExt)
9319     Attrs.push_back(Attribute::SExt);
9320   if (CLI.RetZExt)
9321     Attrs.push_back(Attribute::ZExt);
9322   if (CLI.IsInReg)
9323     Attrs.push_back(Attribute::InReg);
9324 
9325   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9326                             Attrs);
9327 }
9328 
9329 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9330 /// implementation, which just calls LowerCall.
9331 /// FIXME: When all targets are
9332 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9333 std::pair<SDValue, SDValue>
9334 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9335   // Handle the incoming return values from the call.
9336   CLI.Ins.clear();
9337   Type *OrigRetTy = CLI.RetTy;
9338   SmallVector<EVT, 4> RetTys;
9339   SmallVector<uint64_t, 4> Offsets;
9340   auto &DL = CLI.DAG.getDataLayout();
9341   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9342 
9343   if (CLI.IsPostTypeLegalization) {
9344     // If we are lowering a libcall after legalization, split the return type.
9345     SmallVector<EVT, 4> OldRetTys;
9346     SmallVector<uint64_t, 4> OldOffsets;
9347     RetTys.swap(OldRetTys);
9348     Offsets.swap(OldOffsets);
9349 
9350     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9351       EVT RetVT = OldRetTys[i];
9352       uint64_t Offset = OldOffsets[i];
9353       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9354       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9355       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9356       RetTys.append(NumRegs, RegisterVT);
9357       for (unsigned j = 0; j != NumRegs; ++j)
9358         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9359     }
9360   }
9361 
9362   SmallVector<ISD::OutputArg, 4> Outs;
9363   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9364 
9365   bool CanLowerReturn =
9366       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9367                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9368 
9369   SDValue DemoteStackSlot;
9370   int DemoteStackIdx = -100;
9371   if (!CanLowerReturn) {
9372     // FIXME: equivalent assert?
9373     // assert(!CS.hasInAllocaArgument() &&
9374     //        "sret demotion is incompatible with inalloca");
9375     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9376     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9377     MachineFunction &MF = CLI.DAG.getMachineFunction();
9378     DemoteStackIdx =
9379         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9380     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9381                                               DL.getAllocaAddrSpace());
9382 
9383     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9384     ArgListEntry Entry;
9385     Entry.Node = DemoteStackSlot;
9386     Entry.Ty = StackSlotPtrType;
9387     Entry.IsSExt = false;
9388     Entry.IsZExt = false;
9389     Entry.IsInReg = false;
9390     Entry.IsSRet = true;
9391     Entry.IsNest = false;
9392     Entry.IsByVal = false;
9393     Entry.IsByRef = false;
9394     Entry.IsReturned = false;
9395     Entry.IsSwiftSelf = false;
9396     Entry.IsSwiftAsync = false;
9397     Entry.IsSwiftError = false;
9398     Entry.IsCFGuardTarget = false;
9399     Entry.Alignment = Alignment;
9400     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9401     CLI.NumFixedArgs += 1;
9402     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9403 
9404     // sret demotion isn't compatible with tail-calls, since the sret argument
9405     // points into the callers stack frame.
9406     CLI.IsTailCall = false;
9407   } else {
9408     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9409         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9410     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9411       ISD::ArgFlagsTy Flags;
9412       if (NeedsRegBlock) {
9413         Flags.setInConsecutiveRegs();
9414         if (I == RetTys.size() - 1)
9415           Flags.setInConsecutiveRegsLast();
9416       }
9417       EVT VT = RetTys[I];
9418       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9419                                                      CLI.CallConv, VT);
9420       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9421                                                        CLI.CallConv, VT);
9422       for (unsigned i = 0; i != NumRegs; ++i) {
9423         ISD::InputArg MyFlags;
9424         MyFlags.Flags = Flags;
9425         MyFlags.VT = RegisterVT;
9426         MyFlags.ArgVT = VT;
9427         MyFlags.Used = CLI.IsReturnValueUsed;
9428         if (CLI.RetTy->isPointerTy()) {
9429           MyFlags.Flags.setPointer();
9430           MyFlags.Flags.setPointerAddrSpace(
9431               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9432         }
9433         if (CLI.RetSExt)
9434           MyFlags.Flags.setSExt();
9435         if (CLI.RetZExt)
9436           MyFlags.Flags.setZExt();
9437         if (CLI.IsInReg)
9438           MyFlags.Flags.setInReg();
9439         CLI.Ins.push_back(MyFlags);
9440       }
9441     }
9442   }
9443 
9444   // We push in swifterror return as the last element of CLI.Ins.
9445   ArgListTy &Args = CLI.getArgs();
9446   if (supportSwiftError()) {
9447     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9448       if (Args[i].IsSwiftError) {
9449         ISD::InputArg MyFlags;
9450         MyFlags.VT = getPointerTy(DL);
9451         MyFlags.ArgVT = EVT(getPointerTy(DL));
9452         MyFlags.Flags.setSwiftError();
9453         CLI.Ins.push_back(MyFlags);
9454       }
9455     }
9456   }
9457 
9458   // Handle all of the outgoing arguments.
9459   CLI.Outs.clear();
9460   CLI.OutVals.clear();
9461   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9462     SmallVector<EVT, 4> ValueVTs;
9463     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9464     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9465     Type *FinalType = Args[i].Ty;
9466     if (Args[i].IsByVal)
9467       FinalType = Args[i].IndirectType;
9468     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9469         FinalType, CLI.CallConv, CLI.IsVarArg);
9470     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9471          ++Value) {
9472       EVT VT = ValueVTs[Value];
9473       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9474       SDValue Op = SDValue(Args[i].Node.getNode(),
9475                            Args[i].Node.getResNo() + Value);
9476       ISD::ArgFlagsTy Flags;
9477 
9478       // Certain targets (such as MIPS), may have a different ABI alignment
9479       // for a type depending on the context. Give the target a chance to
9480       // specify the alignment it wants.
9481       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9482       Flags.setOrigAlign(OriginalAlignment);
9483 
9484       if (Args[i].Ty->isPointerTy()) {
9485         Flags.setPointer();
9486         Flags.setPointerAddrSpace(
9487             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9488       }
9489       if (Args[i].IsZExt)
9490         Flags.setZExt();
9491       if (Args[i].IsSExt)
9492         Flags.setSExt();
9493       if (Args[i].IsInReg) {
9494         // If we are using vectorcall calling convention, a structure that is
9495         // passed InReg - is surely an HVA
9496         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9497             isa<StructType>(FinalType)) {
9498           // The first value of a structure is marked
9499           if (0 == Value)
9500             Flags.setHvaStart();
9501           Flags.setHva();
9502         }
9503         // Set InReg Flag
9504         Flags.setInReg();
9505       }
9506       if (Args[i].IsSRet)
9507         Flags.setSRet();
9508       if (Args[i].IsSwiftSelf)
9509         Flags.setSwiftSelf();
9510       if (Args[i].IsSwiftAsync)
9511         Flags.setSwiftAsync();
9512       if (Args[i].IsSwiftError)
9513         Flags.setSwiftError();
9514       if (Args[i].IsCFGuardTarget)
9515         Flags.setCFGuardTarget();
9516       if (Args[i].IsByVal)
9517         Flags.setByVal();
9518       if (Args[i].IsByRef)
9519         Flags.setByRef();
9520       if (Args[i].IsPreallocated) {
9521         Flags.setPreallocated();
9522         // Set the byval flag for CCAssignFn callbacks that don't know about
9523         // preallocated.  This way we can know how many bytes we should've
9524         // allocated and how many bytes a callee cleanup function will pop.  If
9525         // we port preallocated to more targets, we'll have to add custom
9526         // preallocated handling in the various CC lowering callbacks.
9527         Flags.setByVal();
9528       }
9529       if (Args[i].IsInAlloca) {
9530         Flags.setInAlloca();
9531         // Set the byval flag for CCAssignFn callbacks that don't know about
9532         // inalloca.  This way we can know how many bytes we should've allocated
9533         // and how many bytes a callee cleanup function will pop.  If we port
9534         // inalloca to more targets, we'll have to add custom inalloca handling
9535         // in the various CC lowering callbacks.
9536         Flags.setByVal();
9537       }
9538       Align MemAlign;
9539       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9540         Type *ElementTy = Args[i].IndirectType;
9541         assert(ElementTy && "Indirect type not set in ArgListEntry");
9542 
9543         unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
9544         Flags.setByValSize(FrameSize);
9545 
9546         // info is not there but there are cases it cannot get right.
9547         if (auto MA = Args[i].Alignment)
9548           MemAlign = *MA;
9549         else
9550           MemAlign = Align(getByValTypeAlignment(ElementTy, DL));
9551       } else if (auto MA = Args[i].Alignment) {
9552         MemAlign = *MA;
9553       } else {
9554         MemAlign = OriginalAlignment;
9555       }
9556       Flags.setMemAlign(MemAlign);
9557       if (Args[i].IsNest)
9558         Flags.setNest();
9559       if (NeedsRegBlock)
9560         Flags.setInConsecutiveRegs();
9561 
9562       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9563                                                  CLI.CallConv, VT);
9564       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9565                                                         CLI.CallConv, VT);
9566       SmallVector<SDValue, 4> Parts(NumParts);
9567       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9568 
9569       if (Args[i].IsSExt)
9570         ExtendKind = ISD::SIGN_EXTEND;
9571       else if (Args[i].IsZExt)
9572         ExtendKind = ISD::ZERO_EXTEND;
9573 
9574       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9575       // for now.
9576       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9577           CanLowerReturn) {
9578         assert((CLI.RetTy == Args[i].Ty ||
9579                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9580                  CLI.RetTy->getPointerAddressSpace() ==
9581                      Args[i].Ty->getPointerAddressSpace())) &&
9582                RetTys.size() == NumValues && "unexpected use of 'returned'");
9583         // Before passing 'returned' to the target lowering code, ensure that
9584         // either the register MVT and the actual EVT are the same size or that
9585         // the return value and argument are extended in the same way; in these
9586         // cases it's safe to pass the argument register value unchanged as the
9587         // return register value (although it's at the target's option whether
9588         // to do so)
9589         // TODO: allow code generation to take advantage of partially preserved
9590         // registers rather than clobbering the entire register when the
9591         // parameter extension method is not compatible with the return
9592         // extension method
9593         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9594             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9595              CLI.RetZExt == Args[i].IsZExt))
9596           Flags.setReturned();
9597       }
9598 
9599       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9600                      CLI.CallConv, ExtendKind);
9601 
9602       for (unsigned j = 0; j != NumParts; ++j) {
9603         // if it isn't first piece, alignment must be 1
9604         // For scalable vectors the scalable part is currently handled
9605         // by individual targets, so we just use the known minimum size here.
9606         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9607                     i < CLI.NumFixedArgs, i,
9608                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9609         if (NumParts > 1 && j == 0)
9610           MyFlags.Flags.setSplit();
9611         else if (j != 0) {
9612           MyFlags.Flags.setOrigAlign(Align(1));
9613           if (j == NumParts - 1)
9614             MyFlags.Flags.setSplitEnd();
9615         }
9616 
9617         CLI.Outs.push_back(MyFlags);
9618         CLI.OutVals.push_back(Parts[j]);
9619       }
9620 
9621       if (NeedsRegBlock && Value == NumValues - 1)
9622         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9623     }
9624   }
9625 
9626   SmallVector<SDValue, 4> InVals;
9627   CLI.Chain = LowerCall(CLI, InVals);
9628 
9629   // Update CLI.InVals to use outside of this function.
9630   CLI.InVals = InVals;
9631 
9632   // Verify that the target's LowerCall behaved as expected.
9633   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9634          "LowerCall didn't return a valid chain!");
9635   assert((!CLI.IsTailCall || InVals.empty()) &&
9636          "LowerCall emitted a return value for a tail call!");
9637   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9638          "LowerCall didn't emit the correct number of values!");
9639 
9640   // For a tail call, the return value is merely live-out and there aren't
9641   // any nodes in the DAG representing it. Return a special value to
9642   // indicate that a tail call has been emitted and no more Instructions
9643   // should be processed in the current block.
9644   if (CLI.IsTailCall) {
9645     CLI.DAG.setRoot(CLI.Chain);
9646     return std::make_pair(SDValue(), SDValue());
9647   }
9648 
9649 #ifndef NDEBUG
9650   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9651     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9652     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9653            "LowerCall emitted a value with the wrong type!");
9654   }
9655 #endif
9656 
9657   SmallVector<SDValue, 4> ReturnValues;
9658   if (!CanLowerReturn) {
9659     // The instruction result is the result of loading from the
9660     // hidden sret parameter.
9661     SmallVector<EVT, 1> PVTs;
9662     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9663 
9664     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9665     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9666     EVT PtrVT = PVTs[0];
9667 
9668     unsigned NumValues = RetTys.size();
9669     ReturnValues.resize(NumValues);
9670     SmallVector<SDValue, 4> Chains(NumValues);
9671 
9672     // An aggregate return value cannot wrap around the address space, so
9673     // offsets to its parts don't wrap either.
9674     SDNodeFlags Flags;
9675     Flags.setNoUnsignedWrap(true);
9676 
9677     MachineFunction &MF = CLI.DAG.getMachineFunction();
9678     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9679     for (unsigned i = 0; i < NumValues; ++i) {
9680       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9681                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9682                                                         PtrVT), Flags);
9683       SDValue L = CLI.DAG.getLoad(
9684           RetTys[i], CLI.DL, CLI.Chain, Add,
9685           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9686                                             DemoteStackIdx, Offsets[i]),
9687           HiddenSRetAlign);
9688       ReturnValues[i] = L;
9689       Chains[i] = L.getValue(1);
9690     }
9691 
9692     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9693   } else {
9694     // Collect the legal value parts into potentially illegal values
9695     // that correspond to the original function's return values.
9696     Optional<ISD::NodeType> AssertOp;
9697     if (CLI.RetSExt)
9698       AssertOp = ISD::AssertSext;
9699     else if (CLI.RetZExt)
9700       AssertOp = ISD::AssertZext;
9701     unsigned CurReg = 0;
9702     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9703       EVT VT = RetTys[I];
9704       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9705                                                      CLI.CallConv, VT);
9706       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9707                                                        CLI.CallConv, VT);
9708 
9709       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9710                                               NumRegs, RegisterVT, VT, nullptr,
9711                                               CLI.CallConv, AssertOp));
9712       CurReg += NumRegs;
9713     }
9714 
9715     // For a function returning void, there is no return value. We can't create
9716     // such a node, so we just return a null return value in that case. In
9717     // that case, nothing will actually look at the value.
9718     if (ReturnValues.empty())
9719       return std::make_pair(SDValue(), CLI.Chain);
9720   }
9721 
9722   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9723                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9724   return std::make_pair(Res, CLI.Chain);
9725 }
9726 
9727 /// Places new result values for the node in Results (their number
9728 /// and types must exactly match those of the original return values of
9729 /// the node), or leaves Results empty, which indicates that the node is not
9730 /// to be custom lowered after all.
9731 void TargetLowering::LowerOperationWrapper(SDNode *N,
9732                                            SmallVectorImpl<SDValue> &Results,
9733                                            SelectionDAG &DAG) const {
9734   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9735 
9736   if (!Res.getNode())
9737     return;
9738 
9739   // If the original node has one result, take the return value from
9740   // LowerOperation as is. It might not be result number 0.
9741   if (N->getNumValues() == 1) {
9742     Results.push_back(Res);
9743     return;
9744   }
9745 
9746   // If the original node has multiple results, then the return node should
9747   // have the same number of results.
9748   assert((N->getNumValues() == Res->getNumValues()) &&
9749       "Lowering returned the wrong number of results!");
9750 
9751   // Places new result values base on N result number.
9752   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9753     Results.push_back(Res.getValue(I));
9754 }
9755 
9756 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9757   llvm_unreachable("LowerOperation not implemented for this target!");
9758 }
9759 
9760 void
9761 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9762   SDValue Op = getNonRegisterValue(V);
9763   assert((Op.getOpcode() != ISD::CopyFromReg ||
9764           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9765          "Copy from a reg to the same reg!");
9766   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9767 
9768   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9769   // If this is an InlineAsm we have to match the registers required, not the
9770   // notional registers required by the type.
9771 
9772   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9773                    None); // This is not an ABI copy.
9774   SDValue Chain = DAG.getEntryNode();
9775 
9776   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9777                               FuncInfo.PreferredExtendType.end())
9778                                  ? ISD::ANY_EXTEND
9779                                  : FuncInfo.PreferredExtendType[V];
9780   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9781   PendingExports.push_back(Chain);
9782 }
9783 
9784 #include "llvm/CodeGen/SelectionDAGISel.h"
9785 
9786 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9787 /// entry block, return true.  This includes arguments used by switches, since
9788 /// the switch may expand into multiple basic blocks.
9789 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9790   // With FastISel active, we may be splitting blocks, so force creation
9791   // of virtual registers for all non-dead arguments.
9792   if (FastISel)
9793     return A->use_empty();
9794 
9795   const BasicBlock &Entry = A->getParent()->front();
9796   for (const User *U : A->users())
9797     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9798       return false;  // Use not in entry block.
9799 
9800   return true;
9801 }
9802 
9803 using ArgCopyElisionMapTy =
9804     DenseMap<const Argument *,
9805              std::pair<const AllocaInst *, const StoreInst *>>;
9806 
9807 /// Scan the entry block of the function in FuncInfo for arguments that look
9808 /// like copies into a local alloca. Record any copied arguments in
9809 /// ArgCopyElisionCandidates.
9810 static void
9811 findArgumentCopyElisionCandidates(const DataLayout &DL,
9812                                   FunctionLoweringInfo *FuncInfo,
9813                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9814   // Record the state of every static alloca used in the entry block. Argument
9815   // allocas are all used in the entry block, so we need approximately as many
9816   // entries as we have arguments.
9817   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9818   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9819   unsigned NumArgs = FuncInfo->Fn->arg_size();
9820   StaticAllocas.reserve(NumArgs * 2);
9821 
9822   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9823     if (!V)
9824       return nullptr;
9825     V = V->stripPointerCasts();
9826     const auto *AI = dyn_cast<AllocaInst>(V);
9827     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9828       return nullptr;
9829     auto Iter = StaticAllocas.insert({AI, Unknown});
9830     return &Iter.first->second;
9831   };
9832 
9833   // Look for stores of arguments to static allocas. Look through bitcasts and
9834   // GEPs to handle type coercions, as long as the alloca is fully initialized
9835   // by the store. Any non-store use of an alloca escapes it and any subsequent
9836   // unanalyzed store might write it.
9837   // FIXME: Handle structs initialized with multiple stores.
9838   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9839     // Look for stores, and handle non-store uses conservatively.
9840     const auto *SI = dyn_cast<StoreInst>(&I);
9841     if (!SI) {
9842       // We will look through cast uses, so ignore them completely.
9843       if (I.isCast())
9844         continue;
9845       // Ignore debug info and pseudo op intrinsics, they don't escape or store
9846       // to allocas.
9847       if (I.isDebugOrPseudoInst())
9848         continue;
9849       // This is an unknown instruction. Assume it escapes or writes to all
9850       // static alloca operands.
9851       for (const Use &U : I.operands()) {
9852         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9853           *Info = StaticAllocaInfo::Clobbered;
9854       }
9855       continue;
9856     }
9857 
9858     // If the stored value is a static alloca, mark it as escaped.
9859     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9860       *Info = StaticAllocaInfo::Clobbered;
9861 
9862     // Check if the destination is a static alloca.
9863     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9864     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9865     if (!Info)
9866       continue;
9867     const AllocaInst *AI = cast<AllocaInst>(Dst);
9868 
9869     // Skip allocas that have been initialized or clobbered.
9870     if (*Info != StaticAllocaInfo::Unknown)
9871       continue;
9872 
9873     // Check if the stored value is an argument, and that this store fully
9874     // initializes the alloca. Don't elide copies from the same argument twice.
9875     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9876     const auto *Arg = dyn_cast<Argument>(Val);
9877     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9878         Arg->getType()->isEmptyTy() ||
9879         DL.getTypeStoreSize(Arg->getType()) !=
9880             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9881         ArgCopyElisionCandidates.count(Arg)) {
9882       *Info = StaticAllocaInfo::Clobbered;
9883       continue;
9884     }
9885 
9886     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9887                       << '\n');
9888 
9889     // Mark this alloca and store for argument copy elision.
9890     *Info = StaticAllocaInfo::Elidable;
9891     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9892 
9893     // Stop scanning if we've seen all arguments. This will happen early in -O0
9894     // builds, which is useful, because -O0 builds have large entry blocks and
9895     // many allocas.
9896     if (ArgCopyElisionCandidates.size() == NumArgs)
9897       break;
9898   }
9899 }
9900 
9901 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9902 /// ArgVal is a load from a suitable fixed stack object.
9903 static void tryToElideArgumentCopy(
9904     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9905     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9906     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9907     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9908     SDValue ArgVal, bool &ArgHasUses) {
9909   // Check if this is a load from a fixed stack object.
9910   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9911   if (!LNode)
9912     return;
9913   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9914   if (!FINode)
9915     return;
9916 
9917   // Check that the fixed stack object is the right size and alignment.
9918   // Look at the alignment that the user wrote on the alloca instead of looking
9919   // at the stack object.
9920   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9921   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9922   const AllocaInst *AI = ArgCopyIter->second.first;
9923   int FixedIndex = FINode->getIndex();
9924   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9925   int OldIndex = AllocaIndex;
9926   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9927   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9928     LLVM_DEBUG(
9929         dbgs() << "  argument copy elision failed due to bad fixed stack "
9930                   "object size\n");
9931     return;
9932   }
9933   Align RequiredAlignment = AI->getAlign();
9934   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9935     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9936                          "greater than stack argument alignment ("
9937                       << DebugStr(RequiredAlignment) << " vs "
9938                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9939     return;
9940   }
9941 
9942   // Perform the elision. Delete the old stack object and replace its only use
9943   // in the variable info map. Mark the stack object as mutable.
9944   LLVM_DEBUG({
9945     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9946            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9947            << '\n';
9948   });
9949   MFI.RemoveStackObject(OldIndex);
9950   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9951   AllocaIndex = FixedIndex;
9952   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9953   Chains.push_back(ArgVal.getValue(1));
9954 
9955   // Avoid emitting code for the store implementing the copy.
9956   const StoreInst *SI = ArgCopyIter->second.second;
9957   ElidedArgCopyInstrs.insert(SI);
9958 
9959   // Check for uses of the argument again so that we can avoid exporting ArgVal
9960   // if it is't used by anything other than the store.
9961   for (const Value *U : Arg.users()) {
9962     if (U != SI) {
9963       ArgHasUses = true;
9964       break;
9965     }
9966   }
9967 }
9968 
9969 void SelectionDAGISel::LowerArguments(const Function &F) {
9970   SelectionDAG &DAG = SDB->DAG;
9971   SDLoc dl = SDB->getCurSDLoc();
9972   const DataLayout &DL = DAG.getDataLayout();
9973   SmallVector<ISD::InputArg, 16> Ins;
9974 
9975   // In Naked functions we aren't going to save any registers.
9976   if (F.hasFnAttribute(Attribute::Naked))
9977     return;
9978 
9979   if (!FuncInfo->CanLowerReturn) {
9980     // Put in an sret pointer parameter before all the other parameters.
9981     SmallVector<EVT, 1> ValueVTs;
9982     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9983                     F.getReturnType()->getPointerTo(
9984                         DAG.getDataLayout().getAllocaAddrSpace()),
9985                     ValueVTs);
9986 
9987     // NOTE: Assuming that a pointer will never break down to more than one VT
9988     // or one register.
9989     ISD::ArgFlagsTy Flags;
9990     Flags.setSRet();
9991     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9992     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9993                          ISD::InputArg::NoArgIndex, 0);
9994     Ins.push_back(RetArg);
9995   }
9996 
9997   // Look for stores of arguments to static allocas. Mark such arguments with a
9998   // flag to ask the target to give us the memory location of that argument if
9999   // available.
10000   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10001   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10002                                     ArgCopyElisionCandidates);
10003 
10004   // Set up the incoming argument description vector.
10005   for (const Argument &Arg : F.args()) {
10006     unsigned ArgNo = Arg.getArgNo();
10007     SmallVector<EVT, 4> ValueVTs;
10008     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10009     bool isArgValueUsed = !Arg.use_empty();
10010     unsigned PartBase = 0;
10011     Type *FinalType = Arg.getType();
10012     if (Arg.hasAttribute(Attribute::ByVal))
10013       FinalType = Arg.getParamByValType();
10014     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10015         FinalType, F.getCallingConv(), F.isVarArg());
10016     for (unsigned Value = 0, NumValues = ValueVTs.size();
10017          Value != NumValues; ++Value) {
10018       EVT VT = ValueVTs[Value];
10019       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10020       ISD::ArgFlagsTy Flags;
10021 
10022 
10023       if (Arg.getType()->isPointerTy()) {
10024         Flags.setPointer();
10025         Flags.setPointerAddrSpace(
10026             cast<PointerType>(Arg.getType())->getAddressSpace());
10027       }
10028       if (Arg.hasAttribute(Attribute::ZExt))
10029         Flags.setZExt();
10030       if (Arg.hasAttribute(Attribute::SExt))
10031         Flags.setSExt();
10032       if (Arg.hasAttribute(Attribute::InReg)) {
10033         // If we are using vectorcall calling convention, a structure that is
10034         // passed InReg - is surely an HVA
10035         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10036             isa<StructType>(Arg.getType())) {
10037           // The first value of a structure is marked
10038           if (0 == Value)
10039             Flags.setHvaStart();
10040           Flags.setHva();
10041         }
10042         // Set InReg Flag
10043         Flags.setInReg();
10044       }
10045       if (Arg.hasAttribute(Attribute::StructRet))
10046         Flags.setSRet();
10047       if (Arg.hasAttribute(Attribute::SwiftSelf))
10048         Flags.setSwiftSelf();
10049       if (Arg.hasAttribute(Attribute::SwiftAsync))
10050         Flags.setSwiftAsync();
10051       if (Arg.hasAttribute(Attribute::SwiftError))
10052         Flags.setSwiftError();
10053       if (Arg.hasAttribute(Attribute::ByVal))
10054         Flags.setByVal();
10055       if (Arg.hasAttribute(Attribute::ByRef))
10056         Flags.setByRef();
10057       if (Arg.hasAttribute(Attribute::InAlloca)) {
10058         Flags.setInAlloca();
10059         // Set the byval flag for CCAssignFn callbacks that don't know about
10060         // inalloca.  This way we can know how many bytes we should've allocated
10061         // and how many bytes a callee cleanup function will pop.  If we port
10062         // inalloca to more targets, we'll have to add custom inalloca handling
10063         // in the various CC lowering callbacks.
10064         Flags.setByVal();
10065       }
10066       if (Arg.hasAttribute(Attribute::Preallocated)) {
10067         Flags.setPreallocated();
10068         // Set the byval flag for CCAssignFn callbacks that don't know about
10069         // preallocated.  This way we can know how many bytes we should've
10070         // allocated and how many bytes a callee cleanup function will pop.  If
10071         // we port preallocated to more targets, we'll have to add custom
10072         // preallocated handling in the various CC lowering callbacks.
10073         Flags.setByVal();
10074       }
10075 
10076       // Certain targets (such as MIPS), may have a different ABI alignment
10077       // for a type depending on the context. Give the target a chance to
10078       // specify the alignment it wants.
10079       const Align OriginalAlignment(
10080           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10081       Flags.setOrigAlign(OriginalAlignment);
10082 
10083       Align MemAlign;
10084       Type *ArgMemTy = nullptr;
10085       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10086           Flags.isByRef()) {
10087         if (!ArgMemTy)
10088           ArgMemTy = Arg.getPointeeInMemoryValueType();
10089 
10090         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10091 
10092         // For in-memory arguments, size and alignment should be passed from FE.
10093         // BE will guess if this info is not there but there are cases it cannot
10094         // get right.
10095         if (auto ParamAlign = Arg.getParamStackAlign())
10096           MemAlign = *ParamAlign;
10097         else if ((ParamAlign = Arg.getParamAlign()))
10098           MemAlign = *ParamAlign;
10099         else
10100           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10101         if (Flags.isByRef())
10102           Flags.setByRefSize(MemSize);
10103         else
10104           Flags.setByValSize(MemSize);
10105       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10106         MemAlign = *ParamAlign;
10107       } else {
10108         MemAlign = OriginalAlignment;
10109       }
10110       Flags.setMemAlign(MemAlign);
10111 
10112       if (Arg.hasAttribute(Attribute::Nest))
10113         Flags.setNest();
10114       if (NeedsRegBlock)
10115         Flags.setInConsecutiveRegs();
10116       if (ArgCopyElisionCandidates.count(&Arg))
10117         Flags.setCopyElisionCandidate();
10118       if (Arg.hasAttribute(Attribute::Returned))
10119         Flags.setReturned();
10120 
10121       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10122           *CurDAG->getContext(), F.getCallingConv(), VT);
10123       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10124           *CurDAG->getContext(), F.getCallingConv(), VT);
10125       for (unsigned i = 0; i != NumRegs; ++i) {
10126         // For scalable vectors, use the minimum size; individual targets
10127         // are responsible for handling scalable vector arguments and
10128         // return values.
10129         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10130                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10131         if (NumRegs > 1 && i == 0)
10132           MyFlags.Flags.setSplit();
10133         // if it isn't first piece, alignment must be 1
10134         else if (i > 0) {
10135           MyFlags.Flags.setOrigAlign(Align(1));
10136           if (i == NumRegs - 1)
10137             MyFlags.Flags.setSplitEnd();
10138         }
10139         Ins.push_back(MyFlags);
10140       }
10141       if (NeedsRegBlock && Value == NumValues - 1)
10142         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10143       PartBase += VT.getStoreSize().getKnownMinSize();
10144     }
10145   }
10146 
10147   // Call the target to set up the argument values.
10148   SmallVector<SDValue, 8> InVals;
10149   SDValue NewRoot = TLI->LowerFormalArguments(
10150       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10151 
10152   // Verify that the target's LowerFormalArguments behaved as expected.
10153   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10154          "LowerFormalArguments didn't return a valid chain!");
10155   assert(InVals.size() == Ins.size() &&
10156          "LowerFormalArguments didn't emit the correct number of values!");
10157   LLVM_DEBUG({
10158     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10159       assert(InVals[i].getNode() &&
10160              "LowerFormalArguments emitted a null value!");
10161       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10162              "LowerFormalArguments emitted a value with the wrong type!");
10163     }
10164   });
10165 
10166   // Update the DAG with the new chain value resulting from argument lowering.
10167   DAG.setRoot(NewRoot);
10168 
10169   // Set up the argument values.
10170   unsigned i = 0;
10171   if (!FuncInfo->CanLowerReturn) {
10172     // Create a virtual register for the sret pointer, and put in a copy
10173     // from the sret argument into it.
10174     SmallVector<EVT, 1> ValueVTs;
10175     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10176                     F.getReturnType()->getPointerTo(
10177                         DAG.getDataLayout().getAllocaAddrSpace()),
10178                     ValueVTs);
10179     MVT VT = ValueVTs[0].getSimpleVT();
10180     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10181     Optional<ISD::NodeType> AssertOp = None;
10182     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10183                                         nullptr, F.getCallingConv(), AssertOp);
10184 
10185     MachineFunction& MF = SDB->DAG.getMachineFunction();
10186     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10187     Register SRetReg =
10188         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10189     FuncInfo->DemoteRegister = SRetReg;
10190     NewRoot =
10191         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10192     DAG.setRoot(NewRoot);
10193 
10194     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10195     ++i;
10196   }
10197 
10198   SmallVector<SDValue, 4> Chains;
10199   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10200   for (const Argument &Arg : F.args()) {
10201     SmallVector<SDValue, 4> ArgValues;
10202     SmallVector<EVT, 4> ValueVTs;
10203     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10204     unsigned NumValues = ValueVTs.size();
10205     if (NumValues == 0)
10206       continue;
10207 
10208     bool ArgHasUses = !Arg.use_empty();
10209 
10210     // Elide the copying store if the target loaded this argument from a
10211     // suitable fixed stack object.
10212     if (Ins[i].Flags.isCopyElisionCandidate()) {
10213       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10214                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10215                              InVals[i], ArgHasUses);
10216     }
10217 
10218     // If this argument is unused then remember its value. It is used to generate
10219     // debugging information.
10220     bool isSwiftErrorArg =
10221         TLI->supportSwiftError() &&
10222         Arg.hasAttribute(Attribute::SwiftError);
10223     if (!ArgHasUses && !isSwiftErrorArg) {
10224       SDB->setUnusedArgValue(&Arg, InVals[i]);
10225 
10226       // Also remember any frame index for use in FastISel.
10227       if (FrameIndexSDNode *FI =
10228           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10229         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10230     }
10231 
10232     for (unsigned Val = 0; Val != NumValues; ++Val) {
10233       EVT VT = ValueVTs[Val];
10234       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10235                                                       F.getCallingConv(), VT);
10236       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10237           *CurDAG->getContext(), F.getCallingConv(), VT);
10238 
10239       // Even an apparent 'unused' swifterror argument needs to be returned. So
10240       // we do generate a copy for it that can be used on return from the
10241       // function.
10242       if (ArgHasUses || isSwiftErrorArg) {
10243         Optional<ISD::NodeType> AssertOp;
10244         if (Arg.hasAttribute(Attribute::SExt))
10245           AssertOp = ISD::AssertSext;
10246         else if (Arg.hasAttribute(Attribute::ZExt))
10247           AssertOp = ISD::AssertZext;
10248 
10249         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10250                                              PartVT, VT, nullptr,
10251                                              F.getCallingConv(), AssertOp));
10252       }
10253 
10254       i += NumParts;
10255     }
10256 
10257     // We don't need to do anything else for unused arguments.
10258     if (ArgValues.empty())
10259       continue;
10260 
10261     // Note down frame index.
10262     if (FrameIndexSDNode *FI =
10263         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10264       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10265 
10266     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10267                                      SDB->getCurSDLoc());
10268 
10269     SDB->setValue(&Arg, Res);
10270     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10271       // We want to associate the argument with the frame index, among
10272       // involved operands, that correspond to the lowest address. The
10273       // getCopyFromParts function, called earlier, is swapping the order of
10274       // the operands to BUILD_PAIR depending on endianness. The result of
10275       // that swapping is that the least significant bits of the argument will
10276       // be in the first operand of the BUILD_PAIR node, and the most
10277       // significant bits will be in the second operand.
10278       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10279       if (LoadSDNode *LNode =
10280           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10281         if (FrameIndexSDNode *FI =
10282             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10283           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10284     }
10285 
10286     // Analyses past this point are naive and don't expect an assertion.
10287     if (Res.getOpcode() == ISD::AssertZext)
10288       Res = Res.getOperand(0);
10289 
10290     // Update the SwiftErrorVRegDefMap.
10291     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10292       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10293       if (Register::isVirtualRegister(Reg))
10294         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10295                                    Reg);
10296     }
10297 
10298     // If this argument is live outside of the entry block, insert a copy from
10299     // wherever we got it to the vreg that other BB's will reference it as.
10300     if (Res.getOpcode() == ISD::CopyFromReg) {
10301       // If we can, though, try to skip creating an unnecessary vreg.
10302       // FIXME: This isn't very clean... it would be nice to make this more
10303       // general.
10304       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10305       if (Register::isVirtualRegister(Reg)) {
10306         FuncInfo->ValueMap[&Arg] = Reg;
10307         continue;
10308       }
10309     }
10310     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10311       FuncInfo->InitializeRegForValue(&Arg);
10312       SDB->CopyToExportRegsIfNeeded(&Arg);
10313     }
10314   }
10315 
10316   if (!Chains.empty()) {
10317     Chains.push_back(NewRoot);
10318     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10319   }
10320 
10321   DAG.setRoot(NewRoot);
10322 
10323   assert(i == InVals.size() && "Argument register count mismatch!");
10324 
10325   // If any argument copy elisions occurred and we have debug info, update the
10326   // stale frame indices used in the dbg.declare variable info table.
10327   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10328   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10329     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10330       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10331       if (I != ArgCopyElisionFrameIndexMap.end())
10332         VI.Slot = I->second;
10333     }
10334   }
10335 
10336   // Finally, if the target has anything special to do, allow it to do so.
10337   emitFunctionEntryCode();
10338 }
10339 
10340 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10341 /// ensure constants are generated when needed.  Remember the virtual registers
10342 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10343 /// directly add them, because expansion might result in multiple MBB's for one
10344 /// BB.  As such, the start of the BB might correspond to a different MBB than
10345 /// the end.
10346 void
10347 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10348   const Instruction *TI = LLVMBB->getTerminator();
10349 
10350   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10351 
10352   // Check PHI nodes in successors that expect a value to be available from this
10353   // block.
10354   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10355     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10356     if (!isa<PHINode>(SuccBB->begin())) continue;
10357     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10358 
10359     // If this terminator has multiple identical successors (common for
10360     // switches), only handle each succ once.
10361     if (!SuccsHandled.insert(SuccMBB).second)
10362       continue;
10363 
10364     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10365 
10366     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10367     // nodes and Machine PHI nodes, but the incoming operands have not been
10368     // emitted yet.
10369     for (const PHINode &PN : SuccBB->phis()) {
10370       // Ignore dead phi's.
10371       if (PN.use_empty())
10372         continue;
10373 
10374       // Skip empty types
10375       if (PN.getType()->isEmptyTy())
10376         continue;
10377 
10378       unsigned Reg;
10379       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10380 
10381       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10382         unsigned &RegOut = ConstantsOut[C];
10383         if (RegOut == 0) {
10384           RegOut = FuncInfo.CreateRegs(C);
10385           CopyValueToVirtualRegister(C, RegOut);
10386         }
10387         Reg = RegOut;
10388       } else {
10389         DenseMap<const Value *, Register>::iterator I =
10390           FuncInfo.ValueMap.find(PHIOp);
10391         if (I != FuncInfo.ValueMap.end())
10392           Reg = I->second;
10393         else {
10394           assert(isa<AllocaInst>(PHIOp) &&
10395                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10396                  "Didn't codegen value into a register!??");
10397           Reg = FuncInfo.CreateRegs(PHIOp);
10398           CopyValueToVirtualRegister(PHIOp, Reg);
10399         }
10400       }
10401 
10402       // Remember that this register needs to added to the machine PHI node as
10403       // the input for this MBB.
10404       SmallVector<EVT, 4> ValueVTs;
10405       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10406       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10407       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10408         EVT VT = ValueVTs[vti];
10409         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10410         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10411           FuncInfo.PHINodesToUpdate.push_back(
10412               std::make_pair(&*MBBI++, Reg + i));
10413         Reg += NumRegisters;
10414       }
10415     }
10416   }
10417 
10418   ConstantsOut.clear();
10419 }
10420 
10421 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10422 /// is 0.
10423 MachineBasicBlock *
10424 SelectionDAGBuilder::StackProtectorDescriptor::
10425 AddSuccessorMBB(const BasicBlock *BB,
10426                 MachineBasicBlock *ParentMBB,
10427                 bool IsLikely,
10428                 MachineBasicBlock *SuccMBB) {
10429   // If SuccBB has not been created yet, create it.
10430   if (!SuccMBB) {
10431     MachineFunction *MF = ParentMBB->getParent();
10432     MachineFunction::iterator BBI(ParentMBB);
10433     SuccMBB = MF->CreateMachineBasicBlock(BB);
10434     MF->insert(++BBI, SuccMBB);
10435   }
10436   // Add it as a successor of ParentMBB.
10437   ParentMBB->addSuccessor(
10438       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10439   return SuccMBB;
10440 }
10441 
10442 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10443   MachineFunction::iterator I(MBB);
10444   if (++I == FuncInfo.MF->end())
10445     return nullptr;
10446   return &*I;
10447 }
10448 
10449 /// During lowering new call nodes can be created (such as memset, etc.).
10450 /// Those will become new roots of the current DAG, but complications arise
10451 /// when they are tail calls. In such cases, the call lowering will update
10452 /// the root, but the builder still needs to know that a tail call has been
10453 /// lowered in order to avoid generating an additional return.
10454 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10455   // If the node is null, we do have a tail call.
10456   if (MaybeTC.getNode() != nullptr)
10457     DAG.setRoot(MaybeTC);
10458   else
10459     HasTailCall = true;
10460 }
10461 
10462 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10463                                         MachineBasicBlock *SwitchMBB,
10464                                         MachineBasicBlock *DefaultMBB) {
10465   MachineFunction *CurMF = FuncInfo.MF;
10466   MachineBasicBlock *NextMBB = nullptr;
10467   MachineFunction::iterator BBI(W.MBB);
10468   if (++BBI != FuncInfo.MF->end())
10469     NextMBB = &*BBI;
10470 
10471   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10472 
10473   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10474 
10475   if (Size == 2 && W.MBB == SwitchMBB) {
10476     // If any two of the cases has the same destination, and if one value
10477     // is the same as the other, but has one bit unset that the other has set,
10478     // use bit manipulation to do two compares at once.  For example:
10479     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10480     // TODO: This could be extended to merge any 2 cases in switches with 3
10481     // cases.
10482     // TODO: Handle cases where W.CaseBB != SwitchBB.
10483     CaseCluster &Small = *W.FirstCluster;
10484     CaseCluster &Big = *W.LastCluster;
10485 
10486     if (Small.Low == Small.High && Big.Low == Big.High &&
10487         Small.MBB == Big.MBB) {
10488       const APInt &SmallValue = Small.Low->getValue();
10489       const APInt &BigValue = Big.Low->getValue();
10490 
10491       // Check that there is only one bit different.
10492       APInt CommonBit = BigValue ^ SmallValue;
10493       if (CommonBit.isPowerOf2()) {
10494         SDValue CondLHS = getValue(Cond);
10495         EVT VT = CondLHS.getValueType();
10496         SDLoc DL = getCurSDLoc();
10497 
10498         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10499                                  DAG.getConstant(CommonBit, DL, VT));
10500         SDValue Cond = DAG.getSetCC(
10501             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10502             ISD::SETEQ);
10503 
10504         // Update successor info.
10505         // Both Small and Big will jump to Small.BB, so we sum up the
10506         // probabilities.
10507         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10508         if (BPI)
10509           addSuccessorWithProb(
10510               SwitchMBB, DefaultMBB,
10511               // The default destination is the first successor in IR.
10512               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10513         else
10514           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10515 
10516         // Insert the true branch.
10517         SDValue BrCond =
10518             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10519                         DAG.getBasicBlock(Small.MBB));
10520         // Insert the false branch.
10521         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10522                              DAG.getBasicBlock(DefaultMBB));
10523 
10524         DAG.setRoot(BrCond);
10525         return;
10526       }
10527     }
10528   }
10529 
10530   if (TM.getOptLevel() != CodeGenOpt::None) {
10531     // Here, we order cases by probability so the most likely case will be
10532     // checked first. However, two clusters can have the same probability in
10533     // which case their relative ordering is non-deterministic. So we use Low
10534     // as a tie-breaker as clusters are guaranteed to never overlap.
10535     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10536                [](const CaseCluster &a, const CaseCluster &b) {
10537       return a.Prob != b.Prob ?
10538              a.Prob > b.Prob :
10539              a.Low->getValue().slt(b.Low->getValue());
10540     });
10541 
10542     // Rearrange the case blocks so that the last one falls through if possible
10543     // without changing the order of probabilities.
10544     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10545       --I;
10546       if (I->Prob > W.LastCluster->Prob)
10547         break;
10548       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10549         std::swap(*I, *W.LastCluster);
10550         break;
10551       }
10552     }
10553   }
10554 
10555   // Compute total probability.
10556   BranchProbability DefaultProb = W.DefaultProb;
10557   BranchProbability UnhandledProbs = DefaultProb;
10558   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10559     UnhandledProbs += I->Prob;
10560 
10561   MachineBasicBlock *CurMBB = W.MBB;
10562   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10563     bool FallthroughUnreachable = false;
10564     MachineBasicBlock *Fallthrough;
10565     if (I == W.LastCluster) {
10566       // For the last cluster, fall through to the default destination.
10567       Fallthrough = DefaultMBB;
10568       FallthroughUnreachable = isa<UnreachableInst>(
10569           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10570     } else {
10571       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10572       CurMF->insert(BBI, Fallthrough);
10573       // Put Cond in a virtual register to make it available from the new blocks.
10574       ExportFromCurrentBlock(Cond);
10575     }
10576     UnhandledProbs -= I->Prob;
10577 
10578     switch (I->Kind) {
10579       case CC_JumpTable: {
10580         // FIXME: Optimize away range check based on pivot comparisons.
10581         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10582         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10583 
10584         // The jump block hasn't been inserted yet; insert it here.
10585         MachineBasicBlock *JumpMBB = JT->MBB;
10586         CurMF->insert(BBI, JumpMBB);
10587 
10588         auto JumpProb = I->Prob;
10589         auto FallthroughProb = UnhandledProbs;
10590 
10591         // If the default statement is a target of the jump table, we evenly
10592         // distribute the default probability to successors of CurMBB. Also
10593         // update the probability on the edge from JumpMBB to Fallthrough.
10594         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10595                                               SE = JumpMBB->succ_end();
10596              SI != SE; ++SI) {
10597           if (*SI == DefaultMBB) {
10598             JumpProb += DefaultProb / 2;
10599             FallthroughProb -= DefaultProb / 2;
10600             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10601             JumpMBB->normalizeSuccProbs();
10602             break;
10603           }
10604         }
10605 
10606         if (FallthroughUnreachable) {
10607           // Skip the range check if the fallthrough block is unreachable.
10608           JTH->OmitRangeCheck = true;
10609         }
10610 
10611         if (!JTH->OmitRangeCheck)
10612           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10613         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10614         CurMBB->normalizeSuccProbs();
10615 
10616         // The jump table header will be inserted in our current block, do the
10617         // range check, and fall through to our fallthrough block.
10618         JTH->HeaderBB = CurMBB;
10619         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10620 
10621         // If we're in the right place, emit the jump table header right now.
10622         if (CurMBB == SwitchMBB) {
10623           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10624           JTH->Emitted = true;
10625         }
10626         break;
10627       }
10628       case CC_BitTests: {
10629         // FIXME: Optimize away range check based on pivot comparisons.
10630         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10631 
10632         // The bit test blocks haven't been inserted yet; insert them here.
10633         for (BitTestCase &BTC : BTB->Cases)
10634           CurMF->insert(BBI, BTC.ThisBB);
10635 
10636         // Fill in fields of the BitTestBlock.
10637         BTB->Parent = CurMBB;
10638         BTB->Default = Fallthrough;
10639 
10640         BTB->DefaultProb = UnhandledProbs;
10641         // If the cases in bit test don't form a contiguous range, we evenly
10642         // distribute the probability on the edge to Fallthrough to two
10643         // successors of CurMBB.
10644         if (!BTB->ContiguousRange) {
10645           BTB->Prob += DefaultProb / 2;
10646           BTB->DefaultProb -= DefaultProb / 2;
10647         }
10648 
10649         if (FallthroughUnreachable) {
10650           // Skip the range check if the fallthrough block is unreachable.
10651           BTB->OmitRangeCheck = true;
10652         }
10653 
10654         // If we're in the right place, emit the bit test header right now.
10655         if (CurMBB == SwitchMBB) {
10656           visitBitTestHeader(*BTB, SwitchMBB);
10657           BTB->Emitted = true;
10658         }
10659         break;
10660       }
10661       case CC_Range: {
10662         const Value *RHS, *LHS, *MHS;
10663         ISD::CondCode CC;
10664         if (I->Low == I->High) {
10665           // Check Cond == I->Low.
10666           CC = ISD::SETEQ;
10667           LHS = Cond;
10668           RHS=I->Low;
10669           MHS = nullptr;
10670         } else {
10671           // Check I->Low <= Cond <= I->High.
10672           CC = ISD::SETLE;
10673           LHS = I->Low;
10674           MHS = Cond;
10675           RHS = I->High;
10676         }
10677 
10678         // If Fallthrough is unreachable, fold away the comparison.
10679         if (FallthroughUnreachable)
10680           CC = ISD::SETTRUE;
10681 
10682         // The false probability is the sum of all unhandled cases.
10683         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10684                      getCurSDLoc(), I->Prob, UnhandledProbs);
10685 
10686         if (CurMBB == SwitchMBB)
10687           visitSwitchCase(CB, SwitchMBB);
10688         else
10689           SL->SwitchCases.push_back(CB);
10690 
10691         break;
10692       }
10693     }
10694     CurMBB = Fallthrough;
10695   }
10696 }
10697 
10698 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10699                                               CaseClusterIt First,
10700                                               CaseClusterIt Last) {
10701   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10702     if (X.Prob != CC.Prob)
10703       return X.Prob > CC.Prob;
10704 
10705     // Ties are broken by comparing the case value.
10706     return X.Low->getValue().slt(CC.Low->getValue());
10707   });
10708 }
10709 
10710 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10711                                         const SwitchWorkListItem &W,
10712                                         Value *Cond,
10713                                         MachineBasicBlock *SwitchMBB) {
10714   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10715          "Clusters not sorted?");
10716 
10717   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10718 
10719   // Balance the tree based on branch probabilities to create a near-optimal (in
10720   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10721   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10722   CaseClusterIt LastLeft = W.FirstCluster;
10723   CaseClusterIt FirstRight = W.LastCluster;
10724   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10725   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10726 
10727   // Move LastLeft and FirstRight towards each other from opposite directions to
10728   // find a partitioning of the clusters which balances the probability on both
10729   // sides. If LeftProb and RightProb are equal, alternate which side is
10730   // taken to ensure 0-probability nodes are distributed evenly.
10731   unsigned I = 0;
10732   while (LastLeft + 1 < FirstRight) {
10733     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10734       LeftProb += (++LastLeft)->Prob;
10735     else
10736       RightProb += (--FirstRight)->Prob;
10737     I++;
10738   }
10739 
10740   while (true) {
10741     // Our binary search tree differs from a typical BST in that ours can have up
10742     // to three values in each leaf. The pivot selection above doesn't take that
10743     // into account, which means the tree might require more nodes and be less
10744     // efficient. We compensate for this here.
10745 
10746     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10747     unsigned NumRight = W.LastCluster - FirstRight + 1;
10748 
10749     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10750       // If one side has less than 3 clusters, and the other has more than 3,
10751       // consider taking a cluster from the other side.
10752 
10753       if (NumLeft < NumRight) {
10754         // Consider moving the first cluster on the right to the left side.
10755         CaseCluster &CC = *FirstRight;
10756         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10757         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10758         if (LeftSideRank <= RightSideRank) {
10759           // Moving the cluster to the left does not demote it.
10760           ++LastLeft;
10761           ++FirstRight;
10762           continue;
10763         }
10764       } else {
10765         assert(NumRight < NumLeft);
10766         // Consider moving the last element on the left to the right side.
10767         CaseCluster &CC = *LastLeft;
10768         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10769         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10770         if (RightSideRank <= LeftSideRank) {
10771           // Moving the cluster to the right does not demot it.
10772           --LastLeft;
10773           --FirstRight;
10774           continue;
10775         }
10776       }
10777     }
10778     break;
10779   }
10780 
10781   assert(LastLeft + 1 == FirstRight);
10782   assert(LastLeft >= W.FirstCluster);
10783   assert(FirstRight <= W.LastCluster);
10784 
10785   // Use the first element on the right as pivot since we will make less-than
10786   // comparisons against it.
10787   CaseClusterIt PivotCluster = FirstRight;
10788   assert(PivotCluster > W.FirstCluster);
10789   assert(PivotCluster <= W.LastCluster);
10790 
10791   CaseClusterIt FirstLeft = W.FirstCluster;
10792   CaseClusterIt LastRight = W.LastCluster;
10793 
10794   const ConstantInt *Pivot = PivotCluster->Low;
10795 
10796   // New blocks will be inserted immediately after the current one.
10797   MachineFunction::iterator BBI(W.MBB);
10798   ++BBI;
10799 
10800   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10801   // we can branch to its destination directly if it's squeezed exactly in
10802   // between the known lower bound and Pivot - 1.
10803   MachineBasicBlock *LeftMBB;
10804   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10805       FirstLeft->Low == W.GE &&
10806       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10807     LeftMBB = FirstLeft->MBB;
10808   } else {
10809     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10810     FuncInfo.MF->insert(BBI, LeftMBB);
10811     WorkList.push_back(
10812         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10813     // Put Cond in a virtual register to make it available from the new blocks.
10814     ExportFromCurrentBlock(Cond);
10815   }
10816 
10817   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10818   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10819   // directly if RHS.High equals the current upper bound.
10820   MachineBasicBlock *RightMBB;
10821   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10822       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10823     RightMBB = FirstRight->MBB;
10824   } else {
10825     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10826     FuncInfo.MF->insert(BBI, RightMBB);
10827     WorkList.push_back(
10828         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10829     // Put Cond in a virtual register to make it available from the new blocks.
10830     ExportFromCurrentBlock(Cond);
10831   }
10832 
10833   // Create the CaseBlock record that will be used to lower the branch.
10834   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10835                getCurSDLoc(), LeftProb, RightProb);
10836 
10837   if (W.MBB == SwitchMBB)
10838     visitSwitchCase(CB, SwitchMBB);
10839   else
10840     SL->SwitchCases.push_back(CB);
10841 }
10842 
10843 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10844 // from the swith statement.
10845 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10846                                             BranchProbability PeeledCaseProb) {
10847   if (PeeledCaseProb == BranchProbability::getOne())
10848     return BranchProbability::getZero();
10849   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10850 
10851   uint32_t Numerator = CaseProb.getNumerator();
10852   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10853   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10854 }
10855 
10856 // Try to peel the top probability case if it exceeds the threshold.
10857 // Return current MachineBasicBlock for the switch statement if the peeling
10858 // does not occur.
10859 // If the peeling is performed, return the newly created MachineBasicBlock
10860 // for the peeled switch statement. Also update Clusters to remove the peeled
10861 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10862 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10863     const SwitchInst &SI, CaseClusterVector &Clusters,
10864     BranchProbability &PeeledCaseProb) {
10865   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10866   // Don't perform if there is only one cluster or optimizing for size.
10867   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10868       TM.getOptLevel() == CodeGenOpt::None ||
10869       SwitchMBB->getParent()->getFunction().hasMinSize())
10870     return SwitchMBB;
10871 
10872   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10873   unsigned PeeledCaseIndex = 0;
10874   bool SwitchPeeled = false;
10875   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10876     CaseCluster &CC = Clusters[Index];
10877     if (CC.Prob < TopCaseProb)
10878       continue;
10879     TopCaseProb = CC.Prob;
10880     PeeledCaseIndex = Index;
10881     SwitchPeeled = true;
10882   }
10883   if (!SwitchPeeled)
10884     return SwitchMBB;
10885 
10886   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10887                     << TopCaseProb << "\n");
10888 
10889   // Record the MBB for the peeled switch statement.
10890   MachineFunction::iterator BBI(SwitchMBB);
10891   ++BBI;
10892   MachineBasicBlock *PeeledSwitchMBB =
10893       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10894   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10895 
10896   ExportFromCurrentBlock(SI.getCondition());
10897   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10898   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10899                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10900   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10901 
10902   Clusters.erase(PeeledCaseIt);
10903   for (CaseCluster &CC : Clusters) {
10904     LLVM_DEBUG(
10905         dbgs() << "Scale the probablity for one cluster, before scaling: "
10906                << CC.Prob << "\n");
10907     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10908     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10909   }
10910   PeeledCaseProb = TopCaseProb;
10911   return PeeledSwitchMBB;
10912 }
10913 
10914 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10915   // Extract cases from the switch.
10916   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10917   CaseClusterVector Clusters;
10918   Clusters.reserve(SI.getNumCases());
10919   for (auto I : SI.cases()) {
10920     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10921     const ConstantInt *CaseVal = I.getCaseValue();
10922     BranchProbability Prob =
10923         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10924             : BranchProbability(1, SI.getNumCases() + 1);
10925     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10926   }
10927 
10928   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10929 
10930   // Cluster adjacent cases with the same destination. We do this at all
10931   // optimization levels because it's cheap to do and will make codegen faster
10932   // if there are many clusters.
10933   sortAndRangeify(Clusters);
10934 
10935   // The branch probablity of the peeled case.
10936   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10937   MachineBasicBlock *PeeledSwitchMBB =
10938       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10939 
10940   // If there is only the default destination, jump there directly.
10941   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10942   if (Clusters.empty()) {
10943     assert(PeeledSwitchMBB == SwitchMBB);
10944     SwitchMBB->addSuccessor(DefaultMBB);
10945     if (DefaultMBB != NextBlock(SwitchMBB)) {
10946       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10947                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10948     }
10949     return;
10950   }
10951 
10952   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10953   SL->findBitTestClusters(Clusters, &SI);
10954 
10955   LLVM_DEBUG({
10956     dbgs() << "Case clusters: ";
10957     for (const CaseCluster &C : Clusters) {
10958       if (C.Kind == CC_JumpTable)
10959         dbgs() << "JT:";
10960       if (C.Kind == CC_BitTests)
10961         dbgs() << "BT:";
10962 
10963       C.Low->getValue().print(dbgs(), true);
10964       if (C.Low != C.High) {
10965         dbgs() << '-';
10966         C.High->getValue().print(dbgs(), true);
10967       }
10968       dbgs() << ' ';
10969     }
10970     dbgs() << '\n';
10971   });
10972 
10973   assert(!Clusters.empty());
10974   SwitchWorkList WorkList;
10975   CaseClusterIt First = Clusters.begin();
10976   CaseClusterIt Last = Clusters.end() - 1;
10977   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10978   // Scale the branchprobability for DefaultMBB if the peel occurs and
10979   // DefaultMBB is not replaced.
10980   if (PeeledCaseProb != BranchProbability::getZero() &&
10981       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10982     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10983   WorkList.push_back(
10984       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10985 
10986   while (!WorkList.empty()) {
10987     SwitchWorkListItem W = WorkList.pop_back_val();
10988     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10989 
10990     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10991         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10992       // For optimized builds, lower large range as a balanced binary tree.
10993       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10994       continue;
10995     }
10996 
10997     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10998   }
10999 }
11000 
11001 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11002   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11003   auto DL = getCurSDLoc();
11004   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11005   EVT OpVT =
11006       TLI.getTypeToTransformTo(*DAG.getContext(), ResultVT.getScalarType());
11007   SDValue Step = DAG.getConstant(1, DL, OpVT);
11008   setValue(&I, DAG.getStepVector(DL, ResultVT, Step));
11009 }
11010 
11011 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11012   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11013   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11014 
11015   SDLoc DL = getCurSDLoc();
11016   SDValue V = getValue(I.getOperand(0));
11017   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11018 
11019   if (VT.isScalableVector()) {
11020     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11021     return;
11022   }
11023 
11024   // Use VECTOR_SHUFFLE for the fixed-length vector
11025   // to maintain existing behavior.
11026   SmallVector<int, 8> Mask;
11027   unsigned NumElts = VT.getVectorMinNumElements();
11028   for (unsigned i = 0; i != NumElts; ++i)
11029     Mask.push_back(NumElts - 1 - i);
11030 
11031   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11032 }
11033 
11034 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11035   SmallVector<EVT, 4> ValueVTs;
11036   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11037                   ValueVTs);
11038   unsigned NumValues = ValueVTs.size();
11039   if (NumValues == 0) return;
11040 
11041   SmallVector<SDValue, 4> Values(NumValues);
11042   SDValue Op = getValue(I.getOperand(0));
11043 
11044   for (unsigned i = 0; i != NumValues; ++i)
11045     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11046                             SDValue(Op.getNode(), Op.getResNo() + i));
11047 
11048   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11049                            DAG.getVTList(ValueVTs), Values));
11050 }
11051 
11052 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11053   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11054   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11055 
11056   SDLoc DL = getCurSDLoc();
11057   SDValue V1 = getValue(I.getOperand(0));
11058   SDValue V2 = getValue(I.getOperand(1));
11059   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11060 
11061   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11062   if (VT.isScalableVector()) {
11063     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11064     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11065                              DAG.getConstant(Imm, DL, IdxVT)));
11066     return;
11067   }
11068 
11069   unsigned NumElts = VT.getVectorNumElements();
11070 
11071   if ((-Imm > NumElts) || (Imm >= NumElts)) {
11072     // Result is undefined if immediate is out-of-bounds.
11073     setValue(&I, DAG.getUNDEF(VT));
11074     return;
11075   }
11076 
11077   uint64_t Idx = (NumElts + Imm) % NumElts;
11078 
11079   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11080   SmallVector<int, 8> Mask;
11081   for (unsigned i = 0; i < NumElts; ++i)
11082     Mask.push_back(Idx + i);
11083   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11084 }
11085