1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 // A dbg.value for an alloca is always indirect. 954 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 955 SDDbgValue *SDV; 956 if (Val.getNode()) { 957 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 958 Val)) { 959 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 960 IsIndirect, Offset, dl, DbgSDNodeOrder); 961 DAG.AddDbgValue(SDV, Val.getNode(), false); 962 } 963 } else 964 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 965 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 966 } 967 } 968 969 /// getCopyFromRegs - If there was virtual register allocated for the value V 970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 972 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 973 SDValue Result; 974 975 if (It != FuncInfo.ValueMap.end()) { 976 unsigned InReg = It->second; 977 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 978 DAG.getDataLayout(), InReg, Ty); 979 SDValue Chain = DAG.getEntryNode(); 980 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 981 resolveDanglingDebugInfo(V, Result); 982 } 983 984 return Result; 985 } 986 987 /// getValue - Return an SDValue for the given Value. 988 SDValue SelectionDAGBuilder::getValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. It's important 990 // to do this first, so that we don't create a CopyFromReg if we already 991 // have a regular SDValue. 992 SDValue &N = NodeMap[V]; 993 if (N.getNode()) return N; 994 995 // If there's a virtual register allocated and initialized for this 996 // value, use it. 997 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 998 if (copyFromReg.getNode()) { 999 return copyFromReg; 1000 } 1001 1002 // Otherwise create a new SDValue and remember it. 1003 SDValue Val = getValueImpl(V); 1004 NodeMap[V] = Val; 1005 resolveDanglingDebugInfo(V, Val); 1006 return Val; 1007 } 1008 1009 // Return true if SDValue exists for the given Value 1010 bool SelectionDAGBuilder::findValue(const Value *V) const { 1011 return (NodeMap.find(V) != NodeMap.end()) || 1012 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1013 } 1014 1015 /// getNonRegisterValue - Return an SDValue for the given Value, but 1016 /// don't look in FuncInfo.ValueMap for a virtual register. 1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) { 1021 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1022 // Remove the debug location from the node as the node is about to be used 1023 // in a location which may differ from the original debug location. This 1024 // is relevant to Constant and ConstantFP nodes because they can appear 1025 // as constant expressions inside PHI nodes. 1026 N->setDebugLoc(DebugLoc()); 1027 } 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1039 /// Create an SDValue for the given value. 1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1042 1043 if (const Constant *C = dyn_cast<Constant>(V)) { 1044 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1045 1046 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1047 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1048 1049 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1050 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1051 1052 if (isa<ConstantPointerNull>(C)) { 1053 unsigned AS = V->getType()->getPointerAddressSpace(); 1054 return DAG.getConstant(0, getCurSDLoc(), 1055 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1056 } 1057 1058 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1059 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1060 1061 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1062 return DAG.getUNDEF(VT); 1063 1064 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1065 visit(CE->getOpcode(), *CE); 1066 SDValue N1 = NodeMap[V]; 1067 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1068 return N1; 1069 } 1070 1071 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1072 SmallVector<SDValue, 4> Constants; 1073 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1074 OI != OE; ++OI) { 1075 SDNode *Val = getValue(*OI).getNode(); 1076 // If the operand is an empty aggregate, there are no values. 1077 if (!Val) continue; 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Constants.push_back(SDValue(Val, i)); 1082 } 1083 1084 return DAG.getMergeValues(Constants, getCurSDLoc()); 1085 } 1086 1087 if (const ConstantDataSequential *CDS = 1088 dyn_cast<ConstantDataSequential>(C)) { 1089 SmallVector<SDValue, 4> Ops; 1090 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1091 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1092 // Add each leaf value from the operand to the Constants list 1093 // to form a flattened list of all the values. 1094 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1095 Ops.push_back(SDValue(Val, i)); 1096 } 1097 1098 if (isa<ArrayType>(CDS->getType())) 1099 return DAG.getMergeValues(Ops, getCurSDLoc()); 1100 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1101 VT, Ops); 1102 } 1103 1104 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1105 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1106 "Unknown struct or array constant!"); 1107 1108 SmallVector<EVT, 4> ValueVTs; 1109 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1110 unsigned NumElts = ValueVTs.size(); 1111 if (NumElts == 0) 1112 return SDValue(); // empty struct 1113 SmallVector<SDValue, 4> Constants(NumElts); 1114 for (unsigned i = 0; i != NumElts; ++i) { 1115 EVT EltVT = ValueVTs[i]; 1116 if (isa<UndefValue>(C)) 1117 Constants[i] = DAG.getUNDEF(EltVT); 1118 else if (EltVT.isFloatingPoint()) 1119 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1120 else 1121 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1122 } 1123 1124 return DAG.getMergeValues(Constants, getCurSDLoc()); 1125 } 1126 1127 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1128 return DAG.getBlockAddress(BA, VT); 1129 1130 VectorType *VecTy = cast<VectorType>(V->getType()); 1131 unsigned NumElements = VecTy->getNumElements(); 1132 1133 // Now that we know the number and type of the elements, get that number of 1134 // elements into the Ops array based on what kind of constant it is. 1135 SmallVector<SDValue, 16> Ops; 1136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1137 for (unsigned i = 0; i != NumElements; ++i) 1138 Ops.push_back(getValue(CV->getOperand(i))); 1139 } else { 1140 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1141 EVT EltVT = 1142 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1143 1144 SDValue Op; 1145 if (EltVT.isFloatingPoint()) 1146 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 Ops.assign(NumElements, Op); 1150 } 1151 1152 // Create a BUILD_VECTOR node. 1153 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1154 } 1155 1156 // If this is a static alloca, generate it as the frameindex instead of 1157 // computation. 1158 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1159 DenseMap<const AllocaInst*, int>::iterator SI = 1160 FuncInfo.StaticAllocaMap.find(AI); 1161 if (SI != FuncInfo.StaticAllocaMap.end()) 1162 return DAG.getFrameIndex(SI->second, 1163 TLI.getPointerTy(DAG.getDataLayout())); 1164 } 1165 1166 // If this is an instruction which fast-isel has deferred, select it now. 1167 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1168 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1169 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1170 Inst->getType()); 1171 SDValue Chain = DAG.getEntryNode(); 1172 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1173 } 1174 1175 llvm_unreachable("Can't get register for value!"); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1179 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1180 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1181 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1182 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1183 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1184 if (IsMSVCCXX || IsCoreCLR) 1185 CatchPadMBB->setIsEHFuncletEntry(); 1186 1187 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1188 } 1189 1190 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1191 // Update machine-CFG edge. 1192 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1193 FuncInfo.MBB->addSuccessor(TargetMBB); 1194 1195 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1196 bool IsSEH = isAsynchronousEHPersonality(Pers); 1197 if (IsSEH) { 1198 // If this is not a fall-through branch or optimizations are switched off, 1199 // emit the branch. 1200 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1201 TM.getOptLevel() == CodeGenOpt::None) 1202 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1203 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1204 return; 1205 } 1206 1207 // Figure out the funclet membership for the catchret's successor. 1208 // This will be used by the FuncletLayout pass to determine how to order the 1209 // BB's. 1210 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 1211 const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I]; 1212 assert(SuccessorColor && "No parent funclet for catchret!"); 1213 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1214 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1215 1216 // Create the terminator node. 1217 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1218 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1219 DAG.getBasicBlock(SuccessorColorMBB)); 1220 DAG.setRoot(Ret); 1221 } 1222 1223 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1224 // Don't emit any special code for the cleanuppad instruction. It just marks 1225 // the start of a funclet. 1226 FuncInfo.MBB->setIsEHFuncletEntry(); 1227 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1228 } 1229 1230 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1231 /// many places it could ultimately go. In the IR, we have a single unwind 1232 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1233 /// This function skips over imaginary basic blocks that hold catchswitch 1234 /// instructions, and finds all the "real" machine 1235 /// basic block destinations. As those destinations may not be successors of 1236 /// EHPadBB, here we also calculate the edge probability to those destinations. 1237 /// The passed-in Prob is the edge probability to EHPadBB. 1238 static void findUnwindDestinations( 1239 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1240 BranchProbability Prob, 1241 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1242 &UnwindDests) { 1243 EHPersonality Personality = 1244 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1245 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1246 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1247 1248 while (EHPadBB) { 1249 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1250 BasicBlock *NewEHPadBB = nullptr; 1251 if (isa<LandingPadInst>(Pad)) { 1252 // Stop on landingpads. They are not funclets. 1253 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1254 break; 1255 } else if (isa<CleanupPadInst>(Pad)) { 1256 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1257 // personalities. 1258 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1259 UnwindDests.back().first->setIsEHFuncletEntry(); 1260 break; 1261 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1262 // Add the catchpad handlers to the possible destinations. 1263 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1264 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1265 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1266 if (IsMSVCCXX || IsCoreCLR) 1267 UnwindDests.back().first->setIsEHFuncletEntry(); 1268 } 1269 NewEHPadBB = CatchSwitch->getUnwindDest(); 1270 } else { 1271 continue; 1272 } 1273 1274 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1275 if (BPI && NewEHPadBB) 1276 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1277 EHPadBB = NewEHPadBB; 1278 } 1279 } 1280 1281 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1282 // Update successor info. 1283 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1284 auto UnwindDest = I.getUnwindDest(); 1285 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1286 BranchProbability UnwindDestProb = 1287 (BPI && UnwindDest) 1288 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1289 : BranchProbability::getZero(); 1290 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1291 for (auto &UnwindDest : UnwindDests) { 1292 UnwindDest.first->setIsEHPad(); 1293 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1294 } 1295 FuncInfo.MBB->normalizeSuccProbs(); 1296 1297 // Create the terminator node. 1298 SDValue Ret = 1299 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1300 DAG.setRoot(Ret); 1301 } 1302 1303 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1304 report_fatal_error("visitCatchSwitch not yet implemented!"); 1305 } 1306 1307 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1309 auto &DL = DAG.getDataLayout(); 1310 SDValue Chain = getControlRoot(); 1311 SmallVector<ISD::OutputArg, 8> Outs; 1312 SmallVector<SDValue, 8> OutVals; 1313 1314 if (!FuncInfo.CanLowerReturn) { 1315 unsigned DemoteReg = FuncInfo.DemoteRegister; 1316 const Function *F = I.getParent()->getParent(); 1317 1318 // Emit a store of the return value through the virtual register. 1319 // Leave Outs empty so that LowerReturn won't try to load return 1320 // registers the usual way. 1321 SmallVector<EVT, 1> PtrValueVTs; 1322 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1323 PtrValueVTs); 1324 1325 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1326 DemoteReg, PtrValueVTs[0]); 1327 SDValue RetOp = getValue(I.getOperand(0)); 1328 1329 SmallVector<EVT, 4> ValueVTs; 1330 SmallVector<uint64_t, 4> Offsets; 1331 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1332 unsigned NumValues = ValueVTs.size(); 1333 1334 SmallVector<SDValue, 4> Chains(NumValues); 1335 for (unsigned i = 0; i != NumValues; ++i) { 1336 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1337 RetPtr.getValueType(), RetPtr, 1338 DAG.getIntPtrConstant(Offsets[i], 1339 getCurSDLoc())); 1340 Chains[i] = 1341 DAG.getStore(Chain, getCurSDLoc(), 1342 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1343 // FIXME: better loc info would be nice. 1344 Add, MachinePointerInfo(), false, false, 0); 1345 } 1346 1347 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1348 MVT::Other, Chains); 1349 } else if (I.getNumOperands() != 0) { 1350 SmallVector<EVT, 4> ValueVTs; 1351 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1352 unsigned NumValues = ValueVTs.size(); 1353 if (NumValues) { 1354 SDValue RetOp = getValue(I.getOperand(0)); 1355 1356 const Function *F = I.getParent()->getParent(); 1357 1358 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1359 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1360 Attribute::SExt)) 1361 ExtendKind = ISD::SIGN_EXTEND; 1362 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1363 Attribute::ZExt)) 1364 ExtendKind = ISD::ZERO_EXTEND; 1365 1366 LLVMContext &Context = F->getContext(); 1367 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1368 Attribute::InReg); 1369 1370 for (unsigned j = 0; j != NumValues; ++j) { 1371 EVT VT = ValueVTs[j]; 1372 1373 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1374 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1375 1376 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1377 MVT PartVT = TLI.getRegisterType(Context, VT); 1378 SmallVector<SDValue, 4> Parts(NumParts); 1379 getCopyToParts(DAG, getCurSDLoc(), 1380 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1381 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1382 1383 // 'inreg' on function refers to return value 1384 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1385 if (RetInReg) 1386 Flags.setInReg(); 1387 1388 // Propagate extension type if any 1389 if (ExtendKind == ISD::SIGN_EXTEND) 1390 Flags.setSExt(); 1391 else if (ExtendKind == ISD::ZERO_EXTEND) 1392 Flags.setZExt(); 1393 1394 for (unsigned i = 0; i < NumParts; ++i) { 1395 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1396 VT, /*isfixed=*/true, 0, 0)); 1397 OutVals.push_back(Parts[i]); 1398 } 1399 } 1400 } 1401 } 1402 1403 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1404 CallingConv::ID CallConv = 1405 DAG.getMachineFunction().getFunction()->getCallingConv(); 1406 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1407 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1408 1409 // Verify that the target's LowerReturn behaved as expected. 1410 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1411 "LowerReturn didn't return a valid chain!"); 1412 1413 // Update the DAG with the new chain value resulting from return lowering. 1414 DAG.setRoot(Chain); 1415 } 1416 1417 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1418 /// created for it, emit nodes to copy the value into the virtual 1419 /// registers. 1420 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1421 // Skip empty types 1422 if (V->getType()->isEmptyTy()) 1423 return; 1424 1425 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1426 if (VMI != FuncInfo.ValueMap.end()) { 1427 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1428 CopyValueToVirtualRegister(V, VMI->second); 1429 } 1430 } 1431 1432 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1433 /// the current basic block, add it to ValueMap now so that we'll get a 1434 /// CopyTo/FromReg. 1435 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1436 // No need to export constants. 1437 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1438 1439 // Already exported? 1440 if (FuncInfo.isExportedInst(V)) return; 1441 1442 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1443 CopyValueToVirtualRegister(V, Reg); 1444 } 1445 1446 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1447 const BasicBlock *FromBB) { 1448 // The operands of the setcc have to be in this block. We don't know 1449 // how to export them from some other block. 1450 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1451 // Can export from current BB. 1452 if (VI->getParent() == FromBB) 1453 return true; 1454 1455 // Is already exported, noop. 1456 return FuncInfo.isExportedInst(V); 1457 } 1458 1459 // If this is an argument, we can export it if the BB is the entry block or 1460 // if it is already exported. 1461 if (isa<Argument>(V)) { 1462 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1463 return true; 1464 1465 // Otherwise, can only export this if it is already exported. 1466 return FuncInfo.isExportedInst(V); 1467 } 1468 1469 // Otherwise, constants can always be exported. 1470 return true; 1471 } 1472 1473 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1474 BranchProbability 1475 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1476 const MachineBasicBlock *Dst) const { 1477 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1478 const BasicBlock *SrcBB = Src->getBasicBlock(); 1479 const BasicBlock *DstBB = Dst->getBasicBlock(); 1480 if (!BPI) { 1481 // If BPI is not available, set the default probability as 1 / N, where N is 1482 // the number of successors. 1483 auto SuccSize = std::max<uint32_t>( 1484 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1485 return BranchProbability(1, SuccSize); 1486 } 1487 return BPI->getEdgeProbability(SrcBB, DstBB); 1488 } 1489 1490 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1491 MachineBasicBlock *Dst, 1492 BranchProbability Prob) { 1493 if (!FuncInfo.BPI) 1494 Src->addSuccessorWithoutProb(Dst); 1495 else { 1496 if (Prob.isUnknown()) 1497 Prob = getEdgeProbability(Src, Dst); 1498 Src->addSuccessor(Dst, Prob); 1499 } 1500 } 1501 1502 static bool InBlock(const Value *V, const BasicBlock *BB) { 1503 if (const Instruction *I = dyn_cast<Instruction>(V)) 1504 return I->getParent() == BB; 1505 return true; 1506 } 1507 1508 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1509 /// This function emits a branch and is used at the leaves of an OR or an 1510 /// AND operator tree. 1511 /// 1512 void 1513 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1514 MachineBasicBlock *TBB, 1515 MachineBasicBlock *FBB, 1516 MachineBasicBlock *CurBB, 1517 MachineBasicBlock *SwitchBB, 1518 BranchProbability TProb, 1519 BranchProbability FProb) { 1520 const BasicBlock *BB = CurBB->getBasicBlock(); 1521 1522 // If the leaf of the tree is a comparison, merge the condition into 1523 // the caseblock. 1524 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1525 // The operands of the cmp have to be in this block. We don't know 1526 // how to export them from some other block. If this is the first block 1527 // of the sequence, no exporting is needed. 1528 if (CurBB == SwitchBB || 1529 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1530 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1531 ISD::CondCode Condition; 1532 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1533 Condition = getICmpCondCode(IC->getPredicate()); 1534 } else { 1535 const FCmpInst *FC = cast<FCmpInst>(Cond); 1536 Condition = getFCmpCondCode(FC->getPredicate()); 1537 if (TM.Options.NoNaNsFPMath) 1538 Condition = getFCmpCodeWithoutNaN(Condition); 1539 } 1540 1541 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1542 TBB, FBB, CurBB, TProb, FProb); 1543 SwitchCases.push_back(CB); 1544 return; 1545 } 1546 } 1547 1548 // Create a CaseBlock record representing this branch. 1549 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1550 nullptr, TBB, FBB, CurBB, TProb, FProb); 1551 SwitchCases.push_back(CB); 1552 } 1553 1554 /// FindMergedConditions - If Cond is an expression like 1555 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1556 MachineBasicBlock *TBB, 1557 MachineBasicBlock *FBB, 1558 MachineBasicBlock *CurBB, 1559 MachineBasicBlock *SwitchBB, 1560 Instruction::BinaryOps Opc, 1561 BranchProbability TProb, 1562 BranchProbability FProb) { 1563 // If this node is not part of the or/and tree, emit it as a branch. 1564 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1565 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1566 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1567 BOp->getParent() != CurBB->getBasicBlock() || 1568 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1569 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1570 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1571 TProb, FProb); 1572 return; 1573 } 1574 1575 // Create TmpBB after CurBB. 1576 MachineFunction::iterator BBI(CurBB); 1577 MachineFunction &MF = DAG.getMachineFunction(); 1578 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1579 CurBB->getParent()->insert(++BBI, TmpBB); 1580 1581 if (Opc == Instruction::Or) { 1582 // Codegen X | Y as: 1583 // BB1: 1584 // jmp_if_X TBB 1585 // jmp TmpBB 1586 // TmpBB: 1587 // jmp_if_Y TBB 1588 // jmp FBB 1589 // 1590 1591 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1592 // The requirement is that 1593 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1594 // = TrueProb for original BB. 1595 // Assuming the original probabilities are A and B, one choice is to set 1596 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1597 // A/(1+B) and 2B/(1+B). This choice assumes that 1598 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1599 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1600 // TmpBB, but the math is more complicated. 1601 1602 auto NewTrueProb = TProb / 2; 1603 auto NewFalseProb = TProb / 2 + FProb; 1604 // Emit the LHS condition. 1605 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1606 NewTrueProb, NewFalseProb); 1607 1608 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1609 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1610 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1611 // Emit the RHS condition into TmpBB. 1612 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1613 Probs[0], Probs[1]); 1614 } else { 1615 assert(Opc == Instruction::And && "Unknown merge op!"); 1616 // Codegen X & Y as: 1617 // BB1: 1618 // jmp_if_X TmpBB 1619 // jmp FBB 1620 // TmpBB: 1621 // jmp_if_Y TBB 1622 // jmp FBB 1623 // 1624 // This requires creation of TmpBB after CurBB. 1625 1626 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1627 // The requirement is that 1628 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1629 // = FalseProb for original BB. 1630 // Assuming the original probabilities are A and B, one choice is to set 1631 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1632 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1633 // TrueProb for BB1 * FalseProb for TmpBB. 1634 1635 auto NewTrueProb = TProb + FProb / 2; 1636 auto NewFalseProb = FProb / 2; 1637 // Emit the LHS condition. 1638 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1639 NewTrueProb, NewFalseProb); 1640 1641 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1642 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1643 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1644 // Emit the RHS condition into TmpBB. 1645 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1646 Probs[0], Probs[1]); 1647 } 1648 } 1649 1650 /// If the set of cases should be emitted as a series of branches, return true. 1651 /// If we should emit this as a bunch of and/or'd together conditions, return 1652 /// false. 1653 bool 1654 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1655 if (Cases.size() != 2) return true; 1656 1657 // If this is two comparisons of the same values or'd or and'd together, they 1658 // will get folded into a single comparison, so don't emit two blocks. 1659 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1660 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1661 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1662 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1663 return false; 1664 } 1665 1666 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1667 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1668 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1669 Cases[0].CC == Cases[1].CC && 1670 isa<Constant>(Cases[0].CmpRHS) && 1671 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1672 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1673 return false; 1674 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1675 return false; 1676 } 1677 1678 return true; 1679 } 1680 1681 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1682 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1683 1684 // Update machine-CFG edges. 1685 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1686 1687 if (I.isUnconditional()) { 1688 // Update machine-CFG edges. 1689 BrMBB->addSuccessor(Succ0MBB); 1690 1691 // If this is not a fall-through branch or optimizations are switched off, 1692 // emit the branch. 1693 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1694 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1695 MVT::Other, getControlRoot(), 1696 DAG.getBasicBlock(Succ0MBB))); 1697 1698 return; 1699 } 1700 1701 // If this condition is one of the special cases we handle, do special stuff 1702 // now. 1703 const Value *CondVal = I.getCondition(); 1704 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1705 1706 // If this is a series of conditions that are or'd or and'd together, emit 1707 // this as a sequence of branches instead of setcc's with and/or operations. 1708 // As long as jumps are not expensive, this should improve performance. 1709 // For example, instead of something like: 1710 // cmp A, B 1711 // C = seteq 1712 // cmp D, E 1713 // F = setle 1714 // or C, F 1715 // jnz foo 1716 // Emit: 1717 // cmp A, B 1718 // je foo 1719 // cmp D, E 1720 // jle foo 1721 // 1722 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1723 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1724 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1725 !I.getMetadata(LLVMContext::MD_unpredictable) && 1726 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1727 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1728 Opcode, 1729 getEdgeProbability(BrMBB, Succ0MBB), 1730 getEdgeProbability(BrMBB, Succ1MBB)); 1731 // If the compares in later blocks need to use values not currently 1732 // exported from this block, export them now. This block should always 1733 // be the first entry. 1734 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1735 1736 // Allow some cases to be rejected. 1737 if (ShouldEmitAsBranches(SwitchCases)) { 1738 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1739 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1740 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1741 } 1742 1743 // Emit the branch for this block. 1744 visitSwitchCase(SwitchCases[0], BrMBB); 1745 SwitchCases.erase(SwitchCases.begin()); 1746 return; 1747 } 1748 1749 // Okay, we decided not to do this, remove any inserted MBB's and clear 1750 // SwitchCases. 1751 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1752 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1753 1754 SwitchCases.clear(); 1755 } 1756 } 1757 1758 // Create a CaseBlock record representing this branch. 1759 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1760 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1761 1762 // Use visitSwitchCase to actually insert the fast branch sequence for this 1763 // cond branch. 1764 visitSwitchCase(CB, BrMBB); 1765 } 1766 1767 /// visitSwitchCase - Emits the necessary code to represent a single node in 1768 /// the binary search tree resulting from lowering a switch instruction. 1769 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1770 MachineBasicBlock *SwitchBB) { 1771 SDValue Cond; 1772 SDValue CondLHS = getValue(CB.CmpLHS); 1773 SDLoc dl = getCurSDLoc(); 1774 1775 // Build the setcc now. 1776 if (!CB.CmpMHS) { 1777 // Fold "(X == true)" to X and "(X == false)" to !X to 1778 // handle common cases produced by branch lowering. 1779 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1780 CB.CC == ISD::SETEQ) 1781 Cond = CondLHS; 1782 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1783 CB.CC == ISD::SETEQ) { 1784 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1785 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1786 } else 1787 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1788 } else { 1789 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1790 1791 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1792 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1793 1794 SDValue CmpOp = getValue(CB.CmpMHS); 1795 EVT VT = CmpOp.getValueType(); 1796 1797 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1798 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1799 ISD::SETLE); 1800 } else { 1801 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1802 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1803 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1804 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1805 } 1806 } 1807 1808 // Update successor info 1809 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1810 // TrueBB and FalseBB are always different unless the incoming IR is 1811 // degenerate. This only happens when running llc on weird IR. 1812 if (CB.TrueBB != CB.FalseBB) 1813 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1814 SwitchBB->normalizeSuccProbs(); 1815 1816 // If the lhs block is the next block, invert the condition so that we can 1817 // fall through to the lhs instead of the rhs block. 1818 if (CB.TrueBB == NextBlock(SwitchBB)) { 1819 std::swap(CB.TrueBB, CB.FalseBB); 1820 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1821 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1822 } 1823 1824 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1825 MVT::Other, getControlRoot(), Cond, 1826 DAG.getBasicBlock(CB.TrueBB)); 1827 1828 // Insert the false branch. Do this even if it's a fall through branch, 1829 // this makes it easier to do DAG optimizations which require inverting 1830 // the branch condition. 1831 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1832 DAG.getBasicBlock(CB.FalseBB)); 1833 1834 DAG.setRoot(BrCond); 1835 } 1836 1837 /// visitJumpTable - Emit JumpTable node in the current MBB 1838 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1839 // Emit the code for the jump table 1840 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1841 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1842 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1843 JT.Reg, PTy); 1844 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1845 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1846 MVT::Other, Index.getValue(1), 1847 Table, Index); 1848 DAG.setRoot(BrJumpTable); 1849 } 1850 1851 /// visitJumpTableHeader - This function emits necessary code to produce index 1852 /// in the JumpTable from switch case. 1853 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1854 JumpTableHeader &JTH, 1855 MachineBasicBlock *SwitchBB) { 1856 SDLoc dl = getCurSDLoc(); 1857 1858 // Subtract the lowest switch case value from the value being switched on and 1859 // conditional branch to default mbb if the result is greater than the 1860 // difference between smallest and largest cases. 1861 SDValue SwitchOp = getValue(JTH.SValue); 1862 EVT VT = SwitchOp.getValueType(); 1863 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1864 DAG.getConstant(JTH.First, dl, VT)); 1865 1866 // The SDNode we just created, which holds the value being switched on minus 1867 // the smallest case value, needs to be copied to a virtual register so it 1868 // can be used as an index into the jump table in a subsequent basic block. 1869 // This value may be smaller or larger than the target's pointer type, and 1870 // therefore require extension or truncating. 1871 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1872 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1873 1874 unsigned JumpTableReg = 1875 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1876 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1877 JumpTableReg, SwitchOp); 1878 JT.Reg = JumpTableReg; 1879 1880 // Emit the range check for the jump table, and branch to the default block 1881 // for the switch statement if the value being switched on exceeds the largest 1882 // case in the switch. 1883 SDValue CMP = DAG.getSetCC( 1884 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1885 Sub.getValueType()), 1886 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1887 1888 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1889 MVT::Other, CopyTo, CMP, 1890 DAG.getBasicBlock(JT.Default)); 1891 1892 // Avoid emitting unnecessary branches to the next block. 1893 if (JT.MBB != NextBlock(SwitchBB)) 1894 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1895 DAG.getBasicBlock(JT.MBB)); 1896 1897 DAG.setRoot(BrCond); 1898 } 1899 1900 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1901 /// tail spliced into a stack protector check success bb. 1902 /// 1903 /// For a high level explanation of how this fits into the stack protector 1904 /// generation see the comment on the declaration of class 1905 /// StackProtectorDescriptor. 1906 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1907 MachineBasicBlock *ParentBB) { 1908 1909 // First create the loads to the guard/stack slot for the comparison. 1910 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1911 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1912 1913 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1914 int FI = MFI->getStackProtectorIndex(); 1915 1916 const Value *IRGuard = SPD.getGuard(); 1917 SDValue GuardPtr = getValue(IRGuard); 1918 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1919 1920 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1921 1922 SDValue Guard; 1923 SDLoc dl = getCurSDLoc(); 1924 1925 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1926 // guard value from the virtual register holding the value. Otherwise, emit a 1927 // volatile load to retrieve the stack guard value. 1928 unsigned GuardReg = SPD.getGuardReg(); 1929 1930 if (GuardReg && TLI.useLoadStackGuardNode()) 1931 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1932 PtrTy); 1933 else 1934 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1935 GuardPtr, MachinePointerInfo(IRGuard, 0), 1936 true, false, false, Align); 1937 1938 SDValue StackSlot = DAG.getLoad( 1939 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1940 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1941 false, false, Align); 1942 1943 // Perform the comparison via a subtract/getsetcc. 1944 EVT VT = Guard.getValueType(); 1945 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1946 1947 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1948 *DAG.getContext(), 1949 Sub.getValueType()), 1950 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1951 1952 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1953 // branch to failure MBB. 1954 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1955 MVT::Other, StackSlot.getOperand(0), 1956 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1957 // Otherwise branch to success MBB. 1958 SDValue Br = DAG.getNode(ISD::BR, dl, 1959 MVT::Other, BrCond, 1960 DAG.getBasicBlock(SPD.getSuccessMBB())); 1961 1962 DAG.setRoot(Br); 1963 } 1964 1965 /// Codegen the failure basic block for a stack protector check. 1966 /// 1967 /// A failure stack protector machine basic block consists simply of a call to 1968 /// __stack_chk_fail(). 1969 /// 1970 /// For a high level explanation of how this fits into the stack protector 1971 /// generation see the comment on the declaration of class 1972 /// StackProtectorDescriptor. 1973 void 1974 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1976 SDValue Chain = 1977 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1978 None, false, getCurSDLoc(), false, false).second; 1979 DAG.setRoot(Chain); 1980 } 1981 1982 /// visitBitTestHeader - This function emits necessary code to produce value 1983 /// suitable for "bit tests" 1984 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1985 MachineBasicBlock *SwitchBB) { 1986 SDLoc dl = getCurSDLoc(); 1987 1988 // Subtract the minimum value 1989 SDValue SwitchOp = getValue(B.SValue); 1990 EVT VT = SwitchOp.getValueType(); 1991 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1992 DAG.getConstant(B.First, dl, VT)); 1993 1994 // Check range 1995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1996 SDValue RangeCmp = DAG.getSetCC( 1997 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1998 Sub.getValueType()), 1999 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2000 2001 // Determine the type of the test operands. 2002 bool UsePtrType = false; 2003 if (!TLI.isTypeLegal(VT)) 2004 UsePtrType = true; 2005 else { 2006 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2007 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2008 // Switch table case range are encoded into series of masks. 2009 // Just use pointer type, it's guaranteed to fit. 2010 UsePtrType = true; 2011 break; 2012 } 2013 } 2014 if (UsePtrType) { 2015 VT = TLI.getPointerTy(DAG.getDataLayout()); 2016 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2017 } 2018 2019 B.RegVT = VT.getSimpleVT(); 2020 B.Reg = FuncInfo.CreateReg(B.RegVT); 2021 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2022 2023 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2024 2025 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2026 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2027 SwitchBB->normalizeSuccProbs(); 2028 2029 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2030 MVT::Other, CopyTo, RangeCmp, 2031 DAG.getBasicBlock(B.Default)); 2032 2033 // Avoid emitting unnecessary branches to the next block. 2034 if (MBB != NextBlock(SwitchBB)) 2035 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2036 DAG.getBasicBlock(MBB)); 2037 2038 DAG.setRoot(BrRange); 2039 } 2040 2041 /// visitBitTestCase - this function produces one "bit test" 2042 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2043 MachineBasicBlock* NextMBB, 2044 BranchProbability BranchProbToNext, 2045 unsigned Reg, 2046 BitTestCase &B, 2047 MachineBasicBlock *SwitchBB) { 2048 SDLoc dl = getCurSDLoc(); 2049 MVT VT = BB.RegVT; 2050 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2051 SDValue Cmp; 2052 unsigned PopCount = countPopulation(B.Mask); 2053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2054 if (PopCount == 1) { 2055 // Testing for a single bit; just compare the shift count with what it 2056 // would need to be to shift a 1 bit in that position. 2057 Cmp = DAG.getSetCC( 2058 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2059 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2060 ISD::SETEQ); 2061 } else if (PopCount == BB.Range) { 2062 // There is only one zero bit in the range, test for it directly. 2063 Cmp = DAG.getSetCC( 2064 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2065 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2066 ISD::SETNE); 2067 } else { 2068 // Make desired shift 2069 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2070 DAG.getConstant(1, dl, VT), ShiftOp); 2071 2072 // Emit bit tests and jumps 2073 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2074 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2075 Cmp = DAG.getSetCC( 2076 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2077 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2078 } 2079 2080 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2081 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2082 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2083 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2084 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2085 // one as they are relative probabilities (and thus work more like weights), 2086 // and hence we need to normalize them to let the sum of them become one. 2087 SwitchBB->normalizeSuccProbs(); 2088 2089 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2090 MVT::Other, getControlRoot(), 2091 Cmp, DAG.getBasicBlock(B.TargetBB)); 2092 2093 // Avoid emitting unnecessary branches to the next block. 2094 if (NextMBB != NextBlock(SwitchBB)) 2095 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2096 DAG.getBasicBlock(NextMBB)); 2097 2098 DAG.setRoot(BrAnd); 2099 } 2100 2101 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2102 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2103 2104 // Retrieve successors. Look through artificial IR level blocks like 2105 // catchswitch for successors. 2106 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2107 const BasicBlock *EHPadBB = I.getSuccessor(1); 2108 2109 const Value *Callee(I.getCalledValue()); 2110 const Function *Fn = dyn_cast<Function>(Callee); 2111 if (isa<InlineAsm>(Callee)) 2112 visitInlineAsm(&I); 2113 else if (Fn && Fn->isIntrinsic()) { 2114 switch (Fn->getIntrinsicID()) { 2115 default: 2116 llvm_unreachable("Cannot invoke this intrinsic"); 2117 case Intrinsic::donothing: 2118 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2119 break; 2120 case Intrinsic::experimental_patchpoint_void: 2121 case Intrinsic::experimental_patchpoint_i64: 2122 visitPatchpoint(&I, EHPadBB); 2123 break; 2124 case Intrinsic::experimental_gc_statepoint: 2125 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2126 break; 2127 } 2128 } else 2129 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2130 2131 // If the value of the invoke is used outside of its defining block, make it 2132 // available as a virtual register. 2133 // We already took care of the exported value for the statepoint instruction 2134 // during call to the LowerStatepoint. 2135 if (!isStatepoint(I)) { 2136 CopyToExportRegsIfNeeded(&I); 2137 } 2138 2139 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2140 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2141 BranchProbability EHPadBBProb = 2142 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2143 : BranchProbability::getZero(); 2144 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2145 2146 // Update successor info. 2147 addSuccessorWithProb(InvokeMBB, Return); 2148 for (auto &UnwindDest : UnwindDests) { 2149 UnwindDest.first->setIsEHPad(); 2150 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2151 } 2152 InvokeMBB->normalizeSuccProbs(); 2153 2154 // Drop into normal successor. 2155 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2156 MVT::Other, getControlRoot(), 2157 DAG.getBasicBlock(Return))); 2158 } 2159 2160 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2161 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2162 } 2163 2164 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2165 assert(FuncInfo.MBB->isEHPad() && 2166 "Call to landingpad not in landing pad!"); 2167 2168 MachineBasicBlock *MBB = FuncInfo.MBB; 2169 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2170 AddLandingPadInfo(LP, MMI, MBB); 2171 2172 // If there aren't registers to copy the values into (e.g., during SjLj 2173 // exceptions), then don't bother to create these DAG nodes. 2174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2175 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2176 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2177 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2178 return; 2179 2180 SmallVector<EVT, 2> ValueVTs; 2181 SDLoc dl = getCurSDLoc(); 2182 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2183 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2184 2185 // Get the two live-in registers as SDValues. The physregs have already been 2186 // copied into virtual registers. 2187 SDValue Ops[2]; 2188 if (FuncInfo.ExceptionPointerVirtReg) { 2189 Ops[0] = DAG.getZExtOrTrunc( 2190 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2191 FuncInfo.ExceptionPointerVirtReg, 2192 TLI.getPointerTy(DAG.getDataLayout())), 2193 dl, ValueVTs[0]); 2194 } else { 2195 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2196 } 2197 Ops[1] = DAG.getZExtOrTrunc( 2198 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2199 FuncInfo.ExceptionSelectorVirtReg, 2200 TLI.getPointerTy(DAG.getDataLayout())), 2201 dl, ValueVTs[1]); 2202 2203 // Merge into one. 2204 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2205 DAG.getVTList(ValueVTs), Ops); 2206 setValue(&LP, Res); 2207 } 2208 2209 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2210 #ifndef NDEBUG 2211 for (const CaseCluster &CC : Clusters) 2212 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2213 #endif 2214 2215 std::sort(Clusters.begin(), Clusters.end(), 2216 [](const CaseCluster &a, const CaseCluster &b) { 2217 return a.Low->getValue().slt(b.Low->getValue()); 2218 }); 2219 2220 // Merge adjacent clusters with the same destination. 2221 const unsigned N = Clusters.size(); 2222 unsigned DstIndex = 0; 2223 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2224 CaseCluster &CC = Clusters[SrcIndex]; 2225 const ConstantInt *CaseVal = CC.Low; 2226 MachineBasicBlock *Succ = CC.MBB; 2227 2228 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2229 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2230 // If this case has the same successor and is a neighbour, merge it into 2231 // the previous cluster. 2232 Clusters[DstIndex - 1].High = CaseVal; 2233 Clusters[DstIndex - 1].Prob += CC.Prob; 2234 } else { 2235 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2236 sizeof(Clusters[SrcIndex])); 2237 } 2238 } 2239 Clusters.resize(DstIndex); 2240 } 2241 2242 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2243 MachineBasicBlock *Last) { 2244 // Update JTCases. 2245 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2246 if (JTCases[i].first.HeaderBB == First) 2247 JTCases[i].first.HeaderBB = Last; 2248 2249 // Update BitTestCases. 2250 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2251 if (BitTestCases[i].Parent == First) 2252 BitTestCases[i].Parent = Last; 2253 } 2254 2255 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2256 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2257 2258 // Update machine-CFG edges with unique successors. 2259 SmallSet<BasicBlock*, 32> Done; 2260 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2261 BasicBlock *BB = I.getSuccessor(i); 2262 bool Inserted = Done.insert(BB).second; 2263 if (!Inserted) 2264 continue; 2265 2266 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2267 addSuccessorWithProb(IndirectBrMBB, Succ); 2268 } 2269 IndirectBrMBB->normalizeSuccProbs(); 2270 2271 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2272 MVT::Other, getControlRoot(), 2273 getValue(I.getAddress()))); 2274 } 2275 2276 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2277 if (DAG.getTarget().Options.TrapUnreachable) 2278 DAG.setRoot( 2279 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2280 } 2281 2282 void SelectionDAGBuilder::visitFSub(const User &I) { 2283 // -0.0 - X --> fneg 2284 Type *Ty = I.getType(); 2285 if (isa<Constant>(I.getOperand(0)) && 2286 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2287 SDValue Op2 = getValue(I.getOperand(1)); 2288 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2289 Op2.getValueType(), Op2)); 2290 return; 2291 } 2292 2293 visitBinary(I, ISD::FSUB); 2294 } 2295 2296 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2297 SDValue Op1 = getValue(I.getOperand(0)); 2298 SDValue Op2 = getValue(I.getOperand(1)); 2299 2300 bool nuw = false; 2301 bool nsw = false; 2302 bool exact = false; 2303 FastMathFlags FMF; 2304 2305 if (const OverflowingBinaryOperator *OFBinOp = 2306 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2307 nuw = OFBinOp->hasNoUnsignedWrap(); 2308 nsw = OFBinOp->hasNoSignedWrap(); 2309 } 2310 if (const PossiblyExactOperator *ExactOp = 2311 dyn_cast<const PossiblyExactOperator>(&I)) 2312 exact = ExactOp->isExact(); 2313 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2314 FMF = FPOp->getFastMathFlags(); 2315 2316 SDNodeFlags Flags; 2317 Flags.setExact(exact); 2318 Flags.setNoSignedWrap(nsw); 2319 Flags.setNoUnsignedWrap(nuw); 2320 if (EnableFMFInDAG) { 2321 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2322 Flags.setNoInfs(FMF.noInfs()); 2323 Flags.setNoNaNs(FMF.noNaNs()); 2324 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2325 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2326 } 2327 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2328 Op1, Op2, &Flags); 2329 setValue(&I, BinNodeValue); 2330 } 2331 2332 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2333 SDValue Op1 = getValue(I.getOperand(0)); 2334 SDValue Op2 = getValue(I.getOperand(1)); 2335 2336 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2337 Op2.getValueType(), DAG.getDataLayout()); 2338 2339 // Coerce the shift amount to the right type if we can. 2340 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2341 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2342 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2343 SDLoc DL = getCurSDLoc(); 2344 2345 // If the operand is smaller than the shift count type, promote it. 2346 if (ShiftSize > Op2Size) 2347 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2348 2349 // If the operand is larger than the shift count type but the shift 2350 // count type has enough bits to represent any shift value, truncate 2351 // it now. This is a common case and it exposes the truncate to 2352 // optimization early. 2353 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2354 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2355 // Otherwise we'll need to temporarily settle for some other convenient 2356 // type. Type legalization will make adjustments once the shiftee is split. 2357 else 2358 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2359 } 2360 2361 bool nuw = false; 2362 bool nsw = false; 2363 bool exact = false; 2364 2365 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2366 2367 if (const OverflowingBinaryOperator *OFBinOp = 2368 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2369 nuw = OFBinOp->hasNoUnsignedWrap(); 2370 nsw = OFBinOp->hasNoSignedWrap(); 2371 } 2372 if (const PossiblyExactOperator *ExactOp = 2373 dyn_cast<const PossiblyExactOperator>(&I)) 2374 exact = ExactOp->isExact(); 2375 } 2376 SDNodeFlags Flags; 2377 Flags.setExact(exact); 2378 Flags.setNoSignedWrap(nsw); 2379 Flags.setNoUnsignedWrap(nuw); 2380 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2381 &Flags); 2382 setValue(&I, Res); 2383 } 2384 2385 void SelectionDAGBuilder::visitSDiv(const User &I) { 2386 SDValue Op1 = getValue(I.getOperand(0)); 2387 SDValue Op2 = getValue(I.getOperand(1)); 2388 2389 SDNodeFlags Flags; 2390 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2391 cast<PossiblyExactOperator>(&I)->isExact()); 2392 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2393 Op2, &Flags)); 2394 } 2395 2396 void SelectionDAGBuilder::visitICmp(const User &I) { 2397 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2398 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2399 predicate = IC->getPredicate(); 2400 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2401 predicate = ICmpInst::Predicate(IC->getPredicate()); 2402 SDValue Op1 = getValue(I.getOperand(0)); 2403 SDValue Op2 = getValue(I.getOperand(1)); 2404 ISD::CondCode Opcode = getICmpCondCode(predicate); 2405 2406 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2407 I.getType()); 2408 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2409 } 2410 2411 void SelectionDAGBuilder::visitFCmp(const User &I) { 2412 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2413 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2414 predicate = FC->getPredicate(); 2415 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2416 predicate = FCmpInst::Predicate(FC->getPredicate()); 2417 SDValue Op1 = getValue(I.getOperand(0)); 2418 SDValue Op2 = getValue(I.getOperand(1)); 2419 ISD::CondCode Condition = getFCmpCondCode(predicate); 2420 2421 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2422 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2423 // further optimization, but currently FMF is only applicable to binary nodes. 2424 if (TM.Options.NoNaNsFPMath) 2425 Condition = getFCmpCodeWithoutNaN(Condition); 2426 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2427 I.getType()); 2428 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2429 } 2430 2431 void SelectionDAGBuilder::visitSelect(const User &I) { 2432 SmallVector<EVT, 4> ValueVTs; 2433 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2434 ValueVTs); 2435 unsigned NumValues = ValueVTs.size(); 2436 if (NumValues == 0) return; 2437 2438 SmallVector<SDValue, 4> Values(NumValues); 2439 SDValue Cond = getValue(I.getOperand(0)); 2440 SDValue LHSVal = getValue(I.getOperand(1)); 2441 SDValue RHSVal = getValue(I.getOperand(2)); 2442 auto BaseOps = {Cond}; 2443 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2444 ISD::VSELECT : ISD::SELECT; 2445 2446 // Min/max matching is only viable if all output VTs are the same. 2447 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2448 EVT VT = ValueVTs[0]; 2449 LLVMContext &Ctx = *DAG.getContext(); 2450 auto &TLI = DAG.getTargetLoweringInfo(); 2451 2452 // We care about the legality of the operation after it has been type 2453 // legalized. 2454 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 2455 VT = TLI.getTypeToTransformTo(Ctx, VT); 2456 2457 // If the vselect is legal, assume we want to leave this as a vector setcc + 2458 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2459 // min/max is legal on the scalar type. 2460 bool UseScalarMinMax = VT.isVector() && 2461 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2462 2463 Value *LHS, *RHS; 2464 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2465 ISD::NodeType Opc = ISD::DELETED_NODE; 2466 switch (SPR.Flavor) { 2467 case SPF_UMAX: Opc = ISD::UMAX; break; 2468 case SPF_UMIN: Opc = ISD::UMIN; break; 2469 case SPF_SMAX: Opc = ISD::SMAX; break; 2470 case SPF_SMIN: Opc = ISD::SMIN; break; 2471 case SPF_FMINNUM: 2472 switch (SPR.NaNBehavior) { 2473 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2474 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2475 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2476 case SPNB_RETURNS_ANY: { 2477 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2478 Opc = ISD::FMINNUM; 2479 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2480 Opc = ISD::FMINNAN; 2481 else if (UseScalarMinMax) 2482 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2483 ISD::FMINNUM : ISD::FMINNAN; 2484 break; 2485 } 2486 } 2487 break; 2488 case SPF_FMAXNUM: 2489 switch (SPR.NaNBehavior) { 2490 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2491 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2492 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2493 case SPNB_RETURNS_ANY: 2494 2495 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2496 Opc = ISD::FMAXNUM; 2497 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2498 Opc = ISD::FMAXNAN; 2499 else if (UseScalarMinMax) 2500 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2501 ISD::FMAXNUM : ISD::FMAXNAN; 2502 break; 2503 } 2504 break; 2505 default: break; 2506 } 2507 2508 if (Opc != ISD::DELETED_NODE && 2509 (TLI.isOperationLegalOrCustom(Opc, VT) || 2510 (UseScalarMinMax && 2511 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2512 // If the underlying comparison instruction is used by any other 2513 // instruction, the consumed instructions won't be destroyed, so it is 2514 // not profitable to convert to a min/max. 2515 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2516 OpCode = Opc; 2517 LHSVal = getValue(LHS); 2518 RHSVal = getValue(RHS); 2519 BaseOps = {}; 2520 } 2521 } 2522 2523 for (unsigned i = 0; i != NumValues; ++i) { 2524 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2525 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2526 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2527 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2528 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2529 Ops); 2530 } 2531 2532 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2533 DAG.getVTList(ValueVTs), Values)); 2534 } 2535 2536 void SelectionDAGBuilder::visitTrunc(const User &I) { 2537 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2538 SDValue N = getValue(I.getOperand(0)); 2539 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2540 I.getType()); 2541 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2542 } 2543 2544 void SelectionDAGBuilder::visitZExt(const User &I) { 2545 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2546 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2547 SDValue N = getValue(I.getOperand(0)); 2548 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2549 I.getType()); 2550 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2551 } 2552 2553 void SelectionDAGBuilder::visitSExt(const User &I) { 2554 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2555 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2556 SDValue N = getValue(I.getOperand(0)); 2557 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2558 I.getType()); 2559 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2560 } 2561 2562 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2563 // FPTrunc is never a no-op cast, no need to check 2564 SDValue N = getValue(I.getOperand(0)); 2565 SDLoc dl = getCurSDLoc(); 2566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2567 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2568 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2569 DAG.getTargetConstant( 2570 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2571 } 2572 2573 void SelectionDAGBuilder::visitFPExt(const User &I) { 2574 // FPExt is never a no-op cast, no need to check 2575 SDValue N = getValue(I.getOperand(0)); 2576 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2577 I.getType()); 2578 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2579 } 2580 2581 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2582 // FPToUI is never a no-op cast, no need to check 2583 SDValue N = getValue(I.getOperand(0)); 2584 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2585 I.getType()); 2586 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2587 } 2588 2589 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2590 // FPToSI is never a no-op cast, no need to check 2591 SDValue N = getValue(I.getOperand(0)); 2592 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2593 I.getType()); 2594 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2595 } 2596 2597 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2598 // UIToFP is never a no-op cast, no need to check 2599 SDValue N = getValue(I.getOperand(0)); 2600 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2601 I.getType()); 2602 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2603 } 2604 2605 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2606 // SIToFP is never a no-op cast, no need to check 2607 SDValue N = getValue(I.getOperand(0)); 2608 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2609 I.getType()); 2610 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2611 } 2612 2613 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2614 // What to do depends on the size of the integer and the size of the pointer. 2615 // We can either truncate, zero extend, or no-op, accordingly. 2616 SDValue N = getValue(I.getOperand(0)); 2617 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2618 I.getType()); 2619 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2620 } 2621 2622 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2623 // What to do depends on the size of the integer and the size of the pointer. 2624 // We can either truncate, zero extend, or no-op, accordingly. 2625 SDValue N = getValue(I.getOperand(0)); 2626 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2627 I.getType()); 2628 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2629 } 2630 2631 void SelectionDAGBuilder::visitBitCast(const User &I) { 2632 SDValue N = getValue(I.getOperand(0)); 2633 SDLoc dl = getCurSDLoc(); 2634 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2635 I.getType()); 2636 2637 // BitCast assures us that source and destination are the same size so this is 2638 // either a BITCAST or a no-op. 2639 if (DestVT != N.getValueType()) 2640 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2641 DestVT, N)); // convert types. 2642 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2643 // might fold any kind of constant expression to an integer constant and that 2644 // is not what we are looking for. Only regcognize a bitcast of a genuine 2645 // constant integer as an opaque constant. 2646 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2647 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2648 /*isOpaque*/true)); 2649 else 2650 setValue(&I, N); // noop cast. 2651 } 2652 2653 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2655 const Value *SV = I.getOperand(0); 2656 SDValue N = getValue(SV); 2657 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2658 2659 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2660 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2661 2662 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2663 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2664 2665 setValue(&I, N); 2666 } 2667 2668 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2670 SDValue InVec = getValue(I.getOperand(0)); 2671 SDValue InVal = getValue(I.getOperand(1)); 2672 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2673 TLI.getVectorIdxTy(DAG.getDataLayout())); 2674 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2675 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2676 InVec, InVal, InIdx)); 2677 } 2678 2679 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2680 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2681 SDValue InVec = getValue(I.getOperand(0)); 2682 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2683 TLI.getVectorIdxTy(DAG.getDataLayout())); 2684 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2685 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2686 InVec, InIdx)); 2687 } 2688 2689 // Utility for visitShuffleVector - Return true if every element in Mask, 2690 // beginning from position Pos and ending in Pos+Size, falls within the 2691 // specified sequential range [L, L+Pos). or is undef. 2692 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2693 unsigned Pos, unsigned Size, int Low) { 2694 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2695 if (Mask[i] >= 0 && Mask[i] != Low) 2696 return false; 2697 return true; 2698 } 2699 2700 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2701 SDValue Src1 = getValue(I.getOperand(0)); 2702 SDValue Src2 = getValue(I.getOperand(1)); 2703 2704 SmallVector<int, 8> Mask; 2705 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2706 unsigned MaskNumElts = Mask.size(); 2707 2708 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2709 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2710 EVT SrcVT = Src1.getValueType(); 2711 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2712 2713 if (SrcNumElts == MaskNumElts) { 2714 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2715 &Mask[0])); 2716 return; 2717 } 2718 2719 // Normalize the shuffle vector since mask and vector length don't match. 2720 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2721 // Mask is longer than the source vectors and is a multiple of the source 2722 // vectors. We can use concatenate vector to make the mask and vectors 2723 // lengths match. 2724 if (SrcNumElts*2 == MaskNumElts) { 2725 // First check for Src1 in low and Src2 in high 2726 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2727 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2728 // The shuffle is concatenating two vectors together. 2729 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2730 VT, Src1, Src2)); 2731 return; 2732 } 2733 // Then check for Src2 in low and Src1 in high 2734 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2735 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2736 // The shuffle is concatenating two vectors together. 2737 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2738 VT, Src2, Src1)); 2739 return; 2740 } 2741 } 2742 2743 // Pad both vectors with undefs to make them the same length as the mask. 2744 unsigned NumConcat = MaskNumElts / SrcNumElts; 2745 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2746 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2747 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2748 2749 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2750 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2751 MOps1[0] = Src1; 2752 MOps2[0] = Src2; 2753 2754 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2755 getCurSDLoc(), VT, MOps1); 2756 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2757 getCurSDLoc(), VT, MOps2); 2758 2759 // Readjust mask for new input vector length. 2760 SmallVector<int, 8> MappedOps; 2761 for (unsigned i = 0; i != MaskNumElts; ++i) { 2762 int Idx = Mask[i]; 2763 if (Idx >= (int)SrcNumElts) 2764 Idx -= SrcNumElts - MaskNumElts; 2765 MappedOps.push_back(Idx); 2766 } 2767 2768 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2769 &MappedOps[0])); 2770 return; 2771 } 2772 2773 if (SrcNumElts > MaskNumElts) { 2774 // Analyze the access pattern of the vector to see if we can extract 2775 // two subvectors and do the shuffle. The analysis is done by calculating 2776 // the range of elements the mask access on both vectors. 2777 int MinRange[2] = { static_cast<int>(SrcNumElts), 2778 static_cast<int>(SrcNumElts)}; 2779 int MaxRange[2] = {-1, -1}; 2780 2781 for (unsigned i = 0; i != MaskNumElts; ++i) { 2782 int Idx = Mask[i]; 2783 unsigned Input = 0; 2784 if (Idx < 0) 2785 continue; 2786 2787 if (Idx >= (int)SrcNumElts) { 2788 Input = 1; 2789 Idx -= SrcNumElts; 2790 } 2791 if (Idx > MaxRange[Input]) 2792 MaxRange[Input] = Idx; 2793 if (Idx < MinRange[Input]) 2794 MinRange[Input] = Idx; 2795 } 2796 2797 // Check if the access is smaller than the vector size and can we find 2798 // a reasonable extract index. 2799 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2800 // Extract. 2801 int StartIdx[2]; // StartIdx to extract from 2802 for (unsigned Input = 0; Input < 2; ++Input) { 2803 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2804 RangeUse[Input] = 0; // Unused 2805 StartIdx[Input] = 0; 2806 continue; 2807 } 2808 2809 // Find a good start index that is a multiple of the mask length. Then 2810 // see if the rest of the elements are in range. 2811 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2812 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2813 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2814 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2815 } 2816 2817 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2818 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2819 return; 2820 } 2821 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2822 // Extract appropriate subvector and generate a vector shuffle 2823 for (unsigned Input = 0; Input < 2; ++Input) { 2824 SDValue &Src = Input == 0 ? Src1 : Src2; 2825 if (RangeUse[Input] == 0) 2826 Src = DAG.getUNDEF(VT); 2827 else { 2828 SDLoc dl = getCurSDLoc(); 2829 Src = DAG.getNode( 2830 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2831 DAG.getConstant(StartIdx[Input], dl, 2832 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2833 } 2834 } 2835 2836 // Calculate new mask. 2837 SmallVector<int, 8> MappedOps; 2838 for (unsigned i = 0; i != MaskNumElts; ++i) { 2839 int Idx = Mask[i]; 2840 if (Idx >= 0) { 2841 if (Idx < (int)SrcNumElts) 2842 Idx -= StartIdx[0]; 2843 else 2844 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2845 } 2846 MappedOps.push_back(Idx); 2847 } 2848 2849 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2850 &MappedOps[0])); 2851 return; 2852 } 2853 } 2854 2855 // We can't use either concat vectors or extract subvectors so fall back to 2856 // replacing the shuffle with extract and build vector. 2857 // to insert and build vector. 2858 EVT EltVT = VT.getVectorElementType(); 2859 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2860 SDLoc dl = getCurSDLoc(); 2861 SmallVector<SDValue,8> Ops; 2862 for (unsigned i = 0; i != MaskNumElts; ++i) { 2863 int Idx = Mask[i]; 2864 SDValue Res; 2865 2866 if (Idx < 0) { 2867 Res = DAG.getUNDEF(EltVT); 2868 } else { 2869 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2870 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2871 2872 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2873 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2874 } 2875 2876 Ops.push_back(Res); 2877 } 2878 2879 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2880 } 2881 2882 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2883 const Value *Op0 = I.getOperand(0); 2884 const Value *Op1 = I.getOperand(1); 2885 Type *AggTy = I.getType(); 2886 Type *ValTy = Op1->getType(); 2887 bool IntoUndef = isa<UndefValue>(Op0); 2888 bool FromUndef = isa<UndefValue>(Op1); 2889 2890 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2891 2892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2893 SmallVector<EVT, 4> AggValueVTs; 2894 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2895 SmallVector<EVT, 4> ValValueVTs; 2896 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2897 2898 unsigned NumAggValues = AggValueVTs.size(); 2899 unsigned NumValValues = ValValueVTs.size(); 2900 SmallVector<SDValue, 4> Values(NumAggValues); 2901 2902 // Ignore an insertvalue that produces an empty object 2903 if (!NumAggValues) { 2904 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2905 return; 2906 } 2907 2908 SDValue Agg = getValue(Op0); 2909 unsigned i = 0; 2910 // Copy the beginning value(s) from the original aggregate. 2911 for (; i != LinearIndex; ++i) 2912 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2913 SDValue(Agg.getNode(), Agg.getResNo() + i); 2914 // Copy values from the inserted value(s). 2915 if (NumValValues) { 2916 SDValue Val = getValue(Op1); 2917 for (; i != LinearIndex + NumValValues; ++i) 2918 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2919 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2920 } 2921 // Copy remaining value(s) from the original aggregate. 2922 for (; i != NumAggValues; ++i) 2923 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2924 SDValue(Agg.getNode(), Agg.getResNo() + i); 2925 2926 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2927 DAG.getVTList(AggValueVTs), Values)); 2928 } 2929 2930 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2931 const Value *Op0 = I.getOperand(0); 2932 Type *AggTy = Op0->getType(); 2933 Type *ValTy = I.getType(); 2934 bool OutOfUndef = isa<UndefValue>(Op0); 2935 2936 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2937 2938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2939 SmallVector<EVT, 4> ValValueVTs; 2940 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2941 2942 unsigned NumValValues = ValValueVTs.size(); 2943 2944 // Ignore a extractvalue that produces an empty object 2945 if (!NumValValues) { 2946 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2947 return; 2948 } 2949 2950 SmallVector<SDValue, 4> Values(NumValValues); 2951 2952 SDValue Agg = getValue(Op0); 2953 // Copy out the selected value(s). 2954 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2955 Values[i - LinearIndex] = 2956 OutOfUndef ? 2957 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2958 SDValue(Agg.getNode(), Agg.getResNo() + i); 2959 2960 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2961 DAG.getVTList(ValValueVTs), Values)); 2962 } 2963 2964 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2965 Value *Op0 = I.getOperand(0); 2966 // Note that the pointer operand may be a vector of pointers. Take the scalar 2967 // element which holds a pointer. 2968 Type *Ty = Op0->getType()->getScalarType(); 2969 unsigned AS = Ty->getPointerAddressSpace(); 2970 SDValue N = getValue(Op0); 2971 SDLoc dl = getCurSDLoc(); 2972 2973 // Normalize Vector GEP - all scalar operands should be converted to the 2974 // splat vector. 2975 unsigned VectorWidth = I.getType()->isVectorTy() ? 2976 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2977 2978 if (VectorWidth && !N.getValueType().isVector()) { 2979 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2980 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2981 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2982 } 2983 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2984 OI != E; ++OI) { 2985 const Value *Idx = *OI; 2986 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2987 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2988 if (Field) { 2989 // N = N + Offset 2990 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2991 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2992 DAG.getConstant(Offset, dl, N.getValueType())); 2993 } 2994 2995 Ty = StTy->getElementType(Field); 2996 } else { 2997 Ty = cast<SequentialType>(Ty)->getElementType(); 2998 MVT PtrTy = 2999 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3000 unsigned PtrSize = PtrTy.getSizeInBits(); 3001 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3002 3003 // If this is a scalar constant or a splat vector of constants, 3004 // handle it quickly. 3005 const auto *CI = dyn_cast<ConstantInt>(Idx); 3006 if (!CI && isa<ConstantDataVector>(Idx) && 3007 cast<ConstantDataVector>(Idx)->getSplatValue()) 3008 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3009 3010 if (CI) { 3011 if (CI->isZero()) 3012 continue; 3013 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3014 SDValue OffsVal = VectorWidth ? 3015 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3016 DAG.getConstant(Offs, dl, PtrTy); 3017 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3018 continue; 3019 } 3020 3021 // N = N + Idx * ElementSize; 3022 SDValue IdxN = getValue(Idx); 3023 3024 if (!IdxN.getValueType().isVector() && VectorWidth) { 3025 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3026 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3027 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3028 } 3029 // If the index is smaller or larger than intptr_t, truncate or extend 3030 // it. 3031 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3032 3033 // If this is a multiply by a power of two, turn it into a shl 3034 // immediately. This is a very common case. 3035 if (ElementSize != 1) { 3036 if (ElementSize.isPowerOf2()) { 3037 unsigned Amt = ElementSize.logBase2(); 3038 IdxN = DAG.getNode(ISD::SHL, dl, 3039 N.getValueType(), IdxN, 3040 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3041 } else { 3042 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3043 IdxN = DAG.getNode(ISD::MUL, dl, 3044 N.getValueType(), IdxN, Scale); 3045 } 3046 } 3047 3048 N = DAG.getNode(ISD::ADD, dl, 3049 N.getValueType(), N, IdxN); 3050 } 3051 } 3052 3053 setValue(&I, N); 3054 } 3055 3056 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3057 // If this is a fixed sized alloca in the entry block of the function, 3058 // allocate it statically on the stack. 3059 if (FuncInfo.StaticAllocaMap.count(&I)) 3060 return; // getValue will auto-populate this. 3061 3062 SDLoc dl = getCurSDLoc(); 3063 Type *Ty = I.getAllocatedType(); 3064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3065 auto &DL = DAG.getDataLayout(); 3066 uint64_t TySize = DL.getTypeAllocSize(Ty); 3067 unsigned Align = 3068 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3069 3070 SDValue AllocSize = getValue(I.getArraySize()); 3071 3072 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3073 if (AllocSize.getValueType() != IntPtr) 3074 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3075 3076 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3077 AllocSize, 3078 DAG.getConstant(TySize, dl, IntPtr)); 3079 3080 // Handle alignment. If the requested alignment is less than or equal to 3081 // the stack alignment, ignore it. If the size is greater than or equal to 3082 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3083 unsigned StackAlign = 3084 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3085 if (Align <= StackAlign) 3086 Align = 0; 3087 3088 // Round the size of the allocation up to the stack alignment size 3089 // by add SA-1 to the size. 3090 AllocSize = DAG.getNode(ISD::ADD, dl, 3091 AllocSize.getValueType(), AllocSize, 3092 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3093 3094 // Mask out the low bits for alignment purposes. 3095 AllocSize = DAG.getNode(ISD::AND, dl, 3096 AllocSize.getValueType(), AllocSize, 3097 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3098 dl)); 3099 3100 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3101 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3102 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3103 setValue(&I, DSA); 3104 DAG.setRoot(DSA.getValue(1)); 3105 3106 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3107 } 3108 3109 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3110 if (I.isAtomic()) 3111 return visitAtomicLoad(I); 3112 3113 const Value *SV = I.getOperand(0); 3114 SDValue Ptr = getValue(SV); 3115 3116 Type *Ty = I.getType(); 3117 3118 bool isVolatile = I.isVolatile(); 3119 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3120 3121 // The IR notion of invariant_load only guarantees that all *non-faulting* 3122 // invariant loads result in the same value. The MI notion of invariant load 3123 // guarantees that the load can be legally moved to any location within its 3124 // containing function. The MI notion of invariant_load is stronger than the 3125 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3126 // with a guarantee that the location being loaded from is dereferenceable 3127 // throughout the function's lifetime. 3128 3129 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3130 isDereferenceablePointer(SV, DAG.getDataLayout()); 3131 unsigned Alignment = I.getAlignment(); 3132 3133 AAMDNodes AAInfo; 3134 I.getAAMetadata(AAInfo); 3135 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3136 3137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3138 SmallVector<EVT, 4> ValueVTs; 3139 SmallVector<uint64_t, 4> Offsets; 3140 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3141 unsigned NumValues = ValueVTs.size(); 3142 if (NumValues == 0) 3143 return; 3144 3145 SDValue Root; 3146 bool ConstantMemory = false; 3147 if (isVolatile || NumValues > MaxParallelChains) 3148 // Serialize volatile loads with other side effects. 3149 Root = getRoot(); 3150 else if (AA->pointsToConstantMemory(MemoryLocation( 3151 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3152 // Do not serialize (non-volatile) loads of constant memory with anything. 3153 Root = DAG.getEntryNode(); 3154 ConstantMemory = true; 3155 } else { 3156 // Do not serialize non-volatile loads against each other. 3157 Root = DAG.getRoot(); 3158 } 3159 3160 SDLoc dl = getCurSDLoc(); 3161 3162 if (isVolatile) 3163 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3164 3165 SmallVector<SDValue, 4> Values(NumValues); 3166 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3167 EVT PtrVT = Ptr.getValueType(); 3168 unsigned ChainI = 0; 3169 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3170 // Serializing loads here may result in excessive register pressure, and 3171 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3172 // could recover a bit by hoisting nodes upward in the chain by recognizing 3173 // they are side-effect free or do not alias. The optimizer should really 3174 // avoid this case by converting large object/array copies to llvm.memcpy 3175 // (MaxParallelChains should always remain as failsafe). 3176 if (ChainI == MaxParallelChains) { 3177 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3178 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3179 makeArrayRef(Chains.data(), ChainI)); 3180 Root = Chain; 3181 ChainI = 0; 3182 } 3183 SDValue A = DAG.getNode(ISD::ADD, dl, 3184 PtrVT, Ptr, 3185 DAG.getConstant(Offsets[i], dl, PtrVT)); 3186 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3187 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3188 isNonTemporal, isInvariant, Alignment, AAInfo, 3189 Ranges); 3190 3191 Values[i] = L; 3192 Chains[ChainI] = L.getValue(1); 3193 } 3194 3195 if (!ConstantMemory) { 3196 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3197 makeArrayRef(Chains.data(), ChainI)); 3198 if (isVolatile) 3199 DAG.setRoot(Chain); 3200 else 3201 PendingLoads.push_back(Chain); 3202 } 3203 3204 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3205 DAG.getVTList(ValueVTs), Values)); 3206 } 3207 3208 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3209 if (I.isAtomic()) 3210 return visitAtomicStore(I); 3211 3212 const Value *SrcV = I.getOperand(0); 3213 const Value *PtrV = I.getOperand(1); 3214 3215 SmallVector<EVT, 4> ValueVTs; 3216 SmallVector<uint64_t, 4> Offsets; 3217 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3218 SrcV->getType(), ValueVTs, &Offsets); 3219 unsigned NumValues = ValueVTs.size(); 3220 if (NumValues == 0) 3221 return; 3222 3223 // Get the lowered operands. Note that we do this after 3224 // checking if NumResults is zero, because with zero results 3225 // the operands won't have values in the map. 3226 SDValue Src = getValue(SrcV); 3227 SDValue Ptr = getValue(PtrV); 3228 3229 SDValue Root = getRoot(); 3230 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3231 EVT PtrVT = Ptr.getValueType(); 3232 bool isVolatile = I.isVolatile(); 3233 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3234 unsigned Alignment = I.getAlignment(); 3235 SDLoc dl = getCurSDLoc(); 3236 3237 AAMDNodes AAInfo; 3238 I.getAAMetadata(AAInfo); 3239 3240 unsigned ChainI = 0; 3241 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3242 // See visitLoad comments. 3243 if (ChainI == MaxParallelChains) { 3244 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3245 makeArrayRef(Chains.data(), ChainI)); 3246 Root = Chain; 3247 ChainI = 0; 3248 } 3249 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3250 DAG.getConstant(Offsets[i], dl, PtrVT)); 3251 SDValue St = DAG.getStore(Root, dl, 3252 SDValue(Src.getNode(), Src.getResNo() + i), 3253 Add, MachinePointerInfo(PtrV, Offsets[i]), 3254 isVolatile, isNonTemporal, Alignment, AAInfo); 3255 Chains[ChainI] = St; 3256 } 3257 3258 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3259 makeArrayRef(Chains.data(), ChainI)); 3260 DAG.setRoot(StoreNode); 3261 } 3262 3263 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3264 SDLoc sdl = getCurSDLoc(); 3265 3266 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3267 Value *PtrOperand = I.getArgOperand(1); 3268 SDValue Ptr = getValue(PtrOperand); 3269 SDValue Src0 = getValue(I.getArgOperand(0)); 3270 SDValue Mask = getValue(I.getArgOperand(3)); 3271 EVT VT = Src0.getValueType(); 3272 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3273 if (!Alignment) 3274 Alignment = DAG.getEVTAlignment(VT); 3275 3276 AAMDNodes AAInfo; 3277 I.getAAMetadata(AAInfo); 3278 3279 MachineMemOperand *MMO = 3280 DAG.getMachineFunction(). 3281 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3282 MachineMemOperand::MOStore, VT.getStoreSize(), 3283 Alignment, AAInfo); 3284 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3285 MMO, false); 3286 DAG.setRoot(StoreNode); 3287 setValue(&I, StoreNode); 3288 } 3289 3290 // Get a uniform base for the Gather/Scatter intrinsic. 3291 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3292 // We try to represent it as a base pointer + vector of indices. 3293 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3294 // The first operand of the GEP may be a single pointer or a vector of pointers 3295 // Example: 3296 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3297 // or 3298 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3299 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3300 // 3301 // When the first GEP operand is a single pointer - it is the uniform base we 3302 // are looking for. If first operand of the GEP is a splat vector - we 3303 // extract the spalt value and use it as a uniform base. 3304 // In all other cases the function returns 'false'. 3305 // 3306 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3307 SelectionDAGBuilder* SDB) { 3308 3309 SelectionDAG& DAG = SDB->DAG; 3310 LLVMContext &Context = *DAG.getContext(); 3311 3312 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3313 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3314 if (!GEP || GEP->getNumOperands() > 2) 3315 return false; 3316 3317 const Value *GEPPtr = GEP->getPointerOperand(); 3318 if (!GEPPtr->getType()->isVectorTy()) 3319 Ptr = GEPPtr; 3320 else if (!(Ptr = getSplatValue(GEPPtr))) 3321 return false; 3322 3323 Value *IndexVal = GEP->getOperand(1); 3324 3325 // The operands of the GEP may be defined in another basic block. 3326 // In this case we'll not find nodes for the operands. 3327 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3328 return false; 3329 3330 Base = SDB->getValue(Ptr); 3331 Index = SDB->getValue(IndexVal); 3332 3333 // Suppress sign extension. 3334 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3335 if (SDB->findValue(Sext->getOperand(0))) { 3336 IndexVal = Sext->getOperand(0); 3337 Index = SDB->getValue(IndexVal); 3338 } 3339 } 3340 if (!Index.getValueType().isVector()) { 3341 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3342 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3343 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3344 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3345 } 3346 return true; 3347 } 3348 3349 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3350 SDLoc sdl = getCurSDLoc(); 3351 3352 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3353 const Value *Ptr = I.getArgOperand(1); 3354 SDValue Src0 = getValue(I.getArgOperand(0)); 3355 SDValue Mask = getValue(I.getArgOperand(3)); 3356 EVT VT = Src0.getValueType(); 3357 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3358 if (!Alignment) 3359 Alignment = DAG.getEVTAlignment(VT); 3360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3361 3362 AAMDNodes AAInfo; 3363 I.getAAMetadata(AAInfo); 3364 3365 SDValue Base; 3366 SDValue Index; 3367 const Value *BasePtr = Ptr; 3368 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3369 3370 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3371 MachineMemOperand *MMO = DAG.getMachineFunction(). 3372 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3373 MachineMemOperand::MOStore, VT.getStoreSize(), 3374 Alignment, AAInfo); 3375 if (!UniformBase) { 3376 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3377 Index = getValue(Ptr); 3378 } 3379 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3380 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3381 Ops, MMO); 3382 DAG.setRoot(Scatter); 3383 setValue(&I, Scatter); 3384 } 3385 3386 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3387 SDLoc sdl = getCurSDLoc(); 3388 3389 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3390 Value *PtrOperand = I.getArgOperand(0); 3391 SDValue Ptr = getValue(PtrOperand); 3392 SDValue Src0 = getValue(I.getArgOperand(3)); 3393 SDValue Mask = getValue(I.getArgOperand(2)); 3394 3395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3396 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3397 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3398 if (!Alignment) 3399 Alignment = DAG.getEVTAlignment(VT); 3400 3401 AAMDNodes AAInfo; 3402 I.getAAMetadata(AAInfo); 3403 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3404 3405 SDValue InChain = DAG.getRoot(); 3406 if (AA->pointsToConstantMemory(MemoryLocation( 3407 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3408 AAInfo))) { 3409 // Do not serialize (non-volatile) loads of constant memory with anything. 3410 InChain = DAG.getEntryNode(); 3411 } 3412 3413 MachineMemOperand *MMO = 3414 DAG.getMachineFunction(). 3415 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3416 MachineMemOperand::MOLoad, VT.getStoreSize(), 3417 Alignment, AAInfo, Ranges); 3418 3419 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3420 ISD::NON_EXTLOAD); 3421 SDValue OutChain = Load.getValue(1); 3422 DAG.setRoot(OutChain); 3423 setValue(&I, Load); 3424 } 3425 3426 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3427 SDLoc sdl = getCurSDLoc(); 3428 3429 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3430 const Value *Ptr = I.getArgOperand(0); 3431 SDValue Src0 = getValue(I.getArgOperand(3)); 3432 SDValue Mask = getValue(I.getArgOperand(2)); 3433 3434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3435 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3436 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3437 if (!Alignment) 3438 Alignment = DAG.getEVTAlignment(VT); 3439 3440 AAMDNodes AAInfo; 3441 I.getAAMetadata(AAInfo); 3442 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3443 3444 SDValue Root = DAG.getRoot(); 3445 SDValue Base; 3446 SDValue Index; 3447 const Value *BasePtr = Ptr; 3448 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3449 bool ConstantMemory = false; 3450 if (UniformBase && 3451 AA->pointsToConstantMemory(MemoryLocation( 3452 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3453 AAInfo))) { 3454 // Do not serialize (non-volatile) loads of constant memory with anything. 3455 Root = DAG.getEntryNode(); 3456 ConstantMemory = true; 3457 } 3458 3459 MachineMemOperand *MMO = 3460 DAG.getMachineFunction(). 3461 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3462 MachineMemOperand::MOLoad, VT.getStoreSize(), 3463 Alignment, AAInfo, Ranges); 3464 3465 if (!UniformBase) { 3466 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3467 Index = getValue(Ptr); 3468 } 3469 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3470 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3471 Ops, MMO); 3472 3473 SDValue OutChain = Gather.getValue(1); 3474 if (!ConstantMemory) 3475 PendingLoads.push_back(OutChain); 3476 setValue(&I, Gather); 3477 } 3478 3479 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3480 SDLoc dl = getCurSDLoc(); 3481 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3482 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3483 SynchronizationScope Scope = I.getSynchScope(); 3484 3485 SDValue InChain = getRoot(); 3486 3487 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3488 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3489 SDValue L = DAG.getAtomicCmpSwap( 3490 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3491 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3492 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3493 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3494 3495 SDValue OutChain = L.getValue(2); 3496 3497 setValue(&I, L); 3498 DAG.setRoot(OutChain); 3499 } 3500 3501 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3502 SDLoc dl = getCurSDLoc(); 3503 ISD::NodeType NT; 3504 switch (I.getOperation()) { 3505 default: llvm_unreachable("Unknown atomicrmw operation"); 3506 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3507 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3508 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3509 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3510 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3511 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3512 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3513 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3514 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3515 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3516 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3517 } 3518 AtomicOrdering Order = I.getOrdering(); 3519 SynchronizationScope Scope = I.getSynchScope(); 3520 3521 SDValue InChain = getRoot(); 3522 3523 SDValue L = 3524 DAG.getAtomic(NT, dl, 3525 getValue(I.getValOperand()).getSimpleValueType(), 3526 InChain, 3527 getValue(I.getPointerOperand()), 3528 getValue(I.getValOperand()), 3529 I.getPointerOperand(), 3530 /* Alignment=*/ 0, Order, Scope); 3531 3532 SDValue OutChain = L.getValue(1); 3533 3534 setValue(&I, L); 3535 DAG.setRoot(OutChain); 3536 } 3537 3538 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3539 SDLoc dl = getCurSDLoc(); 3540 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3541 SDValue Ops[3]; 3542 Ops[0] = getRoot(); 3543 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3544 TLI.getPointerTy(DAG.getDataLayout())); 3545 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3546 TLI.getPointerTy(DAG.getDataLayout())); 3547 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3548 } 3549 3550 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3551 SDLoc dl = getCurSDLoc(); 3552 AtomicOrdering Order = I.getOrdering(); 3553 SynchronizationScope Scope = I.getSynchScope(); 3554 3555 SDValue InChain = getRoot(); 3556 3557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3558 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3559 3560 if (I.getAlignment() < VT.getSizeInBits() / 8) 3561 report_fatal_error("Cannot generate unaligned atomic load"); 3562 3563 MachineMemOperand *MMO = 3564 DAG.getMachineFunction(). 3565 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3566 MachineMemOperand::MOVolatile | 3567 MachineMemOperand::MOLoad, 3568 VT.getStoreSize(), 3569 I.getAlignment() ? I.getAlignment() : 3570 DAG.getEVTAlignment(VT)); 3571 3572 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3573 SDValue L = 3574 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3575 getValue(I.getPointerOperand()), MMO, 3576 Order, Scope); 3577 3578 SDValue OutChain = L.getValue(1); 3579 3580 setValue(&I, L); 3581 DAG.setRoot(OutChain); 3582 } 3583 3584 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3585 SDLoc dl = getCurSDLoc(); 3586 3587 AtomicOrdering Order = I.getOrdering(); 3588 SynchronizationScope Scope = I.getSynchScope(); 3589 3590 SDValue InChain = getRoot(); 3591 3592 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3593 EVT VT = 3594 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3595 3596 if (I.getAlignment() < VT.getSizeInBits() / 8) 3597 report_fatal_error("Cannot generate unaligned atomic store"); 3598 3599 SDValue OutChain = 3600 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3601 InChain, 3602 getValue(I.getPointerOperand()), 3603 getValue(I.getValueOperand()), 3604 I.getPointerOperand(), I.getAlignment(), 3605 Order, Scope); 3606 3607 DAG.setRoot(OutChain); 3608 } 3609 3610 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3611 /// node. 3612 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3613 unsigned Intrinsic) { 3614 bool HasChain = !I.doesNotAccessMemory(); 3615 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3616 3617 // Build the operand list. 3618 SmallVector<SDValue, 8> Ops; 3619 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3620 if (OnlyLoad) { 3621 // We don't need to serialize loads against other loads. 3622 Ops.push_back(DAG.getRoot()); 3623 } else { 3624 Ops.push_back(getRoot()); 3625 } 3626 } 3627 3628 // Info is set by getTgtMemInstrinsic 3629 TargetLowering::IntrinsicInfo Info; 3630 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3631 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3632 3633 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3634 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3635 Info.opc == ISD::INTRINSIC_W_CHAIN) 3636 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3637 TLI.getPointerTy(DAG.getDataLayout()))); 3638 3639 // Add all operands of the call to the operand list. 3640 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3641 SDValue Op = getValue(I.getArgOperand(i)); 3642 Ops.push_back(Op); 3643 } 3644 3645 SmallVector<EVT, 4> ValueVTs; 3646 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3647 3648 if (HasChain) 3649 ValueVTs.push_back(MVT::Other); 3650 3651 SDVTList VTs = DAG.getVTList(ValueVTs); 3652 3653 // Create the node. 3654 SDValue Result; 3655 if (IsTgtIntrinsic) { 3656 // This is target intrinsic that touches memory 3657 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3658 VTs, Ops, Info.memVT, 3659 MachinePointerInfo(Info.ptrVal, Info.offset), 3660 Info.align, Info.vol, 3661 Info.readMem, Info.writeMem, Info.size); 3662 } else if (!HasChain) { 3663 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3664 } else if (!I.getType()->isVoidTy()) { 3665 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3666 } else { 3667 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3668 } 3669 3670 if (HasChain) { 3671 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3672 if (OnlyLoad) 3673 PendingLoads.push_back(Chain); 3674 else 3675 DAG.setRoot(Chain); 3676 } 3677 3678 if (!I.getType()->isVoidTy()) { 3679 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3680 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3681 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3682 } 3683 3684 setValue(&I, Result); 3685 } 3686 } 3687 3688 /// GetSignificand - Get the significand and build it into a floating-point 3689 /// number with exponent of 1: 3690 /// 3691 /// Op = (Op & 0x007fffff) | 0x3f800000; 3692 /// 3693 /// where Op is the hexadecimal representation of floating point value. 3694 static SDValue 3695 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3696 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3697 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3698 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3699 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3700 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3701 } 3702 3703 /// GetExponent - Get the exponent: 3704 /// 3705 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3706 /// 3707 /// where Op is the hexadecimal representation of floating point value. 3708 static SDValue 3709 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3710 SDLoc dl) { 3711 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3712 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3713 SDValue t1 = DAG.getNode( 3714 ISD::SRL, dl, MVT::i32, t0, 3715 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3716 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3717 DAG.getConstant(127, dl, MVT::i32)); 3718 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3719 } 3720 3721 /// getF32Constant - Get 32-bit floating point constant. 3722 static SDValue 3723 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3724 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3725 MVT::f32); 3726 } 3727 3728 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3729 SelectionDAG &DAG) { 3730 // TODO: What fast-math-flags should be set on the floating-point nodes? 3731 3732 // IntegerPartOfX = ((int32_t)(t0); 3733 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3734 3735 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3736 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3737 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3738 3739 // IntegerPartOfX <<= 23; 3740 IntegerPartOfX = DAG.getNode( 3741 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3742 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3743 DAG.getDataLayout()))); 3744 3745 SDValue TwoToFractionalPartOfX; 3746 if (LimitFloatPrecision <= 6) { 3747 // For floating-point precision of 6: 3748 // 3749 // TwoToFractionalPartOfX = 3750 // 0.997535578f + 3751 // (0.735607626f + 0.252464424f * x) * x; 3752 // 3753 // error 0.0144103317, which is 6 bits 3754 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3755 getF32Constant(DAG, 0x3e814304, dl)); 3756 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3757 getF32Constant(DAG, 0x3f3c50c8, dl)); 3758 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3759 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3760 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3761 } else if (LimitFloatPrecision <= 12) { 3762 // For floating-point precision of 12: 3763 // 3764 // TwoToFractionalPartOfX = 3765 // 0.999892986f + 3766 // (0.696457318f + 3767 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3768 // 3769 // error 0.000107046256, which is 13 to 14 bits 3770 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3771 getF32Constant(DAG, 0x3da235e3, dl)); 3772 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3773 getF32Constant(DAG, 0x3e65b8f3, dl)); 3774 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3775 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3776 getF32Constant(DAG, 0x3f324b07, dl)); 3777 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3778 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3779 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3780 } else { // LimitFloatPrecision <= 18 3781 // For floating-point precision of 18: 3782 // 3783 // TwoToFractionalPartOfX = 3784 // 0.999999982f + 3785 // (0.693148872f + 3786 // (0.240227044f + 3787 // (0.554906021e-1f + 3788 // (0.961591928e-2f + 3789 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3790 // error 2.47208000*10^(-7), which is better than 18 bits 3791 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3792 getF32Constant(DAG, 0x3924b03e, dl)); 3793 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3794 getF32Constant(DAG, 0x3ab24b87, dl)); 3795 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3796 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3797 getF32Constant(DAG, 0x3c1d8c17, dl)); 3798 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3799 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3800 getF32Constant(DAG, 0x3d634a1d, dl)); 3801 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3802 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3803 getF32Constant(DAG, 0x3e75fe14, dl)); 3804 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3805 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3806 getF32Constant(DAG, 0x3f317234, dl)); 3807 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3808 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3809 getF32Constant(DAG, 0x3f800000, dl)); 3810 } 3811 3812 // Add the exponent into the result in integer domain. 3813 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3814 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3815 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3816 } 3817 3818 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3819 /// limited-precision mode. 3820 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3821 const TargetLowering &TLI) { 3822 if (Op.getValueType() == MVT::f32 && 3823 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3824 3825 // Put the exponent in the right bit position for later addition to the 3826 // final result: 3827 // 3828 // #define LOG2OFe 1.4426950f 3829 // t0 = Op * LOG2OFe 3830 3831 // TODO: What fast-math-flags should be set here? 3832 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3833 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3834 return getLimitedPrecisionExp2(t0, dl, DAG); 3835 } 3836 3837 // No special expansion. 3838 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3839 } 3840 3841 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3842 /// limited-precision mode. 3843 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3844 const TargetLowering &TLI) { 3845 3846 // TODO: What fast-math-flags should be set on the floating-point nodes? 3847 3848 if (Op.getValueType() == MVT::f32 && 3849 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3850 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3851 3852 // Scale the exponent by log(2) [0.69314718f]. 3853 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3854 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3855 getF32Constant(DAG, 0x3f317218, dl)); 3856 3857 // Get the significand and build it into a floating-point number with 3858 // exponent of 1. 3859 SDValue X = GetSignificand(DAG, Op1, dl); 3860 3861 SDValue LogOfMantissa; 3862 if (LimitFloatPrecision <= 6) { 3863 // For floating-point precision of 6: 3864 // 3865 // LogofMantissa = 3866 // -1.1609546f + 3867 // (1.4034025f - 0.23903021f * x) * x; 3868 // 3869 // error 0.0034276066, which is better than 8 bits 3870 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3871 getF32Constant(DAG, 0xbe74c456, dl)); 3872 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3873 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3874 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3875 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3876 getF32Constant(DAG, 0x3f949a29, dl)); 3877 } else if (LimitFloatPrecision <= 12) { 3878 // For floating-point precision of 12: 3879 // 3880 // LogOfMantissa = 3881 // -1.7417939f + 3882 // (2.8212026f + 3883 // (-1.4699568f + 3884 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3885 // 3886 // error 0.000061011436, which is 14 bits 3887 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3888 getF32Constant(DAG, 0xbd67b6d6, dl)); 3889 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3890 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3891 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3892 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3893 getF32Constant(DAG, 0x3fbc278b, dl)); 3894 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3895 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3896 getF32Constant(DAG, 0x40348e95, dl)); 3897 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3898 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3899 getF32Constant(DAG, 0x3fdef31a, dl)); 3900 } else { // LimitFloatPrecision <= 18 3901 // For floating-point precision of 18: 3902 // 3903 // LogOfMantissa = 3904 // -2.1072184f + 3905 // (4.2372794f + 3906 // (-3.7029485f + 3907 // (2.2781945f + 3908 // (-0.87823314f + 3909 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3910 // 3911 // error 0.0000023660568, which is better than 18 bits 3912 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3913 getF32Constant(DAG, 0xbc91e5ac, dl)); 3914 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3915 getF32Constant(DAG, 0x3e4350aa, dl)); 3916 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3917 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3918 getF32Constant(DAG, 0x3f60d3e3, dl)); 3919 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3920 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3921 getF32Constant(DAG, 0x4011cdf0, dl)); 3922 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3923 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3924 getF32Constant(DAG, 0x406cfd1c, dl)); 3925 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3926 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3927 getF32Constant(DAG, 0x408797cb, dl)); 3928 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3929 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3930 getF32Constant(DAG, 0x4006dcab, dl)); 3931 } 3932 3933 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3934 } 3935 3936 // No special expansion. 3937 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3938 } 3939 3940 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3941 /// limited-precision mode. 3942 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3943 const TargetLowering &TLI) { 3944 3945 // TODO: What fast-math-flags should be set on the floating-point nodes? 3946 3947 if (Op.getValueType() == MVT::f32 && 3948 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3949 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3950 3951 // Get the exponent. 3952 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3953 3954 // Get the significand and build it into a floating-point number with 3955 // exponent of 1. 3956 SDValue X = GetSignificand(DAG, Op1, dl); 3957 3958 // Different possible minimax approximations of significand in 3959 // floating-point for various degrees of accuracy over [1,2]. 3960 SDValue Log2ofMantissa; 3961 if (LimitFloatPrecision <= 6) { 3962 // For floating-point precision of 6: 3963 // 3964 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3965 // 3966 // error 0.0049451742, which is more than 7 bits 3967 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3968 getF32Constant(DAG, 0xbeb08fe0, dl)); 3969 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3970 getF32Constant(DAG, 0x40019463, dl)); 3971 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3972 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3973 getF32Constant(DAG, 0x3fd6633d, dl)); 3974 } else if (LimitFloatPrecision <= 12) { 3975 // For floating-point precision of 12: 3976 // 3977 // Log2ofMantissa = 3978 // -2.51285454f + 3979 // (4.07009056f + 3980 // (-2.12067489f + 3981 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3982 // 3983 // error 0.0000876136000, which is better than 13 bits 3984 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3985 getF32Constant(DAG, 0xbda7262e, dl)); 3986 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3987 getF32Constant(DAG, 0x3f25280b, dl)); 3988 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3989 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3990 getF32Constant(DAG, 0x4007b923, dl)); 3991 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3992 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3993 getF32Constant(DAG, 0x40823e2f, dl)); 3994 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3995 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3996 getF32Constant(DAG, 0x4020d29c, dl)); 3997 } else { // LimitFloatPrecision <= 18 3998 // For floating-point precision of 18: 3999 // 4000 // Log2ofMantissa = 4001 // -3.0400495f + 4002 // (6.1129976f + 4003 // (-5.3420409f + 4004 // (3.2865683f + 4005 // (-1.2669343f + 4006 // (0.27515199f - 4007 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4008 // 4009 // error 0.0000018516, which is better than 18 bits 4010 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4011 getF32Constant(DAG, 0xbcd2769e, dl)); 4012 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4013 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4014 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4015 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4016 getF32Constant(DAG, 0x3fa22ae7, dl)); 4017 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4018 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4019 getF32Constant(DAG, 0x40525723, dl)); 4020 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4021 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4022 getF32Constant(DAG, 0x40aaf200, dl)); 4023 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4024 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4025 getF32Constant(DAG, 0x40c39dad, dl)); 4026 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4027 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4028 getF32Constant(DAG, 0x4042902c, dl)); 4029 } 4030 4031 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4032 } 4033 4034 // No special expansion. 4035 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4036 } 4037 4038 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4039 /// limited-precision mode. 4040 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4041 const TargetLowering &TLI) { 4042 4043 // TODO: What fast-math-flags should be set on the floating-point nodes? 4044 4045 if (Op.getValueType() == MVT::f32 && 4046 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4047 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4048 4049 // Scale the exponent by log10(2) [0.30102999f]. 4050 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4051 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4052 getF32Constant(DAG, 0x3e9a209a, dl)); 4053 4054 // Get the significand and build it into a floating-point number with 4055 // exponent of 1. 4056 SDValue X = GetSignificand(DAG, Op1, dl); 4057 4058 SDValue Log10ofMantissa; 4059 if (LimitFloatPrecision <= 6) { 4060 // For floating-point precision of 6: 4061 // 4062 // Log10ofMantissa = 4063 // -0.50419619f + 4064 // (0.60948995f - 0.10380950f * x) * x; 4065 // 4066 // error 0.0014886165, which is 6 bits 4067 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4068 getF32Constant(DAG, 0xbdd49a13, dl)); 4069 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4070 getF32Constant(DAG, 0x3f1c0789, dl)); 4071 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4072 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4073 getF32Constant(DAG, 0x3f011300, dl)); 4074 } else if (LimitFloatPrecision <= 12) { 4075 // For floating-point precision of 12: 4076 // 4077 // Log10ofMantissa = 4078 // -0.64831180f + 4079 // (0.91751397f + 4080 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4081 // 4082 // error 0.00019228036, which is better than 12 bits 4083 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4084 getF32Constant(DAG, 0x3d431f31, dl)); 4085 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4086 getF32Constant(DAG, 0x3ea21fb2, dl)); 4087 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4088 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4089 getF32Constant(DAG, 0x3f6ae232, dl)); 4090 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4091 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4092 getF32Constant(DAG, 0x3f25f7c3, dl)); 4093 } else { // LimitFloatPrecision <= 18 4094 // For floating-point precision of 18: 4095 // 4096 // Log10ofMantissa = 4097 // -0.84299375f + 4098 // (1.5327582f + 4099 // (-1.0688956f + 4100 // (0.49102474f + 4101 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4102 // 4103 // error 0.0000037995730, which is better than 18 bits 4104 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4105 getF32Constant(DAG, 0x3c5d51ce, dl)); 4106 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4107 getF32Constant(DAG, 0x3e00685a, dl)); 4108 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4109 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4110 getF32Constant(DAG, 0x3efb6798, dl)); 4111 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4112 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4113 getF32Constant(DAG, 0x3f88d192, dl)); 4114 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4115 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4116 getF32Constant(DAG, 0x3fc4316c, dl)); 4117 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4118 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4119 getF32Constant(DAG, 0x3f57ce70, dl)); 4120 } 4121 4122 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4123 } 4124 4125 // No special expansion. 4126 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4127 } 4128 4129 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4130 /// limited-precision mode. 4131 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4132 const TargetLowering &TLI) { 4133 if (Op.getValueType() == MVT::f32 && 4134 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4135 return getLimitedPrecisionExp2(Op, dl, DAG); 4136 4137 // No special expansion. 4138 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4139 } 4140 4141 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4142 /// limited-precision mode with x == 10.0f. 4143 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4144 SelectionDAG &DAG, const TargetLowering &TLI) { 4145 bool IsExp10 = false; 4146 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4147 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4148 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4149 APFloat Ten(10.0f); 4150 IsExp10 = LHSC->isExactlyValue(Ten); 4151 } 4152 } 4153 4154 // TODO: What fast-math-flags should be set on the FMUL node? 4155 if (IsExp10) { 4156 // Put the exponent in the right bit position for later addition to the 4157 // final result: 4158 // 4159 // #define LOG2OF10 3.3219281f 4160 // t0 = Op * LOG2OF10; 4161 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4162 getF32Constant(DAG, 0x40549a78, dl)); 4163 return getLimitedPrecisionExp2(t0, dl, DAG); 4164 } 4165 4166 // No special expansion. 4167 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4168 } 4169 4170 4171 /// ExpandPowI - Expand a llvm.powi intrinsic. 4172 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4173 SelectionDAG &DAG) { 4174 // If RHS is a constant, we can expand this out to a multiplication tree, 4175 // otherwise we end up lowering to a call to __powidf2 (for example). When 4176 // optimizing for size, we only want to do this if the expansion would produce 4177 // a small number of multiplies, otherwise we do the full expansion. 4178 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4179 // Get the exponent as a positive value. 4180 unsigned Val = RHSC->getSExtValue(); 4181 if ((int)Val < 0) Val = -Val; 4182 4183 // powi(x, 0) -> 1.0 4184 if (Val == 0) 4185 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4186 4187 const Function *F = DAG.getMachineFunction().getFunction(); 4188 if (!F->optForSize() || 4189 // If optimizing for size, don't insert too many multiplies. 4190 // This inserts up to 5 multiplies. 4191 countPopulation(Val) + Log2_32(Val) < 7) { 4192 // We use the simple binary decomposition method to generate the multiply 4193 // sequence. There are more optimal ways to do this (for example, 4194 // powi(x,15) generates one more multiply than it should), but this has 4195 // the benefit of being both really simple and much better than a libcall. 4196 SDValue Res; // Logically starts equal to 1.0 4197 SDValue CurSquare = LHS; 4198 // TODO: Intrinsics should have fast-math-flags that propagate to these 4199 // nodes. 4200 while (Val) { 4201 if (Val & 1) { 4202 if (Res.getNode()) 4203 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4204 else 4205 Res = CurSquare; // 1.0*CurSquare. 4206 } 4207 4208 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4209 CurSquare, CurSquare); 4210 Val >>= 1; 4211 } 4212 4213 // If the original was negative, invert the result, producing 1/(x*x*x). 4214 if (RHSC->getSExtValue() < 0) 4215 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4216 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4217 return Res; 4218 } 4219 } 4220 4221 // Otherwise, expand to a libcall. 4222 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4223 } 4224 4225 // getUnderlyingArgReg - Find underlying register used for a truncated or 4226 // bitcasted argument. 4227 static unsigned getUnderlyingArgReg(const SDValue &N) { 4228 switch (N.getOpcode()) { 4229 case ISD::CopyFromReg: 4230 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4231 case ISD::BITCAST: 4232 case ISD::AssertZext: 4233 case ISD::AssertSext: 4234 case ISD::TRUNCATE: 4235 return getUnderlyingArgReg(N.getOperand(0)); 4236 default: 4237 return 0; 4238 } 4239 } 4240 4241 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4242 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4243 /// At the end of instruction selection, they will be inserted to the entry BB. 4244 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4245 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4246 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4247 const Argument *Arg = dyn_cast<Argument>(V); 4248 if (!Arg) 4249 return false; 4250 4251 MachineFunction &MF = DAG.getMachineFunction(); 4252 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4253 4254 // Ignore inlined function arguments here. 4255 // 4256 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4257 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4258 return false; 4259 4260 Optional<MachineOperand> Op; 4261 // Some arguments' frame index is recorded during argument lowering. 4262 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4263 Op = MachineOperand::CreateFI(FI); 4264 4265 if (!Op && N.getNode()) { 4266 unsigned Reg = getUnderlyingArgReg(N); 4267 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4268 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4269 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4270 if (PR) 4271 Reg = PR; 4272 } 4273 if (Reg) 4274 Op = MachineOperand::CreateReg(Reg, false); 4275 } 4276 4277 if (!Op) { 4278 // Check if ValueMap has reg number. 4279 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4280 if (VMI != FuncInfo.ValueMap.end()) 4281 Op = MachineOperand::CreateReg(VMI->second, false); 4282 } 4283 4284 if (!Op && N.getNode()) 4285 // Check if frame index is available. 4286 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4287 if (FrameIndexSDNode *FINode = 4288 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4289 Op = MachineOperand::CreateFI(FINode->getIndex()); 4290 4291 if (!Op) 4292 return false; 4293 4294 assert(Variable->isValidLocationForIntrinsic(DL) && 4295 "Expected inlined-at fields to agree"); 4296 if (Op->isReg()) 4297 FuncInfo.ArgDbgValues.push_back( 4298 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4299 Op->getReg(), Offset, Variable, Expr)); 4300 else 4301 FuncInfo.ArgDbgValues.push_back( 4302 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4303 .addOperand(*Op) 4304 .addImm(Offset) 4305 .addMetadata(Variable) 4306 .addMetadata(Expr)); 4307 4308 return true; 4309 } 4310 4311 // VisualStudio defines setjmp as _setjmp 4312 #if defined(_MSC_VER) && defined(setjmp) && \ 4313 !defined(setjmp_undefined_for_msvc) 4314 # pragma push_macro("setjmp") 4315 # undef setjmp 4316 # define setjmp_undefined_for_msvc 4317 #endif 4318 4319 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4320 /// we want to emit this as a call to a named external function, return the name 4321 /// otherwise lower it and return null. 4322 const char * 4323 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4324 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4325 SDLoc sdl = getCurSDLoc(); 4326 DebugLoc dl = getCurDebugLoc(); 4327 SDValue Res; 4328 4329 switch (Intrinsic) { 4330 default: 4331 // By default, turn this into a target intrinsic node. 4332 visitTargetIntrinsic(I, Intrinsic); 4333 return nullptr; 4334 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4335 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4336 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4337 case Intrinsic::returnaddress: 4338 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4339 TLI.getPointerTy(DAG.getDataLayout()), 4340 getValue(I.getArgOperand(0)))); 4341 return nullptr; 4342 case Intrinsic::frameaddress: 4343 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4344 TLI.getPointerTy(DAG.getDataLayout()), 4345 getValue(I.getArgOperand(0)))); 4346 return nullptr; 4347 case Intrinsic::read_register: { 4348 Value *Reg = I.getArgOperand(0); 4349 SDValue Chain = getRoot(); 4350 SDValue RegName = 4351 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4352 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4353 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4354 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4355 setValue(&I, Res); 4356 DAG.setRoot(Res.getValue(1)); 4357 return nullptr; 4358 } 4359 case Intrinsic::write_register: { 4360 Value *Reg = I.getArgOperand(0); 4361 Value *RegValue = I.getArgOperand(1); 4362 SDValue Chain = getRoot(); 4363 SDValue RegName = 4364 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4365 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4366 RegName, getValue(RegValue))); 4367 return nullptr; 4368 } 4369 case Intrinsic::setjmp: 4370 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4371 case Intrinsic::longjmp: 4372 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4373 case Intrinsic::memcpy: { 4374 SDValue Op1 = getValue(I.getArgOperand(0)); 4375 SDValue Op2 = getValue(I.getArgOperand(1)); 4376 SDValue Op3 = getValue(I.getArgOperand(2)); 4377 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4378 if (!Align) 4379 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4380 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4381 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4382 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4383 false, isTC, 4384 MachinePointerInfo(I.getArgOperand(0)), 4385 MachinePointerInfo(I.getArgOperand(1))); 4386 updateDAGForMaybeTailCall(MC); 4387 return nullptr; 4388 } 4389 case Intrinsic::memset: { 4390 SDValue Op1 = getValue(I.getArgOperand(0)); 4391 SDValue Op2 = getValue(I.getArgOperand(1)); 4392 SDValue Op3 = getValue(I.getArgOperand(2)); 4393 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4394 if (!Align) 4395 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4396 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4397 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4398 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4399 isTC, MachinePointerInfo(I.getArgOperand(0))); 4400 updateDAGForMaybeTailCall(MS); 4401 return nullptr; 4402 } 4403 case Intrinsic::memmove: { 4404 SDValue Op1 = getValue(I.getArgOperand(0)); 4405 SDValue Op2 = getValue(I.getArgOperand(1)); 4406 SDValue Op3 = getValue(I.getArgOperand(2)); 4407 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4408 if (!Align) 4409 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4410 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4411 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4412 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4413 isTC, MachinePointerInfo(I.getArgOperand(0)), 4414 MachinePointerInfo(I.getArgOperand(1))); 4415 updateDAGForMaybeTailCall(MM); 4416 return nullptr; 4417 } 4418 case Intrinsic::dbg_declare: { 4419 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4420 DILocalVariable *Variable = DI.getVariable(); 4421 DIExpression *Expression = DI.getExpression(); 4422 const Value *Address = DI.getAddress(); 4423 assert(Variable && "Missing variable"); 4424 if (!Address) { 4425 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4426 return nullptr; 4427 } 4428 4429 // Check if address has undef value. 4430 if (isa<UndefValue>(Address) || 4431 (Address->use_empty() && !isa<Argument>(Address))) { 4432 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4433 return nullptr; 4434 } 4435 4436 SDValue &N = NodeMap[Address]; 4437 if (!N.getNode() && isa<Argument>(Address)) 4438 // Check unused arguments map. 4439 N = UnusedArgNodeMap[Address]; 4440 SDDbgValue *SDV; 4441 if (N.getNode()) { 4442 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4443 Address = BCI->getOperand(0); 4444 // Parameters are handled specially. 4445 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4446 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4447 if (isParameter && FINode) { 4448 // Byval parameter. We have a frame index at this point. 4449 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4450 FINode->getIndex(), 0, dl, SDNodeOrder); 4451 } else if (isa<Argument>(Address)) { 4452 // Address is an argument, so try to emit its dbg value using 4453 // virtual register info from the FuncInfo.ValueMap. 4454 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4455 N); 4456 return nullptr; 4457 } else { 4458 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4459 true, 0, dl, SDNodeOrder); 4460 } 4461 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4462 } else { 4463 // If Address is an argument then try to emit its dbg value using 4464 // virtual register info from the FuncInfo.ValueMap. 4465 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4466 N)) { 4467 // If variable is pinned by a alloca in dominating bb then 4468 // use StaticAllocaMap. 4469 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4470 if (AI->getParent() != DI.getParent()) { 4471 DenseMap<const AllocaInst*, int>::iterator SI = 4472 FuncInfo.StaticAllocaMap.find(AI); 4473 if (SI != FuncInfo.StaticAllocaMap.end()) { 4474 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4475 0, dl, SDNodeOrder); 4476 DAG.AddDbgValue(SDV, nullptr, false); 4477 return nullptr; 4478 } 4479 } 4480 } 4481 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4482 } 4483 } 4484 return nullptr; 4485 } 4486 case Intrinsic::dbg_value: { 4487 const DbgValueInst &DI = cast<DbgValueInst>(I); 4488 assert(DI.getVariable() && "Missing variable"); 4489 4490 DILocalVariable *Variable = DI.getVariable(); 4491 DIExpression *Expression = DI.getExpression(); 4492 uint64_t Offset = DI.getOffset(); 4493 const Value *V = DI.getValue(); 4494 if (!V) 4495 return nullptr; 4496 4497 SDDbgValue *SDV; 4498 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4499 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4500 SDNodeOrder); 4501 DAG.AddDbgValue(SDV, nullptr, false); 4502 } else { 4503 // Do not use getValue() in here; we don't want to generate code at 4504 // this point if it hasn't been done yet. 4505 SDValue N = NodeMap[V]; 4506 if (!N.getNode() && isa<Argument>(V)) 4507 // Check unused arguments map. 4508 N = UnusedArgNodeMap[V]; 4509 if (N.getNode()) { 4510 // A dbg.value for an alloca is always indirect. 4511 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4512 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4513 IsIndirect, N)) { 4514 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4515 IsIndirect, Offset, dl, SDNodeOrder); 4516 DAG.AddDbgValue(SDV, N.getNode(), false); 4517 } 4518 } else if (!V->use_empty() ) { 4519 // Do not call getValue(V) yet, as we don't want to generate code. 4520 // Remember it for later. 4521 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4522 DanglingDebugInfoMap[V] = DDI; 4523 } else { 4524 // We may expand this to cover more cases. One case where we have no 4525 // data available is an unreferenced parameter. 4526 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4527 } 4528 } 4529 4530 // Build a debug info table entry. 4531 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4532 V = BCI->getOperand(0); 4533 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4534 // Don't handle byval struct arguments or VLAs, for example. 4535 if (!AI) { 4536 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4537 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4538 return nullptr; 4539 } 4540 DenseMap<const AllocaInst*, int>::iterator SI = 4541 FuncInfo.StaticAllocaMap.find(AI); 4542 if (SI == FuncInfo.StaticAllocaMap.end()) 4543 return nullptr; // VLAs. 4544 return nullptr; 4545 } 4546 4547 case Intrinsic::eh_typeid_for: { 4548 // Find the type id for the given typeinfo. 4549 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4550 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4551 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4552 setValue(&I, Res); 4553 return nullptr; 4554 } 4555 4556 case Intrinsic::eh_return_i32: 4557 case Intrinsic::eh_return_i64: 4558 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4559 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4560 MVT::Other, 4561 getControlRoot(), 4562 getValue(I.getArgOperand(0)), 4563 getValue(I.getArgOperand(1)))); 4564 return nullptr; 4565 case Intrinsic::eh_unwind_init: 4566 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4567 return nullptr; 4568 case Intrinsic::eh_dwarf_cfa: { 4569 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4570 TLI.getPointerTy(DAG.getDataLayout())); 4571 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4572 CfaArg.getValueType(), 4573 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4574 CfaArg.getValueType()), 4575 CfaArg); 4576 SDValue FA = DAG.getNode( 4577 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4578 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4579 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4580 FA, Offset)); 4581 return nullptr; 4582 } 4583 case Intrinsic::eh_sjlj_callsite: { 4584 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4585 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4586 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4587 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4588 4589 MMI.setCurrentCallSite(CI->getZExtValue()); 4590 return nullptr; 4591 } 4592 case Intrinsic::eh_sjlj_functioncontext: { 4593 // Get and store the index of the function context. 4594 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4595 AllocaInst *FnCtx = 4596 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4597 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4598 MFI->setFunctionContextIndex(FI); 4599 return nullptr; 4600 } 4601 case Intrinsic::eh_sjlj_setjmp: { 4602 SDValue Ops[2]; 4603 Ops[0] = getRoot(); 4604 Ops[1] = getValue(I.getArgOperand(0)); 4605 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4606 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4607 setValue(&I, Op.getValue(0)); 4608 DAG.setRoot(Op.getValue(1)); 4609 return nullptr; 4610 } 4611 case Intrinsic::eh_sjlj_longjmp: { 4612 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4613 getRoot(), getValue(I.getArgOperand(0)))); 4614 return nullptr; 4615 } 4616 case Intrinsic::eh_sjlj_setup_dispatch: { 4617 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4618 getRoot())); 4619 return nullptr; 4620 } 4621 4622 case Intrinsic::masked_gather: 4623 visitMaskedGather(I); 4624 return nullptr; 4625 case Intrinsic::masked_load: 4626 visitMaskedLoad(I); 4627 return nullptr; 4628 case Intrinsic::masked_scatter: 4629 visitMaskedScatter(I); 4630 return nullptr; 4631 case Intrinsic::masked_store: 4632 visitMaskedStore(I); 4633 return nullptr; 4634 case Intrinsic::x86_mmx_pslli_w: 4635 case Intrinsic::x86_mmx_pslli_d: 4636 case Intrinsic::x86_mmx_pslli_q: 4637 case Intrinsic::x86_mmx_psrli_w: 4638 case Intrinsic::x86_mmx_psrli_d: 4639 case Intrinsic::x86_mmx_psrli_q: 4640 case Intrinsic::x86_mmx_psrai_w: 4641 case Intrinsic::x86_mmx_psrai_d: { 4642 SDValue ShAmt = getValue(I.getArgOperand(1)); 4643 if (isa<ConstantSDNode>(ShAmt)) { 4644 visitTargetIntrinsic(I, Intrinsic); 4645 return nullptr; 4646 } 4647 unsigned NewIntrinsic = 0; 4648 EVT ShAmtVT = MVT::v2i32; 4649 switch (Intrinsic) { 4650 case Intrinsic::x86_mmx_pslli_w: 4651 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4652 break; 4653 case Intrinsic::x86_mmx_pslli_d: 4654 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4655 break; 4656 case Intrinsic::x86_mmx_pslli_q: 4657 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4658 break; 4659 case Intrinsic::x86_mmx_psrli_w: 4660 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4661 break; 4662 case Intrinsic::x86_mmx_psrli_d: 4663 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4664 break; 4665 case Intrinsic::x86_mmx_psrli_q: 4666 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4667 break; 4668 case Intrinsic::x86_mmx_psrai_w: 4669 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4670 break; 4671 case Intrinsic::x86_mmx_psrai_d: 4672 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4673 break; 4674 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4675 } 4676 4677 // The vector shift intrinsics with scalars uses 32b shift amounts but 4678 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4679 // to be zero. 4680 // We must do this early because v2i32 is not a legal type. 4681 SDValue ShOps[2]; 4682 ShOps[0] = ShAmt; 4683 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4684 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4685 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4686 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4687 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4688 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4689 getValue(I.getArgOperand(0)), ShAmt); 4690 setValue(&I, Res); 4691 return nullptr; 4692 } 4693 case Intrinsic::convertff: 4694 case Intrinsic::convertfsi: 4695 case Intrinsic::convertfui: 4696 case Intrinsic::convertsif: 4697 case Intrinsic::convertuif: 4698 case Intrinsic::convertss: 4699 case Intrinsic::convertsu: 4700 case Intrinsic::convertus: 4701 case Intrinsic::convertuu: { 4702 ISD::CvtCode Code = ISD::CVT_INVALID; 4703 switch (Intrinsic) { 4704 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4705 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4706 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4707 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4708 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4709 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4710 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4711 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4712 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4713 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4714 } 4715 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4716 const Value *Op1 = I.getArgOperand(0); 4717 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4718 DAG.getValueType(DestVT), 4719 DAG.getValueType(getValue(Op1).getValueType()), 4720 getValue(I.getArgOperand(1)), 4721 getValue(I.getArgOperand(2)), 4722 Code); 4723 setValue(&I, Res); 4724 return nullptr; 4725 } 4726 case Intrinsic::powi: 4727 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4728 getValue(I.getArgOperand(1)), DAG)); 4729 return nullptr; 4730 case Intrinsic::log: 4731 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4732 return nullptr; 4733 case Intrinsic::log2: 4734 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4735 return nullptr; 4736 case Intrinsic::log10: 4737 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4738 return nullptr; 4739 case Intrinsic::exp: 4740 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4741 return nullptr; 4742 case Intrinsic::exp2: 4743 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4744 return nullptr; 4745 case Intrinsic::pow: 4746 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4747 getValue(I.getArgOperand(1)), DAG, TLI)); 4748 return nullptr; 4749 case Intrinsic::sqrt: 4750 case Intrinsic::fabs: 4751 case Intrinsic::sin: 4752 case Intrinsic::cos: 4753 case Intrinsic::floor: 4754 case Intrinsic::ceil: 4755 case Intrinsic::trunc: 4756 case Intrinsic::rint: 4757 case Intrinsic::nearbyint: 4758 case Intrinsic::round: { 4759 unsigned Opcode; 4760 switch (Intrinsic) { 4761 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4762 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4763 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4764 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4765 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4766 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4767 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4768 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4769 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4770 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4771 case Intrinsic::round: Opcode = ISD::FROUND; break; 4772 } 4773 4774 setValue(&I, DAG.getNode(Opcode, sdl, 4775 getValue(I.getArgOperand(0)).getValueType(), 4776 getValue(I.getArgOperand(0)))); 4777 return nullptr; 4778 } 4779 case Intrinsic::minnum: 4780 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4781 getValue(I.getArgOperand(0)).getValueType(), 4782 getValue(I.getArgOperand(0)), 4783 getValue(I.getArgOperand(1)))); 4784 return nullptr; 4785 case Intrinsic::maxnum: 4786 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4787 getValue(I.getArgOperand(0)).getValueType(), 4788 getValue(I.getArgOperand(0)), 4789 getValue(I.getArgOperand(1)))); 4790 return nullptr; 4791 case Intrinsic::copysign: 4792 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4793 getValue(I.getArgOperand(0)).getValueType(), 4794 getValue(I.getArgOperand(0)), 4795 getValue(I.getArgOperand(1)))); 4796 return nullptr; 4797 case Intrinsic::fma: 4798 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4799 getValue(I.getArgOperand(0)).getValueType(), 4800 getValue(I.getArgOperand(0)), 4801 getValue(I.getArgOperand(1)), 4802 getValue(I.getArgOperand(2)))); 4803 return nullptr; 4804 case Intrinsic::fmuladd: { 4805 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4806 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4807 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4808 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4809 getValue(I.getArgOperand(0)).getValueType(), 4810 getValue(I.getArgOperand(0)), 4811 getValue(I.getArgOperand(1)), 4812 getValue(I.getArgOperand(2)))); 4813 } else { 4814 // TODO: Intrinsic calls should have fast-math-flags. 4815 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4816 getValue(I.getArgOperand(0)).getValueType(), 4817 getValue(I.getArgOperand(0)), 4818 getValue(I.getArgOperand(1))); 4819 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4820 getValue(I.getArgOperand(0)).getValueType(), 4821 Mul, 4822 getValue(I.getArgOperand(2))); 4823 setValue(&I, Add); 4824 } 4825 return nullptr; 4826 } 4827 case Intrinsic::convert_to_fp16: 4828 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4829 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4830 getValue(I.getArgOperand(0)), 4831 DAG.getTargetConstant(0, sdl, 4832 MVT::i32)))); 4833 return nullptr; 4834 case Intrinsic::convert_from_fp16: 4835 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4836 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4837 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4838 getValue(I.getArgOperand(0))))); 4839 return nullptr; 4840 case Intrinsic::pcmarker: { 4841 SDValue Tmp = getValue(I.getArgOperand(0)); 4842 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4843 return nullptr; 4844 } 4845 case Intrinsic::readcyclecounter: { 4846 SDValue Op = getRoot(); 4847 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4848 DAG.getVTList(MVT::i64, MVT::Other), Op); 4849 setValue(&I, Res); 4850 DAG.setRoot(Res.getValue(1)); 4851 return nullptr; 4852 } 4853 case Intrinsic::bitreverse: 4854 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4855 getValue(I.getArgOperand(0)).getValueType(), 4856 getValue(I.getArgOperand(0)))); 4857 return nullptr; 4858 case Intrinsic::bswap: 4859 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4860 getValue(I.getArgOperand(0)).getValueType(), 4861 getValue(I.getArgOperand(0)))); 4862 return nullptr; 4863 case Intrinsic::cttz: { 4864 SDValue Arg = getValue(I.getArgOperand(0)); 4865 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4866 EVT Ty = Arg.getValueType(); 4867 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4868 sdl, Ty, Arg)); 4869 return nullptr; 4870 } 4871 case Intrinsic::ctlz: { 4872 SDValue Arg = getValue(I.getArgOperand(0)); 4873 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4874 EVT Ty = Arg.getValueType(); 4875 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4876 sdl, Ty, Arg)); 4877 return nullptr; 4878 } 4879 case Intrinsic::ctpop: { 4880 SDValue Arg = getValue(I.getArgOperand(0)); 4881 EVT Ty = Arg.getValueType(); 4882 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4883 return nullptr; 4884 } 4885 case Intrinsic::stacksave: { 4886 SDValue Op = getRoot(); 4887 Res = DAG.getNode( 4888 ISD::STACKSAVE, sdl, 4889 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4890 setValue(&I, Res); 4891 DAG.setRoot(Res.getValue(1)); 4892 return nullptr; 4893 } 4894 case Intrinsic::stackrestore: { 4895 Res = getValue(I.getArgOperand(0)); 4896 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4897 return nullptr; 4898 } 4899 case Intrinsic::get_dynamic_area_offset: { 4900 SDValue Op = getRoot(); 4901 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4902 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4903 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4904 // target. 4905 if (PtrTy != ResTy) 4906 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4907 " intrinsic!"); 4908 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4909 Op); 4910 DAG.setRoot(Op); 4911 setValue(&I, Res); 4912 return nullptr; 4913 } 4914 case Intrinsic::stackprotector: { 4915 // Emit code into the DAG to store the stack guard onto the stack. 4916 MachineFunction &MF = DAG.getMachineFunction(); 4917 MachineFrameInfo *MFI = MF.getFrameInfo(); 4918 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4919 SDValue Src, Chain = getRoot(); 4920 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4921 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4922 4923 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4924 // global variable __stack_chk_guard. 4925 if (!GV) 4926 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4927 if (BC->getOpcode() == Instruction::BitCast) 4928 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4929 4930 if (GV && TLI.useLoadStackGuardNode()) { 4931 // Emit a LOAD_STACK_GUARD node. 4932 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4933 sdl, PtrTy, Chain); 4934 MachinePointerInfo MPInfo(GV); 4935 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4936 unsigned Flags = MachineMemOperand::MOLoad | 4937 MachineMemOperand::MOInvariant; 4938 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4939 PtrTy.getSizeInBits() / 8, 4940 DAG.getEVTAlignment(PtrTy)); 4941 Node->setMemRefs(MemRefs, MemRefs + 1); 4942 4943 // Copy the guard value to a virtual register so that it can be 4944 // retrieved in the epilogue. 4945 Src = SDValue(Node, 0); 4946 const TargetRegisterClass *RC = 4947 TLI.getRegClassFor(Src.getSimpleValueType()); 4948 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4949 4950 SPDescriptor.setGuardReg(Reg); 4951 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4952 } else { 4953 Src = getValue(I.getArgOperand(0)); // The guard's value. 4954 } 4955 4956 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4957 4958 int FI = FuncInfo.StaticAllocaMap[Slot]; 4959 MFI->setStackProtectorIndex(FI); 4960 4961 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4962 4963 // Store the stack protector onto the stack. 4964 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4965 DAG.getMachineFunction(), FI), 4966 true, false, 0); 4967 setValue(&I, Res); 4968 DAG.setRoot(Res); 4969 return nullptr; 4970 } 4971 case Intrinsic::objectsize: { 4972 // If we don't know by now, we're never going to know. 4973 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4974 4975 assert(CI && "Non-constant type in __builtin_object_size?"); 4976 4977 SDValue Arg = getValue(I.getCalledValue()); 4978 EVT Ty = Arg.getValueType(); 4979 4980 if (CI->isZero()) 4981 Res = DAG.getConstant(-1ULL, sdl, Ty); 4982 else 4983 Res = DAG.getConstant(0, sdl, Ty); 4984 4985 setValue(&I, Res); 4986 return nullptr; 4987 } 4988 case Intrinsic::annotation: 4989 case Intrinsic::ptr_annotation: 4990 // Drop the intrinsic, but forward the value 4991 setValue(&I, getValue(I.getOperand(0))); 4992 return nullptr; 4993 case Intrinsic::assume: 4994 case Intrinsic::var_annotation: 4995 // Discard annotate attributes and assumptions 4996 return nullptr; 4997 4998 case Intrinsic::init_trampoline: { 4999 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5000 5001 SDValue Ops[6]; 5002 Ops[0] = getRoot(); 5003 Ops[1] = getValue(I.getArgOperand(0)); 5004 Ops[2] = getValue(I.getArgOperand(1)); 5005 Ops[3] = getValue(I.getArgOperand(2)); 5006 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5007 Ops[5] = DAG.getSrcValue(F); 5008 5009 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5010 5011 DAG.setRoot(Res); 5012 return nullptr; 5013 } 5014 case Intrinsic::adjust_trampoline: { 5015 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5016 TLI.getPointerTy(DAG.getDataLayout()), 5017 getValue(I.getArgOperand(0)))); 5018 return nullptr; 5019 } 5020 case Intrinsic::gcroot: 5021 if (GFI) { 5022 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5023 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5024 5025 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5026 GFI->addStackRoot(FI->getIndex(), TypeMap); 5027 } 5028 return nullptr; 5029 case Intrinsic::gcread: 5030 case Intrinsic::gcwrite: 5031 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5032 case Intrinsic::flt_rounds: 5033 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5034 return nullptr; 5035 5036 case Intrinsic::expect: { 5037 // Just replace __builtin_expect(exp, c) with EXP. 5038 setValue(&I, getValue(I.getArgOperand(0))); 5039 return nullptr; 5040 } 5041 5042 case Intrinsic::debugtrap: 5043 case Intrinsic::trap: { 5044 StringRef TrapFuncName = 5045 I.getAttributes() 5046 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5047 .getValueAsString(); 5048 if (TrapFuncName.empty()) { 5049 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5050 ISD::TRAP : ISD::DEBUGTRAP; 5051 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5052 return nullptr; 5053 } 5054 TargetLowering::ArgListTy Args; 5055 5056 TargetLowering::CallLoweringInfo CLI(DAG); 5057 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5058 CallingConv::C, I.getType(), 5059 DAG.getExternalSymbol(TrapFuncName.data(), 5060 TLI.getPointerTy(DAG.getDataLayout())), 5061 std::move(Args), 0); 5062 5063 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5064 DAG.setRoot(Result.second); 5065 return nullptr; 5066 } 5067 5068 case Intrinsic::uadd_with_overflow: 5069 case Intrinsic::sadd_with_overflow: 5070 case Intrinsic::usub_with_overflow: 5071 case Intrinsic::ssub_with_overflow: 5072 case Intrinsic::umul_with_overflow: 5073 case Intrinsic::smul_with_overflow: { 5074 ISD::NodeType Op; 5075 switch (Intrinsic) { 5076 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5077 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5078 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5079 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5080 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5081 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5082 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5083 } 5084 SDValue Op1 = getValue(I.getArgOperand(0)); 5085 SDValue Op2 = getValue(I.getArgOperand(1)); 5086 5087 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5088 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5089 return nullptr; 5090 } 5091 case Intrinsic::prefetch: { 5092 SDValue Ops[5]; 5093 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5094 Ops[0] = getRoot(); 5095 Ops[1] = getValue(I.getArgOperand(0)); 5096 Ops[2] = getValue(I.getArgOperand(1)); 5097 Ops[3] = getValue(I.getArgOperand(2)); 5098 Ops[4] = getValue(I.getArgOperand(3)); 5099 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5100 DAG.getVTList(MVT::Other), Ops, 5101 EVT::getIntegerVT(*Context, 8), 5102 MachinePointerInfo(I.getArgOperand(0)), 5103 0, /* align */ 5104 false, /* volatile */ 5105 rw==0, /* read */ 5106 rw==1)); /* write */ 5107 return nullptr; 5108 } 5109 case Intrinsic::lifetime_start: 5110 case Intrinsic::lifetime_end: { 5111 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5112 // Stack coloring is not enabled in O0, discard region information. 5113 if (TM.getOptLevel() == CodeGenOpt::None) 5114 return nullptr; 5115 5116 SmallVector<Value *, 4> Allocas; 5117 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5118 5119 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5120 E = Allocas.end(); Object != E; ++Object) { 5121 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5122 5123 // Could not find an Alloca. 5124 if (!LifetimeObject) 5125 continue; 5126 5127 // First check that the Alloca is static, otherwise it won't have a 5128 // valid frame index. 5129 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5130 if (SI == FuncInfo.StaticAllocaMap.end()) 5131 return nullptr; 5132 5133 int FI = SI->second; 5134 5135 SDValue Ops[2]; 5136 Ops[0] = getRoot(); 5137 Ops[1] = 5138 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5139 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5140 5141 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5142 DAG.setRoot(Res); 5143 } 5144 return nullptr; 5145 } 5146 case Intrinsic::invariant_start: 5147 // Discard region information. 5148 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5149 return nullptr; 5150 case Intrinsic::invariant_end: 5151 // Discard region information. 5152 return nullptr; 5153 case Intrinsic::stackprotectorcheck: { 5154 // Do not actually emit anything for this basic block. Instead we initialize 5155 // the stack protector descriptor and export the guard variable so we can 5156 // access it in FinishBasicBlock. 5157 const BasicBlock *BB = I.getParent(); 5158 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5159 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5160 5161 // Flush our exports since we are going to process a terminator. 5162 (void)getControlRoot(); 5163 return nullptr; 5164 } 5165 case Intrinsic::clear_cache: 5166 return TLI.getClearCacheBuiltinName(); 5167 case Intrinsic::donothing: 5168 // ignore 5169 return nullptr; 5170 case Intrinsic::experimental_stackmap: { 5171 visitStackmap(I); 5172 return nullptr; 5173 } 5174 case Intrinsic::experimental_patchpoint_void: 5175 case Intrinsic::experimental_patchpoint_i64: { 5176 visitPatchpoint(&I); 5177 return nullptr; 5178 } 5179 case Intrinsic::experimental_gc_statepoint: { 5180 visitStatepoint(I); 5181 return nullptr; 5182 } 5183 case Intrinsic::experimental_gc_result_int: 5184 case Intrinsic::experimental_gc_result_float: 5185 case Intrinsic::experimental_gc_result_ptr: 5186 case Intrinsic::experimental_gc_result: { 5187 visitGCResult(I); 5188 return nullptr; 5189 } 5190 case Intrinsic::experimental_gc_relocate: { 5191 visitGCRelocate(I); 5192 return nullptr; 5193 } 5194 case Intrinsic::instrprof_increment: 5195 llvm_unreachable("instrprof failed to lower an increment"); 5196 case Intrinsic::instrprof_value_profile: 5197 llvm_unreachable("instrprof failed to lower a value profiling call"); 5198 case Intrinsic::localescape: { 5199 MachineFunction &MF = DAG.getMachineFunction(); 5200 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5201 5202 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5203 // is the same on all targets. 5204 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5205 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5206 if (isa<ConstantPointerNull>(Arg)) 5207 continue; // Skip null pointers. They represent a hole in index space. 5208 AllocaInst *Slot = cast<AllocaInst>(Arg); 5209 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5210 "can only escape static allocas"); 5211 int FI = FuncInfo.StaticAllocaMap[Slot]; 5212 MCSymbol *FrameAllocSym = 5213 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5214 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5215 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5216 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5217 .addSym(FrameAllocSym) 5218 .addFrameIndex(FI); 5219 } 5220 5221 return nullptr; 5222 } 5223 5224 case Intrinsic::localrecover: { 5225 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5226 MachineFunction &MF = DAG.getMachineFunction(); 5227 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5228 5229 // Get the symbol that defines the frame offset. 5230 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5231 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5232 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5233 MCSymbol *FrameAllocSym = 5234 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5235 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5236 5237 // Create a MCSymbol for the label to avoid any target lowering 5238 // that would make this PC relative. 5239 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5240 SDValue OffsetVal = 5241 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5242 5243 // Add the offset to the FP. 5244 Value *FP = I.getArgOperand(1); 5245 SDValue FPVal = getValue(FP); 5246 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5247 setValue(&I, Add); 5248 5249 return nullptr; 5250 } 5251 5252 case Intrinsic::eh_exceptionpointer: 5253 case Intrinsic::eh_exceptioncode: { 5254 // Get the exception pointer vreg, copy from it, and resize it to fit. 5255 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5256 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5257 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5258 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5259 SDValue N = 5260 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5261 if (Intrinsic == Intrinsic::eh_exceptioncode) 5262 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5263 setValue(&I, N); 5264 return nullptr; 5265 } 5266 } 5267 } 5268 5269 std::pair<SDValue, SDValue> 5270 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5271 const BasicBlock *EHPadBB) { 5272 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5273 MCSymbol *BeginLabel = nullptr; 5274 5275 if (EHPadBB) { 5276 // Insert a label before the invoke call to mark the try range. This can be 5277 // used to detect deletion of the invoke via the MachineModuleInfo. 5278 BeginLabel = MMI.getContext().createTempSymbol(); 5279 5280 // For SjLj, keep track of which landing pads go with which invokes 5281 // so as to maintain the ordering of pads in the LSDA. 5282 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5283 if (CallSiteIndex) { 5284 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5285 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5286 5287 // Now that the call site is handled, stop tracking it. 5288 MMI.setCurrentCallSite(0); 5289 } 5290 5291 // Both PendingLoads and PendingExports must be flushed here; 5292 // this call might not return. 5293 (void)getRoot(); 5294 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5295 5296 CLI.setChain(getRoot()); 5297 } 5298 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5299 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5300 5301 assert((CLI.IsTailCall || Result.second.getNode()) && 5302 "Non-null chain expected with non-tail call!"); 5303 assert((Result.second.getNode() || !Result.first.getNode()) && 5304 "Null value expected with tail call!"); 5305 5306 if (!Result.second.getNode()) { 5307 // As a special case, a null chain means that a tail call has been emitted 5308 // and the DAG root is already updated. 5309 HasTailCall = true; 5310 5311 // Since there's no actual continuation from this block, nothing can be 5312 // relying on us setting vregs for them. 5313 PendingExports.clear(); 5314 } else { 5315 DAG.setRoot(Result.second); 5316 } 5317 5318 if (EHPadBB) { 5319 // Insert a label at the end of the invoke call to mark the try range. This 5320 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5321 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5322 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5323 5324 // Inform MachineModuleInfo of range. 5325 if (MMI.hasEHFunclets()) { 5326 assert(CLI.CS); 5327 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5328 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5329 BeginLabel, EndLabel); 5330 } else { 5331 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5332 } 5333 } 5334 5335 return Result; 5336 } 5337 5338 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5339 bool isTailCall, 5340 const BasicBlock *EHPadBB) { 5341 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5342 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5343 Type *RetTy = FTy->getReturnType(); 5344 5345 TargetLowering::ArgListTy Args; 5346 TargetLowering::ArgListEntry Entry; 5347 Args.reserve(CS.arg_size()); 5348 5349 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5350 i != e; ++i) { 5351 const Value *V = *i; 5352 5353 // Skip empty types 5354 if (V->getType()->isEmptyTy()) 5355 continue; 5356 5357 SDValue ArgNode = getValue(V); 5358 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5359 5360 // Skip the first return-type Attribute to get to params. 5361 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5362 Args.push_back(Entry); 5363 5364 // If we have an explicit sret argument that is an Instruction, (i.e., it 5365 // might point to function-local memory), we can't meaningfully tail-call. 5366 if (Entry.isSRet && isa<Instruction>(V)) 5367 isTailCall = false; 5368 } 5369 5370 // Check if target-independent constraints permit a tail call here. 5371 // Target-dependent constraints are checked within TLI->LowerCallTo. 5372 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5373 isTailCall = false; 5374 5375 TargetLowering::CallLoweringInfo CLI(DAG); 5376 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5377 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5378 .setTailCall(isTailCall); 5379 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5380 5381 if (Result.first.getNode()) 5382 setValue(CS.getInstruction(), Result.first); 5383 } 5384 5385 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5386 /// value is equal or not-equal to zero. 5387 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5388 for (const User *U : V->users()) { 5389 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5390 if (IC->isEquality()) 5391 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5392 if (C->isNullValue()) 5393 continue; 5394 // Unknown instruction. 5395 return false; 5396 } 5397 return true; 5398 } 5399 5400 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5401 Type *LoadTy, 5402 SelectionDAGBuilder &Builder) { 5403 5404 // Check to see if this load can be trivially constant folded, e.g. if the 5405 // input is from a string literal. 5406 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5407 // Cast pointer to the type we really want to load. 5408 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5409 PointerType::getUnqual(LoadTy)); 5410 5411 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5412 const_cast<Constant *>(LoadInput), *Builder.DL)) 5413 return Builder.getValue(LoadCst); 5414 } 5415 5416 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5417 // still constant memory, the input chain can be the entry node. 5418 SDValue Root; 5419 bool ConstantMemory = false; 5420 5421 // Do not serialize (non-volatile) loads of constant memory with anything. 5422 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5423 Root = Builder.DAG.getEntryNode(); 5424 ConstantMemory = true; 5425 } else { 5426 // Do not serialize non-volatile loads against each other. 5427 Root = Builder.DAG.getRoot(); 5428 } 5429 5430 SDValue Ptr = Builder.getValue(PtrVal); 5431 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5432 Ptr, MachinePointerInfo(PtrVal), 5433 false /*volatile*/, 5434 false /*nontemporal*/, 5435 false /*isinvariant*/, 1 /* align=1 */); 5436 5437 if (!ConstantMemory) 5438 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5439 return LoadVal; 5440 } 5441 5442 /// processIntegerCallValue - Record the value for an instruction that 5443 /// produces an integer result, converting the type where necessary. 5444 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5445 SDValue Value, 5446 bool IsSigned) { 5447 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5448 I.getType(), true); 5449 if (IsSigned) 5450 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5451 else 5452 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5453 setValue(&I, Value); 5454 } 5455 5456 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5457 /// If so, return true and lower it, otherwise return false and it will be 5458 /// lowered like a normal call. 5459 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5460 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5461 if (I.getNumArgOperands() != 3) 5462 return false; 5463 5464 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5465 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5466 !I.getArgOperand(2)->getType()->isIntegerTy() || 5467 !I.getType()->isIntegerTy()) 5468 return false; 5469 5470 const Value *Size = I.getArgOperand(2); 5471 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5472 if (CSize && CSize->getZExtValue() == 0) { 5473 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5474 I.getType(), true); 5475 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5476 return true; 5477 } 5478 5479 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5480 std::pair<SDValue, SDValue> Res = 5481 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5482 getValue(LHS), getValue(RHS), getValue(Size), 5483 MachinePointerInfo(LHS), 5484 MachinePointerInfo(RHS)); 5485 if (Res.first.getNode()) { 5486 processIntegerCallValue(I, Res.first, true); 5487 PendingLoads.push_back(Res.second); 5488 return true; 5489 } 5490 5491 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5492 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5493 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5494 bool ActuallyDoIt = true; 5495 MVT LoadVT; 5496 Type *LoadTy; 5497 switch (CSize->getZExtValue()) { 5498 default: 5499 LoadVT = MVT::Other; 5500 LoadTy = nullptr; 5501 ActuallyDoIt = false; 5502 break; 5503 case 2: 5504 LoadVT = MVT::i16; 5505 LoadTy = Type::getInt16Ty(CSize->getContext()); 5506 break; 5507 case 4: 5508 LoadVT = MVT::i32; 5509 LoadTy = Type::getInt32Ty(CSize->getContext()); 5510 break; 5511 case 8: 5512 LoadVT = MVT::i64; 5513 LoadTy = Type::getInt64Ty(CSize->getContext()); 5514 break; 5515 /* 5516 case 16: 5517 LoadVT = MVT::v4i32; 5518 LoadTy = Type::getInt32Ty(CSize->getContext()); 5519 LoadTy = VectorType::get(LoadTy, 4); 5520 break; 5521 */ 5522 } 5523 5524 // This turns into unaligned loads. We only do this if the target natively 5525 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5526 // we'll only produce a small number of byte loads. 5527 5528 // Require that we can find a legal MVT, and only do this if the target 5529 // supports unaligned loads of that type. Expanding into byte loads would 5530 // bloat the code. 5531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5532 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5533 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5534 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5535 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5536 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5537 // TODO: Check alignment of src and dest ptrs. 5538 if (!TLI.isTypeLegal(LoadVT) || 5539 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5540 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5541 ActuallyDoIt = false; 5542 } 5543 5544 if (ActuallyDoIt) { 5545 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5546 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5547 5548 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5549 ISD::SETNE); 5550 processIntegerCallValue(I, Res, false); 5551 return true; 5552 } 5553 } 5554 5555 5556 return false; 5557 } 5558 5559 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5560 /// form. If so, return true and lower it, otherwise return false and it 5561 /// will be lowered like a normal call. 5562 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5563 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5564 if (I.getNumArgOperands() != 3) 5565 return false; 5566 5567 const Value *Src = I.getArgOperand(0); 5568 const Value *Char = I.getArgOperand(1); 5569 const Value *Length = I.getArgOperand(2); 5570 if (!Src->getType()->isPointerTy() || 5571 !Char->getType()->isIntegerTy() || 5572 !Length->getType()->isIntegerTy() || 5573 !I.getType()->isPointerTy()) 5574 return false; 5575 5576 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5577 std::pair<SDValue, SDValue> Res = 5578 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5579 getValue(Src), getValue(Char), getValue(Length), 5580 MachinePointerInfo(Src)); 5581 if (Res.first.getNode()) { 5582 setValue(&I, Res.first); 5583 PendingLoads.push_back(Res.second); 5584 return true; 5585 } 5586 5587 return false; 5588 } 5589 5590 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5591 /// optimized form. If so, return true and lower it, otherwise return false 5592 /// and it will be lowered like a normal call. 5593 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5594 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5595 if (I.getNumArgOperands() != 2) 5596 return false; 5597 5598 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5599 if (!Arg0->getType()->isPointerTy() || 5600 !Arg1->getType()->isPointerTy() || 5601 !I.getType()->isPointerTy()) 5602 return false; 5603 5604 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5605 std::pair<SDValue, SDValue> Res = 5606 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5607 getValue(Arg0), getValue(Arg1), 5608 MachinePointerInfo(Arg0), 5609 MachinePointerInfo(Arg1), isStpcpy); 5610 if (Res.first.getNode()) { 5611 setValue(&I, Res.first); 5612 DAG.setRoot(Res.second); 5613 return true; 5614 } 5615 5616 return false; 5617 } 5618 5619 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5620 /// If so, return true and lower it, otherwise return false and it will be 5621 /// lowered like a normal call. 5622 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5623 // Verify that the prototype makes sense. int strcmp(void*,void*) 5624 if (I.getNumArgOperands() != 2) 5625 return false; 5626 5627 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5628 if (!Arg0->getType()->isPointerTy() || 5629 !Arg1->getType()->isPointerTy() || 5630 !I.getType()->isIntegerTy()) 5631 return false; 5632 5633 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5634 std::pair<SDValue, SDValue> Res = 5635 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5636 getValue(Arg0), getValue(Arg1), 5637 MachinePointerInfo(Arg0), 5638 MachinePointerInfo(Arg1)); 5639 if (Res.first.getNode()) { 5640 processIntegerCallValue(I, Res.first, true); 5641 PendingLoads.push_back(Res.second); 5642 return true; 5643 } 5644 5645 return false; 5646 } 5647 5648 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5649 /// form. If so, return true and lower it, otherwise return false and it 5650 /// will be lowered like a normal call. 5651 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5652 // Verify that the prototype makes sense. size_t strlen(char *) 5653 if (I.getNumArgOperands() != 1) 5654 return false; 5655 5656 const Value *Arg0 = I.getArgOperand(0); 5657 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5658 return false; 5659 5660 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5661 std::pair<SDValue, SDValue> Res = 5662 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5663 getValue(Arg0), MachinePointerInfo(Arg0)); 5664 if (Res.first.getNode()) { 5665 processIntegerCallValue(I, Res.first, false); 5666 PendingLoads.push_back(Res.second); 5667 return true; 5668 } 5669 5670 return false; 5671 } 5672 5673 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5674 /// form. If so, return true and lower it, otherwise return false and it 5675 /// will be lowered like a normal call. 5676 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5677 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5678 if (I.getNumArgOperands() != 2) 5679 return false; 5680 5681 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5682 if (!Arg0->getType()->isPointerTy() || 5683 !Arg1->getType()->isIntegerTy() || 5684 !I.getType()->isIntegerTy()) 5685 return false; 5686 5687 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5688 std::pair<SDValue, SDValue> Res = 5689 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5690 getValue(Arg0), getValue(Arg1), 5691 MachinePointerInfo(Arg0)); 5692 if (Res.first.getNode()) { 5693 processIntegerCallValue(I, Res.first, false); 5694 PendingLoads.push_back(Res.second); 5695 return true; 5696 } 5697 5698 return false; 5699 } 5700 5701 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5702 /// operation (as expected), translate it to an SDNode with the specified opcode 5703 /// and return true. 5704 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5705 unsigned Opcode) { 5706 // Sanity check that it really is a unary floating-point call. 5707 if (I.getNumArgOperands() != 1 || 5708 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5709 I.getType() != I.getArgOperand(0)->getType() || 5710 !I.onlyReadsMemory()) 5711 return false; 5712 5713 SDValue Tmp = getValue(I.getArgOperand(0)); 5714 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5715 return true; 5716 } 5717 5718 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5719 /// operation (as expected), translate it to an SDNode with the specified opcode 5720 /// and return true. 5721 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5722 unsigned Opcode) { 5723 // Sanity check that it really is a binary floating-point call. 5724 if (I.getNumArgOperands() != 2 || 5725 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5726 I.getType() != I.getArgOperand(0)->getType() || 5727 I.getType() != I.getArgOperand(1)->getType() || 5728 !I.onlyReadsMemory()) 5729 return false; 5730 5731 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5732 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5733 EVT VT = Tmp0.getValueType(); 5734 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5735 return true; 5736 } 5737 5738 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5739 // Handle inline assembly differently. 5740 if (isa<InlineAsm>(I.getCalledValue())) { 5741 visitInlineAsm(&I); 5742 return; 5743 } 5744 5745 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5746 ComputeUsesVAFloatArgument(I, &MMI); 5747 5748 const char *RenameFn = nullptr; 5749 if (Function *F = I.getCalledFunction()) { 5750 if (F->isDeclaration()) { 5751 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5752 if (unsigned IID = II->getIntrinsicID(F)) { 5753 RenameFn = visitIntrinsicCall(I, IID); 5754 if (!RenameFn) 5755 return; 5756 } 5757 } 5758 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5759 RenameFn = visitIntrinsicCall(I, IID); 5760 if (!RenameFn) 5761 return; 5762 } 5763 } 5764 5765 // Check for well-known libc/libm calls. If the function is internal, it 5766 // can't be a library call. 5767 LibFunc::Func Func; 5768 if (!F->hasLocalLinkage() && F->hasName() && 5769 LibInfo->getLibFunc(F->getName(), Func) && 5770 LibInfo->hasOptimizedCodeGen(Func)) { 5771 switch (Func) { 5772 default: break; 5773 case LibFunc::copysign: 5774 case LibFunc::copysignf: 5775 case LibFunc::copysignl: 5776 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5777 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5778 I.getType() == I.getArgOperand(0)->getType() && 5779 I.getType() == I.getArgOperand(1)->getType() && 5780 I.onlyReadsMemory()) { 5781 SDValue LHS = getValue(I.getArgOperand(0)); 5782 SDValue RHS = getValue(I.getArgOperand(1)); 5783 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5784 LHS.getValueType(), LHS, RHS)); 5785 return; 5786 } 5787 break; 5788 case LibFunc::fabs: 5789 case LibFunc::fabsf: 5790 case LibFunc::fabsl: 5791 if (visitUnaryFloatCall(I, ISD::FABS)) 5792 return; 5793 break; 5794 case LibFunc::fmin: 5795 case LibFunc::fminf: 5796 case LibFunc::fminl: 5797 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5798 return; 5799 break; 5800 case LibFunc::fmax: 5801 case LibFunc::fmaxf: 5802 case LibFunc::fmaxl: 5803 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5804 return; 5805 break; 5806 case LibFunc::sin: 5807 case LibFunc::sinf: 5808 case LibFunc::sinl: 5809 if (visitUnaryFloatCall(I, ISD::FSIN)) 5810 return; 5811 break; 5812 case LibFunc::cos: 5813 case LibFunc::cosf: 5814 case LibFunc::cosl: 5815 if (visitUnaryFloatCall(I, ISD::FCOS)) 5816 return; 5817 break; 5818 case LibFunc::sqrt: 5819 case LibFunc::sqrtf: 5820 case LibFunc::sqrtl: 5821 case LibFunc::sqrt_finite: 5822 case LibFunc::sqrtf_finite: 5823 case LibFunc::sqrtl_finite: 5824 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5825 return; 5826 break; 5827 case LibFunc::floor: 5828 case LibFunc::floorf: 5829 case LibFunc::floorl: 5830 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5831 return; 5832 break; 5833 case LibFunc::nearbyint: 5834 case LibFunc::nearbyintf: 5835 case LibFunc::nearbyintl: 5836 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5837 return; 5838 break; 5839 case LibFunc::ceil: 5840 case LibFunc::ceilf: 5841 case LibFunc::ceill: 5842 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5843 return; 5844 break; 5845 case LibFunc::rint: 5846 case LibFunc::rintf: 5847 case LibFunc::rintl: 5848 if (visitUnaryFloatCall(I, ISD::FRINT)) 5849 return; 5850 break; 5851 case LibFunc::round: 5852 case LibFunc::roundf: 5853 case LibFunc::roundl: 5854 if (visitUnaryFloatCall(I, ISD::FROUND)) 5855 return; 5856 break; 5857 case LibFunc::trunc: 5858 case LibFunc::truncf: 5859 case LibFunc::truncl: 5860 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5861 return; 5862 break; 5863 case LibFunc::log2: 5864 case LibFunc::log2f: 5865 case LibFunc::log2l: 5866 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5867 return; 5868 break; 5869 case LibFunc::exp2: 5870 case LibFunc::exp2f: 5871 case LibFunc::exp2l: 5872 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5873 return; 5874 break; 5875 case LibFunc::memcmp: 5876 if (visitMemCmpCall(I)) 5877 return; 5878 break; 5879 case LibFunc::memchr: 5880 if (visitMemChrCall(I)) 5881 return; 5882 break; 5883 case LibFunc::strcpy: 5884 if (visitStrCpyCall(I, false)) 5885 return; 5886 break; 5887 case LibFunc::stpcpy: 5888 if (visitStrCpyCall(I, true)) 5889 return; 5890 break; 5891 case LibFunc::strcmp: 5892 if (visitStrCmpCall(I)) 5893 return; 5894 break; 5895 case LibFunc::strlen: 5896 if (visitStrLenCall(I)) 5897 return; 5898 break; 5899 case LibFunc::strnlen: 5900 if (visitStrNLenCall(I)) 5901 return; 5902 break; 5903 } 5904 } 5905 } 5906 5907 SDValue Callee; 5908 if (!RenameFn) 5909 Callee = getValue(I.getCalledValue()); 5910 else 5911 Callee = DAG.getExternalSymbol( 5912 RenameFn, 5913 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5914 5915 // Check if we can potentially perform a tail call. More detailed checking is 5916 // be done within LowerCallTo, after more information about the call is known. 5917 LowerCallTo(&I, Callee, I.isTailCall()); 5918 } 5919 5920 namespace { 5921 5922 /// AsmOperandInfo - This contains information for each constraint that we are 5923 /// lowering. 5924 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5925 public: 5926 /// CallOperand - If this is the result output operand or a clobber 5927 /// this is null, otherwise it is the incoming operand to the CallInst. 5928 /// This gets modified as the asm is processed. 5929 SDValue CallOperand; 5930 5931 /// AssignedRegs - If this is a register or register class operand, this 5932 /// contains the set of register corresponding to the operand. 5933 RegsForValue AssignedRegs; 5934 5935 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5936 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5937 } 5938 5939 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5940 /// corresponds to. If there is no Value* for this operand, it returns 5941 /// MVT::Other. 5942 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5943 const DataLayout &DL) const { 5944 if (!CallOperandVal) return MVT::Other; 5945 5946 if (isa<BasicBlock>(CallOperandVal)) 5947 return TLI.getPointerTy(DL); 5948 5949 llvm::Type *OpTy = CallOperandVal->getType(); 5950 5951 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5952 // If this is an indirect operand, the operand is a pointer to the 5953 // accessed type. 5954 if (isIndirect) { 5955 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5956 if (!PtrTy) 5957 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5958 OpTy = PtrTy->getElementType(); 5959 } 5960 5961 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5962 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5963 if (STy->getNumElements() == 1) 5964 OpTy = STy->getElementType(0); 5965 5966 // If OpTy is not a single value, it may be a struct/union that we 5967 // can tile with integers. 5968 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5969 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5970 switch (BitSize) { 5971 default: break; 5972 case 1: 5973 case 8: 5974 case 16: 5975 case 32: 5976 case 64: 5977 case 128: 5978 OpTy = IntegerType::get(Context, BitSize); 5979 break; 5980 } 5981 } 5982 5983 return TLI.getValueType(DL, OpTy, true); 5984 } 5985 }; 5986 5987 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5988 5989 } // end anonymous namespace 5990 5991 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5992 /// specified operand. We prefer to assign virtual registers, to allow the 5993 /// register allocator to handle the assignment process. However, if the asm 5994 /// uses features that we can't model on machineinstrs, we have SDISel do the 5995 /// allocation. This produces generally horrible, but correct, code. 5996 /// 5997 /// OpInfo describes the operand. 5998 /// 5999 static void GetRegistersForValue(SelectionDAG &DAG, 6000 const TargetLowering &TLI, 6001 SDLoc DL, 6002 SDISelAsmOperandInfo &OpInfo) { 6003 LLVMContext &Context = *DAG.getContext(); 6004 6005 MachineFunction &MF = DAG.getMachineFunction(); 6006 SmallVector<unsigned, 4> Regs; 6007 6008 // If this is a constraint for a single physreg, or a constraint for a 6009 // register class, find it. 6010 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6011 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6012 OpInfo.ConstraintCode, 6013 OpInfo.ConstraintVT); 6014 6015 unsigned NumRegs = 1; 6016 if (OpInfo.ConstraintVT != MVT::Other) { 6017 // If this is a FP input in an integer register (or visa versa) insert a bit 6018 // cast of the input value. More generally, handle any case where the input 6019 // value disagrees with the register class we plan to stick this in. 6020 if (OpInfo.Type == InlineAsm::isInput && 6021 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6022 // Try to convert to the first EVT that the reg class contains. If the 6023 // types are identical size, use a bitcast to convert (e.g. two differing 6024 // vector types). 6025 MVT RegVT = *PhysReg.second->vt_begin(); 6026 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6027 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6028 RegVT, OpInfo.CallOperand); 6029 OpInfo.ConstraintVT = RegVT; 6030 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6031 // If the input is a FP value and we want it in FP registers, do a 6032 // bitcast to the corresponding integer type. This turns an f64 value 6033 // into i64, which can be passed with two i32 values on a 32-bit 6034 // machine. 6035 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6036 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6037 RegVT, OpInfo.CallOperand); 6038 OpInfo.ConstraintVT = RegVT; 6039 } 6040 } 6041 6042 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6043 } 6044 6045 MVT RegVT; 6046 EVT ValueVT = OpInfo.ConstraintVT; 6047 6048 // If this is a constraint for a specific physical register, like {r17}, 6049 // assign it now. 6050 if (unsigned AssignedReg = PhysReg.first) { 6051 const TargetRegisterClass *RC = PhysReg.second; 6052 if (OpInfo.ConstraintVT == MVT::Other) 6053 ValueVT = *RC->vt_begin(); 6054 6055 // Get the actual register value type. This is important, because the user 6056 // may have asked for (e.g.) the AX register in i32 type. We need to 6057 // remember that AX is actually i16 to get the right extension. 6058 RegVT = *RC->vt_begin(); 6059 6060 // This is a explicit reference to a physical register. 6061 Regs.push_back(AssignedReg); 6062 6063 // If this is an expanded reference, add the rest of the regs to Regs. 6064 if (NumRegs != 1) { 6065 TargetRegisterClass::iterator I = RC->begin(); 6066 for (; *I != AssignedReg; ++I) 6067 assert(I != RC->end() && "Didn't find reg!"); 6068 6069 // Already added the first reg. 6070 --NumRegs; ++I; 6071 for (; NumRegs; --NumRegs, ++I) { 6072 assert(I != RC->end() && "Ran out of registers to allocate!"); 6073 Regs.push_back(*I); 6074 } 6075 } 6076 6077 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6078 return; 6079 } 6080 6081 // Otherwise, if this was a reference to an LLVM register class, create vregs 6082 // for this reference. 6083 if (const TargetRegisterClass *RC = PhysReg.second) { 6084 RegVT = *RC->vt_begin(); 6085 if (OpInfo.ConstraintVT == MVT::Other) 6086 ValueVT = RegVT; 6087 6088 // Create the appropriate number of virtual registers. 6089 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6090 for (; NumRegs; --NumRegs) 6091 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6092 6093 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6094 return; 6095 } 6096 6097 // Otherwise, we couldn't allocate enough registers for this. 6098 } 6099 6100 /// visitInlineAsm - Handle a call to an InlineAsm object. 6101 /// 6102 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6103 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6104 6105 /// ConstraintOperands - Information about all of the constraints. 6106 SDISelAsmOperandInfoVector ConstraintOperands; 6107 6108 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6109 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6110 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6111 6112 bool hasMemory = false; 6113 6114 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6115 unsigned ResNo = 0; // ResNo - The result number of the next output. 6116 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6117 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6118 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6119 6120 MVT OpVT = MVT::Other; 6121 6122 // Compute the value type for each operand. 6123 switch (OpInfo.Type) { 6124 case InlineAsm::isOutput: 6125 // Indirect outputs just consume an argument. 6126 if (OpInfo.isIndirect) { 6127 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6128 break; 6129 } 6130 6131 // The return value of the call is this value. As such, there is no 6132 // corresponding argument. 6133 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6134 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6135 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6136 STy->getElementType(ResNo)); 6137 } else { 6138 assert(ResNo == 0 && "Asm only has one result!"); 6139 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6140 } 6141 ++ResNo; 6142 break; 6143 case InlineAsm::isInput: 6144 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6145 break; 6146 case InlineAsm::isClobber: 6147 // Nothing to do. 6148 break; 6149 } 6150 6151 // If this is an input or an indirect output, process the call argument. 6152 // BasicBlocks are labels, currently appearing only in asm's. 6153 if (OpInfo.CallOperandVal) { 6154 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6155 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6156 } else { 6157 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6158 } 6159 6160 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6161 DAG.getDataLayout()).getSimpleVT(); 6162 } 6163 6164 OpInfo.ConstraintVT = OpVT; 6165 6166 // Indirect operand accesses access memory. 6167 if (OpInfo.isIndirect) 6168 hasMemory = true; 6169 else { 6170 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6171 TargetLowering::ConstraintType 6172 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6173 if (CType == TargetLowering::C_Memory) { 6174 hasMemory = true; 6175 break; 6176 } 6177 } 6178 } 6179 } 6180 6181 SDValue Chain, Flag; 6182 6183 // We won't need to flush pending loads if this asm doesn't touch 6184 // memory and is nonvolatile. 6185 if (hasMemory || IA->hasSideEffects()) 6186 Chain = getRoot(); 6187 else 6188 Chain = DAG.getRoot(); 6189 6190 // Second pass over the constraints: compute which constraint option to use 6191 // and assign registers to constraints that want a specific physreg. 6192 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6193 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6194 6195 // If this is an output operand with a matching input operand, look up the 6196 // matching input. If their types mismatch, e.g. one is an integer, the 6197 // other is floating point, or their sizes are different, flag it as an 6198 // error. 6199 if (OpInfo.hasMatchingInput()) { 6200 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6201 6202 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6203 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6204 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6205 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6206 OpInfo.ConstraintVT); 6207 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6208 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6209 Input.ConstraintVT); 6210 if ((OpInfo.ConstraintVT.isInteger() != 6211 Input.ConstraintVT.isInteger()) || 6212 (MatchRC.second != InputRC.second)) { 6213 report_fatal_error("Unsupported asm: input constraint" 6214 " with a matching output constraint of" 6215 " incompatible type!"); 6216 } 6217 Input.ConstraintVT = OpInfo.ConstraintVT; 6218 } 6219 } 6220 6221 // Compute the constraint code and ConstraintType to use. 6222 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6223 6224 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6225 OpInfo.Type == InlineAsm::isClobber) 6226 continue; 6227 6228 // If this is a memory input, and if the operand is not indirect, do what we 6229 // need to to provide an address for the memory input. 6230 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6231 !OpInfo.isIndirect) { 6232 assert((OpInfo.isMultipleAlternative || 6233 (OpInfo.Type == InlineAsm::isInput)) && 6234 "Can only indirectify direct input operands!"); 6235 6236 // Memory operands really want the address of the value. If we don't have 6237 // an indirect input, put it in the constpool if we can, otherwise spill 6238 // it to a stack slot. 6239 // TODO: This isn't quite right. We need to handle these according to 6240 // the addressing mode that the constraint wants. Also, this may take 6241 // an additional register for the computation and we don't want that 6242 // either. 6243 6244 // If the operand is a float, integer, or vector constant, spill to a 6245 // constant pool entry to get its address. 6246 const Value *OpVal = OpInfo.CallOperandVal; 6247 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6248 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6249 OpInfo.CallOperand = DAG.getConstantPool( 6250 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6251 } else { 6252 // Otherwise, create a stack slot and emit a store to it before the 6253 // asm. 6254 Type *Ty = OpVal->getType(); 6255 auto &DL = DAG.getDataLayout(); 6256 uint64_t TySize = DL.getTypeAllocSize(Ty); 6257 unsigned Align = DL.getPrefTypeAlignment(Ty); 6258 MachineFunction &MF = DAG.getMachineFunction(); 6259 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6260 SDValue StackSlot = 6261 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6262 Chain = DAG.getStore( 6263 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6264 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6265 false, false, 0); 6266 OpInfo.CallOperand = StackSlot; 6267 } 6268 6269 // There is no longer a Value* corresponding to this operand. 6270 OpInfo.CallOperandVal = nullptr; 6271 6272 // It is now an indirect operand. 6273 OpInfo.isIndirect = true; 6274 } 6275 6276 // If this constraint is for a specific register, allocate it before 6277 // anything else. 6278 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6279 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6280 } 6281 6282 // Second pass - Loop over all of the operands, assigning virtual or physregs 6283 // to register class operands. 6284 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6285 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6286 6287 // C_Register operands have already been allocated, Other/Memory don't need 6288 // to be. 6289 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6290 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6291 } 6292 6293 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6294 std::vector<SDValue> AsmNodeOperands; 6295 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6296 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6297 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6298 6299 // If we have a !srcloc metadata node associated with it, we want to attach 6300 // this to the ultimately generated inline asm machineinstr. To do this, we 6301 // pass in the third operand as this (potentially null) inline asm MDNode. 6302 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6303 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6304 6305 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6306 // bits as operand 3. 6307 unsigned ExtraInfo = 0; 6308 if (IA->hasSideEffects()) 6309 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6310 if (IA->isAlignStack()) 6311 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6312 // Set the asm dialect. 6313 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6314 6315 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6316 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6317 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6318 6319 // Compute the constraint code and ConstraintType to use. 6320 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6321 6322 // Ideally, we would only check against memory constraints. However, the 6323 // meaning of an other constraint can be target-specific and we can't easily 6324 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6325 // for other constriants as well. 6326 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6327 OpInfo.ConstraintType == TargetLowering::C_Other) { 6328 if (OpInfo.Type == InlineAsm::isInput) 6329 ExtraInfo |= InlineAsm::Extra_MayLoad; 6330 else if (OpInfo.Type == InlineAsm::isOutput) 6331 ExtraInfo |= InlineAsm::Extra_MayStore; 6332 else if (OpInfo.Type == InlineAsm::isClobber) 6333 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6334 } 6335 } 6336 6337 AsmNodeOperands.push_back(DAG.getTargetConstant( 6338 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6339 6340 // Loop over all of the inputs, copying the operand values into the 6341 // appropriate registers and processing the output regs. 6342 RegsForValue RetValRegs; 6343 6344 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6345 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6346 6347 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6348 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6349 6350 switch (OpInfo.Type) { 6351 case InlineAsm::isOutput: { 6352 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6353 OpInfo.ConstraintType != TargetLowering::C_Register) { 6354 // Memory output, or 'other' output (e.g. 'X' constraint). 6355 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6356 6357 unsigned ConstraintID = 6358 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6359 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6360 "Failed to convert memory constraint code to constraint id."); 6361 6362 // Add information to the INLINEASM node to know about this output. 6363 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6364 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6365 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6366 MVT::i32)); 6367 AsmNodeOperands.push_back(OpInfo.CallOperand); 6368 break; 6369 } 6370 6371 // Otherwise, this is a register or register class output. 6372 6373 // Copy the output from the appropriate register. Find a register that 6374 // we can use. 6375 if (OpInfo.AssignedRegs.Regs.empty()) { 6376 LLVMContext &Ctx = *DAG.getContext(); 6377 Ctx.emitError(CS.getInstruction(), 6378 "couldn't allocate output register for constraint '" + 6379 Twine(OpInfo.ConstraintCode) + "'"); 6380 return; 6381 } 6382 6383 // If this is an indirect operand, store through the pointer after the 6384 // asm. 6385 if (OpInfo.isIndirect) { 6386 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6387 OpInfo.CallOperandVal)); 6388 } else { 6389 // This is the result value of the call. 6390 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6391 // Concatenate this output onto the outputs list. 6392 RetValRegs.append(OpInfo.AssignedRegs); 6393 } 6394 6395 // Add information to the INLINEASM node to know that this register is 6396 // set. 6397 OpInfo.AssignedRegs 6398 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6399 ? InlineAsm::Kind_RegDefEarlyClobber 6400 : InlineAsm::Kind_RegDef, 6401 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6402 break; 6403 } 6404 case InlineAsm::isInput: { 6405 SDValue InOperandVal = OpInfo.CallOperand; 6406 6407 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6408 // If this is required to match an output register we have already set, 6409 // just use its register. 6410 unsigned OperandNo = OpInfo.getMatchedOperand(); 6411 6412 // Scan until we find the definition we already emitted of this operand. 6413 // When we find it, create a RegsForValue operand. 6414 unsigned CurOp = InlineAsm::Op_FirstOperand; 6415 for (; OperandNo; --OperandNo) { 6416 // Advance to the next operand. 6417 unsigned OpFlag = 6418 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6419 assert((InlineAsm::isRegDefKind(OpFlag) || 6420 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6421 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6422 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6423 } 6424 6425 unsigned OpFlag = 6426 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6427 if (InlineAsm::isRegDefKind(OpFlag) || 6428 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6429 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6430 if (OpInfo.isIndirect) { 6431 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6432 LLVMContext &Ctx = *DAG.getContext(); 6433 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6434 " don't know how to handle tied " 6435 "indirect register inputs"); 6436 return; 6437 } 6438 6439 RegsForValue MatchedRegs; 6440 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6441 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6442 MatchedRegs.RegVTs.push_back(RegVT); 6443 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6444 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6445 i != e; ++i) { 6446 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6447 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6448 else { 6449 LLVMContext &Ctx = *DAG.getContext(); 6450 Ctx.emitError(CS.getInstruction(), 6451 "inline asm error: This value" 6452 " type register class is not natively supported!"); 6453 return; 6454 } 6455 } 6456 SDLoc dl = getCurSDLoc(); 6457 // Use the produced MatchedRegs object to 6458 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6459 Chain, &Flag, CS.getInstruction()); 6460 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6461 true, OpInfo.getMatchedOperand(), dl, 6462 DAG, AsmNodeOperands); 6463 break; 6464 } 6465 6466 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6467 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6468 "Unexpected number of operands"); 6469 // Add information to the INLINEASM node to know about this input. 6470 // See InlineAsm.h isUseOperandTiedToDef. 6471 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6472 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6473 OpInfo.getMatchedOperand()); 6474 AsmNodeOperands.push_back(DAG.getTargetConstant( 6475 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6476 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6477 break; 6478 } 6479 6480 // Treat indirect 'X' constraint as memory. 6481 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6482 OpInfo.isIndirect) 6483 OpInfo.ConstraintType = TargetLowering::C_Memory; 6484 6485 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6486 std::vector<SDValue> Ops; 6487 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6488 Ops, DAG); 6489 if (Ops.empty()) { 6490 LLVMContext &Ctx = *DAG.getContext(); 6491 Ctx.emitError(CS.getInstruction(), 6492 "invalid operand for inline asm constraint '" + 6493 Twine(OpInfo.ConstraintCode) + "'"); 6494 return; 6495 } 6496 6497 // Add information to the INLINEASM node to know about this input. 6498 unsigned ResOpType = 6499 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6500 AsmNodeOperands.push_back(DAG.getTargetConstant( 6501 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6502 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6503 break; 6504 } 6505 6506 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6507 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6508 assert(InOperandVal.getValueType() == 6509 TLI.getPointerTy(DAG.getDataLayout()) && 6510 "Memory operands expect pointer values"); 6511 6512 unsigned ConstraintID = 6513 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6514 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6515 "Failed to convert memory constraint code to constraint id."); 6516 6517 // Add information to the INLINEASM node to know about this input. 6518 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6519 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6520 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6521 getCurSDLoc(), 6522 MVT::i32)); 6523 AsmNodeOperands.push_back(InOperandVal); 6524 break; 6525 } 6526 6527 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6528 OpInfo.ConstraintType == TargetLowering::C_Register) && 6529 "Unknown constraint type!"); 6530 6531 // TODO: Support this. 6532 if (OpInfo.isIndirect) { 6533 LLVMContext &Ctx = *DAG.getContext(); 6534 Ctx.emitError(CS.getInstruction(), 6535 "Don't know how to handle indirect register inputs yet " 6536 "for constraint '" + 6537 Twine(OpInfo.ConstraintCode) + "'"); 6538 return; 6539 } 6540 6541 // Copy the input into the appropriate registers. 6542 if (OpInfo.AssignedRegs.Regs.empty()) { 6543 LLVMContext &Ctx = *DAG.getContext(); 6544 Ctx.emitError(CS.getInstruction(), 6545 "couldn't allocate input reg for constraint '" + 6546 Twine(OpInfo.ConstraintCode) + "'"); 6547 return; 6548 } 6549 6550 SDLoc dl = getCurSDLoc(); 6551 6552 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6553 Chain, &Flag, CS.getInstruction()); 6554 6555 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6556 dl, DAG, AsmNodeOperands); 6557 break; 6558 } 6559 case InlineAsm::isClobber: { 6560 // Add the clobbered value to the operand list, so that the register 6561 // allocator is aware that the physreg got clobbered. 6562 if (!OpInfo.AssignedRegs.Regs.empty()) 6563 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6564 false, 0, getCurSDLoc(), DAG, 6565 AsmNodeOperands); 6566 break; 6567 } 6568 } 6569 } 6570 6571 // Finish up input operands. Set the input chain and add the flag last. 6572 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6573 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6574 6575 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6576 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6577 Flag = Chain.getValue(1); 6578 6579 // If this asm returns a register value, copy the result from that register 6580 // and set it as the value of the call. 6581 if (!RetValRegs.Regs.empty()) { 6582 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6583 Chain, &Flag, CS.getInstruction()); 6584 6585 // FIXME: Why don't we do this for inline asms with MRVs? 6586 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6587 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6588 6589 // If any of the results of the inline asm is a vector, it may have the 6590 // wrong width/num elts. This can happen for register classes that can 6591 // contain multiple different value types. The preg or vreg allocated may 6592 // not have the same VT as was expected. Convert it to the right type 6593 // with bit_convert. 6594 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6595 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6596 ResultType, Val); 6597 6598 } else if (ResultType != Val.getValueType() && 6599 ResultType.isInteger() && Val.getValueType().isInteger()) { 6600 // If a result value was tied to an input value, the computed result may 6601 // have a wider width than the expected result. Extract the relevant 6602 // portion. 6603 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6604 } 6605 6606 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6607 } 6608 6609 setValue(CS.getInstruction(), Val); 6610 // Don't need to use this as a chain in this case. 6611 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6612 return; 6613 } 6614 6615 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6616 6617 // Process indirect outputs, first output all of the flagged copies out of 6618 // physregs. 6619 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6620 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6621 const Value *Ptr = IndirectStoresToEmit[i].second; 6622 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6623 Chain, &Flag, IA); 6624 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6625 } 6626 6627 // Emit the non-flagged stores from the physregs. 6628 SmallVector<SDValue, 8> OutChains; 6629 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6630 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6631 StoresToEmit[i].first, 6632 getValue(StoresToEmit[i].second), 6633 MachinePointerInfo(StoresToEmit[i].second), 6634 false, false, 0); 6635 OutChains.push_back(Val); 6636 } 6637 6638 if (!OutChains.empty()) 6639 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6640 6641 DAG.setRoot(Chain); 6642 } 6643 6644 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6645 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6646 MVT::Other, getRoot(), 6647 getValue(I.getArgOperand(0)), 6648 DAG.getSrcValue(I.getArgOperand(0)))); 6649 } 6650 6651 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6653 const DataLayout &DL = DAG.getDataLayout(); 6654 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6655 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6656 DAG.getSrcValue(I.getOperand(0)), 6657 DL.getABITypeAlignment(I.getType())); 6658 setValue(&I, V); 6659 DAG.setRoot(V.getValue(1)); 6660 } 6661 6662 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6663 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6664 MVT::Other, getRoot(), 6665 getValue(I.getArgOperand(0)), 6666 DAG.getSrcValue(I.getArgOperand(0)))); 6667 } 6668 6669 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6670 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6671 MVT::Other, getRoot(), 6672 getValue(I.getArgOperand(0)), 6673 getValue(I.getArgOperand(1)), 6674 DAG.getSrcValue(I.getArgOperand(0)), 6675 DAG.getSrcValue(I.getArgOperand(1)))); 6676 } 6677 6678 /// \brief Lower an argument list according to the target calling convention. 6679 /// 6680 /// \return A tuple of <return-value, token-chain> 6681 /// 6682 /// This is a helper for lowering intrinsics that follow a target calling 6683 /// convention or require stack pointer adjustment. Only a subset of the 6684 /// intrinsic's operands need to participate in the calling convention. 6685 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6686 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6687 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6688 TargetLowering::ArgListTy Args; 6689 Args.reserve(NumArgs); 6690 6691 // Populate the argument list. 6692 // Attributes for args start at offset 1, after the return attribute. 6693 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6694 ArgI != ArgE; ++ArgI) { 6695 const Value *V = CS->getOperand(ArgI); 6696 6697 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6698 6699 TargetLowering::ArgListEntry Entry; 6700 Entry.Node = getValue(V); 6701 Entry.Ty = V->getType(); 6702 Entry.setAttributes(&CS, AttrI); 6703 Args.push_back(Entry); 6704 } 6705 6706 TargetLowering::CallLoweringInfo CLI(DAG); 6707 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6708 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6709 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6710 6711 return lowerInvokable(CLI, EHPadBB); 6712 } 6713 6714 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6715 /// or patchpoint target node's operand list. 6716 /// 6717 /// Constants are converted to TargetConstants purely as an optimization to 6718 /// avoid constant materialization and register allocation. 6719 /// 6720 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6721 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6722 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6723 /// address materialization and register allocation, but may also be required 6724 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6725 /// alloca in the entry block, then the runtime may assume that the alloca's 6726 /// StackMap location can be read immediately after compilation and that the 6727 /// location is valid at any point during execution (this is similar to the 6728 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6729 /// only available in a register, then the runtime would need to trap when 6730 /// execution reaches the StackMap in order to read the alloca's location. 6731 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6732 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6733 SelectionDAGBuilder &Builder) { 6734 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6735 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6736 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6737 Ops.push_back( 6738 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6739 Ops.push_back( 6740 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6741 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6742 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6743 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6744 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6745 } else 6746 Ops.push_back(OpVal); 6747 } 6748 } 6749 6750 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6751 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6752 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6753 // [live variables...]) 6754 6755 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6756 6757 SDValue Chain, InFlag, Callee, NullPtr; 6758 SmallVector<SDValue, 32> Ops; 6759 6760 SDLoc DL = getCurSDLoc(); 6761 Callee = getValue(CI.getCalledValue()); 6762 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6763 6764 // The stackmap intrinsic only records the live variables (the arguemnts 6765 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6766 // intrinsic, this won't be lowered to a function call. This means we don't 6767 // have to worry about calling conventions and target specific lowering code. 6768 // Instead we perform the call lowering right here. 6769 // 6770 // chain, flag = CALLSEQ_START(chain, 0) 6771 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6772 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6773 // 6774 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6775 InFlag = Chain.getValue(1); 6776 6777 // Add the <id> and <numBytes> constants. 6778 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6779 Ops.push_back(DAG.getTargetConstant( 6780 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6781 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6782 Ops.push_back(DAG.getTargetConstant( 6783 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6784 MVT::i32)); 6785 6786 // Push live variables for the stack map. 6787 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6788 6789 // We are not pushing any register mask info here on the operands list, 6790 // because the stackmap doesn't clobber anything. 6791 6792 // Push the chain and the glue flag. 6793 Ops.push_back(Chain); 6794 Ops.push_back(InFlag); 6795 6796 // Create the STACKMAP node. 6797 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6798 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6799 Chain = SDValue(SM, 0); 6800 InFlag = Chain.getValue(1); 6801 6802 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6803 6804 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6805 6806 // Set the root to the target-lowered call chain. 6807 DAG.setRoot(Chain); 6808 6809 // Inform the Frame Information that we have a stackmap in this function. 6810 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6811 } 6812 6813 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6814 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6815 const BasicBlock *EHPadBB) { 6816 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6817 // i32 <numBytes>, 6818 // i8* <target>, 6819 // i32 <numArgs>, 6820 // [Args...], 6821 // [live variables...]) 6822 6823 CallingConv::ID CC = CS.getCallingConv(); 6824 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6825 bool HasDef = !CS->getType()->isVoidTy(); 6826 SDLoc dl = getCurSDLoc(); 6827 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6828 6829 // Handle immediate and symbolic callees. 6830 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6831 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6832 /*isTarget=*/true); 6833 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6834 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6835 SDLoc(SymbolicCallee), 6836 SymbolicCallee->getValueType(0)); 6837 6838 // Get the real number of arguments participating in the call <numArgs> 6839 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6840 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6841 6842 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6843 // Intrinsics include all meta-operands up to but not including CC. 6844 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6845 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6846 "Not enough arguments provided to the patchpoint intrinsic"); 6847 6848 // For AnyRegCC the arguments are lowered later on manually. 6849 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6850 Type *ReturnTy = 6851 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6852 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6853 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6854 6855 SDNode *CallEnd = Result.second.getNode(); 6856 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6857 CallEnd = CallEnd->getOperand(0).getNode(); 6858 6859 /// Get a call instruction from the call sequence chain. 6860 /// Tail calls are not allowed. 6861 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6862 "Expected a callseq node."); 6863 SDNode *Call = CallEnd->getOperand(0).getNode(); 6864 bool HasGlue = Call->getGluedNode(); 6865 6866 // Replace the target specific call node with the patchable intrinsic. 6867 SmallVector<SDValue, 8> Ops; 6868 6869 // Add the <id> and <numBytes> constants. 6870 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6871 Ops.push_back(DAG.getTargetConstant( 6872 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6873 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6874 Ops.push_back(DAG.getTargetConstant( 6875 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6876 MVT::i32)); 6877 6878 // Add the callee. 6879 Ops.push_back(Callee); 6880 6881 // Adjust <numArgs> to account for any arguments that have been passed on the 6882 // stack instead. 6883 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6884 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6885 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6886 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6887 6888 // Add the calling convention 6889 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6890 6891 // Add the arguments we omitted previously. The register allocator should 6892 // place these in any free register. 6893 if (IsAnyRegCC) 6894 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6895 Ops.push_back(getValue(CS.getArgument(i))); 6896 6897 // Push the arguments from the call instruction up to the register mask. 6898 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6899 Ops.append(Call->op_begin() + 2, e); 6900 6901 // Push live variables for the stack map. 6902 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6903 6904 // Push the register mask info. 6905 if (HasGlue) 6906 Ops.push_back(*(Call->op_end()-2)); 6907 else 6908 Ops.push_back(*(Call->op_end()-1)); 6909 6910 // Push the chain (this is originally the first operand of the call, but 6911 // becomes now the last or second to last operand). 6912 Ops.push_back(*(Call->op_begin())); 6913 6914 // Push the glue flag (last operand). 6915 if (HasGlue) 6916 Ops.push_back(*(Call->op_end()-1)); 6917 6918 SDVTList NodeTys; 6919 if (IsAnyRegCC && HasDef) { 6920 // Create the return types based on the intrinsic definition 6921 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6922 SmallVector<EVT, 3> ValueVTs; 6923 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6924 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6925 6926 // There is always a chain and a glue type at the end 6927 ValueVTs.push_back(MVT::Other); 6928 ValueVTs.push_back(MVT::Glue); 6929 NodeTys = DAG.getVTList(ValueVTs); 6930 } else 6931 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6932 6933 // Replace the target specific call node with a PATCHPOINT node. 6934 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6935 dl, NodeTys, Ops); 6936 6937 // Update the NodeMap. 6938 if (HasDef) { 6939 if (IsAnyRegCC) 6940 setValue(CS.getInstruction(), SDValue(MN, 0)); 6941 else 6942 setValue(CS.getInstruction(), Result.first); 6943 } 6944 6945 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6946 // call sequence. Furthermore the location of the chain and glue can change 6947 // when the AnyReg calling convention is used and the intrinsic returns a 6948 // value. 6949 if (IsAnyRegCC && HasDef) { 6950 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6951 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6952 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6953 } else 6954 DAG.ReplaceAllUsesWith(Call, MN); 6955 DAG.DeleteNode(Call); 6956 6957 // Inform the Frame Information that we have a patchpoint in this function. 6958 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6959 } 6960 6961 /// Returns an AttributeSet representing the attributes applied to the return 6962 /// value of the given call. 6963 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6964 SmallVector<Attribute::AttrKind, 2> Attrs; 6965 if (CLI.RetSExt) 6966 Attrs.push_back(Attribute::SExt); 6967 if (CLI.RetZExt) 6968 Attrs.push_back(Attribute::ZExt); 6969 if (CLI.IsInReg) 6970 Attrs.push_back(Attribute::InReg); 6971 6972 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6973 Attrs); 6974 } 6975 6976 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6977 /// implementation, which just calls LowerCall. 6978 /// FIXME: When all targets are 6979 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6980 std::pair<SDValue, SDValue> 6981 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6982 // Handle the incoming return values from the call. 6983 CLI.Ins.clear(); 6984 Type *OrigRetTy = CLI.RetTy; 6985 SmallVector<EVT, 4> RetTys; 6986 SmallVector<uint64_t, 4> Offsets; 6987 auto &DL = CLI.DAG.getDataLayout(); 6988 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6989 6990 SmallVector<ISD::OutputArg, 4> Outs; 6991 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6992 6993 bool CanLowerReturn = 6994 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6995 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6996 6997 SDValue DemoteStackSlot; 6998 int DemoteStackIdx = -100; 6999 if (!CanLowerReturn) { 7000 // FIXME: equivalent assert? 7001 // assert(!CS.hasInAllocaArgument() && 7002 // "sret demotion is incompatible with inalloca"); 7003 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7004 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7005 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7006 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7007 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7008 7009 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7010 ArgListEntry Entry; 7011 Entry.Node = DemoteStackSlot; 7012 Entry.Ty = StackSlotPtrType; 7013 Entry.isSExt = false; 7014 Entry.isZExt = false; 7015 Entry.isInReg = false; 7016 Entry.isSRet = true; 7017 Entry.isNest = false; 7018 Entry.isByVal = false; 7019 Entry.isReturned = false; 7020 Entry.Alignment = Align; 7021 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7022 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7023 7024 // sret demotion isn't compatible with tail-calls, since the sret argument 7025 // points into the callers stack frame. 7026 CLI.IsTailCall = false; 7027 } else { 7028 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7029 EVT VT = RetTys[I]; 7030 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7031 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7032 for (unsigned i = 0; i != NumRegs; ++i) { 7033 ISD::InputArg MyFlags; 7034 MyFlags.VT = RegisterVT; 7035 MyFlags.ArgVT = VT; 7036 MyFlags.Used = CLI.IsReturnValueUsed; 7037 if (CLI.RetSExt) 7038 MyFlags.Flags.setSExt(); 7039 if (CLI.RetZExt) 7040 MyFlags.Flags.setZExt(); 7041 if (CLI.IsInReg) 7042 MyFlags.Flags.setInReg(); 7043 CLI.Ins.push_back(MyFlags); 7044 } 7045 } 7046 } 7047 7048 // Handle all of the outgoing arguments. 7049 CLI.Outs.clear(); 7050 CLI.OutVals.clear(); 7051 ArgListTy &Args = CLI.getArgs(); 7052 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7053 SmallVector<EVT, 4> ValueVTs; 7054 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7055 Type *FinalType = Args[i].Ty; 7056 if (Args[i].isByVal) 7057 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7058 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7059 FinalType, CLI.CallConv, CLI.IsVarArg); 7060 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7061 ++Value) { 7062 EVT VT = ValueVTs[Value]; 7063 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7064 SDValue Op = SDValue(Args[i].Node.getNode(), 7065 Args[i].Node.getResNo() + Value); 7066 ISD::ArgFlagsTy Flags; 7067 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7068 7069 if (Args[i].isZExt) 7070 Flags.setZExt(); 7071 if (Args[i].isSExt) 7072 Flags.setSExt(); 7073 if (Args[i].isInReg) 7074 Flags.setInReg(); 7075 if (Args[i].isSRet) 7076 Flags.setSRet(); 7077 if (Args[i].isByVal) 7078 Flags.setByVal(); 7079 if (Args[i].isInAlloca) { 7080 Flags.setInAlloca(); 7081 // Set the byval flag for CCAssignFn callbacks that don't know about 7082 // inalloca. This way we can know how many bytes we should've allocated 7083 // and how many bytes a callee cleanup function will pop. If we port 7084 // inalloca to more targets, we'll have to add custom inalloca handling 7085 // in the various CC lowering callbacks. 7086 Flags.setByVal(); 7087 } 7088 if (Args[i].isByVal || Args[i].isInAlloca) { 7089 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7090 Type *ElementTy = Ty->getElementType(); 7091 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7092 // For ByVal, alignment should come from FE. BE will guess if this 7093 // info is not there but there are cases it cannot get right. 7094 unsigned FrameAlign; 7095 if (Args[i].Alignment) 7096 FrameAlign = Args[i].Alignment; 7097 else 7098 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7099 Flags.setByValAlign(FrameAlign); 7100 } 7101 if (Args[i].isNest) 7102 Flags.setNest(); 7103 if (NeedsRegBlock) 7104 Flags.setInConsecutiveRegs(); 7105 Flags.setOrigAlign(OriginalAlignment); 7106 7107 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7108 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7109 SmallVector<SDValue, 4> Parts(NumParts); 7110 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7111 7112 if (Args[i].isSExt) 7113 ExtendKind = ISD::SIGN_EXTEND; 7114 else if (Args[i].isZExt) 7115 ExtendKind = ISD::ZERO_EXTEND; 7116 7117 // Conservatively only handle 'returned' on non-vectors for now 7118 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7119 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7120 "unexpected use of 'returned'"); 7121 // Before passing 'returned' to the target lowering code, ensure that 7122 // either the register MVT and the actual EVT are the same size or that 7123 // the return value and argument are extended in the same way; in these 7124 // cases it's safe to pass the argument register value unchanged as the 7125 // return register value (although it's at the target's option whether 7126 // to do so) 7127 // TODO: allow code generation to take advantage of partially preserved 7128 // registers rather than clobbering the entire register when the 7129 // parameter extension method is not compatible with the return 7130 // extension method 7131 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7132 (ExtendKind != ISD::ANY_EXTEND && 7133 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7134 Flags.setReturned(); 7135 } 7136 7137 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7138 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7139 7140 for (unsigned j = 0; j != NumParts; ++j) { 7141 // if it isn't first piece, alignment must be 1 7142 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7143 i < CLI.NumFixedArgs, 7144 i, j*Parts[j].getValueType().getStoreSize()); 7145 if (NumParts > 1 && j == 0) 7146 MyFlags.Flags.setSplit(); 7147 else if (j != 0) 7148 MyFlags.Flags.setOrigAlign(1); 7149 7150 CLI.Outs.push_back(MyFlags); 7151 CLI.OutVals.push_back(Parts[j]); 7152 } 7153 7154 if (NeedsRegBlock && Value == NumValues - 1) 7155 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7156 } 7157 } 7158 7159 SmallVector<SDValue, 4> InVals; 7160 CLI.Chain = LowerCall(CLI, InVals); 7161 7162 // Verify that the target's LowerCall behaved as expected. 7163 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7164 "LowerCall didn't return a valid chain!"); 7165 assert((!CLI.IsTailCall || InVals.empty()) && 7166 "LowerCall emitted a return value for a tail call!"); 7167 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7168 "LowerCall didn't emit the correct number of values!"); 7169 7170 // For a tail call, the return value is merely live-out and there aren't 7171 // any nodes in the DAG representing it. Return a special value to 7172 // indicate that a tail call has been emitted and no more Instructions 7173 // should be processed in the current block. 7174 if (CLI.IsTailCall) { 7175 CLI.DAG.setRoot(CLI.Chain); 7176 return std::make_pair(SDValue(), SDValue()); 7177 } 7178 7179 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7180 assert(InVals[i].getNode() && 7181 "LowerCall emitted a null value!"); 7182 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7183 "LowerCall emitted a value with the wrong type!"); 7184 }); 7185 7186 SmallVector<SDValue, 4> ReturnValues; 7187 if (!CanLowerReturn) { 7188 // The instruction result is the result of loading from the 7189 // hidden sret parameter. 7190 SmallVector<EVT, 1> PVTs; 7191 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7192 7193 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7194 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7195 EVT PtrVT = PVTs[0]; 7196 7197 unsigned NumValues = RetTys.size(); 7198 ReturnValues.resize(NumValues); 7199 SmallVector<SDValue, 4> Chains(NumValues); 7200 7201 for (unsigned i = 0; i < NumValues; ++i) { 7202 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7203 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7204 PtrVT)); 7205 SDValue L = CLI.DAG.getLoad( 7206 RetTys[i], CLI.DL, CLI.Chain, Add, 7207 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7208 DemoteStackIdx, Offsets[i]), 7209 false, false, false, 1); 7210 ReturnValues[i] = L; 7211 Chains[i] = L.getValue(1); 7212 } 7213 7214 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7215 } else { 7216 // Collect the legal value parts into potentially illegal values 7217 // that correspond to the original function's return values. 7218 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7219 if (CLI.RetSExt) 7220 AssertOp = ISD::AssertSext; 7221 else if (CLI.RetZExt) 7222 AssertOp = ISD::AssertZext; 7223 unsigned CurReg = 0; 7224 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7225 EVT VT = RetTys[I]; 7226 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7227 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7228 7229 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7230 NumRegs, RegisterVT, VT, nullptr, 7231 AssertOp)); 7232 CurReg += NumRegs; 7233 } 7234 7235 // For a function returning void, there is no return value. We can't create 7236 // such a node, so we just return a null return value in that case. In 7237 // that case, nothing will actually look at the value. 7238 if (ReturnValues.empty()) 7239 return std::make_pair(SDValue(), CLI.Chain); 7240 } 7241 7242 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7243 CLI.DAG.getVTList(RetTys), ReturnValues); 7244 return std::make_pair(Res, CLI.Chain); 7245 } 7246 7247 void TargetLowering::LowerOperationWrapper(SDNode *N, 7248 SmallVectorImpl<SDValue> &Results, 7249 SelectionDAG &DAG) const { 7250 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7251 if (Res.getNode()) 7252 Results.push_back(Res); 7253 } 7254 7255 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7256 llvm_unreachable("LowerOperation not implemented for this target!"); 7257 } 7258 7259 void 7260 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7261 SDValue Op = getNonRegisterValue(V); 7262 assert((Op.getOpcode() != ISD::CopyFromReg || 7263 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7264 "Copy from a reg to the same reg!"); 7265 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7266 7267 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7268 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7269 V->getType()); 7270 SDValue Chain = DAG.getEntryNode(); 7271 7272 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7273 FuncInfo.PreferredExtendType.end()) 7274 ? ISD::ANY_EXTEND 7275 : FuncInfo.PreferredExtendType[V]; 7276 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7277 PendingExports.push_back(Chain); 7278 } 7279 7280 #include "llvm/CodeGen/SelectionDAGISel.h" 7281 7282 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7283 /// entry block, return true. This includes arguments used by switches, since 7284 /// the switch may expand into multiple basic blocks. 7285 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7286 // With FastISel active, we may be splitting blocks, so force creation 7287 // of virtual registers for all non-dead arguments. 7288 if (FastISel) 7289 return A->use_empty(); 7290 7291 const BasicBlock &Entry = A->getParent()->front(); 7292 for (const User *U : A->users()) 7293 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7294 return false; // Use not in entry block. 7295 7296 return true; 7297 } 7298 7299 void SelectionDAGISel::LowerArguments(const Function &F) { 7300 SelectionDAG &DAG = SDB->DAG; 7301 SDLoc dl = SDB->getCurSDLoc(); 7302 const DataLayout &DL = DAG.getDataLayout(); 7303 SmallVector<ISD::InputArg, 16> Ins; 7304 7305 if (!FuncInfo->CanLowerReturn) { 7306 // Put in an sret pointer parameter before all the other parameters. 7307 SmallVector<EVT, 1> ValueVTs; 7308 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7309 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7310 7311 // NOTE: Assuming that a pointer will never break down to more than one VT 7312 // or one register. 7313 ISD::ArgFlagsTy Flags; 7314 Flags.setSRet(); 7315 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7316 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7317 ISD::InputArg::NoArgIndex, 0); 7318 Ins.push_back(RetArg); 7319 } 7320 7321 // Set up the incoming argument description vector. 7322 unsigned Idx = 1; 7323 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7324 I != E; ++I, ++Idx) { 7325 SmallVector<EVT, 4> ValueVTs; 7326 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7327 bool isArgValueUsed = !I->use_empty(); 7328 unsigned PartBase = 0; 7329 Type *FinalType = I->getType(); 7330 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7331 FinalType = cast<PointerType>(FinalType)->getElementType(); 7332 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7333 FinalType, F.getCallingConv(), F.isVarArg()); 7334 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7335 Value != NumValues; ++Value) { 7336 EVT VT = ValueVTs[Value]; 7337 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7338 ISD::ArgFlagsTy Flags; 7339 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7340 7341 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7342 Flags.setZExt(); 7343 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7344 Flags.setSExt(); 7345 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7346 Flags.setInReg(); 7347 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7348 Flags.setSRet(); 7349 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7350 Flags.setByVal(); 7351 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7352 Flags.setInAlloca(); 7353 // Set the byval flag for CCAssignFn callbacks that don't know about 7354 // inalloca. This way we can know how many bytes we should've allocated 7355 // and how many bytes a callee cleanup function will pop. If we port 7356 // inalloca to more targets, we'll have to add custom inalloca handling 7357 // in the various CC lowering callbacks. 7358 Flags.setByVal(); 7359 } 7360 if (Flags.isByVal() || Flags.isInAlloca()) { 7361 PointerType *Ty = cast<PointerType>(I->getType()); 7362 Type *ElementTy = Ty->getElementType(); 7363 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7364 // For ByVal, alignment should be passed from FE. BE will guess if 7365 // this info is not there but there are cases it cannot get right. 7366 unsigned FrameAlign; 7367 if (F.getParamAlignment(Idx)) 7368 FrameAlign = F.getParamAlignment(Idx); 7369 else 7370 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7371 Flags.setByValAlign(FrameAlign); 7372 } 7373 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7374 Flags.setNest(); 7375 if (NeedsRegBlock) 7376 Flags.setInConsecutiveRegs(); 7377 Flags.setOrigAlign(OriginalAlignment); 7378 7379 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7380 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7381 for (unsigned i = 0; i != NumRegs; ++i) { 7382 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7383 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7384 if (NumRegs > 1 && i == 0) 7385 MyFlags.Flags.setSplit(); 7386 // if it isn't first piece, alignment must be 1 7387 else if (i > 0) 7388 MyFlags.Flags.setOrigAlign(1); 7389 Ins.push_back(MyFlags); 7390 } 7391 if (NeedsRegBlock && Value == NumValues - 1) 7392 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7393 PartBase += VT.getStoreSize(); 7394 } 7395 } 7396 7397 // Call the target to set up the argument values. 7398 SmallVector<SDValue, 8> InVals; 7399 SDValue NewRoot = TLI->LowerFormalArguments( 7400 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7401 7402 // Verify that the target's LowerFormalArguments behaved as expected. 7403 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7404 "LowerFormalArguments didn't return a valid chain!"); 7405 assert(InVals.size() == Ins.size() && 7406 "LowerFormalArguments didn't emit the correct number of values!"); 7407 DEBUG({ 7408 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7409 assert(InVals[i].getNode() && 7410 "LowerFormalArguments emitted a null value!"); 7411 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7412 "LowerFormalArguments emitted a value with the wrong type!"); 7413 } 7414 }); 7415 7416 // Update the DAG with the new chain value resulting from argument lowering. 7417 DAG.setRoot(NewRoot); 7418 7419 // Set up the argument values. 7420 unsigned i = 0; 7421 Idx = 1; 7422 if (!FuncInfo->CanLowerReturn) { 7423 // Create a virtual register for the sret pointer, and put in a copy 7424 // from the sret argument into it. 7425 SmallVector<EVT, 1> ValueVTs; 7426 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7427 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7428 MVT VT = ValueVTs[0].getSimpleVT(); 7429 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7430 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7431 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7432 RegVT, VT, nullptr, AssertOp); 7433 7434 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7435 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7436 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7437 FuncInfo->DemoteRegister = SRetReg; 7438 NewRoot = 7439 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7440 DAG.setRoot(NewRoot); 7441 7442 // i indexes lowered arguments. Bump it past the hidden sret argument. 7443 // Idx indexes LLVM arguments. Don't touch it. 7444 ++i; 7445 } 7446 7447 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7448 ++I, ++Idx) { 7449 SmallVector<SDValue, 4> ArgValues; 7450 SmallVector<EVT, 4> ValueVTs; 7451 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7452 unsigned NumValues = ValueVTs.size(); 7453 7454 // If this argument is unused then remember its value. It is used to generate 7455 // debugging information. 7456 if (I->use_empty() && NumValues) { 7457 SDB->setUnusedArgValue(&*I, InVals[i]); 7458 7459 // Also remember any frame index for use in FastISel. 7460 if (FrameIndexSDNode *FI = 7461 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7462 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7463 } 7464 7465 for (unsigned Val = 0; Val != NumValues; ++Val) { 7466 EVT VT = ValueVTs[Val]; 7467 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7468 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7469 7470 if (!I->use_empty()) { 7471 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7472 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7473 AssertOp = ISD::AssertSext; 7474 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7475 AssertOp = ISD::AssertZext; 7476 7477 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7478 NumParts, PartVT, VT, 7479 nullptr, AssertOp)); 7480 } 7481 7482 i += NumParts; 7483 } 7484 7485 // We don't need to do anything else for unused arguments. 7486 if (ArgValues.empty()) 7487 continue; 7488 7489 // Note down frame index. 7490 if (FrameIndexSDNode *FI = 7491 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7492 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7493 7494 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7495 SDB->getCurSDLoc()); 7496 7497 SDB->setValue(&*I, Res); 7498 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7499 if (LoadSDNode *LNode = 7500 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7501 if (FrameIndexSDNode *FI = 7502 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7503 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7504 } 7505 7506 // If this argument is live outside of the entry block, insert a copy from 7507 // wherever we got it to the vreg that other BB's will reference it as. 7508 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7509 // If we can, though, try to skip creating an unnecessary vreg. 7510 // FIXME: This isn't very clean... it would be nice to make this more 7511 // general. It's also subtly incompatible with the hacks FastISel 7512 // uses with vregs. 7513 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7514 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7515 FuncInfo->ValueMap[&*I] = Reg; 7516 continue; 7517 } 7518 } 7519 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7520 FuncInfo->InitializeRegForValue(&*I); 7521 SDB->CopyToExportRegsIfNeeded(&*I); 7522 } 7523 } 7524 7525 assert(i == InVals.size() && "Argument register count mismatch!"); 7526 7527 // Finally, if the target has anything special to do, allow it to do so. 7528 EmitFunctionEntryCode(); 7529 } 7530 7531 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7532 /// ensure constants are generated when needed. Remember the virtual registers 7533 /// that need to be added to the Machine PHI nodes as input. We cannot just 7534 /// directly add them, because expansion might result in multiple MBB's for one 7535 /// BB. As such, the start of the BB might correspond to a different MBB than 7536 /// the end. 7537 /// 7538 void 7539 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7540 const TerminatorInst *TI = LLVMBB->getTerminator(); 7541 7542 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7543 7544 // Check PHI nodes in successors that expect a value to be available from this 7545 // block. 7546 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7547 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7548 if (!isa<PHINode>(SuccBB->begin())) continue; 7549 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7550 7551 // If this terminator has multiple identical successors (common for 7552 // switches), only handle each succ once. 7553 if (!SuccsHandled.insert(SuccMBB).second) 7554 continue; 7555 7556 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7557 7558 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7559 // nodes and Machine PHI nodes, but the incoming operands have not been 7560 // emitted yet. 7561 for (BasicBlock::const_iterator I = SuccBB->begin(); 7562 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7563 // Ignore dead phi's. 7564 if (PN->use_empty()) continue; 7565 7566 // Skip empty types 7567 if (PN->getType()->isEmptyTy()) 7568 continue; 7569 7570 unsigned Reg; 7571 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7572 7573 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7574 unsigned &RegOut = ConstantsOut[C]; 7575 if (RegOut == 0) { 7576 RegOut = FuncInfo.CreateRegs(C->getType()); 7577 CopyValueToVirtualRegister(C, RegOut); 7578 } 7579 Reg = RegOut; 7580 } else { 7581 DenseMap<const Value *, unsigned>::iterator I = 7582 FuncInfo.ValueMap.find(PHIOp); 7583 if (I != FuncInfo.ValueMap.end()) 7584 Reg = I->second; 7585 else { 7586 assert(isa<AllocaInst>(PHIOp) && 7587 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7588 "Didn't codegen value into a register!??"); 7589 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7590 CopyValueToVirtualRegister(PHIOp, Reg); 7591 } 7592 } 7593 7594 // Remember that this register needs to added to the machine PHI node as 7595 // the input for this MBB. 7596 SmallVector<EVT, 4> ValueVTs; 7597 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7598 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7599 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7600 EVT VT = ValueVTs[vti]; 7601 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7602 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7603 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7604 Reg += NumRegisters; 7605 } 7606 } 7607 } 7608 7609 ConstantsOut.clear(); 7610 } 7611 7612 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7613 /// is 0. 7614 MachineBasicBlock * 7615 SelectionDAGBuilder::StackProtectorDescriptor:: 7616 AddSuccessorMBB(const BasicBlock *BB, 7617 MachineBasicBlock *ParentMBB, 7618 bool IsLikely, 7619 MachineBasicBlock *SuccMBB) { 7620 // If SuccBB has not been created yet, create it. 7621 if (!SuccMBB) { 7622 MachineFunction *MF = ParentMBB->getParent(); 7623 MachineFunction::iterator BBI(ParentMBB); 7624 SuccMBB = MF->CreateMachineBasicBlock(BB); 7625 MF->insert(++BBI, SuccMBB); 7626 } 7627 // Add it as a successor of ParentMBB. 7628 ParentMBB->addSuccessor( 7629 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7630 return SuccMBB; 7631 } 7632 7633 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7634 MachineFunction::iterator I(MBB); 7635 if (++I == FuncInfo.MF->end()) 7636 return nullptr; 7637 return &*I; 7638 } 7639 7640 /// During lowering new call nodes can be created (such as memset, etc.). 7641 /// Those will become new roots of the current DAG, but complications arise 7642 /// when they are tail calls. In such cases, the call lowering will update 7643 /// the root, but the builder still needs to know that a tail call has been 7644 /// lowered in order to avoid generating an additional return. 7645 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7646 // If the node is null, we do have a tail call. 7647 if (MaybeTC.getNode() != nullptr) 7648 DAG.setRoot(MaybeTC); 7649 else 7650 HasTailCall = true; 7651 } 7652 7653 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7654 unsigned *TotalCases, unsigned First, 7655 unsigned Last) { 7656 assert(Last >= First); 7657 assert(TotalCases[Last] >= TotalCases[First]); 7658 7659 APInt LowCase = Clusters[First].Low->getValue(); 7660 APInt HighCase = Clusters[Last].High->getValue(); 7661 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7662 7663 // FIXME: A range of consecutive cases has 100% density, but only requires one 7664 // comparison to lower. We should discriminate against such consecutive ranges 7665 // in jump tables. 7666 7667 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7668 uint64_t Range = Diff + 1; 7669 7670 uint64_t NumCases = 7671 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7672 7673 assert(NumCases < UINT64_MAX / 100); 7674 assert(Range >= NumCases); 7675 7676 return NumCases * 100 >= Range * MinJumpTableDensity; 7677 } 7678 7679 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7680 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7681 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7682 } 7683 7684 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7685 unsigned First, unsigned Last, 7686 const SwitchInst *SI, 7687 MachineBasicBlock *DefaultMBB, 7688 CaseCluster &JTCluster) { 7689 assert(First <= Last); 7690 7691 auto Prob = BranchProbability::getZero(); 7692 unsigned NumCmps = 0; 7693 std::vector<MachineBasicBlock*> Table; 7694 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7695 7696 // Initialize probabilities in JTProbs. 7697 for (unsigned I = First; I <= Last; ++I) 7698 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7699 7700 for (unsigned I = First; I <= Last; ++I) { 7701 assert(Clusters[I].Kind == CC_Range); 7702 Prob += Clusters[I].Prob; 7703 APInt Low = Clusters[I].Low->getValue(); 7704 APInt High = Clusters[I].High->getValue(); 7705 NumCmps += (Low == High) ? 1 : 2; 7706 if (I != First) { 7707 // Fill the gap between this and the previous cluster. 7708 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7709 assert(PreviousHigh.slt(Low)); 7710 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7711 for (uint64_t J = 0; J < Gap; J++) 7712 Table.push_back(DefaultMBB); 7713 } 7714 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7715 for (uint64_t J = 0; J < ClusterSize; ++J) 7716 Table.push_back(Clusters[I].MBB); 7717 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7718 } 7719 7720 unsigned NumDests = JTProbs.size(); 7721 if (isSuitableForBitTests(NumDests, NumCmps, 7722 Clusters[First].Low->getValue(), 7723 Clusters[Last].High->getValue())) { 7724 // Clusters[First..Last] should be lowered as bit tests instead. 7725 return false; 7726 } 7727 7728 // Create the MBB that will load from and jump through the table. 7729 // Note: We create it here, but it's not inserted into the function yet. 7730 MachineFunction *CurMF = FuncInfo.MF; 7731 MachineBasicBlock *JumpTableMBB = 7732 CurMF->CreateMachineBasicBlock(SI->getParent()); 7733 7734 // Add successors. Note: use table order for determinism. 7735 SmallPtrSet<MachineBasicBlock *, 8> Done; 7736 for (MachineBasicBlock *Succ : Table) { 7737 if (Done.count(Succ)) 7738 continue; 7739 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7740 Done.insert(Succ); 7741 } 7742 JumpTableMBB->normalizeSuccProbs(); 7743 7744 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7745 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7746 ->createJumpTableIndex(Table); 7747 7748 // Set up the jump table info. 7749 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7750 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7751 Clusters[Last].High->getValue(), SI->getCondition(), 7752 nullptr, false); 7753 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7754 7755 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7756 JTCases.size() - 1, Prob); 7757 return true; 7758 } 7759 7760 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7761 const SwitchInst *SI, 7762 MachineBasicBlock *DefaultMBB) { 7763 #ifndef NDEBUG 7764 // Clusters must be non-empty, sorted, and only contain Range clusters. 7765 assert(!Clusters.empty()); 7766 for (CaseCluster &C : Clusters) 7767 assert(C.Kind == CC_Range); 7768 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7769 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7770 #endif 7771 7772 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7773 if (!areJTsAllowed(TLI)) 7774 return; 7775 7776 const int64_t N = Clusters.size(); 7777 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7778 7779 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7780 SmallVector<unsigned, 8> TotalCases(N); 7781 7782 for (unsigned i = 0; i < N; ++i) { 7783 APInt Hi = Clusters[i].High->getValue(); 7784 APInt Lo = Clusters[i].Low->getValue(); 7785 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7786 if (i != 0) 7787 TotalCases[i] += TotalCases[i - 1]; 7788 } 7789 7790 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7791 // Cheap case: the whole range might be suitable for jump table. 7792 CaseCluster JTCluster; 7793 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7794 Clusters[0] = JTCluster; 7795 Clusters.resize(1); 7796 return; 7797 } 7798 } 7799 7800 // The algorithm below is not suitable for -O0. 7801 if (TM.getOptLevel() == CodeGenOpt::None) 7802 return; 7803 7804 // Split Clusters into minimum number of dense partitions. The algorithm uses 7805 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7806 // for the Case Statement'" (1994), but builds the MinPartitions array in 7807 // reverse order to make it easier to reconstruct the partitions in ascending 7808 // order. In the choice between two optimal partitionings, it picks the one 7809 // which yields more jump tables. 7810 7811 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7812 SmallVector<unsigned, 8> MinPartitions(N); 7813 // LastElement[i] is the last element of the partition starting at i. 7814 SmallVector<unsigned, 8> LastElement(N); 7815 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7816 SmallVector<unsigned, 8> NumTables(N); 7817 7818 // Base case: There is only one way to partition Clusters[N-1]. 7819 MinPartitions[N - 1] = 1; 7820 LastElement[N - 1] = N - 1; 7821 assert(MinJumpTableSize > 1); 7822 NumTables[N - 1] = 0; 7823 7824 // Note: loop indexes are signed to avoid underflow. 7825 for (int64_t i = N - 2; i >= 0; i--) { 7826 // Find optimal partitioning of Clusters[i..N-1]. 7827 // Baseline: Put Clusters[i] into a partition on its own. 7828 MinPartitions[i] = MinPartitions[i + 1] + 1; 7829 LastElement[i] = i; 7830 NumTables[i] = NumTables[i + 1]; 7831 7832 // Search for a solution that results in fewer partitions. 7833 for (int64_t j = N - 1; j > i; j--) { 7834 // Try building a partition from Clusters[i..j]. 7835 if (isDense(Clusters, &TotalCases[0], i, j)) { 7836 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7837 bool IsTable = j - i + 1 >= MinJumpTableSize; 7838 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7839 7840 // If this j leads to fewer partitions, or same number of partitions 7841 // with more lookup tables, it is a better partitioning. 7842 if (NumPartitions < MinPartitions[i] || 7843 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7844 MinPartitions[i] = NumPartitions; 7845 LastElement[i] = j; 7846 NumTables[i] = Tables; 7847 } 7848 } 7849 } 7850 } 7851 7852 // Iterate over the partitions, replacing some with jump tables in-place. 7853 unsigned DstIndex = 0; 7854 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7855 Last = LastElement[First]; 7856 assert(Last >= First); 7857 assert(DstIndex <= First); 7858 unsigned NumClusters = Last - First + 1; 7859 7860 CaseCluster JTCluster; 7861 if (NumClusters >= MinJumpTableSize && 7862 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7863 Clusters[DstIndex++] = JTCluster; 7864 } else { 7865 for (unsigned I = First; I <= Last; ++I) 7866 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7867 } 7868 } 7869 Clusters.resize(DstIndex); 7870 } 7871 7872 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7873 // FIXME: Using the pointer type doesn't seem ideal. 7874 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7875 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7876 return Range <= BW; 7877 } 7878 7879 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7880 unsigned NumCmps, 7881 const APInt &Low, 7882 const APInt &High) { 7883 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7884 // range of cases both require only one branch to lower. Just looking at the 7885 // number of clusters and destinations should be enough to decide whether to 7886 // build bit tests. 7887 7888 // To lower a range with bit tests, the range must fit the bitwidth of a 7889 // machine word. 7890 if (!rangeFitsInWord(Low, High)) 7891 return false; 7892 7893 // Decide whether it's profitable to lower this range with bit tests. Each 7894 // destination requires a bit test and branch, and there is an overall range 7895 // check branch. For a small number of clusters, separate comparisons might be 7896 // cheaper, and for many destinations, splitting the range might be better. 7897 return (NumDests == 1 && NumCmps >= 3) || 7898 (NumDests == 2 && NumCmps >= 5) || 7899 (NumDests == 3 && NumCmps >= 6); 7900 } 7901 7902 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7903 unsigned First, unsigned Last, 7904 const SwitchInst *SI, 7905 CaseCluster &BTCluster) { 7906 assert(First <= Last); 7907 if (First == Last) 7908 return false; 7909 7910 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7911 unsigned NumCmps = 0; 7912 for (int64_t I = First; I <= Last; ++I) { 7913 assert(Clusters[I].Kind == CC_Range); 7914 Dests.set(Clusters[I].MBB->getNumber()); 7915 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7916 } 7917 unsigned NumDests = Dests.count(); 7918 7919 APInt Low = Clusters[First].Low->getValue(); 7920 APInt High = Clusters[Last].High->getValue(); 7921 assert(Low.slt(High)); 7922 7923 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7924 return false; 7925 7926 APInt LowBound; 7927 APInt CmpRange; 7928 7929 const int BitWidth = DAG.getTargetLoweringInfo() 7930 .getPointerTy(DAG.getDataLayout()) 7931 .getSizeInBits(); 7932 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7933 7934 // Check if the clusters cover a contiguous range such that no value in the 7935 // range will jump to the default statement. 7936 bool ContiguousRange = true; 7937 for (int64_t I = First + 1; I <= Last; ++I) { 7938 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7939 ContiguousRange = false; 7940 break; 7941 } 7942 } 7943 7944 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7945 // Optimize the case where all the case values fit in a word without having 7946 // to subtract minValue. In this case, we can optimize away the subtraction. 7947 LowBound = APInt::getNullValue(Low.getBitWidth()); 7948 CmpRange = High; 7949 ContiguousRange = false; 7950 } else { 7951 LowBound = Low; 7952 CmpRange = High - Low; 7953 } 7954 7955 CaseBitsVector CBV; 7956 auto TotalProb = BranchProbability::getZero(); 7957 for (unsigned i = First; i <= Last; ++i) { 7958 // Find the CaseBits for this destination. 7959 unsigned j; 7960 for (j = 0; j < CBV.size(); ++j) 7961 if (CBV[j].BB == Clusters[i].MBB) 7962 break; 7963 if (j == CBV.size()) 7964 CBV.push_back( 7965 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 7966 CaseBits *CB = &CBV[j]; 7967 7968 // Update Mask, Bits and ExtraProb. 7969 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7970 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7971 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7972 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7973 CB->Bits += Hi - Lo + 1; 7974 CB->ExtraProb += Clusters[i].Prob; 7975 TotalProb += Clusters[i].Prob; 7976 } 7977 7978 BitTestInfo BTI; 7979 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7980 // Sort by probability first, number of bits second. 7981 if (a.ExtraProb != b.ExtraProb) 7982 return a.ExtraProb > b.ExtraProb; 7983 return a.Bits > b.Bits; 7984 }); 7985 7986 for (auto &CB : CBV) { 7987 MachineBasicBlock *BitTestBB = 7988 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7989 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 7990 } 7991 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7992 SI->getCondition(), -1U, MVT::Other, false, 7993 ContiguousRange, nullptr, nullptr, std::move(BTI), 7994 TotalProb); 7995 7996 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7997 BitTestCases.size() - 1, TotalProb); 7998 return true; 7999 } 8000 8001 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8002 const SwitchInst *SI) { 8003 // Partition Clusters into as few subsets as possible, where each subset has a 8004 // range that fits in a machine word and has <= 3 unique destinations. 8005 8006 #ifndef NDEBUG 8007 // Clusters must be sorted and contain Range or JumpTable clusters. 8008 assert(!Clusters.empty()); 8009 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8010 for (const CaseCluster &C : Clusters) 8011 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8012 for (unsigned i = 1; i < Clusters.size(); ++i) 8013 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8014 #endif 8015 8016 // The algorithm below is not suitable for -O0. 8017 if (TM.getOptLevel() == CodeGenOpt::None) 8018 return; 8019 8020 // If target does not have legal shift left, do not emit bit tests at all. 8021 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8022 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8023 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8024 return; 8025 8026 int BitWidth = PTy.getSizeInBits(); 8027 const int64_t N = Clusters.size(); 8028 8029 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8030 SmallVector<unsigned, 8> MinPartitions(N); 8031 // LastElement[i] is the last element of the partition starting at i. 8032 SmallVector<unsigned, 8> LastElement(N); 8033 8034 // FIXME: This might not be the best algorithm for finding bit test clusters. 8035 8036 // Base case: There is only one way to partition Clusters[N-1]. 8037 MinPartitions[N - 1] = 1; 8038 LastElement[N - 1] = N - 1; 8039 8040 // Note: loop indexes are signed to avoid underflow. 8041 for (int64_t i = N - 2; i >= 0; --i) { 8042 // Find optimal partitioning of Clusters[i..N-1]. 8043 // Baseline: Put Clusters[i] into a partition on its own. 8044 MinPartitions[i] = MinPartitions[i + 1] + 1; 8045 LastElement[i] = i; 8046 8047 // Search for a solution that results in fewer partitions. 8048 // Note: the search is limited by BitWidth, reducing time complexity. 8049 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8050 // Try building a partition from Clusters[i..j]. 8051 8052 // Check the range. 8053 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8054 Clusters[j].High->getValue())) 8055 continue; 8056 8057 // Check nbr of destinations and cluster types. 8058 // FIXME: This works, but doesn't seem very efficient. 8059 bool RangesOnly = true; 8060 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8061 for (int64_t k = i; k <= j; k++) { 8062 if (Clusters[k].Kind != CC_Range) { 8063 RangesOnly = false; 8064 break; 8065 } 8066 Dests.set(Clusters[k].MBB->getNumber()); 8067 } 8068 if (!RangesOnly || Dests.count() > 3) 8069 break; 8070 8071 // Check if it's a better partition. 8072 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8073 if (NumPartitions < MinPartitions[i]) { 8074 // Found a better partition. 8075 MinPartitions[i] = NumPartitions; 8076 LastElement[i] = j; 8077 } 8078 } 8079 } 8080 8081 // Iterate over the partitions, replacing with bit-test clusters in-place. 8082 unsigned DstIndex = 0; 8083 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8084 Last = LastElement[First]; 8085 assert(First <= Last); 8086 assert(DstIndex <= First); 8087 8088 CaseCluster BitTestCluster; 8089 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8090 Clusters[DstIndex++] = BitTestCluster; 8091 } else { 8092 size_t NumClusters = Last - First + 1; 8093 std::memmove(&Clusters[DstIndex], &Clusters[First], 8094 sizeof(Clusters[0]) * NumClusters); 8095 DstIndex += NumClusters; 8096 } 8097 } 8098 Clusters.resize(DstIndex); 8099 } 8100 8101 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8102 MachineBasicBlock *SwitchMBB, 8103 MachineBasicBlock *DefaultMBB) { 8104 MachineFunction *CurMF = FuncInfo.MF; 8105 MachineBasicBlock *NextMBB = nullptr; 8106 MachineFunction::iterator BBI(W.MBB); 8107 if (++BBI != FuncInfo.MF->end()) 8108 NextMBB = &*BBI; 8109 8110 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8111 8112 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8113 8114 if (Size == 2 && W.MBB == SwitchMBB) { 8115 // If any two of the cases has the same destination, and if one value 8116 // is the same as the other, but has one bit unset that the other has set, 8117 // use bit manipulation to do two compares at once. For example: 8118 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8119 // TODO: This could be extended to merge any 2 cases in switches with 3 8120 // cases. 8121 // TODO: Handle cases where W.CaseBB != SwitchBB. 8122 CaseCluster &Small = *W.FirstCluster; 8123 CaseCluster &Big = *W.LastCluster; 8124 8125 if (Small.Low == Small.High && Big.Low == Big.High && 8126 Small.MBB == Big.MBB) { 8127 const APInt &SmallValue = Small.Low->getValue(); 8128 const APInt &BigValue = Big.Low->getValue(); 8129 8130 // Check that there is only one bit different. 8131 APInt CommonBit = BigValue ^ SmallValue; 8132 if (CommonBit.isPowerOf2()) { 8133 SDValue CondLHS = getValue(Cond); 8134 EVT VT = CondLHS.getValueType(); 8135 SDLoc DL = getCurSDLoc(); 8136 8137 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8138 DAG.getConstant(CommonBit, DL, VT)); 8139 SDValue Cond = DAG.getSetCC( 8140 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8141 ISD::SETEQ); 8142 8143 // Update successor info. 8144 // Both Small and Big will jump to Small.BB, so we sum up the 8145 // probabilities. 8146 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8147 if (BPI) 8148 addSuccessorWithProb( 8149 SwitchMBB, DefaultMBB, 8150 // The default destination is the first successor in IR. 8151 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8152 else 8153 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8154 8155 // Insert the true branch. 8156 SDValue BrCond = 8157 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8158 DAG.getBasicBlock(Small.MBB)); 8159 // Insert the false branch. 8160 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8161 DAG.getBasicBlock(DefaultMBB)); 8162 8163 DAG.setRoot(BrCond); 8164 return; 8165 } 8166 } 8167 } 8168 8169 if (TM.getOptLevel() != CodeGenOpt::None) { 8170 // Order cases by probability so the most likely case will be checked first. 8171 std::sort(W.FirstCluster, W.LastCluster + 1, 8172 [](const CaseCluster &a, const CaseCluster &b) { 8173 return a.Prob > b.Prob; 8174 }); 8175 8176 // Rearrange the case blocks so that the last one falls through if possible 8177 // without without changing the order of probabilities. 8178 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8179 --I; 8180 if (I->Prob > W.LastCluster->Prob) 8181 break; 8182 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8183 std::swap(*I, *W.LastCluster); 8184 break; 8185 } 8186 } 8187 } 8188 8189 // Compute total probability. 8190 BranchProbability DefaultProb = W.DefaultProb; 8191 BranchProbability UnhandledProbs = DefaultProb; 8192 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8193 UnhandledProbs += I->Prob; 8194 8195 MachineBasicBlock *CurMBB = W.MBB; 8196 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8197 MachineBasicBlock *Fallthrough; 8198 if (I == W.LastCluster) { 8199 // For the last cluster, fall through to the default destination. 8200 Fallthrough = DefaultMBB; 8201 } else { 8202 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8203 CurMF->insert(BBI, Fallthrough); 8204 // Put Cond in a virtual register to make it available from the new blocks. 8205 ExportFromCurrentBlock(Cond); 8206 } 8207 UnhandledProbs -= I->Prob; 8208 8209 switch (I->Kind) { 8210 case CC_JumpTable: { 8211 // FIXME: Optimize away range check based on pivot comparisons. 8212 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8213 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8214 8215 // The jump block hasn't been inserted yet; insert it here. 8216 MachineBasicBlock *JumpMBB = JT->MBB; 8217 CurMF->insert(BBI, JumpMBB); 8218 8219 auto JumpProb = I->Prob; 8220 auto FallthroughProb = UnhandledProbs; 8221 8222 // If the default statement is a target of the jump table, we evenly 8223 // distribute the default probability to successors of CurMBB. Also 8224 // update the probability on the edge from JumpMBB to Fallthrough. 8225 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8226 SE = JumpMBB->succ_end(); 8227 SI != SE; ++SI) { 8228 if (*SI == DefaultMBB) { 8229 JumpProb += DefaultProb / 2; 8230 FallthroughProb -= DefaultProb / 2; 8231 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8232 JumpMBB->normalizeSuccProbs(); 8233 break; 8234 } 8235 } 8236 8237 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8238 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8239 CurMBB->normalizeSuccProbs(); 8240 8241 // The jump table header will be inserted in our current block, do the 8242 // range check, and fall through to our fallthrough block. 8243 JTH->HeaderBB = CurMBB; 8244 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8245 8246 // If we're in the right place, emit the jump table header right now. 8247 if (CurMBB == SwitchMBB) { 8248 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8249 JTH->Emitted = true; 8250 } 8251 break; 8252 } 8253 case CC_BitTests: { 8254 // FIXME: Optimize away range check based on pivot comparisons. 8255 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8256 8257 // The bit test blocks haven't been inserted yet; insert them here. 8258 for (BitTestCase &BTC : BTB->Cases) 8259 CurMF->insert(BBI, BTC.ThisBB); 8260 8261 // Fill in fields of the BitTestBlock. 8262 BTB->Parent = CurMBB; 8263 BTB->Default = Fallthrough; 8264 8265 BTB->DefaultProb = UnhandledProbs; 8266 // If the cases in bit test don't form a contiguous range, we evenly 8267 // distribute the probability on the edge to Fallthrough to two 8268 // successors of CurMBB. 8269 if (!BTB->ContiguousRange) { 8270 BTB->Prob += DefaultProb / 2; 8271 BTB->DefaultProb -= DefaultProb / 2; 8272 } 8273 8274 // If we're in the right place, emit the bit test header right now. 8275 if (CurMBB == SwitchMBB) { 8276 visitBitTestHeader(*BTB, SwitchMBB); 8277 BTB->Emitted = true; 8278 } 8279 break; 8280 } 8281 case CC_Range: { 8282 const Value *RHS, *LHS, *MHS; 8283 ISD::CondCode CC; 8284 if (I->Low == I->High) { 8285 // Check Cond == I->Low. 8286 CC = ISD::SETEQ; 8287 LHS = Cond; 8288 RHS=I->Low; 8289 MHS = nullptr; 8290 } else { 8291 // Check I->Low <= Cond <= I->High. 8292 CC = ISD::SETLE; 8293 LHS = I->Low; 8294 MHS = Cond; 8295 RHS = I->High; 8296 } 8297 8298 // The false probability is the sum of all unhandled cases. 8299 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8300 UnhandledProbs); 8301 8302 if (CurMBB == SwitchMBB) 8303 visitSwitchCase(CB, SwitchMBB); 8304 else 8305 SwitchCases.push_back(CB); 8306 8307 break; 8308 } 8309 } 8310 CurMBB = Fallthrough; 8311 } 8312 } 8313 8314 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8315 CaseClusterIt First, 8316 CaseClusterIt Last) { 8317 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8318 if (X.Prob != CC.Prob) 8319 return X.Prob > CC.Prob; 8320 8321 // Ties are broken by comparing the case value. 8322 return X.Low->getValue().slt(CC.Low->getValue()); 8323 }); 8324 } 8325 8326 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8327 const SwitchWorkListItem &W, 8328 Value *Cond, 8329 MachineBasicBlock *SwitchMBB) { 8330 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8331 "Clusters not sorted?"); 8332 8333 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8334 8335 // Balance the tree based on branch probabilities to create a near-optimal (in 8336 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8337 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8338 CaseClusterIt LastLeft = W.FirstCluster; 8339 CaseClusterIt FirstRight = W.LastCluster; 8340 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8341 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8342 8343 // Move LastLeft and FirstRight towards each other from opposite directions to 8344 // find a partitioning of the clusters which balances the probability on both 8345 // sides. If LeftProb and RightProb are equal, alternate which side is 8346 // taken to ensure 0-probability nodes are distributed evenly. 8347 unsigned I = 0; 8348 while (LastLeft + 1 < FirstRight) { 8349 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8350 LeftProb += (++LastLeft)->Prob; 8351 else 8352 RightProb += (--FirstRight)->Prob; 8353 I++; 8354 } 8355 8356 for (;;) { 8357 // Our binary search tree differs from a typical BST in that ours can have up 8358 // to three values in each leaf. The pivot selection above doesn't take that 8359 // into account, which means the tree might require more nodes and be less 8360 // efficient. We compensate for this here. 8361 8362 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8363 unsigned NumRight = W.LastCluster - FirstRight + 1; 8364 8365 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8366 // If one side has less than 3 clusters, and the other has more than 3, 8367 // consider taking a cluster from the other side. 8368 8369 if (NumLeft < NumRight) { 8370 // Consider moving the first cluster on the right to the left side. 8371 CaseCluster &CC = *FirstRight; 8372 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8373 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8374 if (LeftSideRank <= RightSideRank) { 8375 // Moving the cluster to the left does not demote it. 8376 ++LastLeft; 8377 ++FirstRight; 8378 continue; 8379 } 8380 } else { 8381 assert(NumRight < NumLeft); 8382 // Consider moving the last element on the left to the right side. 8383 CaseCluster &CC = *LastLeft; 8384 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8385 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8386 if (RightSideRank <= LeftSideRank) { 8387 // Moving the cluster to the right does not demot it. 8388 --LastLeft; 8389 --FirstRight; 8390 continue; 8391 } 8392 } 8393 } 8394 break; 8395 } 8396 8397 assert(LastLeft + 1 == FirstRight); 8398 assert(LastLeft >= W.FirstCluster); 8399 assert(FirstRight <= W.LastCluster); 8400 8401 // Use the first element on the right as pivot since we will make less-than 8402 // comparisons against it. 8403 CaseClusterIt PivotCluster = FirstRight; 8404 assert(PivotCluster > W.FirstCluster); 8405 assert(PivotCluster <= W.LastCluster); 8406 8407 CaseClusterIt FirstLeft = W.FirstCluster; 8408 CaseClusterIt LastRight = W.LastCluster; 8409 8410 const ConstantInt *Pivot = PivotCluster->Low; 8411 8412 // New blocks will be inserted immediately after the current one. 8413 MachineFunction::iterator BBI(W.MBB); 8414 ++BBI; 8415 8416 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8417 // we can branch to its destination directly if it's squeezed exactly in 8418 // between the known lower bound and Pivot - 1. 8419 MachineBasicBlock *LeftMBB; 8420 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8421 FirstLeft->Low == W.GE && 8422 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8423 LeftMBB = FirstLeft->MBB; 8424 } else { 8425 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8426 FuncInfo.MF->insert(BBI, LeftMBB); 8427 WorkList.push_back( 8428 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8429 // Put Cond in a virtual register to make it available from the new blocks. 8430 ExportFromCurrentBlock(Cond); 8431 } 8432 8433 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8434 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8435 // directly if RHS.High equals the current upper bound. 8436 MachineBasicBlock *RightMBB; 8437 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8438 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8439 RightMBB = FirstRight->MBB; 8440 } else { 8441 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8442 FuncInfo.MF->insert(BBI, RightMBB); 8443 WorkList.push_back( 8444 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8445 // Put Cond in a virtual register to make it available from the new blocks. 8446 ExportFromCurrentBlock(Cond); 8447 } 8448 8449 // Create the CaseBlock record that will be used to lower the branch. 8450 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8451 LeftProb, RightProb); 8452 8453 if (W.MBB == SwitchMBB) 8454 visitSwitchCase(CB, SwitchMBB); 8455 else 8456 SwitchCases.push_back(CB); 8457 } 8458 8459 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8460 // Extract cases from the switch. 8461 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8462 CaseClusterVector Clusters; 8463 Clusters.reserve(SI.getNumCases()); 8464 for (auto I : SI.cases()) { 8465 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8466 const ConstantInt *CaseVal = I.getCaseValue(); 8467 BranchProbability Prob = 8468 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8469 : BranchProbability(1, SI.getNumCases() + 1); 8470 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8471 } 8472 8473 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8474 8475 // Cluster adjacent cases with the same destination. We do this at all 8476 // optimization levels because it's cheap to do and will make codegen faster 8477 // if there are many clusters. 8478 sortAndRangeify(Clusters); 8479 8480 if (TM.getOptLevel() != CodeGenOpt::None) { 8481 // Replace an unreachable default with the most popular destination. 8482 // FIXME: Exploit unreachable default more aggressively. 8483 bool UnreachableDefault = 8484 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8485 if (UnreachableDefault && !Clusters.empty()) { 8486 DenseMap<const BasicBlock *, unsigned> Popularity; 8487 unsigned MaxPop = 0; 8488 const BasicBlock *MaxBB = nullptr; 8489 for (auto I : SI.cases()) { 8490 const BasicBlock *BB = I.getCaseSuccessor(); 8491 if (++Popularity[BB] > MaxPop) { 8492 MaxPop = Popularity[BB]; 8493 MaxBB = BB; 8494 } 8495 } 8496 // Set new default. 8497 assert(MaxPop > 0 && MaxBB); 8498 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8499 8500 // Remove cases that were pointing to the destination that is now the 8501 // default. 8502 CaseClusterVector New; 8503 New.reserve(Clusters.size()); 8504 for (CaseCluster &CC : Clusters) { 8505 if (CC.MBB != DefaultMBB) 8506 New.push_back(CC); 8507 } 8508 Clusters = std::move(New); 8509 } 8510 } 8511 8512 // If there is only the default destination, jump there directly. 8513 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8514 if (Clusters.empty()) { 8515 SwitchMBB->addSuccessor(DefaultMBB); 8516 if (DefaultMBB != NextBlock(SwitchMBB)) { 8517 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8518 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8519 } 8520 return; 8521 } 8522 8523 findJumpTables(Clusters, &SI, DefaultMBB); 8524 findBitTestClusters(Clusters, &SI); 8525 8526 DEBUG({ 8527 dbgs() << "Case clusters: "; 8528 for (const CaseCluster &C : Clusters) { 8529 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8530 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8531 8532 C.Low->getValue().print(dbgs(), true); 8533 if (C.Low != C.High) { 8534 dbgs() << '-'; 8535 C.High->getValue().print(dbgs(), true); 8536 } 8537 dbgs() << ' '; 8538 } 8539 dbgs() << '\n'; 8540 }); 8541 8542 assert(!Clusters.empty()); 8543 SwitchWorkList WorkList; 8544 CaseClusterIt First = Clusters.begin(); 8545 CaseClusterIt Last = Clusters.end() - 1; 8546 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8547 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8548 8549 while (!WorkList.empty()) { 8550 SwitchWorkListItem W = WorkList.back(); 8551 WorkList.pop_back(); 8552 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8553 8554 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8555 // For optimized builds, lower large range as a balanced binary tree. 8556 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8557 continue; 8558 } 8559 8560 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8561 } 8562 } 8563