1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/PseudoSourceValue.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Analysis/DebugInfo.h" 47 #include "llvm/Target/TargetRegisterInfo.h" 48 #include "llvm/Target/TargetData.h" 49 #include "llvm/Target/TargetFrameInfo.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetIntrinsicInfo.h" 52 #include "llvm/Target/TargetLowering.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 using namespace llvm; 62 63 /// LimitFloatPrecision - Generate low-precision inline sequences for 64 /// some float libcalls (6, 8 or 12 bits). 65 static unsigned LimitFloatPrecision; 66 67 static cl::opt<unsigned, true> 68 LimitFPPrecision("limit-float-precision", 69 cl::desc("Generate low-precision inline sequences " 70 "for some float libcalls"), 71 cl::location(LimitFloatPrecision), 72 cl::init(0)); 73 74 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 75 const SDValue *Parts, unsigned NumParts, 76 EVT PartVT, EVT ValueVT); 77 78 /// getCopyFromParts - Create a value that contains the specified legal parts 79 /// combined into the value they represent. If the parts combine to a type 80 /// larger then ValueVT then AssertOp can be used to specify whether the extra 81 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 82 /// (ISD::AssertSext). 83 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 84 const SDValue *Parts, 85 unsigned NumParts, EVT PartVT, EVT ValueVT, 86 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 87 if (ValueVT.isVector()) 88 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 89 90 assert(NumParts > 0 && "No parts to assemble!"); 91 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 92 SDValue Val = Parts[0]; 93 94 if (NumParts > 1) { 95 // Assemble the value from multiple parts. 96 if (ValueVT.isInteger()) { 97 unsigned PartBits = PartVT.getSizeInBits(); 98 unsigned ValueBits = ValueVT.getSizeInBits(); 99 100 // Assemble the power of 2 part. 101 unsigned RoundParts = NumParts & (NumParts - 1) ? 102 1 << Log2_32(NumParts) : NumParts; 103 unsigned RoundBits = PartBits * RoundParts; 104 EVT RoundVT = RoundBits == ValueBits ? 105 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 106 SDValue Lo, Hi; 107 108 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 109 110 if (RoundParts > 2) { 111 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 112 PartVT, HalfVT); 113 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 114 RoundParts / 2, PartVT, HalfVT); 115 } else { 116 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]); 117 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]); 118 } 119 120 if (TLI.isBigEndian()) 121 std::swap(Lo, Hi); 122 123 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 124 125 if (RoundParts < NumParts) { 126 // Assemble the trailing non-power-of-2 part. 127 unsigned OddParts = NumParts - RoundParts; 128 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 129 Hi = getCopyFromParts(DAG, DL, 130 Parts + RoundParts, OddParts, PartVT, OddVT); 131 132 // Combine the round and odd parts. 133 Lo = Val; 134 if (TLI.isBigEndian()) 135 std::swap(Lo, Hi); 136 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 137 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 138 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 139 DAG.getConstant(Lo.getValueType().getSizeInBits(), 140 TLI.getPointerTy())); 141 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 142 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 143 } 144 } else if (PartVT.isFloatingPoint()) { 145 // FP split into multiple FP parts (for ppcf128) 146 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 147 "Unexpected split"); 148 SDValue Lo, Hi; 149 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]); 150 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]); 151 if (TLI.isBigEndian()) 152 std::swap(Lo, Hi); 153 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 154 } else { 155 // FP split into integer parts (soft fp) 156 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 157 !PartVT.isVector() && "Unexpected split"); 158 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 159 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 160 } 161 } 162 163 // There is now one part, held in Val. Correct it to match ValueVT. 164 PartVT = Val.getValueType(); 165 166 if (PartVT == ValueVT) 167 return Val; 168 169 if (PartVT.isInteger() && ValueVT.isInteger()) { 170 if (ValueVT.bitsLT(PartVT)) { 171 // For a truncate, see if we have any information to 172 // indicate whether the truncated bits will always be 173 // zero or sign-extension. 174 if (AssertOp != ISD::DELETED_NODE) 175 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 176 DAG.getValueType(ValueVT)); 177 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 178 } 179 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 180 } 181 182 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 183 // FP_ROUND's are always exact here. 184 if (ValueVT.bitsLT(Val.getValueType())) 185 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 186 DAG.getIntPtrConstant(1)); 187 188 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 189 } 190 191 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 192 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 193 194 llvm_unreachable("Unknown mismatch!"); 195 return SDValue(); 196 } 197 198 /// getCopyFromParts - Create a value that contains the specified legal parts 199 /// combined into the value they represent. If the parts combine to a type 200 /// larger then ValueVT then AssertOp can be used to specify whether the extra 201 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 202 /// (ISD::AssertSext). 203 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 204 const SDValue *Parts, unsigned NumParts, 205 EVT PartVT, EVT ValueVT) { 206 assert(ValueVT.isVector() && "Not a vector value"); 207 assert(NumParts > 0 && "No parts to assemble!"); 208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 209 SDValue Val = Parts[0]; 210 211 // Handle a multi-element vector. 212 if (NumParts > 1) { 213 EVT IntermediateVT, RegisterVT; 214 unsigned NumIntermediates; 215 unsigned NumRegs = 216 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 217 NumIntermediates, RegisterVT); 218 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 219 NumParts = NumRegs; // Silence a compiler warning. 220 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 221 assert(RegisterVT == Parts[0].getValueType() && 222 "Part type doesn't match part!"); 223 224 // Assemble the parts into intermediate operands. 225 SmallVector<SDValue, 8> Ops(NumIntermediates); 226 if (NumIntermediates == NumParts) { 227 // If the register was not expanded, truncate or copy the value, 228 // as appropriate. 229 for (unsigned i = 0; i != NumParts; ++i) 230 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 231 PartVT, IntermediateVT); 232 } else if (NumParts > 0) { 233 // If the intermediate type was expanded, build the intermediate 234 // operands from the parts. 235 assert(NumParts % NumIntermediates == 0 && 236 "Must expand into a divisible number of parts!"); 237 unsigned Factor = NumParts / NumIntermediates; 238 for (unsigned i = 0; i != NumIntermediates; ++i) 239 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 240 PartVT, IntermediateVT); 241 } 242 243 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 244 // intermediate operands. 245 Val = DAG.getNode(IntermediateVT.isVector() ? 246 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 247 ValueVT, &Ops[0], NumIntermediates); 248 } 249 250 // There is now one part, held in Val. Correct it to match ValueVT. 251 PartVT = Val.getValueType(); 252 253 if (PartVT == ValueVT) 254 return Val; 255 256 if (PartVT.isVector()) { 257 // If the element type of the source/dest vectors are the same, but the 258 // parts vector has more elements than the value vector, then we have a 259 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 260 // elements we want. 261 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 262 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 263 "Cannot narrow, it would be a lossy transformation"); 264 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 265 DAG.getIntPtrConstant(0)); 266 } 267 268 // Vector/Vector bitcast. 269 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 270 } 271 272 assert(ValueVT.getVectorElementType() == PartVT && 273 ValueVT.getVectorNumElements() == 1 && 274 "Only trivial scalar-to-vector conversions should get here!"); 275 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 276 } 277 278 279 280 281 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 282 SDValue Val, SDValue *Parts, unsigned NumParts, 283 EVT PartVT); 284 285 /// getCopyToParts - Create a series of nodes that contain the specified value 286 /// split into legal parts. If the parts contain more bits than Val, then, for 287 /// integers, ExtendKind can be used to specify how to generate the extra bits. 288 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 289 SDValue Val, SDValue *Parts, unsigned NumParts, 290 EVT PartVT, 291 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 292 EVT ValueVT = Val.getValueType(); 293 294 // Handle the vector case separately. 295 if (ValueVT.isVector()) 296 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 297 298 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 299 unsigned PartBits = PartVT.getSizeInBits(); 300 unsigned OrigNumParts = NumParts; 301 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 302 303 if (NumParts == 0) 304 return; 305 306 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 307 if (PartVT == ValueVT) { 308 assert(NumParts == 1 && "No-op copy with multiple parts!"); 309 Parts[0] = Val; 310 return; 311 } 312 313 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 314 // If the parts cover more bits than the value has, promote the value. 315 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 assert(NumParts == 1 && "Do not know what to promote to!"); 317 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 318 } else { 319 assert(PartVT.isInteger() && ValueVT.isInteger() && 320 "Unknown mismatch!"); 321 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 322 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 323 } 324 } else if (PartBits == ValueVT.getSizeInBits()) { 325 // Different types of the same size. 326 assert(NumParts == 1 && PartVT != ValueVT); 327 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 328 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 329 // If the parts cover less bits than value has, truncate the value. 330 assert(PartVT.isInteger() && ValueVT.isInteger() && 331 "Unknown mismatch!"); 332 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 333 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 334 } 335 336 // The value may have changed - recompute ValueVT. 337 ValueVT = Val.getValueType(); 338 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 339 "Failed to tile the value with PartVT!"); 340 341 if (NumParts == 1) { 342 assert(PartVT == ValueVT && "Type conversion failed!"); 343 Parts[0] = Val; 344 return; 345 } 346 347 // Expand the value into multiple parts. 348 if (NumParts & (NumParts - 1)) { 349 // The number of parts is not a power of 2. Split off and copy the tail. 350 assert(PartVT.isInteger() && ValueVT.isInteger() && 351 "Do not know what to expand to!"); 352 unsigned RoundParts = 1 << Log2_32(NumParts); 353 unsigned RoundBits = RoundParts * PartBits; 354 unsigned OddParts = NumParts - RoundParts; 355 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 356 DAG.getIntPtrConstant(RoundBits)); 357 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 358 359 if (TLI.isBigEndian()) 360 // The odd parts were reversed by getCopyToParts - unreverse them. 361 std::reverse(Parts + RoundParts, Parts + NumParts); 362 363 NumParts = RoundParts; 364 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 365 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 366 } 367 368 // The number of parts is a power of 2. Repeatedly bisect the value using 369 // EXTRACT_ELEMENT. 370 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL, 371 EVT::getIntegerVT(*DAG.getContext(), 372 ValueVT.getSizeInBits()), 373 Val); 374 375 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 376 for (unsigned i = 0; i < NumParts; i += StepSize) { 377 unsigned ThisBits = StepSize * PartBits / 2; 378 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 379 SDValue &Part0 = Parts[i]; 380 SDValue &Part1 = Parts[i+StepSize/2]; 381 382 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 383 ThisVT, Part0, DAG.getIntPtrConstant(1)); 384 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 385 ThisVT, Part0, DAG.getIntPtrConstant(0)); 386 387 if (ThisBits == PartBits && ThisVT != PartVT) { 388 Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0); 389 Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1); 390 } 391 } 392 } 393 394 if (TLI.isBigEndian()) 395 std::reverse(Parts, Parts + OrigNumParts); 396 } 397 398 399 /// getCopyToPartsVector - Create a series of nodes that contain the specified 400 /// value split into legal parts. 401 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 402 SDValue Val, SDValue *Parts, unsigned NumParts, 403 EVT PartVT) { 404 EVT ValueVT = Val.getValueType(); 405 assert(ValueVT.isVector() && "Not a vector"); 406 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 407 408 if (NumParts == 1) { 409 if (PartVT == ValueVT) { 410 // Nothing to do. 411 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 412 // Bitconvert vector->vector case. 413 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 414 } else if (PartVT.isVector() && 415 PartVT.getVectorElementType() == ValueVT.getVectorElementType()&& 416 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 417 EVT ElementVT = PartVT.getVectorElementType(); 418 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 419 // undef elements. 420 SmallVector<SDValue, 16> Ops; 421 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 422 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 423 ElementVT, Val, DAG.getIntPtrConstant(i))); 424 425 for (unsigned i = ValueVT.getVectorNumElements(), 426 e = PartVT.getVectorNumElements(); i != e; ++i) 427 Ops.push_back(DAG.getUNDEF(ElementVT)); 428 429 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 430 431 // FIXME: Use CONCAT for 2x -> 4x. 432 433 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 434 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 435 } else { 436 // Vector -> scalar conversion. 437 assert(ValueVT.getVectorElementType() == PartVT && 438 ValueVT.getVectorNumElements() == 1 && 439 "Only trivial vector-to-scalar conversions should get here!"); 440 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 441 PartVT, Val, DAG.getIntPtrConstant(0)); 442 } 443 444 Parts[0] = Val; 445 return; 446 } 447 448 // Handle a multi-element vector. 449 EVT IntermediateVT, RegisterVT; 450 unsigned NumIntermediates; 451 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 452 IntermediateVT, 453 NumIntermediates, RegisterVT); 454 unsigned NumElements = ValueVT.getVectorNumElements(); 455 456 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 457 NumParts = NumRegs; // Silence a compiler warning. 458 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 459 460 // Split the vector into intermediate operands. 461 SmallVector<SDValue, 8> Ops(NumIntermediates); 462 for (unsigned i = 0; i != NumIntermediates; ++i) { 463 if (IntermediateVT.isVector()) 464 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 465 IntermediateVT, Val, 466 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 467 else 468 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 469 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 470 } 471 472 // Split the intermediate operands into legal parts. 473 if (NumParts == NumIntermediates) { 474 // If the register was not expanded, promote or copy the value, 475 // as appropriate. 476 for (unsigned i = 0; i != NumParts; ++i) 477 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 478 } else if (NumParts > 0) { 479 // If the intermediate type was expanded, split each the value into 480 // legal parts. 481 assert(NumParts % NumIntermediates == 0 && 482 "Must expand into a divisible number of parts!"); 483 unsigned Factor = NumParts / NumIntermediates; 484 for (unsigned i = 0; i != NumIntermediates; ++i) 485 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 486 } 487 } 488 489 490 491 492 namespace { 493 /// RegsForValue - This struct represents the registers (physical or virtual) 494 /// that a particular set of values is assigned, and the type information 495 /// about the value. The most common situation is to represent one value at a 496 /// time, but struct or array values are handled element-wise as multiple 497 /// values. The splitting of aggregates is performed recursively, so that we 498 /// never have aggregate-typed registers. The values at this point do not 499 /// necessarily have legal types, so each value may require one or more 500 /// registers of some legal type. 501 /// 502 struct RegsForValue { 503 /// ValueVTs - The value types of the values, which may not be legal, and 504 /// may need be promoted or synthesized from one or more registers. 505 /// 506 SmallVector<EVT, 4> ValueVTs; 507 508 /// RegVTs - The value types of the registers. This is the same size as 509 /// ValueVTs and it records, for each value, what the type of the assigned 510 /// register or registers are. (Individual values are never synthesized 511 /// from more than one type of register.) 512 /// 513 /// With virtual registers, the contents of RegVTs is redundant with TLI's 514 /// getRegisterType member function, however when with physical registers 515 /// it is necessary to have a separate record of the types. 516 /// 517 SmallVector<EVT, 4> RegVTs; 518 519 /// Regs - This list holds the registers assigned to the values. 520 /// Each legal or promoted value requires one register, and each 521 /// expanded value requires multiple registers. 522 /// 523 SmallVector<unsigned, 4> Regs; 524 525 RegsForValue() {} 526 527 RegsForValue(const SmallVector<unsigned, 4> ®s, 528 EVT regvt, EVT valuevt) 529 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 530 531 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 532 unsigned Reg, const Type *Ty) { 533 ComputeValueVTs(tli, Ty, ValueVTs); 534 535 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 536 EVT ValueVT = ValueVTs[Value]; 537 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 538 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 539 for (unsigned i = 0; i != NumRegs; ++i) 540 Regs.push_back(Reg + i); 541 RegVTs.push_back(RegisterVT); 542 Reg += NumRegs; 543 } 544 } 545 546 /// areValueTypesLegal - Return true if types of all the values are legal. 547 bool areValueTypesLegal(const TargetLowering &TLI) { 548 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 549 EVT RegisterVT = RegVTs[Value]; 550 if (!TLI.isTypeLegal(RegisterVT)) 551 return false; 552 } 553 return true; 554 } 555 556 /// append - Add the specified values to this one. 557 void append(const RegsForValue &RHS) { 558 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 559 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 560 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 561 } 562 563 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 564 /// this value and returns the result as a ValueVTs value. This uses 565 /// Chain/Flag as the input and updates them for the output Chain/Flag. 566 /// If the Flag pointer is NULL, no flag is used. 567 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 568 DebugLoc dl, 569 SDValue &Chain, SDValue *Flag) const; 570 571 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 572 /// specified value into the registers specified by this object. This uses 573 /// Chain/Flag as the input and updates them for the output Chain/Flag. 574 /// If the Flag pointer is NULL, no flag is used. 575 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 576 SDValue &Chain, SDValue *Flag) const; 577 578 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 579 /// operand list. This adds the code marker, matching input operand index 580 /// (if applicable), and includes the number of values added into it. 581 void AddInlineAsmOperands(unsigned Kind, 582 bool HasMatching, unsigned MatchingIdx, 583 SelectionDAG &DAG, 584 std::vector<SDValue> &Ops) const; 585 }; 586 } 587 588 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 589 /// this value and returns the result as a ValueVT value. This uses 590 /// Chain/Flag as the input and updates them for the output Chain/Flag. 591 /// If the Flag pointer is NULL, no flag is used. 592 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 593 FunctionLoweringInfo &FuncInfo, 594 DebugLoc dl, 595 SDValue &Chain, SDValue *Flag) const { 596 // A Value with type {} or [0 x %t] needs no registers. 597 if (ValueVTs.empty()) 598 return SDValue(); 599 600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 601 602 // Assemble the legal parts into the final values. 603 SmallVector<SDValue, 4> Values(ValueVTs.size()); 604 SmallVector<SDValue, 8> Parts; 605 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 606 // Copy the legal parts from the registers. 607 EVT ValueVT = ValueVTs[Value]; 608 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 609 EVT RegisterVT = RegVTs[Value]; 610 611 Parts.resize(NumRegs); 612 for (unsigned i = 0; i != NumRegs; ++i) { 613 SDValue P; 614 if (Flag == 0) { 615 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 616 } else { 617 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 618 *Flag = P.getValue(2); 619 } 620 621 Chain = P.getValue(1); 622 623 // If the source register was virtual and if we know something about it, 624 // add an assert node. 625 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 626 RegisterVT.isInteger() && !RegisterVT.isVector()) { 627 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 628 if (FuncInfo.LiveOutRegInfo.size() > SlotNo) { 629 const FunctionLoweringInfo::LiveOutInfo &LOI = 630 FuncInfo.LiveOutRegInfo[SlotNo]; 631 632 unsigned RegSize = RegisterVT.getSizeInBits(); 633 unsigned NumSignBits = LOI.NumSignBits; 634 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 635 636 // FIXME: We capture more information than the dag can represent. For 637 // now, just use the tightest assertzext/assertsext possible. 638 bool isSExt = true; 639 EVT FromVT(MVT::Other); 640 if (NumSignBits == RegSize) 641 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 642 else if (NumZeroBits >= RegSize-1) 643 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 644 else if (NumSignBits > RegSize-8) 645 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 646 else if (NumZeroBits >= RegSize-8) 647 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 648 else if (NumSignBits > RegSize-16) 649 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 650 else if (NumZeroBits >= RegSize-16) 651 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 652 else if (NumSignBits > RegSize-32) 653 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 654 else if (NumZeroBits >= RegSize-32) 655 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 656 657 if (FromVT != MVT::Other) 658 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 659 RegisterVT, P, DAG.getValueType(FromVT)); 660 } 661 } 662 663 Parts[i] = P; 664 } 665 666 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 667 NumRegs, RegisterVT, ValueVT); 668 Part += NumRegs; 669 Parts.clear(); 670 } 671 672 return DAG.getNode(ISD::MERGE_VALUES, dl, 673 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 674 &Values[0], ValueVTs.size()); 675 } 676 677 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 678 /// specified value into the registers specified by this object. This uses 679 /// Chain/Flag as the input and updates them for the output Chain/Flag. 680 /// If the Flag pointer is NULL, no flag is used. 681 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 682 SDValue &Chain, SDValue *Flag) const { 683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 684 685 // Get the list of the values's legal parts. 686 unsigned NumRegs = Regs.size(); 687 SmallVector<SDValue, 8> Parts(NumRegs); 688 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 689 EVT ValueVT = ValueVTs[Value]; 690 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 691 EVT RegisterVT = RegVTs[Value]; 692 693 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 694 &Parts[Part], NumParts, RegisterVT); 695 Part += NumParts; 696 } 697 698 // Copy the parts into the registers. 699 SmallVector<SDValue, 8> Chains(NumRegs); 700 for (unsigned i = 0; i != NumRegs; ++i) { 701 SDValue Part; 702 if (Flag == 0) { 703 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 704 } else { 705 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 706 *Flag = Part.getValue(1); 707 } 708 709 Chains[i] = Part.getValue(0); 710 } 711 712 if (NumRegs == 1 || Flag) 713 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 714 // flagged to it. That is the CopyToReg nodes and the user are considered 715 // a single scheduling unit. If we create a TokenFactor and return it as 716 // chain, then the TokenFactor is both a predecessor (operand) of the 717 // user as well as a successor (the TF operands are flagged to the user). 718 // c1, f1 = CopyToReg 719 // c2, f2 = CopyToReg 720 // c3 = TokenFactor c1, c2 721 // ... 722 // = op c3, ..., f2 723 Chain = Chains[NumRegs-1]; 724 else 725 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 726 } 727 728 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 729 /// operand list. This adds the code marker and includes the number of 730 /// values added into it. 731 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 732 unsigned MatchingIdx, 733 SelectionDAG &DAG, 734 std::vector<SDValue> &Ops) const { 735 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 736 737 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 738 if (HasMatching) 739 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 740 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 741 Ops.push_back(Res); 742 743 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 744 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 745 EVT RegisterVT = RegVTs[Value]; 746 for (unsigned i = 0; i != NumRegs; ++i) { 747 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 748 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 749 } 750 } 751 } 752 753 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 754 AA = &aa; 755 GFI = gfi; 756 TD = DAG.getTarget().getTargetData(); 757 } 758 759 /// clear - Clear out the current SelectionDAG and the associated 760 /// state and prepare this SelectionDAGBuilder object to be used 761 /// for a new block. This doesn't clear out information about 762 /// additional blocks that are needed to complete switch lowering 763 /// or PHI node updating; that information is cleared out as it is 764 /// consumed. 765 void SelectionDAGBuilder::clear() { 766 NodeMap.clear(); 767 UnusedArgNodeMap.clear(); 768 PendingLoads.clear(); 769 PendingExports.clear(); 770 DanglingDebugInfoMap.clear(); 771 CurDebugLoc = DebugLoc(); 772 HasTailCall = false; 773 } 774 775 /// getRoot - Return the current virtual root of the Selection DAG, 776 /// flushing any PendingLoad items. This must be done before emitting 777 /// a store or any other node that may need to be ordered after any 778 /// prior load instructions. 779 /// 780 SDValue SelectionDAGBuilder::getRoot() { 781 if (PendingLoads.empty()) 782 return DAG.getRoot(); 783 784 if (PendingLoads.size() == 1) { 785 SDValue Root = PendingLoads[0]; 786 DAG.setRoot(Root); 787 PendingLoads.clear(); 788 return Root; 789 } 790 791 // Otherwise, we have to make a token factor node. 792 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 793 &PendingLoads[0], PendingLoads.size()); 794 PendingLoads.clear(); 795 DAG.setRoot(Root); 796 return Root; 797 } 798 799 /// getControlRoot - Similar to getRoot, but instead of flushing all the 800 /// PendingLoad items, flush all the PendingExports items. It is necessary 801 /// to do this before emitting a terminator instruction. 802 /// 803 SDValue SelectionDAGBuilder::getControlRoot() { 804 SDValue Root = DAG.getRoot(); 805 806 if (PendingExports.empty()) 807 return Root; 808 809 // Turn all of the CopyToReg chains into one factored node. 810 if (Root.getOpcode() != ISD::EntryToken) { 811 unsigned i = 0, e = PendingExports.size(); 812 for (; i != e; ++i) { 813 assert(PendingExports[i].getNode()->getNumOperands() > 1); 814 if (PendingExports[i].getNode()->getOperand(0) == Root) 815 break; // Don't add the root if we already indirectly depend on it. 816 } 817 818 if (i == e) 819 PendingExports.push_back(Root); 820 } 821 822 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 823 &PendingExports[0], 824 PendingExports.size()); 825 PendingExports.clear(); 826 DAG.setRoot(Root); 827 return Root; 828 } 829 830 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 831 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 832 DAG.AssignOrdering(Node, SDNodeOrder); 833 834 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 835 AssignOrderingToNode(Node->getOperand(I).getNode()); 836 } 837 838 void SelectionDAGBuilder::visit(const Instruction &I) { 839 // Set up outgoing PHI node register values before emitting the terminator. 840 if (isa<TerminatorInst>(&I)) 841 HandlePHINodesInSuccessorBlocks(I.getParent()); 842 843 CurDebugLoc = I.getDebugLoc(); 844 845 visit(I.getOpcode(), I); 846 847 if (!isa<TerminatorInst>(&I) && !HasTailCall) 848 CopyToExportRegsIfNeeded(&I); 849 850 CurDebugLoc = DebugLoc(); 851 } 852 853 void SelectionDAGBuilder::visitPHI(const PHINode &) { 854 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 855 } 856 857 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 858 // Note: this doesn't use InstVisitor, because it has to work with 859 // ConstantExpr's in addition to instructions. 860 switch (Opcode) { 861 default: llvm_unreachable("Unknown instruction type encountered!"); 862 // Build the switch statement using the Instruction.def file. 863 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 864 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 865 #include "llvm/Instruction.def" 866 } 867 868 // Assign the ordering to the freshly created DAG nodes. 869 if (NodeMap.count(&I)) { 870 ++SDNodeOrder; 871 AssignOrderingToNode(getValue(&I).getNode()); 872 } 873 } 874 875 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 876 // generate the debug data structures now that we've seen its definition. 877 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 878 SDValue Val) { 879 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 880 if (DDI.getDI()) { 881 const DbgValueInst *DI = DDI.getDI(); 882 DebugLoc dl = DDI.getdl(); 883 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 884 MDNode *Variable = DI->getVariable(); 885 uint64_t Offset = DI->getOffset(); 886 SDDbgValue *SDV; 887 if (Val.getNode()) { 888 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 889 SDV = DAG.getDbgValue(Variable, Val.getNode(), 890 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 891 DAG.AddDbgValue(SDV, Val.getNode(), false); 892 } 893 } else { 894 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 895 Offset, dl, SDNodeOrder); 896 DAG.AddDbgValue(SDV, 0, false); 897 } 898 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 899 } 900 } 901 902 // getValue - Return an SDValue for the given Value. 903 SDValue SelectionDAGBuilder::getValue(const Value *V) { 904 // If we already have an SDValue for this value, use it. It's important 905 // to do this first, so that we don't create a CopyFromReg if we already 906 // have a regular SDValue. 907 SDValue &N = NodeMap[V]; 908 if (N.getNode()) return N; 909 910 // If there's a virtual register allocated and initialized for this 911 // value, use it. 912 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 913 if (It != FuncInfo.ValueMap.end()) { 914 unsigned InReg = It->second; 915 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 916 SDValue Chain = DAG.getEntryNode(); 917 return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 918 } 919 920 // Otherwise create a new SDValue and remember it. 921 SDValue Val = getValueImpl(V); 922 NodeMap[V] = Val; 923 resolveDanglingDebugInfo(V, Val); 924 return Val; 925 } 926 927 /// getNonRegisterValue - Return an SDValue for the given Value, but 928 /// don't look in FuncInfo.ValueMap for a virtual register. 929 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 930 // If we already have an SDValue for this value, use it. 931 SDValue &N = NodeMap[V]; 932 if (N.getNode()) return N; 933 934 // Otherwise create a new SDValue and remember it. 935 SDValue Val = getValueImpl(V); 936 NodeMap[V] = Val; 937 resolveDanglingDebugInfo(V, Val); 938 return Val; 939 } 940 941 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 942 /// Create an SDValue for the given value. 943 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 944 if (const Constant *C = dyn_cast<Constant>(V)) { 945 EVT VT = TLI.getValueType(V->getType(), true); 946 947 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 948 return DAG.getConstant(*CI, VT); 949 950 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 951 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 952 953 if (isa<ConstantPointerNull>(C)) 954 return DAG.getConstant(0, TLI.getPointerTy()); 955 956 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 957 return DAG.getConstantFP(*CFP, VT); 958 959 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 960 return DAG.getUNDEF(VT); 961 962 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 963 visit(CE->getOpcode(), *CE); 964 SDValue N1 = NodeMap[V]; 965 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 966 return N1; 967 } 968 969 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 970 SmallVector<SDValue, 4> Constants; 971 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 972 OI != OE; ++OI) { 973 SDNode *Val = getValue(*OI).getNode(); 974 // If the operand is an empty aggregate, there are no values. 975 if (!Val) continue; 976 // Add each leaf value from the operand to the Constants list 977 // to form a flattened list of all the values. 978 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 979 Constants.push_back(SDValue(Val, i)); 980 } 981 982 return DAG.getMergeValues(&Constants[0], Constants.size(), 983 getCurDebugLoc()); 984 } 985 986 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 987 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 988 "Unknown struct or array constant!"); 989 990 SmallVector<EVT, 4> ValueVTs; 991 ComputeValueVTs(TLI, C->getType(), ValueVTs); 992 unsigned NumElts = ValueVTs.size(); 993 if (NumElts == 0) 994 return SDValue(); // empty struct 995 SmallVector<SDValue, 4> Constants(NumElts); 996 for (unsigned i = 0; i != NumElts; ++i) { 997 EVT EltVT = ValueVTs[i]; 998 if (isa<UndefValue>(C)) 999 Constants[i] = DAG.getUNDEF(EltVT); 1000 else if (EltVT.isFloatingPoint()) 1001 Constants[i] = DAG.getConstantFP(0, EltVT); 1002 else 1003 Constants[i] = DAG.getConstant(0, EltVT); 1004 } 1005 1006 return DAG.getMergeValues(&Constants[0], NumElts, 1007 getCurDebugLoc()); 1008 } 1009 1010 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1011 return DAG.getBlockAddress(BA, VT); 1012 1013 const VectorType *VecTy = cast<VectorType>(V->getType()); 1014 unsigned NumElements = VecTy->getNumElements(); 1015 1016 // Now that we know the number and type of the elements, get that number of 1017 // elements into the Ops array based on what kind of constant it is. 1018 SmallVector<SDValue, 16> Ops; 1019 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1020 for (unsigned i = 0; i != NumElements; ++i) 1021 Ops.push_back(getValue(CP->getOperand(i))); 1022 } else { 1023 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1024 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1025 1026 SDValue Op; 1027 if (EltVT.isFloatingPoint()) 1028 Op = DAG.getConstantFP(0, EltVT); 1029 else 1030 Op = DAG.getConstant(0, EltVT); 1031 Ops.assign(NumElements, Op); 1032 } 1033 1034 // Create a BUILD_VECTOR node. 1035 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1036 VT, &Ops[0], Ops.size()); 1037 } 1038 1039 // If this is a static alloca, generate it as the frameindex instead of 1040 // computation. 1041 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1042 DenseMap<const AllocaInst*, int>::iterator SI = 1043 FuncInfo.StaticAllocaMap.find(AI); 1044 if (SI != FuncInfo.StaticAllocaMap.end()) 1045 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1046 } 1047 1048 // If this is an instruction which fast-isel has deferred, select it now. 1049 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1050 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1051 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1052 SDValue Chain = DAG.getEntryNode(); 1053 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1054 } 1055 1056 llvm_unreachable("Can't get register for value!"); 1057 return SDValue(); 1058 } 1059 1060 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1061 SDValue Chain = getControlRoot(); 1062 SmallVector<ISD::OutputArg, 8> Outs; 1063 SmallVector<SDValue, 8> OutVals; 1064 1065 if (!FuncInfo.CanLowerReturn) { 1066 unsigned DemoteReg = FuncInfo.DemoteRegister; 1067 const Function *F = I.getParent()->getParent(); 1068 1069 // Emit a store of the return value through the virtual register. 1070 // Leave Outs empty so that LowerReturn won't try to load return 1071 // registers the usual way. 1072 SmallVector<EVT, 1> PtrValueVTs; 1073 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1074 PtrValueVTs); 1075 1076 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1077 SDValue RetOp = getValue(I.getOperand(0)); 1078 1079 SmallVector<EVT, 4> ValueVTs; 1080 SmallVector<uint64_t, 4> Offsets; 1081 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1082 unsigned NumValues = ValueVTs.size(); 1083 1084 SmallVector<SDValue, 4> Chains(NumValues); 1085 for (unsigned i = 0; i != NumValues; ++i) { 1086 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1087 RetPtr.getValueType(), RetPtr, 1088 DAG.getIntPtrConstant(Offsets[i])); 1089 Chains[i] = 1090 DAG.getStore(Chain, getCurDebugLoc(), 1091 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1092 // FIXME: better loc info would be nice. 1093 Add, MachinePointerInfo(), false, false, 0); 1094 } 1095 1096 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1097 MVT::Other, &Chains[0], NumValues); 1098 } else if (I.getNumOperands() != 0) { 1099 SmallVector<EVT, 4> ValueVTs; 1100 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1101 unsigned NumValues = ValueVTs.size(); 1102 if (NumValues) { 1103 SDValue RetOp = getValue(I.getOperand(0)); 1104 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1105 EVT VT = ValueVTs[j]; 1106 1107 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1108 1109 const Function *F = I.getParent()->getParent(); 1110 if (F->paramHasAttr(0, Attribute::SExt)) 1111 ExtendKind = ISD::SIGN_EXTEND; 1112 else if (F->paramHasAttr(0, Attribute::ZExt)) 1113 ExtendKind = ISD::ZERO_EXTEND; 1114 1115 // FIXME: C calling convention requires the return type to be promoted 1116 // to at least 32-bit. But this is not necessary for non-C calling 1117 // conventions. The frontend should mark functions whose return values 1118 // require promoting with signext or zeroext attributes. 1119 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1120 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 1121 if (VT.bitsLT(MinVT)) 1122 VT = MinVT; 1123 } 1124 1125 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1126 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1127 SmallVector<SDValue, 4> Parts(NumParts); 1128 getCopyToParts(DAG, getCurDebugLoc(), 1129 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1130 &Parts[0], NumParts, PartVT, ExtendKind); 1131 1132 // 'inreg' on function refers to return value 1133 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1134 if (F->paramHasAttr(0, Attribute::InReg)) 1135 Flags.setInReg(); 1136 1137 // Propagate extension type if any 1138 if (F->paramHasAttr(0, Attribute::SExt)) 1139 Flags.setSExt(); 1140 else if (F->paramHasAttr(0, Attribute::ZExt)) 1141 Flags.setZExt(); 1142 1143 for (unsigned i = 0; i < NumParts; ++i) { 1144 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1145 /*isfixed=*/true)); 1146 OutVals.push_back(Parts[i]); 1147 } 1148 } 1149 } 1150 } 1151 1152 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1153 CallingConv::ID CallConv = 1154 DAG.getMachineFunction().getFunction()->getCallingConv(); 1155 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1156 Outs, OutVals, getCurDebugLoc(), DAG); 1157 1158 // Verify that the target's LowerReturn behaved as expected. 1159 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1160 "LowerReturn didn't return a valid chain!"); 1161 1162 // Update the DAG with the new chain value resulting from return lowering. 1163 DAG.setRoot(Chain); 1164 } 1165 1166 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1167 /// created for it, emit nodes to copy the value into the virtual 1168 /// registers. 1169 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1170 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1171 if (VMI != FuncInfo.ValueMap.end()) { 1172 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1173 CopyValueToVirtualRegister(V, VMI->second); 1174 } 1175 } 1176 1177 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1178 /// the current basic block, add it to ValueMap now so that we'll get a 1179 /// CopyTo/FromReg. 1180 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1181 // No need to export constants. 1182 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1183 1184 // Already exported? 1185 if (FuncInfo.isExportedInst(V)) return; 1186 1187 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1188 CopyValueToVirtualRegister(V, Reg); 1189 } 1190 1191 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1192 const BasicBlock *FromBB) { 1193 // The operands of the setcc have to be in this block. We don't know 1194 // how to export them from some other block. 1195 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1196 // Can export from current BB. 1197 if (VI->getParent() == FromBB) 1198 return true; 1199 1200 // Is already exported, noop. 1201 return FuncInfo.isExportedInst(V); 1202 } 1203 1204 // If this is an argument, we can export it if the BB is the entry block or 1205 // if it is already exported. 1206 if (isa<Argument>(V)) { 1207 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1208 return true; 1209 1210 // Otherwise, can only export this if it is already exported. 1211 return FuncInfo.isExportedInst(V); 1212 } 1213 1214 // Otherwise, constants can always be exported. 1215 return true; 1216 } 1217 1218 static bool InBlock(const Value *V, const BasicBlock *BB) { 1219 if (const Instruction *I = dyn_cast<Instruction>(V)) 1220 return I->getParent() == BB; 1221 return true; 1222 } 1223 1224 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1225 /// This function emits a branch and is used at the leaves of an OR or an 1226 /// AND operator tree. 1227 /// 1228 void 1229 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1230 MachineBasicBlock *TBB, 1231 MachineBasicBlock *FBB, 1232 MachineBasicBlock *CurBB, 1233 MachineBasicBlock *SwitchBB) { 1234 const BasicBlock *BB = CurBB->getBasicBlock(); 1235 1236 // If the leaf of the tree is a comparison, merge the condition into 1237 // the caseblock. 1238 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1239 // The operands of the cmp have to be in this block. We don't know 1240 // how to export them from some other block. If this is the first block 1241 // of the sequence, no exporting is needed. 1242 if (CurBB == SwitchBB || 1243 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1244 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1245 ISD::CondCode Condition; 1246 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1247 Condition = getICmpCondCode(IC->getPredicate()); 1248 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1249 Condition = getFCmpCondCode(FC->getPredicate()); 1250 } else { 1251 Condition = ISD::SETEQ; // silence warning. 1252 llvm_unreachable("Unknown compare instruction"); 1253 } 1254 1255 CaseBlock CB(Condition, BOp->getOperand(0), 1256 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1257 SwitchCases.push_back(CB); 1258 return; 1259 } 1260 } 1261 1262 // Create a CaseBlock record representing this branch. 1263 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1264 NULL, TBB, FBB, CurBB); 1265 SwitchCases.push_back(CB); 1266 } 1267 1268 /// FindMergedConditions - If Cond is an expression like 1269 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1270 MachineBasicBlock *TBB, 1271 MachineBasicBlock *FBB, 1272 MachineBasicBlock *CurBB, 1273 MachineBasicBlock *SwitchBB, 1274 unsigned Opc) { 1275 // If this node is not part of the or/and tree, emit it as a branch. 1276 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1277 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1278 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1279 BOp->getParent() != CurBB->getBasicBlock() || 1280 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1281 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1282 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1283 return; 1284 } 1285 1286 // Create TmpBB after CurBB. 1287 MachineFunction::iterator BBI = CurBB; 1288 MachineFunction &MF = DAG.getMachineFunction(); 1289 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1290 CurBB->getParent()->insert(++BBI, TmpBB); 1291 1292 if (Opc == Instruction::Or) { 1293 // Codegen X | Y as: 1294 // jmp_if_X TBB 1295 // jmp TmpBB 1296 // TmpBB: 1297 // jmp_if_Y TBB 1298 // jmp FBB 1299 // 1300 1301 // Emit the LHS condition. 1302 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1303 1304 // Emit the RHS condition into TmpBB. 1305 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1306 } else { 1307 assert(Opc == Instruction::And && "Unknown merge op!"); 1308 // Codegen X & Y as: 1309 // jmp_if_X TmpBB 1310 // jmp FBB 1311 // TmpBB: 1312 // jmp_if_Y TBB 1313 // jmp FBB 1314 // 1315 // This requires creation of TmpBB after CurBB. 1316 1317 // Emit the LHS condition. 1318 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1319 1320 // Emit the RHS condition into TmpBB. 1321 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1322 } 1323 } 1324 1325 /// If the set of cases should be emitted as a series of branches, return true. 1326 /// If we should emit this as a bunch of and/or'd together conditions, return 1327 /// false. 1328 bool 1329 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1330 if (Cases.size() != 2) return true; 1331 1332 // If this is two comparisons of the same values or'd or and'd together, they 1333 // will get folded into a single comparison, so don't emit two blocks. 1334 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1335 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1336 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1337 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1338 return false; 1339 } 1340 1341 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1342 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1343 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1344 Cases[0].CC == Cases[1].CC && 1345 isa<Constant>(Cases[0].CmpRHS) && 1346 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1347 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1348 return false; 1349 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1350 return false; 1351 } 1352 1353 return true; 1354 } 1355 1356 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1357 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1358 1359 // Update machine-CFG edges. 1360 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1361 1362 // Figure out which block is immediately after the current one. 1363 MachineBasicBlock *NextBlock = 0; 1364 MachineFunction::iterator BBI = BrMBB; 1365 if (++BBI != FuncInfo.MF->end()) 1366 NextBlock = BBI; 1367 1368 if (I.isUnconditional()) { 1369 // Update machine-CFG edges. 1370 BrMBB->addSuccessor(Succ0MBB); 1371 1372 // If this is not a fall-through branch, emit the branch. 1373 if (Succ0MBB != NextBlock) 1374 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1375 MVT::Other, getControlRoot(), 1376 DAG.getBasicBlock(Succ0MBB))); 1377 1378 return; 1379 } 1380 1381 // If this condition is one of the special cases we handle, do special stuff 1382 // now. 1383 const Value *CondVal = I.getCondition(); 1384 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1385 1386 // If this is a series of conditions that are or'd or and'd together, emit 1387 // this as a sequence of branches instead of setcc's with and/or operations. 1388 // For example, instead of something like: 1389 // cmp A, B 1390 // C = seteq 1391 // cmp D, E 1392 // F = setle 1393 // or C, F 1394 // jnz foo 1395 // Emit: 1396 // cmp A, B 1397 // je foo 1398 // cmp D, E 1399 // jle foo 1400 // 1401 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1402 if (BOp->hasOneUse() && 1403 (BOp->getOpcode() == Instruction::And || 1404 BOp->getOpcode() == Instruction::Or)) { 1405 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1406 BOp->getOpcode()); 1407 // If the compares in later blocks need to use values not currently 1408 // exported from this block, export them now. This block should always 1409 // be the first entry. 1410 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1411 1412 // Allow some cases to be rejected. 1413 if (ShouldEmitAsBranches(SwitchCases)) { 1414 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1415 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1416 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1417 } 1418 1419 // Emit the branch for this block. 1420 visitSwitchCase(SwitchCases[0], BrMBB); 1421 SwitchCases.erase(SwitchCases.begin()); 1422 return; 1423 } 1424 1425 // Okay, we decided not to do this, remove any inserted MBB's and clear 1426 // SwitchCases. 1427 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1428 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1429 1430 SwitchCases.clear(); 1431 } 1432 } 1433 1434 // Create a CaseBlock record representing this branch. 1435 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1436 NULL, Succ0MBB, Succ1MBB, BrMBB); 1437 1438 // Use visitSwitchCase to actually insert the fast branch sequence for this 1439 // cond branch. 1440 visitSwitchCase(CB, BrMBB); 1441 } 1442 1443 /// visitSwitchCase - Emits the necessary code to represent a single node in 1444 /// the binary search tree resulting from lowering a switch instruction. 1445 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1446 MachineBasicBlock *SwitchBB) { 1447 SDValue Cond; 1448 SDValue CondLHS = getValue(CB.CmpLHS); 1449 DebugLoc dl = getCurDebugLoc(); 1450 1451 // Build the setcc now. 1452 if (CB.CmpMHS == NULL) { 1453 // Fold "(X == true)" to X and "(X == false)" to !X to 1454 // handle common cases produced by branch lowering. 1455 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1456 CB.CC == ISD::SETEQ) 1457 Cond = CondLHS; 1458 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1459 CB.CC == ISD::SETEQ) { 1460 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1461 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1462 } else 1463 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1464 } else { 1465 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1466 1467 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1468 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1469 1470 SDValue CmpOp = getValue(CB.CmpMHS); 1471 EVT VT = CmpOp.getValueType(); 1472 1473 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1474 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1475 ISD::SETLE); 1476 } else { 1477 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1478 VT, CmpOp, DAG.getConstant(Low, VT)); 1479 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1480 DAG.getConstant(High-Low, VT), ISD::SETULE); 1481 } 1482 } 1483 1484 // Update successor info 1485 SwitchBB->addSuccessor(CB.TrueBB); 1486 SwitchBB->addSuccessor(CB.FalseBB); 1487 1488 // Set NextBlock to be the MBB immediately after the current one, if any. 1489 // This is used to avoid emitting unnecessary branches to the next block. 1490 MachineBasicBlock *NextBlock = 0; 1491 MachineFunction::iterator BBI = SwitchBB; 1492 if (++BBI != FuncInfo.MF->end()) 1493 NextBlock = BBI; 1494 1495 // If the lhs block is the next block, invert the condition so that we can 1496 // fall through to the lhs instead of the rhs block. 1497 if (CB.TrueBB == NextBlock) { 1498 std::swap(CB.TrueBB, CB.FalseBB); 1499 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1500 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1501 } 1502 1503 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1504 MVT::Other, getControlRoot(), Cond, 1505 DAG.getBasicBlock(CB.TrueBB)); 1506 1507 // Insert the false branch. Do this even if it's a fall through branch, 1508 // this makes it easier to do DAG optimizations which require inverting 1509 // the branch condition. 1510 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1511 DAG.getBasicBlock(CB.FalseBB)); 1512 1513 DAG.setRoot(BrCond); 1514 } 1515 1516 /// visitJumpTable - Emit JumpTable node in the current MBB 1517 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1518 // Emit the code for the jump table 1519 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1520 EVT PTy = TLI.getPointerTy(); 1521 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1522 JT.Reg, PTy); 1523 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1524 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1525 MVT::Other, Index.getValue(1), 1526 Table, Index); 1527 DAG.setRoot(BrJumpTable); 1528 } 1529 1530 /// visitJumpTableHeader - This function emits necessary code to produce index 1531 /// in the JumpTable from switch case. 1532 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1533 JumpTableHeader &JTH, 1534 MachineBasicBlock *SwitchBB) { 1535 // Subtract the lowest switch case value from the value being switched on and 1536 // conditional branch to default mbb if the result is greater than the 1537 // difference between smallest and largest cases. 1538 SDValue SwitchOp = getValue(JTH.SValue); 1539 EVT VT = SwitchOp.getValueType(); 1540 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1541 DAG.getConstant(JTH.First, VT)); 1542 1543 // The SDNode we just created, which holds the value being switched on minus 1544 // the smallest case value, needs to be copied to a virtual register so it 1545 // can be used as an index into the jump table in a subsequent basic block. 1546 // This value may be smaller or larger than the target's pointer type, and 1547 // therefore require extension or truncating. 1548 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1549 1550 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1551 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1552 JumpTableReg, SwitchOp); 1553 JT.Reg = JumpTableReg; 1554 1555 // Emit the range check for the jump table, and branch to the default block 1556 // for the switch statement if the value being switched on exceeds the largest 1557 // case in the switch. 1558 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1559 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1560 DAG.getConstant(JTH.Last-JTH.First,VT), 1561 ISD::SETUGT); 1562 1563 // Set NextBlock to be the MBB immediately after the current one, if any. 1564 // This is used to avoid emitting unnecessary branches to the next block. 1565 MachineBasicBlock *NextBlock = 0; 1566 MachineFunction::iterator BBI = SwitchBB; 1567 1568 if (++BBI != FuncInfo.MF->end()) 1569 NextBlock = BBI; 1570 1571 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1572 MVT::Other, CopyTo, CMP, 1573 DAG.getBasicBlock(JT.Default)); 1574 1575 if (JT.MBB != NextBlock) 1576 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1577 DAG.getBasicBlock(JT.MBB)); 1578 1579 DAG.setRoot(BrCond); 1580 } 1581 1582 /// visitBitTestHeader - This function emits necessary code to produce value 1583 /// suitable for "bit tests" 1584 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1585 MachineBasicBlock *SwitchBB) { 1586 // Subtract the minimum value 1587 SDValue SwitchOp = getValue(B.SValue); 1588 EVT VT = SwitchOp.getValueType(); 1589 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1590 DAG.getConstant(B.First, VT)); 1591 1592 // Check range 1593 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1594 TLI.getSetCCResultType(Sub.getValueType()), 1595 Sub, DAG.getConstant(B.Range, VT), 1596 ISD::SETUGT); 1597 1598 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1599 TLI.getPointerTy()); 1600 1601 B.Reg = FuncInfo.CreateReg(TLI.getPointerTy()); 1602 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1603 B.Reg, ShiftOp); 1604 1605 // Set NextBlock to be the MBB immediately after the current one, if any. 1606 // This is used to avoid emitting unnecessary branches to the next block. 1607 MachineBasicBlock *NextBlock = 0; 1608 MachineFunction::iterator BBI = SwitchBB; 1609 if (++BBI != FuncInfo.MF->end()) 1610 NextBlock = BBI; 1611 1612 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1613 1614 SwitchBB->addSuccessor(B.Default); 1615 SwitchBB->addSuccessor(MBB); 1616 1617 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1618 MVT::Other, CopyTo, RangeCmp, 1619 DAG.getBasicBlock(B.Default)); 1620 1621 if (MBB != NextBlock) 1622 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1623 DAG.getBasicBlock(MBB)); 1624 1625 DAG.setRoot(BrRange); 1626 } 1627 1628 /// visitBitTestCase - this function produces one "bit test" 1629 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1630 unsigned Reg, 1631 BitTestCase &B, 1632 MachineBasicBlock *SwitchBB) { 1633 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1634 TLI.getPointerTy()); 1635 SDValue Cmp; 1636 if (CountPopulation_64(B.Mask) == 1) { 1637 // Testing for a single bit; just compare the shift count with what it 1638 // would need to be to shift a 1 bit in that position. 1639 Cmp = DAG.getSetCC(getCurDebugLoc(), 1640 TLI.getSetCCResultType(ShiftOp.getValueType()), 1641 ShiftOp, 1642 DAG.getConstant(CountTrailingZeros_64(B.Mask), 1643 TLI.getPointerTy()), 1644 ISD::SETEQ); 1645 } else { 1646 // Make desired shift 1647 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1648 TLI.getPointerTy(), 1649 DAG.getConstant(1, TLI.getPointerTy()), 1650 ShiftOp); 1651 1652 // Emit bit tests and jumps 1653 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1654 TLI.getPointerTy(), SwitchVal, 1655 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1656 Cmp = DAG.getSetCC(getCurDebugLoc(), 1657 TLI.getSetCCResultType(AndOp.getValueType()), 1658 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1659 ISD::SETNE); 1660 } 1661 1662 SwitchBB->addSuccessor(B.TargetBB); 1663 SwitchBB->addSuccessor(NextMBB); 1664 1665 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1666 MVT::Other, getControlRoot(), 1667 Cmp, DAG.getBasicBlock(B.TargetBB)); 1668 1669 // Set NextBlock to be the MBB immediately after the current one, if any. 1670 // This is used to avoid emitting unnecessary branches to the next block. 1671 MachineBasicBlock *NextBlock = 0; 1672 MachineFunction::iterator BBI = SwitchBB; 1673 if (++BBI != FuncInfo.MF->end()) 1674 NextBlock = BBI; 1675 1676 if (NextMBB != NextBlock) 1677 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1678 DAG.getBasicBlock(NextMBB)); 1679 1680 DAG.setRoot(BrAnd); 1681 } 1682 1683 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1684 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1685 1686 // Retrieve successors. 1687 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1688 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1689 1690 const Value *Callee(I.getCalledValue()); 1691 if (isa<InlineAsm>(Callee)) 1692 visitInlineAsm(&I); 1693 else 1694 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1695 1696 // If the value of the invoke is used outside of its defining block, make it 1697 // available as a virtual register. 1698 CopyToExportRegsIfNeeded(&I); 1699 1700 // Update successor info 1701 InvokeMBB->addSuccessor(Return); 1702 InvokeMBB->addSuccessor(LandingPad); 1703 1704 // Drop into normal successor. 1705 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1706 MVT::Other, getControlRoot(), 1707 DAG.getBasicBlock(Return))); 1708 } 1709 1710 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1711 } 1712 1713 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1714 /// small case ranges). 1715 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1716 CaseRecVector& WorkList, 1717 const Value* SV, 1718 MachineBasicBlock *Default, 1719 MachineBasicBlock *SwitchBB) { 1720 Case& BackCase = *(CR.Range.second-1); 1721 1722 // Size is the number of Cases represented by this range. 1723 size_t Size = CR.Range.second - CR.Range.first; 1724 if (Size > 3) 1725 return false; 1726 1727 // Get the MachineFunction which holds the current MBB. This is used when 1728 // inserting any additional MBBs necessary to represent the switch. 1729 MachineFunction *CurMF = FuncInfo.MF; 1730 1731 // Figure out which block is immediately after the current one. 1732 MachineBasicBlock *NextBlock = 0; 1733 MachineFunction::iterator BBI = CR.CaseBB; 1734 1735 if (++BBI != FuncInfo.MF->end()) 1736 NextBlock = BBI; 1737 1738 // TODO: If any two of the cases has the same destination, and if one value 1739 // is the same as the other, but has one bit unset that the other has set, 1740 // use bit manipulation to do two compares at once. For example: 1741 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1742 1743 // Rearrange the case blocks so that the last one falls through if possible. 1744 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1745 // The last case block won't fall through into 'NextBlock' if we emit the 1746 // branches in this order. See if rearranging a case value would help. 1747 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1748 if (I->BB == NextBlock) { 1749 std::swap(*I, BackCase); 1750 break; 1751 } 1752 } 1753 } 1754 1755 // Create a CaseBlock record representing a conditional branch to 1756 // the Case's target mbb if the value being switched on SV is equal 1757 // to C. 1758 MachineBasicBlock *CurBlock = CR.CaseBB; 1759 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1760 MachineBasicBlock *FallThrough; 1761 if (I != E-1) { 1762 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1763 CurMF->insert(BBI, FallThrough); 1764 1765 // Put SV in a virtual register to make it available from the new blocks. 1766 ExportFromCurrentBlock(SV); 1767 } else { 1768 // If the last case doesn't match, go to the default block. 1769 FallThrough = Default; 1770 } 1771 1772 const Value *RHS, *LHS, *MHS; 1773 ISD::CondCode CC; 1774 if (I->High == I->Low) { 1775 // This is just small small case range :) containing exactly 1 case 1776 CC = ISD::SETEQ; 1777 LHS = SV; RHS = I->High; MHS = NULL; 1778 } else { 1779 CC = ISD::SETLE; 1780 LHS = I->Low; MHS = SV; RHS = I->High; 1781 } 1782 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1783 1784 // If emitting the first comparison, just call visitSwitchCase to emit the 1785 // code into the current block. Otherwise, push the CaseBlock onto the 1786 // vector to be later processed by SDISel, and insert the node's MBB 1787 // before the next MBB. 1788 if (CurBlock == SwitchBB) 1789 visitSwitchCase(CB, SwitchBB); 1790 else 1791 SwitchCases.push_back(CB); 1792 1793 CurBlock = FallThrough; 1794 } 1795 1796 return true; 1797 } 1798 1799 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1800 return !DisableJumpTables && 1801 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1802 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1803 } 1804 1805 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1806 APInt LastExt(Last), FirstExt(First); 1807 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1808 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1809 return (LastExt - FirstExt + 1ULL); 1810 } 1811 1812 /// handleJTSwitchCase - Emit jumptable for current switch case range 1813 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1814 CaseRecVector& WorkList, 1815 const Value* SV, 1816 MachineBasicBlock* Default, 1817 MachineBasicBlock *SwitchBB) { 1818 Case& FrontCase = *CR.Range.first; 1819 Case& BackCase = *(CR.Range.second-1); 1820 1821 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1822 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1823 1824 APInt TSize(First.getBitWidth(), 0); 1825 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1826 I!=E; ++I) 1827 TSize += I->size(); 1828 1829 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1830 return false; 1831 1832 APInt Range = ComputeRange(First, Last); 1833 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1834 if (Density < 0.4) 1835 return false; 1836 1837 DEBUG(dbgs() << "Lowering jump table\n" 1838 << "First entry: " << First << ". Last entry: " << Last << '\n' 1839 << "Range: " << Range 1840 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1841 1842 // Get the MachineFunction which holds the current MBB. This is used when 1843 // inserting any additional MBBs necessary to represent the switch. 1844 MachineFunction *CurMF = FuncInfo.MF; 1845 1846 // Figure out which block is immediately after the current one. 1847 MachineFunction::iterator BBI = CR.CaseBB; 1848 ++BBI; 1849 1850 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1851 1852 // Create a new basic block to hold the code for loading the address 1853 // of the jump table, and jumping to it. Update successor information; 1854 // we will either branch to the default case for the switch, or the jump 1855 // table. 1856 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1857 CurMF->insert(BBI, JumpTableBB); 1858 CR.CaseBB->addSuccessor(Default); 1859 CR.CaseBB->addSuccessor(JumpTableBB); 1860 1861 // Build a vector of destination BBs, corresponding to each target 1862 // of the jump table. If the value of the jump table slot corresponds to 1863 // a case statement, push the case's BB onto the vector, otherwise, push 1864 // the default BB. 1865 std::vector<MachineBasicBlock*> DestBBs; 1866 APInt TEI = First; 1867 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1868 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1869 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1870 1871 if (Low.sle(TEI) && TEI.sle(High)) { 1872 DestBBs.push_back(I->BB); 1873 if (TEI==High) 1874 ++I; 1875 } else { 1876 DestBBs.push_back(Default); 1877 } 1878 } 1879 1880 // Update successor info. Add one edge to each unique successor. 1881 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1882 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1883 E = DestBBs.end(); I != E; ++I) { 1884 if (!SuccsHandled[(*I)->getNumber()]) { 1885 SuccsHandled[(*I)->getNumber()] = true; 1886 JumpTableBB->addSuccessor(*I); 1887 } 1888 } 1889 1890 // Create a jump table index for this jump table. 1891 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1892 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1893 ->createJumpTableIndex(DestBBs); 1894 1895 // Set the jump table information so that we can codegen it as a second 1896 // MachineBasicBlock 1897 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1898 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1899 if (CR.CaseBB == SwitchBB) 1900 visitJumpTableHeader(JT, JTH, SwitchBB); 1901 1902 JTCases.push_back(JumpTableBlock(JTH, JT)); 1903 1904 return true; 1905 } 1906 1907 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1908 /// 2 subtrees. 1909 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1910 CaseRecVector& WorkList, 1911 const Value* SV, 1912 MachineBasicBlock *Default, 1913 MachineBasicBlock *SwitchBB) { 1914 // Get the MachineFunction which holds the current MBB. This is used when 1915 // inserting any additional MBBs necessary to represent the switch. 1916 MachineFunction *CurMF = FuncInfo.MF; 1917 1918 // Figure out which block is immediately after the current one. 1919 MachineFunction::iterator BBI = CR.CaseBB; 1920 ++BBI; 1921 1922 Case& FrontCase = *CR.Range.first; 1923 Case& BackCase = *(CR.Range.second-1); 1924 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1925 1926 // Size is the number of Cases represented by this range. 1927 unsigned Size = CR.Range.second - CR.Range.first; 1928 1929 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1930 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1931 double FMetric = 0; 1932 CaseItr Pivot = CR.Range.first + Size/2; 1933 1934 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1935 // (heuristically) allow us to emit JumpTable's later. 1936 APInt TSize(First.getBitWidth(), 0); 1937 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1938 I!=E; ++I) 1939 TSize += I->size(); 1940 1941 APInt LSize = FrontCase.size(); 1942 APInt RSize = TSize-LSize; 1943 DEBUG(dbgs() << "Selecting best pivot: \n" 1944 << "First: " << First << ", Last: " << Last <<'\n' 1945 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1946 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1947 J!=E; ++I, ++J) { 1948 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1949 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1950 APInt Range = ComputeRange(LEnd, RBegin); 1951 assert((Range - 2ULL).isNonNegative() && 1952 "Invalid case distance"); 1953 double LDensity = (double)LSize.roundToDouble() / 1954 (LEnd - First + 1ULL).roundToDouble(); 1955 double RDensity = (double)RSize.roundToDouble() / 1956 (Last - RBegin + 1ULL).roundToDouble(); 1957 double Metric = Range.logBase2()*(LDensity+RDensity); 1958 // Should always split in some non-trivial place 1959 DEBUG(dbgs() <<"=>Step\n" 1960 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1961 << "LDensity: " << LDensity 1962 << ", RDensity: " << RDensity << '\n' 1963 << "Metric: " << Metric << '\n'); 1964 if (FMetric < Metric) { 1965 Pivot = J; 1966 FMetric = Metric; 1967 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1968 } 1969 1970 LSize += J->size(); 1971 RSize -= J->size(); 1972 } 1973 if (areJTsAllowed(TLI)) { 1974 // If our case is dense we *really* should handle it earlier! 1975 assert((FMetric > 0) && "Should handle dense range earlier!"); 1976 } else { 1977 Pivot = CR.Range.first + Size/2; 1978 } 1979 1980 CaseRange LHSR(CR.Range.first, Pivot); 1981 CaseRange RHSR(Pivot, CR.Range.second); 1982 Constant *C = Pivot->Low; 1983 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1984 1985 // We know that we branch to the LHS if the Value being switched on is 1986 // less than the Pivot value, C. We use this to optimize our binary 1987 // tree a bit, by recognizing that if SV is greater than or equal to the 1988 // LHS's Case Value, and that Case Value is exactly one less than the 1989 // Pivot's Value, then we can branch directly to the LHS's Target, 1990 // rather than creating a leaf node for it. 1991 if ((LHSR.second - LHSR.first) == 1 && 1992 LHSR.first->High == CR.GE && 1993 cast<ConstantInt>(C)->getValue() == 1994 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1995 TrueBB = LHSR.first->BB; 1996 } else { 1997 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1998 CurMF->insert(BBI, TrueBB); 1999 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2000 2001 // Put SV in a virtual register to make it available from the new blocks. 2002 ExportFromCurrentBlock(SV); 2003 } 2004 2005 // Similar to the optimization above, if the Value being switched on is 2006 // known to be less than the Constant CR.LT, and the current Case Value 2007 // is CR.LT - 1, then we can branch directly to the target block for 2008 // the current Case Value, rather than emitting a RHS leaf node for it. 2009 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2010 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2011 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2012 FalseBB = RHSR.first->BB; 2013 } else { 2014 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2015 CurMF->insert(BBI, FalseBB); 2016 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2017 2018 // Put SV in a virtual register to make it available from the new blocks. 2019 ExportFromCurrentBlock(SV); 2020 } 2021 2022 // Create a CaseBlock record representing a conditional branch to 2023 // the LHS node if the value being switched on SV is less than C. 2024 // Otherwise, branch to LHS. 2025 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2026 2027 if (CR.CaseBB == SwitchBB) 2028 visitSwitchCase(CB, SwitchBB); 2029 else 2030 SwitchCases.push_back(CB); 2031 2032 return true; 2033 } 2034 2035 /// handleBitTestsSwitchCase - if current case range has few destination and 2036 /// range span less, than machine word bitwidth, encode case range into series 2037 /// of masks and emit bit tests with these masks. 2038 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2039 CaseRecVector& WorkList, 2040 const Value* SV, 2041 MachineBasicBlock* Default, 2042 MachineBasicBlock *SwitchBB){ 2043 EVT PTy = TLI.getPointerTy(); 2044 unsigned IntPtrBits = PTy.getSizeInBits(); 2045 2046 Case& FrontCase = *CR.Range.first; 2047 Case& BackCase = *(CR.Range.second-1); 2048 2049 // Get the MachineFunction which holds the current MBB. This is used when 2050 // inserting any additional MBBs necessary to represent the switch. 2051 MachineFunction *CurMF = FuncInfo.MF; 2052 2053 // If target does not have legal shift left, do not emit bit tests at all. 2054 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2055 return false; 2056 2057 size_t numCmps = 0; 2058 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2059 I!=E; ++I) { 2060 // Single case counts one, case range - two. 2061 numCmps += (I->Low == I->High ? 1 : 2); 2062 } 2063 2064 // Count unique destinations 2065 SmallSet<MachineBasicBlock*, 4> Dests; 2066 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2067 Dests.insert(I->BB); 2068 if (Dests.size() > 3) 2069 // Don't bother the code below, if there are too much unique destinations 2070 return false; 2071 } 2072 DEBUG(dbgs() << "Total number of unique destinations: " 2073 << Dests.size() << '\n' 2074 << "Total number of comparisons: " << numCmps << '\n'); 2075 2076 // Compute span of values. 2077 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2078 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2079 APInt cmpRange = maxValue - minValue; 2080 2081 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2082 << "Low bound: " << minValue << '\n' 2083 << "High bound: " << maxValue << '\n'); 2084 2085 if (cmpRange.uge(IntPtrBits) || 2086 (!(Dests.size() == 1 && numCmps >= 3) && 2087 !(Dests.size() == 2 && numCmps >= 5) && 2088 !(Dests.size() >= 3 && numCmps >= 6))) 2089 return false; 2090 2091 DEBUG(dbgs() << "Emitting bit tests\n"); 2092 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2093 2094 // Optimize the case where all the case values fit in a 2095 // word without having to subtract minValue. In this case, 2096 // we can optimize away the subtraction. 2097 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2098 cmpRange = maxValue; 2099 } else { 2100 lowBound = minValue; 2101 } 2102 2103 CaseBitsVector CasesBits; 2104 unsigned i, count = 0; 2105 2106 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2107 MachineBasicBlock* Dest = I->BB; 2108 for (i = 0; i < count; ++i) 2109 if (Dest == CasesBits[i].BB) 2110 break; 2111 2112 if (i == count) { 2113 assert((count < 3) && "Too much destinations to test!"); 2114 CasesBits.push_back(CaseBits(0, Dest, 0)); 2115 count++; 2116 } 2117 2118 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2119 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2120 2121 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2122 uint64_t hi = (highValue - lowBound).getZExtValue(); 2123 2124 for (uint64_t j = lo; j <= hi; j++) { 2125 CasesBits[i].Mask |= 1ULL << j; 2126 CasesBits[i].Bits++; 2127 } 2128 2129 } 2130 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2131 2132 BitTestInfo BTC; 2133 2134 // Figure out which block is immediately after the current one. 2135 MachineFunction::iterator BBI = CR.CaseBB; 2136 ++BBI; 2137 2138 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2139 2140 DEBUG(dbgs() << "Cases:\n"); 2141 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2142 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2143 << ", Bits: " << CasesBits[i].Bits 2144 << ", BB: " << CasesBits[i].BB << '\n'); 2145 2146 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2147 CurMF->insert(BBI, CaseBB); 2148 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2149 CaseBB, 2150 CasesBits[i].BB)); 2151 2152 // Put SV in a virtual register to make it available from the new blocks. 2153 ExportFromCurrentBlock(SV); 2154 } 2155 2156 BitTestBlock BTB(lowBound, cmpRange, SV, 2157 -1U, (CR.CaseBB == SwitchBB), 2158 CR.CaseBB, Default, BTC); 2159 2160 if (CR.CaseBB == SwitchBB) 2161 visitBitTestHeader(BTB, SwitchBB); 2162 2163 BitTestCases.push_back(BTB); 2164 2165 return true; 2166 } 2167 2168 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2169 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2170 const SwitchInst& SI) { 2171 size_t numCmps = 0; 2172 2173 // Start with "simple" cases 2174 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2175 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2176 Cases.push_back(Case(SI.getSuccessorValue(i), 2177 SI.getSuccessorValue(i), 2178 SMBB)); 2179 } 2180 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2181 2182 // Merge case into clusters 2183 if (Cases.size() >= 2) 2184 // Must recompute end() each iteration because it may be 2185 // invalidated by erase if we hold on to it 2186 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2187 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2188 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2189 MachineBasicBlock* nextBB = J->BB; 2190 MachineBasicBlock* currentBB = I->BB; 2191 2192 // If the two neighboring cases go to the same destination, merge them 2193 // into a single case. 2194 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2195 I->High = J->High; 2196 J = Cases.erase(J); 2197 } else { 2198 I = J++; 2199 } 2200 } 2201 2202 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2203 if (I->Low != I->High) 2204 // A range counts double, since it requires two compares. 2205 ++numCmps; 2206 } 2207 2208 return numCmps; 2209 } 2210 2211 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2212 MachineBasicBlock *Last) { 2213 // Update JTCases. 2214 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2215 if (JTCases[i].first.HeaderBB == First) 2216 JTCases[i].first.HeaderBB = Last; 2217 2218 // Update BitTestCases. 2219 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2220 if (BitTestCases[i].Parent == First) 2221 BitTestCases[i].Parent = Last; 2222 } 2223 2224 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2225 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2226 2227 // Figure out which block is immediately after the current one. 2228 MachineBasicBlock *NextBlock = 0; 2229 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2230 2231 // If there is only the default destination, branch to it if it is not the 2232 // next basic block. Otherwise, just fall through. 2233 if (SI.getNumOperands() == 2) { 2234 // Update machine-CFG edges. 2235 2236 // If this is not a fall-through branch, emit the branch. 2237 SwitchMBB->addSuccessor(Default); 2238 if (Default != NextBlock) 2239 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2240 MVT::Other, getControlRoot(), 2241 DAG.getBasicBlock(Default))); 2242 2243 return; 2244 } 2245 2246 // If there are any non-default case statements, create a vector of Cases 2247 // representing each one, and sort the vector so that we can efficiently 2248 // create a binary search tree from them. 2249 CaseVector Cases; 2250 size_t numCmps = Clusterify(Cases, SI); 2251 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2252 << ". Total compares: " << numCmps << '\n'); 2253 numCmps = 0; 2254 2255 // Get the Value to be switched on and default basic blocks, which will be 2256 // inserted into CaseBlock records, representing basic blocks in the binary 2257 // search tree. 2258 const Value *SV = SI.getOperand(0); 2259 2260 // Push the initial CaseRec onto the worklist 2261 CaseRecVector WorkList; 2262 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2263 CaseRange(Cases.begin(),Cases.end()))); 2264 2265 while (!WorkList.empty()) { 2266 // Grab a record representing a case range to process off the worklist 2267 CaseRec CR = WorkList.back(); 2268 WorkList.pop_back(); 2269 2270 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2271 continue; 2272 2273 // If the range has few cases (two or less) emit a series of specific 2274 // tests. 2275 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2276 continue; 2277 2278 // If the switch has more than 5 blocks, and at least 40% dense, and the 2279 // target supports indirect branches, then emit a jump table rather than 2280 // lowering the switch to a binary tree of conditional branches. 2281 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2282 continue; 2283 2284 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2285 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2286 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2287 } 2288 } 2289 2290 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2291 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2292 2293 // Update machine-CFG edges with unique successors. 2294 SmallVector<BasicBlock*, 32> succs; 2295 succs.reserve(I.getNumSuccessors()); 2296 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2297 succs.push_back(I.getSuccessor(i)); 2298 array_pod_sort(succs.begin(), succs.end()); 2299 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2300 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2301 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2302 2303 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2304 MVT::Other, getControlRoot(), 2305 getValue(I.getAddress()))); 2306 } 2307 2308 void SelectionDAGBuilder::visitFSub(const User &I) { 2309 // -0.0 - X --> fneg 2310 const Type *Ty = I.getType(); 2311 if (Ty->isVectorTy()) { 2312 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2313 const VectorType *DestTy = cast<VectorType>(I.getType()); 2314 const Type *ElTy = DestTy->getElementType(); 2315 unsigned VL = DestTy->getNumElements(); 2316 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2317 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2318 if (CV == CNZ) { 2319 SDValue Op2 = getValue(I.getOperand(1)); 2320 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2321 Op2.getValueType(), Op2)); 2322 return; 2323 } 2324 } 2325 } 2326 2327 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2328 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2329 SDValue Op2 = getValue(I.getOperand(1)); 2330 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2331 Op2.getValueType(), Op2)); 2332 return; 2333 } 2334 2335 visitBinary(I, ISD::FSUB); 2336 } 2337 2338 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2339 SDValue Op1 = getValue(I.getOperand(0)); 2340 SDValue Op2 = getValue(I.getOperand(1)); 2341 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2342 Op1.getValueType(), Op1, Op2)); 2343 } 2344 2345 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2346 SDValue Op1 = getValue(I.getOperand(0)); 2347 SDValue Op2 = getValue(I.getOperand(1)); 2348 if (!I.getType()->isVectorTy() && 2349 Op2.getValueType() != TLI.getShiftAmountTy()) { 2350 // If the operand is smaller than the shift count type, promote it. 2351 EVT PTy = TLI.getPointerTy(); 2352 EVT STy = TLI.getShiftAmountTy(); 2353 if (STy.bitsGT(Op2.getValueType())) 2354 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2355 TLI.getShiftAmountTy(), Op2); 2356 // If the operand is larger than the shift count type but the shift 2357 // count type has enough bits to represent any shift value, truncate 2358 // it now. This is a common case and it exposes the truncate to 2359 // optimization early. 2360 else if (STy.getSizeInBits() >= 2361 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2362 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2363 TLI.getShiftAmountTy(), Op2); 2364 // Otherwise we'll need to temporarily settle for some other 2365 // convenient type; type legalization will make adjustments as 2366 // needed. 2367 else if (PTy.bitsLT(Op2.getValueType())) 2368 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2369 TLI.getPointerTy(), Op2); 2370 else if (PTy.bitsGT(Op2.getValueType())) 2371 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2372 TLI.getPointerTy(), Op2); 2373 } 2374 2375 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2376 Op1.getValueType(), Op1, Op2)); 2377 } 2378 2379 void SelectionDAGBuilder::visitICmp(const User &I) { 2380 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2381 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2382 predicate = IC->getPredicate(); 2383 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2384 predicate = ICmpInst::Predicate(IC->getPredicate()); 2385 SDValue Op1 = getValue(I.getOperand(0)); 2386 SDValue Op2 = getValue(I.getOperand(1)); 2387 ISD::CondCode Opcode = getICmpCondCode(predicate); 2388 2389 EVT DestVT = TLI.getValueType(I.getType()); 2390 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2391 } 2392 2393 void SelectionDAGBuilder::visitFCmp(const User &I) { 2394 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2395 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2396 predicate = FC->getPredicate(); 2397 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2398 predicate = FCmpInst::Predicate(FC->getPredicate()); 2399 SDValue Op1 = getValue(I.getOperand(0)); 2400 SDValue Op2 = getValue(I.getOperand(1)); 2401 ISD::CondCode Condition = getFCmpCondCode(predicate); 2402 EVT DestVT = TLI.getValueType(I.getType()); 2403 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2404 } 2405 2406 void SelectionDAGBuilder::visitSelect(const User &I) { 2407 SmallVector<EVT, 4> ValueVTs; 2408 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2409 unsigned NumValues = ValueVTs.size(); 2410 if (NumValues == 0) return; 2411 2412 SmallVector<SDValue, 4> Values(NumValues); 2413 SDValue Cond = getValue(I.getOperand(0)); 2414 SDValue TrueVal = getValue(I.getOperand(1)); 2415 SDValue FalseVal = getValue(I.getOperand(2)); 2416 2417 for (unsigned i = 0; i != NumValues; ++i) 2418 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2419 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2420 Cond, 2421 SDValue(TrueVal.getNode(), 2422 TrueVal.getResNo() + i), 2423 SDValue(FalseVal.getNode(), 2424 FalseVal.getResNo() + i)); 2425 2426 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2427 DAG.getVTList(&ValueVTs[0], NumValues), 2428 &Values[0], NumValues)); 2429 } 2430 2431 void SelectionDAGBuilder::visitTrunc(const User &I) { 2432 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2433 SDValue N = getValue(I.getOperand(0)); 2434 EVT DestVT = TLI.getValueType(I.getType()); 2435 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2436 } 2437 2438 void SelectionDAGBuilder::visitZExt(const User &I) { 2439 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2440 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2441 SDValue N = getValue(I.getOperand(0)); 2442 EVT DestVT = TLI.getValueType(I.getType()); 2443 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2444 } 2445 2446 void SelectionDAGBuilder::visitSExt(const User &I) { 2447 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2448 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2449 SDValue N = getValue(I.getOperand(0)); 2450 EVT DestVT = TLI.getValueType(I.getType()); 2451 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2452 } 2453 2454 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2455 // FPTrunc is never a no-op cast, no need to check 2456 SDValue N = getValue(I.getOperand(0)); 2457 EVT DestVT = TLI.getValueType(I.getType()); 2458 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2459 DestVT, N, DAG.getIntPtrConstant(0))); 2460 } 2461 2462 void SelectionDAGBuilder::visitFPExt(const User &I){ 2463 // FPTrunc is never a no-op cast, no need to check 2464 SDValue N = getValue(I.getOperand(0)); 2465 EVT DestVT = TLI.getValueType(I.getType()); 2466 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2467 } 2468 2469 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2470 // FPToUI is never a no-op cast, no need to check 2471 SDValue N = getValue(I.getOperand(0)); 2472 EVT DestVT = TLI.getValueType(I.getType()); 2473 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2474 } 2475 2476 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2477 // FPToSI is never a no-op cast, no need to check 2478 SDValue N = getValue(I.getOperand(0)); 2479 EVT DestVT = TLI.getValueType(I.getType()); 2480 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2481 } 2482 2483 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2484 // UIToFP is never a no-op cast, no need to check 2485 SDValue N = getValue(I.getOperand(0)); 2486 EVT DestVT = TLI.getValueType(I.getType()); 2487 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2488 } 2489 2490 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2491 // SIToFP is never a no-op cast, no need to check 2492 SDValue N = getValue(I.getOperand(0)); 2493 EVT DestVT = TLI.getValueType(I.getType()); 2494 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2495 } 2496 2497 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2498 // What to do depends on the size of the integer and the size of the pointer. 2499 // We can either truncate, zero extend, or no-op, accordingly. 2500 SDValue N = getValue(I.getOperand(0)); 2501 EVT DestVT = TLI.getValueType(I.getType()); 2502 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2503 } 2504 2505 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2506 // What to do depends on the size of the integer and the size of the pointer. 2507 // We can either truncate, zero extend, or no-op, accordingly. 2508 SDValue N = getValue(I.getOperand(0)); 2509 EVT DestVT = TLI.getValueType(I.getType()); 2510 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2511 } 2512 2513 void SelectionDAGBuilder::visitBitCast(const User &I) { 2514 SDValue N = getValue(I.getOperand(0)); 2515 EVT DestVT = TLI.getValueType(I.getType()); 2516 2517 // BitCast assures us that source and destination are the same size so this is 2518 // either a BIT_CONVERT or a no-op. 2519 if (DestVT != N.getValueType()) 2520 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2521 DestVT, N)); // convert types. 2522 else 2523 setValue(&I, N); // noop cast. 2524 } 2525 2526 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2527 SDValue InVec = getValue(I.getOperand(0)); 2528 SDValue InVal = getValue(I.getOperand(1)); 2529 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2530 TLI.getPointerTy(), 2531 getValue(I.getOperand(2))); 2532 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2533 TLI.getValueType(I.getType()), 2534 InVec, InVal, InIdx)); 2535 } 2536 2537 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2538 SDValue InVec = getValue(I.getOperand(0)); 2539 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2540 TLI.getPointerTy(), 2541 getValue(I.getOperand(1))); 2542 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2543 TLI.getValueType(I.getType()), InVec, InIdx)); 2544 } 2545 2546 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2547 // from SIndx and increasing to the element length (undefs are allowed). 2548 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2549 unsigned MaskNumElts = Mask.size(); 2550 for (unsigned i = 0; i != MaskNumElts; ++i) 2551 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2552 return false; 2553 return true; 2554 } 2555 2556 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2557 SmallVector<int, 8> Mask; 2558 SDValue Src1 = getValue(I.getOperand(0)); 2559 SDValue Src2 = getValue(I.getOperand(1)); 2560 2561 // Convert the ConstantVector mask operand into an array of ints, with -1 2562 // representing undef values. 2563 SmallVector<Constant*, 8> MaskElts; 2564 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2565 unsigned MaskNumElts = MaskElts.size(); 2566 for (unsigned i = 0; i != MaskNumElts; ++i) { 2567 if (isa<UndefValue>(MaskElts[i])) 2568 Mask.push_back(-1); 2569 else 2570 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2571 } 2572 2573 EVT VT = TLI.getValueType(I.getType()); 2574 EVT SrcVT = Src1.getValueType(); 2575 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2576 2577 if (SrcNumElts == MaskNumElts) { 2578 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2579 &Mask[0])); 2580 return; 2581 } 2582 2583 // Normalize the shuffle vector since mask and vector length don't match. 2584 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2585 // Mask is longer than the source vectors and is a multiple of the source 2586 // vectors. We can use concatenate vector to make the mask and vectors 2587 // lengths match. 2588 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2589 // The shuffle is concatenating two vectors together. 2590 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2591 VT, Src1, Src2)); 2592 return; 2593 } 2594 2595 // Pad both vectors with undefs to make them the same length as the mask. 2596 unsigned NumConcat = MaskNumElts / SrcNumElts; 2597 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2598 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2599 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2600 2601 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2602 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2603 MOps1[0] = Src1; 2604 MOps2[0] = Src2; 2605 2606 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2607 getCurDebugLoc(), VT, 2608 &MOps1[0], NumConcat); 2609 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2610 getCurDebugLoc(), VT, 2611 &MOps2[0], NumConcat); 2612 2613 // Readjust mask for new input vector length. 2614 SmallVector<int, 8> MappedOps; 2615 for (unsigned i = 0; i != MaskNumElts; ++i) { 2616 int Idx = Mask[i]; 2617 if (Idx < (int)SrcNumElts) 2618 MappedOps.push_back(Idx); 2619 else 2620 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2621 } 2622 2623 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2624 &MappedOps[0])); 2625 return; 2626 } 2627 2628 if (SrcNumElts > MaskNumElts) { 2629 // Analyze the access pattern of the vector to see if we can extract 2630 // two subvectors and do the shuffle. The analysis is done by calculating 2631 // the range of elements the mask access on both vectors. 2632 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2633 int MaxRange[2] = {-1, -1}; 2634 2635 for (unsigned i = 0; i != MaskNumElts; ++i) { 2636 int Idx = Mask[i]; 2637 int Input = 0; 2638 if (Idx < 0) 2639 continue; 2640 2641 if (Idx >= (int)SrcNumElts) { 2642 Input = 1; 2643 Idx -= SrcNumElts; 2644 } 2645 if (Idx > MaxRange[Input]) 2646 MaxRange[Input] = Idx; 2647 if (Idx < MinRange[Input]) 2648 MinRange[Input] = Idx; 2649 } 2650 2651 // Check if the access is smaller than the vector size and can we find 2652 // a reasonable extract index. 2653 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2654 // Extract. 2655 int StartIdx[2]; // StartIdx to extract from 2656 for (int Input=0; Input < 2; ++Input) { 2657 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2658 RangeUse[Input] = 0; // Unused 2659 StartIdx[Input] = 0; 2660 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2661 // Fits within range but we should see if we can find a good 2662 // start index that is a multiple of the mask length. 2663 if (MaxRange[Input] < (int)MaskNumElts) { 2664 RangeUse[Input] = 1; // Extract from beginning of the vector 2665 StartIdx[Input] = 0; 2666 } else { 2667 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2668 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2669 StartIdx[Input] + MaskNumElts < SrcNumElts) 2670 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2671 } 2672 } 2673 } 2674 2675 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2676 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2677 return; 2678 } 2679 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2680 // Extract appropriate subvector and generate a vector shuffle 2681 for (int Input=0; Input < 2; ++Input) { 2682 SDValue &Src = Input == 0 ? Src1 : Src2; 2683 if (RangeUse[Input] == 0) 2684 Src = DAG.getUNDEF(VT); 2685 else 2686 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2687 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2688 } 2689 2690 // Calculate new mask. 2691 SmallVector<int, 8> MappedOps; 2692 for (unsigned i = 0; i != MaskNumElts; ++i) { 2693 int Idx = Mask[i]; 2694 if (Idx < 0) 2695 MappedOps.push_back(Idx); 2696 else if (Idx < (int)SrcNumElts) 2697 MappedOps.push_back(Idx - StartIdx[0]); 2698 else 2699 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2700 } 2701 2702 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2703 &MappedOps[0])); 2704 return; 2705 } 2706 } 2707 2708 // We can't use either concat vectors or extract subvectors so fall back to 2709 // replacing the shuffle with extract and build vector. 2710 // to insert and build vector. 2711 EVT EltVT = VT.getVectorElementType(); 2712 EVT PtrVT = TLI.getPointerTy(); 2713 SmallVector<SDValue,8> Ops; 2714 for (unsigned i = 0; i != MaskNumElts; ++i) { 2715 if (Mask[i] < 0) { 2716 Ops.push_back(DAG.getUNDEF(EltVT)); 2717 } else { 2718 int Idx = Mask[i]; 2719 SDValue Res; 2720 2721 if (Idx < (int)SrcNumElts) 2722 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2723 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2724 else 2725 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2726 EltVT, Src2, 2727 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2728 2729 Ops.push_back(Res); 2730 } 2731 } 2732 2733 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2734 VT, &Ops[0], Ops.size())); 2735 } 2736 2737 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2738 const Value *Op0 = I.getOperand(0); 2739 const Value *Op1 = I.getOperand(1); 2740 const Type *AggTy = I.getType(); 2741 const Type *ValTy = Op1->getType(); 2742 bool IntoUndef = isa<UndefValue>(Op0); 2743 bool FromUndef = isa<UndefValue>(Op1); 2744 2745 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2746 2747 SmallVector<EVT, 4> AggValueVTs; 2748 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2749 SmallVector<EVT, 4> ValValueVTs; 2750 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2751 2752 unsigned NumAggValues = AggValueVTs.size(); 2753 unsigned NumValValues = ValValueVTs.size(); 2754 SmallVector<SDValue, 4> Values(NumAggValues); 2755 2756 SDValue Agg = getValue(Op0); 2757 SDValue Val = getValue(Op1); 2758 unsigned i = 0; 2759 // Copy the beginning value(s) from the original aggregate. 2760 for (; i != LinearIndex; ++i) 2761 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2762 SDValue(Agg.getNode(), Agg.getResNo() + i); 2763 // Copy values from the inserted value(s). 2764 for (; i != LinearIndex + NumValValues; ++i) 2765 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2766 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2767 // Copy remaining value(s) from the original aggregate. 2768 for (; i != NumAggValues; ++i) 2769 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2770 SDValue(Agg.getNode(), Agg.getResNo() + i); 2771 2772 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2773 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2774 &Values[0], NumAggValues)); 2775 } 2776 2777 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2778 const Value *Op0 = I.getOperand(0); 2779 const Type *AggTy = Op0->getType(); 2780 const Type *ValTy = I.getType(); 2781 bool OutOfUndef = isa<UndefValue>(Op0); 2782 2783 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2784 2785 SmallVector<EVT, 4> ValValueVTs; 2786 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2787 2788 unsigned NumValValues = ValValueVTs.size(); 2789 SmallVector<SDValue, 4> Values(NumValValues); 2790 2791 SDValue Agg = getValue(Op0); 2792 // Copy out the selected value(s). 2793 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2794 Values[i - LinearIndex] = 2795 OutOfUndef ? 2796 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2797 SDValue(Agg.getNode(), Agg.getResNo() + i); 2798 2799 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2800 DAG.getVTList(&ValValueVTs[0], NumValValues), 2801 &Values[0], NumValValues)); 2802 } 2803 2804 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2805 SDValue N = getValue(I.getOperand(0)); 2806 const Type *Ty = I.getOperand(0)->getType(); 2807 2808 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2809 OI != E; ++OI) { 2810 const Value *Idx = *OI; 2811 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2812 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2813 if (Field) { 2814 // N = N + Offset 2815 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2816 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2817 DAG.getIntPtrConstant(Offset)); 2818 } 2819 2820 Ty = StTy->getElementType(Field); 2821 } else { 2822 Ty = cast<SequentialType>(Ty)->getElementType(); 2823 2824 // If this is a constant subscript, handle it quickly. 2825 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2826 if (CI->isZero()) continue; 2827 uint64_t Offs = 2828 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2829 SDValue OffsVal; 2830 EVT PTy = TLI.getPointerTy(); 2831 unsigned PtrBits = PTy.getSizeInBits(); 2832 if (PtrBits < 64) 2833 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2834 TLI.getPointerTy(), 2835 DAG.getConstant(Offs, MVT::i64)); 2836 else 2837 OffsVal = DAG.getIntPtrConstant(Offs); 2838 2839 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2840 OffsVal); 2841 continue; 2842 } 2843 2844 // N = N + Idx * ElementSize; 2845 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2846 TD->getTypeAllocSize(Ty)); 2847 SDValue IdxN = getValue(Idx); 2848 2849 // If the index is smaller or larger than intptr_t, truncate or extend 2850 // it. 2851 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2852 2853 // If this is a multiply by a power of two, turn it into a shl 2854 // immediately. This is a very common case. 2855 if (ElementSize != 1) { 2856 if (ElementSize.isPowerOf2()) { 2857 unsigned Amt = ElementSize.logBase2(); 2858 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2859 N.getValueType(), IdxN, 2860 DAG.getConstant(Amt, TLI.getPointerTy())); 2861 } else { 2862 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2863 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2864 N.getValueType(), IdxN, Scale); 2865 } 2866 } 2867 2868 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2869 N.getValueType(), N, IdxN); 2870 } 2871 } 2872 2873 setValue(&I, N); 2874 } 2875 2876 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2877 // If this is a fixed sized alloca in the entry block of the function, 2878 // allocate it statically on the stack. 2879 if (FuncInfo.StaticAllocaMap.count(&I)) 2880 return; // getValue will auto-populate this. 2881 2882 const Type *Ty = I.getAllocatedType(); 2883 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2884 unsigned Align = 2885 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2886 I.getAlignment()); 2887 2888 SDValue AllocSize = getValue(I.getArraySize()); 2889 2890 EVT IntPtr = TLI.getPointerTy(); 2891 if (AllocSize.getValueType() != IntPtr) 2892 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2893 2894 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2895 AllocSize, 2896 DAG.getConstant(TySize, IntPtr)); 2897 2898 // Handle alignment. If the requested alignment is less than or equal to 2899 // the stack alignment, ignore it. If the size is greater than or equal to 2900 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2901 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2902 if (Align <= StackAlign) 2903 Align = 0; 2904 2905 // Round the size of the allocation up to the stack alignment size 2906 // by add SA-1 to the size. 2907 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2908 AllocSize.getValueType(), AllocSize, 2909 DAG.getIntPtrConstant(StackAlign-1)); 2910 2911 // Mask out the low bits for alignment purposes. 2912 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2913 AllocSize.getValueType(), AllocSize, 2914 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2915 2916 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2917 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2918 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2919 VTs, Ops, 3); 2920 setValue(&I, DSA); 2921 DAG.setRoot(DSA.getValue(1)); 2922 2923 // Inform the Frame Information that we have just allocated a variable-sized 2924 // object. 2925 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 2926 } 2927 2928 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2929 const Value *SV = I.getOperand(0); 2930 SDValue Ptr = getValue(SV); 2931 2932 const Type *Ty = I.getType(); 2933 2934 bool isVolatile = I.isVolatile(); 2935 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2936 unsigned Alignment = I.getAlignment(); 2937 2938 SmallVector<EVT, 4> ValueVTs; 2939 SmallVector<uint64_t, 4> Offsets; 2940 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2941 unsigned NumValues = ValueVTs.size(); 2942 if (NumValues == 0) 2943 return; 2944 2945 SDValue Root; 2946 bool ConstantMemory = false; 2947 if (I.isVolatile()) 2948 // Serialize volatile loads with other side effects. 2949 Root = getRoot(); 2950 else if (AA->pointsToConstantMemory(SV)) { 2951 // Do not serialize (non-volatile) loads of constant memory with anything. 2952 Root = DAG.getEntryNode(); 2953 ConstantMemory = true; 2954 } else { 2955 // Do not serialize non-volatile loads against each other. 2956 Root = DAG.getRoot(); 2957 } 2958 2959 SmallVector<SDValue, 4> Values(NumValues); 2960 SmallVector<SDValue, 4> Chains(NumValues); 2961 EVT PtrVT = Ptr.getValueType(); 2962 for (unsigned i = 0; i != NumValues; ++i) { 2963 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2964 PtrVT, Ptr, 2965 DAG.getConstant(Offsets[i], PtrVT)); 2966 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2967 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2968 isNonTemporal, Alignment); 2969 2970 Values[i] = L; 2971 Chains[i] = L.getValue(1); 2972 } 2973 2974 if (!ConstantMemory) { 2975 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2976 MVT::Other, &Chains[0], NumValues); 2977 if (isVolatile) 2978 DAG.setRoot(Chain); 2979 else 2980 PendingLoads.push_back(Chain); 2981 } 2982 2983 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2984 DAG.getVTList(&ValueVTs[0], NumValues), 2985 &Values[0], NumValues)); 2986 } 2987 2988 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2989 const Value *SrcV = I.getOperand(0); 2990 const Value *PtrV = I.getOperand(1); 2991 2992 SmallVector<EVT, 4> ValueVTs; 2993 SmallVector<uint64_t, 4> Offsets; 2994 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2995 unsigned NumValues = ValueVTs.size(); 2996 if (NumValues == 0) 2997 return; 2998 2999 // Get the lowered operands. Note that we do this after 3000 // checking if NumResults is zero, because with zero results 3001 // the operands won't have values in the map. 3002 SDValue Src = getValue(SrcV); 3003 SDValue Ptr = getValue(PtrV); 3004 3005 SDValue Root = getRoot(); 3006 SmallVector<SDValue, 4> Chains(NumValues); 3007 EVT PtrVT = Ptr.getValueType(); 3008 bool isVolatile = I.isVolatile(); 3009 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3010 unsigned Alignment = I.getAlignment(); 3011 3012 for (unsigned i = 0; i != NumValues; ++i) { 3013 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3014 DAG.getConstant(Offsets[i], PtrVT)); 3015 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 3016 SDValue(Src.getNode(), Src.getResNo() + i), 3017 Add, MachinePointerInfo(PtrV, Offsets[i]), 3018 isVolatile, isNonTemporal, Alignment); 3019 } 3020 3021 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3022 MVT::Other, &Chains[0], NumValues)); 3023 } 3024 3025 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3026 /// node. 3027 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3028 unsigned Intrinsic) { 3029 bool HasChain = !I.doesNotAccessMemory(); 3030 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3031 3032 // Build the operand list. 3033 SmallVector<SDValue, 8> Ops; 3034 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3035 if (OnlyLoad) { 3036 // We don't need to serialize loads against other loads. 3037 Ops.push_back(DAG.getRoot()); 3038 } else { 3039 Ops.push_back(getRoot()); 3040 } 3041 } 3042 3043 // Info is set by getTgtMemInstrinsic 3044 TargetLowering::IntrinsicInfo Info; 3045 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3046 3047 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3048 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3049 Info.opc == ISD::INTRINSIC_W_CHAIN) 3050 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3051 3052 // Add all operands of the call to the operand list. 3053 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3054 SDValue Op = getValue(I.getArgOperand(i)); 3055 assert(TLI.isTypeLegal(Op.getValueType()) && 3056 "Intrinsic uses a non-legal type?"); 3057 Ops.push_back(Op); 3058 } 3059 3060 SmallVector<EVT, 4> ValueVTs; 3061 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3062 #ifndef NDEBUG 3063 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3064 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3065 "Intrinsic uses a non-legal type?"); 3066 } 3067 #endif // NDEBUG 3068 3069 if (HasChain) 3070 ValueVTs.push_back(MVT::Other); 3071 3072 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3073 3074 // Create the node. 3075 SDValue Result; 3076 if (IsTgtIntrinsic) { 3077 // This is target intrinsic that touches memory 3078 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3079 VTs, &Ops[0], Ops.size(), 3080 Info.memVT, 3081 MachinePointerInfo(Info.ptrVal, Info.offset), 3082 Info.align, Info.vol, 3083 Info.readMem, Info.writeMem); 3084 } else if (!HasChain) { 3085 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3086 VTs, &Ops[0], Ops.size()); 3087 } else if (!I.getType()->isVoidTy()) { 3088 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3089 VTs, &Ops[0], Ops.size()); 3090 } else { 3091 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3092 VTs, &Ops[0], Ops.size()); 3093 } 3094 3095 if (HasChain) { 3096 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3097 if (OnlyLoad) 3098 PendingLoads.push_back(Chain); 3099 else 3100 DAG.setRoot(Chain); 3101 } 3102 3103 if (!I.getType()->isVoidTy()) { 3104 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3105 EVT VT = TLI.getValueType(PTy); 3106 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 3107 } 3108 3109 setValue(&I, Result); 3110 } 3111 } 3112 3113 /// GetSignificand - Get the significand and build it into a floating-point 3114 /// number with exponent of 1: 3115 /// 3116 /// Op = (Op & 0x007fffff) | 0x3f800000; 3117 /// 3118 /// where Op is the hexidecimal representation of floating point value. 3119 static SDValue 3120 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3121 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3122 DAG.getConstant(0x007fffff, MVT::i32)); 3123 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3124 DAG.getConstant(0x3f800000, MVT::i32)); 3125 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 3126 } 3127 3128 /// GetExponent - Get the exponent: 3129 /// 3130 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3131 /// 3132 /// where Op is the hexidecimal representation of floating point value. 3133 static SDValue 3134 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3135 DebugLoc dl) { 3136 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3137 DAG.getConstant(0x7f800000, MVT::i32)); 3138 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3139 DAG.getConstant(23, TLI.getPointerTy())); 3140 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3141 DAG.getConstant(127, MVT::i32)); 3142 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3143 } 3144 3145 /// getF32Constant - Get 32-bit floating point constant. 3146 static SDValue 3147 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3148 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3149 } 3150 3151 /// Inlined utility function to implement binary input atomic intrinsics for 3152 /// visitIntrinsicCall: I is a call instruction 3153 /// Op is the associated NodeType for I 3154 const char * 3155 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3156 ISD::NodeType Op) { 3157 SDValue Root = getRoot(); 3158 SDValue L = 3159 DAG.getAtomic(Op, getCurDebugLoc(), 3160 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3161 Root, 3162 getValue(I.getArgOperand(0)), 3163 getValue(I.getArgOperand(1)), 3164 I.getArgOperand(0)); 3165 setValue(&I, L); 3166 DAG.setRoot(L.getValue(1)); 3167 return 0; 3168 } 3169 3170 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3171 const char * 3172 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3173 SDValue Op1 = getValue(I.getArgOperand(0)); 3174 SDValue Op2 = getValue(I.getArgOperand(1)); 3175 3176 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3177 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3178 return 0; 3179 } 3180 3181 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3182 /// limited-precision mode. 3183 void 3184 SelectionDAGBuilder::visitExp(const CallInst &I) { 3185 SDValue result; 3186 DebugLoc dl = getCurDebugLoc(); 3187 3188 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3189 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3190 SDValue Op = getValue(I.getArgOperand(0)); 3191 3192 // Put the exponent in the right bit position for later addition to the 3193 // final result: 3194 // 3195 // #define LOG2OFe 1.4426950f 3196 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3197 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3198 getF32Constant(DAG, 0x3fb8aa3b)); 3199 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3200 3201 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3202 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3203 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3204 3205 // IntegerPartOfX <<= 23; 3206 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3207 DAG.getConstant(23, TLI.getPointerTy())); 3208 3209 if (LimitFloatPrecision <= 6) { 3210 // For floating-point precision of 6: 3211 // 3212 // TwoToFractionalPartOfX = 3213 // 0.997535578f + 3214 // (0.735607626f + 0.252464424f * x) * x; 3215 // 3216 // error 0.0144103317, which is 6 bits 3217 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3218 getF32Constant(DAG, 0x3e814304)); 3219 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3220 getF32Constant(DAG, 0x3f3c50c8)); 3221 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3222 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3223 getF32Constant(DAG, 0x3f7f5e7e)); 3224 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3225 3226 // Add the exponent into the result in integer domain. 3227 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3228 TwoToFracPartOfX, IntegerPartOfX); 3229 3230 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3231 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3232 // For floating-point precision of 12: 3233 // 3234 // TwoToFractionalPartOfX = 3235 // 0.999892986f + 3236 // (0.696457318f + 3237 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3238 // 3239 // 0.000107046256 error, which is 13 to 14 bits 3240 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3241 getF32Constant(DAG, 0x3da235e3)); 3242 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3243 getF32Constant(DAG, 0x3e65b8f3)); 3244 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3245 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3246 getF32Constant(DAG, 0x3f324b07)); 3247 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3248 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3249 getF32Constant(DAG, 0x3f7ff8fd)); 3250 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3251 3252 // Add the exponent into the result in integer domain. 3253 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3254 TwoToFracPartOfX, IntegerPartOfX); 3255 3256 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3257 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3258 // For floating-point precision of 18: 3259 // 3260 // TwoToFractionalPartOfX = 3261 // 0.999999982f + 3262 // (0.693148872f + 3263 // (0.240227044f + 3264 // (0.554906021e-1f + 3265 // (0.961591928e-2f + 3266 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3267 // 3268 // error 2.47208000*10^(-7), which is better than 18 bits 3269 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3270 getF32Constant(DAG, 0x3924b03e)); 3271 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3272 getF32Constant(DAG, 0x3ab24b87)); 3273 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3274 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3275 getF32Constant(DAG, 0x3c1d8c17)); 3276 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3277 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3278 getF32Constant(DAG, 0x3d634a1d)); 3279 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3280 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3281 getF32Constant(DAG, 0x3e75fe14)); 3282 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3283 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3284 getF32Constant(DAG, 0x3f317234)); 3285 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3286 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3287 getF32Constant(DAG, 0x3f800000)); 3288 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3289 MVT::i32, t13); 3290 3291 // Add the exponent into the result in integer domain. 3292 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3293 TwoToFracPartOfX, IntegerPartOfX); 3294 3295 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3296 } 3297 } else { 3298 // No special expansion. 3299 result = DAG.getNode(ISD::FEXP, dl, 3300 getValue(I.getArgOperand(0)).getValueType(), 3301 getValue(I.getArgOperand(0))); 3302 } 3303 3304 setValue(&I, result); 3305 } 3306 3307 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3308 /// limited-precision mode. 3309 void 3310 SelectionDAGBuilder::visitLog(const CallInst &I) { 3311 SDValue result; 3312 DebugLoc dl = getCurDebugLoc(); 3313 3314 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3315 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3316 SDValue Op = getValue(I.getArgOperand(0)); 3317 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3318 3319 // Scale the exponent by log(2) [0.69314718f]. 3320 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3321 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3322 getF32Constant(DAG, 0x3f317218)); 3323 3324 // Get the significand and build it into a floating-point number with 3325 // exponent of 1. 3326 SDValue X = GetSignificand(DAG, Op1, dl); 3327 3328 if (LimitFloatPrecision <= 6) { 3329 // For floating-point precision of 6: 3330 // 3331 // LogofMantissa = 3332 // -1.1609546f + 3333 // (1.4034025f - 0.23903021f * x) * x; 3334 // 3335 // error 0.0034276066, which is better than 8 bits 3336 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3337 getF32Constant(DAG, 0xbe74c456)); 3338 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3339 getF32Constant(DAG, 0x3fb3a2b1)); 3340 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3341 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3342 getF32Constant(DAG, 0x3f949a29)); 3343 3344 result = DAG.getNode(ISD::FADD, dl, 3345 MVT::f32, LogOfExponent, LogOfMantissa); 3346 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3347 // For floating-point precision of 12: 3348 // 3349 // LogOfMantissa = 3350 // -1.7417939f + 3351 // (2.8212026f + 3352 // (-1.4699568f + 3353 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3354 // 3355 // error 0.000061011436, which is 14 bits 3356 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3357 getF32Constant(DAG, 0xbd67b6d6)); 3358 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3359 getF32Constant(DAG, 0x3ee4f4b8)); 3360 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3361 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3362 getF32Constant(DAG, 0x3fbc278b)); 3363 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3364 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3365 getF32Constant(DAG, 0x40348e95)); 3366 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3367 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3368 getF32Constant(DAG, 0x3fdef31a)); 3369 3370 result = DAG.getNode(ISD::FADD, dl, 3371 MVT::f32, LogOfExponent, LogOfMantissa); 3372 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3373 // For floating-point precision of 18: 3374 // 3375 // LogOfMantissa = 3376 // -2.1072184f + 3377 // (4.2372794f + 3378 // (-3.7029485f + 3379 // (2.2781945f + 3380 // (-0.87823314f + 3381 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3382 // 3383 // error 0.0000023660568, which is better than 18 bits 3384 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3385 getF32Constant(DAG, 0xbc91e5ac)); 3386 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3387 getF32Constant(DAG, 0x3e4350aa)); 3388 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3389 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3390 getF32Constant(DAG, 0x3f60d3e3)); 3391 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3392 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3393 getF32Constant(DAG, 0x4011cdf0)); 3394 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3395 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3396 getF32Constant(DAG, 0x406cfd1c)); 3397 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3398 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3399 getF32Constant(DAG, 0x408797cb)); 3400 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3401 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3402 getF32Constant(DAG, 0x4006dcab)); 3403 3404 result = DAG.getNode(ISD::FADD, dl, 3405 MVT::f32, LogOfExponent, LogOfMantissa); 3406 } 3407 } else { 3408 // No special expansion. 3409 result = DAG.getNode(ISD::FLOG, dl, 3410 getValue(I.getArgOperand(0)).getValueType(), 3411 getValue(I.getArgOperand(0))); 3412 } 3413 3414 setValue(&I, result); 3415 } 3416 3417 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3418 /// limited-precision mode. 3419 void 3420 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3421 SDValue result; 3422 DebugLoc dl = getCurDebugLoc(); 3423 3424 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3425 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3426 SDValue Op = getValue(I.getArgOperand(0)); 3427 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3428 3429 // Get the exponent. 3430 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3431 3432 // Get the significand and build it into a floating-point number with 3433 // exponent of 1. 3434 SDValue X = GetSignificand(DAG, Op1, dl); 3435 3436 // Different possible minimax approximations of significand in 3437 // floating-point for various degrees of accuracy over [1,2]. 3438 if (LimitFloatPrecision <= 6) { 3439 // For floating-point precision of 6: 3440 // 3441 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3442 // 3443 // error 0.0049451742, which is more than 7 bits 3444 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3445 getF32Constant(DAG, 0xbeb08fe0)); 3446 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3447 getF32Constant(DAG, 0x40019463)); 3448 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3449 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3450 getF32Constant(DAG, 0x3fd6633d)); 3451 3452 result = DAG.getNode(ISD::FADD, dl, 3453 MVT::f32, LogOfExponent, Log2ofMantissa); 3454 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3455 // For floating-point precision of 12: 3456 // 3457 // Log2ofMantissa = 3458 // -2.51285454f + 3459 // (4.07009056f + 3460 // (-2.12067489f + 3461 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3462 // 3463 // error 0.0000876136000, which is better than 13 bits 3464 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3465 getF32Constant(DAG, 0xbda7262e)); 3466 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3467 getF32Constant(DAG, 0x3f25280b)); 3468 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3469 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3470 getF32Constant(DAG, 0x4007b923)); 3471 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3472 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3473 getF32Constant(DAG, 0x40823e2f)); 3474 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3475 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3476 getF32Constant(DAG, 0x4020d29c)); 3477 3478 result = DAG.getNode(ISD::FADD, dl, 3479 MVT::f32, LogOfExponent, Log2ofMantissa); 3480 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3481 // For floating-point precision of 18: 3482 // 3483 // Log2ofMantissa = 3484 // -3.0400495f + 3485 // (6.1129976f + 3486 // (-5.3420409f + 3487 // (3.2865683f + 3488 // (-1.2669343f + 3489 // (0.27515199f - 3490 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3491 // 3492 // error 0.0000018516, which is better than 18 bits 3493 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3494 getF32Constant(DAG, 0xbcd2769e)); 3495 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3496 getF32Constant(DAG, 0x3e8ce0b9)); 3497 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3498 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3499 getF32Constant(DAG, 0x3fa22ae7)); 3500 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3501 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3502 getF32Constant(DAG, 0x40525723)); 3503 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3504 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3505 getF32Constant(DAG, 0x40aaf200)); 3506 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3507 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3508 getF32Constant(DAG, 0x40c39dad)); 3509 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3510 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3511 getF32Constant(DAG, 0x4042902c)); 3512 3513 result = DAG.getNode(ISD::FADD, dl, 3514 MVT::f32, LogOfExponent, Log2ofMantissa); 3515 } 3516 } else { 3517 // No special expansion. 3518 result = DAG.getNode(ISD::FLOG2, dl, 3519 getValue(I.getArgOperand(0)).getValueType(), 3520 getValue(I.getArgOperand(0))); 3521 } 3522 3523 setValue(&I, result); 3524 } 3525 3526 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3527 /// limited-precision mode. 3528 void 3529 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3530 SDValue result; 3531 DebugLoc dl = getCurDebugLoc(); 3532 3533 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3534 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3535 SDValue Op = getValue(I.getArgOperand(0)); 3536 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3537 3538 // Scale the exponent by log10(2) [0.30102999f]. 3539 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3540 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3541 getF32Constant(DAG, 0x3e9a209a)); 3542 3543 // Get the significand and build it into a floating-point number with 3544 // exponent of 1. 3545 SDValue X = GetSignificand(DAG, Op1, dl); 3546 3547 if (LimitFloatPrecision <= 6) { 3548 // For floating-point precision of 6: 3549 // 3550 // Log10ofMantissa = 3551 // -0.50419619f + 3552 // (0.60948995f - 0.10380950f * x) * x; 3553 // 3554 // error 0.0014886165, which is 6 bits 3555 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3556 getF32Constant(DAG, 0xbdd49a13)); 3557 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3558 getF32Constant(DAG, 0x3f1c0789)); 3559 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3560 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3561 getF32Constant(DAG, 0x3f011300)); 3562 3563 result = DAG.getNode(ISD::FADD, dl, 3564 MVT::f32, LogOfExponent, Log10ofMantissa); 3565 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3566 // For floating-point precision of 12: 3567 // 3568 // Log10ofMantissa = 3569 // -0.64831180f + 3570 // (0.91751397f + 3571 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3572 // 3573 // error 0.00019228036, which is better than 12 bits 3574 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3575 getF32Constant(DAG, 0x3d431f31)); 3576 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3577 getF32Constant(DAG, 0x3ea21fb2)); 3578 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3579 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3580 getF32Constant(DAG, 0x3f6ae232)); 3581 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3582 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3583 getF32Constant(DAG, 0x3f25f7c3)); 3584 3585 result = DAG.getNode(ISD::FADD, dl, 3586 MVT::f32, LogOfExponent, Log10ofMantissa); 3587 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3588 // For floating-point precision of 18: 3589 // 3590 // Log10ofMantissa = 3591 // -0.84299375f + 3592 // (1.5327582f + 3593 // (-1.0688956f + 3594 // (0.49102474f + 3595 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3596 // 3597 // error 0.0000037995730, which is better than 18 bits 3598 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3599 getF32Constant(DAG, 0x3c5d51ce)); 3600 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3601 getF32Constant(DAG, 0x3e00685a)); 3602 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3603 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3604 getF32Constant(DAG, 0x3efb6798)); 3605 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3606 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3607 getF32Constant(DAG, 0x3f88d192)); 3608 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3609 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3610 getF32Constant(DAG, 0x3fc4316c)); 3611 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3612 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3613 getF32Constant(DAG, 0x3f57ce70)); 3614 3615 result = DAG.getNode(ISD::FADD, dl, 3616 MVT::f32, LogOfExponent, Log10ofMantissa); 3617 } 3618 } else { 3619 // No special expansion. 3620 result = DAG.getNode(ISD::FLOG10, dl, 3621 getValue(I.getArgOperand(0)).getValueType(), 3622 getValue(I.getArgOperand(0))); 3623 } 3624 3625 setValue(&I, result); 3626 } 3627 3628 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3629 /// limited-precision mode. 3630 void 3631 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3632 SDValue result; 3633 DebugLoc dl = getCurDebugLoc(); 3634 3635 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3636 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3637 SDValue Op = getValue(I.getArgOperand(0)); 3638 3639 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3640 3641 // FractionalPartOfX = x - (float)IntegerPartOfX; 3642 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3643 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3644 3645 // IntegerPartOfX <<= 23; 3646 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3647 DAG.getConstant(23, TLI.getPointerTy())); 3648 3649 if (LimitFloatPrecision <= 6) { 3650 // For floating-point precision of 6: 3651 // 3652 // TwoToFractionalPartOfX = 3653 // 0.997535578f + 3654 // (0.735607626f + 0.252464424f * x) * x; 3655 // 3656 // error 0.0144103317, which is 6 bits 3657 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3658 getF32Constant(DAG, 0x3e814304)); 3659 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3660 getF32Constant(DAG, 0x3f3c50c8)); 3661 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3662 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3663 getF32Constant(DAG, 0x3f7f5e7e)); 3664 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3665 SDValue TwoToFractionalPartOfX = 3666 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3667 3668 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3669 MVT::f32, TwoToFractionalPartOfX); 3670 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3671 // For floating-point precision of 12: 3672 // 3673 // TwoToFractionalPartOfX = 3674 // 0.999892986f + 3675 // (0.696457318f + 3676 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3677 // 3678 // error 0.000107046256, which is 13 to 14 bits 3679 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3680 getF32Constant(DAG, 0x3da235e3)); 3681 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3682 getF32Constant(DAG, 0x3e65b8f3)); 3683 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3684 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3685 getF32Constant(DAG, 0x3f324b07)); 3686 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3687 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3688 getF32Constant(DAG, 0x3f7ff8fd)); 3689 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3690 SDValue TwoToFractionalPartOfX = 3691 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3692 3693 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3694 MVT::f32, TwoToFractionalPartOfX); 3695 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3696 // For floating-point precision of 18: 3697 // 3698 // TwoToFractionalPartOfX = 3699 // 0.999999982f + 3700 // (0.693148872f + 3701 // (0.240227044f + 3702 // (0.554906021e-1f + 3703 // (0.961591928e-2f + 3704 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3705 // error 2.47208000*10^(-7), which is better than 18 bits 3706 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3707 getF32Constant(DAG, 0x3924b03e)); 3708 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3709 getF32Constant(DAG, 0x3ab24b87)); 3710 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3711 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3712 getF32Constant(DAG, 0x3c1d8c17)); 3713 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3714 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3715 getF32Constant(DAG, 0x3d634a1d)); 3716 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3717 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3718 getF32Constant(DAG, 0x3e75fe14)); 3719 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3720 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3721 getF32Constant(DAG, 0x3f317234)); 3722 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3723 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3724 getF32Constant(DAG, 0x3f800000)); 3725 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3726 SDValue TwoToFractionalPartOfX = 3727 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3728 3729 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3730 MVT::f32, TwoToFractionalPartOfX); 3731 } 3732 } else { 3733 // No special expansion. 3734 result = DAG.getNode(ISD::FEXP2, dl, 3735 getValue(I.getArgOperand(0)).getValueType(), 3736 getValue(I.getArgOperand(0))); 3737 } 3738 3739 setValue(&I, result); 3740 } 3741 3742 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3743 /// limited-precision mode with x == 10.0f. 3744 void 3745 SelectionDAGBuilder::visitPow(const CallInst &I) { 3746 SDValue result; 3747 const Value *Val = I.getArgOperand(0); 3748 DebugLoc dl = getCurDebugLoc(); 3749 bool IsExp10 = false; 3750 3751 if (getValue(Val).getValueType() == MVT::f32 && 3752 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3753 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3754 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3755 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3756 APFloat Ten(10.0f); 3757 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3758 } 3759 } 3760 } 3761 3762 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3763 SDValue Op = getValue(I.getArgOperand(1)); 3764 3765 // Put the exponent in the right bit position for later addition to the 3766 // final result: 3767 // 3768 // #define LOG2OF10 3.3219281f 3769 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3770 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3771 getF32Constant(DAG, 0x40549a78)); 3772 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3773 3774 // FractionalPartOfX = x - (float)IntegerPartOfX; 3775 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3776 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3777 3778 // IntegerPartOfX <<= 23; 3779 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3780 DAG.getConstant(23, TLI.getPointerTy())); 3781 3782 if (LimitFloatPrecision <= 6) { 3783 // For floating-point precision of 6: 3784 // 3785 // twoToFractionalPartOfX = 3786 // 0.997535578f + 3787 // (0.735607626f + 0.252464424f * x) * x; 3788 // 3789 // error 0.0144103317, which is 6 bits 3790 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3791 getF32Constant(DAG, 0x3e814304)); 3792 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3793 getF32Constant(DAG, 0x3f3c50c8)); 3794 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3795 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3796 getF32Constant(DAG, 0x3f7f5e7e)); 3797 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3798 SDValue TwoToFractionalPartOfX = 3799 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3800 3801 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3802 MVT::f32, TwoToFractionalPartOfX); 3803 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3804 // For floating-point precision of 12: 3805 // 3806 // TwoToFractionalPartOfX = 3807 // 0.999892986f + 3808 // (0.696457318f + 3809 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3810 // 3811 // error 0.000107046256, which is 13 to 14 bits 3812 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3813 getF32Constant(DAG, 0x3da235e3)); 3814 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3815 getF32Constant(DAG, 0x3e65b8f3)); 3816 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3817 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3818 getF32Constant(DAG, 0x3f324b07)); 3819 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3820 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3821 getF32Constant(DAG, 0x3f7ff8fd)); 3822 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3823 SDValue TwoToFractionalPartOfX = 3824 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3825 3826 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3827 MVT::f32, TwoToFractionalPartOfX); 3828 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3829 // For floating-point precision of 18: 3830 // 3831 // TwoToFractionalPartOfX = 3832 // 0.999999982f + 3833 // (0.693148872f + 3834 // (0.240227044f + 3835 // (0.554906021e-1f + 3836 // (0.961591928e-2f + 3837 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3838 // error 2.47208000*10^(-7), which is better than 18 bits 3839 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3840 getF32Constant(DAG, 0x3924b03e)); 3841 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3842 getF32Constant(DAG, 0x3ab24b87)); 3843 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3844 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3845 getF32Constant(DAG, 0x3c1d8c17)); 3846 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3847 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3848 getF32Constant(DAG, 0x3d634a1d)); 3849 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3850 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3851 getF32Constant(DAG, 0x3e75fe14)); 3852 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3853 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3854 getF32Constant(DAG, 0x3f317234)); 3855 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3856 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3857 getF32Constant(DAG, 0x3f800000)); 3858 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3859 SDValue TwoToFractionalPartOfX = 3860 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3861 3862 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3863 MVT::f32, TwoToFractionalPartOfX); 3864 } 3865 } else { 3866 // No special expansion. 3867 result = DAG.getNode(ISD::FPOW, dl, 3868 getValue(I.getArgOperand(0)).getValueType(), 3869 getValue(I.getArgOperand(0)), 3870 getValue(I.getArgOperand(1))); 3871 } 3872 3873 setValue(&I, result); 3874 } 3875 3876 3877 /// ExpandPowI - Expand a llvm.powi intrinsic. 3878 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3879 SelectionDAG &DAG) { 3880 // If RHS is a constant, we can expand this out to a multiplication tree, 3881 // otherwise we end up lowering to a call to __powidf2 (for example). When 3882 // optimizing for size, we only want to do this if the expansion would produce 3883 // a small number of multiplies, otherwise we do the full expansion. 3884 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3885 // Get the exponent as a positive value. 3886 unsigned Val = RHSC->getSExtValue(); 3887 if ((int)Val < 0) Val = -Val; 3888 3889 // powi(x, 0) -> 1.0 3890 if (Val == 0) 3891 return DAG.getConstantFP(1.0, LHS.getValueType()); 3892 3893 const Function *F = DAG.getMachineFunction().getFunction(); 3894 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3895 // If optimizing for size, don't insert too many multiplies. This 3896 // inserts up to 5 multiplies. 3897 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3898 // We use the simple binary decomposition method to generate the multiply 3899 // sequence. There are more optimal ways to do this (for example, 3900 // powi(x,15) generates one more multiply than it should), but this has 3901 // the benefit of being both really simple and much better than a libcall. 3902 SDValue Res; // Logically starts equal to 1.0 3903 SDValue CurSquare = LHS; 3904 while (Val) { 3905 if (Val & 1) { 3906 if (Res.getNode()) 3907 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3908 else 3909 Res = CurSquare; // 1.0*CurSquare. 3910 } 3911 3912 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3913 CurSquare, CurSquare); 3914 Val >>= 1; 3915 } 3916 3917 // If the original was negative, invert the result, producing 1/(x*x*x). 3918 if (RHSC->getSExtValue() < 0) 3919 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3920 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3921 return Res; 3922 } 3923 } 3924 3925 // Otherwise, expand to a libcall. 3926 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3927 } 3928 3929 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3930 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3931 /// At the end of instruction selection, they will be inserted to the entry BB. 3932 bool 3933 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 3934 int64_t Offset, 3935 const SDValue &N) { 3936 const Argument *Arg = dyn_cast<Argument>(V); 3937 if (!Arg) 3938 return false; 3939 3940 MachineFunction &MF = DAG.getMachineFunction(); 3941 // Ignore inlined function arguments here. 3942 DIVariable DV(Variable); 3943 if (DV.isInlinedFnArgument(MF.getFunction())) 3944 return false; 3945 3946 MachineBasicBlock *MBB = FuncInfo.MBB; 3947 if (MBB != &MF.front()) 3948 return false; 3949 3950 unsigned Reg = 0; 3951 if (Arg->hasByValAttr()) { 3952 // Byval arguments' frame index is recorded during argument lowering. 3953 // Use this info directly. 3954 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 3955 Reg = TRI->getFrameRegister(MF); 3956 Offset = FuncInfo.getByValArgumentFrameIndex(Arg); 3957 // If byval argument ofset is not recorded then ignore this. 3958 if (!Offset) 3959 Reg = 0; 3960 } 3961 3962 if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) { 3963 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3964 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3965 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3966 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3967 if (PR) 3968 Reg = PR; 3969 } 3970 } 3971 3972 if (!Reg) { 3973 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3974 if (VMI == FuncInfo.ValueMap.end()) 3975 return false; 3976 Reg = VMI->second; 3977 } 3978 3979 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 3980 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 3981 TII->get(TargetOpcode::DBG_VALUE)) 3982 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 3983 FuncInfo.ArgDbgValues.push_back(&*MIB); 3984 return true; 3985 } 3986 3987 // VisualStudio defines setjmp as _setjmp 3988 #if defined(_MSC_VER) && defined(setjmp) && \ 3989 !defined(setjmp_undefined_for_msvc) 3990 # pragma push_macro("setjmp") 3991 # undef setjmp 3992 # define setjmp_undefined_for_msvc 3993 #endif 3994 3995 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3996 /// we want to emit this as a call to a named external function, return the name 3997 /// otherwise lower it and return null. 3998 const char * 3999 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4000 DebugLoc dl = getCurDebugLoc(); 4001 SDValue Res; 4002 4003 switch (Intrinsic) { 4004 default: 4005 // By default, turn this into a target intrinsic node. 4006 visitTargetIntrinsic(I, Intrinsic); 4007 return 0; 4008 case Intrinsic::vastart: visitVAStart(I); return 0; 4009 case Intrinsic::vaend: visitVAEnd(I); return 0; 4010 case Intrinsic::vacopy: visitVACopy(I); return 0; 4011 case Intrinsic::returnaddress: 4012 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4013 getValue(I.getArgOperand(0)))); 4014 return 0; 4015 case Intrinsic::frameaddress: 4016 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4017 getValue(I.getArgOperand(0)))); 4018 return 0; 4019 case Intrinsic::setjmp: 4020 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4021 case Intrinsic::longjmp: 4022 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4023 case Intrinsic::memcpy: { 4024 // Assert for address < 256 since we support only user defined address 4025 // spaces. 4026 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4027 < 256 && 4028 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4029 < 256 && 4030 "Unknown address space"); 4031 SDValue Op1 = getValue(I.getArgOperand(0)); 4032 SDValue Op2 = getValue(I.getArgOperand(1)); 4033 SDValue Op3 = getValue(I.getArgOperand(2)); 4034 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4035 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4036 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4037 MachinePointerInfo(I.getArgOperand(0)), 4038 MachinePointerInfo(I.getArgOperand(1)))); 4039 return 0; 4040 } 4041 case Intrinsic::memset: { 4042 // Assert for address < 256 since we support only user defined address 4043 // spaces. 4044 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4045 < 256 && 4046 "Unknown address space"); 4047 SDValue Op1 = getValue(I.getArgOperand(0)); 4048 SDValue Op2 = getValue(I.getArgOperand(1)); 4049 SDValue Op3 = getValue(I.getArgOperand(2)); 4050 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4051 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4052 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4053 MachinePointerInfo(I.getArgOperand(0)))); 4054 return 0; 4055 } 4056 case Intrinsic::memmove: { 4057 // Assert for address < 256 since we support only user defined address 4058 // spaces. 4059 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4060 < 256 && 4061 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4062 < 256 && 4063 "Unknown address space"); 4064 SDValue Op1 = getValue(I.getArgOperand(0)); 4065 SDValue Op2 = getValue(I.getArgOperand(1)); 4066 SDValue Op3 = getValue(I.getArgOperand(2)); 4067 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4068 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4069 4070 // If the source and destination are known to not be aliases, we can 4071 // lower memmove as memcpy. 4072 uint64_t Size = -1ULL; 4073 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 4074 Size = C->getZExtValue(); 4075 if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) == 4076 AliasAnalysis::NoAlias) { 4077 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4078 false, MachinePointerInfo(I.getArgOperand(0)), 4079 MachinePointerInfo(I.getArgOperand(1)))); 4080 return 0; 4081 } 4082 4083 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4084 MachinePointerInfo(I.getArgOperand(0)), 4085 MachinePointerInfo(I.getArgOperand(1)))); 4086 return 0; 4087 } 4088 case Intrinsic::dbg_declare: { 4089 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4090 MDNode *Variable = DI.getVariable(); 4091 const Value *Address = DI.getAddress(); 4092 if (!Address || !DIVariable(DI.getVariable()).Verify()) 4093 return 0; 4094 4095 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4096 // but do not always have a corresponding SDNode built. The SDNodeOrder 4097 // absolute, but not relative, values are different depending on whether 4098 // debug info exists. 4099 ++SDNodeOrder; 4100 4101 // Check if address has undef value. 4102 if (isa<UndefValue>(Address) || 4103 (Address->use_empty() && !isa<Argument>(Address))) { 4104 SDDbgValue*SDV = 4105 DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4106 0, dl, SDNodeOrder); 4107 DAG.AddDbgValue(SDV, 0, false); 4108 return 0; 4109 } 4110 4111 SDValue &N = NodeMap[Address]; 4112 if (!N.getNode() && isa<Argument>(Address)) 4113 // Check unused arguments map. 4114 N = UnusedArgNodeMap[Address]; 4115 SDDbgValue *SDV; 4116 if (N.getNode()) { 4117 // Parameters are handled specially. 4118 bool isParameter = 4119 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4120 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4121 Address = BCI->getOperand(0); 4122 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4123 4124 if (isParameter && !AI) { 4125 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4126 if (FINode) 4127 // Byval parameter. We have a frame index at this point. 4128 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4129 0, dl, SDNodeOrder); 4130 else 4131 // Can't do anything with other non-AI cases yet. This might be a 4132 // parameter of a callee function that got inlined, for example. 4133 return 0; 4134 } else if (AI) 4135 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4136 0, dl, SDNodeOrder); 4137 else 4138 // Can't do anything with other non-AI cases yet. 4139 return 0; 4140 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4141 } else { 4142 // If Address is an argument then try to emit its dbg value using 4143 // virtual register info from the FuncInfo.ValueMap. 4144 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4145 // If variable is pinned by a alloca in dominating bb then 4146 // use StaticAllocaMap. 4147 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4148 if (AI->getParent() != DI.getParent()) { 4149 DenseMap<const AllocaInst*, int>::iterator SI = 4150 FuncInfo.StaticAllocaMap.find(AI); 4151 if (SI != FuncInfo.StaticAllocaMap.end()) { 4152 SDV = DAG.getDbgValue(Variable, SI->second, 4153 0, dl, SDNodeOrder); 4154 DAG.AddDbgValue(SDV, 0, false); 4155 return 0; 4156 } 4157 } 4158 } 4159 // Otherwise add undef to help track missing debug info. 4160 SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4161 0, dl, SDNodeOrder); 4162 DAG.AddDbgValue(SDV, 0, false); 4163 } 4164 } 4165 return 0; 4166 } 4167 case Intrinsic::dbg_value: { 4168 const DbgValueInst &DI = cast<DbgValueInst>(I); 4169 if (!DIVariable(DI.getVariable()).Verify()) 4170 return 0; 4171 4172 MDNode *Variable = DI.getVariable(); 4173 uint64_t Offset = DI.getOffset(); 4174 const Value *V = DI.getValue(); 4175 if (!V) 4176 return 0; 4177 4178 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4179 // but do not always have a corresponding SDNode built. The SDNodeOrder 4180 // absolute, but not relative, values are different depending on whether 4181 // debug info exists. 4182 ++SDNodeOrder; 4183 SDDbgValue *SDV; 4184 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4185 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4186 DAG.AddDbgValue(SDV, 0, false); 4187 } else { 4188 // Do not use getValue() in here; we don't want to generate code at 4189 // this point if it hasn't been done yet. 4190 SDValue N = NodeMap[V]; 4191 if (!N.getNode() && isa<Argument>(V)) 4192 // Check unused arguments map. 4193 N = UnusedArgNodeMap[V]; 4194 if (N.getNode()) { 4195 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4196 SDV = DAG.getDbgValue(Variable, N.getNode(), 4197 N.getResNo(), Offset, dl, SDNodeOrder); 4198 DAG.AddDbgValue(SDV, N.getNode(), false); 4199 } 4200 } else if (isa<PHINode>(V) && !V->use_empty() ) { 4201 // Do not call getValue(V) yet, as we don't want to generate code. 4202 // Remember it for later. 4203 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4204 DanglingDebugInfoMap[V] = DDI; 4205 } else { 4206 // We may expand this to cover more cases. One case where we have no 4207 // data available is an unreferenced parameter; we need this fallback. 4208 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 4209 Offset, dl, SDNodeOrder); 4210 DAG.AddDbgValue(SDV, 0, false); 4211 } 4212 } 4213 4214 // Build a debug info table entry. 4215 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4216 V = BCI->getOperand(0); 4217 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4218 // Don't handle byval struct arguments or VLAs, for example. 4219 if (!AI) 4220 return 0; 4221 DenseMap<const AllocaInst*, int>::iterator SI = 4222 FuncInfo.StaticAllocaMap.find(AI); 4223 if (SI == FuncInfo.StaticAllocaMap.end()) 4224 return 0; // VLAs. 4225 int FI = SI->second; 4226 4227 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4228 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4229 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4230 return 0; 4231 } 4232 case Intrinsic::eh_exception: { 4233 // Insert the EXCEPTIONADDR instruction. 4234 assert(FuncInfo.MBB->isLandingPad() && 4235 "Call to eh.exception not in landing pad!"); 4236 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4237 SDValue Ops[1]; 4238 Ops[0] = DAG.getRoot(); 4239 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4240 setValue(&I, Op); 4241 DAG.setRoot(Op.getValue(1)); 4242 return 0; 4243 } 4244 4245 case Intrinsic::eh_selector: { 4246 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4247 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4248 if (CallMBB->isLandingPad()) 4249 AddCatchInfo(I, &MMI, CallMBB); 4250 else { 4251 #ifndef NDEBUG 4252 FuncInfo.CatchInfoLost.insert(&I); 4253 #endif 4254 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4255 unsigned Reg = TLI.getExceptionSelectorRegister(); 4256 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4257 } 4258 4259 // Insert the EHSELECTION instruction. 4260 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4261 SDValue Ops[2]; 4262 Ops[0] = getValue(I.getArgOperand(0)); 4263 Ops[1] = getRoot(); 4264 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4265 DAG.setRoot(Op.getValue(1)); 4266 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4267 return 0; 4268 } 4269 4270 case Intrinsic::eh_typeid_for: { 4271 // Find the type id for the given typeinfo. 4272 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4273 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4274 Res = DAG.getConstant(TypeID, MVT::i32); 4275 setValue(&I, Res); 4276 return 0; 4277 } 4278 4279 case Intrinsic::eh_return_i32: 4280 case Intrinsic::eh_return_i64: 4281 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4282 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4283 MVT::Other, 4284 getControlRoot(), 4285 getValue(I.getArgOperand(0)), 4286 getValue(I.getArgOperand(1)))); 4287 return 0; 4288 case Intrinsic::eh_unwind_init: 4289 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4290 return 0; 4291 case Intrinsic::eh_dwarf_cfa: { 4292 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4293 TLI.getPointerTy()); 4294 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4295 TLI.getPointerTy(), 4296 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4297 TLI.getPointerTy()), 4298 CfaArg); 4299 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4300 TLI.getPointerTy(), 4301 DAG.getConstant(0, TLI.getPointerTy())); 4302 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4303 FA, Offset)); 4304 return 0; 4305 } 4306 case Intrinsic::eh_sjlj_callsite: { 4307 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4308 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4309 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4310 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4311 4312 MMI.setCurrentCallSite(CI->getZExtValue()); 4313 return 0; 4314 } 4315 case Intrinsic::eh_sjlj_setjmp: { 4316 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4317 getValue(I.getArgOperand(0)))); 4318 return 0; 4319 } 4320 case Intrinsic::eh_sjlj_longjmp: { 4321 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4322 getRoot(), getValue(I.getArgOperand(0)))); 4323 return 0; 4324 } 4325 case Intrinsic::eh_sjlj_dispatch_setup: { 4326 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4327 getRoot(), getValue(I.getArgOperand(0)))); 4328 return 0; 4329 } 4330 4331 case Intrinsic::x86_mmx_pslli_w: 4332 case Intrinsic::x86_mmx_pslli_d: 4333 case Intrinsic::x86_mmx_pslli_q: 4334 case Intrinsic::x86_mmx_psrli_w: 4335 case Intrinsic::x86_mmx_psrli_d: 4336 case Intrinsic::x86_mmx_psrli_q: 4337 case Intrinsic::x86_mmx_psrai_w: 4338 case Intrinsic::x86_mmx_psrai_d: { 4339 SDValue ShAmt = getValue(I.getArgOperand(1)); 4340 if (isa<ConstantSDNode>(ShAmt)) { 4341 visitTargetIntrinsic(I, Intrinsic); 4342 return 0; 4343 } 4344 unsigned NewIntrinsic = 0; 4345 EVT ShAmtVT = MVT::v2i32; 4346 switch (Intrinsic) { 4347 case Intrinsic::x86_mmx_pslli_w: 4348 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4349 break; 4350 case Intrinsic::x86_mmx_pslli_d: 4351 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4352 break; 4353 case Intrinsic::x86_mmx_pslli_q: 4354 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4355 break; 4356 case Intrinsic::x86_mmx_psrli_w: 4357 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4358 break; 4359 case Intrinsic::x86_mmx_psrli_d: 4360 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4361 break; 4362 case Intrinsic::x86_mmx_psrli_q: 4363 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4364 break; 4365 case Intrinsic::x86_mmx_psrai_w: 4366 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4367 break; 4368 case Intrinsic::x86_mmx_psrai_d: 4369 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4370 break; 4371 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4372 } 4373 4374 // The vector shift intrinsics with scalars uses 32b shift amounts but 4375 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4376 // to be zero. 4377 // We must do this early because v2i32 is not a legal type. 4378 DebugLoc dl = getCurDebugLoc(); 4379 SDValue ShOps[2]; 4380 ShOps[0] = ShAmt; 4381 ShOps[1] = DAG.getConstant(0, MVT::i32); 4382 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4383 EVT DestVT = TLI.getValueType(I.getType()); 4384 ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, DestVT, ShAmt); 4385 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4386 DAG.getConstant(NewIntrinsic, MVT::i32), 4387 getValue(I.getArgOperand(0)), ShAmt); 4388 setValue(&I, Res); 4389 return 0; 4390 } 4391 case Intrinsic::convertff: 4392 case Intrinsic::convertfsi: 4393 case Intrinsic::convertfui: 4394 case Intrinsic::convertsif: 4395 case Intrinsic::convertuif: 4396 case Intrinsic::convertss: 4397 case Intrinsic::convertsu: 4398 case Intrinsic::convertus: 4399 case Intrinsic::convertuu: { 4400 ISD::CvtCode Code = ISD::CVT_INVALID; 4401 switch (Intrinsic) { 4402 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4403 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4404 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4405 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4406 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4407 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4408 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4409 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4410 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4411 } 4412 EVT DestVT = TLI.getValueType(I.getType()); 4413 const Value *Op1 = I.getArgOperand(0); 4414 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4415 DAG.getValueType(DestVT), 4416 DAG.getValueType(getValue(Op1).getValueType()), 4417 getValue(I.getArgOperand(1)), 4418 getValue(I.getArgOperand(2)), 4419 Code); 4420 setValue(&I, Res); 4421 return 0; 4422 } 4423 case Intrinsic::sqrt: 4424 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4425 getValue(I.getArgOperand(0)).getValueType(), 4426 getValue(I.getArgOperand(0)))); 4427 return 0; 4428 case Intrinsic::powi: 4429 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4430 getValue(I.getArgOperand(1)), DAG)); 4431 return 0; 4432 case Intrinsic::sin: 4433 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4434 getValue(I.getArgOperand(0)).getValueType(), 4435 getValue(I.getArgOperand(0)))); 4436 return 0; 4437 case Intrinsic::cos: 4438 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4439 getValue(I.getArgOperand(0)).getValueType(), 4440 getValue(I.getArgOperand(0)))); 4441 return 0; 4442 case Intrinsic::log: 4443 visitLog(I); 4444 return 0; 4445 case Intrinsic::log2: 4446 visitLog2(I); 4447 return 0; 4448 case Intrinsic::log10: 4449 visitLog10(I); 4450 return 0; 4451 case Intrinsic::exp: 4452 visitExp(I); 4453 return 0; 4454 case Intrinsic::exp2: 4455 visitExp2(I); 4456 return 0; 4457 case Intrinsic::pow: 4458 visitPow(I); 4459 return 0; 4460 case Intrinsic::convert_to_fp16: 4461 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4462 MVT::i16, getValue(I.getArgOperand(0)))); 4463 return 0; 4464 case Intrinsic::convert_from_fp16: 4465 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4466 MVT::f32, getValue(I.getArgOperand(0)))); 4467 return 0; 4468 case Intrinsic::pcmarker: { 4469 SDValue Tmp = getValue(I.getArgOperand(0)); 4470 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4471 return 0; 4472 } 4473 case Intrinsic::readcyclecounter: { 4474 SDValue Op = getRoot(); 4475 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4476 DAG.getVTList(MVT::i64, MVT::Other), 4477 &Op, 1); 4478 setValue(&I, Res); 4479 DAG.setRoot(Res.getValue(1)); 4480 return 0; 4481 } 4482 case Intrinsic::bswap: 4483 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4484 getValue(I.getArgOperand(0)).getValueType(), 4485 getValue(I.getArgOperand(0)))); 4486 return 0; 4487 case Intrinsic::cttz: { 4488 SDValue Arg = getValue(I.getArgOperand(0)); 4489 EVT Ty = Arg.getValueType(); 4490 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4491 return 0; 4492 } 4493 case Intrinsic::ctlz: { 4494 SDValue Arg = getValue(I.getArgOperand(0)); 4495 EVT Ty = Arg.getValueType(); 4496 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4497 return 0; 4498 } 4499 case Intrinsic::ctpop: { 4500 SDValue Arg = getValue(I.getArgOperand(0)); 4501 EVT Ty = Arg.getValueType(); 4502 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4503 return 0; 4504 } 4505 case Intrinsic::stacksave: { 4506 SDValue Op = getRoot(); 4507 Res = DAG.getNode(ISD::STACKSAVE, dl, 4508 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4509 setValue(&I, Res); 4510 DAG.setRoot(Res.getValue(1)); 4511 return 0; 4512 } 4513 case Intrinsic::stackrestore: { 4514 Res = getValue(I.getArgOperand(0)); 4515 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4516 return 0; 4517 } 4518 case Intrinsic::stackprotector: { 4519 // Emit code into the DAG to store the stack guard onto the stack. 4520 MachineFunction &MF = DAG.getMachineFunction(); 4521 MachineFrameInfo *MFI = MF.getFrameInfo(); 4522 EVT PtrTy = TLI.getPointerTy(); 4523 4524 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4525 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4526 4527 int FI = FuncInfo.StaticAllocaMap[Slot]; 4528 MFI->setStackProtectorIndex(FI); 4529 4530 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4531 4532 // Store the stack protector onto the stack. 4533 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4534 MachinePointerInfo::getFixedStack(FI), 4535 true, false, 0); 4536 setValue(&I, Res); 4537 DAG.setRoot(Res); 4538 return 0; 4539 } 4540 case Intrinsic::objectsize: { 4541 // If we don't know by now, we're never going to know. 4542 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4543 4544 assert(CI && "Non-constant type in __builtin_object_size?"); 4545 4546 SDValue Arg = getValue(I.getCalledValue()); 4547 EVT Ty = Arg.getValueType(); 4548 4549 if (CI->isZero()) 4550 Res = DAG.getConstant(-1ULL, Ty); 4551 else 4552 Res = DAG.getConstant(0, Ty); 4553 4554 setValue(&I, Res); 4555 return 0; 4556 } 4557 case Intrinsic::var_annotation: 4558 // Discard annotate attributes 4559 return 0; 4560 4561 case Intrinsic::init_trampoline: { 4562 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4563 4564 SDValue Ops[6]; 4565 Ops[0] = getRoot(); 4566 Ops[1] = getValue(I.getArgOperand(0)); 4567 Ops[2] = getValue(I.getArgOperand(1)); 4568 Ops[3] = getValue(I.getArgOperand(2)); 4569 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4570 Ops[5] = DAG.getSrcValue(F); 4571 4572 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4573 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4574 Ops, 6); 4575 4576 setValue(&I, Res); 4577 DAG.setRoot(Res.getValue(1)); 4578 return 0; 4579 } 4580 case Intrinsic::gcroot: 4581 if (GFI) { 4582 const Value *Alloca = I.getArgOperand(0); 4583 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4584 4585 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4586 GFI->addStackRoot(FI->getIndex(), TypeMap); 4587 } 4588 return 0; 4589 case Intrinsic::gcread: 4590 case Intrinsic::gcwrite: 4591 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4592 return 0; 4593 case Intrinsic::flt_rounds: 4594 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4595 return 0; 4596 case Intrinsic::trap: 4597 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4598 return 0; 4599 case Intrinsic::uadd_with_overflow: 4600 return implVisitAluOverflow(I, ISD::UADDO); 4601 case Intrinsic::sadd_with_overflow: 4602 return implVisitAluOverflow(I, ISD::SADDO); 4603 case Intrinsic::usub_with_overflow: 4604 return implVisitAluOverflow(I, ISD::USUBO); 4605 case Intrinsic::ssub_with_overflow: 4606 return implVisitAluOverflow(I, ISD::SSUBO); 4607 case Intrinsic::umul_with_overflow: 4608 return implVisitAluOverflow(I, ISD::UMULO); 4609 case Intrinsic::smul_with_overflow: 4610 return implVisitAluOverflow(I, ISD::SMULO); 4611 4612 case Intrinsic::prefetch: { 4613 SDValue Ops[4]; 4614 Ops[0] = getRoot(); 4615 Ops[1] = getValue(I.getArgOperand(0)); 4616 Ops[2] = getValue(I.getArgOperand(1)); 4617 Ops[3] = getValue(I.getArgOperand(2)); 4618 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4619 return 0; 4620 } 4621 4622 case Intrinsic::memory_barrier: { 4623 SDValue Ops[6]; 4624 Ops[0] = getRoot(); 4625 for (int x = 1; x < 6; ++x) 4626 Ops[x] = getValue(I.getArgOperand(x - 1)); 4627 4628 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4629 return 0; 4630 } 4631 case Intrinsic::atomic_cmp_swap: { 4632 SDValue Root = getRoot(); 4633 SDValue L = 4634 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4635 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4636 Root, 4637 getValue(I.getArgOperand(0)), 4638 getValue(I.getArgOperand(1)), 4639 getValue(I.getArgOperand(2)), 4640 MachinePointerInfo(I.getArgOperand(0))); 4641 setValue(&I, L); 4642 DAG.setRoot(L.getValue(1)); 4643 return 0; 4644 } 4645 case Intrinsic::atomic_load_add: 4646 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4647 case Intrinsic::atomic_load_sub: 4648 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4649 case Intrinsic::atomic_load_or: 4650 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4651 case Intrinsic::atomic_load_xor: 4652 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4653 case Intrinsic::atomic_load_and: 4654 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4655 case Intrinsic::atomic_load_nand: 4656 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4657 case Intrinsic::atomic_load_max: 4658 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4659 case Intrinsic::atomic_load_min: 4660 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4661 case Intrinsic::atomic_load_umin: 4662 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4663 case Intrinsic::atomic_load_umax: 4664 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4665 case Intrinsic::atomic_swap: 4666 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4667 4668 case Intrinsic::invariant_start: 4669 case Intrinsic::lifetime_start: 4670 // Discard region information. 4671 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4672 return 0; 4673 case Intrinsic::invariant_end: 4674 case Intrinsic::lifetime_end: 4675 // Discard region information. 4676 return 0; 4677 } 4678 } 4679 4680 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4681 bool isTailCall, 4682 MachineBasicBlock *LandingPad) { 4683 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4684 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4685 const Type *RetTy = FTy->getReturnType(); 4686 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4687 MCSymbol *BeginLabel = 0; 4688 4689 TargetLowering::ArgListTy Args; 4690 TargetLowering::ArgListEntry Entry; 4691 Args.reserve(CS.arg_size()); 4692 4693 // Check whether the function can return without sret-demotion. 4694 SmallVector<ISD::OutputArg, 4> Outs; 4695 SmallVector<uint64_t, 4> Offsets; 4696 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4697 Outs, TLI, &Offsets); 4698 4699 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4700 FTy->isVarArg(), Outs, FTy->getContext()); 4701 4702 SDValue DemoteStackSlot; 4703 int DemoteStackIdx = -100; 4704 4705 if (!CanLowerReturn) { 4706 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4707 FTy->getReturnType()); 4708 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4709 FTy->getReturnType()); 4710 MachineFunction &MF = DAG.getMachineFunction(); 4711 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4712 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4713 4714 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 4715 Entry.Node = DemoteStackSlot; 4716 Entry.Ty = StackSlotPtrType; 4717 Entry.isSExt = false; 4718 Entry.isZExt = false; 4719 Entry.isInReg = false; 4720 Entry.isSRet = true; 4721 Entry.isNest = false; 4722 Entry.isByVal = false; 4723 Entry.Alignment = Align; 4724 Args.push_back(Entry); 4725 RetTy = Type::getVoidTy(FTy->getContext()); 4726 } 4727 4728 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4729 i != e; ++i) { 4730 SDValue ArgNode = getValue(*i); 4731 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4732 4733 unsigned attrInd = i - CS.arg_begin() + 1; 4734 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4735 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4736 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4737 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4738 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4739 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4740 Entry.Alignment = CS.getParamAlignment(attrInd); 4741 Args.push_back(Entry); 4742 } 4743 4744 if (LandingPad) { 4745 // Insert a label before the invoke call to mark the try range. This can be 4746 // used to detect deletion of the invoke via the MachineModuleInfo. 4747 BeginLabel = MMI.getContext().CreateTempSymbol(); 4748 4749 // For SjLj, keep track of which landing pads go with which invokes 4750 // so as to maintain the ordering of pads in the LSDA. 4751 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4752 if (CallSiteIndex) { 4753 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4754 // Now that the call site is handled, stop tracking it. 4755 MMI.setCurrentCallSite(0); 4756 } 4757 4758 // Both PendingLoads and PendingExports must be flushed here; 4759 // this call might not return. 4760 (void)getRoot(); 4761 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4762 } 4763 4764 // Check if target-independent constraints permit a tail call here. 4765 // Target-dependent constraints are checked within TLI.LowerCallTo. 4766 if (isTailCall && 4767 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4768 isTailCall = false; 4769 4770 // If there's a possibility that fast-isel has already selected some amount 4771 // of the current basic block, don't emit a tail call. 4772 if (isTailCall && EnableFastISel) 4773 isTailCall = false; 4774 4775 std::pair<SDValue,SDValue> Result = 4776 TLI.LowerCallTo(getRoot(), RetTy, 4777 CS.paramHasAttr(0, Attribute::SExt), 4778 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4779 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4780 CS.getCallingConv(), 4781 isTailCall, 4782 !CS.getInstruction()->use_empty(), 4783 Callee, Args, DAG, getCurDebugLoc()); 4784 assert((isTailCall || Result.second.getNode()) && 4785 "Non-null chain expected with non-tail call!"); 4786 assert((Result.second.getNode() || !Result.first.getNode()) && 4787 "Null value expected with tail call!"); 4788 if (Result.first.getNode()) { 4789 setValue(CS.getInstruction(), Result.first); 4790 } else if (!CanLowerReturn && Result.second.getNode()) { 4791 // The instruction result is the result of loading from the 4792 // hidden sret parameter. 4793 SmallVector<EVT, 1> PVTs; 4794 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4795 4796 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4797 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4798 EVT PtrVT = PVTs[0]; 4799 unsigned NumValues = Outs.size(); 4800 SmallVector<SDValue, 4> Values(NumValues); 4801 SmallVector<SDValue, 4> Chains(NumValues); 4802 4803 for (unsigned i = 0; i < NumValues; ++i) { 4804 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4805 DemoteStackSlot, 4806 DAG.getConstant(Offsets[i], PtrVT)); 4807 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4808 Add, 4809 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 4810 false, false, 1); 4811 Values[i] = L; 4812 Chains[i] = L.getValue(1); 4813 } 4814 4815 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4816 MVT::Other, &Chains[0], NumValues); 4817 PendingLoads.push_back(Chain); 4818 4819 // Collect the legal value parts into potentially illegal values 4820 // that correspond to the original function's return values. 4821 SmallVector<EVT, 4> RetTys; 4822 RetTy = FTy->getReturnType(); 4823 ComputeValueVTs(TLI, RetTy, RetTys); 4824 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4825 SmallVector<SDValue, 4> ReturnValues; 4826 unsigned CurReg = 0; 4827 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4828 EVT VT = RetTys[I]; 4829 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4830 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4831 4832 SDValue ReturnValue = 4833 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4834 RegisterVT, VT, AssertOp); 4835 ReturnValues.push_back(ReturnValue); 4836 CurReg += NumRegs; 4837 } 4838 4839 setValue(CS.getInstruction(), 4840 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4841 DAG.getVTList(&RetTys[0], RetTys.size()), 4842 &ReturnValues[0], ReturnValues.size())); 4843 4844 } 4845 4846 // As a special case, a null chain means that a tail call has been emitted and 4847 // the DAG root is already updated. 4848 if (Result.second.getNode()) 4849 DAG.setRoot(Result.second); 4850 else 4851 HasTailCall = true; 4852 4853 if (LandingPad) { 4854 // Insert a label at the end of the invoke call to mark the try range. This 4855 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4856 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4857 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4858 4859 // Inform MachineModuleInfo of range. 4860 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4861 } 4862 } 4863 4864 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4865 /// value is equal or not-equal to zero. 4866 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4867 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4868 UI != E; ++UI) { 4869 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4870 if (IC->isEquality()) 4871 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4872 if (C->isNullValue()) 4873 continue; 4874 // Unknown instruction. 4875 return false; 4876 } 4877 return true; 4878 } 4879 4880 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4881 const Type *LoadTy, 4882 SelectionDAGBuilder &Builder) { 4883 4884 // Check to see if this load can be trivially constant folded, e.g. if the 4885 // input is from a string literal. 4886 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4887 // Cast pointer to the type we really want to load. 4888 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4889 PointerType::getUnqual(LoadTy)); 4890 4891 if (const Constant *LoadCst = 4892 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4893 Builder.TD)) 4894 return Builder.getValue(LoadCst); 4895 } 4896 4897 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4898 // still constant memory, the input chain can be the entry node. 4899 SDValue Root; 4900 bool ConstantMemory = false; 4901 4902 // Do not serialize (non-volatile) loads of constant memory with anything. 4903 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4904 Root = Builder.DAG.getEntryNode(); 4905 ConstantMemory = true; 4906 } else { 4907 // Do not serialize non-volatile loads against each other. 4908 Root = Builder.DAG.getRoot(); 4909 } 4910 4911 SDValue Ptr = Builder.getValue(PtrVal); 4912 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4913 Ptr, MachinePointerInfo(PtrVal), 4914 false /*volatile*/, 4915 false /*nontemporal*/, 1 /* align=1 */); 4916 4917 if (!ConstantMemory) 4918 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4919 return LoadVal; 4920 } 4921 4922 4923 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4924 /// If so, return true and lower it, otherwise return false and it will be 4925 /// lowered like a normal call. 4926 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4927 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4928 if (I.getNumArgOperands() != 3) 4929 return false; 4930 4931 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 4932 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4933 !I.getArgOperand(2)->getType()->isIntegerTy() || 4934 !I.getType()->isIntegerTy()) 4935 return false; 4936 4937 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 4938 4939 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4940 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4941 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4942 bool ActuallyDoIt = true; 4943 MVT LoadVT; 4944 const Type *LoadTy; 4945 switch (Size->getZExtValue()) { 4946 default: 4947 LoadVT = MVT::Other; 4948 LoadTy = 0; 4949 ActuallyDoIt = false; 4950 break; 4951 case 2: 4952 LoadVT = MVT::i16; 4953 LoadTy = Type::getInt16Ty(Size->getContext()); 4954 break; 4955 case 4: 4956 LoadVT = MVT::i32; 4957 LoadTy = Type::getInt32Ty(Size->getContext()); 4958 break; 4959 case 8: 4960 LoadVT = MVT::i64; 4961 LoadTy = Type::getInt64Ty(Size->getContext()); 4962 break; 4963 /* 4964 case 16: 4965 LoadVT = MVT::v4i32; 4966 LoadTy = Type::getInt32Ty(Size->getContext()); 4967 LoadTy = VectorType::get(LoadTy, 4); 4968 break; 4969 */ 4970 } 4971 4972 // This turns into unaligned loads. We only do this if the target natively 4973 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4974 // we'll only produce a small number of byte loads. 4975 4976 // Require that we can find a legal MVT, and only do this if the target 4977 // supports unaligned loads of that type. Expanding into byte loads would 4978 // bloat the code. 4979 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4980 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4981 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4982 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4983 ActuallyDoIt = false; 4984 } 4985 4986 if (ActuallyDoIt) { 4987 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4988 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4989 4990 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4991 ISD::SETNE); 4992 EVT CallVT = TLI.getValueType(I.getType(), true); 4993 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4994 return true; 4995 } 4996 } 4997 4998 4999 return false; 5000 } 5001 5002 5003 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5004 // Handle inline assembly differently. 5005 if (isa<InlineAsm>(I.getCalledValue())) { 5006 visitInlineAsm(&I); 5007 return; 5008 } 5009 5010 const char *RenameFn = 0; 5011 if (Function *F = I.getCalledFunction()) { 5012 if (F->isDeclaration()) { 5013 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5014 if (unsigned IID = II->getIntrinsicID(F)) { 5015 RenameFn = visitIntrinsicCall(I, IID); 5016 if (!RenameFn) 5017 return; 5018 } 5019 } 5020 if (unsigned IID = F->getIntrinsicID()) { 5021 RenameFn = visitIntrinsicCall(I, IID); 5022 if (!RenameFn) 5023 return; 5024 } 5025 } 5026 5027 // See if any floating point values are being passed to this external 5028 // function. This is used to emit an undefined reference to fltused on 5029 // Windows. 5030 if (!F->hasLocalLinkage() && F->hasName()) { 5031 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5032 for (unsigned i = 0, e = I.getNumArgOperands(); i != e && 5033 !MMI.callsExternalFunctionWithFloatingPointArguments(); ++i) { 5034 const Type* T = I.getArgOperand(i)->getType(); 5035 for (po_iterator<const Type*> i = po_begin(T), 5036 e = po_end(T); 5037 i != e; ++i) { 5038 if (i->isFloatingPointTy()) { 5039 MMI.setCallsExternalFunctionWithFloatingPointArguments(true); 5040 break; 5041 } 5042 } 5043 } 5044 } 5045 5046 // Check for well-known libc/libm calls. If the function is internal, it 5047 // can't be a library call. 5048 if (!F->hasLocalLinkage() && F->hasName()) { 5049 StringRef Name = F->getName(); 5050 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5051 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5052 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5053 I.getType() == I.getArgOperand(0)->getType() && 5054 I.getType() == I.getArgOperand(1)->getType()) { 5055 SDValue LHS = getValue(I.getArgOperand(0)); 5056 SDValue RHS = getValue(I.getArgOperand(1)); 5057 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5058 LHS.getValueType(), LHS, RHS)); 5059 return; 5060 } 5061 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5062 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5063 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5064 I.getType() == I.getArgOperand(0)->getType()) { 5065 SDValue Tmp = getValue(I.getArgOperand(0)); 5066 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5067 Tmp.getValueType(), Tmp)); 5068 return; 5069 } 5070 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5071 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5072 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5073 I.getType() == I.getArgOperand(0)->getType() && 5074 I.onlyReadsMemory()) { 5075 SDValue Tmp = getValue(I.getArgOperand(0)); 5076 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5077 Tmp.getValueType(), Tmp)); 5078 return; 5079 } 5080 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5081 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5082 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5083 I.getType() == I.getArgOperand(0)->getType() && 5084 I.onlyReadsMemory()) { 5085 SDValue Tmp = getValue(I.getArgOperand(0)); 5086 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5087 Tmp.getValueType(), Tmp)); 5088 return; 5089 } 5090 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5091 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5092 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5093 I.getType() == I.getArgOperand(0)->getType() && 5094 I.onlyReadsMemory()) { 5095 SDValue Tmp = getValue(I.getArgOperand(0)); 5096 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5097 Tmp.getValueType(), Tmp)); 5098 return; 5099 } 5100 } else if (Name == "memcmp") { 5101 if (visitMemCmpCall(I)) 5102 return; 5103 } 5104 } 5105 } 5106 5107 SDValue Callee; 5108 if (!RenameFn) 5109 Callee = getValue(I.getCalledValue()); 5110 else 5111 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5112 5113 // Check if we can potentially perform a tail call. More detailed checking is 5114 // be done within LowerCallTo, after more information about the call is known. 5115 LowerCallTo(&I, Callee, I.isTailCall()); 5116 } 5117 5118 namespace llvm { 5119 5120 /// AsmOperandInfo - This contains information for each constraint that we are 5121 /// lowering. 5122 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 5123 public TargetLowering::AsmOperandInfo { 5124 public: 5125 /// CallOperand - If this is the result output operand or a clobber 5126 /// this is null, otherwise it is the incoming operand to the CallInst. 5127 /// This gets modified as the asm is processed. 5128 SDValue CallOperand; 5129 5130 /// AssignedRegs - If this is a register or register class operand, this 5131 /// contains the set of register corresponding to the operand. 5132 RegsForValue AssignedRegs; 5133 5134 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5135 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5136 } 5137 5138 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5139 /// busy in OutputRegs/InputRegs. 5140 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5141 std::set<unsigned> &OutputRegs, 5142 std::set<unsigned> &InputRegs, 5143 const TargetRegisterInfo &TRI) const { 5144 if (isOutReg) { 5145 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5146 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5147 } 5148 if (isInReg) { 5149 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5150 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5151 } 5152 } 5153 5154 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5155 /// corresponds to. If there is no Value* for this operand, it returns 5156 /// MVT::Other. 5157 EVT getCallOperandValEVT(LLVMContext &Context, 5158 const TargetLowering &TLI, 5159 const TargetData *TD) const { 5160 if (CallOperandVal == 0) return MVT::Other; 5161 5162 if (isa<BasicBlock>(CallOperandVal)) 5163 return TLI.getPointerTy(); 5164 5165 const llvm::Type *OpTy = CallOperandVal->getType(); 5166 5167 // If this is an indirect operand, the operand is a pointer to the 5168 // accessed type. 5169 if (isIndirect) { 5170 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5171 if (!PtrTy) 5172 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5173 OpTy = PtrTy->getElementType(); 5174 } 5175 5176 // If OpTy is not a single value, it may be a struct/union that we 5177 // can tile with integers. 5178 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5179 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5180 switch (BitSize) { 5181 default: break; 5182 case 1: 5183 case 8: 5184 case 16: 5185 case 32: 5186 case 64: 5187 case 128: 5188 OpTy = IntegerType::get(Context, BitSize); 5189 break; 5190 } 5191 } 5192 5193 return TLI.getValueType(OpTy, true); 5194 } 5195 5196 private: 5197 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5198 /// specified set. 5199 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5200 const TargetRegisterInfo &TRI) { 5201 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5202 Regs.insert(Reg); 5203 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5204 for (; *Aliases; ++Aliases) 5205 Regs.insert(*Aliases); 5206 } 5207 }; 5208 5209 } // end llvm namespace. 5210 5211 /// isAllocatableRegister - If the specified register is safe to allocate, 5212 /// i.e. it isn't a stack pointer or some other special register, return the 5213 /// register class for the register. Otherwise, return null. 5214 static const TargetRegisterClass * 5215 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5216 const TargetLowering &TLI, 5217 const TargetRegisterInfo *TRI) { 5218 EVT FoundVT = MVT::Other; 5219 const TargetRegisterClass *FoundRC = 0; 5220 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5221 E = TRI->regclass_end(); RCI != E; ++RCI) { 5222 EVT ThisVT = MVT::Other; 5223 5224 const TargetRegisterClass *RC = *RCI; 5225 // If none of the value types for this register class are valid, we 5226 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5227 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5228 I != E; ++I) { 5229 if (TLI.isTypeLegal(*I)) { 5230 // If we have already found this register in a different register class, 5231 // choose the one with the largest VT specified. For example, on 5232 // PowerPC, we favor f64 register classes over f32. 5233 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5234 ThisVT = *I; 5235 break; 5236 } 5237 } 5238 } 5239 5240 if (ThisVT == MVT::Other) continue; 5241 5242 // NOTE: This isn't ideal. In particular, this might allocate the 5243 // frame pointer in functions that need it (due to them not being taken 5244 // out of allocation, because a variable sized allocation hasn't been seen 5245 // yet). This is a slight code pessimization, but should still work. 5246 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5247 E = RC->allocation_order_end(MF); I != E; ++I) 5248 if (*I == Reg) { 5249 // We found a matching register class. Keep looking at others in case 5250 // we find one with larger registers that this physreg is also in. 5251 FoundRC = RC; 5252 FoundVT = ThisVT; 5253 break; 5254 } 5255 } 5256 return FoundRC; 5257 } 5258 5259 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5260 /// specified operand. We prefer to assign virtual registers, to allow the 5261 /// register allocator to handle the assignment process. However, if the asm 5262 /// uses features that we can't model on machineinstrs, we have SDISel do the 5263 /// allocation. This produces generally horrible, but correct, code. 5264 /// 5265 /// OpInfo describes the operand. 5266 /// Input and OutputRegs are the set of already allocated physical registers. 5267 /// 5268 void SelectionDAGBuilder:: 5269 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5270 std::set<unsigned> &OutputRegs, 5271 std::set<unsigned> &InputRegs) { 5272 LLVMContext &Context = FuncInfo.Fn->getContext(); 5273 5274 // Compute whether this value requires an input register, an output register, 5275 // or both. 5276 bool isOutReg = false; 5277 bool isInReg = false; 5278 switch (OpInfo.Type) { 5279 case InlineAsm::isOutput: 5280 isOutReg = true; 5281 5282 // If there is an input constraint that matches this, we need to reserve 5283 // the input register so no other inputs allocate to it. 5284 isInReg = OpInfo.hasMatchingInput(); 5285 break; 5286 case InlineAsm::isInput: 5287 isInReg = true; 5288 isOutReg = false; 5289 break; 5290 case InlineAsm::isClobber: 5291 isOutReg = true; 5292 isInReg = true; 5293 break; 5294 } 5295 5296 5297 MachineFunction &MF = DAG.getMachineFunction(); 5298 SmallVector<unsigned, 4> Regs; 5299 5300 // If this is a constraint for a single physreg, or a constraint for a 5301 // register class, find it. 5302 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5303 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5304 OpInfo.ConstraintVT); 5305 5306 unsigned NumRegs = 1; 5307 if (OpInfo.ConstraintVT != MVT::Other) { 5308 // If this is a FP input in an integer register (or visa versa) insert a bit 5309 // cast of the input value. More generally, handle any case where the input 5310 // value disagrees with the register class we plan to stick this in. 5311 if (OpInfo.Type == InlineAsm::isInput && 5312 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5313 // Try to convert to the first EVT that the reg class contains. If the 5314 // types are identical size, use a bitcast to convert (e.g. two differing 5315 // vector types). 5316 EVT RegVT = *PhysReg.second->vt_begin(); 5317 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5318 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5319 RegVT, OpInfo.CallOperand); 5320 OpInfo.ConstraintVT = RegVT; 5321 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5322 // If the input is a FP value and we want it in FP registers, do a 5323 // bitcast to the corresponding integer type. This turns an f64 value 5324 // into i64, which can be passed with two i32 values on a 32-bit 5325 // machine. 5326 RegVT = EVT::getIntegerVT(Context, 5327 OpInfo.ConstraintVT.getSizeInBits()); 5328 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5329 RegVT, OpInfo.CallOperand); 5330 OpInfo.ConstraintVT = RegVT; 5331 } 5332 } 5333 5334 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5335 } 5336 5337 EVT RegVT; 5338 EVT ValueVT = OpInfo.ConstraintVT; 5339 5340 // If this is a constraint for a specific physical register, like {r17}, 5341 // assign it now. 5342 if (unsigned AssignedReg = PhysReg.first) { 5343 const TargetRegisterClass *RC = PhysReg.second; 5344 if (OpInfo.ConstraintVT == MVT::Other) 5345 ValueVT = *RC->vt_begin(); 5346 5347 // Get the actual register value type. This is important, because the user 5348 // may have asked for (e.g.) the AX register in i32 type. We need to 5349 // remember that AX is actually i16 to get the right extension. 5350 RegVT = *RC->vt_begin(); 5351 5352 // This is a explicit reference to a physical register. 5353 Regs.push_back(AssignedReg); 5354 5355 // If this is an expanded reference, add the rest of the regs to Regs. 5356 if (NumRegs != 1) { 5357 TargetRegisterClass::iterator I = RC->begin(); 5358 for (; *I != AssignedReg; ++I) 5359 assert(I != RC->end() && "Didn't find reg!"); 5360 5361 // Already added the first reg. 5362 --NumRegs; ++I; 5363 for (; NumRegs; --NumRegs, ++I) { 5364 assert(I != RC->end() && "Ran out of registers to allocate!"); 5365 Regs.push_back(*I); 5366 } 5367 } 5368 5369 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5370 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5371 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5372 return; 5373 } 5374 5375 // Otherwise, if this was a reference to an LLVM register class, create vregs 5376 // for this reference. 5377 if (const TargetRegisterClass *RC = PhysReg.second) { 5378 RegVT = *RC->vt_begin(); 5379 if (OpInfo.ConstraintVT == MVT::Other) 5380 ValueVT = RegVT; 5381 5382 // Create the appropriate number of virtual registers. 5383 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5384 for (; NumRegs; --NumRegs) 5385 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5386 5387 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5388 return; 5389 } 5390 5391 // This is a reference to a register class that doesn't directly correspond 5392 // to an LLVM register class. Allocate NumRegs consecutive, available, 5393 // registers from the class. 5394 std::vector<unsigned> RegClassRegs 5395 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5396 OpInfo.ConstraintVT); 5397 5398 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5399 unsigned NumAllocated = 0; 5400 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5401 unsigned Reg = RegClassRegs[i]; 5402 // See if this register is available. 5403 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5404 (isInReg && InputRegs.count(Reg))) { // Already used. 5405 // Make sure we find consecutive registers. 5406 NumAllocated = 0; 5407 continue; 5408 } 5409 5410 // Check to see if this register is allocatable (i.e. don't give out the 5411 // stack pointer). 5412 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5413 if (!RC) { // Couldn't allocate this register. 5414 // Reset NumAllocated to make sure we return consecutive registers. 5415 NumAllocated = 0; 5416 continue; 5417 } 5418 5419 // Okay, this register is good, we can use it. 5420 ++NumAllocated; 5421 5422 // If we allocated enough consecutive registers, succeed. 5423 if (NumAllocated == NumRegs) { 5424 unsigned RegStart = (i-NumAllocated)+1; 5425 unsigned RegEnd = i+1; 5426 // Mark all of the allocated registers used. 5427 for (unsigned i = RegStart; i != RegEnd; ++i) 5428 Regs.push_back(RegClassRegs[i]); 5429 5430 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5431 OpInfo.ConstraintVT); 5432 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5433 return; 5434 } 5435 } 5436 5437 // Otherwise, we couldn't allocate enough registers for this. 5438 } 5439 5440 /// visitInlineAsm - Handle a call to an InlineAsm object. 5441 /// 5442 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5443 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5444 5445 /// ConstraintOperands - Information about all of the constraints. 5446 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5447 5448 std::set<unsigned> OutputRegs, InputRegs; 5449 5450 std::vector<TargetLowering::AsmOperandInfo> TargetConstraints = TLI.ParseConstraints(CS); 5451 bool hasMemory = false; 5452 5453 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5454 unsigned ResNo = 0; // ResNo - The result number of the next output. 5455 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5456 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5457 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5458 5459 EVT OpVT = MVT::Other; 5460 5461 // Compute the value type for each operand. 5462 switch (OpInfo.Type) { 5463 case InlineAsm::isOutput: 5464 // Indirect outputs just consume an argument. 5465 if (OpInfo.isIndirect) { 5466 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5467 break; 5468 } 5469 5470 // The return value of the call is this value. As such, there is no 5471 // corresponding argument. 5472 assert(!CS.getType()->isVoidTy() && 5473 "Bad inline asm!"); 5474 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5475 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5476 } else { 5477 assert(ResNo == 0 && "Asm only has one result!"); 5478 OpVT = TLI.getValueType(CS.getType()); 5479 } 5480 ++ResNo; 5481 break; 5482 case InlineAsm::isInput: 5483 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5484 break; 5485 case InlineAsm::isClobber: 5486 // Nothing to do. 5487 break; 5488 } 5489 5490 // If this is an input or an indirect output, process the call argument. 5491 // BasicBlocks are labels, currently appearing only in asm's. 5492 if (OpInfo.CallOperandVal) { 5493 // Strip bitcasts, if any. This mostly comes up for functions. 5494 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5495 5496 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5497 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5498 } else { 5499 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5500 } 5501 5502 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5503 } 5504 5505 OpInfo.ConstraintVT = OpVT; 5506 5507 // Indirect operand accesses access memory. 5508 if (OpInfo.isIndirect) 5509 hasMemory = true; 5510 else { 5511 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5512 TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]); 5513 if (CType == TargetLowering::C_Memory) { 5514 hasMemory = true; 5515 break; 5516 } 5517 } 5518 } 5519 } 5520 5521 SDValue Chain, Flag; 5522 5523 // We won't need to flush pending loads if this asm doesn't touch 5524 // memory and is nonvolatile. 5525 if (hasMemory || IA->hasSideEffects()) 5526 Chain = getRoot(); 5527 else 5528 Chain = DAG.getRoot(); 5529 5530 // Second pass over the constraints: compute which constraint option to use 5531 // and assign registers to constraints that want a specific physreg. 5532 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5533 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5534 5535 // If this is an output operand with a matching input operand, look up the 5536 // matching input. If their types mismatch, e.g. one is an integer, the 5537 // other is floating point, or their sizes are different, flag it as an 5538 // error. 5539 if (OpInfo.hasMatchingInput()) { 5540 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5541 5542 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5543 if ((OpInfo.ConstraintVT.isInteger() != 5544 Input.ConstraintVT.isInteger()) || 5545 (OpInfo.ConstraintVT.getSizeInBits() != 5546 Input.ConstraintVT.getSizeInBits())) { 5547 report_fatal_error("Unsupported asm: input constraint" 5548 " with a matching output constraint of" 5549 " incompatible type!"); 5550 } 5551 Input.ConstraintVT = OpInfo.ConstraintVT; 5552 } 5553 } 5554 5555 // Compute the constraint code and ConstraintType to use. 5556 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5557 5558 // If this is a memory input, and if the operand is not indirect, do what we 5559 // need to to provide an address for the memory input. 5560 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5561 !OpInfo.isIndirect) { 5562 assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) && 5563 "Can only indirectify direct input operands!"); 5564 5565 // Memory operands really want the address of the value. If we don't have 5566 // an indirect input, put it in the constpool if we can, otherwise spill 5567 // it to a stack slot. 5568 5569 // If the operand is a float, integer, or vector constant, spill to a 5570 // constant pool entry to get its address. 5571 const Value *OpVal = OpInfo.CallOperandVal; 5572 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5573 isa<ConstantVector>(OpVal)) { 5574 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5575 TLI.getPointerTy()); 5576 } else { 5577 // Otherwise, create a stack slot and emit a store to it before the 5578 // asm. 5579 const Type *Ty = OpVal->getType(); 5580 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5581 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5582 MachineFunction &MF = DAG.getMachineFunction(); 5583 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5584 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5585 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5586 OpInfo.CallOperand, StackSlot, 5587 MachinePointerInfo::getFixedStack(SSFI), 5588 false, false, 0); 5589 OpInfo.CallOperand = StackSlot; 5590 } 5591 5592 // There is no longer a Value* corresponding to this operand. 5593 OpInfo.CallOperandVal = 0; 5594 5595 // It is now an indirect operand. 5596 OpInfo.isIndirect = true; 5597 } 5598 5599 // If this constraint is for a specific register, allocate it before 5600 // anything else. 5601 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5602 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5603 } 5604 5605 // Second pass - Loop over all of the operands, assigning virtual or physregs 5606 // to register class operands. 5607 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5608 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5609 5610 // C_Register operands have already been allocated, Other/Memory don't need 5611 // to be. 5612 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5613 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5614 } 5615 5616 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5617 std::vector<SDValue> AsmNodeOperands; 5618 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5619 AsmNodeOperands.push_back( 5620 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5621 TLI.getPointerTy())); 5622 5623 // If we have a !srcloc metadata node associated with it, we want to attach 5624 // this to the ultimately generated inline asm machineinstr. To do this, we 5625 // pass in the third operand as this (potentially null) inline asm MDNode. 5626 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5627 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5628 5629 // Remember the AlignStack bit as operand 3. 5630 AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0, 5631 MVT::i1)); 5632 5633 // Loop over all of the inputs, copying the operand values into the 5634 // appropriate registers and processing the output regs. 5635 RegsForValue RetValRegs; 5636 5637 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5638 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5639 5640 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5641 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5642 5643 switch (OpInfo.Type) { 5644 case InlineAsm::isOutput: { 5645 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5646 OpInfo.ConstraintType != TargetLowering::C_Register) { 5647 // Memory output, or 'other' output (e.g. 'X' constraint). 5648 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5649 5650 // Add information to the INLINEASM node to know about this output. 5651 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5652 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5653 TLI.getPointerTy())); 5654 AsmNodeOperands.push_back(OpInfo.CallOperand); 5655 break; 5656 } 5657 5658 // Otherwise, this is a register or register class output. 5659 5660 // Copy the output from the appropriate register. Find a register that 5661 // we can use. 5662 if (OpInfo.AssignedRegs.Regs.empty()) 5663 report_fatal_error("Couldn't allocate output reg for constraint '" + 5664 Twine(OpInfo.ConstraintCode) + "'!"); 5665 5666 // If this is an indirect operand, store through the pointer after the 5667 // asm. 5668 if (OpInfo.isIndirect) { 5669 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5670 OpInfo.CallOperandVal)); 5671 } else { 5672 // This is the result value of the call. 5673 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5674 // Concatenate this output onto the outputs list. 5675 RetValRegs.append(OpInfo.AssignedRegs); 5676 } 5677 5678 // Add information to the INLINEASM node to know that this register is 5679 // set. 5680 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5681 InlineAsm::Kind_RegDefEarlyClobber : 5682 InlineAsm::Kind_RegDef, 5683 false, 5684 0, 5685 DAG, 5686 AsmNodeOperands); 5687 break; 5688 } 5689 case InlineAsm::isInput: { 5690 SDValue InOperandVal = OpInfo.CallOperand; 5691 5692 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5693 // If this is required to match an output register we have already set, 5694 // just use its register. 5695 unsigned OperandNo = OpInfo.getMatchedOperand(); 5696 5697 // Scan until we find the definition we already emitted of this operand. 5698 // When we find it, create a RegsForValue operand. 5699 unsigned CurOp = InlineAsm::Op_FirstOperand; 5700 for (; OperandNo; --OperandNo) { 5701 // Advance to the next operand. 5702 unsigned OpFlag = 5703 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5704 assert((InlineAsm::isRegDefKind(OpFlag) || 5705 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5706 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5707 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5708 } 5709 5710 unsigned OpFlag = 5711 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5712 if (InlineAsm::isRegDefKind(OpFlag) || 5713 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5714 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5715 if (OpInfo.isIndirect) { 5716 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5717 LLVMContext &Ctx = *DAG.getContext(); 5718 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5719 " don't know how to handle tied " 5720 "indirect register inputs"); 5721 } 5722 5723 RegsForValue MatchedRegs; 5724 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5725 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5726 MatchedRegs.RegVTs.push_back(RegVT); 5727 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5728 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5729 i != e; ++i) 5730 MatchedRegs.Regs.push_back 5731 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5732 5733 // Use the produced MatchedRegs object to 5734 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5735 Chain, &Flag); 5736 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5737 true, OpInfo.getMatchedOperand(), 5738 DAG, AsmNodeOperands); 5739 break; 5740 } 5741 5742 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5743 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5744 "Unexpected number of operands"); 5745 // Add information to the INLINEASM node to know about this input. 5746 // See InlineAsm.h isUseOperandTiedToDef. 5747 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5748 OpInfo.getMatchedOperand()); 5749 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5750 TLI.getPointerTy())); 5751 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5752 break; 5753 } 5754 5755 // Treat indirect 'X' constraint as memory. 5756 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5757 OpInfo.isIndirect) 5758 OpInfo.ConstraintType = TargetLowering::C_Memory; 5759 5760 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5761 std::vector<SDValue> Ops; 5762 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5763 Ops, DAG); 5764 if (Ops.empty()) 5765 report_fatal_error("Invalid operand for inline asm constraint '" + 5766 Twine(OpInfo.ConstraintCode) + "'!"); 5767 5768 // Add information to the INLINEASM node to know about this input. 5769 unsigned ResOpType = 5770 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5771 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5772 TLI.getPointerTy())); 5773 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5774 break; 5775 } 5776 5777 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5778 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5779 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5780 "Memory operands expect pointer values"); 5781 5782 // Add information to the INLINEASM node to know about this input. 5783 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5784 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5785 TLI.getPointerTy())); 5786 AsmNodeOperands.push_back(InOperandVal); 5787 break; 5788 } 5789 5790 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5791 OpInfo.ConstraintType == TargetLowering::C_Register) && 5792 "Unknown constraint type!"); 5793 assert(!OpInfo.isIndirect && 5794 "Don't know how to handle indirect register inputs yet!"); 5795 5796 // Copy the input into the appropriate registers. 5797 if (OpInfo.AssignedRegs.Regs.empty() || 5798 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5799 report_fatal_error("Couldn't allocate input reg for constraint '" + 5800 Twine(OpInfo.ConstraintCode) + "'!"); 5801 5802 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5803 Chain, &Flag); 5804 5805 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5806 DAG, AsmNodeOperands); 5807 break; 5808 } 5809 case InlineAsm::isClobber: { 5810 // Add the clobbered value to the operand list, so that the register 5811 // allocator is aware that the physreg got clobbered. 5812 if (!OpInfo.AssignedRegs.Regs.empty()) 5813 OpInfo.AssignedRegs.AddInlineAsmOperands( 5814 InlineAsm::Kind_RegDefEarlyClobber, 5815 false, 0, DAG, 5816 AsmNodeOperands); 5817 break; 5818 } 5819 } 5820 } 5821 5822 // Finish up input operands. Set the input chain and add the flag last. 5823 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5824 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5825 5826 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5827 DAG.getVTList(MVT::Other, MVT::Flag), 5828 &AsmNodeOperands[0], AsmNodeOperands.size()); 5829 Flag = Chain.getValue(1); 5830 5831 // If this asm returns a register value, copy the result from that register 5832 // and set it as the value of the call. 5833 if (!RetValRegs.Regs.empty()) { 5834 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5835 Chain, &Flag); 5836 5837 // FIXME: Why don't we do this for inline asms with MRVs? 5838 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5839 EVT ResultType = TLI.getValueType(CS.getType()); 5840 5841 // If any of the results of the inline asm is a vector, it may have the 5842 // wrong width/num elts. This can happen for register classes that can 5843 // contain multiple different value types. The preg or vreg allocated may 5844 // not have the same VT as was expected. Convert it to the right type 5845 // with bit_convert. 5846 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5847 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5848 ResultType, Val); 5849 5850 } else if (ResultType != Val.getValueType() && 5851 ResultType.isInteger() && Val.getValueType().isInteger()) { 5852 // If a result value was tied to an input value, the computed result may 5853 // have a wider width than the expected result. Extract the relevant 5854 // portion. 5855 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5856 } 5857 5858 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5859 } 5860 5861 setValue(CS.getInstruction(), Val); 5862 // Don't need to use this as a chain in this case. 5863 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5864 return; 5865 } 5866 5867 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5868 5869 // Process indirect outputs, first output all of the flagged copies out of 5870 // physregs. 5871 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5872 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5873 const Value *Ptr = IndirectStoresToEmit[i].second; 5874 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5875 Chain, &Flag); 5876 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5877 } 5878 5879 // Emit the non-flagged stores from the physregs. 5880 SmallVector<SDValue, 8> OutChains; 5881 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5882 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5883 StoresToEmit[i].first, 5884 getValue(StoresToEmit[i].second), 5885 MachinePointerInfo(StoresToEmit[i].second), 5886 false, false, 0); 5887 OutChains.push_back(Val); 5888 } 5889 5890 if (!OutChains.empty()) 5891 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5892 &OutChains[0], OutChains.size()); 5893 5894 DAG.setRoot(Chain); 5895 } 5896 5897 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5898 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5899 MVT::Other, getRoot(), 5900 getValue(I.getArgOperand(0)), 5901 DAG.getSrcValue(I.getArgOperand(0)))); 5902 } 5903 5904 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5905 const TargetData &TD = *TLI.getTargetData(); 5906 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5907 getRoot(), getValue(I.getOperand(0)), 5908 DAG.getSrcValue(I.getOperand(0)), 5909 TD.getABITypeAlignment(I.getType())); 5910 setValue(&I, V); 5911 DAG.setRoot(V.getValue(1)); 5912 } 5913 5914 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5915 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5916 MVT::Other, getRoot(), 5917 getValue(I.getArgOperand(0)), 5918 DAG.getSrcValue(I.getArgOperand(0)))); 5919 } 5920 5921 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5922 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5923 MVT::Other, getRoot(), 5924 getValue(I.getArgOperand(0)), 5925 getValue(I.getArgOperand(1)), 5926 DAG.getSrcValue(I.getArgOperand(0)), 5927 DAG.getSrcValue(I.getArgOperand(1)))); 5928 } 5929 5930 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5931 /// implementation, which just calls LowerCall. 5932 /// FIXME: When all targets are 5933 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5934 std::pair<SDValue, SDValue> 5935 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5936 bool RetSExt, bool RetZExt, bool isVarArg, 5937 bool isInreg, unsigned NumFixedArgs, 5938 CallingConv::ID CallConv, bool isTailCall, 5939 bool isReturnValueUsed, 5940 SDValue Callee, 5941 ArgListTy &Args, SelectionDAG &DAG, 5942 DebugLoc dl) const { 5943 // Handle all of the outgoing arguments. 5944 SmallVector<ISD::OutputArg, 32> Outs; 5945 SmallVector<SDValue, 32> OutVals; 5946 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5947 SmallVector<EVT, 4> ValueVTs; 5948 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5949 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5950 Value != NumValues; ++Value) { 5951 EVT VT = ValueVTs[Value]; 5952 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5953 SDValue Op = SDValue(Args[i].Node.getNode(), 5954 Args[i].Node.getResNo() + Value); 5955 ISD::ArgFlagsTy Flags; 5956 unsigned OriginalAlignment = 5957 getTargetData()->getABITypeAlignment(ArgTy); 5958 5959 if (Args[i].isZExt) 5960 Flags.setZExt(); 5961 if (Args[i].isSExt) 5962 Flags.setSExt(); 5963 if (Args[i].isInReg) 5964 Flags.setInReg(); 5965 if (Args[i].isSRet) 5966 Flags.setSRet(); 5967 if (Args[i].isByVal) { 5968 Flags.setByVal(); 5969 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5970 const Type *ElementTy = Ty->getElementType(); 5971 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5972 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5973 // For ByVal, alignment should come from FE. BE will guess if this 5974 // info is not there but there are cases it cannot get right. 5975 if (Args[i].Alignment) 5976 FrameAlign = Args[i].Alignment; 5977 Flags.setByValAlign(FrameAlign); 5978 Flags.setByValSize(FrameSize); 5979 } 5980 if (Args[i].isNest) 5981 Flags.setNest(); 5982 Flags.setOrigAlign(OriginalAlignment); 5983 5984 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5985 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5986 SmallVector<SDValue, 4> Parts(NumParts); 5987 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5988 5989 if (Args[i].isSExt) 5990 ExtendKind = ISD::SIGN_EXTEND; 5991 else if (Args[i].isZExt) 5992 ExtendKind = ISD::ZERO_EXTEND; 5993 5994 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5995 PartVT, ExtendKind); 5996 5997 for (unsigned j = 0; j != NumParts; ++j) { 5998 // if it isn't first piece, alignment must be 1 5999 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6000 i < NumFixedArgs); 6001 if (NumParts > 1 && j == 0) 6002 MyFlags.Flags.setSplit(); 6003 else if (j != 0) 6004 MyFlags.Flags.setOrigAlign(1); 6005 6006 Outs.push_back(MyFlags); 6007 OutVals.push_back(Parts[j]); 6008 } 6009 } 6010 } 6011 6012 // Handle the incoming return values from the call. 6013 SmallVector<ISD::InputArg, 32> Ins; 6014 SmallVector<EVT, 4> RetTys; 6015 ComputeValueVTs(*this, RetTy, RetTys); 6016 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6017 EVT VT = RetTys[I]; 6018 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6019 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6020 for (unsigned i = 0; i != NumRegs; ++i) { 6021 ISD::InputArg MyFlags; 6022 MyFlags.VT = RegisterVT; 6023 MyFlags.Used = isReturnValueUsed; 6024 if (RetSExt) 6025 MyFlags.Flags.setSExt(); 6026 if (RetZExt) 6027 MyFlags.Flags.setZExt(); 6028 if (isInreg) 6029 MyFlags.Flags.setInReg(); 6030 Ins.push_back(MyFlags); 6031 } 6032 } 6033 6034 SmallVector<SDValue, 4> InVals; 6035 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6036 Outs, OutVals, Ins, dl, DAG, InVals); 6037 6038 // Verify that the target's LowerCall behaved as expected. 6039 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6040 "LowerCall didn't return a valid chain!"); 6041 assert((!isTailCall || InVals.empty()) && 6042 "LowerCall emitted a return value for a tail call!"); 6043 assert((isTailCall || InVals.size() == Ins.size()) && 6044 "LowerCall didn't emit the correct number of values!"); 6045 6046 // For a tail call, the return value is merely live-out and there aren't 6047 // any nodes in the DAG representing it. Return a special value to 6048 // indicate that a tail call has been emitted and no more Instructions 6049 // should be processed in the current block. 6050 if (isTailCall) { 6051 DAG.setRoot(Chain); 6052 return std::make_pair(SDValue(), SDValue()); 6053 } 6054 6055 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6056 assert(InVals[i].getNode() && 6057 "LowerCall emitted a null value!"); 6058 assert(Ins[i].VT == InVals[i].getValueType() && 6059 "LowerCall emitted a value with the wrong type!"); 6060 }); 6061 6062 // Collect the legal value parts into potentially illegal values 6063 // that correspond to the original function's return values. 6064 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6065 if (RetSExt) 6066 AssertOp = ISD::AssertSext; 6067 else if (RetZExt) 6068 AssertOp = ISD::AssertZext; 6069 SmallVector<SDValue, 4> ReturnValues; 6070 unsigned CurReg = 0; 6071 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6072 EVT VT = RetTys[I]; 6073 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6074 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6075 6076 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6077 NumRegs, RegisterVT, VT, 6078 AssertOp)); 6079 CurReg += NumRegs; 6080 } 6081 6082 // For a function returning void, there is no return value. We can't create 6083 // such a node, so we just return a null return value in that case. In 6084 // that case, nothing will actualy look at the value. 6085 if (ReturnValues.empty()) 6086 return std::make_pair(SDValue(), Chain); 6087 6088 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6089 DAG.getVTList(&RetTys[0], RetTys.size()), 6090 &ReturnValues[0], ReturnValues.size()); 6091 return std::make_pair(Res, Chain); 6092 } 6093 6094 void TargetLowering::LowerOperationWrapper(SDNode *N, 6095 SmallVectorImpl<SDValue> &Results, 6096 SelectionDAG &DAG) const { 6097 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6098 if (Res.getNode()) 6099 Results.push_back(Res); 6100 } 6101 6102 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6103 llvm_unreachable("LowerOperation not implemented for this target!"); 6104 return SDValue(); 6105 } 6106 6107 void 6108 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6109 SDValue Op = getNonRegisterValue(V); 6110 assert((Op.getOpcode() != ISD::CopyFromReg || 6111 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6112 "Copy from a reg to the same reg!"); 6113 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6114 6115 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6116 SDValue Chain = DAG.getEntryNode(); 6117 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6118 PendingExports.push_back(Chain); 6119 } 6120 6121 #include "llvm/CodeGen/SelectionDAGISel.h" 6122 6123 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6124 // If this is the entry block, emit arguments. 6125 const Function &F = *LLVMBB->getParent(); 6126 SelectionDAG &DAG = SDB->DAG; 6127 DebugLoc dl = SDB->getCurDebugLoc(); 6128 const TargetData *TD = TLI.getTargetData(); 6129 SmallVector<ISD::InputArg, 16> Ins; 6130 6131 // Check whether the function can return without sret-demotion. 6132 SmallVector<ISD::OutputArg, 4> Outs; 6133 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6134 Outs, TLI); 6135 6136 if (!FuncInfo->CanLowerReturn) { 6137 // Put in an sret pointer parameter before all the other parameters. 6138 SmallVector<EVT, 1> ValueVTs; 6139 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6140 6141 // NOTE: Assuming that a pointer will never break down to more than one VT 6142 // or one register. 6143 ISD::ArgFlagsTy Flags; 6144 Flags.setSRet(); 6145 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6146 ISD::InputArg RetArg(Flags, RegisterVT, true); 6147 Ins.push_back(RetArg); 6148 } 6149 6150 // Set up the incoming argument description vector. 6151 unsigned Idx = 1; 6152 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6153 I != E; ++I, ++Idx) { 6154 SmallVector<EVT, 4> ValueVTs; 6155 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6156 bool isArgValueUsed = !I->use_empty(); 6157 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6158 Value != NumValues; ++Value) { 6159 EVT VT = ValueVTs[Value]; 6160 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6161 ISD::ArgFlagsTy Flags; 6162 unsigned OriginalAlignment = 6163 TD->getABITypeAlignment(ArgTy); 6164 6165 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6166 Flags.setZExt(); 6167 if (F.paramHasAttr(Idx, Attribute::SExt)) 6168 Flags.setSExt(); 6169 if (F.paramHasAttr(Idx, Attribute::InReg)) 6170 Flags.setInReg(); 6171 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6172 Flags.setSRet(); 6173 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6174 Flags.setByVal(); 6175 const PointerType *Ty = cast<PointerType>(I->getType()); 6176 const Type *ElementTy = Ty->getElementType(); 6177 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6178 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6179 // For ByVal, alignment should be passed from FE. BE will guess if 6180 // this info is not there but there are cases it cannot get right. 6181 if (F.getParamAlignment(Idx)) 6182 FrameAlign = F.getParamAlignment(Idx); 6183 Flags.setByValAlign(FrameAlign); 6184 Flags.setByValSize(FrameSize); 6185 } 6186 if (F.paramHasAttr(Idx, Attribute::Nest)) 6187 Flags.setNest(); 6188 Flags.setOrigAlign(OriginalAlignment); 6189 6190 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6191 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6192 for (unsigned i = 0; i != NumRegs; ++i) { 6193 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6194 if (NumRegs > 1 && i == 0) 6195 MyFlags.Flags.setSplit(); 6196 // if it isn't first piece, alignment must be 1 6197 else if (i > 0) 6198 MyFlags.Flags.setOrigAlign(1); 6199 Ins.push_back(MyFlags); 6200 } 6201 } 6202 } 6203 6204 // Call the target to set up the argument values. 6205 SmallVector<SDValue, 8> InVals; 6206 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6207 F.isVarArg(), Ins, 6208 dl, DAG, InVals); 6209 6210 // Verify that the target's LowerFormalArguments behaved as expected. 6211 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6212 "LowerFormalArguments didn't return a valid chain!"); 6213 assert(InVals.size() == Ins.size() && 6214 "LowerFormalArguments didn't emit the correct number of values!"); 6215 DEBUG({ 6216 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6217 assert(InVals[i].getNode() && 6218 "LowerFormalArguments emitted a null value!"); 6219 assert(Ins[i].VT == InVals[i].getValueType() && 6220 "LowerFormalArguments emitted a value with the wrong type!"); 6221 } 6222 }); 6223 6224 // Update the DAG with the new chain value resulting from argument lowering. 6225 DAG.setRoot(NewRoot); 6226 6227 // Set up the argument values. 6228 unsigned i = 0; 6229 Idx = 1; 6230 if (!FuncInfo->CanLowerReturn) { 6231 // Create a virtual register for the sret pointer, and put in a copy 6232 // from the sret argument into it. 6233 SmallVector<EVT, 1> ValueVTs; 6234 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6235 EVT VT = ValueVTs[0]; 6236 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6237 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6238 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6239 RegVT, VT, AssertOp); 6240 6241 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6242 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6243 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6244 FuncInfo->DemoteRegister = SRetReg; 6245 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6246 SRetReg, ArgValue); 6247 DAG.setRoot(NewRoot); 6248 6249 // i indexes lowered arguments. Bump it past the hidden sret argument. 6250 // Idx indexes LLVM arguments. Don't touch it. 6251 ++i; 6252 } 6253 6254 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6255 ++I, ++Idx) { 6256 SmallVector<SDValue, 4> ArgValues; 6257 SmallVector<EVT, 4> ValueVTs; 6258 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6259 unsigned NumValues = ValueVTs.size(); 6260 6261 // If this argument is unused then remember its value. It is used to generate 6262 // debugging information. 6263 if (I->use_empty() && NumValues) 6264 SDB->setUnusedArgValue(I, InVals[i]); 6265 6266 for (unsigned Value = 0; Value != NumValues; ++Value) { 6267 EVT VT = ValueVTs[Value]; 6268 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6269 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6270 6271 if (!I->use_empty()) { 6272 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6273 if (F.paramHasAttr(Idx, Attribute::SExt)) 6274 AssertOp = ISD::AssertSext; 6275 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6276 AssertOp = ISD::AssertZext; 6277 6278 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6279 NumParts, PartVT, VT, 6280 AssertOp)); 6281 } 6282 6283 i += NumParts; 6284 } 6285 6286 // Note down frame index for byval arguments. 6287 if (I->hasByValAttr() && !ArgValues.empty()) 6288 if (FrameIndexSDNode *FI = 6289 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6290 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex()); 6291 6292 if (!I->use_empty()) { 6293 SDValue Res; 6294 if (!ArgValues.empty()) 6295 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6296 SDB->getCurDebugLoc()); 6297 SDB->setValue(I, Res); 6298 6299 // If this argument is live outside of the entry block, insert a copy from 6300 // whereever we got it to the vreg that other BB's will reference it as. 6301 SDB->CopyToExportRegsIfNeeded(I); 6302 } 6303 } 6304 6305 assert(i == InVals.size() && "Argument register count mismatch!"); 6306 6307 // Finally, if the target has anything special to do, allow it to do so. 6308 // FIXME: this should insert code into the DAG! 6309 EmitFunctionEntryCode(); 6310 } 6311 6312 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6313 /// ensure constants are generated when needed. Remember the virtual registers 6314 /// that need to be added to the Machine PHI nodes as input. We cannot just 6315 /// directly add them, because expansion might result in multiple MBB's for one 6316 /// BB. As such, the start of the BB might correspond to a different MBB than 6317 /// the end. 6318 /// 6319 void 6320 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6321 const TerminatorInst *TI = LLVMBB->getTerminator(); 6322 6323 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6324 6325 // Check successor nodes' PHI nodes that expect a constant to be available 6326 // from this block. 6327 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6328 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6329 if (!isa<PHINode>(SuccBB->begin())) continue; 6330 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6331 6332 // If this terminator has multiple identical successors (common for 6333 // switches), only handle each succ once. 6334 if (!SuccsHandled.insert(SuccMBB)) continue; 6335 6336 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6337 6338 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6339 // nodes and Machine PHI nodes, but the incoming operands have not been 6340 // emitted yet. 6341 for (BasicBlock::const_iterator I = SuccBB->begin(); 6342 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6343 // Ignore dead phi's. 6344 if (PN->use_empty()) continue; 6345 6346 unsigned Reg; 6347 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6348 6349 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6350 unsigned &RegOut = ConstantsOut[C]; 6351 if (RegOut == 0) { 6352 RegOut = FuncInfo.CreateRegs(C->getType()); 6353 CopyValueToVirtualRegister(C, RegOut); 6354 } 6355 Reg = RegOut; 6356 } else { 6357 DenseMap<const Value *, unsigned>::iterator I = 6358 FuncInfo.ValueMap.find(PHIOp); 6359 if (I != FuncInfo.ValueMap.end()) 6360 Reg = I->second; 6361 else { 6362 assert(isa<AllocaInst>(PHIOp) && 6363 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6364 "Didn't codegen value into a register!??"); 6365 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6366 CopyValueToVirtualRegister(PHIOp, Reg); 6367 } 6368 } 6369 6370 // Remember that this register needs to added to the machine PHI node as 6371 // the input for this MBB. 6372 SmallVector<EVT, 4> ValueVTs; 6373 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6374 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6375 EVT VT = ValueVTs[vti]; 6376 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6377 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6378 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6379 Reg += NumRegisters; 6380 } 6381 } 6382 } 6383 ConstantsOut.clear(); 6384 } 6385