xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision bbd4e3b4003f242bcd431af95645626eb50bec53)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/GCMetadata.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/StackMaps.h"
39 #include "llvm/CodeGen/WinEHFuncInfo.h"
40 #include "llvm/IR/CallingConv.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GetElementPtrTypeIterator.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Statepoint.h"
55 #include "llvm/MC/MCSymbol.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/MathExtras.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetFrameLowering.h"
62 #include "llvm/Target/TargetInstrInfo.h"
63 #include "llvm/Target/TargetIntrinsicInfo.h"
64 #include "llvm/Target/TargetLowering.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include "llvm/Target/TargetSubtargetInfo.h"
67 #include <algorithm>
68 #include <utility>
69 using namespace llvm;
70 
71 #define DEBUG_TYPE "isel"
72 
73 /// LimitFloatPrecision - Generate low-precision inline sequences for
74 /// some float libcalls (6, 8 or 12 bits).
75 static unsigned LimitFloatPrecision;
76 
77 static cl::opt<unsigned, true>
78 LimitFPPrecision("limit-float-precision",
79                  cl::desc("Generate low-precision inline sequences "
80                           "for some float libcalls"),
81                  cl::location(LimitFloatPrecision),
82                  cl::init(0));
83 
84 static cl::opt<bool>
85 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
86                 cl::desc("Enable fast-math-flags for DAG nodes"));
87 
88 // Limit the width of DAG chains. This is important in general to prevent
89 // DAG-based analysis from blowing up. For example, alias analysis and
90 // load clustering may not complete in reasonable time. It is difficult to
91 // recognize and avoid this situation within each individual analysis, and
92 // future analyses are likely to have the same behavior. Limiting DAG width is
93 // the safe approach and will be especially important with global DAGs.
94 //
95 // MaxParallelChains default is arbitrarily high to avoid affecting
96 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
97 // sequence over this should have been converted to llvm.memcpy by the
98 // frontend. It easy to induce this behavior with .ll code such as:
99 // %buffer = alloca [4096 x i8]
100 // %data = load [4096 x i8]* %argPtr
101 // store [4096 x i8] %data, [4096 x i8]* %buffer
102 static const unsigned MaxParallelChains = 64;
103 
104 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
105                                       const SDValue *Parts, unsigned NumParts,
106                                       MVT PartVT, EVT ValueVT, const Value *V);
107 
108 /// getCopyFromParts - Create a value that contains the specified legal parts
109 /// combined into the value they represent.  If the parts combine to a type
110 /// larger then ValueVT then AssertOp can be used to specify whether the extra
111 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
112 /// (ISD::AssertSext).
113 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
114                                 const SDValue *Parts,
115                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
116                                 const Value *V,
117                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
118   if (ValueVT.isVector())
119     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
120                                   PartVT, ValueVT, V);
121 
122   assert(NumParts > 0 && "No parts to assemble!");
123   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
124   SDValue Val = Parts[0];
125 
126   if (NumParts > 1) {
127     // Assemble the value from multiple parts.
128     if (ValueVT.isInteger()) {
129       unsigned PartBits = PartVT.getSizeInBits();
130       unsigned ValueBits = ValueVT.getSizeInBits();
131 
132       // Assemble the power of 2 part.
133       unsigned RoundParts = NumParts & (NumParts - 1) ?
134         1 << Log2_32(NumParts) : NumParts;
135       unsigned RoundBits = PartBits * RoundParts;
136       EVT RoundVT = RoundBits == ValueBits ?
137         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
138       SDValue Lo, Hi;
139 
140       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
141 
142       if (RoundParts > 2) {
143         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
144                               PartVT, HalfVT, V);
145         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
146                               RoundParts / 2, PartVT, HalfVT, V);
147       } else {
148         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
149         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
150       }
151 
152       if (DAG.getDataLayout().isBigEndian())
153         std::swap(Lo, Hi);
154 
155       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
156 
157       if (RoundParts < NumParts) {
158         // Assemble the trailing non-power-of-2 part.
159         unsigned OddParts = NumParts - RoundParts;
160         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
161         Hi = getCopyFromParts(DAG, DL,
162                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
163 
164         // Combine the round and odd parts.
165         Lo = Val;
166         if (DAG.getDataLayout().isBigEndian())
167           std::swap(Lo, Hi);
168         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
169         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
170         Hi =
171             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
172                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
173                                         TLI.getPointerTy(DAG.getDataLayout())));
174         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
175         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
176       }
177     } else if (PartVT.isFloatingPoint()) {
178       // FP split into multiple FP parts (for ppcf128)
179       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
180              "Unexpected split");
181       SDValue Lo, Hi;
182       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
183       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
184       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
185         std::swap(Lo, Hi);
186       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
187     } else {
188       // FP split into integer parts (soft fp)
189       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
190              !PartVT.isVector() && "Unexpected split");
191       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
192       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
193     }
194   }
195 
196   // There is now one part, held in Val.  Correct it to match ValueVT.
197   EVT PartEVT = Val.getValueType();
198 
199   if (PartEVT == ValueVT)
200     return Val;
201 
202   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
203       ValueVT.bitsLT(PartEVT)) {
204     // For an FP value in an integer part, we need to truncate to the right
205     // width first.
206     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
207     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
208   }
209 
210   if (PartEVT.isInteger() && ValueVT.isInteger()) {
211     if (ValueVT.bitsLT(PartEVT)) {
212       // For a truncate, see if we have any information to
213       // indicate whether the truncated bits will always be
214       // zero or sign-extension.
215       if (AssertOp != ISD::DELETED_NODE)
216         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
217                           DAG.getValueType(ValueVT));
218       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
219     }
220     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
221   }
222 
223   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
224     // FP_ROUND's are always exact here.
225     if (ValueVT.bitsLT(Val.getValueType()))
226       return DAG.getNode(
227           ISD::FP_ROUND, DL, ValueVT, Val,
228           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
229 
230     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
231   }
232 
233   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
234     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
235 
236   llvm_unreachable("Unknown mismatch!");
237 }
238 
239 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
240                                               const Twine &ErrMsg) {
241   const Instruction *I = dyn_cast_or_null<Instruction>(V);
242   if (!V)
243     return Ctx.emitError(ErrMsg);
244 
245   const char *AsmError = ", possible invalid constraint for vector type";
246   if (const CallInst *CI = dyn_cast<CallInst>(I))
247     if (isa<InlineAsm>(CI->getCalledValue()))
248       return Ctx.emitError(I, ErrMsg + AsmError);
249 
250   return Ctx.emitError(I, ErrMsg);
251 }
252 
253 /// getCopyFromPartsVector - Create a value that contains the specified legal
254 /// parts combined into the value they represent.  If the parts combine to a
255 /// type larger then ValueVT then AssertOp can be used to specify whether the
256 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
257 /// ValueVT (ISD::AssertSext).
258 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
259                                       const SDValue *Parts, unsigned NumParts,
260                                       MVT PartVT, EVT ValueVT, const Value *V) {
261   assert(ValueVT.isVector() && "Not a vector value");
262   assert(NumParts > 0 && "No parts to assemble!");
263   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
264   SDValue Val = Parts[0];
265 
266   // Handle a multi-element vector.
267   if (NumParts > 1) {
268     EVT IntermediateVT;
269     MVT RegisterVT;
270     unsigned NumIntermediates;
271     unsigned NumRegs =
272     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
273                                NumIntermediates, RegisterVT);
274     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
275     NumParts = NumRegs; // Silence a compiler warning.
276     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
277     assert(RegisterVT.getSizeInBits() ==
278            Parts[0].getSimpleValueType().getSizeInBits() &&
279            "Part type sizes don't match!");
280 
281     // Assemble the parts into intermediate operands.
282     SmallVector<SDValue, 8> Ops(NumIntermediates);
283     if (NumIntermediates == NumParts) {
284       // If the register was not expanded, truncate or copy the value,
285       // as appropriate.
286       for (unsigned i = 0; i != NumParts; ++i)
287         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
288                                   PartVT, IntermediateVT, V);
289     } else if (NumParts > 0) {
290       // If the intermediate type was expanded, build the intermediate
291       // operands from the parts.
292       assert(NumParts % NumIntermediates == 0 &&
293              "Must expand into a divisible number of parts!");
294       unsigned Factor = NumParts / NumIntermediates;
295       for (unsigned i = 0; i != NumIntermediates; ++i)
296         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
297                                   PartVT, IntermediateVT, V);
298     }
299 
300     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
301     // intermediate operands.
302     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
303                                                 : ISD::BUILD_VECTOR,
304                       DL, ValueVT, Ops);
305   }
306 
307   // There is now one part, held in Val.  Correct it to match ValueVT.
308   EVT PartEVT = Val.getValueType();
309 
310   if (PartEVT == ValueVT)
311     return Val;
312 
313   if (PartEVT.isVector()) {
314     // If the element type of the source/dest vectors are the same, but the
315     // parts vector has more elements than the value vector, then we have a
316     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
317     // elements we want.
318     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
319       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
320              "Cannot narrow, it would be a lossy transformation");
321       return DAG.getNode(
322           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
323           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
324     }
325 
326     // Vector/Vector bitcast.
327     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
328       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
329 
330     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
331       "Cannot handle this kind of promotion");
332     // Promoted vector extract
333     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
334 
335   }
336 
337   // Trivial bitcast if the types are the same size and the destination
338   // vector type is legal.
339   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
340       TLI.isTypeLegal(ValueVT))
341     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
342 
343   // Handle cases such as i8 -> <1 x i1>
344   if (ValueVT.getVectorNumElements() != 1) {
345     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
346                                       "non-trivial scalar-to-vector conversion");
347     return DAG.getUNDEF(ValueVT);
348   }
349 
350   if (ValueVT.getVectorNumElements() == 1 &&
351       ValueVT.getVectorElementType() != PartEVT)
352     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
353 
354   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
355 }
356 
357 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
358                                  SDValue Val, SDValue *Parts, unsigned NumParts,
359                                  MVT PartVT, const Value *V);
360 
361 /// getCopyToParts - Create a series of nodes that contain the specified value
362 /// split into legal parts.  If the parts contain more bits than Val, then, for
363 /// integers, ExtendKind can be used to specify how to generate the extra bits.
364 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
365                            SDValue Val, SDValue *Parts, unsigned NumParts,
366                            MVT PartVT, const Value *V,
367                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
368   EVT ValueVT = Val.getValueType();
369 
370   // Handle the vector case separately.
371   if (ValueVT.isVector())
372     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
373 
374   unsigned PartBits = PartVT.getSizeInBits();
375   unsigned OrigNumParts = NumParts;
376   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
377          "Copying to an illegal type!");
378 
379   if (NumParts == 0)
380     return;
381 
382   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
383   EVT PartEVT = PartVT;
384   if (PartEVT == ValueVT) {
385     assert(NumParts == 1 && "No-op copy with multiple parts!");
386     Parts[0] = Val;
387     return;
388   }
389 
390   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
391     // If the parts cover more bits than the value has, promote the value.
392     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
393       assert(NumParts == 1 && "Do not know what to promote to!");
394       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
395     } else {
396       if (ValueVT.isFloatingPoint()) {
397         // FP values need to be bitcast, then extended if they are being put
398         // into a larger container.
399         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
400         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
401       }
402       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
403              ValueVT.isInteger() &&
404              "Unknown mismatch!");
405       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
406       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
407       if (PartVT == MVT::x86mmx)
408         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
409     }
410   } else if (PartBits == ValueVT.getSizeInBits()) {
411     // Different types of the same size.
412     assert(NumParts == 1 && PartEVT != ValueVT);
413     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
414   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
415     // If the parts cover less bits than value has, truncate the value.
416     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
417            ValueVT.isInteger() &&
418            "Unknown mismatch!");
419     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
420     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
421     if (PartVT == MVT::x86mmx)
422       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
423   }
424 
425   // The value may have changed - recompute ValueVT.
426   ValueVT = Val.getValueType();
427   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
428          "Failed to tile the value with PartVT!");
429 
430   if (NumParts == 1) {
431     if (PartEVT != ValueVT)
432       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
433                                         "scalar-to-vector conversion failed");
434 
435     Parts[0] = Val;
436     return;
437   }
438 
439   // Expand the value into multiple parts.
440   if (NumParts & (NumParts - 1)) {
441     // The number of parts is not a power of 2.  Split off and copy the tail.
442     assert(PartVT.isInteger() && ValueVT.isInteger() &&
443            "Do not know what to expand to!");
444     unsigned RoundParts = 1 << Log2_32(NumParts);
445     unsigned RoundBits = RoundParts * PartBits;
446     unsigned OddParts = NumParts - RoundParts;
447     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
448                                  DAG.getIntPtrConstant(RoundBits, DL));
449     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
450 
451     if (DAG.getDataLayout().isBigEndian())
452       // The odd parts were reversed by getCopyToParts - unreverse them.
453       std::reverse(Parts + RoundParts, Parts + NumParts);
454 
455     NumParts = RoundParts;
456     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
457     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
458   }
459 
460   // The number of parts is a power of 2.  Repeatedly bisect the value using
461   // EXTRACT_ELEMENT.
462   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
463                          EVT::getIntegerVT(*DAG.getContext(),
464                                            ValueVT.getSizeInBits()),
465                          Val);
466 
467   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
468     for (unsigned i = 0; i < NumParts; i += StepSize) {
469       unsigned ThisBits = StepSize * PartBits / 2;
470       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
471       SDValue &Part0 = Parts[i];
472       SDValue &Part1 = Parts[i+StepSize/2];
473 
474       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
475                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
476       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
477                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
478 
479       if (ThisBits == PartBits && ThisVT != PartVT) {
480         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
481         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
482       }
483     }
484   }
485 
486   if (DAG.getDataLayout().isBigEndian())
487     std::reverse(Parts, Parts + OrigNumParts);
488 }
489 
490 
491 /// getCopyToPartsVector - Create a series of nodes that contain the specified
492 /// value split into legal parts.
493 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
494                                  SDValue Val, SDValue *Parts, unsigned NumParts,
495                                  MVT PartVT, const Value *V) {
496   EVT ValueVT = Val.getValueType();
497   assert(ValueVT.isVector() && "Not a vector");
498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
499 
500   if (NumParts == 1) {
501     EVT PartEVT = PartVT;
502     if (PartEVT == ValueVT) {
503       // Nothing to do.
504     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
505       // Bitconvert vector->vector case.
506       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
507     } else if (PartVT.isVector() &&
508                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
509                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
510       EVT ElementVT = PartVT.getVectorElementType();
511       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
512       // undef elements.
513       SmallVector<SDValue, 16> Ops;
514       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
515         Ops.push_back(DAG.getNode(
516             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
517             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
518 
519       for (unsigned i = ValueVT.getVectorNumElements(),
520            e = PartVT.getVectorNumElements(); i != e; ++i)
521         Ops.push_back(DAG.getUNDEF(ElementVT));
522 
523       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
524 
525       // FIXME: Use CONCAT for 2x -> 4x.
526 
527       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
528       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
529     } else if (PartVT.isVector() &&
530                PartEVT.getVectorElementType().bitsGE(
531                  ValueVT.getVectorElementType()) &&
532                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
533 
534       // Promoted vector extract
535       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
536     } else{
537       // Vector -> scalar conversion.
538       assert(ValueVT.getVectorNumElements() == 1 &&
539              "Only trivial vector-to-scalar conversions should get here!");
540       Val = DAG.getNode(
541           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
542           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
543 
544       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
545     }
546 
547     Parts[0] = Val;
548     return;
549   }
550 
551   // Handle a multi-element vector.
552   EVT IntermediateVT;
553   MVT RegisterVT;
554   unsigned NumIntermediates;
555   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
556                                                 IntermediateVT,
557                                                 NumIntermediates, RegisterVT);
558   unsigned NumElements = ValueVT.getVectorNumElements();
559 
560   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
561   NumParts = NumRegs; // Silence a compiler warning.
562   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
563 
564   // Split the vector into intermediate operands.
565   SmallVector<SDValue, 8> Ops(NumIntermediates);
566   for (unsigned i = 0; i != NumIntermediates; ++i) {
567     if (IntermediateVT.isVector())
568       Ops[i] =
569           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
570                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
571                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
572     else
573       Ops[i] = DAG.getNode(
574           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
575           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
576   }
577 
578   // Split the intermediate operands into legal parts.
579   if (NumParts == NumIntermediates) {
580     // If the register was not expanded, promote or copy the value,
581     // as appropriate.
582     for (unsigned i = 0; i != NumParts; ++i)
583       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
584   } else if (NumParts > 0) {
585     // If the intermediate type was expanded, split each the value into
586     // legal parts.
587     assert(NumIntermediates != 0 && "division by zero");
588     assert(NumParts % NumIntermediates == 0 &&
589            "Must expand into a divisible number of parts!");
590     unsigned Factor = NumParts / NumIntermediates;
591     for (unsigned i = 0; i != NumIntermediates; ++i)
592       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
593   }
594 }
595 
596 RegsForValue::RegsForValue() {}
597 
598 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
599                            EVT valuevt)
600     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
601 
602 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
603                            const DataLayout &DL, unsigned Reg, Type *Ty) {
604   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
605 
606   for (EVT ValueVT : ValueVTs) {
607     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
608     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
609     for (unsigned i = 0; i != NumRegs; ++i)
610       Regs.push_back(Reg + i);
611     RegVTs.push_back(RegisterVT);
612     Reg += NumRegs;
613   }
614 }
615 
616 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
617 /// this value and returns the result as a ValueVT value.  This uses
618 /// Chain/Flag as the input and updates them for the output Chain/Flag.
619 /// If the Flag pointer is NULL, no flag is used.
620 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
621                                       FunctionLoweringInfo &FuncInfo,
622                                       SDLoc dl,
623                                       SDValue &Chain, SDValue *Flag,
624                                       const Value *V) const {
625   // A Value with type {} or [0 x %t] needs no registers.
626   if (ValueVTs.empty())
627     return SDValue();
628 
629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
630 
631   // Assemble the legal parts into the final values.
632   SmallVector<SDValue, 4> Values(ValueVTs.size());
633   SmallVector<SDValue, 8> Parts;
634   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
635     // Copy the legal parts from the registers.
636     EVT ValueVT = ValueVTs[Value];
637     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
638     MVT RegisterVT = RegVTs[Value];
639 
640     Parts.resize(NumRegs);
641     for (unsigned i = 0; i != NumRegs; ++i) {
642       SDValue P;
643       if (!Flag) {
644         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
645       } else {
646         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
647         *Flag = P.getValue(2);
648       }
649 
650       Chain = P.getValue(1);
651       Parts[i] = P;
652 
653       // If the source register was virtual and if we know something about it,
654       // add an assert node.
655       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
656           !RegisterVT.isInteger() || RegisterVT.isVector())
657         continue;
658 
659       const FunctionLoweringInfo::LiveOutInfo *LOI =
660         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
661       if (!LOI)
662         continue;
663 
664       unsigned RegSize = RegisterVT.getSizeInBits();
665       unsigned NumSignBits = LOI->NumSignBits;
666       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
667 
668       if (NumZeroBits == RegSize) {
669         // The current value is a zero.
670         // Explicitly express that as it would be easier for
671         // optimizations to kick in.
672         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
673         continue;
674       }
675 
676       // FIXME: We capture more information than the dag can represent.  For
677       // now, just use the tightest assertzext/assertsext possible.
678       bool isSExt = true;
679       EVT FromVT(MVT::Other);
680       if (NumSignBits == RegSize)
681         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
682       else if (NumZeroBits >= RegSize-1)
683         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
684       else if (NumSignBits > RegSize-8)
685         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
686       else if (NumZeroBits >= RegSize-8)
687         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
688       else if (NumSignBits > RegSize-16)
689         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
690       else if (NumZeroBits >= RegSize-16)
691         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
692       else if (NumSignBits > RegSize-32)
693         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
694       else if (NumZeroBits >= RegSize-32)
695         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
696       else
697         continue;
698 
699       // Add an assertion node.
700       assert(FromVT != MVT::Other);
701       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
702                              RegisterVT, P, DAG.getValueType(FromVT));
703     }
704 
705     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
706                                      NumRegs, RegisterVT, ValueVT, V);
707     Part += NumRegs;
708     Parts.clear();
709   }
710 
711   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
712 }
713 
714 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
715 /// specified value into the registers specified by this object.  This uses
716 /// Chain/Flag as the input and updates them for the output Chain/Flag.
717 /// If the Flag pointer is NULL, no flag is used.
718 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
719                                  SDValue &Chain, SDValue *Flag, const Value *V,
720                                  ISD::NodeType PreferredExtendType) const {
721   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
722   ISD::NodeType ExtendKind = PreferredExtendType;
723 
724   // Get the list of the values's legal parts.
725   unsigned NumRegs = Regs.size();
726   SmallVector<SDValue, 8> Parts(NumRegs);
727   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
728     EVT ValueVT = ValueVTs[Value];
729     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
730     MVT RegisterVT = RegVTs[Value];
731 
732     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
733       ExtendKind = ISD::ZERO_EXTEND;
734 
735     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
736                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
737     Part += NumParts;
738   }
739 
740   // Copy the parts into the registers.
741   SmallVector<SDValue, 8> Chains(NumRegs);
742   for (unsigned i = 0; i != NumRegs; ++i) {
743     SDValue Part;
744     if (!Flag) {
745       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
746     } else {
747       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
748       *Flag = Part.getValue(1);
749     }
750 
751     Chains[i] = Part.getValue(0);
752   }
753 
754   if (NumRegs == 1 || Flag)
755     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
756     // flagged to it. That is the CopyToReg nodes and the user are considered
757     // a single scheduling unit. If we create a TokenFactor and return it as
758     // chain, then the TokenFactor is both a predecessor (operand) of the
759     // user as well as a successor (the TF operands are flagged to the user).
760     // c1, f1 = CopyToReg
761     // c2, f2 = CopyToReg
762     // c3     = TokenFactor c1, c2
763     // ...
764     //        = op c3, ..., f2
765     Chain = Chains[NumRegs-1];
766   else
767     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
768 }
769 
770 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
771 /// operand list.  This adds the code marker and includes the number of
772 /// values added into it.
773 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
774                                         unsigned MatchingIdx, SDLoc dl,
775                                         SelectionDAG &DAG,
776                                         std::vector<SDValue> &Ops) const {
777   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
778 
779   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
780   if (HasMatching)
781     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
782   else if (!Regs.empty() &&
783            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
784     // Put the register class of the virtual registers in the flag word.  That
785     // way, later passes can recompute register class constraints for inline
786     // assembly as well as normal instructions.
787     // Don't do this for tied operands that can use the regclass information
788     // from the def.
789     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
790     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
791     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
792   }
793 
794   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
795   Ops.push_back(Res);
796 
797   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
798   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
799     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
800     MVT RegisterVT = RegVTs[Value];
801     for (unsigned i = 0; i != NumRegs; ++i) {
802       assert(Reg < Regs.size() && "Mismatch in # registers expected");
803       unsigned TheReg = Regs[Reg++];
804       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
805 
806       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
807         // If we clobbered the stack pointer, MFI should know about it.
808         assert(DAG.getMachineFunction().getFrameInfo()->
809             hasOpaqueSPAdjustment());
810       }
811     }
812   }
813 }
814 
815 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
816                                const TargetLibraryInfo *li) {
817   AA = &aa;
818   GFI = gfi;
819   LibInfo = li;
820   DL = &DAG.getDataLayout();
821   Context = DAG.getContext();
822   LPadToCallSiteMap.clear();
823 }
824 
825 /// clear - Clear out the current SelectionDAG and the associated
826 /// state and prepare this SelectionDAGBuilder object to be used
827 /// for a new block. This doesn't clear out information about
828 /// additional blocks that are needed to complete switch lowering
829 /// or PHI node updating; that information is cleared out as it is
830 /// consumed.
831 void SelectionDAGBuilder::clear() {
832   NodeMap.clear();
833   UnusedArgNodeMap.clear();
834   PendingLoads.clear();
835   PendingExports.clear();
836   CurInst = nullptr;
837   HasTailCall = false;
838   SDNodeOrder = LowestSDNodeOrder;
839   StatepointLowering.clear();
840 }
841 
842 /// clearDanglingDebugInfo - Clear the dangling debug information
843 /// map. This function is separated from the clear so that debug
844 /// information that is dangling in a basic block can be properly
845 /// resolved in a different basic block. This allows the
846 /// SelectionDAG to resolve dangling debug information attached
847 /// to PHI nodes.
848 void SelectionDAGBuilder::clearDanglingDebugInfo() {
849   DanglingDebugInfoMap.clear();
850 }
851 
852 /// getRoot - Return the current virtual root of the Selection DAG,
853 /// flushing any PendingLoad items. This must be done before emitting
854 /// a store or any other node that may need to be ordered after any
855 /// prior load instructions.
856 ///
857 SDValue SelectionDAGBuilder::getRoot() {
858   if (PendingLoads.empty())
859     return DAG.getRoot();
860 
861   if (PendingLoads.size() == 1) {
862     SDValue Root = PendingLoads[0];
863     DAG.setRoot(Root);
864     PendingLoads.clear();
865     return Root;
866   }
867 
868   // Otherwise, we have to make a token factor node.
869   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
870                              PendingLoads);
871   PendingLoads.clear();
872   DAG.setRoot(Root);
873   return Root;
874 }
875 
876 /// getControlRoot - Similar to getRoot, but instead of flushing all the
877 /// PendingLoad items, flush all the PendingExports items. It is necessary
878 /// to do this before emitting a terminator instruction.
879 ///
880 SDValue SelectionDAGBuilder::getControlRoot() {
881   SDValue Root = DAG.getRoot();
882 
883   if (PendingExports.empty())
884     return Root;
885 
886   // Turn all of the CopyToReg chains into one factored node.
887   if (Root.getOpcode() != ISD::EntryToken) {
888     unsigned i = 0, e = PendingExports.size();
889     for (; i != e; ++i) {
890       assert(PendingExports[i].getNode()->getNumOperands() > 1);
891       if (PendingExports[i].getNode()->getOperand(0) == Root)
892         break;  // Don't add the root if we already indirectly depend on it.
893     }
894 
895     if (i == e)
896       PendingExports.push_back(Root);
897   }
898 
899   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
900                      PendingExports);
901   PendingExports.clear();
902   DAG.setRoot(Root);
903   return Root;
904 }
905 
906 void SelectionDAGBuilder::visit(const Instruction &I) {
907   // Set up outgoing PHI node register values before emitting the terminator.
908   if (isa<TerminatorInst>(&I))
909     HandlePHINodesInSuccessorBlocks(I.getParent());
910 
911   ++SDNodeOrder;
912 
913   CurInst = &I;
914 
915   visit(I.getOpcode(), I);
916 
917   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
918       !isStatepoint(&I)) // statepoints handle their exports internally
919     CopyToExportRegsIfNeeded(&I);
920 
921   CurInst = nullptr;
922 }
923 
924 void SelectionDAGBuilder::visitPHI(const PHINode &) {
925   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
926 }
927 
928 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
929   // Note: this doesn't use InstVisitor, because it has to work with
930   // ConstantExpr's in addition to instructions.
931   switch (Opcode) {
932   default: llvm_unreachable("Unknown instruction type encountered!");
933     // Build the switch statement using the Instruction.def file.
934 #define HANDLE_INST(NUM, OPCODE, CLASS) \
935     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
936 #include "llvm/IR/Instruction.def"
937   }
938 }
939 
940 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
941 // generate the debug data structures now that we've seen its definition.
942 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
943                                                    SDValue Val) {
944   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
945   if (DDI.getDI()) {
946     const DbgValueInst *DI = DDI.getDI();
947     DebugLoc dl = DDI.getdl();
948     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
949     DILocalVariable *Variable = DI->getVariable();
950     DIExpression *Expr = DI->getExpression();
951     assert(Variable->isValidLocationForIntrinsic(dl) &&
952            "Expected inlined-at fields to agree");
953     uint64_t Offset = DI->getOffset();
954     SDDbgValue *SDV;
955     if (Val.getNode()) {
956       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
957                                     Val)) {
958         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
959                               false, Offset, dl, DbgSDNodeOrder);
960         DAG.AddDbgValue(SDV, Val.getNode(), false);
961       }
962     } else
963       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
964     DanglingDebugInfoMap[V] = DanglingDebugInfo();
965   }
966 }
967 
968 /// getCopyFromRegs - If there was virtual register allocated for the value V
969 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
970 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
971   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
972   SDValue Result;
973 
974   if (It != FuncInfo.ValueMap.end()) {
975     unsigned InReg = It->second;
976     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
977                      DAG.getDataLayout(), InReg, Ty);
978     SDValue Chain = DAG.getEntryNode();
979     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
980     resolveDanglingDebugInfo(V, Result);
981   }
982 
983   return Result;
984 }
985 
986 /// getValue - Return an SDValue for the given Value.
987 SDValue SelectionDAGBuilder::getValue(const Value *V) {
988   // If we already have an SDValue for this value, use it. It's important
989   // to do this first, so that we don't create a CopyFromReg if we already
990   // have a regular SDValue.
991   SDValue &N = NodeMap[V];
992   if (N.getNode()) return N;
993 
994   // If there's a virtual register allocated and initialized for this
995   // value, use it.
996   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
997     return copyFromReg;
998 
999   // Otherwise create a new SDValue and remember it.
1000   SDValue Val = getValueImpl(V);
1001   NodeMap[V] = Val;
1002   resolveDanglingDebugInfo(V, Val);
1003   return Val;
1004 }
1005 
1006 // Return true if SDValue exists for the given Value
1007 bool SelectionDAGBuilder::findValue(const Value *V) const {
1008   return (NodeMap.find(V) != NodeMap.end()) ||
1009     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1010 }
1011 
1012 /// getNonRegisterValue - Return an SDValue for the given Value, but
1013 /// don't look in FuncInfo.ValueMap for a virtual register.
1014 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1015   // If we already have an SDValue for this value, use it.
1016   SDValue &N = NodeMap[V];
1017   if (N.getNode()) {
1018     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1019       // Remove the debug location from the node as the node is about to be used
1020       // in a location which may differ from the original debug location.  This
1021       // is relevant to Constant and ConstantFP nodes because they can appear
1022       // as constant expressions inside PHI nodes.
1023       N->setDebugLoc(DebugLoc());
1024     }
1025     return N;
1026   }
1027 
1028   // Otherwise create a new SDValue and remember it.
1029   SDValue Val = getValueImpl(V);
1030   NodeMap[V] = Val;
1031   resolveDanglingDebugInfo(V, Val);
1032   return Val;
1033 }
1034 
1035 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1036 /// Create an SDValue for the given value.
1037 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1038   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1039 
1040   if (const Constant *C = dyn_cast<Constant>(V)) {
1041     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1042 
1043     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1044       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1045 
1046     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1047       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1048 
1049     if (isa<ConstantPointerNull>(C)) {
1050       unsigned AS = V->getType()->getPointerAddressSpace();
1051       return DAG.getConstant(0, getCurSDLoc(),
1052                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1053     }
1054 
1055     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1056       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1057 
1058     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1059       return DAG.getUNDEF(VT);
1060 
1061     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1062       visit(CE->getOpcode(), *CE);
1063       SDValue N1 = NodeMap[V];
1064       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1065       return N1;
1066     }
1067 
1068     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1069       SmallVector<SDValue, 4> Constants;
1070       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1071            OI != OE; ++OI) {
1072         SDNode *Val = getValue(*OI).getNode();
1073         // If the operand is an empty aggregate, there are no values.
1074         if (!Val) continue;
1075         // Add each leaf value from the operand to the Constants list
1076         // to form a flattened list of all the values.
1077         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1078           Constants.push_back(SDValue(Val, i));
1079       }
1080 
1081       return DAG.getMergeValues(Constants, getCurSDLoc());
1082     }
1083 
1084     if (const ConstantDataSequential *CDS =
1085           dyn_cast<ConstantDataSequential>(C)) {
1086       SmallVector<SDValue, 4> Ops;
1087       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1088         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1089         // Add each leaf value from the operand to the Constants list
1090         // to form a flattened list of all the values.
1091         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1092           Ops.push_back(SDValue(Val, i));
1093       }
1094 
1095       if (isa<ArrayType>(CDS->getType()))
1096         return DAG.getMergeValues(Ops, getCurSDLoc());
1097       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1098                                       VT, Ops);
1099     }
1100 
1101     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1102       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1103              "Unknown struct or array constant!");
1104 
1105       SmallVector<EVT, 4> ValueVTs;
1106       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1107       unsigned NumElts = ValueVTs.size();
1108       if (NumElts == 0)
1109         return SDValue(); // empty struct
1110       SmallVector<SDValue, 4> Constants(NumElts);
1111       for (unsigned i = 0; i != NumElts; ++i) {
1112         EVT EltVT = ValueVTs[i];
1113         if (isa<UndefValue>(C))
1114           Constants[i] = DAG.getUNDEF(EltVT);
1115         else if (EltVT.isFloatingPoint())
1116           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1117         else
1118           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1119       }
1120 
1121       return DAG.getMergeValues(Constants, getCurSDLoc());
1122     }
1123 
1124     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1125       return DAG.getBlockAddress(BA, VT);
1126 
1127     VectorType *VecTy = cast<VectorType>(V->getType());
1128     unsigned NumElements = VecTy->getNumElements();
1129 
1130     // Now that we know the number and type of the elements, get that number of
1131     // elements into the Ops array based on what kind of constant it is.
1132     SmallVector<SDValue, 16> Ops;
1133     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1134       for (unsigned i = 0; i != NumElements; ++i)
1135         Ops.push_back(getValue(CV->getOperand(i)));
1136     } else {
1137       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1138       EVT EltVT =
1139           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1140 
1141       SDValue Op;
1142       if (EltVT.isFloatingPoint())
1143         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1144       else
1145         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1146       Ops.assign(NumElements, Op);
1147     }
1148 
1149     // Create a BUILD_VECTOR node.
1150     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1151   }
1152 
1153   // If this is a static alloca, generate it as the frameindex instead of
1154   // computation.
1155   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1156     DenseMap<const AllocaInst*, int>::iterator SI =
1157       FuncInfo.StaticAllocaMap.find(AI);
1158     if (SI != FuncInfo.StaticAllocaMap.end())
1159       return DAG.getFrameIndex(SI->second,
1160                                TLI.getPointerTy(DAG.getDataLayout()));
1161   }
1162 
1163   // If this is an instruction which fast-isel has deferred, select it now.
1164   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1165     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1166     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1167                      Inst->getType());
1168     SDValue Chain = DAG.getEntryNode();
1169     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1170   }
1171 
1172   llvm_unreachable("Can't get register for value!");
1173 }
1174 
1175 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1176   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1177   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1178   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1179   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1180   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1181   if (IsMSVCCXX || IsCoreCLR)
1182     CatchPadMBB->setIsEHFuncletEntry();
1183 
1184   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1185 }
1186 
1187 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1188   // Update machine-CFG edge.
1189   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1190   FuncInfo.MBB->addSuccessor(TargetMBB);
1191 
1192   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1193   bool IsSEH = isAsynchronousEHPersonality(Pers);
1194   if (IsSEH) {
1195     // If this is not a fall-through branch or optimizations are switched off,
1196     // emit the branch.
1197     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1198         TM.getOptLevel() == CodeGenOpt::None)
1199       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1200                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1201     return;
1202   }
1203 
1204   // Figure out the funclet membership for the catchret's successor.
1205   // This will be used by the FuncletLayout pass to determine how to order the
1206   // BB's.
1207   // A 'catchret' returns to the outer scope's color.
1208   Value *ParentPad = I.getCatchSwitchParentPad();
1209   const BasicBlock *SuccessorColor;
1210   if (isa<ConstantTokenNone>(ParentPad))
1211     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1212   else
1213     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1214   assert(SuccessorColor && "No parent funclet for catchret!");
1215   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1216   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1217 
1218   // Create the terminator node.
1219   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1220                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1221                             DAG.getBasicBlock(SuccessorColorMBB));
1222   DAG.setRoot(Ret);
1223 }
1224 
1225 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1226   // Don't emit any special code for the cleanuppad instruction. It just marks
1227   // the start of a funclet.
1228   FuncInfo.MBB->setIsEHFuncletEntry();
1229   FuncInfo.MBB->setIsCleanupFuncletEntry();
1230 }
1231 
1232 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1233 /// many places it could ultimately go. In the IR, we have a single unwind
1234 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1235 /// This function skips over imaginary basic blocks that hold catchswitch
1236 /// instructions, and finds all the "real" machine
1237 /// basic block destinations. As those destinations may not be successors of
1238 /// EHPadBB, here we also calculate the edge probability to those destinations.
1239 /// The passed-in Prob is the edge probability to EHPadBB.
1240 static void findUnwindDestinations(
1241     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1242     BranchProbability Prob,
1243     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1244         &UnwindDests) {
1245   EHPersonality Personality =
1246     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1247   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1248   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1249 
1250   while (EHPadBB) {
1251     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1252     BasicBlock *NewEHPadBB = nullptr;
1253     if (isa<LandingPadInst>(Pad)) {
1254       // Stop on landingpads. They are not funclets.
1255       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1256       break;
1257     } else if (isa<CleanupPadInst>(Pad)) {
1258       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1259       // personalities.
1260       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1261       UnwindDests.back().first->setIsEHFuncletEntry();
1262       break;
1263     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1264       // Add the catchpad handlers to the possible destinations.
1265       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1266         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1267         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1268         if (IsMSVCCXX || IsCoreCLR)
1269           UnwindDests.back().first->setIsEHFuncletEntry();
1270       }
1271       NewEHPadBB = CatchSwitch->getUnwindDest();
1272     } else {
1273       continue;
1274     }
1275 
1276     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1277     if (BPI && NewEHPadBB)
1278       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1279     EHPadBB = NewEHPadBB;
1280   }
1281 }
1282 
1283 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1284   // Update successor info.
1285   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1286   auto UnwindDest = I.getUnwindDest();
1287   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1288   BranchProbability UnwindDestProb =
1289       (BPI && UnwindDest)
1290           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1291           : BranchProbability::getZero();
1292   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1293   for (auto &UnwindDest : UnwindDests) {
1294     UnwindDest.first->setIsEHPad();
1295     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1296   }
1297   FuncInfo.MBB->normalizeSuccProbs();
1298 
1299   // Create the terminator node.
1300   SDValue Ret =
1301       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1302   DAG.setRoot(Ret);
1303 }
1304 
1305 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1306   report_fatal_error("visitCatchSwitch not yet implemented!");
1307 }
1308 
1309 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1310   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1311   auto &DL = DAG.getDataLayout();
1312   SDValue Chain = getControlRoot();
1313   SmallVector<ISD::OutputArg, 8> Outs;
1314   SmallVector<SDValue, 8> OutVals;
1315 
1316   if (!FuncInfo.CanLowerReturn) {
1317     unsigned DemoteReg = FuncInfo.DemoteRegister;
1318     const Function *F = I.getParent()->getParent();
1319 
1320     // Emit a store of the return value through the virtual register.
1321     // Leave Outs empty so that LowerReturn won't try to load return
1322     // registers the usual way.
1323     SmallVector<EVT, 1> PtrValueVTs;
1324     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1325                     PtrValueVTs);
1326 
1327     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1328                                         DemoteReg, PtrValueVTs[0]);
1329     SDValue RetOp = getValue(I.getOperand(0));
1330 
1331     SmallVector<EVT, 4> ValueVTs;
1332     SmallVector<uint64_t, 4> Offsets;
1333     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1334     unsigned NumValues = ValueVTs.size();
1335 
1336     // An aggregate return value cannot wrap around the address space, so
1337     // offsets to its parts don't wrap either.
1338     SDNodeFlags Flags;
1339     Flags.setNoUnsignedWrap(true);
1340 
1341     SmallVector<SDValue, 4> Chains(NumValues);
1342     for (unsigned i = 0; i != NumValues; ++i) {
1343       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1344                                 RetPtr.getValueType(), RetPtr,
1345                                 DAG.getIntPtrConstant(Offsets[i],
1346                                                       getCurSDLoc()),
1347                                 &Flags);
1348       Chains[i] =
1349         DAG.getStore(Chain, getCurSDLoc(),
1350                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1351                      // FIXME: better loc info would be nice.
1352                      Add, MachinePointerInfo(), false, false, 0);
1353     }
1354 
1355     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1356                         MVT::Other, Chains);
1357   } else if (I.getNumOperands() != 0) {
1358     SmallVector<EVT, 4> ValueVTs;
1359     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1360     unsigned NumValues = ValueVTs.size();
1361     if (NumValues) {
1362       SDValue RetOp = getValue(I.getOperand(0));
1363 
1364       const Function *F = I.getParent()->getParent();
1365 
1366       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1367       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1368                                           Attribute::SExt))
1369         ExtendKind = ISD::SIGN_EXTEND;
1370       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1371                                                Attribute::ZExt))
1372         ExtendKind = ISD::ZERO_EXTEND;
1373 
1374       LLVMContext &Context = F->getContext();
1375       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1376                                                       Attribute::InReg);
1377 
1378       for (unsigned j = 0; j != NumValues; ++j) {
1379         EVT VT = ValueVTs[j];
1380 
1381         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1382           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1383 
1384         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1385         MVT PartVT = TLI.getRegisterType(Context, VT);
1386         SmallVector<SDValue, 4> Parts(NumParts);
1387         getCopyToParts(DAG, getCurSDLoc(),
1388                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1389                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1390 
1391         // 'inreg' on function refers to return value
1392         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1393         if (RetInReg)
1394           Flags.setInReg();
1395 
1396         // Propagate extension type if any
1397         if (ExtendKind == ISD::SIGN_EXTEND)
1398           Flags.setSExt();
1399         else if (ExtendKind == ISD::ZERO_EXTEND)
1400           Flags.setZExt();
1401 
1402         for (unsigned i = 0; i < NumParts; ++i) {
1403           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1404                                         VT, /*isfixed=*/true, 0, 0));
1405           OutVals.push_back(Parts[i]);
1406         }
1407       }
1408     }
1409   }
1410 
1411   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1412   CallingConv::ID CallConv =
1413     DAG.getMachineFunction().getFunction()->getCallingConv();
1414   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1415       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1416 
1417   // Verify that the target's LowerReturn behaved as expected.
1418   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1419          "LowerReturn didn't return a valid chain!");
1420 
1421   // Update the DAG with the new chain value resulting from return lowering.
1422   DAG.setRoot(Chain);
1423 }
1424 
1425 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1426 /// created for it, emit nodes to copy the value into the virtual
1427 /// registers.
1428 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1429   // Skip empty types
1430   if (V->getType()->isEmptyTy())
1431     return;
1432 
1433   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1434   if (VMI != FuncInfo.ValueMap.end()) {
1435     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1436     CopyValueToVirtualRegister(V, VMI->second);
1437   }
1438 }
1439 
1440 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1441 /// the current basic block, add it to ValueMap now so that we'll get a
1442 /// CopyTo/FromReg.
1443 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1444   // No need to export constants.
1445   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1446 
1447   // Already exported?
1448   if (FuncInfo.isExportedInst(V)) return;
1449 
1450   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1451   CopyValueToVirtualRegister(V, Reg);
1452 }
1453 
1454 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1455                                                      const BasicBlock *FromBB) {
1456   // The operands of the setcc have to be in this block.  We don't know
1457   // how to export them from some other block.
1458   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1459     // Can export from current BB.
1460     if (VI->getParent() == FromBB)
1461       return true;
1462 
1463     // Is already exported, noop.
1464     return FuncInfo.isExportedInst(V);
1465   }
1466 
1467   // If this is an argument, we can export it if the BB is the entry block or
1468   // if it is already exported.
1469   if (isa<Argument>(V)) {
1470     if (FromBB == &FromBB->getParent()->getEntryBlock())
1471       return true;
1472 
1473     // Otherwise, can only export this if it is already exported.
1474     return FuncInfo.isExportedInst(V);
1475   }
1476 
1477   // Otherwise, constants can always be exported.
1478   return true;
1479 }
1480 
1481 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1482 BranchProbability
1483 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1484                                         const MachineBasicBlock *Dst) const {
1485   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1486   const BasicBlock *SrcBB = Src->getBasicBlock();
1487   const BasicBlock *DstBB = Dst->getBasicBlock();
1488   if (!BPI) {
1489     // If BPI is not available, set the default probability as 1 / N, where N is
1490     // the number of successors.
1491     auto SuccSize = std::max<uint32_t>(
1492         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1493     return BranchProbability(1, SuccSize);
1494   }
1495   return BPI->getEdgeProbability(SrcBB, DstBB);
1496 }
1497 
1498 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1499                                                MachineBasicBlock *Dst,
1500                                                BranchProbability Prob) {
1501   if (!FuncInfo.BPI)
1502     Src->addSuccessorWithoutProb(Dst);
1503   else {
1504     if (Prob.isUnknown())
1505       Prob = getEdgeProbability(Src, Dst);
1506     Src->addSuccessor(Dst, Prob);
1507   }
1508 }
1509 
1510 static bool InBlock(const Value *V, const BasicBlock *BB) {
1511   if (const Instruction *I = dyn_cast<Instruction>(V))
1512     return I->getParent() == BB;
1513   return true;
1514 }
1515 
1516 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1517 /// This function emits a branch and is used at the leaves of an OR or an
1518 /// AND operator tree.
1519 ///
1520 void
1521 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1522                                                   MachineBasicBlock *TBB,
1523                                                   MachineBasicBlock *FBB,
1524                                                   MachineBasicBlock *CurBB,
1525                                                   MachineBasicBlock *SwitchBB,
1526                                                   BranchProbability TProb,
1527                                                   BranchProbability FProb) {
1528   const BasicBlock *BB = CurBB->getBasicBlock();
1529 
1530   // If the leaf of the tree is a comparison, merge the condition into
1531   // the caseblock.
1532   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1533     // The operands of the cmp have to be in this block.  We don't know
1534     // how to export them from some other block.  If this is the first block
1535     // of the sequence, no exporting is needed.
1536     if (CurBB == SwitchBB ||
1537         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1538          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1539       ISD::CondCode Condition;
1540       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1541         Condition = getICmpCondCode(IC->getPredicate());
1542       } else {
1543         const FCmpInst *FC = cast<FCmpInst>(Cond);
1544         Condition = getFCmpCondCode(FC->getPredicate());
1545         if (TM.Options.NoNaNsFPMath)
1546           Condition = getFCmpCodeWithoutNaN(Condition);
1547       }
1548 
1549       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1550                    TBB, FBB, CurBB, TProb, FProb);
1551       SwitchCases.push_back(CB);
1552       return;
1553     }
1554   }
1555 
1556   // Create a CaseBlock record representing this branch.
1557   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1558                nullptr, TBB, FBB, CurBB, TProb, FProb);
1559   SwitchCases.push_back(CB);
1560 }
1561 
1562 /// FindMergedConditions - If Cond is an expression like
1563 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1564                                                MachineBasicBlock *TBB,
1565                                                MachineBasicBlock *FBB,
1566                                                MachineBasicBlock *CurBB,
1567                                                MachineBasicBlock *SwitchBB,
1568                                                Instruction::BinaryOps Opc,
1569                                                BranchProbability TProb,
1570                                                BranchProbability FProb) {
1571   // If this node is not part of the or/and tree, emit it as a branch.
1572   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1573   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1574       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1575       BOp->getParent() != CurBB->getBasicBlock() ||
1576       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1577       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1578     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1579                                  TProb, FProb);
1580     return;
1581   }
1582 
1583   //  Create TmpBB after CurBB.
1584   MachineFunction::iterator BBI(CurBB);
1585   MachineFunction &MF = DAG.getMachineFunction();
1586   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1587   CurBB->getParent()->insert(++BBI, TmpBB);
1588 
1589   if (Opc == Instruction::Or) {
1590     // Codegen X | Y as:
1591     // BB1:
1592     //   jmp_if_X TBB
1593     //   jmp TmpBB
1594     // TmpBB:
1595     //   jmp_if_Y TBB
1596     //   jmp FBB
1597     //
1598 
1599     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1600     // The requirement is that
1601     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1602     //     = TrueProb for original BB.
1603     // Assuming the original probabilities are A and B, one choice is to set
1604     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1605     // A/(1+B) and 2B/(1+B). This choice assumes that
1606     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1607     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1608     // TmpBB, but the math is more complicated.
1609 
1610     auto NewTrueProb = TProb / 2;
1611     auto NewFalseProb = TProb / 2 + FProb;
1612     // Emit the LHS condition.
1613     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1614                          NewTrueProb, NewFalseProb);
1615 
1616     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1617     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1618     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1619     // Emit the RHS condition into TmpBB.
1620     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1621                          Probs[0], Probs[1]);
1622   } else {
1623     assert(Opc == Instruction::And && "Unknown merge op!");
1624     // Codegen X & Y as:
1625     // BB1:
1626     //   jmp_if_X TmpBB
1627     //   jmp FBB
1628     // TmpBB:
1629     //   jmp_if_Y TBB
1630     //   jmp FBB
1631     //
1632     //  This requires creation of TmpBB after CurBB.
1633 
1634     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1635     // The requirement is that
1636     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1637     //     = FalseProb for original BB.
1638     // Assuming the original probabilities are A and B, one choice is to set
1639     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1640     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1641     // TrueProb for BB1 * FalseProb for TmpBB.
1642 
1643     auto NewTrueProb = TProb + FProb / 2;
1644     auto NewFalseProb = FProb / 2;
1645     // Emit the LHS condition.
1646     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1647                          NewTrueProb, NewFalseProb);
1648 
1649     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1650     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1651     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1652     // Emit the RHS condition into TmpBB.
1653     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1654                          Probs[0], Probs[1]);
1655   }
1656 }
1657 
1658 /// If the set of cases should be emitted as a series of branches, return true.
1659 /// If we should emit this as a bunch of and/or'd together conditions, return
1660 /// false.
1661 bool
1662 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1663   if (Cases.size() != 2) return true;
1664 
1665   // If this is two comparisons of the same values or'd or and'd together, they
1666   // will get folded into a single comparison, so don't emit two blocks.
1667   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1668        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1669       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1670        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1671     return false;
1672   }
1673 
1674   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1675   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1676   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1677       Cases[0].CC == Cases[1].CC &&
1678       isa<Constant>(Cases[0].CmpRHS) &&
1679       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1680     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1681       return false;
1682     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1683       return false;
1684   }
1685 
1686   return true;
1687 }
1688 
1689 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1690   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1691 
1692   // Update machine-CFG edges.
1693   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1694 
1695   if (I.isUnconditional()) {
1696     // Update machine-CFG edges.
1697     BrMBB->addSuccessor(Succ0MBB);
1698 
1699     // If this is not a fall-through branch or optimizations are switched off,
1700     // emit the branch.
1701     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1702       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1703                               MVT::Other, getControlRoot(),
1704                               DAG.getBasicBlock(Succ0MBB)));
1705 
1706     return;
1707   }
1708 
1709   // If this condition is one of the special cases we handle, do special stuff
1710   // now.
1711   const Value *CondVal = I.getCondition();
1712   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1713 
1714   // If this is a series of conditions that are or'd or and'd together, emit
1715   // this as a sequence of branches instead of setcc's with and/or operations.
1716   // As long as jumps are not expensive, this should improve performance.
1717   // For example, instead of something like:
1718   //     cmp A, B
1719   //     C = seteq
1720   //     cmp D, E
1721   //     F = setle
1722   //     or C, F
1723   //     jnz foo
1724   // Emit:
1725   //     cmp A, B
1726   //     je foo
1727   //     cmp D, E
1728   //     jle foo
1729   //
1730   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1731     Instruction::BinaryOps Opcode = BOp->getOpcode();
1732     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1733         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1734         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1735       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1736                            Opcode,
1737                            getEdgeProbability(BrMBB, Succ0MBB),
1738                            getEdgeProbability(BrMBB, Succ1MBB));
1739       // If the compares in later blocks need to use values not currently
1740       // exported from this block, export them now.  This block should always
1741       // be the first entry.
1742       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1743 
1744       // Allow some cases to be rejected.
1745       if (ShouldEmitAsBranches(SwitchCases)) {
1746         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1747           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1748           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1749         }
1750 
1751         // Emit the branch for this block.
1752         visitSwitchCase(SwitchCases[0], BrMBB);
1753         SwitchCases.erase(SwitchCases.begin());
1754         return;
1755       }
1756 
1757       // Okay, we decided not to do this, remove any inserted MBB's and clear
1758       // SwitchCases.
1759       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1760         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1761 
1762       SwitchCases.clear();
1763     }
1764   }
1765 
1766   // Create a CaseBlock record representing this branch.
1767   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1768                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1769 
1770   // Use visitSwitchCase to actually insert the fast branch sequence for this
1771   // cond branch.
1772   visitSwitchCase(CB, BrMBB);
1773 }
1774 
1775 /// visitSwitchCase - Emits the necessary code to represent a single node in
1776 /// the binary search tree resulting from lowering a switch instruction.
1777 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1778                                           MachineBasicBlock *SwitchBB) {
1779   SDValue Cond;
1780   SDValue CondLHS = getValue(CB.CmpLHS);
1781   SDLoc dl = getCurSDLoc();
1782 
1783   // Build the setcc now.
1784   if (!CB.CmpMHS) {
1785     // Fold "(X == true)" to X and "(X == false)" to !X to
1786     // handle common cases produced by branch lowering.
1787     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1788         CB.CC == ISD::SETEQ)
1789       Cond = CondLHS;
1790     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1791              CB.CC == ISD::SETEQ) {
1792       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1793       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1794     } else
1795       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1796   } else {
1797     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1798 
1799     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1800     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1801 
1802     SDValue CmpOp = getValue(CB.CmpMHS);
1803     EVT VT = CmpOp.getValueType();
1804 
1805     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1806       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1807                           ISD::SETLE);
1808     } else {
1809       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1810                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1811       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1812                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1813     }
1814   }
1815 
1816   // Update successor info
1817   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1818   // TrueBB and FalseBB are always different unless the incoming IR is
1819   // degenerate. This only happens when running llc on weird IR.
1820   if (CB.TrueBB != CB.FalseBB)
1821     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1822   SwitchBB->normalizeSuccProbs();
1823 
1824   // If the lhs block is the next block, invert the condition so that we can
1825   // fall through to the lhs instead of the rhs block.
1826   if (CB.TrueBB == NextBlock(SwitchBB)) {
1827     std::swap(CB.TrueBB, CB.FalseBB);
1828     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1829     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1830   }
1831 
1832   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1833                                MVT::Other, getControlRoot(), Cond,
1834                                DAG.getBasicBlock(CB.TrueBB));
1835 
1836   // Insert the false branch. Do this even if it's a fall through branch,
1837   // this makes it easier to do DAG optimizations which require inverting
1838   // the branch condition.
1839   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1840                        DAG.getBasicBlock(CB.FalseBB));
1841 
1842   DAG.setRoot(BrCond);
1843 }
1844 
1845 /// visitJumpTable - Emit JumpTable node in the current MBB
1846 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1847   // Emit the code for the jump table
1848   assert(JT.Reg != -1U && "Should lower JT Header first!");
1849   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1850   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1851                                      JT.Reg, PTy);
1852   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1853   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1854                                     MVT::Other, Index.getValue(1),
1855                                     Table, Index);
1856   DAG.setRoot(BrJumpTable);
1857 }
1858 
1859 /// visitJumpTableHeader - This function emits necessary code to produce index
1860 /// in the JumpTable from switch case.
1861 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1862                                                JumpTableHeader &JTH,
1863                                                MachineBasicBlock *SwitchBB) {
1864   SDLoc dl = getCurSDLoc();
1865 
1866   // Subtract the lowest switch case value from the value being switched on and
1867   // conditional branch to default mbb if the result is greater than the
1868   // difference between smallest and largest cases.
1869   SDValue SwitchOp = getValue(JTH.SValue);
1870   EVT VT = SwitchOp.getValueType();
1871   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1872                             DAG.getConstant(JTH.First, dl, VT));
1873 
1874   // The SDNode we just created, which holds the value being switched on minus
1875   // the smallest case value, needs to be copied to a virtual register so it
1876   // can be used as an index into the jump table in a subsequent basic block.
1877   // This value may be smaller or larger than the target's pointer type, and
1878   // therefore require extension or truncating.
1879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1880   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1881 
1882   unsigned JumpTableReg =
1883       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1884   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1885                                     JumpTableReg, SwitchOp);
1886   JT.Reg = JumpTableReg;
1887 
1888   // Emit the range check for the jump table, and branch to the default block
1889   // for the switch statement if the value being switched on exceeds the largest
1890   // case in the switch.
1891   SDValue CMP = DAG.getSetCC(
1892       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1893                                  Sub.getValueType()),
1894       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1895 
1896   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1897                                MVT::Other, CopyTo, CMP,
1898                                DAG.getBasicBlock(JT.Default));
1899 
1900   // Avoid emitting unnecessary branches to the next block.
1901   if (JT.MBB != NextBlock(SwitchBB))
1902     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1903                          DAG.getBasicBlock(JT.MBB));
1904 
1905   DAG.setRoot(BrCond);
1906 }
1907 
1908 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1909 /// tail spliced into a stack protector check success bb.
1910 ///
1911 /// For a high level explanation of how this fits into the stack protector
1912 /// generation see the comment on the declaration of class
1913 /// StackProtectorDescriptor.
1914 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1915                                                   MachineBasicBlock *ParentBB) {
1916 
1917   // First create the loads to the guard/stack slot for the comparison.
1918   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1919   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1920 
1921   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1922   int FI = MFI->getStackProtectorIndex();
1923 
1924   const Value *IRGuard = SPD.getGuard();
1925   SDValue GuardPtr = getValue(IRGuard);
1926   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1927 
1928   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
1929 
1930   SDValue Guard;
1931   SDLoc dl = getCurSDLoc();
1932 
1933   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1934   // guard value from the virtual register holding the value. Otherwise, emit a
1935   // volatile load to retrieve the stack guard value.
1936   unsigned GuardReg = SPD.getGuardReg();
1937 
1938   if (GuardReg && TLI.useLoadStackGuardNode())
1939     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
1940                                PtrTy);
1941   else
1942     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1943                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1944                         true, false, false, Align);
1945 
1946   SDValue StackSlot = DAG.getLoad(
1947       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
1948       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
1949       false, false, Align);
1950 
1951   // Perform the comparison via a subtract/getsetcc.
1952   EVT VT = Guard.getValueType();
1953   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
1954 
1955   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
1956                                                         *DAG.getContext(),
1957                                                         Sub.getValueType()),
1958                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
1959 
1960   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1961   // branch to failure MBB.
1962   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1963                                MVT::Other, StackSlot.getOperand(0),
1964                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1965   // Otherwise branch to success MBB.
1966   SDValue Br = DAG.getNode(ISD::BR, dl,
1967                            MVT::Other, BrCond,
1968                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1969 
1970   DAG.setRoot(Br);
1971 }
1972 
1973 /// Codegen the failure basic block for a stack protector check.
1974 ///
1975 /// A failure stack protector machine basic block consists simply of a call to
1976 /// __stack_chk_fail().
1977 ///
1978 /// For a high level explanation of how this fits into the stack protector
1979 /// generation see the comment on the declaration of class
1980 /// StackProtectorDescriptor.
1981 void
1982 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1983   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1984   SDValue Chain =
1985       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1986                       None, false, getCurSDLoc(), false, false).second;
1987   DAG.setRoot(Chain);
1988 }
1989 
1990 /// visitBitTestHeader - This function emits necessary code to produce value
1991 /// suitable for "bit tests"
1992 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1993                                              MachineBasicBlock *SwitchBB) {
1994   SDLoc dl = getCurSDLoc();
1995 
1996   // Subtract the minimum value
1997   SDValue SwitchOp = getValue(B.SValue);
1998   EVT VT = SwitchOp.getValueType();
1999   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2000                             DAG.getConstant(B.First, dl, VT));
2001 
2002   // Check range
2003   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2004   SDValue RangeCmp = DAG.getSetCC(
2005       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2006                                  Sub.getValueType()),
2007       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2008 
2009   // Determine the type of the test operands.
2010   bool UsePtrType = false;
2011   if (!TLI.isTypeLegal(VT))
2012     UsePtrType = true;
2013   else {
2014     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2015       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2016         // Switch table case range are encoded into series of masks.
2017         // Just use pointer type, it's guaranteed to fit.
2018         UsePtrType = true;
2019         break;
2020       }
2021   }
2022   if (UsePtrType) {
2023     VT = TLI.getPointerTy(DAG.getDataLayout());
2024     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2025   }
2026 
2027   B.RegVT = VT.getSimpleVT();
2028   B.Reg = FuncInfo.CreateReg(B.RegVT);
2029   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2030 
2031   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2032 
2033   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2034   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2035   SwitchBB->normalizeSuccProbs();
2036 
2037   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2038                                 MVT::Other, CopyTo, RangeCmp,
2039                                 DAG.getBasicBlock(B.Default));
2040 
2041   // Avoid emitting unnecessary branches to the next block.
2042   if (MBB != NextBlock(SwitchBB))
2043     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2044                           DAG.getBasicBlock(MBB));
2045 
2046   DAG.setRoot(BrRange);
2047 }
2048 
2049 /// visitBitTestCase - this function produces one "bit test"
2050 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2051                                            MachineBasicBlock* NextMBB,
2052                                            BranchProbability BranchProbToNext,
2053                                            unsigned Reg,
2054                                            BitTestCase &B,
2055                                            MachineBasicBlock *SwitchBB) {
2056   SDLoc dl = getCurSDLoc();
2057   MVT VT = BB.RegVT;
2058   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2059   SDValue Cmp;
2060   unsigned PopCount = countPopulation(B.Mask);
2061   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2062   if (PopCount == 1) {
2063     // Testing for a single bit; just compare the shift count with what it
2064     // would need to be to shift a 1 bit in that position.
2065     Cmp = DAG.getSetCC(
2066         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2067         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2068         ISD::SETEQ);
2069   } else if (PopCount == BB.Range) {
2070     // There is only one zero bit in the range, test for it directly.
2071     Cmp = DAG.getSetCC(
2072         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2073         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2074         ISD::SETNE);
2075   } else {
2076     // Make desired shift
2077     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2078                                     DAG.getConstant(1, dl, VT), ShiftOp);
2079 
2080     // Emit bit tests and jumps
2081     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2082                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2083     Cmp = DAG.getSetCC(
2084         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2085         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2086   }
2087 
2088   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2089   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2090   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2091   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2092   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2093   // one as they are relative probabilities (and thus work more like weights),
2094   // and hence we need to normalize them to let the sum of them become one.
2095   SwitchBB->normalizeSuccProbs();
2096 
2097   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2098                               MVT::Other, getControlRoot(),
2099                               Cmp, DAG.getBasicBlock(B.TargetBB));
2100 
2101   // Avoid emitting unnecessary branches to the next block.
2102   if (NextMBB != NextBlock(SwitchBB))
2103     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2104                         DAG.getBasicBlock(NextMBB));
2105 
2106   DAG.setRoot(BrAnd);
2107 }
2108 
2109 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2110   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2111 
2112   // Retrieve successors. Look through artificial IR level blocks like
2113   // catchswitch for successors.
2114   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2115   const BasicBlock *EHPadBB = I.getSuccessor(1);
2116 
2117   const Value *Callee(I.getCalledValue());
2118   const Function *Fn = dyn_cast<Function>(Callee);
2119   if (isa<InlineAsm>(Callee))
2120     visitInlineAsm(&I);
2121   else if (Fn && Fn->isIntrinsic()) {
2122     switch (Fn->getIntrinsicID()) {
2123     default:
2124       llvm_unreachable("Cannot invoke this intrinsic");
2125     case Intrinsic::donothing:
2126       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2127       break;
2128     case Intrinsic::experimental_patchpoint_void:
2129     case Intrinsic::experimental_patchpoint_i64:
2130       visitPatchpoint(&I, EHPadBB);
2131       break;
2132     case Intrinsic::experimental_gc_statepoint:
2133       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2134       break;
2135     }
2136   } else
2137     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2138 
2139   // If the value of the invoke is used outside of its defining block, make it
2140   // available as a virtual register.
2141   // We already took care of the exported value for the statepoint instruction
2142   // during call to the LowerStatepoint.
2143   if (!isStatepoint(I)) {
2144     CopyToExportRegsIfNeeded(&I);
2145   }
2146 
2147   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2148   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2149   BranchProbability EHPadBBProb =
2150       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2151           : BranchProbability::getZero();
2152   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2153 
2154   // Update successor info.
2155   addSuccessorWithProb(InvokeMBB, Return);
2156   for (auto &UnwindDest : UnwindDests) {
2157     UnwindDest.first->setIsEHPad();
2158     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2159   }
2160   InvokeMBB->normalizeSuccProbs();
2161 
2162   // Drop into normal successor.
2163   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2164                           MVT::Other, getControlRoot(),
2165                           DAG.getBasicBlock(Return)));
2166 }
2167 
2168 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2169   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2170 }
2171 
2172 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2173   assert(FuncInfo.MBB->isEHPad() &&
2174          "Call to landingpad not in landing pad!");
2175 
2176   MachineBasicBlock *MBB = FuncInfo.MBB;
2177   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2178   AddLandingPadInfo(LP, MMI, MBB);
2179 
2180   // If there aren't registers to copy the values into (e.g., during SjLj
2181   // exceptions), then don't bother to create these DAG nodes.
2182   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2183   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2184   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2185       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2186     return;
2187 
2188   // If landingpad's return type is token type, we don't create DAG nodes
2189   // for its exception pointer and selector value. The extraction of exception
2190   // pointer or selector value from token type landingpads is not currently
2191   // supported.
2192   if (LP.getType()->isTokenTy())
2193     return;
2194 
2195   SmallVector<EVT, 2> ValueVTs;
2196   SDLoc dl = getCurSDLoc();
2197   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2198   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2199 
2200   // Get the two live-in registers as SDValues. The physregs have already been
2201   // copied into virtual registers.
2202   SDValue Ops[2];
2203   if (FuncInfo.ExceptionPointerVirtReg) {
2204     Ops[0] = DAG.getZExtOrTrunc(
2205         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2206                            FuncInfo.ExceptionPointerVirtReg,
2207                            TLI.getPointerTy(DAG.getDataLayout())),
2208         dl, ValueVTs[0]);
2209   } else {
2210     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2211   }
2212   Ops[1] = DAG.getZExtOrTrunc(
2213       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2214                          FuncInfo.ExceptionSelectorVirtReg,
2215                          TLI.getPointerTy(DAG.getDataLayout())),
2216       dl, ValueVTs[1]);
2217 
2218   // Merge into one.
2219   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2220                             DAG.getVTList(ValueVTs), Ops);
2221   setValue(&LP, Res);
2222 }
2223 
2224 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2225 #ifndef NDEBUG
2226   for (const CaseCluster &CC : Clusters)
2227     assert(CC.Low == CC.High && "Input clusters must be single-case");
2228 #endif
2229 
2230   std::sort(Clusters.begin(), Clusters.end(),
2231             [](const CaseCluster &a, const CaseCluster &b) {
2232     return a.Low->getValue().slt(b.Low->getValue());
2233   });
2234 
2235   // Merge adjacent clusters with the same destination.
2236   const unsigned N = Clusters.size();
2237   unsigned DstIndex = 0;
2238   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2239     CaseCluster &CC = Clusters[SrcIndex];
2240     const ConstantInt *CaseVal = CC.Low;
2241     MachineBasicBlock *Succ = CC.MBB;
2242 
2243     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2244         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2245       // If this case has the same successor and is a neighbour, merge it into
2246       // the previous cluster.
2247       Clusters[DstIndex - 1].High = CaseVal;
2248       Clusters[DstIndex - 1].Prob += CC.Prob;
2249     } else {
2250       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2251                    sizeof(Clusters[SrcIndex]));
2252     }
2253   }
2254   Clusters.resize(DstIndex);
2255 }
2256 
2257 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2258                                            MachineBasicBlock *Last) {
2259   // Update JTCases.
2260   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2261     if (JTCases[i].first.HeaderBB == First)
2262       JTCases[i].first.HeaderBB = Last;
2263 
2264   // Update BitTestCases.
2265   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2266     if (BitTestCases[i].Parent == First)
2267       BitTestCases[i].Parent = Last;
2268 }
2269 
2270 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2271   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2272 
2273   // Update machine-CFG edges with unique successors.
2274   SmallSet<BasicBlock*, 32> Done;
2275   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2276     BasicBlock *BB = I.getSuccessor(i);
2277     bool Inserted = Done.insert(BB).second;
2278     if (!Inserted)
2279         continue;
2280 
2281     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2282     addSuccessorWithProb(IndirectBrMBB, Succ);
2283   }
2284   IndirectBrMBB->normalizeSuccProbs();
2285 
2286   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2287                           MVT::Other, getControlRoot(),
2288                           getValue(I.getAddress())));
2289 }
2290 
2291 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2292   if (DAG.getTarget().Options.TrapUnreachable)
2293     DAG.setRoot(
2294         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2295 }
2296 
2297 void SelectionDAGBuilder::visitFSub(const User &I) {
2298   // -0.0 - X --> fneg
2299   Type *Ty = I.getType();
2300   if (isa<Constant>(I.getOperand(0)) &&
2301       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2302     SDValue Op2 = getValue(I.getOperand(1));
2303     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2304                              Op2.getValueType(), Op2));
2305     return;
2306   }
2307 
2308   visitBinary(I, ISD::FSUB);
2309 }
2310 
2311 /// Checks if the given instruction performs a vector reduction, in which case
2312 /// we have the freedom to alter the elements in the result as long as the
2313 /// reduction of them stays unchanged.
2314 static bool isVectorReductionOp(const User *I) {
2315   const Instruction *Inst = dyn_cast<Instruction>(I);
2316   if (!Inst || !Inst->getType()->isVectorTy())
2317     return false;
2318 
2319   auto OpCode = Inst->getOpcode();
2320   switch (OpCode) {
2321   case Instruction::Add:
2322   case Instruction::Mul:
2323   case Instruction::And:
2324   case Instruction::Or:
2325   case Instruction::Xor:
2326     break;
2327   case Instruction::FAdd:
2328   case Instruction::FMul:
2329     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2330       if (FPOp->getFastMathFlags().unsafeAlgebra())
2331         break;
2332     // Fall through.
2333   default:
2334     return false;
2335   }
2336 
2337   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2338   unsigned ElemNumToReduce = ElemNum;
2339 
2340   // Do DFS search on the def-use chain from the given instruction. We only
2341   // allow four kinds of operations during the search until we reach the
2342   // instruction that extracts the first element from the vector:
2343   //
2344   //   1. The reduction operation of the same opcode as the given instruction.
2345   //
2346   //   2. PHI node.
2347   //
2348   //   3. ShuffleVector instruction together with a reduction operation that
2349   //      does a partial reduction.
2350   //
2351   //   4. ExtractElement that extracts the first element from the vector, and we
2352   //      stop searching the def-use chain here.
2353   //
2354   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2355   // from 1-3 to the stack to continue the DFS. The given instruction is not
2356   // a reduction operation if we meet any other instructions other than those
2357   // listed above.
2358 
2359   SmallVector<const User *, 16> UsersToVisit{Inst};
2360   SmallPtrSet<const User *, 16> Visited;
2361   bool ReduxExtracted = false;
2362 
2363   while (!UsersToVisit.empty()) {
2364     auto User = UsersToVisit.back();
2365     UsersToVisit.pop_back();
2366     if (!Visited.insert(User).second)
2367       continue;
2368 
2369     for (const auto &U : User->users()) {
2370       auto Inst = dyn_cast<Instruction>(U);
2371       if (!Inst)
2372         return false;
2373 
2374       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2375         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2376           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2377             return false;
2378         UsersToVisit.push_back(U);
2379       } else if (const ShuffleVectorInst *ShufInst =
2380                      dyn_cast<ShuffleVectorInst>(U)) {
2381         // Detect the following pattern: A ShuffleVector instruction together
2382         // with a reduction that do partial reduction on the first and second
2383         // ElemNumToReduce / 2 elements, and store the result in
2384         // ElemNumToReduce / 2 elements in another vector.
2385 
2386         if (ElemNumToReduce == 1)
2387           return false;
2388         if (!isa<UndefValue>(U->getOperand(1)))
2389           return false;
2390         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2391           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2392             return false;
2393         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2394           if (ShufInst->getMaskValue(i) != -1)
2395             return false;
2396 
2397         // There is only one user of this ShuffleVector instruction, which must
2398         // be a reduction operation.
2399         if (!U->hasOneUse())
2400           return false;
2401 
2402         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2403         if (!U2 || U2->getOpcode() != OpCode)
2404           return false;
2405 
2406         // Check operands of the reduction operation.
2407         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2408             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2409           UsersToVisit.push_back(U2);
2410           ElemNumToReduce /= 2;
2411         } else
2412           return false;
2413       } else if (isa<ExtractElementInst>(U)) {
2414         // At this moment we should have reduced all elements in the vector.
2415         if (ElemNumToReduce != 1)
2416           return false;
2417 
2418         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2419         if (!Val || Val->getZExtValue() != 0)
2420           return false;
2421 
2422         ReduxExtracted = true;
2423       } else
2424         return false;
2425     }
2426   }
2427   return ReduxExtracted;
2428 }
2429 
2430 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2431   SDValue Op1 = getValue(I.getOperand(0));
2432   SDValue Op2 = getValue(I.getOperand(1));
2433 
2434   bool nuw = false;
2435   bool nsw = false;
2436   bool exact = false;
2437   bool vec_redux = false;
2438   FastMathFlags FMF;
2439 
2440   if (const OverflowingBinaryOperator *OFBinOp =
2441           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2442     nuw = OFBinOp->hasNoUnsignedWrap();
2443     nsw = OFBinOp->hasNoSignedWrap();
2444   }
2445   if (const PossiblyExactOperator *ExactOp =
2446           dyn_cast<const PossiblyExactOperator>(&I))
2447     exact = ExactOp->isExact();
2448   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2449     FMF = FPOp->getFastMathFlags();
2450 
2451   if (isVectorReductionOp(&I)) {
2452     vec_redux = true;
2453     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2454   }
2455 
2456   SDNodeFlags Flags;
2457   Flags.setExact(exact);
2458   Flags.setNoSignedWrap(nsw);
2459   Flags.setNoUnsignedWrap(nuw);
2460   Flags.setVectorReduction(vec_redux);
2461   if (EnableFMFInDAG) {
2462     Flags.setAllowReciprocal(FMF.allowReciprocal());
2463     Flags.setNoInfs(FMF.noInfs());
2464     Flags.setNoNaNs(FMF.noNaNs());
2465     Flags.setNoSignedZeros(FMF.noSignedZeros());
2466     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2467   }
2468   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2469                                      Op1, Op2, &Flags);
2470   setValue(&I, BinNodeValue);
2471 }
2472 
2473 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2474   SDValue Op1 = getValue(I.getOperand(0));
2475   SDValue Op2 = getValue(I.getOperand(1));
2476 
2477   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2478       Op2.getValueType(), DAG.getDataLayout());
2479 
2480   // Coerce the shift amount to the right type if we can.
2481   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2482     unsigned ShiftSize = ShiftTy.getSizeInBits();
2483     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2484     SDLoc DL = getCurSDLoc();
2485 
2486     // If the operand is smaller than the shift count type, promote it.
2487     if (ShiftSize > Op2Size)
2488       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2489 
2490     // If the operand is larger than the shift count type but the shift
2491     // count type has enough bits to represent any shift value, truncate
2492     // it now. This is a common case and it exposes the truncate to
2493     // optimization early.
2494     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2495       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2496     // Otherwise we'll need to temporarily settle for some other convenient
2497     // type.  Type legalization will make adjustments once the shiftee is split.
2498     else
2499       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2500   }
2501 
2502   bool nuw = false;
2503   bool nsw = false;
2504   bool exact = false;
2505 
2506   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2507 
2508     if (const OverflowingBinaryOperator *OFBinOp =
2509             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2510       nuw = OFBinOp->hasNoUnsignedWrap();
2511       nsw = OFBinOp->hasNoSignedWrap();
2512     }
2513     if (const PossiblyExactOperator *ExactOp =
2514             dyn_cast<const PossiblyExactOperator>(&I))
2515       exact = ExactOp->isExact();
2516   }
2517   SDNodeFlags Flags;
2518   Flags.setExact(exact);
2519   Flags.setNoSignedWrap(nsw);
2520   Flags.setNoUnsignedWrap(nuw);
2521   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2522                             &Flags);
2523   setValue(&I, Res);
2524 }
2525 
2526 void SelectionDAGBuilder::visitSDiv(const User &I) {
2527   SDValue Op1 = getValue(I.getOperand(0));
2528   SDValue Op2 = getValue(I.getOperand(1));
2529 
2530   SDNodeFlags Flags;
2531   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2532                  cast<PossiblyExactOperator>(&I)->isExact());
2533   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2534                            Op2, &Flags));
2535 }
2536 
2537 void SelectionDAGBuilder::visitICmp(const User &I) {
2538   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2539   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2540     predicate = IC->getPredicate();
2541   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2542     predicate = ICmpInst::Predicate(IC->getPredicate());
2543   SDValue Op1 = getValue(I.getOperand(0));
2544   SDValue Op2 = getValue(I.getOperand(1));
2545   ISD::CondCode Opcode = getICmpCondCode(predicate);
2546 
2547   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2548                                                         I.getType());
2549   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2550 }
2551 
2552 void SelectionDAGBuilder::visitFCmp(const User &I) {
2553   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2554   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2555     predicate = FC->getPredicate();
2556   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2557     predicate = FCmpInst::Predicate(FC->getPredicate());
2558   SDValue Op1 = getValue(I.getOperand(0));
2559   SDValue Op2 = getValue(I.getOperand(1));
2560   ISD::CondCode Condition = getFCmpCondCode(predicate);
2561 
2562   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2563   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2564   // further optimization, but currently FMF is only applicable to binary nodes.
2565   if (TM.Options.NoNaNsFPMath)
2566     Condition = getFCmpCodeWithoutNaN(Condition);
2567   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2568                                                         I.getType());
2569   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2570 }
2571 
2572 void SelectionDAGBuilder::visitSelect(const User &I) {
2573   SmallVector<EVT, 4> ValueVTs;
2574   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2575                   ValueVTs);
2576   unsigned NumValues = ValueVTs.size();
2577   if (NumValues == 0) return;
2578 
2579   SmallVector<SDValue, 4> Values(NumValues);
2580   SDValue Cond     = getValue(I.getOperand(0));
2581   SDValue LHSVal   = getValue(I.getOperand(1));
2582   SDValue RHSVal   = getValue(I.getOperand(2));
2583   auto BaseOps = {Cond};
2584   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2585     ISD::VSELECT : ISD::SELECT;
2586 
2587   // Min/max matching is only viable if all output VTs are the same.
2588   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2589     EVT VT = ValueVTs[0];
2590     LLVMContext &Ctx = *DAG.getContext();
2591     auto &TLI = DAG.getTargetLoweringInfo();
2592 
2593     // We care about the legality of the operation after it has been type
2594     // legalized.
2595     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2596            VT != TLI.getTypeToTransformTo(Ctx, VT))
2597       VT = TLI.getTypeToTransformTo(Ctx, VT);
2598 
2599     // If the vselect is legal, assume we want to leave this as a vector setcc +
2600     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2601     // min/max is legal on the scalar type.
2602     bool UseScalarMinMax = VT.isVector() &&
2603       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2604 
2605     Value *LHS, *RHS;
2606     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2607     ISD::NodeType Opc = ISD::DELETED_NODE;
2608     switch (SPR.Flavor) {
2609     case SPF_UMAX:    Opc = ISD::UMAX; break;
2610     case SPF_UMIN:    Opc = ISD::UMIN; break;
2611     case SPF_SMAX:    Opc = ISD::SMAX; break;
2612     case SPF_SMIN:    Opc = ISD::SMIN; break;
2613     case SPF_FMINNUM:
2614       switch (SPR.NaNBehavior) {
2615       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2616       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2617       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2618       case SPNB_RETURNS_ANY: {
2619         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2620           Opc = ISD::FMINNUM;
2621         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2622           Opc = ISD::FMINNAN;
2623         else if (UseScalarMinMax)
2624           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2625             ISD::FMINNUM : ISD::FMINNAN;
2626         break;
2627       }
2628       }
2629       break;
2630     case SPF_FMAXNUM:
2631       switch (SPR.NaNBehavior) {
2632       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2633       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2634       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2635       case SPNB_RETURNS_ANY:
2636 
2637         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2638           Opc = ISD::FMAXNUM;
2639         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2640           Opc = ISD::FMAXNAN;
2641         else if (UseScalarMinMax)
2642           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2643             ISD::FMAXNUM : ISD::FMAXNAN;
2644         break;
2645       }
2646       break;
2647     default: break;
2648     }
2649 
2650     if (Opc != ISD::DELETED_NODE &&
2651         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2652          (UseScalarMinMax &&
2653           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2654         // If the underlying comparison instruction is used by any other
2655         // instruction, the consumed instructions won't be destroyed, so it is
2656         // not profitable to convert to a min/max.
2657         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2658       OpCode = Opc;
2659       LHSVal = getValue(LHS);
2660       RHSVal = getValue(RHS);
2661       BaseOps = {};
2662     }
2663   }
2664 
2665   for (unsigned i = 0; i != NumValues; ++i) {
2666     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2667     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2668     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2669     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2670                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2671                             Ops);
2672   }
2673 
2674   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2675                            DAG.getVTList(ValueVTs), Values));
2676 }
2677 
2678 void SelectionDAGBuilder::visitTrunc(const User &I) {
2679   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2680   SDValue N = getValue(I.getOperand(0));
2681   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2682                                                         I.getType());
2683   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2684 }
2685 
2686 void SelectionDAGBuilder::visitZExt(const User &I) {
2687   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2688   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2689   SDValue N = getValue(I.getOperand(0));
2690   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2691                                                         I.getType());
2692   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2693 }
2694 
2695 void SelectionDAGBuilder::visitSExt(const User &I) {
2696   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2697   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2698   SDValue N = getValue(I.getOperand(0));
2699   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2700                                                         I.getType());
2701   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2702 }
2703 
2704 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2705   // FPTrunc is never a no-op cast, no need to check
2706   SDValue N = getValue(I.getOperand(0));
2707   SDLoc dl = getCurSDLoc();
2708   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2709   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2710   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2711                            DAG.getTargetConstant(
2712                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2713 }
2714 
2715 void SelectionDAGBuilder::visitFPExt(const User &I) {
2716   // FPExt is never a no-op cast, no need to check
2717   SDValue N = getValue(I.getOperand(0));
2718   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2719                                                         I.getType());
2720   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2721 }
2722 
2723 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2724   // FPToUI is never a no-op cast, no need to check
2725   SDValue N = getValue(I.getOperand(0));
2726   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2727                                                         I.getType());
2728   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2729 }
2730 
2731 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2732   // FPToSI is never a no-op cast, no need to check
2733   SDValue N = getValue(I.getOperand(0));
2734   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2735                                                         I.getType());
2736   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2737 }
2738 
2739 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2740   // UIToFP is never a no-op cast, no need to check
2741   SDValue N = getValue(I.getOperand(0));
2742   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2743                                                         I.getType());
2744   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2745 }
2746 
2747 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2748   // SIToFP is never a no-op cast, no need to check
2749   SDValue N = getValue(I.getOperand(0));
2750   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2751                                                         I.getType());
2752   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2753 }
2754 
2755 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2756   // What to do depends on the size of the integer and the size of the pointer.
2757   // We can either truncate, zero extend, or no-op, accordingly.
2758   SDValue N = getValue(I.getOperand(0));
2759   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2760                                                         I.getType());
2761   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2762 }
2763 
2764 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2765   // What to do depends on the size of the integer and the size of the pointer.
2766   // We can either truncate, zero extend, or no-op, accordingly.
2767   SDValue N = getValue(I.getOperand(0));
2768   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2769                                                         I.getType());
2770   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2771 }
2772 
2773 void SelectionDAGBuilder::visitBitCast(const User &I) {
2774   SDValue N = getValue(I.getOperand(0));
2775   SDLoc dl = getCurSDLoc();
2776   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2777                                                         I.getType());
2778 
2779   // BitCast assures us that source and destination are the same size so this is
2780   // either a BITCAST or a no-op.
2781   if (DestVT != N.getValueType())
2782     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2783                              DestVT, N)); // convert types.
2784   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2785   // might fold any kind of constant expression to an integer constant and that
2786   // is not what we are looking for. Only regcognize a bitcast of a genuine
2787   // constant integer as an opaque constant.
2788   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2789     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2790                                  /*isOpaque*/true));
2791   else
2792     setValue(&I, N);            // noop cast.
2793 }
2794 
2795 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2797   const Value *SV = I.getOperand(0);
2798   SDValue N = getValue(SV);
2799   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2800 
2801   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2802   unsigned DestAS = I.getType()->getPointerAddressSpace();
2803 
2804   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2805     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2806 
2807   setValue(&I, N);
2808 }
2809 
2810 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2811   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2812   SDValue InVec = getValue(I.getOperand(0));
2813   SDValue InVal = getValue(I.getOperand(1));
2814   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2815                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2816   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2817                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2818                            InVec, InVal, InIdx));
2819 }
2820 
2821 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2823   SDValue InVec = getValue(I.getOperand(0));
2824   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2825                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2826   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2827                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2828                            InVec, InIdx));
2829 }
2830 
2831 // Utility for visitShuffleVector - Return true if every element in Mask,
2832 // beginning from position Pos and ending in Pos+Size, falls within the
2833 // specified sequential range [L, L+Pos). or is undef.
2834 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2835                                 unsigned Pos, unsigned Size, int Low) {
2836   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2837     if (Mask[i] >= 0 && Mask[i] != Low)
2838       return false;
2839   return true;
2840 }
2841 
2842 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2843   SDValue Src1 = getValue(I.getOperand(0));
2844   SDValue Src2 = getValue(I.getOperand(1));
2845 
2846   SmallVector<int, 8> Mask;
2847   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2848   unsigned MaskNumElts = Mask.size();
2849 
2850   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2851   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2852   EVT SrcVT = Src1.getValueType();
2853   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2854 
2855   if (SrcNumElts == MaskNumElts) {
2856     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2857                                       &Mask[0]));
2858     return;
2859   }
2860 
2861   // Normalize the shuffle vector since mask and vector length don't match.
2862   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2863     // Mask is longer than the source vectors and is a multiple of the source
2864     // vectors.  We can use concatenate vector to make the mask and vectors
2865     // lengths match.
2866     if (SrcNumElts*2 == MaskNumElts) {
2867       // First check for Src1 in low and Src2 in high
2868       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2869           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2870         // The shuffle is concatenating two vectors together.
2871         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2872                                  VT, Src1, Src2));
2873         return;
2874       }
2875       // Then check for Src2 in low and Src1 in high
2876       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2877           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2878         // The shuffle is concatenating two vectors together.
2879         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2880                                  VT, Src2, Src1));
2881         return;
2882       }
2883     }
2884 
2885     // Pad both vectors with undefs to make them the same length as the mask.
2886     unsigned NumConcat = MaskNumElts / SrcNumElts;
2887     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2888     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2889     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2890 
2891     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2892     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2893     MOps1[0] = Src1;
2894     MOps2[0] = Src2;
2895 
2896     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2897                                                   getCurSDLoc(), VT, MOps1);
2898     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2899                                                   getCurSDLoc(), VT, MOps2);
2900 
2901     // Readjust mask for new input vector length.
2902     SmallVector<int, 8> MappedOps;
2903     for (unsigned i = 0; i != MaskNumElts; ++i) {
2904       int Idx = Mask[i];
2905       if (Idx >= (int)SrcNumElts)
2906         Idx -= SrcNumElts - MaskNumElts;
2907       MappedOps.push_back(Idx);
2908     }
2909 
2910     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2911                                       &MappedOps[0]));
2912     return;
2913   }
2914 
2915   if (SrcNumElts > MaskNumElts) {
2916     // Analyze the access pattern of the vector to see if we can extract
2917     // two subvectors and do the shuffle. The analysis is done by calculating
2918     // the range of elements the mask access on both vectors.
2919     int MinRange[2] = { static_cast<int>(SrcNumElts),
2920                         static_cast<int>(SrcNumElts)};
2921     int MaxRange[2] = {-1, -1};
2922 
2923     for (unsigned i = 0; i != MaskNumElts; ++i) {
2924       int Idx = Mask[i];
2925       unsigned Input = 0;
2926       if (Idx < 0)
2927         continue;
2928 
2929       if (Idx >= (int)SrcNumElts) {
2930         Input = 1;
2931         Idx -= SrcNumElts;
2932       }
2933       if (Idx > MaxRange[Input])
2934         MaxRange[Input] = Idx;
2935       if (Idx < MinRange[Input])
2936         MinRange[Input] = Idx;
2937     }
2938 
2939     // Check if the access is smaller than the vector size and can we find
2940     // a reasonable extract index.
2941     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2942                                    // Extract.
2943     int StartIdx[2];  // StartIdx to extract from
2944     for (unsigned Input = 0; Input < 2; ++Input) {
2945       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2946         RangeUse[Input] = 0; // Unused
2947         StartIdx[Input] = 0;
2948         continue;
2949       }
2950 
2951       // Find a good start index that is a multiple of the mask length. Then
2952       // see if the rest of the elements are in range.
2953       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2954       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2955           StartIdx[Input] + MaskNumElts <= SrcNumElts)
2956         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2957     }
2958 
2959     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2960       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2961       return;
2962     }
2963     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2964       // Extract appropriate subvector and generate a vector shuffle
2965       for (unsigned Input = 0; Input < 2; ++Input) {
2966         SDValue &Src = Input == 0 ? Src1 : Src2;
2967         if (RangeUse[Input] == 0)
2968           Src = DAG.getUNDEF(VT);
2969         else {
2970           SDLoc dl = getCurSDLoc();
2971           Src = DAG.getNode(
2972               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
2973               DAG.getConstant(StartIdx[Input], dl,
2974                               TLI.getVectorIdxTy(DAG.getDataLayout())));
2975         }
2976       }
2977 
2978       // Calculate new mask.
2979       SmallVector<int, 8> MappedOps;
2980       for (unsigned i = 0; i != MaskNumElts; ++i) {
2981         int Idx = Mask[i];
2982         if (Idx >= 0) {
2983           if (Idx < (int)SrcNumElts)
2984             Idx -= StartIdx[0];
2985           else
2986             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2987         }
2988         MappedOps.push_back(Idx);
2989       }
2990 
2991       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2992                                         &MappedOps[0]));
2993       return;
2994     }
2995   }
2996 
2997   // We can't use either concat vectors or extract subvectors so fall back to
2998   // replacing the shuffle with extract and build vector.
2999   // to insert and build vector.
3000   EVT EltVT = VT.getVectorElementType();
3001   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3002   SDLoc dl = getCurSDLoc();
3003   SmallVector<SDValue,8> Ops;
3004   for (unsigned i = 0; i != MaskNumElts; ++i) {
3005     int Idx = Mask[i];
3006     SDValue Res;
3007 
3008     if (Idx < 0) {
3009       Res = DAG.getUNDEF(EltVT);
3010     } else {
3011       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3012       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3013 
3014       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3015                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
3016     }
3017 
3018     Ops.push_back(Res);
3019   }
3020 
3021   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
3022 }
3023 
3024 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3025   const Value *Op0 = I.getOperand(0);
3026   const Value *Op1 = I.getOperand(1);
3027   Type *AggTy = I.getType();
3028   Type *ValTy = Op1->getType();
3029   bool IntoUndef = isa<UndefValue>(Op0);
3030   bool FromUndef = isa<UndefValue>(Op1);
3031 
3032   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3033 
3034   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3035   SmallVector<EVT, 4> AggValueVTs;
3036   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3037   SmallVector<EVT, 4> ValValueVTs;
3038   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3039 
3040   unsigned NumAggValues = AggValueVTs.size();
3041   unsigned NumValValues = ValValueVTs.size();
3042   SmallVector<SDValue, 4> Values(NumAggValues);
3043 
3044   // Ignore an insertvalue that produces an empty object
3045   if (!NumAggValues) {
3046     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3047     return;
3048   }
3049 
3050   SDValue Agg = getValue(Op0);
3051   unsigned i = 0;
3052   // Copy the beginning value(s) from the original aggregate.
3053   for (; i != LinearIndex; ++i)
3054     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3055                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3056   // Copy values from the inserted value(s).
3057   if (NumValValues) {
3058     SDValue Val = getValue(Op1);
3059     for (; i != LinearIndex + NumValValues; ++i)
3060       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3061                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3062   }
3063   // Copy remaining value(s) from the original aggregate.
3064   for (; i != NumAggValues; ++i)
3065     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3066                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3067 
3068   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3069                            DAG.getVTList(AggValueVTs), Values));
3070 }
3071 
3072 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3073   const Value *Op0 = I.getOperand(0);
3074   Type *AggTy = Op0->getType();
3075   Type *ValTy = I.getType();
3076   bool OutOfUndef = isa<UndefValue>(Op0);
3077 
3078   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3079 
3080   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3081   SmallVector<EVT, 4> ValValueVTs;
3082   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3083 
3084   unsigned NumValValues = ValValueVTs.size();
3085 
3086   // Ignore a extractvalue that produces an empty object
3087   if (!NumValValues) {
3088     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3089     return;
3090   }
3091 
3092   SmallVector<SDValue, 4> Values(NumValValues);
3093 
3094   SDValue Agg = getValue(Op0);
3095   // Copy out the selected value(s).
3096   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3097     Values[i - LinearIndex] =
3098       OutOfUndef ?
3099         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3100         SDValue(Agg.getNode(), Agg.getResNo() + i);
3101 
3102   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3103                            DAG.getVTList(ValValueVTs), Values));
3104 }
3105 
3106 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3107   Value *Op0 = I.getOperand(0);
3108   // Note that the pointer operand may be a vector of pointers. Take the scalar
3109   // element which holds a pointer.
3110   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3111   SDValue N = getValue(Op0);
3112   SDLoc dl = getCurSDLoc();
3113 
3114   // Normalize Vector GEP - all scalar operands should be converted to the
3115   // splat vector.
3116   unsigned VectorWidth = I.getType()->isVectorTy() ?
3117     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3118 
3119   if (VectorWidth && !N.getValueType().isVector()) {
3120     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
3121     SmallVector<SDValue, 16> Ops(VectorWidth, N);
3122     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3123   }
3124   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3125        GTI != E; ++GTI) {
3126     const Value *Idx = GTI.getOperand();
3127     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3128       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3129       if (Field) {
3130         // N = N + Offset
3131         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3132 
3133         // In an inbouds GEP with an offset that is nonnegative even when
3134         // interpreted as signed, assume there is no unsigned overflow.
3135         SDNodeFlags Flags;
3136         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3137           Flags.setNoUnsignedWrap(true);
3138 
3139         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3140                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3141       }
3142     } else {
3143       MVT PtrTy =
3144           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3145       unsigned PtrSize = PtrTy.getSizeInBits();
3146       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3147 
3148       // If this is a scalar constant or a splat vector of constants,
3149       // handle it quickly.
3150       const auto *CI = dyn_cast<ConstantInt>(Idx);
3151       if (!CI && isa<ConstantDataVector>(Idx) &&
3152           cast<ConstantDataVector>(Idx)->getSplatValue())
3153         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3154 
3155       if (CI) {
3156         if (CI->isZero())
3157           continue;
3158         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3159         SDValue OffsVal = VectorWidth ?
3160           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3161           DAG.getConstant(Offs, dl, PtrTy);
3162 
3163         // In an inbouds GEP with an offset that is nonnegative even when
3164         // interpreted as signed, assume there is no unsigned overflow.
3165         SDNodeFlags Flags;
3166         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3167           Flags.setNoUnsignedWrap(true);
3168 
3169         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3170         continue;
3171       }
3172 
3173       // N = N + Idx * ElementSize;
3174       SDValue IdxN = getValue(Idx);
3175 
3176       if (!IdxN.getValueType().isVector() && VectorWidth) {
3177         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3178         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3179         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3180       }
3181       // If the index is smaller or larger than intptr_t, truncate or extend
3182       // it.
3183       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3184 
3185       // If this is a multiply by a power of two, turn it into a shl
3186       // immediately.  This is a very common case.
3187       if (ElementSize != 1) {
3188         if (ElementSize.isPowerOf2()) {
3189           unsigned Amt = ElementSize.logBase2();
3190           IdxN = DAG.getNode(ISD::SHL, dl,
3191                              N.getValueType(), IdxN,
3192                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3193         } else {
3194           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3195           IdxN = DAG.getNode(ISD::MUL, dl,
3196                              N.getValueType(), IdxN, Scale);
3197         }
3198       }
3199 
3200       N = DAG.getNode(ISD::ADD, dl,
3201                       N.getValueType(), N, IdxN);
3202     }
3203   }
3204 
3205   setValue(&I, N);
3206 }
3207 
3208 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3209   // If this is a fixed sized alloca in the entry block of the function,
3210   // allocate it statically on the stack.
3211   if (FuncInfo.StaticAllocaMap.count(&I))
3212     return;   // getValue will auto-populate this.
3213 
3214   SDLoc dl = getCurSDLoc();
3215   Type *Ty = I.getAllocatedType();
3216   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3217   auto &DL = DAG.getDataLayout();
3218   uint64_t TySize = DL.getTypeAllocSize(Ty);
3219   unsigned Align =
3220       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3221 
3222   SDValue AllocSize = getValue(I.getArraySize());
3223 
3224   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3225   if (AllocSize.getValueType() != IntPtr)
3226     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3227 
3228   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3229                           AllocSize,
3230                           DAG.getConstant(TySize, dl, IntPtr));
3231 
3232   // Handle alignment.  If the requested alignment is less than or equal to
3233   // the stack alignment, ignore it.  If the size is greater than or equal to
3234   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3235   unsigned StackAlign =
3236       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3237   if (Align <= StackAlign)
3238     Align = 0;
3239 
3240   // Round the size of the allocation up to the stack alignment size
3241   // by add SA-1 to the size. This doesn't overflow because we're computing
3242   // an address inside an alloca.
3243   SDNodeFlags Flags;
3244   Flags.setNoUnsignedWrap(true);
3245   AllocSize = DAG.getNode(ISD::ADD, dl,
3246                           AllocSize.getValueType(), AllocSize,
3247                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3248 
3249   // Mask out the low bits for alignment purposes.
3250   AllocSize = DAG.getNode(ISD::AND, dl,
3251                           AllocSize.getValueType(), AllocSize,
3252                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3253                                                 dl));
3254 
3255   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3256   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3257   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3258   setValue(&I, DSA);
3259   DAG.setRoot(DSA.getValue(1));
3260 
3261   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3262 }
3263 
3264 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3265   if (I.isAtomic())
3266     return visitAtomicLoad(I);
3267 
3268   const Value *SV = I.getOperand(0);
3269   SDValue Ptr = getValue(SV);
3270 
3271   Type *Ty = I.getType();
3272 
3273   bool isVolatile = I.isVolatile();
3274   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3275 
3276   // The IR notion of invariant_load only guarantees that all *non-faulting*
3277   // invariant loads result in the same value.  The MI notion of invariant load
3278   // guarantees that the load can be legally moved to any location within its
3279   // containing function.  The MI notion of invariant_load is stronger than the
3280   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3281   // with a guarantee that the location being loaded from is dereferenceable
3282   // throughout the function's lifetime.
3283 
3284   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3285                      isDereferenceablePointer(SV, DAG.getDataLayout());
3286   unsigned Alignment = I.getAlignment();
3287 
3288   AAMDNodes AAInfo;
3289   I.getAAMetadata(AAInfo);
3290   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3291 
3292   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3293   SmallVector<EVT, 4> ValueVTs;
3294   SmallVector<uint64_t, 4> Offsets;
3295   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3296   unsigned NumValues = ValueVTs.size();
3297   if (NumValues == 0)
3298     return;
3299 
3300   SDValue Root;
3301   bool ConstantMemory = false;
3302   if (isVolatile || NumValues > MaxParallelChains)
3303     // Serialize volatile loads with other side effects.
3304     Root = getRoot();
3305   else if (AA->pointsToConstantMemory(MemoryLocation(
3306                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3307     // Do not serialize (non-volatile) loads of constant memory with anything.
3308     Root = DAG.getEntryNode();
3309     ConstantMemory = true;
3310   } else {
3311     // Do not serialize non-volatile loads against each other.
3312     Root = DAG.getRoot();
3313   }
3314 
3315   SDLoc dl = getCurSDLoc();
3316 
3317   if (isVolatile)
3318     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3319 
3320   // An aggregate load cannot wrap around the address space, so offsets to its
3321   // parts don't wrap either.
3322   SDNodeFlags Flags;
3323   Flags.setNoUnsignedWrap(true);
3324 
3325   SmallVector<SDValue, 4> Values(NumValues);
3326   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3327   EVT PtrVT = Ptr.getValueType();
3328   unsigned ChainI = 0;
3329   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3330     // Serializing loads here may result in excessive register pressure, and
3331     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3332     // could recover a bit by hoisting nodes upward in the chain by recognizing
3333     // they are side-effect free or do not alias. The optimizer should really
3334     // avoid this case by converting large object/array copies to llvm.memcpy
3335     // (MaxParallelChains should always remain as failsafe).
3336     if (ChainI == MaxParallelChains) {
3337       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3338       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3339                                   makeArrayRef(Chains.data(), ChainI));
3340       Root = Chain;
3341       ChainI = 0;
3342     }
3343     SDValue A = DAG.getNode(ISD::ADD, dl,
3344                             PtrVT, Ptr,
3345                             DAG.getConstant(Offsets[i], dl, PtrVT),
3346                             &Flags);
3347     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3348                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3349                             isNonTemporal, isInvariant, Alignment, AAInfo,
3350                             Ranges);
3351 
3352     Values[i] = L;
3353     Chains[ChainI] = L.getValue(1);
3354   }
3355 
3356   if (!ConstantMemory) {
3357     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3358                                 makeArrayRef(Chains.data(), ChainI));
3359     if (isVolatile)
3360       DAG.setRoot(Chain);
3361     else
3362       PendingLoads.push_back(Chain);
3363   }
3364 
3365   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3366                            DAG.getVTList(ValueVTs), Values));
3367 }
3368 
3369 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3370   if (I.isAtomic())
3371     return visitAtomicStore(I);
3372 
3373   const Value *SrcV = I.getOperand(0);
3374   const Value *PtrV = I.getOperand(1);
3375 
3376   SmallVector<EVT, 4> ValueVTs;
3377   SmallVector<uint64_t, 4> Offsets;
3378   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3379                   SrcV->getType(), ValueVTs, &Offsets);
3380   unsigned NumValues = ValueVTs.size();
3381   if (NumValues == 0)
3382     return;
3383 
3384   // Get the lowered operands. Note that we do this after
3385   // checking if NumResults is zero, because with zero results
3386   // the operands won't have values in the map.
3387   SDValue Src = getValue(SrcV);
3388   SDValue Ptr = getValue(PtrV);
3389 
3390   SDValue Root = getRoot();
3391   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3392   EVT PtrVT = Ptr.getValueType();
3393   bool isVolatile = I.isVolatile();
3394   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3395   unsigned Alignment = I.getAlignment();
3396   SDLoc dl = getCurSDLoc();
3397 
3398   AAMDNodes AAInfo;
3399   I.getAAMetadata(AAInfo);
3400 
3401   // An aggregate load cannot wrap around the address space, so offsets to its
3402   // parts don't wrap either.
3403   SDNodeFlags Flags;
3404   Flags.setNoUnsignedWrap(true);
3405 
3406   unsigned ChainI = 0;
3407   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3408     // See visitLoad comments.
3409     if (ChainI == MaxParallelChains) {
3410       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3411                                   makeArrayRef(Chains.data(), ChainI));
3412       Root = Chain;
3413       ChainI = 0;
3414     }
3415     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3416                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3417     SDValue St = DAG.getStore(Root, dl,
3418                               SDValue(Src.getNode(), Src.getResNo() + i),
3419                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3420                               isVolatile, isNonTemporal, Alignment, AAInfo);
3421     Chains[ChainI] = St;
3422   }
3423 
3424   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3425                                   makeArrayRef(Chains.data(), ChainI));
3426   DAG.setRoot(StoreNode);
3427 }
3428 
3429 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3430   SDLoc sdl = getCurSDLoc();
3431 
3432   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3433   Value  *PtrOperand = I.getArgOperand(1);
3434   SDValue Ptr = getValue(PtrOperand);
3435   SDValue Src0 = getValue(I.getArgOperand(0));
3436   SDValue Mask = getValue(I.getArgOperand(3));
3437   EVT VT = Src0.getValueType();
3438   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3439   if (!Alignment)
3440     Alignment = DAG.getEVTAlignment(VT);
3441 
3442   AAMDNodes AAInfo;
3443   I.getAAMetadata(AAInfo);
3444 
3445   MachineMemOperand *MMO =
3446     DAG.getMachineFunction().
3447     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3448                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3449                           Alignment, AAInfo);
3450   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3451                                          MMO, false);
3452   DAG.setRoot(StoreNode);
3453   setValue(&I, StoreNode);
3454 }
3455 
3456 // Get a uniform base for the Gather/Scatter intrinsic.
3457 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3458 // We try to represent it as a base pointer + vector of indices.
3459 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3460 // The first operand of the GEP may be a single pointer or a vector of pointers
3461 // Example:
3462 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3463 //  or
3464 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3465 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3466 //
3467 // When the first GEP operand is a single pointer - it is the uniform base we
3468 // are looking for. If first operand of the GEP is a splat vector - we
3469 // extract the spalt value and use it as a uniform base.
3470 // In all other cases the function returns 'false'.
3471 //
3472 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3473                            SelectionDAGBuilder* SDB) {
3474 
3475   SelectionDAG& DAG = SDB->DAG;
3476   LLVMContext &Context = *DAG.getContext();
3477 
3478   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3479   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3480   if (!GEP || GEP->getNumOperands() > 2)
3481     return false;
3482 
3483   const Value *GEPPtr = GEP->getPointerOperand();
3484   if (!GEPPtr->getType()->isVectorTy())
3485     Ptr = GEPPtr;
3486   else if (!(Ptr = getSplatValue(GEPPtr)))
3487     return false;
3488 
3489   Value *IndexVal = GEP->getOperand(1);
3490 
3491   // The operands of the GEP may be defined in another basic block.
3492   // In this case we'll not find nodes for the operands.
3493   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3494     return false;
3495 
3496   Base = SDB->getValue(Ptr);
3497   Index = SDB->getValue(IndexVal);
3498 
3499   // Suppress sign extension.
3500   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3501     if (SDB->findValue(Sext->getOperand(0))) {
3502       IndexVal = Sext->getOperand(0);
3503       Index = SDB->getValue(IndexVal);
3504     }
3505   }
3506   if (!Index.getValueType().isVector()) {
3507     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3508     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3509     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3510     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3511   }
3512   return true;
3513 }
3514 
3515 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3516   SDLoc sdl = getCurSDLoc();
3517 
3518   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3519   const Value *Ptr = I.getArgOperand(1);
3520   SDValue Src0 = getValue(I.getArgOperand(0));
3521   SDValue Mask = getValue(I.getArgOperand(3));
3522   EVT VT = Src0.getValueType();
3523   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3524   if (!Alignment)
3525     Alignment = DAG.getEVTAlignment(VT);
3526   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3527 
3528   AAMDNodes AAInfo;
3529   I.getAAMetadata(AAInfo);
3530 
3531   SDValue Base;
3532   SDValue Index;
3533   const Value *BasePtr = Ptr;
3534   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3535 
3536   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3537   MachineMemOperand *MMO = DAG.getMachineFunction().
3538     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3539                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3540                          Alignment, AAInfo);
3541   if (!UniformBase) {
3542     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3543     Index = getValue(Ptr);
3544   }
3545   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3546   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3547                                          Ops, MMO);
3548   DAG.setRoot(Scatter);
3549   setValue(&I, Scatter);
3550 }
3551 
3552 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3553   SDLoc sdl = getCurSDLoc();
3554 
3555   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3556   Value  *PtrOperand = I.getArgOperand(0);
3557   SDValue Ptr = getValue(PtrOperand);
3558   SDValue Src0 = getValue(I.getArgOperand(3));
3559   SDValue Mask = getValue(I.getArgOperand(2));
3560 
3561   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3562   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3563   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3564   if (!Alignment)
3565     Alignment = DAG.getEVTAlignment(VT);
3566 
3567   AAMDNodes AAInfo;
3568   I.getAAMetadata(AAInfo);
3569   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3570 
3571   SDValue InChain = DAG.getRoot();
3572   if (AA->pointsToConstantMemory(MemoryLocation(
3573           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3574           AAInfo))) {
3575     // Do not serialize (non-volatile) loads of constant memory with anything.
3576     InChain = DAG.getEntryNode();
3577   }
3578 
3579   MachineMemOperand *MMO =
3580     DAG.getMachineFunction().
3581     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3582                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3583                           Alignment, AAInfo, Ranges);
3584 
3585   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3586                                    ISD::NON_EXTLOAD);
3587   SDValue OutChain = Load.getValue(1);
3588   DAG.setRoot(OutChain);
3589   setValue(&I, Load);
3590 }
3591 
3592 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3593   SDLoc sdl = getCurSDLoc();
3594 
3595   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3596   const Value *Ptr = I.getArgOperand(0);
3597   SDValue Src0 = getValue(I.getArgOperand(3));
3598   SDValue Mask = getValue(I.getArgOperand(2));
3599 
3600   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3601   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3602   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3603   if (!Alignment)
3604     Alignment = DAG.getEVTAlignment(VT);
3605 
3606   AAMDNodes AAInfo;
3607   I.getAAMetadata(AAInfo);
3608   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3609 
3610   SDValue Root = DAG.getRoot();
3611   SDValue Base;
3612   SDValue Index;
3613   const Value *BasePtr = Ptr;
3614   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3615   bool ConstantMemory = false;
3616   if (UniformBase &&
3617       AA->pointsToConstantMemory(MemoryLocation(
3618           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3619           AAInfo))) {
3620     // Do not serialize (non-volatile) loads of constant memory with anything.
3621     Root = DAG.getEntryNode();
3622     ConstantMemory = true;
3623   }
3624 
3625   MachineMemOperand *MMO =
3626     DAG.getMachineFunction().
3627     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3628                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3629                          Alignment, AAInfo, Ranges);
3630 
3631   if (!UniformBase) {
3632     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3633     Index = getValue(Ptr);
3634   }
3635   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3636   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3637                                        Ops, MMO);
3638 
3639   SDValue OutChain = Gather.getValue(1);
3640   if (!ConstantMemory)
3641     PendingLoads.push_back(OutChain);
3642   setValue(&I, Gather);
3643 }
3644 
3645 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3646   SDLoc dl = getCurSDLoc();
3647   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3648   AtomicOrdering FailureOrder = I.getFailureOrdering();
3649   SynchronizationScope Scope = I.getSynchScope();
3650 
3651   SDValue InChain = getRoot();
3652 
3653   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3654   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3655   SDValue L = DAG.getAtomicCmpSwap(
3656       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3657       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3658       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3659       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3660 
3661   SDValue OutChain = L.getValue(2);
3662 
3663   setValue(&I, L);
3664   DAG.setRoot(OutChain);
3665 }
3666 
3667 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3668   SDLoc dl = getCurSDLoc();
3669   ISD::NodeType NT;
3670   switch (I.getOperation()) {
3671   default: llvm_unreachable("Unknown atomicrmw operation");
3672   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3673   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3674   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3675   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3676   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3677   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3678   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3679   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3680   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3681   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3682   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3683   }
3684   AtomicOrdering Order = I.getOrdering();
3685   SynchronizationScope Scope = I.getSynchScope();
3686 
3687   SDValue InChain = getRoot();
3688 
3689   SDValue L =
3690     DAG.getAtomic(NT, dl,
3691                   getValue(I.getValOperand()).getSimpleValueType(),
3692                   InChain,
3693                   getValue(I.getPointerOperand()),
3694                   getValue(I.getValOperand()),
3695                   I.getPointerOperand(),
3696                   /* Alignment=*/ 0, Order, Scope);
3697 
3698   SDValue OutChain = L.getValue(1);
3699 
3700   setValue(&I, L);
3701   DAG.setRoot(OutChain);
3702 }
3703 
3704 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3705   SDLoc dl = getCurSDLoc();
3706   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3707   SDValue Ops[3];
3708   Ops[0] = getRoot();
3709   Ops[1] = DAG.getConstant(I.getOrdering(), dl,
3710                            TLI.getPointerTy(DAG.getDataLayout()));
3711   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3712                            TLI.getPointerTy(DAG.getDataLayout()));
3713   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3714 }
3715 
3716 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3717   SDLoc dl = getCurSDLoc();
3718   AtomicOrdering Order = I.getOrdering();
3719   SynchronizationScope Scope = I.getSynchScope();
3720 
3721   SDValue InChain = getRoot();
3722 
3723   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3724   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3725 
3726   if (I.getAlignment() < VT.getSizeInBits() / 8)
3727     report_fatal_error("Cannot generate unaligned atomic load");
3728 
3729   MachineMemOperand *MMO =
3730       DAG.getMachineFunction().
3731       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3732                            MachineMemOperand::MOVolatile |
3733                            MachineMemOperand::MOLoad,
3734                            VT.getStoreSize(),
3735                            I.getAlignment() ? I.getAlignment() :
3736                                               DAG.getEVTAlignment(VT));
3737 
3738   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3739   SDValue L =
3740       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3741                     getValue(I.getPointerOperand()), MMO,
3742                     Order, Scope);
3743 
3744   SDValue OutChain = L.getValue(1);
3745 
3746   setValue(&I, L);
3747   DAG.setRoot(OutChain);
3748 }
3749 
3750 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3751   SDLoc dl = getCurSDLoc();
3752 
3753   AtomicOrdering Order = I.getOrdering();
3754   SynchronizationScope Scope = I.getSynchScope();
3755 
3756   SDValue InChain = getRoot();
3757 
3758   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3759   EVT VT =
3760       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3761 
3762   if (I.getAlignment() < VT.getSizeInBits() / 8)
3763     report_fatal_error("Cannot generate unaligned atomic store");
3764 
3765   SDValue OutChain =
3766     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3767                   InChain,
3768                   getValue(I.getPointerOperand()),
3769                   getValue(I.getValueOperand()),
3770                   I.getPointerOperand(), I.getAlignment(),
3771                   Order, Scope);
3772 
3773   DAG.setRoot(OutChain);
3774 }
3775 
3776 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3777 /// node.
3778 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3779                                                unsigned Intrinsic) {
3780   bool HasChain = !I.doesNotAccessMemory();
3781   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3782 
3783   // Build the operand list.
3784   SmallVector<SDValue, 8> Ops;
3785   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3786     if (OnlyLoad) {
3787       // We don't need to serialize loads against other loads.
3788       Ops.push_back(DAG.getRoot());
3789     } else {
3790       Ops.push_back(getRoot());
3791     }
3792   }
3793 
3794   // Info is set by getTgtMemInstrinsic
3795   TargetLowering::IntrinsicInfo Info;
3796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3797   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3798 
3799   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3800   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3801       Info.opc == ISD::INTRINSIC_W_CHAIN)
3802     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
3803                                         TLI.getPointerTy(DAG.getDataLayout())));
3804 
3805   // Add all operands of the call to the operand list.
3806   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3807     SDValue Op = getValue(I.getArgOperand(i));
3808     Ops.push_back(Op);
3809   }
3810 
3811   SmallVector<EVT, 4> ValueVTs;
3812   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
3813 
3814   if (HasChain)
3815     ValueVTs.push_back(MVT::Other);
3816 
3817   SDVTList VTs = DAG.getVTList(ValueVTs);
3818 
3819   // Create the node.
3820   SDValue Result;
3821   if (IsTgtIntrinsic) {
3822     // This is target intrinsic that touches memory
3823     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3824                                      VTs, Ops, Info.memVT,
3825                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3826                                      Info.align, Info.vol,
3827                                      Info.readMem, Info.writeMem, Info.size);
3828   } else if (!HasChain) {
3829     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3830   } else if (!I.getType()->isVoidTy()) {
3831     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3832   } else {
3833     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3834   }
3835 
3836   if (HasChain) {
3837     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3838     if (OnlyLoad)
3839       PendingLoads.push_back(Chain);
3840     else
3841       DAG.setRoot(Chain);
3842   }
3843 
3844   if (!I.getType()->isVoidTy()) {
3845     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3846       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
3847       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3848     } else
3849       Result = lowerRangeToAssertZExt(DAG, I, Result);
3850 
3851     setValue(&I, Result);
3852   }
3853 }
3854 
3855 /// GetSignificand - Get the significand and build it into a floating-point
3856 /// number with exponent of 1:
3857 ///
3858 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3859 ///
3860 /// where Op is the hexadecimal representation of floating point value.
3861 static SDValue
3862 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3863   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3864                            DAG.getConstant(0x007fffff, dl, MVT::i32));
3865   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3866                            DAG.getConstant(0x3f800000, dl, MVT::i32));
3867   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3868 }
3869 
3870 /// GetExponent - Get the exponent:
3871 ///
3872 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3873 ///
3874 /// where Op is the hexadecimal representation of floating point value.
3875 static SDValue
3876 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3877             SDLoc dl) {
3878   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3879                            DAG.getConstant(0x7f800000, dl, MVT::i32));
3880   SDValue t1 = DAG.getNode(
3881       ISD::SRL, dl, MVT::i32, t0,
3882       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
3883   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3884                            DAG.getConstant(127, dl, MVT::i32));
3885   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3886 }
3887 
3888 /// getF32Constant - Get 32-bit floating point constant.
3889 static SDValue
3890 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
3891   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
3892                            MVT::f32);
3893 }
3894 
3895 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3896                                        SelectionDAG &DAG) {
3897   // TODO: What fast-math-flags should be set on the floating-point nodes?
3898 
3899   //   IntegerPartOfX = ((int32_t)(t0);
3900   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3901 
3902   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3903   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3904   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3905 
3906   //   IntegerPartOfX <<= 23;
3907   IntegerPartOfX = DAG.getNode(
3908       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3909       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
3910                                   DAG.getDataLayout())));
3911 
3912   SDValue TwoToFractionalPartOfX;
3913   if (LimitFloatPrecision <= 6) {
3914     // For floating-point precision of 6:
3915     //
3916     //   TwoToFractionalPartOfX =
3917     //     0.997535578f +
3918     //       (0.735607626f + 0.252464424f * x) * x;
3919     //
3920     // error 0.0144103317, which is 6 bits
3921     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3922                              getF32Constant(DAG, 0x3e814304, dl));
3923     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3924                              getF32Constant(DAG, 0x3f3c50c8, dl));
3925     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3926     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3927                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
3928   } else if (LimitFloatPrecision <= 12) {
3929     // For floating-point precision of 12:
3930     //
3931     //   TwoToFractionalPartOfX =
3932     //     0.999892986f +
3933     //       (0.696457318f +
3934     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3935     //
3936     // error 0.000107046256, which is 13 to 14 bits
3937     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3938                              getF32Constant(DAG, 0x3da235e3, dl));
3939     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3940                              getF32Constant(DAG, 0x3e65b8f3, dl));
3941     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3942     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3943                              getF32Constant(DAG, 0x3f324b07, dl));
3944     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3945     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3946                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
3947   } else { // LimitFloatPrecision <= 18
3948     // For floating-point precision of 18:
3949     //
3950     //   TwoToFractionalPartOfX =
3951     //     0.999999982f +
3952     //       (0.693148872f +
3953     //         (0.240227044f +
3954     //           (0.554906021e-1f +
3955     //             (0.961591928e-2f +
3956     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3957     // error 2.47208000*10^(-7), which is better than 18 bits
3958     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3959                              getF32Constant(DAG, 0x3924b03e, dl));
3960     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3961                              getF32Constant(DAG, 0x3ab24b87, dl));
3962     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3963     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3964                              getF32Constant(DAG, 0x3c1d8c17, dl));
3965     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3966     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3967                              getF32Constant(DAG, 0x3d634a1d, dl));
3968     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3969     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3970                              getF32Constant(DAG, 0x3e75fe14, dl));
3971     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3972     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3973                               getF32Constant(DAG, 0x3f317234, dl));
3974     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3975     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3976                                          getF32Constant(DAG, 0x3f800000, dl));
3977   }
3978 
3979   // Add the exponent into the result in integer domain.
3980   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
3981   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3982                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
3983 }
3984 
3985 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3986 /// limited-precision mode.
3987 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3988                          const TargetLowering &TLI) {
3989   if (Op.getValueType() == MVT::f32 &&
3990       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3991 
3992     // Put the exponent in the right bit position for later addition to the
3993     // final result:
3994     //
3995     //   #define LOG2OFe 1.4426950f
3996     //   t0 = Op * LOG2OFe
3997 
3998     // TODO: What fast-math-flags should be set here?
3999     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4000                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4001     return getLimitedPrecisionExp2(t0, dl, DAG);
4002   }
4003 
4004   // No special expansion.
4005   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4006 }
4007 
4008 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4009 /// limited-precision mode.
4010 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4011                          const TargetLowering &TLI) {
4012 
4013   // TODO: What fast-math-flags should be set on the floating-point nodes?
4014 
4015   if (Op.getValueType() == MVT::f32 &&
4016       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4017     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4018 
4019     // Scale the exponent by log(2) [0.69314718f].
4020     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4021     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4022                                         getF32Constant(DAG, 0x3f317218, dl));
4023 
4024     // Get the significand and build it into a floating-point number with
4025     // exponent of 1.
4026     SDValue X = GetSignificand(DAG, Op1, dl);
4027 
4028     SDValue LogOfMantissa;
4029     if (LimitFloatPrecision <= 6) {
4030       // For floating-point precision of 6:
4031       //
4032       //   LogofMantissa =
4033       //     -1.1609546f +
4034       //       (1.4034025f - 0.23903021f * x) * x;
4035       //
4036       // error 0.0034276066, which is better than 8 bits
4037       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4038                                getF32Constant(DAG, 0xbe74c456, dl));
4039       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4040                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4041       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4042       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4043                                   getF32Constant(DAG, 0x3f949a29, dl));
4044     } else if (LimitFloatPrecision <= 12) {
4045       // For floating-point precision of 12:
4046       //
4047       //   LogOfMantissa =
4048       //     -1.7417939f +
4049       //       (2.8212026f +
4050       //         (-1.4699568f +
4051       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4052       //
4053       // error 0.000061011436, which is 14 bits
4054       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4055                                getF32Constant(DAG, 0xbd67b6d6, dl));
4056       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4057                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4058       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4059       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4060                                getF32Constant(DAG, 0x3fbc278b, dl));
4061       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4062       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4063                                getF32Constant(DAG, 0x40348e95, dl));
4064       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4065       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4066                                   getF32Constant(DAG, 0x3fdef31a, dl));
4067     } else { // LimitFloatPrecision <= 18
4068       // For floating-point precision of 18:
4069       //
4070       //   LogOfMantissa =
4071       //     -2.1072184f +
4072       //       (4.2372794f +
4073       //         (-3.7029485f +
4074       //           (2.2781945f +
4075       //             (-0.87823314f +
4076       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4077       //
4078       // error 0.0000023660568, which is better than 18 bits
4079       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4080                                getF32Constant(DAG, 0xbc91e5ac, dl));
4081       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4082                                getF32Constant(DAG, 0x3e4350aa, dl));
4083       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4084       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4085                                getF32Constant(DAG, 0x3f60d3e3, dl));
4086       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4087       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4088                                getF32Constant(DAG, 0x4011cdf0, dl));
4089       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4090       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4091                                getF32Constant(DAG, 0x406cfd1c, dl));
4092       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4093       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4094                                getF32Constant(DAG, 0x408797cb, dl));
4095       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4096       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4097                                   getF32Constant(DAG, 0x4006dcab, dl));
4098     }
4099 
4100     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4101   }
4102 
4103   // No special expansion.
4104   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4105 }
4106 
4107 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4108 /// limited-precision mode.
4109 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4110                           const TargetLowering &TLI) {
4111 
4112   // TODO: What fast-math-flags should be set on the floating-point nodes?
4113 
4114   if (Op.getValueType() == MVT::f32 &&
4115       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4116     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4117 
4118     // Get the exponent.
4119     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4120 
4121     // Get the significand and build it into a floating-point number with
4122     // exponent of 1.
4123     SDValue X = GetSignificand(DAG, Op1, dl);
4124 
4125     // Different possible minimax approximations of significand in
4126     // floating-point for various degrees of accuracy over [1,2].
4127     SDValue Log2ofMantissa;
4128     if (LimitFloatPrecision <= 6) {
4129       // For floating-point precision of 6:
4130       //
4131       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4132       //
4133       // error 0.0049451742, which is more than 7 bits
4134       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4135                                getF32Constant(DAG, 0xbeb08fe0, dl));
4136       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4137                                getF32Constant(DAG, 0x40019463, dl));
4138       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4139       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4140                                    getF32Constant(DAG, 0x3fd6633d, dl));
4141     } else if (LimitFloatPrecision <= 12) {
4142       // For floating-point precision of 12:
4143       //
4144       //   Log2ofMantissa =
4145       //     -2.51285454f +
4146       //       (4.07009056f +
4147       //         (-2.12067489f +
4148       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4149       //
4150       // error 0.0000876136000, which is better than 13 bits
4151       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4152                                getF32Constant(DAG, 0xbda7262e, dl));
4153       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4154                                getF32Constant(DAG, 0x3f25280b, dl));
4155       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4156       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4157                                getF32Constant(DAG, 0x4007b923, dl));
4158       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4159       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4160                                getF32Constant(DAG, 0x40823e2f, dl));
4161       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4162       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4163                                    getF32Constant(DAG, 0x4020d29c, dl));
4164     } else { // LimitFloatPrecision <= 18
4165       // For floating-point precision of 18:
4166       //
4167       //   Log2ofMantissa =
4168       //     -3.0400495f +
4169       //       (6.1129976f +
4170       //         (-5.3420409f +
4171       //           (3.2865683f +
4172       //             (-1.2669343f +
4173       //               (0.27515199f -
4174       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4175       //
4176       // error 0.0000018516, which is better than 18 bits
4177       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4178                                getF32Constant(DAG, 0xbcd2769e, dl));
4179       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4180                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4181       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4182       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4183                                getF32Constant(DAG, 0x3fa22ae7, dl));
4184       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4185       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4186                                getF32Constant(DAG, 0x40525723, dl));
4187       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4188       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4189                                getF32Constant(DAG, 0x40aaf200, dl));
4190       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4191       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4192                                getF32Constant(DAG, 0x40c39dad, dl));
4193       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4194       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4195                                    getF32Constant(DAG, 0x4042902c, dl));
4196     }
4197 
4198     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4199   }
4200 
4201   // No special expansion.
4202   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4203 }
4204 
4205 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4206 /// limited-precision mode.
4207 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4208                            const TargetLowering &TLI) {
4209 
4210   // TODO: What fast-math-flags should be set on the floating-point nodes?
4211 
4212   if (Op.getValueType() == MVT::f32 &&
4213       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4214     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4215 
4216     // Scale the exponent by log10(2) [0.30102999f].
4217     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4218     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4219                                         getF32Constant(DAG, 0x3e9a209a, dl));
4220 
4221     // Get the significand and build it into a floating-point number with
4222     // exponent of 1.
4223     SDValue X = GetSignificand(DAG, Op1, dl);
4224 
4225     SDValue Log10ofMantissa;
4226     if (LimitFloatPrecision <= 6) {
4227       // For floating-point precision of 6:
4228       //
4229       //   Log10ofMantissa =
4230       //     -0.50419619f +
4231       //       (0.60948995f - 0.10380950f * x) * x;
4232       //
4233       // error 0.0014886165, which is 6 bits
4234       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4235                                getF32Constant(DAG, 0xbdd49a13, dl));
4236       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4237                                getF32Constant(DAG, 0x3f1c0789, dl));
4238       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4239       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4240                                     getF32Constant(DAG, 0x3f011300, dl));
4241     } else if (LimitFloatPrecision <= 12) {
4242       // For floating-point precision of 12:
4243       //
4244       //   Log10ofMantissa =
4245       //     -0.64831180f +
4246       //       (0.91751397f +
4247       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4248       //
4249       // error 0.00019228036, which is better than 12 bits
4250       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4251                                getF32Constant(DAG, 0x3d431f31, dl));
4252       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4253                                getF32Constant(DAG, 0x3ea21fb2, dl));
4254       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4255       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4256                                getF32Constant(DAG, 0x3f6ae232, dl));
4257       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4258       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4259                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4260     } else { // LimitFloatPrecision <= 18
4261       // For floating-point precision of 18:
4262       //
4263       //   Log10ofMantissa =
4264       //     -0.84299375f +
4265       //       (1.5327582f +
4266       //         (-1.0688956f +
4267       //           (0.49102474f +
4268       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4269       //
4270       // error 0.0000037995730, which is better than 18 bits
4271       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4272                                getF32Constant(DAG, 0x3c5d51ce, dl));
4273       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4274                                getF32Constant(DAG, 0x3e00685a, dl));
4275       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4276       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4277                                getF32Constant(DAG, 0x3efb6798, dl));
4278       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4279       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4280                                getF32Constant(DAG, 0x3f88d192, dl));
4281       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4282       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4283                                getF32Constant(DAG, 0x3fc4316c, dl));
4284       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4285       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4286                                     getF32Constant(DAG, 0x3f57ce70, dl));
4287     }
4288 
4289     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4290   }
4291 
4292   // No special expansion.
4293   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4294 }
4295 
4296 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4297 /// limited-precision mode.
4298 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4299                           const TargetLowering &TLI) {
4300   if (Op.getValueType() == MVT::f32 &&
4301       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4302     return getLimitedPrecisionExp2(Op, dl, DAG);
4303 
4304   // No special expansion.
4305   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4306 }
4307 
4308 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4309 /// limited-precision mode with x == 10.0f.
4310 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4311                          SelectionDAG &DAG, const TargetLowering &TLI) {
4312   bool IsExp10 = false;
4313   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4314       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4315     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4316       APFloat Ten(10.0f);
4317       IsExp10 = LHSC->isExactlyValue(Ten);
4318     }
4319   }
4320 
4321   // TODO: What fast-math-flags should be set on the FMUL node?
4322   if (IsExp10) {
4323     // Put the exponent in the right bit position for later addition to the
4324     // final result:
4325     //
4326     //   #define LOG2OF10 3.3219281f
4327     //   t0 = Op * LOG2OF10;
4328     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4329                              getF32Constant(DAG, 0x40549a78, dl));
4330     return getLimitedPrecisionExp2(t0, dl, DAG);
4331   }
4332 
4333   // No special expansion.
4334   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4335 }
4336 
4337 
4338 /// ExpandPowI - Expand a llvm.powi intrinsic.
4339 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4340                           SelectionDAG &DAG) {
4341   // If RHS is a constant, we can expand this out to a multiplication tree,
4342   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4343   // optimizing for size, we only want to do this if the expansion would produce
4344   // a small number of multiplies, otherwise we do the full expansion.
4345   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4346     // Get the exponent as a positive value.
4347     unsigned Val = RHSC->getSExtValue();
4348     if ((int)Val < 0) Val = -Val;
4349 
4350     // powi(x, 0) -> 1.0
4351     if (Val == 0)
4352       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4353 
4354     const Function *F = DAG.getMachineFunction().getFunction();
4355     if (!F->optForSize() ||
4356         // If optimizing for size, don't insert too many multiplies.
4357         // This inserts up to 5 multiplies.
4358         countPopulation(Val) + Log2_32(Val) < 7) {
4359       // We use the simple binary decomposition method to generate the multiply
4360       // sequence.  There are more optimal ways to do this (for example,
4361       // powi(x,15) generates one more multiply than it should), but this has
4362       // the benefit of being both really simple and much better than a libcall.
4363       SDValue Res;  // Logically starts equal to 1.0
4364       SDValue CurSquare = LHS;
4365       // TODO: Intrinsics should have fast-math-flags that propagate to these
4366       // nodes.
4367       while (Val) {
4368         if (Val & 1) {
4369           if (Res.getNode())
4370             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4371           else
4372             Res = CurSquare;  // 1.0*CurSquare.
4373         }
4374 
4375         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4376                                 CurSquare, CurSquare);
4377         Val >>= 1;
4378       }
4379 
4380       // If the original was negative, invert the result, producing 1/(x*x*x).
4381       if (RHSC->getSExtValue() < 0)
4382         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4383                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4384       return Res;
4385     }
4386   }
4387 
4388   // Otherwise, expand to a libcall.
4389   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4390 }
4391 
4392 // getUnderlyingArgReg - Find underlying register used for a truncated or
4393 // bitcasted argument.
4394 static unsigned getUnderlyingArgReg(const SDValue &N) {
4395   switch (N.getOpcode()) {
4396   case ISD::CopyFromReg:
4397     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4398   case ISD::BITCAST:
4399   case ISD::AssertZext:
4400   case ISD::AssertSext:
4401   case ISD::TRUNCATE:
4402     return getUnderlyingArgReg(N.getOperand(0));
4403   default:
4404     return 0;
4405   }
4406 }
4407 
4408 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4409 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4410 /// At the end of instruction selection, they will be inserted to the entry BB.
4411 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4412     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4413     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4414   const Argument *Arg = dyn_cast<Argument>(V);
4415   if (!Arg)
4416     return false;
4417 
4418   MachineFunction &MF = DAG.getMachineFunction();
4419   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4420 
4421   // Ignore inlined function arguments here.
4422   //
4423   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4424   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4425     return false;
4426 
4427   Optional<MachineOperand> Op;
4428   // Some arguments' frame index is recorded during argument lowering.
4429   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4430     Op = MachineOperand::CreateFI(FI);
4431 
4432   if (!Op && N.getNode()) {
4433     unsigned Reg = getUnderlyingArgReg(N);
4434     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4435       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4436       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4437       if (PR)
4438         Reg = PR;
4439     }
4440     if (Reg)
4441       Op = MachineOperand::CreateReg(Reg, false);
4442   }
4443 
4444   if (!Op) {
4445     // Check if ValueMap has reg number.
4446     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4447     if (VMI != FuncInfo.ValueMap.end())
4448       Op = MachineOperand::CreateReg(VMI->second, false);
4449   }
4450 
4451   if (!Op && N.getNode())
4452     // Check if frame index is available.
4453     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4454       if (FrameIndexSDNode *FINode =
4455           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4456         Op = MachineOperand::CreateFI(FINode->getIndex());
4457 
4458   if (!Op)
4459     return false;
4460 
4461   assert(Variable->isValidLocationForIntrinsic(DL) &&
4462          "Expected inlined-at fields to agree");
4463   if (Op->isReg())
4464     FuncInfo.ArgDbgValues.push_back(
4465         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4466                 Op->getReg(), Offset, Variable, Expr));
4467   else
4468     FuncInfo.ArgDbgValues.push_back(
4469         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4470             .addOperand(*Op)
4471             .addImm(Offset)
4472             .addMetadata(Variable)
4473             .addMetadata(Expr));
4474 
4475   return true;
4476 }
4477 
4478 // VisualStudio defines setjmp as _setjmp
4479 #if defined(_MSC_VER) && defined(setjmp) && \
4480                          !defined(setjmp_undefined_for_msvc)
4481 #  pragma push_macro("setjmp")
4482 #  undef setjmp
4483 #  define setjmp_undefined_for_msvc
4484 #endif
4485 
4486 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4487 /// we want to emit this as a call to a named external function, return the name
4488 /// otherwise lower it and return null.
4489 const char *
4490 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4491   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4492   SDLoc sdl = getCurSDLoc();
4493   DebugLoc dl = getCurDebugLoc();
4494   SDValue Res;
4495 
4496   switch (Intrinsic) {
4497   default:
4498     // By default, turn this into a target intrinsic node.
4499     visitTargetIntrinsic(I, Intrinsic);
4500     return nullptr;
4501   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4502   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4503   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4504   case Intrinsic::returnaddress:
4505     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4506                              TLI.getPointerTy(DAG.getDataLayout()),
4507                              getValue(I.getArgOperand(0))));
4508     return nullptr;
4509   case Intrinsic::frameaddress:
4510     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4511                              TLI.getPointerTy(DAG.getDataLayout()),
4512                              getValue(I.getArgOperand(0))));
4513     return nullptr;
4514   case Intrinsic::read_register: {
4515     Value *Reg = I.getArgOperand(0);
4516     SDValue Chain = getRoot();
4517     SDValue RegName =
4518         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4519     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4520     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4521       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4522     setValue(&I, Res);
4523     DAG.setRoot(Res.getValue(1));
4524     return nullptr;
4525   }
4526   case Intrinsic::write_register: {
4527     Value *Reg = I.getArgOperand(0);
4528     Value *RegValue = I.getArgOperand(1);
4529     SDValue Chain = getRoot();
4530     SDValue RegName =
4531         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4532     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4533                             RegName, getValue(RegValue)));
4534     return nullptr;
4535   }
4536   case Intrinsic::setjmp:
4537     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4538   case Intrinsic::longjmp:
4539     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4540   case Intrinsic::memcpy: {
4541     SDValue Op1 = getValue(I.getArgOperand(0));
4542     SDValue Op2 = getValue(I.getArgOperand(1));
4543     SDValue Op3 = getValue(I.getArgOperand(2));
4544     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4545     if (!Align)
4546       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4547     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4548     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4549     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4550                                false, isTC,
4551                                MachinePointerInfo(I.getArgOperand(0)),
4552                                MachinePointerInfo(I.getArgOperand(1)));
4553     updateDAGForMaybeTailCall(MC);
4554     return nullptr;
4555   }
4556   case Intrinsic::memset: {
4557     SDValue Op1 = getValue(I.getArgOperand(0));
4558     SDValue Op2 = getValue(I.getArgOperand(1));
4559     SDValue Op3 = getValue(I.getArgOperand(2));
4560     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4561     if (!Align)
4562       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4563     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4564     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4565     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4566                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4567     updateDAGForMaybeTailCall(MS);
4568     return nullptr;
4569   }
4570   case Intrinsic::memmove: {
4571     SDValue Op1 = getValue(I.getArgOperand(0));
4572     SDValue Op2 = getValue(I.getArgOperand(1));
4573     SDValue Op3 = getValue(I.getArgOperand(2));
4574     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4575     if (!Align)
4576       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4577     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4578     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4579     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4580                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4581                                 MachinePointerInfo(I.getArgOperand(1)));
4582     updateDAGForMaybeTailCall(MM);
4583     return nullptr;
4584   }
4585   case Intrinsic::dbg_declare: {
4586     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4587     DILocalVariable *Variable = DI.getVariable();
4588     DIExpression *Expression = DI.getExpression();
4589     const Value *Address = DI.getAddress();
4590     assert(Variable && "Missing variable");
4591     if (!Address) {
4592       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4593       return nullptr;
4594     }
4595 
4596     // Check if address has undef value.
4597     if (isa<UndefValue>(Address) ||
4598         (Address->use_empty() && !isa<Argument>(Address))) {
4599       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4600       return nullptr;
4601     }
4602 
4603     SDValue &N = NodeMap[Address];
4604     if (!N.getNode() && isa<Argument>(Address))
4605       // Check unused arguments map.
4606       N = UnusedArgNodeMap[Address];
4607     SDDbgValue *SDV;
4608     if (N.getNode()) {
4609       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4610         Address = BCI->getOperand(0);
4611       // Parameters are handled specially.
4612       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4613       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4614       if (isParameter && FINode) {
4615         // Byval parameter. We have a frame index at this point.
4616         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4617                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4618       } else if (isa<Argument>(Address)) {
4619         // Address is an argument, so try to emit its dbg value using
4620         // virtual register info from the FuncInfo.ValueMap.
4621         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4622                                  N);
4623         return nullptr;
4624       } else {
4625         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4626                               true, 0, dl, SDNodeOrder);
4627       }
4628       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4629     } else {
4630       // If Address is an argument then try to emit its dbg value using
4631       // virtual register info from the FuncInfo.ValueMap.
4632       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4633                                     N)) {
4634         // If variable is pinned by a alloca in dominating bb then
4635         // use StaticAllocaMap.
4636         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4637           if (AI->getParent() != DI.getParent()) {
4638             DenseMap<const AllocaInst*, int>::iterator SI =
4639               FuncInfo.StaticAllocaMap.find(AI);
4640             if (SI != FuncInfo.StaticAllocaMap.end()) {
4641               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4642                                               0, dl, SDNodeOrder);
4643               DAG.AddDbgValue(SDV, nullptr, false);
4644               return nullptr;
4645             }
4646           }
4647         }
4648         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4649       }
4650     }
4651     return nullptr;
4652   }
4653   case Intrinsic::dbg_value: {
4654     const DbgValueInst &DI = cast<DbgValueInst>(I);
4655     assert(DI.getVariable() && "Missing variable");
4656 
4657     DILocalVariable *Variable = DI.getVariable();
4658     DIExpression *Expression = DI.getExpression();
4659     uint64_t Offset = DI.getOffset();
4660     const Value *V = DI.getValue();
4661     if (!V)
4662       return nullptr;
4663 
4664     SDDbgValue *SDV;
4665     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4666       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4667                                     SDNodeOrder);
4668       DAG.AddDbgValue(SDV, nullptr, false);
4669     } else {
4670       // Do not use getValue() in here; we don't want to generate code at
4671       // this point if it hasn't been done yet.
4672       SDValue N = NodeMap[V];
4673       if (!N.getNode() && isa<Argument>(V))
4674         // Check unused arguments map.
4675         N = UnusedArgNodeMap[V];
4676       if (N.getNode()) {
4677         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4678                                       false, N)) {
4679           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4680                                 false, Offset, dl, SDNodeOrder);
4681           DAG.AddDbgValue(SDV, N.getNode(), false);
4682         }
4683       } else if (!V->use_empty() ) {
4684         // Do not call getValue(V) yet, as we don't want to generate code.
4685         // Remember it for later.
4686         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4687         DanglingDebugInfoMap[V] = DDI;
4688       } else {
4689         // We may expand this to cover more cases.  One case where we have no
4690         // data available is an unreferenced parameter.
4691         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4692       }
4693     }
4694 
4695     // Build a debug info table entry.
4696     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4697       V = BCI->getOperand(0);
4698     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4699     // Don't handle byval struct arguments or VLAs, for example.
4700     if (!AI) {
4701       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4702       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4703       return nullptr;
4704     }
4705     DenseMap<const AllocaInst*, int>::iterator SI =
4706       FuncInfo.StaticAllocaMap.find(AI);
4707     if (SI == FuncInfo.StaticAllocaMap.end())
4708       return nullptr; // VLAs.
4709     return nullptr;
4710   }
4711 
4712   case Intrinsic::eh_typeid_for: {
4713     // Find the type id for the given typeinfo.
4714     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4715     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4716     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4717     setValue(&I, Res);
4718     return nullptr;
4719   }
4720 
4721   case Intrinsic::eh_return_i32:
4722   case Intrinsic::eh_return_i64:
4723     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4724     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4725                             MVT::Other,
4726                             getControlRoot(),
4727                             getValue(I.getArgOperand(0)),
4728                             getValue(I.getArgOperand(1))));
4729     return nullptr;
4730   case Intrinsic::eh_unwind_init:
4731     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4732     return nullptr;
4733   case Intrinsic::eh_dwarf_cfa: {
4734     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4735                                         TLI.getPointerTy(DAG.getDataLayout()));
4736     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4737                                  CfaArg.getValueType(),
4738                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4739                                              CfaArg.getValueType()),
4740                                  CfaArg);
4741     SDValue FA = DAG.getNode(
4742         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4743         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4744     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4745                              FA, Offset));
4746     return nullptr;
4747   }
4748   case Intrinsic::eh_sjlj_callsite: {
4749     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4750     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4751     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4752     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4753 
4754     MMI.setCurrentCallSite(CI->getZExtValue());
4755     return nullptr;
4756   }
4757   case Intrinsic::eh_sjlj_functioncontext: {
4758     // Get and store the index of the function context.
4759     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4760     AllocaInst *FnCtx =
4761       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4762     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4763     MFI->setFunctionContextIndex(FI);
4764     return nullptr;
4765   }
4766   case Intrinsic::eh_sjlj_setjmp: {
4767     SDValue Ops[2];
4768     Ops[0] = getRoot();
4769     Ops[1] = getValue(I.getArgOperand(0));
4770     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4771                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4772     setValue(&I, Op.getValue(0));
4773     DAG.setRoot(Op.getValue(1));
4774     return nullptr;
4775   }
4776   case Intrinsic::eh_sjlj_longjmp: {
4777     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4778                             getRoot(), getValue(I.getArgOperand(0))));
4779     return nullptr;
4780   }
4781   case Intrinsic::eh_sjlj_setup_dispatch: {
4782     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
4783                             getRoot()));
4784     return nullptr;
4785   }
4786 
4787   case Intrinsic::masked_gather:
4788     visitMaskedGather(I);
4789     return nullptr;
4790   case Intrinsic::masked_load:
4791     visitMaskedLoad(I);
4792     return nullptr;
4793   case Intrinsic::masked_scatter:
4794     visitMaskedScatter(I);
4795     return nullptr;
4796   case Intrinsic::masked_store:
4797     visitMaskedStore(I);
4798     return nullptr;
4799   case Intrinsic::x86_mmx_pslli_w:
4800   case Intrinsic::x86_mmx_pslli_d:
4801   case Intrinsic::x86_mmx_pslli_q:
4802   case Intrinsic::x86_mmx_psrli_w:
4803   case Intrinsic::x86_mmx_psrli_d:
4804   case Intrinsic::x86_mmx_psrli_q:
4805   case Intrinsic::x86_mmx_psrai_w:
4806   case Intrinsic::x86_mmx_psrai_d: {
4807     SDValue ShAmt = getValue(I.getArgOperand(1));
4808     if (isa<ConstantSDNode>(ShAmt)) {
4809       visitTargetIntrinsic(I, Intrinsic);
4810       return nullptr;
4811     }
4812     unsigned NewIntrinsic = 0;
4813     EVT ShAmtVT = MVT::v2i32;
4814     switch (Intrinsic) {
4815     case Intrinsic::x86_mmx_pslli_w:
4816       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4817       break;
4818     case Intrinsic::x86_mmx_pslli_d:
4819       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4820       break;
4821     case Intrinsic::x86_mmx_pslli_q:
4822       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4823       break;
4824     case Intrinsic::x86_mmx_psrli_w:
4825       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4826       break;
4827     case Intrinsic::x86_mmx_psrli_d:
4828       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4829       break;
4830     case Intrinsic::x86_mmx_psrli_q:
4831       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4832       break;
4833     case Intrinsic::x86_mmx_psrai_w:
4834       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4835       break;
4836     case Intrinsic::x86_mmx_psrai_d:
4837       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4838       break;
4839     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4840     }
4841 
4842     // The vector shift intrinsics with scalars uses 32b shift amounts but
4843     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4844     // to be zero.
4845     // We must do this early because v2i32 is not a legal type.
4846     SDValue ShOps[2];
4847     ShOps[0] = ShAmt;
4848     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
4849     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4850     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4851     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4852     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4853                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
4854                        getValue(I.getArgOperand(0)), ShAmt);
4855     setValue(&I, Res);
4856     return nullptr;
4857   }
4858   case Intrinsic::convertff:
4859   case Intrinsic::convertfsi:
4860   case Intrinsic::convertfui:
4861   case Intrinsic::convertsif:
4862   case Intrinsic::convertuif:
4863   case Intrinsic::convertss:
4864   case Intrinsic::convertsu:
4865   case Intrinsic::convertus:
4866   case Intrinsic::convertuu: {
4867     ISD::CvtCode Code = ISD::CVT_INVALID;
4868     switch (Intrinsic) {
4869     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4870     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4871     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4872     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4873     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4874     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4875     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4876     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4877     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4878     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4879     }
4880     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4881     const Value *Op1 = I.getArgOperand(0);
4882     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4883                                DAG.getValueType(DestVT),
4884                                DAG.getValueType(getValue(Op1).getValueType()),
4885                                getValue(I.getArgOperand(1)),
4886                                getValue(I.getArgOperand(2)),
4887                                Code);
4888     setValue(&I, Res);
4889     return nullptr;
4890   }
4891   case Intrinsic::powi:
4892     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4893                             getValue(I.getArgOperand(1)), DAG));
4894     return nullptr;
4895   case Intrinsic::log:
4896     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4897     return nullptr;
4898   case Intrinsic::log2:
4899     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4900     return nullptr;
4901   case Intrinsic::log10:
4902     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4903     return nullptr;
4904   case Intrinsic::exp:
4905     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4906     return nullptr;
4907   case Intrinsic::exp2:
4908     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4909     return nullptr;
4910   case Intrinsic::pow:
4911     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4912                            getValue(I.getArgOperand(1)), DAG, TLI));
4913     return nullptr;
4914   case Intrinsic::sqrt:
4915   case Intrinsic::fabs:
4916   case Intrinsic::sin:
4917   case Intrinsic::cos:
4918   case Intrinsic::floor:
4919   case Intrinsic::ceil:
4920   case Intrinsic::trunc:
4921   case Intrinsic::rint:
4922   case Intrinsic::nearbyint:
4923   case Intrinsic::round: {
4924     unsigned Opcode;
4925     switch (Intrinsic) {
4926     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4927     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4928     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4929     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4930     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4931     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4932     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4933     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4934     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4935     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4936     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
4937     }
4938 
4939     setValue(&I, DAG.getNode(Opcode, sdl,
4940                              getValue(I.getArgOperand(0)).getValueType(),
4941                              getValue(I.getArgOperand(0))));
4942     return nullptr;
4943   }
4944   case Intrinsic::minnum:
4945     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
4946                              getValue(I.getArgOperand(0)).getValueType(),
4947                              getValue(I.getArgOperand(0)),
4948                              getValue(I.getArgOperand(1))));
4949     return nullptr;
4950   case Intrinsic::maxnum:
4951     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
4952                              getValue(I.getArgOperand(0)).getValueType(),
4953                              getValue(I.getArgOperand(0)),
4954                              getValue(I.getArgOperand(1))));
4955     return nullptr;
4956   case Intrinsic::copysign:
4957     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
4958                              getValue(I.getArgOperand(0)).getValueType(),
4959                              getValue(I.getArgOperand(0)),
4960                              getValue(I.getArgOperand(1))));
4961     return nullptr;
4962   case Intrinsic::fma:
4963     setValue(&I, DAG.getNode(ISD::FMA, sdl,
4964                              getValue(I.getArgOperand(0)).getValueType(),
4965                              getValue(I.getArgOperand(0)),
4966                              getValue(I.getArgOperand(1)),
4967                              getValue(I.getArgOperand(2))));
4968     return nullptr;
4969   case Intrinsic::fmuladd: {
4970     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4971     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4972         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
4973       setValue(&I, DAG.getNode(ISD::FMA, sdl,
4974                                getValue(I.getArgOperand(0)).getValueType(),
4975                                getValue(I.getArgOperand(0)),
4976                                getValue(I.getArgOperand(1)),
4977                                getValue(I.getArgOperand(2))));
4978     } else {
4979       // TODO: Intrinsic calls should have fast-math-flags.
4980       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4981                                 getValue(I.getArgOperand(0)).getValueType(),
4982                                 getValue(I.getArgOperand(0)),
4983                                 getValue(I.getArgOperand(1)));
4984       SDValue Add = DAG.getNode(ISD::FADD, sdl,
4985                                 getValue(I.getArgOperand(0)).getValueType(),
4986                                 Mul,
4987                                 getValue(I.getArgOperand(2)));
4988       setValue(&I, Add);
4989     }
4990     return nullptr;
4991   }
4992   case Intrinsic::convert_to_fp16:
4993     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
4994                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
4995                                          getValue(I.getArgOperand(0)),
4996                                          DAG.getTargetConstant(0, sdl,
4997                                                                MVT::i32))));
4998     return nullptr;
4999   case Intrinsic::convert_from_fp16:
5000     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5001                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5002                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5003                                          getValue(I.getArgOperand(0)))));
5004     return nullptr;
5005   case Intrinsic::pcmarker: {
5006     SDValue Tmp = getValue(I.getArgOperand(0));
5007     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5008     return nullptr;
5009   }
5010   case Intrinsic::readcyclecounter: {
5011     SDValue Op = getRoot();
5012     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5013                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5014     setValue(&I, Res);
5015     DAG.setRoot(Res.getValue(1));
5016     return nullptr;
5017   }
5018   case Intrinsic::bitreverse:
5019     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5020                              getValue(I.getArgOperand(0)).getValueType(),
5021                              getValue(I.getArgOperand(0))));
5022     return nullptr;
5023   case Intrinsic::bswap:
5024     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5025                              getValue(I.getArgOperand(0)).getValueType(),
5026                              getValue(I.getArgOperand(0))));
5027     return nullptr;
5028   case Intrinsic::cttz: {
5029     SDValue Arg = getValue(I.getArgOperand(0));
5030     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5031     EVT Ty = Arg.getValueType();
5032     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5033                              sdl, Ty, Arg));
5034     return nullptr;
5035   }
5036   case Intrinsic::ctlz: {
5037     SDValue Arg = getValue(I.getArgOperand(0));
5038     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5039     EVT Ty = Arg.getValueType();
5040     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5041                              sdl, Ty, Arg));
5042     return nullptr;
5043   }
5044   case Intrinsic::ctpop: {
5045     SDValue Arg = getValue(I.getArgOperand(0));
5046     EVT Ty = Arg.getValueType();
5047     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5048     return nullptr;
5049   }
5050   case Intrinsic::stacksave: {
5051     SDValue Op = getRoot();
5052     Res = DAG.getNode(
5053         ISD::STACKSAVE, sdl,
5054         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5055     setValue(&I, Res);
5056     DAG.setRoot(Res.getValue(1));
5057     return nullptr;
5058   }
5059   case Intrinsic::stackrestore: {
5060     Res = getValue(I.getArgOperand(0));
5061     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5062     return nullptr;
5063   }
5064   case Intrinsic::get_dynamic_area_offset: {
5065     SDValue Op = getRoot();
5066     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5067     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5068     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5069     // target.
5070     if (PtrTy != ResTy)
5071       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5072                          " intrinsic!");
5073     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5074                       Op);
5075     DAG.setRoot(Op);
5076     setValue(&I, Res);
5077     return nullptr;
5078   }
5079   case Intrinsic::stackprotector: {
5080     // Emit code into the DAG to store the stack guard onto the stack.
5081     MachineFunction &MF = DAG.getMachineFunction();
5082     MachineFrameInfo *MFI = MF.getFrameInfo();
5083     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5084     SDValue Src, Chain = getRoot();
5085     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
5086     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
5087 
5088     // See if Ptr is a bitcast. If it is, look through it and see if we can get
5089     // global variable __stack_chk_guard.
5090     if (!GV)
5091       if (const Operator *BC = dyn_cast<Operator>(Ptr))
5092         if (BC->getOpcode() == Instruction::BitCast)
5093           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
5094 
5095     if (GV && TLI.useLoadStackGuardNode()) {
5096       // Emit a LOAD_STACK_GUARD node.
5097       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
5098                                                sdl, PtrTy, Chain);
5099       MachinePointerInfo MPInfo(GV);
5100       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
5101       unsigned Flags = MachineMemOperand::MOLoad |
5102                        MachineMemOperand::MOInvariant;
5103       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
5104                                          PtrTy.getSizeInBits() / 8,
5105                                          DAG.getEVTAlignment(PtrTy));
5106       Node->setMemRefs(MemRefs, MemRefs + 1);
5107 
5108       // Copy the guard value to a virtual register so that it can be
5109       // retrieved in the epilogue.
5110       Src = SDValue(Node, 0);
5111       const TargetRegisterClass *RC =
5112           TLI.getRegClassFor(Src.getSimpleValueType());
5113       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
5114 
5115       SPDescriptor.setGuardReg(Reg);
5116       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
5117     } else {
5118       Src = getValue(I.getArgOperand(0));   // The guard's value.
5119     }
5120 
5121     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5122 
5123     int FI = FuncInfo.StaticAllocaMap[Slot];
5124     MFI->setStackProtectorIndex(FI);
5125 
5126     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5127 
5128     // Store the stack protector onto the stack.
5129     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5130                                                  DAG.getMachineFunction(), FI),
5131                        true, false, 0);
5132     setValue(&I, Res);
5133     DAG.setRoot(Res);
5134     return nullptr;
5135   }
5136   case Intrinsic::objectsize: {
5137     // If we don't know by now, we're never going to know.
5138     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5139 
5140     assert(CI && "Non-constant type in __builtin_object_size?");
5141 
5142     SDValue Arg = getValue(I.getCalledValue());
5143     EVT Ty = Arg.getValueType();
5144 
5145     if (CI->isZero())
5146       Res = DAG.getConstant(-1ULL, sdl, Ty);
5147     else
5148       Res = DAG.getConstant(0, sdl, Ty);
5149 
5150     setValue(&I, Res);
5151     return nullptr;
5152   }
5153   case Intrinsic::annotation:
5154   case Intrinsic::ptr_annotation:
5155     // Drop the intrinsic, but forward the value
5156     setValue(&I, getValue(I.getOperand(0)));
5157     return nullptr;
5158   case Intrinsic::assume:
5159   case Intrinsic::var_annotation:
5160     // Discard annotate attributes and assumptions
5161     return nullptr;
5162 
5163   case Intrinsic::init_trampoline: {
5164     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5165 
5166     SDValue Ops[6];
5167     Ops[0] = getRoot();
5168     Ops[1] = getValue(I.getArgOperand(0));
5169     Ops[2] = getValue(I.getArgOperand(1));
5170     Ops[3] = getValue(I.getArgOperand(2));
5171     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5172     Ops[5] = DAG.getSrcValue(F);
5173 
5174     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5175 
5176     DAG.setRoot(Res);
5177     return nullptr;
5178   }
5179   case Intrinsic::adjust_trampoline: {
5180     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5181                              TLI.getPointerTy(DAG.getDataLayout()),
5182                              getValue(I.getArgOperand(0))));
5183     return nullptr;
5184   }
5185   case Intrinsic::gcroot: {
5186     MachineFunction &MF = DAG.getMachineFunction();
5187     const Function *F = MF.getFunction();
5188     (void)F;
5189     assert(F->hasGC() &&
5190            "only valid in functions with gc specified, enforced by Verifier");
5191     assert(GFI && "implied by previous");
5192     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5193     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5194 
5195     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5196     GFI->addStackRoot(FI->getIndex(), TypeMap);
5197     return nullptr;
5198   }
5199   case Intrinsic::gcread:
5200   case Intrinsic::gcwrite:
5201     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5202   case Intrinsic::flt_rounds:
5203     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5204     return nullptr;
5205 
5206   case Intrinsic::expect: {
5207     // Just replace __builtin_expect(exp, c) with EXP.
5208     setValue(&I, getValue(I.getArgOperand(0)));
5209     return nullptr;
5210   }
5211 
5212   case Intrinsic::debugtrap:
5213   case Intrinsic::trap: {
5214     StringRef TrapFuncName =
5215         I.getAttributes()
5216             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5217             .getValueAsString();
5218     if (TrapFuncName.empty()) {
5219       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5220         ISD::TRAP : ISD::DEBUGTRAP;
5221       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5222       return nullptr;
5223     }
5224     TargetLowering::ArgListTy Args;
5225 
5226     TargetLowering::CallLoweringInfo CLI(DAG);
5227     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5228         CallingConv::C, I.getType(),
5229         DAG.getExternalSymbol(TrapFuncName.data(),
5230                               TLI.getPointerTy(DAG.getDataLayout())),
5231         std::move(Args), 0);
5232 
5233     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5234     DAG.setRoot(Result.second);
5235     return nullptr;
5236   }
5237 
5238   case Intrinsic::uadd_with_overflow:
5239   case Intrinsic::sadd_with_overflow:
5240   case Intrinsic::usub_with_overflow:
5241   case Intrinsic::ssub_with_overflow:
5242   case Intrinsic::umul_with_overflow:
5243   case Intrinsic::smul_with_overflow: {
5244     ISD::NodeType Op;
5245     switch (Intrinsic) {
5246     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5247     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5248     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5249     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5250     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5251     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5252     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5253     }
5254     SDValue Op1 = getValue(I.getArgOperand(0));
5255     SDValue Op2 = getValue(I.getArgOperand(1));
5256 
5257     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5258     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5259     return nullptr;
5260   }
5261   case Intrinsic::prefetch: {
5262     SDValue Ops[5];
5263     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5264     Ops[0] = getRoot();
5265     Ops[1] = getValue(I.getArgOperand(0));
5266     Ops[2] = getValue(I.getArgOperand(1));
5267     Ops[3] = getValue(I.getArgOperand(2));
5268     Ops[4] = getValue(I.getArgOperand(3));
5269     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5270                                         DAG.getVTList(MVT::Other), Ops,
5271                                         EVT::getIntegerVT(*Context, 8),
5272                                         MachinePointerInfo(I.getArgOperand(0)),
5273                                         0, /* align */
5274                                         false, /* volatile */
5275                                         rw==0, /* read */
5276                                         rw==1)); /* write */
5277     return nullptr;
5278   }
5279   case Intrinsic::lifetime_start:
5280   case Intrinsic::lifetime_end: {
5281     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5282     // Stack coloring is not enabled in O0, discard region information.
5283     if (TM.getOptLevel() == CodeGenOpt::None)
5284       return nullptr;
5285 
5286     SmallVector<Value *, 4> Allocas;
5287     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5288 
5289     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5290            E = Allocas.end(); Object != E; ++Object) {
5291       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5292 
5293       // Could not find an Alloca.
5294       if (!LifetimeObject)
5295         continue;
5296 
5297       // First check that the Alloca is static, otherwise it won't have a
5298       // valid frame index.
5299       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5300       if (SI == FuncInfo.StaticAllocaMap.end())
5301         return nullptr;
5302 
5303       int FI = SI->second;
5304 
5305       SDValue Ops[2];
5306       Ops[0] = getRoot();
5307       Ops[1] =
5308           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5309       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5310 
5311       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5312       DAG.setRoot(Res);
5313     }
5314     return nullptr;
5315   }
5316   case Intrinsic::invariant_start:
5317     // Discard region information.
5318     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5319     return nullptr;
5320   case Intrinsic::invariant_end:
5321     // Discard region information.
5322     return nullptr;
5323   case Intrinsic::stackprotectorcheck: {
5324     // Do not actually emit anything for this basic block. Instead we initialize
5325     // the stack protector descriptor and export the guard variable so we can
5326     // access it in FinishBasicBlock.
5327     const BasicBlock *BB = I.getParent();
5328     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5329     ExportFromCurrentBlock(SPDescriptor.getGuard());
5330 
5331     // Flush our exports since we are going to process a terminator.
5332     (void)getControlRoot();
5333     return nullptr;
5334   }
5335   case Intrinsic::clear_cache:
5336     return TLI.getClearCacheBuiltinName();
5337   case Intrinsic::donothing:
5338     // ignore
5339     return nullptr;
5340   case Intrinsic::experimental_stackmap: {
5341     visitStackmap(I);
5342     return nullptr;
5343   }
5344   case Intrinsic::experimental_patchpoint_void:
5345   case Intrinsic::experimental_patchpoint_i64: {
5346     visitPatchpoint(&I);
5347     return nullptr;
5348   }
5349   case Intrinsic::experimental_gc_statepoint: {
5350     visitStatepoint(I);
5351     return nullptr;
5352   }
5353   case Intrinsic::experimental_gc_result: {
5354     visitGCResult(I);
5355     return nullptr;
5356   }
5357   case Intrinsic::experimental_gc_relocate: {
5358     visitGCRelocate(cast<GCRelocateInst>(I));
5359     return nullptr;
5360   }
5361   case Intrinsic::instrprof_increment:
5362     llvm_unreachable("instrprof failed to lower an increment");
5363   case Intrinsic::instrprof_value_profile:
5364     llvm_unreachable("instrprof failed to lower a value profiling call");
5365   case Intrinsic::localescape: {
5366     MachineFunction &MF = DAG.getMachineFunction();
5367     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5368 
5369     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5370     // is the same on all targets.
5371     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5372       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5373       if (isa<ConstantPointerNull>(Arg))
5374         continue; // Skip null pointers. They represent a hole in index space.
5375       AllocaInst *Slot = cast<AllocaInst>(Arg);
5376       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5377              "can only escape static allocas");
5378       int FI = FuncInfo.StaticAllocaMap[Slot];
5379       MCSymbol *FrameAllocSym =
5380           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5381               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5382       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5383               TII->get(TargetOpcode::LOCAL_ESCAPE))
5384           .addSym(FrameAllocSym)
5385           .addFrameIndex(FI);
5386     }
5387 
5388     return nullptr;
5389   }
5390 
5391   case Intrinsic::localrecover: {
5392     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5393     MachineFunction &MF = DAG.getMachineFunction();
5394     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5395 
5396     // Get the symbol that defines the frame offset.
5397     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5398     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5399     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5400     MCSymbol *FrameAllocSym =
5401         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5402             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5403 
5404     // Create a MCSymbol for the label to avoid any target lowering
5405     // that would make this PC relative.
5406     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5407     SDValue OffsetVal =
5408         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5409 
5410     // Add the offset to the FP.
5411     Value *FP = I.getArgOperand(1);
5412     SDValue FPVal = getValue(FP);
5413     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5414     setValue(&I, Add);
5415 
5416     return nullptr;
5417   }
5418 
5419   case Intrinsic::eh_exceptionpointer:
5420   case Intrinsic::eh_exceptioncode: {
5421     // Get the exception pointer vreg, copy from it, and resize it to fit.
5422     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5423     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5424     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5425     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5426     SDValue N =
5427         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5428     if (Intrinsic == Intrinsic::eh_exceptioncode)
5429       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5430     setValue(&I, N);
5431     return nullptr;
5432   }
5433   }
5434 }
5435 
5436 std::pair<SDValue, SDValue>
5437 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5438                                     const BasicBlock *EHPadBB) {
5439   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5440   MCSymbol *BeginLabel = nullptr;
5441 
5442   if (EHPadBB) {
5443     // Insert a label before the invoke call to mark the try range.  This can be
5444     // used to detect deletion of the invoke via the MachineModuleInfo.
5445     BeginLabel = MMI.getContext().createTempSymbol();
5446 
5447     // For SjLj, keep track of which landing pads go with which invokes
5448     // so as to maintain the ordering of pads in the LSDA.
5449     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5450     if (CallSiteIndex) {
5451       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5452       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5453 
5454       // Now that the call site is handled, stop tracking it.
5455       MMI.setCurrentCallSite(0);
5456     }
5457 
5458     // Both PendingLoads and PendingExports must be flushed here;
5459     // this call might not return.
5460     (void)getRoot();
5461     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5462 
5463     CLI.setChain(getRoot());
5464   }
5465   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5466   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5467 
5468   assert((CLI.IsTailCall || Result.second.getNode()) &&
5469          "Non-null chain expected with non-tail call!");
5470   assert((Result.second.getNode() || !Result.first.getNode()) &&
5471          "Null value expected with tail call!");
5472 
5473   if (!Result.second.getNode()) {
5474     // As a special case, a null chain means that a tail call has been emitted
5475     // and the DAG root is already updated.
5476     HasTailCall = true;
5477 
5478     // Since there's no actual continuation from this block, nothing can be
5479     // relying on us setting vregs for them.
5480     PendingExports.clear();
5481   } else {
5482     DAG.setRoot(Result.second);
5483   }
5484 
5485   if (EHPadBB) {
5486     // Insert a label at the end of the invoke call to mark the try range.  This
5487     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5488     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5489     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5490 
5491     // Inform MachineModuleInfo of range.
5492     if (MMI.hasEHFunclets()) {
5493       assert(CLI.CS);
5494       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5495       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5496                                 BeginLabel, EndLabel);
5497     } else {
5498       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5499     }
5500   }
5501 
5502   return Result;
5503 }
5504 
5505 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5506                                       bool isTailCall,
5507                                       const BasicBlock *EHPadBB) {
5508   FunctionType *FTy = CS.getFunctionType();
5509   Type *RetTy = CS.getType();
5510 
5511   TargetLowering::ArgListTy Args;
5512   TargetLowering::ArgListEntry Entry;
5513   Args.reserve(CS.arg_size());
5514 
5515   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5516        i != e; ++i) {
5517     const Value *V = *i;
5518 
5519     // Skip empty types
5520     if (V->getType()->isEmptyTy())
5521       continue;
5522 
5523     SDValue ArgNode = getValue(V);
5524     Entry.Node = ArgNode; Entry.Ty = V->getType();
5525 
5526     // Skip the first return-type Attribute to get to params.
5527     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5528     Args.push_back(Entry);
5529 
5530     // If we have an explicit sret argument that is an Instruction, (i.e., it
5531     // might point to function-local memory), we can't meaningfully tail-call.
5532     if (Entry.isSRet && isa<Instruction>(V))
5533       isTailCall = false;
5534   }
5535 
5536   // Check if target-independent constraints permit a tail call here.
5537   // Target-dependent constraints are checked within TLI->LowerCallTo.
5538   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5539     isTailCall = false;
5540 
5541   TargetLowering::CallLoweringInfo CLI(DAG);
5542   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5543     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5544     .setTailCall(isTailCall);
5545   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5546 
5547   if (Result.first.getNode()) {
5548     const Instruction *Inst = CS.getInstruction();
5549     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5550     setValue(Inst, Result.first);
5551   }
5552 }
5553 
5554 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5555 /// value is equal or not-equal to zero.
5556 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5557   for (const User *U : V->users()) {
5558     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5559       if (IC->isEquality())
5560         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5561           if (C->isNullValue())
5562             continue;
5563     // Unknown instruction.
5564     return false;
5565   }
5566   return true;
5567 }
5568 
5569 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5570                              Type *LoadTy,
5571                              SelectionDAGBuilder &Builder) {
5572 
5573   // Check to see if this load can be trivially constant folded, e.g. if the
5574   // input is from a string literal.
5575   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5576     // Cast pointer to the type we really want to load.
5577     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5578                                          PointerType::getUnqual(LoadTy));
5579 
5580     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5581             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5582       return Builder.getValue(LoadCst);
5583   }
5584 
5585   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5586   // still constant memory, the input chain can be the entry node.
5587   SDValue Root;
5588   bool ConstantMemory = false;
5589 
5590   // Do not serialize (non-volatile) loads of constant memory with anything.
5591   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5592     Root = Builder.DAG.getEntryNode();
5593     ConstantMemory = true;
5594   } else {
5595     // Do not serialize non-volatile loads against each other.
5596     Root = Builder.DAG.getRoot();
5597   }
5598 
5599   SDValue Ptr = Builder.getValue(PtrVal);
5600   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5601                                         Ptr, MachinePointerInfo(PtrVal),
5602                                         false /*volatile*/,
5603                                         false /*nontemporal*/,
5604                                         false /*isinvariant*/, 1 /* align=1 */);
5605 
5606   if (!ConstantMemory)
5607     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5608   return LoadVal;
5609 }
5610 
5611 /// processIntegerCallValue - Record the value for an instruction that
5612 /// produces an integer result, converting the type where necessary.
5613 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5614                                                   SDValue Value,
5615                                                   bool IsSigned) {
5616   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5617                                                     I.getType(), true);
5618   if (IsSigned)
5619     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5620   else
5621     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5622   setValue(&I, Value);
5623 }
5624 
5625 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5626 /// If so, return true and lower it, otherwise return false and it will be
5627 /// lowered like a normal call.
5628 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5629   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5630   if (I.getNumArgOperands() != 3)
5631     return false;
5632 
5633   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5634   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5635       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5636       !I.getType()->isIntegerTy())
5637     return false;
5638 
5639   const Value *Size = I.getArgOperand(2);
5640   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5641   if (CSize && CSize->getZExtValue() == 0) {
5642     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5643                                                           I.getType(), true);
5644     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5645     return true;
5646   }
5647 
5648   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5649   std::pair<SDValue, SDValue> Res =
5650     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5651                                 getValue(LHS), getValue(RHS), getValue(Size),
5652                                 MachinePointerInfo(LHS),
5653                                 MachinePointerInfo(RHS));
5654   if (Res.first.getNode()) {
5655     processIntegerCallValue(I, Res.first, true);
5656     PendingLoads.push_back(Res.second);
5657     return true;
5658   }
5659 
5660   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5661   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5662   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5663     bool ActuallyDoIt = true;
5664     MVT LoadVT;
5665     Type *LoadTy;
5666     switch (CSize->getZExtValue()) {
5667     default:
5668       LoadVT = MVT::Other;
5669       LoadTy = nullptr;
5670       ActuallyDoIt = false;
5671       break;
5672     case 2:
5673       LoadVT = MVT::i16;
5674       LoadTy = Type::getInt16Ty(CSize->getContext());
5675       break;
5676     case 4:
5677       LoadVT = MVT::i32;
5678       LoadTy = Type::getInt32Ty(CSize->getContext());
5679       break;
5680     case 8:
5681       LoadVT = MVT::i64;
5682       LoadTy = Type::getInt64Ty(CSize->getContext());
5683       break;
5684         /*
5685     case 16:
5686       LoadVT = MVT::v4i32;
5687       LoadTy = Type::getInt32Ty(CSize->getContext());
5688       LoadTy = VectorType::get(LoadTy, 4);
5689       break;
5690          */
5691     }
5692 
5693     // This turns into unaligned loads.  We only do this if the target natively
5694     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5695     // we'll only produce a small number of byte loads.
5696 
5697     // Require that we can find a legal MVT, and only do this if the target
5698     // supports unaligned loads of that type.  Expanding into byte loads would
5699     // bloat the code.
5700     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5701     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5702       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5703       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5704       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5705       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5706       // TODO: Check alignment of src and dest ptrs.
5707       if (!TLI.isTypeLegal(LoadVT) ||
5708           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5709           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5710         ActuallyDoIt = false;
5711     }
5712 
5713     if (ActuallyDoIt) {
5714       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5715       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5716 
5717       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5718                                  ISD::SETNE);
5719       processIntegerCallValue(I, Res, false);
5720       return true;
5721     }
5722   }
5723 
5724 
5725   return false;
5726 }
5727 
5728 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5729 /// form.  If so, return true and lower it, otherwise return false and it
5730 /// will be lowered like a normal call.
5731 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5732   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5733   if (I.getNumArgOperands() != 3)
5734     return false;
5735 
5736   const Value *Src = I.getArgOperand(0);
5737   const Value *Char = I.getArgOperand(1);
5738   const Value *Length = I.getArgOperand(2);
5739   if (!Src->getType()->isPointerTy() ||
5740       !Char->getType()->isIntegerTy() ||
5741       !Length->getType()->isIntegerTy() ||
5742       !I.getType()->isPointerTy())
5743     return false;
5744 
5745   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5746   std::pair<SDValue, SDValue> Res =
5747     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5748                                 getValue(Src), getValue(Char), getValue(Length),
5749                                 MachinePointerInfo(Src));
5750   if (Res.first.getNode()) {
5751     setValue(&I, Res.first);
5752     PendingLoads.push_back(Res.second);
5753     return true;
5754   }
5755 
5756   return false;
5757 }
5758 
5759 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5760 /// optimized form.  If so, return true and lower it, otherwise return false
5761 /// and it will be lowered like a normal call.
5762 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5763   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5764   if (I.getNumArgOperands() != 2)
5765     return false;
5766 
5767   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5768   if (!Arg0->getType()->isPointerTy() ||
5769       !Arg1->getType()->isPointerTy() ||
5770       !I.getType()->isPointerTy())
5771     return false;
5772 
5773   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5774   std::pair<SDValue, SDValue> Res =
5775     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5776                                 getValue(Arg0), getValue(Arg1),
5777                                 MachinePointerInfo(Arg0),
5778                                 MachinePointerInfo(Arg1), isStpcpy);
5779   if (Res.first.getNode()) {
5780     setValue(&I, Res.first);
5781     DAG.setRoot(Res.second);
5782     return true;
5783   }
5784 
5785   return false;
5786 }
5787 
5788 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5789 /// If so, return true and lower it, otherwise return false and it will be
5790 /// lowered like a normal call.
5791 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5792   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5793   if (I.getNumArgOperands() != 2)
5794     return false;
5795 
5796   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5797   if (!Arg0->getType()->isPointerTy() ||
5798       !Arg1->getType()->isPointerTy() ||
5799       !I.getType()->isIntegerTy())
5800     return false;
5801 
5802   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5803   std::pair<SDValue, SDValue> Res =
5804     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5805                                 getValue(Arg0), getValue(Arg1),
5806                                 MachinePointerInfo(Arg0),
5807                                 MachinePointerInfo(Arg1));
5808   if (Res.first.getNode()) {
5809     processIntegerCallValue(I, Res.first, true);
5810     PendingLoads.push_back(Res.second);
5811     return true;
5812   }
5813 
5814   return false;
5815 }
5816 
5817 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5818 /// form.  If so, return true and lower it, otherwise return false and it
5819 /// will be lowered like a normal call.
5820 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5821   // Verify that the prototype makes sense.  size_t strlen(char *)
5822   if (I.getNumArgOperands() != 1)
5823     return false;
5824 
5825   const Value *Arg0 = I.getArgOperand(0);
5826   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5827     return false;
5828 
5829   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5830   std::pair<SDValue, SDValue> Res =
5831     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5832                                 getValue(Arg0), MachinePointerInfo(Arg0));
5833   if (Res.first.getNode()) {
5834     processIntegerCallValue(I, Res.first, false);
5835     PendingLoads.push_back(Res.second);
5836     return true;
5837   }
5838 
5839   return false;
5840 }
5841 
5842 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5843 /// form.  If so, return true and lower it, otherwise return false and it
5844 /// will be lowered like a normal call.
5845 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5846   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5847   if (I.getNumArgOperands() != 2)
5848     return false;
5849 
5850   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5851   if (!Arg0->getType()->isPointerTy() ||
5852       !Arg1->getType()->isIntegerTy() ||
5853       !I.getType()->isIntegerTy())
5854     return false;
5855 
5856   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5857   std::pair<SDValue, SDValue> Res =
5858     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5859                                  getValue(Arg0), getValue(Arg1),
5860                                  MachinePointerInfo(Arg0));
5861   if (Res.first.getNode()) {
5862     processIntegerCallValue(I, Res.first, false);
5863     PendingLoads.push_back(Res.second);
5864     return true;
5865   }
5866 
5867   return false;
5868 }
5869 
5870 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5871 /// operation (as expected), translate it to an SDNode with the specified opcode
5872 /// and return true.
5873 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5874                                               unsigned Opcode) {
5875   // Sanity check that it really is a unary floating-point call.
5876   if (I.getNumArgOperands() != 1 ||
5877       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5878       I.getType() != I.getArgOperand(0)->getType() ||
5879       !I.onlyReadsMemory())
5880     return false;
5881 
5882   SDValue Tmp = getValue(I.getArgOperand(0));
5883   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5884   return true;
5885 }
5886 
5887 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
5888 /// operation (as expected), translate it to an SDNode with the specified opcode
5889 /// and return true.
5890 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5891                                                unsigned Opcode) {
5892   // Sanity check that it really is a binary floating-point call.
5893   if (I.getNumArgOperands() != 2 ||
5894       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5895       I.getType() != I.getArgOperand(0)->getType() ||
5896       I.getType() != I.getArgOperand(1)->getType() ||
5897       !I.onlyReadsMemory())
5898     return false;
5899 
5900   SDValue Tmp0 = getValue(I.getArgOperand(0));
5901   SDValue Tmp1 = getValue(I.getArgOperand(1));
5902   EVT VT = Tmp0.getValueType();
5903   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5904   return true;
5905 }
5906 
5907 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5908   // Handle inline assembly differently.
5909   if (isa<InlineAsm>(I.getCalledValue())) {
5910     visitInlineAsm(&I);
5911     return;
5912   }
5913 
5914   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5915   ComputeUsesVAFloatArgument(I, &MMI);
5916 
5917   const char *RenameFn = nullptr;
5918   if (Function *F = I.getCalledFunction()) {
5919     if (F->isDeclaration()) {
5920       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5921         if (unsigned IID = II->getIntrinsicID(F)) {
5922           RenameFn = visitIntrinsicCall(I, IID);
5923           if (!RenameFn)
5924             return;
5925         }
5926       }
5927       if (Intrinsic::ID IID = F->getIntrinsicID()) {
5928         RenameFn = visitIntrinsicCall(I, IID);
5929         if (!RenameFn)
5930           return;
5931       }
5932     }
5933 
5934     // Check for well-known libc/libm calls.  If the function is internal, it
5935     // can't be a library call.
5936     LibFunc::Func Func;
5937     if (!F->hasLocalLinkage() && F->hasName() &&
5938         LibInfo->getLibFunc(F->getName(), Func) &&
5939         LibInfo->hasOptimizedCodeGen(Func)) {
5940       switch (Func) {
5941       default: break;
5942       case LibFunc::copysign:
5943       case LibFunc::copysignf:
5944       case LibFunc::copysignl:
5945         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5946             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5947             I.getType() == I.getArgOperand(0)->getType() &&
5948             I.getType() == I.getArgOperand(1)->getType() &&
5949             I.onlyReadsMemory()) {
5950           SDValue LHS = getValue(I.getArgOperand(0));
5951           SDValue RHS = getValue(I.getArgOperand(1));
5952           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5953                                    LHS.getValueType(), LHS, RHS));
5954           return;
5955         }
5956         break;
5957       case LibFunc::fabs:
5958       case LibFunc::fabsf:
5959       case LibFunc::fabsl:
5960         if (visitUnaryFloatCall(I, ISD::FABS))
5961           return;
5962         break;
5963       case LibFunc::fmin:
5964       case LibFunc::fminf:
5965       case LibFunc::fminl:
5966         if (visitBinaryFloatCall(I, ISD::FMINNUM))
5967           return;
5968         break;
5969       case LibFunc::fmax:
5970       case LibFunc::fmaxf:
5971       case LibFunc::fmaxl:
5972         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5973           return;
5974         break;
5975       case LibFunc::sin:
5976       case LibFunc::sinf:
5977       case LibFunc::sinl:
5978         if (visitUnaryFloatCall(I, ISD::FSIN))
5979           return;
5980         break;
5981       case LibFunc::cos:
5982       case LibFunc::cosf:
5983       case LibFunc::cosl:
5984         if (visitUnaryFloatCall(I, ISD::FCOS))
5985           return;
5986         break;
5987       case LibFunc::sqrt:
5988       case LibFunc::sqrtf:
5989       case LibFunc::sqrtl:
5990       case LibFunc::sqrt_finite:
5991       case LibFunc::sqrtf_finite:
5992       case LibFunc::sqrtl_finite:
5993         if (visitUnaryFloatCall(I, ISD::FSQRT))
5994           return;
5995         break;
5996       case LibFunc::floor:
5997       case LibFunc::floorf:
5998       case LibFunc::floorl:
5999         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6000           return;
6001         break;
6002       case LibFunc::nearbyint:
6003       case LibFunc::nearbyintf:
6004       case LibFunc::nearbyintl:
6005         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6006           return;
6007         break;
6008       case LibFunc::ceil:
6009       case LibFunc::ceilf:
6010       case LibFunc::ceill:
6011         if (visitUnaryFloatCall(I, ISD::FCEIL))
6012           return;
6013         break;
6014       case LibFunc::rint:
6015       case LibFunc::rintf:
6016       case LibFunc::rintl:
6017         if (visitUnaryFloatCall(I, ISD::FRINT))
6018           return;
6019         break;
6020       case LibFunc::round:
6021       case LibFunc::roundf:
6022       case LibFunc::roundl:
6023         if (visitUnaryFloatCall(I, ISD::FROUND))
6024           return;
6025         break;
6026       case LibFunc::trunc:
6027       case LibFunc::truncf:
6028       case LibFunc::truncl:
6029         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6030           return;
6031         break;
6032       case LibFunc::log2:
6033       case LibFunc::log2f:
6034       case LibFunc::log2l:
6035         if (visitUnaryFloatCall(I, ISD::FLOG2))
6036           return;
6037         break;
6038       case LibFunc::exp2:
6039       case LibFunc::exp2f:
6040       case LibFunc::exp2l:
6041         if (visitUnaryFloatCall(I, ISD::FEXP2))
6042           return;
6043         break;
6044       case LibFunc::memcmp:
6045         if (visitMemCmpCall(I))
6046           return;
6047         break;
6048       case LibFunc::memchr:
6049         if (visitMemChrCall(I))
6050           return;
6051         break;
6052       case LibFunc::strcpy:
6053         if (visitStrCpyCall(I, false))
6054           return;
6055         break;
6056       case LibFunc::stpcpy:
6057         if (visitStrCpyCall(I, true))
6058           return;
6059         break;
6060       case LibFunc::strcmp:
6061         if (visitStrCmpCall(I))
6062           return;
6063         break;
6064       case LibFunc::strlen:
6065         if (visitStrLenCall(I))
6066           return;
6067         break;
6068       case LibFunc::strnlen:
6069         if (visitStrNLenCall(I))
6070           return;
6071         break;
6072       }
6073     }
6074   }
6075 
6076   SDValue Callee;
6077   if (!RenameFn)
6078     Callee = getValue(I.getCalledValue());
6079   else
6080     Callee = DAG.getExternalSymbol(
6081         RenameFn,
6082         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6083 
6084   // Check if we can potentially perform a tail call. More detailed checking is
6085   // be done within LowerCallTo, after more information about the call is known.
6086   LowerCallTo(&I, Callee, I.isTailCall());
6087 }
6088 
6089 namespace {
6090 
6091 /// AsmOperandInfo - This contains information for each constraint that we are
6092 /// lowering.
6093 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6094 public:
6095   /// CallOperand - If this is the result output operand or a clobber
6096   /// this is null, otherwise it is the incoming operand to the CallInst.
6097   /// This gets modified as the asm is processed.
6098   SDValue CallOperand;
6099 
6100   /// AssignedRegs - If this is a register or register class operand, this
6101   /// contains the set of register corresponding to the operand.
6102   RegsForValue AssignedRegs;
6103 
6104   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6105     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6106   }
6107 
6108   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6109   /// corresponds to.  If there is no Value* for this operand, it returns
6110   /// MVT::Other.
6111   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6112                            const DataLayout &DL) const {
6113     if (!CallOperandVal) return MVT::Other;
6114 
6115     if (isa<BasicBlock>(CallOperandVal))
6116       return TLI.getPointerTy(DL);
6117 
6118     llvm::Type *OpTy = CallOperandVal->getType();
6119 
6120     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6121     // If this is an indirect operand, the operand is a pointer to the
6122     // accessed type.
6123     if (isIndirect) {
6124       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6125       if (!PtrTy)
6126         report_fatal_error("Indirect operand for inline asm not a pointer!");
6127       OpTy = PtrTy->getElementType();
6128     }
6129 
6130     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6131     if (StructType *STy = dyn_cast<StructType>(OpTy))
6132       if (STy->getNumElements() == 1)
6133         OpTy = STy->getElementType(0);
6134 
6135     // If OpTy is not a single value, it may be a struct/union that we
6136     // can tile with integers.
6137     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6138       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6139       switch (BitSize) {
6140       default: break;
6141       case 1:
6142       case 8:
6143       case 16:
6144       case 32:
6145       case 64:
6146       case 128:
6147         OpTy = IntegerType::get(Context, BitSize);
6148         break;
6149       }
6150     }
6151 
6152     return TLI.getValueType(DL, OpTy, true);
6153   }
6154 };
6155 
6156 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6157 
6158 } // end anonymous namespace
6159 
6160 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6161 /// specified operand.  We prefer to assign virtual registers, to allow the
6162 /// register allocator to handle the assignment process.  However, if the asm
6163 /// uses features that we can't model on machineinstrs, we have SDISel do the
6164 /// allocation.  This produces generally horrible, but correct, code.
6165 ///
6166 ///   OpInfo describes the operand.
6167 ///
6168 static void GetRegistersForValue(SelectionDAG &DAG,
6169                                  const TargetLowering &TLI,
6170                                  SDLoc DL,
6171                                  SDISelAsmOperandInfo &OpInfo) {
6172   LLVMContext &Context = *DAG.getContext();
6173 
6174   MachineFunction &MF = DAG.getMachineFunction();
6175   SmallVector<unsigned, 4> Regs;
6176 
6177   // If this is a constraint for a single physreg, or a constraint for a
6178   // register class, find it.
6179   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6180       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6181                                        OpInfo.ConstraintCode,
6182                                        OpInfo.ConstraintVT);
6183 
6184   unsigned NumRegs = 1;
6185   if (OpInfo.ConstraintVT != MVT::Other) {
6186     // If this is a FP input in an integer register (or visa versa) insert a bit
6187     // cast of the input value.  More generally, handle any case where the input
6188     // value disagrees with the register class we plan to stick this in.
6189     if (OpInfo.Type == InlineAsm::isInput &&
6190         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6191       // Try to convert to the first EVT that the reg class contains.  If the
6192       // types are identical size, use a bitcast to convert (e.g. two differing
6193       // vector types).
6194       MVT RegVT = *PhysReg.second->vt_begin();
6195       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6196         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6197                                          RegVT, OpInfo.CallOperand);
6198         OpInfo.ConstraintVT = RegVT;
6199       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6200         // If the input is a FP value and we want it in FP registers, do a
6201         // bitcast to the corresponding integer type.  This turns an f64 value
6202         // into i64, which can be passed with two i32 values on a 32-bit
6203         // machine.
6204         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6205         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6206                                          RegVT, OpInfo.CallOperand);
6207         OpInfo.ConstraintVT = RegVT;
6208       }
6209     }
6210 
6211     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6212   }
6213 
6214   MVT RegVT;
6215   EVT ValueVT = OpInfo.ConstraintVT;
6216 
6217   // If this is a constraint for a specific physical register, like {r17},
6218   // assign it now.
6219   if (unsigned AssignedReg = PhysReg.first) {
6220     const TargetRegisterClass *RC = PhysReg.second;
6221     if (OpInfo.ConstraintVT == MVT::Other)
6222       ValueVT = *RC->vt_begin();
6223 
6224     // Get the actual register value type.  This is important, because the user
6225     // may have asked for (e.g.) the AX register in i32 type.  We need to
6226     // remember that AX is actually i16 to get the right extension.
6227     RegVT = *RC->vt_begin();
6228 
6229     // This is a explicit reference to a physical register.
6230     Regs.push_back(AssignedReg);
6231 
6232     // If this is an expanded reference, add the rest of the regs to Regs.
6233     if (NumRegs != 1) {
6234       TargetRegisterClass::iterator I = RC->begin();
6235       for (; *I != AssignedReg; ++I)
6236         assert(I != RC->end() && "Didn't find reg!");
6237 
6238       // Already added the first reg.
6239       --NumRegs; ++I;
6240       for (; NumRegs; --NumRegs, ++I) {
6241         assert(I != RC->end() && "Ran out of registers to allocate!");
6242         Regs.push_back(*I);
6243       }
6244     }
6245 
6246     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6247     return;
6248   }
6249 
6250   // Otherwise, if this was a reference to an LLVM register class, create vregs
6251   // for this reference.
6252   if (const TargetRegisterClass *RC = PhysReg.second) {
6253     RegVT = *RC->vt_begin();
6254     if (OpInfo.ConstraintVT == MVT::Other)
6255       ValueVT = RegVT;
6256 
6257     // Create the appropriate number of virtual registers.
6258     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6259     for (; NumRegs; --NumRegs)
6260       Regs.push_back(RegInfo.createVirtualRegister(RC));
6261 
6262     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6263     return;
6264   }
6265 
6266   // Otherwise, we couldn't allocate enough registers for this.
6267 }
6268 
6269 /// visitInlineAsm - Handle a call to an InlineAsm object.
6270 ///
6271 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6272   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6273 
6274   /// ConstraintOperands - Information about all of the constraints.
6275   SDISelAsmOperandInfoVector ConstraintOperands;
6276 
6277   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6278   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6279       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6280 
6281   bool hasMemory = false;
6282 
6283   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6284   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6285   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6286     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6287     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6288 
6289     MVT OpVT = MVT::Other;
6290 
6291     // Compute the value type for each operand.
6292     switch (OpInfo.Type) {
6293     case InlineAsm::isOutput:
6294       // Indirect outputs just consume an argument.
6295       if (OpInfo.isIndirect) {
6296         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6297         break;
6298       }
6299 
6300       // The return value of the call is this value.  As such, there is no
6301       // corresponding argument.
6302       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6303       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6304         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6305                                       STy->getElementType(ResNo));
6306       } else {
6307         assert(ResNo == 0 && "Asm only has one result!");
6308         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6309       }
6310       ++ResNo;
6311       break;
6312     case InlineAsm::isInput:
6313       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6314       break;
6315     case InlineAsm::isClobber:
6316       // Nothing to do.
6317       break;
6318     }
6319 
6320     // If this is an input or an indirect output, process the call argument.
6321     // BasicBlocks are labels, currently appearing only in asm's.
6322     if (OpInfo.CallOperandVal) {
6323       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6324         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6325       } else {
6326         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6327       }
6328 
6329       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6330                                          DAG.getDataLayout()).getSimpleVT();
6331     }
6332 
6333     OpInfo.ConstraintVT = OpVT;
6334 
6335     // Indirect operand accesses access memory.
6336     if (OpInfo.isIndirect)
6337       hasMemory = true;
6338     else {
6339       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6340         TargetLowering::ConstraintType
6341           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6342         if (CType == TargetLowering::C_Memory) {
6343           hasMemory = true;
6344           break;
6345         }
6346       }
6347     }
6348   }
6349 
6350   SDValue Chain, Flag;
6351 
6352   // We won't need to flush pending loads if this asm doesn't touch
6353   // memory and is nonvolatile.
6354   if (hasMemory || IA->hasSideEffects())
6355     Chain = getRoot();
6356   else
6357     Chain = DAG.getRoot();
6358 
6359   // Second pass over the constraints: compute which constraint option to use
6360   // and assign registers to constraints that want a specific physreg.
6361   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6362     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6363 
6364     // If this is an output operand with a matching input operand, look up the
6365     // matching input. If their types mismatch, e.g. one is an integer, the
6366     // other is floating point, or their sizes are different, flag it as an
6367     // error.
6368     if (OpInfo.hasMatchingInput()) {
6369       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6370 
6371       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6372         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6373         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6374             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6375                                              OpInfo.ConstraintVT);
6376         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6377             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6378                                              Input.ConstraintVT);
6379         if ((OpInfo.ConstraintVT.isInteger() !=
6380              Input.ConstraintVT.isInteger()) ||
6381             (MatchRC.second != InputRC.second)) {
6382           report_fatal_error("Unsupported asm: input constraint"
6383                              " with a matching output constraint of"
6384                              " incompatible type!");
6385         }
6386         Input.ConstraintVT = OpInfo.ConstraintVT;
6387       }
6388     }
6389 
6390     // Compute the constraint code and ConstraintType to use.
6391     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6392 
6393     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6394         OpInfo.Type == InlineAsm::isClobber)
6395       continue;
6396 
6397     // If this is a memory input, and if the operand is not indirect, do what we
6398     // need to to provide an address for the memory input.
6399     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6400         !OpInfo.isIndirect) {
6401       assert((OpInfo.isMultipleAlternative ||
6402               (OpInfo.Type == InlineAsm::isInput)) &&
6403              "Can only indirectify direct input operands!");
6404 
6405       // Memory operands really want the address of the value.  If we don't have
6406       // an indirect input, put it in the constpool if we can, otherwise spill
6407       // it to a stack slot.
6408       // TODO: This isn't quite right. We need to handle these according to
6409       // the addressing mode that the constraint wants. Also, this may take
6410       // an additional register for the computation and we don't want that
6411       // either.
6412 
6413       // If the operand is a float, integer, or vector constant, spill to a
6414       // constant pool entry to get its address.
6415       const Value *OpVal = OpInfo.CallOperandVal;
6416       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6417           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6418         OpInfo.CallOperand = DAG.getConstantPool(
6419             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6420       } else {
6421         // Otherwise, create a stack slot and emit a store to it before the
6422         // asm.
6423         Type *Ty = OpVal->getType();
6424         auto &DL = DAG.getDataLayout();
6425         uint64_t TySize = DL.getTypeAllocSize(Ty);
6426         unsigned Align = DL.getPrefTypeAlignment(Ty);
6427         MachineFunction &MF = DAG.getMachineFunction();
6428         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6429         SDValue StackSlot =
6430             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6431         Chain = DAG.getStore(
6432             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6433             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6434             false, false, 0);
6435         OpInfo.CallOperand = StackSlot;
6436       }
6437 
6438       // There is no longer a Value* corresponding to this operand.
6439       OpInfo.CallOperandVal = nullptr;
6440 
6441       // It is now an indirect operand.
6442       OpInfo.isIndirect = true;
6443     }
6444 
6445     // If this constraint is for a specific register, allocate it before
6446     // anything else.
6447     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6448       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6449   }
6450 
6451   // Second pass - Loop over all of the operands, assigning virtual or physregs
6452   // to register class operands.
6453   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6454     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6455 
6456     // C_Register operands have already been allocated, Other/Memory don't need
6457     // to be.
6458     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6459       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6460   }
6461 
6462   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6463   std::vector<SDValue> AsmNodeOperands;
6464   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6465   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6466       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6467 
6468   // If we have a !srcloc metadata node associated with it, we want to attach
6469   // this to the ultimately generated inline asm machineinstr.  To do this, we
6470   // pass in the third operand as this (potentially null) inline asm MDNode.
6471   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6472   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6473 
6474   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6475   // bits as operand 3.
6476   unsigned ExtraInfo = 0;
6477   if (IA->hasSideEffects())
6478     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6479   if (IA->isAlignStack())
6480     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6481   // Set the asm dialect.
6482   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6483 
6484   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6485   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6486     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6487 
6488     // Compute the constraint code and ConstraintType to use.
6489     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6490 
6491     // Ideally, we would only check against memory constraints.  However, the
6492     // meaning of an other constraint can be target-specific and we can't easily
6493     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6494     // for other constriants as well.
6495     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6496         OpInfo.ConstraintType == TargetLowering::C_Other) {
6497       if (OpInfo.Type == InlineAsm::isInput)
6498         ExtraInfo |= InlineAsm::Extra_MayLoad;
6499       else if (OpInfo.Type == InlineAsm::isOutput)
6500         ExtraInfo |= InlineAsm::Extra_MayStore;
6501       else if (OpInfo.Type == InlineAsm::isClobber)
6502         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6503     }
6504   }
6505 
6506   AsmNodeOperands.push_back(DAG.getTargetConstant(
6507       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6508 
6509   // Loop over all of the inputs, copying the operand values into the
6510   // appropriate registers and processing the output regs.
6511   RegsForValue RetValRegs;
6512 
6513   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6514   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6515 
6516   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6517     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6518 
6519     switch (OpInfo.Type) {
6520     case InlineAsm::isOutput: {
6521       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6522           OpInfo.ConstraintType != TargetLowering::C_Register) {
6523         // Memory output, or 'other' output (e.g. 'X' constraint).
6524         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6525 
6526         unsigned ConstraintID =
6527             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6528         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6529                "Failed to convert memory constraint code to constraint id.");
6530 
6531         // Add information to the INLINEASM node to know about this output.
6532         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6533         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6534         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6535                                                         MVT::i32));
6536         AsmNodeOperands.push_back(OpInfo.CallOperand);
6537         break;
6538       }
6539 
6540       // Otherwise, this is a register or register class output.
6541 
6542       // Copy the output from the appropriate register.  Find a register that
6543       // we can use.
6544       if (OpInfo.AssignedRegs.Regs.empty()) {
6545         LLVMContext &Ctx = *DAG.getContext();
6546         Ctx.emitError(CS.getInstruction(),
6547                       "couldn't allocate output register for constraint '" +
6548                           Twine(OpInfo.ConstraintCode) + "'");
6549         return;
6550       }
6551 
6552       // If this is an indirect operand, store through the pointer after the
6553       // asm.
6554       if (OpInfo.isIndirect) {
6555         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6556                                                       OpInfo.CallOperandVal));
6557       } else {
6558         // This is the result value of the call.
6559         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6560         // Concatenate this output onto the outputs list.
6561         RetValRegs.append(OpInfo.AssignedRegs);
6562       }
6563 
6564       // Add information to the INLINEASM node to know that this register is
6565       // set.
6566       OpInfo.AssignedRegs
6567           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6568                                     ? InlineAsm::Kind_RegDefEarlyClobber
6569                                     : InlineAsm::Kind_RegDef,
6570                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6571       break;
6572     }
6573     case InlineAsm::isInput: {
6574       SDValue InOperandVal = OpInfo.CallOperand;
6575 
6576       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6577         // If this is required to match an output register we have already set,
6578         // just use its register.
6579         unsigned OperandNo = OpInfo.getMatchedOperand();
6580 
6581         // Scan until we find the definition we already emitted of this operand.
6582         // When we find it, create a RegsForValue operand.
6583         unsigned CurOp = InlineAsm::Op_FirstOperand;
6584         for (; OperandNo; --OperandNo) {
6585           // Advance to the next operand.
6586           unsigned OpFlag =
6587             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6588           assert((InlineAsm::isRegDefKind(OpFlag) ||
6589                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6590                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6591           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6592         }
6593 
6594         unsigned OpFlag =
6595           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6596         if (InlineAsm::isRegDefKind(OpFlag) ||
6597             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6598           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6599           if (OpInfo.isIndirect) {
6600             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6601             LLVMContext &Ctx = *DAG.getContext();
6602             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6603                                                " don't know how to handle tied "
6604                                                "indirect register inputs");
6605             return;
6606           }
6607 
6608           RegsForValue MatchedRegs;
6609           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6610           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6611           MatchedRegs.RegVTs.push_back(RegVT);
6612           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6613           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6614                i != e; ++i) {
6615             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6616               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6617             else {
6618               LLVMContext &Ctx = *DAG.getContext();
6619               Ctx.emitError(CS.getInstruction(),
6620                             "inline asm error: This value"
6621                             " type register class is not natively supported!");
6622               return;
6623             }
6624           }
6625           SDLoc dl = getCurSDLoc();
6626           // Use the produced MatchedRegs object to
6627           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6628                                     Chain, &Flag, CS.getInstruction());
6629           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6630                                            true, OpInfo.getMatchedOperand(), dl,
6631                                            DAG, AsmNodeOperands);
6632           break;
6633         }
6634 
6635         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6636         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6637                "Unexpected number of operands");
6638         // Add information to the INLINEASM node to know about this input.
6639         // See InlineAsm.h isUseOperandTiedToDef.
6640         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6641         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6642                                                     OpInfo.getMatchedOperand());
6643         AsmNodeOperands.push_back(DAG.getTargetConstant(
6644             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6645         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6646         break;
6647       }
6648 
6649       // Treat indirect 'X' constraint as memory.
6650       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6651           OpInfo.isIndirect)
6652         OpInfo.ConstraintType = TargetLowering::C_Memory;
6653 
6654       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6655         std::vector<SDValue> Ops;
6656         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6657                                           Ops, DAG);
6658         if (Ops.empty()) {
6659           LLVMContext &Ctx = *DAG.getContext();
6660           Ctx.emitError(CS.getInstruction(),
6661                         "invalid operand for inline asm constraint '" +
6662                             Twine(OpInfo.ConstraintCode) + "'");
6663           return;
6664         }
6665 
6666         // Add information to the INLINEASM node to know about this input.
6667         unsigned ResOpType =
6668           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6669         AsmNodeOperands.push_back(DAG.getTargetConstant(
6670             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6671         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6672         break;
6673       }
6674 
6675       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6676         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6677         assert(InOperandVal.getValueType() ==
6678                    TLI.getPointerTy(DAG.getDataLayout()) &&
6679                "Memory operands expect pointer values");
6680 
6681         unsigned ConstraintID =
6682             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6683         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6684                "Failed to convert memory constraint code to constraint id.");
6685 
6686         // Add information to the INLINEASM node to know about this input.
6687         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6688         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6689         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6690                                                         getCurSDLoc(),
6691                                                         MVT::i32));
6692         AsmNodeOperands.push_back(InOperandVal);
6693         break;
6694       }
6695 
6696       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6697               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6698              "Unknown constraint type!");
6699 
6700       // TODO: Support this.
6701       if (OpInfo.isIndirect) {
6702         LLVMContext &Ctx = *DAG.getContext();
6703         Ctx.emitError(CS.getInstruction(),
6704                       "Don't know how to handle indirect register inputs yet "
6705                       "for constraint '" +
6706                           Twine(OpInfo.ConstraintCode) + "'");
6707         return;
6708       }
6709 
6710       // Copy the input into the appropriate registers.
6711       if (OpInfo.AssignedRegs.Regs.empty()) {
6712         LLVMContext &Ctx = *DAG.getContext();
6713         Ctx.emitError(CS.getInstruction(),
6714                       "couldn't allocate input reg for constraint '" +
6715                           Twine(OpInfo.ConstraintCode) + "'");
6716         return;
6717       }
6718 
6719       SDLoc dl = getCurSDLoc();
6720 
6721       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6722                                         Chain, &Flag, CS.getInstruction());
6723 
6724       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6725                                                dl, DAG, AsmNodeOperands);
6726       break;
6727     }
6728     case InlineAsm::isClobber: {
6729       // Add the clobbered value to the operand list, so that the register
6730       // allocator is aware that the physreg got clobbered.
6731       if (!OpInfo.AssignedRegs.Regs.empty())
6732         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6733                                                  false, 0, getCurSDLoc(), DAG,
6734                                                  AsmNodeOperands);
6735       break;
6736     }
6737     }
6738   }
6739 
6740   // Finish up input operands.  Set the input chain and add the flag last.
6741   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6742   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6743 
6744   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6745                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6746   Flag = Chain.getValue(1);
6747 
6748   // If this asm returns a register value, copy the result from that register
6749   // and set it as the value of the call.
6750   if (!RetValRegs.Regs.empty()) {
6751     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6752                                              Chain, &Flag, CS.getInstruction());
6753 
6754     // FIXME: Why don't we do this for inline asms with MRVs?
6755     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6756       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
6757 
6758       // If any of the results of the inline asm is a vector, it may have the
6759       // wrong width/num elts.  This can happen for register classes that can
6760       // contain multiple different value types.  The preg or vreg allocated may
6761       // not have the same VT as was expected.  Convert it to the right type
6762       // with bit_convert.
6763       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6764         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6765                           ResultType, Val);
6766 
6767       } else if (ResultType != Val.getValueType() &&
6768                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6769         // If a result value was tied to an input value, the computed result may
6770         // have a wider width than the expected result.  Extract the relevant
6771         // portion.
6772         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6773       }
6774 
6775       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6776     }
6777 
6778     setValue(CS.getInstruction(), Val);
6779     // Don't need to use this as a chain in this case.
6780     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6781       return;
6782   }
6783 
6784   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6785 
6786   // Process indirect outputs, first output all of the flagged copies out of
6787   // physregs.
6788   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6789     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6790     const Value *Ptr = IndirectStoresToEmit[i].second;
6791     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6792                                              Chain, &Flag, IA);
6793     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6794   }
6795 
6796   // Emit the non-flagged stores from the physregs.
6797   SmallVector<SDValue, 8> OutChains;
6798   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6799     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6800                                StoresToEmit[i].first,
6801                                getValue(StoresToEmit[i].second),
6802                                MachinePointerInfo(StoresToEmit[i].second),
6803                                false, false, 0);
6804     OutChains.push_back(Val);
6805   }
6806 
6807   if (!OutChains.empty())
6808     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6809 
6810   DAG.setRoot(Chain);
6811 }
6812 
6813 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6814   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6815                           MVT::Other, getRoot(),
6816                           getValue(I.getArgOperand(0)),
6817                           DAG.getSrcValue(I.getArgOperand(0))));
6818 }
6819 
6820 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6821   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6822   const DataLayout &DL = DAG.getDataLayout();
6823   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6824                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
6825                            DAG.getSrcValue(I.getOperand(0)),
6826                            DL.getABITypeAlignment(I.getType()));
6827   setValue(&I, V);
6828   DAG.setRoot(V.getValue(1));
6829 }
6830 
6831 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6832   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6833                           MVT::Other, getRoot(),
6834                           getValue(I.getArgOperand(0)),
6835                           DAG.getSrcValue(I.getArgOperand(0))));
6836 }
6837 
6838 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6839   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6840                           MVT::Other, getRoot(),
6841                           getValue(I.getArgOperand(0)),
6842                           getValue(I.getArgOperand(1)),
6843                           DAG.getSrcValue(I.getArgOperand(0)),
6844                           DAG.getSrcValue(I.getArgOperand(1))));
6845 }
6846 
6847 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
6848                                                     const Instruction &I,
6849                                                     SDValue Op) {
6850   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
6851   if (!Range)
6852     return Op;
6853 
6854   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
6855   if (!Lo->isNullValue())
6856     return Op;
6857 
6858   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
6859   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
6860 
6861   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
6862 
6863   SDLoc SL = getCurSDLoc();
6864 
6865   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
6866                              Op, DAG.getValueType(SmallVT));
6867   unsigned NumVals = Op.getNode()->getNumValues();
6868   if (NumVals == 1)
6869     return ZExt;
6870 
6871   SmallVector<SDValue, 4> Ops;
6872 
6873   Ops.push_back(ZExt);
6874   for (unsigned I = 1; I != NumVals; ++I)
6875     Ops.push_back(Op.getValue(I));
6876 
6877   return DAG.getMergeValues(Ops, SL);
6878 }
6879 
6880 /// \brief Lower an argument list according to the target calling convention.
6881 ///
6882 /// \return A tuple of <return-value, token-chain>
6883 ///
6884 /// This is a helper for lowering intrinsics that follow a target calling
6885 /// convention or require stack pointer adjustment. Only a subset of the
6886 /// intrinsic's operands need to participate in the calling convention.
6887 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands(
6888     ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee,
6889     Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) {
6890   TargetLowering::ArgListTy Args;
6891   Args.reserve(NumArgs);
6892 
6893   // Populate the argument list.
6894   // Attributes for args start at offset 1, after the return attribute.
6895   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6896        ArgI != ArgE; ++ArgI) {
6897     const Value *V = CS->getOperand(ArgI);
6898 
6899     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6900 
6901     TargetLowering::ArgListEntry Entry;
6902     Entry.Node = getValue(V);
6903     Entry.Ty = V->getType();
6904     Entry.setAttributes(&CS, AttrI);
6905     Args.push_back(Entry);
6906   }
6907 
6908   TargetLowering::CallLoweringInfo CLI(DAG);
6909   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6910     .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
6911     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
6912 
6913   return lowerInvokable(CLI, EHPadBB);
6914 }
6915 
6916 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6917 /// or patchpoint target node's operand list.
6918 ///
6919 /// Constants are converted to TargetConstants purely as an optimization to
6920 /// avoid constant materialization and register allocation.
6921 ///
6922 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6923 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6924 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6925 /// address materialization and register allocation, but may also be required
6926 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6927 /// alloca in the entry block, then the runtime may assume that the alloca's
6928 /// StackMap location can be read immediately after compilation and that the
6929 /// location is valid at any point during execution (this is similar to the
6930 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6931 /// only available in a register, then the runtime would need to trap when
6932 /// execution reaches the StackMap in order to read the alloca's location.
6933 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6934                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
6935                                 SelectionDAGBuilder &Builder) {
6936   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6937     SDValue OpVal = Builder.getValue(CS.getArgument(i));
6938     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6939       Ops.push_back(
6940         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
6941       Ops.push_back(
6942         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
6943     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6944       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6945       Ops.push_back(Builder.DAG.getTargetFrameIndex(
6946           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
6947     } else
6948       Ops.push_back(OpVal);
6949   }
6950 }
6951 
6952 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6953 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6954   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6955   //                                  [live variables...])
6956 
6957   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6958 
6959   SDValue Chain, InFlag, Callee, NullPtr;
6960   SmallVector<SDValue, 32> Ops;
6961 
6962   SDLoc DL = getCurSDLoc();
6963   Callee = getValue(CI.getCalledValue());
6964   NullPtr = DAG.getIntPtrConstant(0, DL, true);
6965 
6966   // The stackmap intrinsic only records the live variables (the arguemnts
6967   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6968   // intrinsic, this won't be lowered to a function call. This means we don't
6969   // have to worry about calling conventions and target specific lowering code.
6970   // Instead we perform the call lowering right here.
6971   //
6972   // chain, flag = CALLSEQ_START(chain, 0)
6973   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6974   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6975   //
6976   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6977   InFlag = Chain.getValue(1);
6978 
6979   // Add the <id> and <numBytes> constants.
6980   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6981   Ops.push_back(DAG.getTargetConstant(
6982                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
6983   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6984   Ops.push_back(DAG.getTargetConstant(
6985                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
6986                   MVT::i32));
6987 
6988   // Push live variables for the stack map.
6989   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
6990 
6991   // We are not pushing any register mask info here on the operands list,
6992   // because the stackmap doesn't clobber anything.
6993 
6994   // Push the chain and the glue flag.
6995   Ops.push_back(Chain);
6996   Ops.push_back(InFlag);
6997 
6998   // Create the STACKMAP node.
6999   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7000   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7001   Chain = SDValue(SM, 0);
7002   InFlag = Chain.getValue(1);
7003 
7004   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7005 
7006   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7007 
7008   // Set the root to the target-lowered call chain.
7009   DAG.setRoot(Chain);
7010 
7011   // Inform the Frame Information that we have a stackmap in this function.
7012   FuncInfo.MF->getFrameInfo()->setHasStackMap();
7013 }
7014 
7015 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7016 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7017                                           const BasicBlock *EHPadBB) {
7018   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7019   //                                                 i32 <numBytes>,
7020   //                                                 i8* <target>,
7021   //                                                 i32 <numArgs>,
7022   //                                                 [Args...],
7023   //                                                 [live variables...])
7024 
7025   CallingConv::ID CC = CS.getCallingConv();
7026   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7027   bool HasDef = !CS->getType()->isVoidTy();
7028   SDLoc dl = getCurSDLoc();
7029   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7030 
7031   // Handle immediate and symbolic callees.
7032   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7033     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7034                                    /*isTarget=*/true);
7035   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7036     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7037                                          SDLoc(SymbolicCallee),
7038                                          SymbolicCallee->getValueType(0));
7039 
7040   // Get the real number of arguments participating in the call <numArgs>
7041   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7042   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7043 
7044   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7045   // Intrinsics include all meta-operands up to but not including CC.
7046   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7047   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7048          "Not enough arguments provided to the patchpoint intrinsic");
7049 
7050   // For AnyRegCC the arguments are lowered later on manually.
7051   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7052   Type *ReturnTy =
7053     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7054   std::pair<SDValue, SDValue> Result = lowerCallOperands(
7055       CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true);
7056 
7057   SDNode *CallEnd = Result.second.getNode();
7058   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7059     CallEnd = CallEnd->getOperand(0).getNode();
7060 
7061   /// Get a call instruction from the call sequence chain.
7062   /// Tail calls are not allowed.
7063   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7064          "Expected a callseq node.");
7065   SDNode *Call = CallEnd->getOperand(0).getNode();
7066   bool HasGlue = Call->getGluedNode();
7067 
7068   // Replace the target specific call node with the patchable intrinsic.
7069   SmallVector<SDValue, 8> Ops;
7070 
7071   // Add the <id> and <numBytes> constants.
7072   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7073   Ops.push_back(DAG.getTargetConstant(
7074                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7075   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7076   Ops.push_back(DAG.getTargetConstant(
7077                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7078                   MVT::i32));
7079 
7080   // Add the callee.
7081   Ops.push_back(Callee);
7082 
7083   // Adjust <numArgs> to account for any arguments that have been passed on the
7084   // stack instead.
7085   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7086   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7087   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7088   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7089 
7090   // Add the calling convention
7091   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7092 
7093   // Add the arguments we omitted previously. The register allocator should
7094   // place these in any free register.
7095   if (IsAnyRegCC)
7096     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7097       Ops.push_back(getValue(CS.getArgument(i)));
7098 
7099   // Push the arguments from the call instruction up to the register mask.
7100   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7101   Ops.append(Call->op_begin() + 2, e);
7102 
7103   // Push live variables for the stack map.
7104   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7105 
7106   // Push the register mask info.
7107   if (HasGlue)
7108     Ops.push_back(*(Call->op_end()-2));
7109   else
7110     Ops.push_back(*(Call->op_end()-1));
7111 
7112   // Push the chain (this is originally the first operand of the call, but
7113   // becomes now the last or second to last operand).
7114   Ops.push_back(*(Call->op_begin()));
7115 
7116   // Push the glue flag (last operand).
7117   if (HasGlue)
7118     Ops.push_back(*(Call->op_end()-1));
7119 
7120   SDVTList NodeTys;
7121   if (IsAnyRegCC && HasDef) {
7122     // Create the return types based on the intrinsic definition
7123     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7124     SmallVector<EVT, 3> ValueVTs;
7125     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7126     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7127 
7128     // There is always a chain and a glue type at the end
7129     ValueVTs.push_back(MVT::Other);
7130     ValueVTs.push_back(MVT::Glue);
7131     NodeTys = DAG.getVTList(ValueVTs);
7132   } else
7133     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7134 
7135   // Replace the target specific call node with a PATCHPOINT node.
7136   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7137                                          dl, NodeTys, Ops);
7138 
7139   // Update the NodeMap.
7140   if (HasDef) {
7141     if (IsAnyRegCC)
7142       setValue(CS.getInstruction(), SDValue(MN, 0));
7143     else
7144       setValue(CS.getInstruction(), Result.first);
7145   }
7146 
7147   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7148   // call sequence. Furthermore the location of the chain and glue can change
7149   // when the AnyReg calling convention is used and the intrinsic returns a
7150   // value.
7151   if (IsAnyRegCC && HasDef) {
7152     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7153     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7154     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7155   } else
7156     DAG.ReplaceAllUsesWith(Call, MN);
7157   DAG.DeleteNode(Call);
7158 
7159   // Inform the Frame Information that we have a patchpoint in this function.
7160   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7161 }
7162 
7163 /// Returns an AttributeSet representing the attributes applied to the return
7164 /// value of the given call.
7165 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7166   SmallVector<Attribute::AttrKind, 2> Attrs;
7167   if (CLI.RetSExt)
7168     Attrs.push_back(Attribute::SExt);
7169   if (CLI.RetZExt)
7170     Attrs.push_back(Attribute::ZExt);
7171   if (CLI.IsInReg)
7172     Attrs.push_back(Attribute::InReg);
7173 
7174   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7175                            Attrs);
7176 }
7177 
7178 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7179 /// implementation, which just calls LowerCall.
7180 /// FIXME: When all targets are
7181 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7182 std::pair<SDValue, SDValue>
7183 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7184   // Handle the incoming return values from the call.
7185   CLI.Ins.clear();
7186   Type *OrigRetTy = CLI.RetTy;
7187   SmallVector<EVT, 4> RetTys;
7188   SmallVector<uint64_t, 4> Offsets;
7189   auto &DL = CLI.DAG.getDataLayout();
7190   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7191 
7192   SmallVector<ISD::OutputArg, 4> Outs;
7193   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7194 
7195   bool CanLowerReturn =
7196       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7197                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7198 
7199   SDValue DemoteStackSlot;
7200   int DemoteStackIdx = -100;
7201   if (!CanLowerReturn) {
7202     // FIXME: equivalent assert?
7203     // assert(!CS.hasInAllocaArgument() &&
7204     //        "sret demotion is incompatible with inalloca");
7205     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7206     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7207     MachineFunction &MF = CLI.DAG.getMachineFunction();
7208     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7209     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7210 
7211     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7212     ArgListEntry Entry;
7213     Entry.Node = DemoteStackSlot;
7214     Entry.Ty = StackSlotPtrType;
7215     Entry.isSExt = false;
7216     Entry.isZExt = false;
7217     Entry.isInReg = false;
7218     Entry.isSRet = true;
7219     Entry.isNest = false;
7220     Entry.isByVal = false;
7221     Entry.isReturned = false;
7222     Entry.Alignment = Align;
7223     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7224     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7225 
7226     // sret demotion isn't compatible with tail-calls, since the sret argument
7227     // points into the callers stack frame.
7228     CLI.IsTailCall = false;
7229   } else {
7230     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7231       EVT VT = RetTys[I];
7232       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7233       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7234       for (unsigned i = 0; i != NumRegs; ++i) {
7235         ISD::InputArg MyFlags;
7236         MyFlags.VT = RegisterVT;
7237         MyFlags.ArgVT = VT;
7238         MyFlags.Used = CLI.IsReturnValueUsed;
7239         if (CLI.RetSExt)
7240           MyFlags.Flags.setSExt();
7241         if (CLI.RetZExt)
7242           MyFlags.Flags.setZExt();
7243         if (CLI.IsInReg)
7244           MyFlags.Flags.setInReg();
7245         CLI.Ins.push_back(MyFlags);
7246       }
7247     }
7248   }
7249 
7250   // Handle all of the outgoing arguments.
7251   CLI.Outs.clear();
7252   CLI.OutVals.clear();
7253   ArgListTy &Args = CLI.getArgs();
7254   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7255     SmallVector<EVT, 4> ValueVTs;
7256     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7257     Type *FinalType = Args[i].Ty;
7258     if (Args[i].isByVal)
7259       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7260     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7261         FinalType, CLI.CallConv, CLI.IsVarArg);
7262     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7263          ++Value) {
7264       EVT VT = ValueVTs[Value];
7265       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7266       SDValue Op = SDValue(Args[i].Node.getNode(),
7267                            Args[i].Node.getResNo() + Value);
7268       ISD::ArgFlagsTy Flags;
7269       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7270 
7271       if (Args[i].isZExt)
7272         Flags.setZExt();
7273       if (Args[i].isSExt)
7274         Flags.setSExt();
7275       if (Args[i].isInReg)
7276         Flags.setInReg();
7277       if (Args[i].isSRet)
7278         Flags.setSRet();
7279       if (Args[i].isByVal)
7280         Flags.setByVal();
7281       if (Args[i].isInAlloca) {
7282         Flags.setInAlloca();
7283         // Set the byval flag for CCAssignFn callbacks that don't know about
7284         // inalloca.  This way we can know how many bytes we should've allocated
7285         // and how many bytes a callee cleanup function will pop.  If we port
7286         // inalloca to more targets, we'll have to add custom inalloca handling
7287         // in the various CC lowering callbacks.
7288         Flags.setByVal();
7289       }
7290       if (Args[i].isByVal || Args[i].isInAlloca) {
7291         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7292         Type *ElementTy = Ty->getElementType();
7293         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7294         // For ByVal, alignment should come from FE.  BE will guess if this
7295         // info is not there but there are cases it cannot get right.
7296         unsigned FrameAlign;
7297         if (Args[i].Alignment)
7298           FrameAlign = Args[i].Alignment;
7299         else
7300           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7301         Flags.setByValAlign(FrameAlign);
7302       }
7303       if (Args[i].isNest)
7304         Flags.setNest();
7305       if (NeedsRegBlock)
7306         Flags.setInConsecutiveRegs();
7307       Flags.setOrigAlign(OriginalAlignment);
7308 
7309       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7310       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7311       SmallVector<SDValue, 4> Parts(NumParts);
7312       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7313 
7314       if (Args[i].isSExt)
7315         ExtendKind = ISD::SIGN_EXTEND;
7316       else if (Args[i].isZExt)
7317         ExtendKind = ISD::ZERO_EXTEND;
7318 
7319       // Conservatively only handle 'returned' on non-vectors for now
7320       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7321         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7322                "unexpected use of 'returned'");
7323         // Before passing 'returned' to the target lowering code, ensure that
7324         // either the register MVT and the actual EVT are the same size or that
7325         // the return value and argument are extended in the same way; in these
7326         // cases it's safe to pass the argument register value unchanged as the
7327         // return register value (although it's at the target's option whether
7328         // to do so)
7329         // TODO: allow code generation to take advantage of partially preserved
7330         // registers rather than clobbering the entire register when the
7331         // parameter extension method is not compatible with the return
7332         // extension method
7333         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7334             (ExtendKind != ISD::ANY_EXTEND &&
7335              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7336         Flags.setReturned();
7337       }
7338 
7339       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7340                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7341 
7342       for (unsigned j = 0; j != NumParts; ++j) {
7343         // if it isn't first piece, alignment must be 1
7344         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7345                                i < CLI.NumFixedArgs,
7346                                i, j*Parts[j].getValueType().getStoreSize());
7347         if (NumParts > 1 && j == 0)
7348           MyFlags.Flags.setSplit();
7349         else if (j != 0) {
7350           MyFlags.Flags.setOrigAlign(1);
7351           if (j == NumParts - 1)
7352             MyFlags.Flags.setSplitEnd();
7353         }
7354 
7355         CLI.Outs.push_back(MyFlags);
7356         CLI.OutVals.push_back(Parts[j]);
7357       }
7358 
7359       if (NeedsRegBlock && Value == NumValues - 1)
7360         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7361     }
7362   }
7363 
7364   SmallVector<SDValue, 4> InVals;
7365   CLI.Chain = LowerCall(CLI, InVals);
7366 
7367   // Verify that the target's LowerCall behaved as expected.
7368   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7369          "LowerCall didn't return a valid chain!");
7370   assert((!CLI.IsTailCall || InVals.empty()) &&
7371          "LowerCall emitted a return value for a tail call!");
7372   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7373          "LowerCall didn't emit the correct number of values!");
7374 
7375   // For a tail call, the return value is merely live-out and there aren't
7376   // any nodes in the DAG representing it. Return a special value to
7377   // indicate that a tail call has been emitted and no more Instructions
7378   // should be processed in the current block.
7379   if (CLI.IsTailCall) {
7380     CLI.DAG.setRoot(CLI.Chain);
7381     return std::make_pair(SDValue(), SDValue());
7382   }
7383 
7384   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7385           assert(InVals[i].getNode() &&
7386                  "LowerCall emitted a null value!");
7387           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7388                  "LowerCall emitted a value with the wrong type!");
7389         });
7390 
7391   SmallVector<SDValue, 4> ReturnValues;
7392   if (!CanLowerReturn) {
7393     // The instruction result is the result of loading from the
7394     // hidden sret parameter.
7395     SmallVector<EVT, 1> PVTs;
7396     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7397 
7398     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7399     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7400     EVT PtrVT = PVTs[0];
7401 
7402     unsigned NumValues = RetTys.size();
7403     ReturnValues.resize(NumValues);
7404     SmallVector<SDValue, 4> Chains(NumValues);
7405 
7406     // An aggregate return value cannot wrap around the address space, so
7407     // offsets to its parts don't wrap either.
7408     SDNodeFlags Flags;
7409     Flags.setNoUnsignedWrap(true);
7410 
7411     for (unsigned i = 0; i < NumValues; ++i) {
7412       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7413                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7414                                                         PtrVT), &Flags);
7415       SDValue L = CLI.DAG.getLoad(
7416           RetTys[i], CLI.DL, CLI.Chain, Add,
7417           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7418                                             DemoteStackIdx, Offsets[i]),
7419           false, false, false, 1);
7420       ReturnValues[i] = L;
7421       Chains[i] = L.getValue(1);
7422     }
7423 
7424     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7425   } else {
7426     // Collect the legal value parts into potentially illegal values
7427     // that correspond to the original function's return values.
7428     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7429     if (CLI.RetSExt)
7430       AssertOp = ISD::AssertSext;
7431     else if (CLI.RetZExt)
7432       AssertOp = ISD::AssertZext;
7433     unsigned CurReg = 0;
7434     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7435       EVT VT = RetTys[I];
7436       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7437       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7438 
7439       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7440                                               NumRegs, RegisterVT, VT, nullptr,
7441                                               AssertOp));
7442       CurReg += NumRegs;
7443     }
7444 
7445     // For a function returning void, there is no return value. We can't create
7446     // such a node, so we just return a null return value in that case. In
7447     // that case, nothing will actually look at the value.
7448     if (ReturnValues.empty())
7449       return std::make_pair(SDValue(), CLI.Chain);
7450   }
7451 
7452   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7453                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7454   return std::make_pair(Res, CLI.Chain);
7455 }
7456 
7457 void TargetLowering::LowerOperationWrapper(SDNode *N,
7458                                            SmallVectorImpl<SDValue> &Results,
7459                                            SelectionDAG &DAG) const {
7460   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7461     Results.push_back(Res);
7462 }
7463 
7464 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7465   llvm_unreachable("LowerOperation not implemented for this target!");
7466 }
7467 
7468 void
7469 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7470   SDValue Op = getNonRegisterValue(V);
7471   assert((Op.getOpcode() != ISD::CopyFromReg ||
7472           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7473          "Copy from a reg to the same reg!");
7474   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7475 
7476   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7477   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7478                    V->getType());
7479   SDValue Chain = DAG.getEntryNode();
7480 
7481   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7482                               FuncInfo.PreferredExtendType.end())
7483                                  ? ISD::ANY_EXTEND
7484                                  : FuncInfo.PreferredExtendType[V];
7485   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7486   PendingExports.push_back(Chain);
7487 }
7488 
7489 #include "llvm/CodeGen/SelectionDAGISel.h"
7490 
7491 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7492 /// entry block, return true.  This includes arguments used by switches, since
7493 /// the switch may expand into multiple basic blocks.
7494 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7495   // With FastISel active, we may be splitting blocks, so force creation
7496   // of virtual registers for all non-dead arguments.
7497   if (FastISel)
7498     return A->use_empty();
7499 
7500   const BasicBlock &Entry = A->getParent()->front();
7501   for (const User *U : A->users())
7502     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7503       return false;  // Use not in entry block.
7504 
7505   return true;
7506 }
7507 
7508 void SelectionDAGISel::LowerArguments(const Function &F) {
7509   SelectionDAG &DAG = SDB->DAG;
7510   SDLoc dl = SDB->getCurSDLoc();
7511   const DataLayout &DL = DAG.getDataLayout();
7512   SmallVector<ISD::InputArg, 16> Ins;
7513 
7514   if (!FuncInfo->CanLowerReturn) {
7515     // Put in an sret pointer parameter before all the other parameters.
7516     SmallVector<EVT, 1> ValueVTs;
7517     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7518                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7519 
7520     // NOTE: Assuming that a pointer will never break down to more than one VT
7521     // or one register.
7522     ISD::ArgFlagsTy Flags;
7523     Flags.setSRet();
7524     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7525     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7526                          ISD::InputArg::NoArgIndex, 0);
7527     Ins.push_back(RetArg);
7528   }
7529 
7530   // Set up the incoming argument description vector.
7531   unsigned Idx = 1;
7532   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7533        I != E; ++I, ++Idx) {
7534     SmallVector<EVT, 4> ValueVTs;
7535     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7536     bool isArgValueUsed = !I->use_empty();
7537     unsigned PartBase = 0;
7538     Type *FinalType = I->getType();
7539     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7540       FinalType = cast<PointerType>(FinalType)->getElementType();
7541     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7542         FinalType, F.getCallingConv(), F.isVarArg());
7543     for (unsigned Value = 0, NumValues = ValueVTs.size();
7544          Value != NumValues; ++Value) {
7545       EVT VT = ValueVTs[Value];
7546       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7547       ISD::ArgFlagsTy Flags;
7548       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7549 
7550       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7551         Flags.setZExt();
7552       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7553         Flags.setSExt();
7554       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7555         Flags.setInReg();
7556       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7557         Flags.setSRet();
7558       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7559         Flags.setByVal();
7560       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7561         Flags.setInAlloca();
7562         // Set the byval flag for CCAssignFn callbacks that don't know about
7563         // inalloca.  This way we can know how many bytes we should've allocated
7564         // and how many bytes a callee cleanup function will pop.  If we port
7565         // inalloca to more targets, we'll have to add custom inalloca handling
7566         // in the various CC lowering callbacks.
7567         Flags.setByVal();
7568       }
7569       if (F.getCallingConv() == CallingConv::X86_INTR) {
7570         // IA Interrupt passes frame (1st parameter) by value in the stack.
7571         if (Idx == 1)
7572           Flags.setByVal();
7573       }
7574       if (Flags.isByVal() || Flags.isInAlloca()) {
7575         PointerType *Ty = cast<PointerType>(I->getType());
7576         Type *ElementTy = Ty->getElementType();
7577         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7578         // For ByVal, alignment should be passed from FE.  BE will guess if
7579         // this info is not there but there are cases it cannot get right.
7580         unsigned FrameAlign;
7581         if (F.getParamAlignment(Idx))
7582           FrameAlign = F.getParamAlignment(Idx);
7583         else
7584           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7585         Flags.setByValAlign(FrameAlign);
7586       }
7587       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7588         Flags.setNest();
7589       if (NeedsRegBlock)
7590         Flags.setInConsecutiveRegs();
7591       Flags.setOrigAlign(OriginalAlignment);
7592 
7593       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7594       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7595       for (unsigned i = 0; i != NumRegs; ++i) {
7596         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7597                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7598         if (NumRegs > 1 && i == 0)
7599           MyFlags.Flags.setSplit();
7600         // if it isn't first piece, alignment must be 1
7601         else if (i > 0) {
7602           MyFlags.Flags.setOrigAlign(1);
7603           if (i == NumRegs - 1)
7604             MyFlags.Flags.setSplitEnd();
7605         }
7606         Ins.push_back(MyFlags);
7607       }
7608       if (NeedsRegBlock && Value == NumValues - 1)
7609         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7610       PartBase += VT.getStoreSize();
7611     }
7612   }
7613 
7614   // Call the target to set up the argument values.
7615   SmallVector<SDValue, 8> InVals;
7616   SDValue NewRoot = TLI->LowerFormalArguments(
7617       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7618 
7619   // Verify that the target's LowerFormalArguments behaved as expected.
7620   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7621          "LowerFormalArguments didn't return a valid chain!");
7622   assert(InVals.size() == Ins.size() &&
7623          "LowerFormalArguments didn't emit the correct number of values!");
7624   DEBUG({
7625       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7626         assert(InVals[i].getNode() &&
7627                "LowerFormalArguments emitted a null value!");
7628         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7629                "LowerFormalArguments emitted a value with the wrong type!");
7630       }
7631     });
7632 
7633   // Update the DAG with the new chain value resulting from argument lowering.
7634   DAG.setRoot(NewRoot);
7635 
7636   // Set up the argument values.
7637   unsigned i = 0;
7638   Idx = 1;
7639   if (!FuncInfo->CanLowerReturn) {
7640     // Create a virtual register for the sret pointer, and put in a copy
7641     // from the sret argument into it.
7642     SmallVector<EVT, 1> ValueVTs;
7643     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7644                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7645     MVT VT = ValueVTs[0].getSimpleVT();
7646     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7647     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7648     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7649                                         RegVT, VT, nullptr, AssertOp);
7650 
7651     MachineFunction& MF = SDB->DAG.getMachineFunction();
7652     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7653     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7654     FuncInfo->DemoteRegister = SRetReg;
7655     NewRoot =
7656         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7657     DAG.setRoot(NewRoot);
7658 
7659     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7660     // Idx indexes LLVM arguments.  Don't touch it.
7661     ++i;
7662   }
7663 
7664   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7665       ++I, ++Idx) {
7666     SmallVector<SDValue, 4> ArgValues;
7667     SmallVector<EVT, 4> ValueVTs;
7668     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7669     unsigned NumValues = ValueVTs.size();
7670 
7671     // If this argument is unused then remember its value. It is used to generate
7672     // debugging information.
7673     if (I->use_empty() && NumValues) {
7674       SDB->setUnusedArgValue(&*I, InVals[i]);
7675 
7676       // Also remember any frame index for use in FastISel.
7677       if (FrameIndexSDNode *FI =
7678           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7679         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7680     }
7681 
7682     for (unsigned Val = 0; Val != NumValues; ++Val) {
7683       EVT VT = ValueVTs[Val];
7684       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7685       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7686 
7687       if (!I->use_empty()) {
7688         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7689         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7690           AssertOp = ISD::AssertSext;
7691         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7692           AssertOp = ISD::AssertZext;
7693 
7694         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7695                                              NumParts, PartVT, VT,
7696                                              nullptr, AssertOp));
7697       }
7698 
7699       i += NumParts;
7700     }
7701 
7702     // We don't need to do anything else for unused arguments.
7703     if (ArgValues.empty())
7704       continue;
7705 
7706     // Note down frame index.
7707     if (FrameIndexSDNode *FI =
7708         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7709       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7710 
7711     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7712                                      SDB->getCurSDLoc());
7713 
7714     SDB->setValue(&*I, Res);
7715     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7716       if (LoadSDNode *LNode =
7717           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7718         if (FrameIndexSDNode *FI =
7719             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7720         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7721     }
7722 
7723     // If this argument is live outside of the entry block, insert a copy from
7724     // wherever we got it to the vreg that other BB's will reference it as.
7725     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7726       // If we can, though, try to skip creating an unnecessary vreg.
7727       // FIXME: This isn't very clean... it would be nice to make this more
7728       // general.  It's also subtly incompatible with the hacks FastISel
7729       // uses with vregs.
7730       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7731       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7732         FuncInfo->ValueMap[&*I] = Reg;
7733         continue;
7734       }
7735     }
7736     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
7737       FuncInfo->InitializeRegForValue(&*I);
7738       SDB->CopyToExportRegsIfNeeded(&*I);
7739     }
7740   }
7741 
7742   assert(i == InVals.size() && "Argument register count mismatch!");
7743 
7744   // Finally, if the target has anything special to do, allow it to do so.
7745   EmitFunctionEntryCode();
7746 }
7747 
7748 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7749 /// ensure constants are generated when needed.  Remember the virtual registers
7750 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7751 /// directly add them, because expansion might result in multiple MBB's for one
7752 /// BB.  As such, the start of the BB might correspond to a different MBB than
7753 /// the end.
7754 ///
7755 void
7756 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7757   const TerminatorInst *TI = LLVMBB->getTerminator();
7758 
7759   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7760 
7761   // Check PHI nodes in successors that expect a value to be available from this
7762   // block.
7763   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7764     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7765     if (!isa<PHINode>(SuccBB->begin())) continue;
7766     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7767 
7768     // If this terminator has multiple identical successors (common for
7769     // switches), only handle each succ once.
7770     if (!SuccsHandled.insert(SuccMBB).second)
7771       continue;
7772 
7773     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7774 
7775     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7776     // nodes and Machine PHI nodes, but the incoming operands have not been
7777     // emitted yet.
7778     for (BasicBlock::const_iterator I = SuccBB->begin();
7779          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7780       // Ignore dead phi's.
7781       if (PN->use_empty()) continue;
7782 
7783       // Skip empty types
7784       if (PN->getType()->isEmptyTy())
7785         continue;
7786 
7787       unsigned Reg;
7788       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7789 
7790       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7791         unsigned &RegOut = ConstantsOut[C];
7792         if (RegOut == 0) {
7793           RegOut = FuncInfo.CreateRegs(C->getType());
7794           CopyValueToVirtualRegister(C, RegOut);
7795         }
7796         Reg = RegOut;
7797       } else {
7798         DenseMap<const Value *, unsigned>::iterator I =
7799           FuncInfo.ValueMap.find(PHIOp);
7800         if (I != FuncInfo.ValueMap.end())
7801           Reg = I->second;
7802         else {
7803           assert(isa<AllocaInst>(PHIOp) &&
7804                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7805                  "Didn't codegen value into a register!??");
7806           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7807           CopyValueToVirtualRegister(PHIOp, Reg);
7808         }
7809       }
7810 
7811       // Remember that this register needs to added to the machine PHI node as
7812       // the input for this MBB.
7813       SmallVector<EVT, 4> ValueVTs;
7814       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7815       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
7816       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7817         EVT VT = ValueVTs[vti];
7818         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7819         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7820           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7821         Reg += NumRegisters;
7822       }
7823     }
7824   }
7825 
7826   ConstantsOut.clear();
7827 }
7828 
7829 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7830 /// is 0.
7831 MachineBasicBlock *
7832 SelectionDAGBuilder::StackProtectorDescriptor::
7833 AddSuccessorMBB(const BasicBlock *BB,
7834                 MachineBasicBlock *ParentMBB,
7835                 bool IsLikely,
7836                 MachineBasicBlock *SuccMBB) {
7837   // If SuccBB has not been created yet, create it.
7838   if (!SuccMBB) {
7839     MachineFunction *MF = ParentMBB->getParent();
7840     MachineFunction::iterator BBI(ParentMBB);
7841     SuccMBB = MF->CreateMachineBasicBlock(BB);
7842     MF->insert(++BBI, SuccMBB);
7843   }
7844   // Add it as a successor of ParentMBB.
7845   ParentMBB->addSuccessor(
7846       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
7847   return SuccMBB;
7848 }
7849 
7850 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7851   MachineFunction::iterator I(MBB);
7852   if (++I == FuncInfo.MF->end())
7853     return nullptr;
7854   return &*I;
7855 }
7856 
7857 /// During lowering new call nodes can be created (such as memset, etc.).
7858 /// Those will become new roots of the current DAG, but complications arise
7859 /// when they are tail calls. In such cases, the call lowering will update
7860 /// the root, but the builder still needs to know that a tail call has been
7861 /// lowered in order to avoid generating an additional return.
7862 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
7863   // If the node is null, we do have a tail call.
7864   if (MaybeTC.getNode() != nullptr)
7865     DAG.setRoot(MaybeTC);
7866   else
7867     HasTailCall = true;
7868 }
7869 
7870 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
7871                                   unsigned *TotalCases, unsigned First,
7872                                   unsigned Last) {
7873   assert(Last >= First);
7874   assert(TotalCases[Last] >= TotalCases[First]);
7875 
7876   APInt LowCase = Clusters[First].Low->getValue();
7877   APInt HighCase = Clusters[Last].High->getValue();
7878   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
7879 
7880   // FIXME: A range of consecutive cases has 100% density, but only requires one
7881   // comparison to lower. We should discriminate against such consecutive ranges
7882   // in jump tables.
7883 
7884   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
7885   uint64_t Range = Diff + 1;
7886 
7887   uint64_t NumCases =
7888       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
7889 
7890   assert(NumCases < UINT64_MAX / 100);
7891   assert(Range >= NumCases);
7892 
7893   return NumCases * 100 >= Range * MinJumpTableDensity;
7894 }
7895 
7896 static inline bool areJTsAllowed(const TargetLowering &TLI) {
7897   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
7898          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
7899 }
7900 
7901 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
7902                                          unsigned First, unsigned Last,
7903                                          const SwitchInst *SI,
7904                                          MachineBasicBlock *DefaultMBB,
7905                                          CaseCluster &JTCluster) {
7906   assert(First <= Last);
7907 
7908   auto Prob = BranchProbability::getZero();
7909   unsigned NumCmps = 0;
7910   std::vector<MachineBasicBlock*> Table;
7911   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
7912 
7913   // Initialize probabilities in JTProbs.
7914   for (unsigned I = First; I <= Last; ++I)
7915     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
7916 
7917   for (unsigned I = First; I <= Last; ++I) {
7918     assert(Clusters[I].Kind == CC_Range);
7919     Prob += Clusters[I].Prob;
7920     APInt Low = Clusters[I].Low->getValue();
7921     APInt High = Clusters[I].High->getValue();
7922     NumCmps += (Low == High) ? 1 : 2;
7923     if (I != First) {
7924       // Fill the gap between this and the previous cluster.
7925       APInt PreviousHigh = Clusters[I - 1].High->getValue();
7926       assert(PreviousHigh.slt(Low));
7927       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
7928       for (uint64_t J = 0; J < Gap; J++)
7929         Table.push_back(DefaultMBB);
7930     }
7931     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
7932     for (uint64_t J = 0; J < ClusterSize; ++J)
7933       Table.push_back(Clusters[I].MBB);
7934     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
7935   }
7936 
7937   unsigned NumDests = JTProbs.size();
7938   if (isSuitableForBitTests(NumDests, NumCmps,
7939                             Clusters[First].Low->getValue(),
7940                             Clusters[Last].High->getValue())) {
7941     // Clusters[First..Last] should be lowered as bit tests instead.
7942     return false;
7943   }
7944 
7945   // Create the MBB that will load from and jump through the table.
7946   // Note: We create it here, but it's not inserted into the function yet.
7947   MachineFunction *CurMF = FuncInfo.MF;
7948   MachineBasicBlock *JumpTableMBB =
7949       CurMF->CreateMachineBasicBlock(SI->getParent());
7950 
7951   // Add successors. Note: use table order for determinism.
7952   SmallPtrSet<MachineBasicBlock *, 8> Done;
7953   for (MachineBasicBlock *Succ : Table) {
7954     if (Done.count(Succ))
7955       continue;
7956     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
7957     Done.insert(Succ);
7958   }
7959   JumpTableMBB->normalizeSuccProbs();
7960 
7961   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7962   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
7963                      ->createJumpTableIndex(Table);
7964 
7965   // Set up the jump table info.
7966   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
7967   JumpTableHeader JTH(Clusters[First].Low->getValue(),
7968                       Clusters[Last].High->getValue(), SI->getCondition(),
7969                       nullptr, false);
7970   JTCases.emplace_back(std::move(JTH), std::move(JT));
7971 
7972   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
7973                                      JTCases.size() - 1, Prob);
7974   return true;
7975 }
7976 
7977 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
7978                                          const SwitchInst *SI,
7979                                          MachineBasicBlock *DefaultMBB) {
7980 #ifndef NDEBUG
7981   // Clusters must be non-empty, sorted, and only contain Range clusters.
7982   assert(!Clusters.empty());
7983   for (CaseCluster &C : Clusters)
7984     assert(C.Kind == CC_Range);
7985   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
7986     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
7987 #endif
7988 
7989   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7990   if (!areJTsAllowed(TLI))
7991     return;
7992 
7993   const int64_t N = Clusters.size();
7994   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
7995 
7996   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
7997   SmallVector<unsigned, 8> TotalCases(N);
7998 
7999   for (unsigned i = 0; i < N; ++i) {
8000     APInt Hi = Clusters[i].High->getValue();
8001     APInt Lo = Clusters[i].Low->getValue();
8002     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8003     if (i != 0)
8004       TotalCases[i] += TotalCases[i - 1];
8005   }
8006 
8007   if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) {
8008     // Cheap case: the whole range might be suitable for jump table.
8009     CaseCluster JTCluster;
8010     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8011       Clusters[0] = JTCluster;
8012       Clusters.resize(1);
8013       return;
8014     }
8015   }
8016 
8017   // The algorithm below is not suitable for -O0.
8018   if (TM.getOptLevel() == CodeGenOpt::None)
8019     return;
8020 
8021   // Split Clusters into minimum number of dense partitions. The algorithm uses
8022   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8023   // for the Case Statement'" (1994), but builds the MinPartitions array in
8024   // reverse order to make it easier to reconstruct the partitions in ascending
8025   // order. In the choice between two optimal partitionings, it picks the one
8026   // which yields more jump tables.
8027 
8028   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8029   SmallVector<unsigned, 8> MinPartitions(N);
8030   // LastElement[i] is the last element of the partition starting at i.
8031   SmallVector<unsigned, 8> LastElement(N);
8032   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
8033   SmallVector<unsigned, 8> NumTables(N);
8034 
8035   // Base case: There is only one way to partition Clusters[N-1].
8036   MinPartitions[N - 1] = 1;
8037   LastElement[N - 1] = N - 1;
8038   assert(MinJumpTableSize > 1);
8039   NumTables[N - 1] = 0;
8040 
8041   // Note: loop indexes are signed to avoid underflow.
8042   for (int64_t i = N - 2; i >= 0; i--) {
8043     // Find optimal partitioning of Clusters[i..N-1].
8044     // Baseline: Put Clusters[i] into a partition on its own.
8045     MinPartitions[i] = MinPartitions[i + 1] + 1;
8046     LastElement[i] = i;
8047     NumTables[i] = NumTables[i + 1];
8048 
8049     // Search for a solution that results in fewer partitions.
8050     for (int64_t j = N - 1; j > i; j--) {
8051       // Try building a partition from Clusters[i..j].
8052       if (isDense(Clusters, &TotalCases[0], i, j)) {
8053         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8054         bool IsTable = j - i + 1 >= MinJumpTableSize;
8055         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
8056 
8057         // If this j leads to fewer partitions, or same number of partitions
8058         // with more lookup tables, it is a better partitioning.
8059         if (NumPartitions < MinPartitions[i] ||
8060             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
8061           MinPartitions[i] = NumPartitions;
8062           LastElement[i] = j;
8063           NumTables[i] = Tables;
8064         }
8065       }
8066     }
8067   }
8068 
8069   // Iterate over the partitions, replacing some with jump tables in-place.
8070   unsigned DstIndex = 0;
8071   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8072     Last = LastElement[First];
8073     assert(Last >= First);
8074     assert(DstIndex <= First);
8075     unsigned NumClusters = Last - First + 1;
8076 
8077     CaseCluster JTCluster;
8078     if (NumClusters >= MinJumpTableSize &&
8079         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8080       Clusters[DstIndex++] = JTCluster;
8081     } else {
8082       for (unsigned I = First; I <= Last; ++I)
8083         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8084     }
8085   }
8086   Clusters.resize(DstIndex);
8087 }
8088 
8089 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8090   // FIXME: Using the pointer type doesn't seem ideal.
8091   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8092   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8093   return Range <= BW;
8094 }
8095 
8096 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8097                                                 unsigned NumCmps,
8098                                                 const APInt &Low,
8099                                                 const APInt &High) {
8100   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8101   // range of cases both require only one branch to lower. Just looking at the
8102   // number of clusters and destinations should be enough to decide whether to
8103   // build bit tests.
8104 
8105   // To lower a range with bit tests, the range must fit the bitwidth of a
8106   // machine word.
8107   if (!rangeFitsInWord(Low, High))
8108     return false;
8109 
8110   // Decide whether it's profitable to lower this range with bit tests. Each
8111   // destination requires a bit test and branch, and there is an overall range
8112   // check branch. For a small number of clusters, separate comparisons might be
8113   // cheaper, and for many destinations, splitting the range might be better.
8114   return (NumDests == 1 && NumCmps >= 3) ||
8115          (NumDests == 2 && NumCmps >= 5) ||
8116          (NumDests == 3 && NumCmps >= 6);
8117 }
8118 
8119 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8120                                         unsigned First, unsigned Last,
8121                                         const SwitchInst *SI,
8122                                         CaseCluster &BTCluster) {
8123   assert(First <= Last);
8124   if (First == Last)
8125     return false;
8126 
8127   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8128   unsigned NumCmps = 0;
8129   for (int64_t I = First; I <= Last; ++I) {
8130     assert(Clusters[I].Kind == CC_Range);
8131     Dests.set(Clusters[I].MBB->getNumber());
8132     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8133   }
8134   unsigned NumDests = Dests.count();
8135 
8136   APInt Low = Clusters[First].Low->getValue();
8137   APInt High = Clusters[Last].High->getValue();
8138   assert(Low.slt(High));
8139 
8140   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8141     return false;
8142 
8143   APInt LowBound;
8144   APInt CmpRange;
8145 
8146   const int BitWidth = DAG.getTargetLoweringInfo()
8147                            .getPointerTy(DAG.getDataLayout())
8148                            .getSizeInBits();
8149   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8150 
8151   // Check if the clusters cover a contiguous range such that no value in the
8152   // range will jump to the default statement.
8153   bool ContiguousRange = true;
8154   for (int64_t I = First + 1; I <= Last; ++I) {
8155     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8156       ContiguousRange = false;
8157       break;
8158     }
8159   }
8160 
8161   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8162     // Optimize the case where all the case values fit in a word without having
8163     // to subtract minValue. In this case, we can optimize away the subtraction.
8164     LowBound = APInt::getNullValue(Low.getBitWidth());
8165     CmpRange = High;
8166     ContiguousRange = false;
8167   } else {
8168     LowBound = Low;
8169     CmpRange = High - Low;
8170   }
8171 
8172   CaseBitsVector CBV;
8173   auto TotalProb = BranchProbability::getZero();
8174   for (unsigned i = First; i <= Last; ++i) {
8175     // Find the CaseBits for this destination.
8176     unsigned j;
8177     for (j = 0; j < CBV.size(); ++j)
8178       if (CBV[j].BB == Clusters[i].MBB)
8179         break;
8180     if (j == CBV.size())
8181       CBV.push_back(
8182           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8183     CaseBits *CB = &CBV[j];
8184 
8185     // Update Mask, Bits and ExtraProb.
8186     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8187     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8188     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8189     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8190     CB->Bits += Hi - Lo + 1;
8191     CB->ExtraProb += Clusters[i].Prob;
8192     TotalProb += Clusters[i].Prob;
8193   }
8194 
8195   BitTestInfo BTI;
8196   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8197     // Sort by probability first, number of bits second.
8198     if (a.ExtraProb != b.ExtraProb)
8199       return a.ExtraProb > b.ExtraProb;
8200     return a.Bits > b.Bits;
8201   });
8202 
8203   for (auto &CB : CBV) {
8204     MachineBasicBlock *BitTestBB =
8205         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8206     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8207   }
8208   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8209                             SI->getCondition(), -1U, MVT::Other, false,
8210                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8211                             TotalProb);
8212 
8213   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8214                                     BitTestCases.size() - 1, TotalProb);
8215   return true;
8216 }
8217 
8218 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8219                                               const SwitchInst *SI) {
8220 // Partition Clusters into as few subsets as possible, where each subset has a
8221 // range that fits in a machine word and has <= 3 unique destinations.
8222 
8223 #ifndef NDEBUG
8224   // Clusters must be sorted and contain Range or JumpTable clusters.
8225   assert(!Clusters.empty());
8226   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8227   for (const CaseCluster &C : Clusters)
8228     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8229   for (unsigned i = 1; i < Clusters.size(); ++i)
8230     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8231 #endif
8232 
8233   // The algorithm below is not suitable for -O0.
8234   if (TM.getOptLevel() == CodeGenOpt::None)
8235     return;
8236 
8237   // If target does not have legal shift left, do not emit bit tests at all.
8238   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8239   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8240   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8241     return;
8242 
8243   int BitWidth = PTy.getSizeInBits();
8244   const int64_t N = Clusters.size();
8245 
8246   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8247   SmallVector<unsigned, 8> MinPartitions(N);
8248   // LastElement[i] is the last element of the partition starting at i.
8249   SmallVector<unsigned, 8> LastElement(N);
8250 
8251   // FIXME: This might not be the best algorithm for finding bit test clusters.
8252 
8253   // Base case: There is only one way to partition Clusters[N-1].
8254   MinPartitions[N - 1] = 1;
8255   LastElement[N - 1] = N - 1;
8256 
8257   // Note: loop indexes are signed to avoid underflow.
8258   for (int64_t i = N - 2; i >= 0; --i) {
8259     // Find optimal partitioning of Clusters[i..N-1].
8260     // Baseline: Put Clusters[i] into a partition on its own.
8261     MinPartitions[i] = MinPartitions[i + 1] + 1;
8262     LastElement[i] = i;
8263 
8264     // Search for a solution that results in fewer partitions.
8265     // Note: the search is limited by BitWidth, reducing time complexity.
8266     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8267       // Try building a partition from Clusters[i..j].
8268 
8269       // Check the range.
8270       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8271                            Clusters[j].High->getValue()))
8272         continue;
8273 
8274       // Check nbr of destinations and cluster types.
8275       // FIXME: This works, but doesn't seem very efficient.
8276       bool RangesOnly = true;
8277       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8278       for (int64_t k = i; k <= j; k++) {
8279         if (Clusters[k].Kind != CC_Range) {
8280           RangesOnly = false;
8281           break;
8282         }
8283         Dests.set(Clusters[k].MBB->getNumber());
8284       }
8285       if (!RangesOnly || Dests.count() > 3)
8286         break;
8287 
8288       // Check if it's a better partition.
8289       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8290       if (NumPartitions < MinPartitions[i]) {
8291         // Found a better partition.
8292         MinPartitions[i] = NumPartitions;
8293         LastElement[i] = j;
8294       }
8295     }
8296   }
8297 
8298   // Iterate over the partitions, replacing with bit-test clusters in-place.
8299   unsigned DstIndex = 0;
8300   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8301     Last = LastElement[First];
8302     assert(First <= Last);
8303     assert(DstIndex <= First);
8304 
8305     CaseCluster BitTestCluster;
8306     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8307       Clusters[DstIndex++] = BitTestCluster;
8308     } else {
8309       size_t NumClusters = Last - First + 1;
8310       std::memmove(&Clusters[DstIndex], &Clusters[First],
8311                    sizeof(Clusters[0]) * NumClusters);
8312       DstIndex += NumClusters;
8313     }
8314   }
8315   Clusters.resize(DstIndex);
8316 }
8317 
8318 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8319                                         MachineBasicBlock *SwitchMBB,
8320                                         MachineBasicBlock *DefaultMBB) {
8321   MachineFunction *CurMF = FuncInfo.MF;
8322   MachineBasicBlock *NextMBB = nullptr;
8323   MachineFunction::iterator BBI(W.MBB);
8324   if (++BBI != FuncInfo.MF->end())
8325     NextMBB = &*BBI;
8326 
8327   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8328 
8329   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8330 
8331   if (Size == 2 && W.MBB == SwitchMBB) {
8332     // If any two of the cases has the same destination, and if one value
8333     // is the same as the other, but has one bit unset that the other has set,
8334     // use bit manipulation to do two compares at once.  For example:
8335     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8336     // TODO: This could be extended to merge any 2 cases in switches with 3
8337     // cases.
8338     // TODO: Handle cases where W.CaseBB != SwitchBB.
8339     CaseCluster &Small = *W.FirstCluster;
8340     CaseCluster &Big = *W.LastCluster;
8341 
8342     if (Small.Low == Small.High && Big.Low == Big.High &&
8343         Small.MBB == Big.MBB) {
8344       const APInt &SmallValue = Small.Low->getValue();
8345       const APInt &BigValue = Big.Low->getValue();
8346 
8347       // Check that there is only one bit different.
8348       APInt CommonBit = BigValue ^ SmallValue;
8349       if (CommonBit.isPowerOf2()) {
8350         SDValue CondLHS = getValue(Cond);
8351         EVT VT = CondLHS.getValueType();
8352         SDLoc DL = getCurSDLoc();
8353 
8354         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8355                                  DAG.getConstant(CommonBit, DL, VT));
8356         SDValue Cond = DAG.getSetCC(
8357             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8358             ISD::SETEQ);
8359 
8360         // Update successor info.
8361         // Both Small and Big will jump to Small.BB, so we sum up the
8362         // probabilities.
8363         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8364         if (BPI)
8365           addSuccessorWithProb(
8366               SwitchMBB, DefaultMBB,
8367               // The default destination is the first successor in IR.
8368               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8369         else
8370           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8371 
8372         // Insert the true branch.
8373         SDValue BrCond =
8374             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8375                         DAG.getBasicBlock(Small.MBB));
8376         // Insert the false branch.
8377         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8378                              DAG.getBasicBlock(DefaultMBB));
8379 
8380         DAG.setRoot(BrCond);
8381         return;
8382       }
8383     }
8384   }
8385 
8386   if (TM.getOptLevel() != CodeGenOpt::None) {
8387     // Order cases by probability so the most likely case will be checked first.
8388     std::sort(W.FirstCluster, W.LastCluster + 1,
8389               [](const CaseCluster &a, const CaseCluster &b) {
8390       return a.Prob > b.Prob;
8391     });
8392 
8393     // Rearrange the case blocks so that the last one falls through if possible
8394     // without without changing the order of probabilities.
8395     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8396       --I;
8397       if (I->Prob > W.LastCluster->Prob)
8398         break;
8399       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8400         std::swap(*I, *W.LastCluster);
8401         break;
8402       }
8403     }
8404   }
8405 
8406   // Compute total probability.
8407   BranchProbability DefaultProb = W.DefaultProb;
8408   BranchProbability UnhandledProbs = DefaultProb;
8409   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8410     UnhandledProbs += I->Prob;
8411 
8412   MachineBasicBlock *CurMBB = W.MBB;
8413   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8414     MachineBasicBlock *Fallthrough;
8415     if (I == W.LastCluster) {
8416       // For the last cluster, fall through to the default destination.
8417       Fallthrough = DefaultMBB;
8418     } else {
8419       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8420       CurMF->insert(BBI, Fallthrough);
8421       // Put Cond in a virtual register to make it available from the new blocks.
8422       ExportFromCurrentBlock(Cond);
8423     }
8424     UnhandledProbs -= I->Prob;
8425 
8426     switch (I->Kind) {
8427       case CC_JumpTable: {
8428         // FIXME: Optimize away range check based on pivot comparisons.
8429         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8430         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8431 
8432         // The jump block hasn't been inserted yet; insert it here.
8433         MachineBasicBlock *JumpMBB = JT->MBB;
8434         CurMF->insert(BBI, JumpMBB);
8435 
8436         auto JumpProb = I->Prob;
8437         auto FallthroughProb = UnhandledProbs;
8438 
8439         // If the default statement is a target of the jump table, we evenly
8440         // distribute the default probability to successors of CurMBB. Also
8441         // update the probability on the edge from JumpMBB to Fallthrough.
8442         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8443                                               SE = JumpMBB->succ_end();
8444              SI != SE; ++SI) {
8445           if (*SI == DefaultMBB) {
8446             JumpProb += DefaultProb / 2;
8447             FallthroughProb -= DefaultProb / 2;
8448             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8449             JumpMBB->normalizeSuccProbs();
8450             break;
8451           }
8452         }
8453 
8454         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8455         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8456         CurMBB->normalizeSuccProbs();
8457 
8458         // The jump table header will be inserted in our current block, do the
8459         // range check, and fall through to our fallthrough block.
8460         JTH->HeaderBB = CurMBB;
8461         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8462 
8463         // If we're in the right place, emit the jump table header right now.
8464         if (CurMBB == SwitchMBB) {
8465           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8466           JTH->Emitted = true;
8467         }
8468         break;
8469       }
8470       case CC_BitTests: {
8471         // FIXME: Optimize away range check based on pivot comparisons.
8472         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8473 
8474         // The bit test blocks haven't been inserted yet; insert them here.
8475         for (BitTestCase &BTC : BTB->Cases)
8476           CurMF->insert(BBI, BTC.ThisBB);
8477 
8478         // Fill in fields of the BitTestBlock.
8479         BTB->Parent = CurMBB;
8480         BTB->Default = Fallthrough;
8481 
8482         BTB->DefaultProb = UnhandledProbs;
8483         // If the cases in bit test don't form a contiguous range, we evenly
8484         // distribute the probability on the edge to Fallthrough to two
8485         // successors of CurMBB.
8486         if (!BTB->ContiguousRange) {
8487           BTB->Prob += DefaultProb / 2;
8488           BTB->DefaultProb -= DefaultProb / 2;
8489         }
8490 
8491         // If we're in the right place, emit the bit test header right now.
8492         if (CurMBB == SwitchMBB) {
8493           visitBitTestHeader(*BTB, SwitchMBB);
8494           BTB->Emitted = true;
8495         }
8496         break;
8497       }
8498       case CC_Range: {
8499         const Value *RHS, *LHS, *MHS;
8500         ISD::CondCode CC;
8501         if (I->Low == I->High) {
8502           // Check Cond == I->Low.
8503           CC = ISD::SETEQ;
8504           LHS = Cond;
8505           RHS=I->Low;
8506           MHS = nullptr;
8507         } else {
8508           // Check I->Low <= Cond <= I->High.
8509           CC = ISD::SETLE;
8510           LHS = I->Low;
8511           MHS = Cond;
8512           RHS = I->High;
8513         }
8514 
8515         // The false probability is the sum of all unhandled cases.
8516         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8517                      UnhandledProbs);
8518 
8519         if (CurMBB == SwitchMBB)
8520           visitSwitchCase(CB, SwitchMBB);
8521         else
8522           SwitchCases.push_back(CB);
8523 
8524         break;
8525       }
8526     }
8527     CurMBB = Fallthrough;
8528   }
8529 }
8530 
8531 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8532                                               CaseClusterIt First,
8533                                               CaseClusterIt Last) {
8534   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8535     if (X.Prob != CC.Prob)
8536       return X.Prob > CC.Prob;
8537 
8538     // Ties are broken by comparing the case value.
8539     return X.Low->getValue().slt(CC.Low->getValue());
8540   });
8541 }
8542 
8543 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8544                                         const SwitchWorkListItem &W,
8545                                         Value *Cond,
8546                                         MachineBasicBlock *SwitchMBB) {
8547   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8548          "Clusters not sorted?");
8549 
8550   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8551 
8552   // Balance the tree based on branch probabilities to create a near-optimal (in
8553   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8554   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8555   CaseClusterIt LastLeft = W.FirstCluster;
8556   CaseClusterIt FirstRight = W.LastCluster;
8557   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8558   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8559 
8560   // Move LastLeft and FirstRight towards each other from opposite directions to
8561   // find a partitioning of the clusters which balances the probability on both
8562   // sides. If LeftProb and RightProb are equal, alternate which side is
8563   // taken to ensure 0-probability nodes are distributed evenly.
8564   unsigned I = 0;
8565   while (LastLeft + 1 < FirstRight) {
8566     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8567       LeftProb += (++LastLeft)->Prob;
8568     else
8569       RightProb += (--FirstRight)->Prob;
8570     I++;
8571   }
8572 
8573   for (;;) {
8574     // Our binary search tree differs from a typical BST in that ours can have up
8575     // to three values in each leaf. The pivot selection above doesn't take that
8576     // into account, which means the tree might require more nodes and be less
8577     // efficient. We compensate for this here.
8578 
8579     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8580     unsigned NumRight = W.LastCluster - FirstRight + 1;
8581 
8582     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8583       // If one side has less than 3 clusters, and the other has more than 3,
8584       // consider taking a cluster from the other side.
8585 
8586       if (NumLeft < NumRight) {
8587         // Consider moving the first cluster on the right to the left side.
8588         CaseCluster &CC = *FirstRight;
8589         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8590         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8591         if (LeftSideRank <= RightSideRank) {
8592           // Moving the cluster to the left does not demote it.
8593           ++LastLeft;
8594           ++FirstRight;
8595           continue;
8596         }
8597       } else {
8598         assert(NumRight < NumLeft);
8599         // Consider moving the last element on the left to the right side.
8600         CaseCluster &CC = *LastLeft;
8601         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8602         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8603         if (RightSideRank <= LeftSideRank) {
8604           // Moving the cluster to the right does not demot it.
8605           --LastLeft;
8606           --FirstRight;
8607           continue;
8608         }
8609       }
8610     }
8611     break;
8612   }
8613 
8614   assert(LastLeft + 1 == FirstRight);
8615   assert(LastLeft >= W.FirstCluster);
8616   assert(FirstRight <= W.LastCluster);
8617 
8618   // Use the first element on the right as pivot since we will make less-than
8619   // comparisons against it.
8620   CaseClusterIt PivotCluster = FirstRight;
8621   assert(PivotCluster > W.FirstCluster);
8622   assert(PivotCluster <= W.LastCluster);
8623 
8624   CaseClusterIt FirstLeft = W.FirstCluster;
8625   CaseClusterIt LastRight = W.LastCluster;
8626 
8627   const ConstantInt *Pivot = PivotCluster->Low;
8628 
8629   // New blocks will be inserted immediately after the current one.
8630   MachineFunction::iterator BBI(W.MBB);
8631   ++BBI;
8632 
8633   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8634   // we can branch to its destination directly if it's squeezed exactly in
8635   // between the known lower bound and Pivot - 1.
8636   MachineBasicBlock *LeftMBB;
8637   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8638       FirstLeft->Low == W.GE &&
8639       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8640     LeftMBB = FirstLeft->MBB;
8641   } else {
8642     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8643     FuncInfo.MF->insert(BBI, LeftMBB);
8644     WorkList.push_back(
8645         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8646     // Put Cond in a virtual register to make it available from the new blocks.
8647     ExportFromCurrentBlock(Cond);
8648   }
8649 
8650   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8651   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8652   // directly if RHS.High equals the current upper bound.
8653   MachineBasicBlock *RightMBB;
8654   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8655       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8656     RightMBB = FirstRight->MBB;
8657   } else {
8658     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8659     FuncInfo.MF->insert(BBI, RightMBB);
8660     WorkList.push_back(
8661         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
8662     // Put Cond in a virtual register to make it available from the new blocks.
8663     ExportFromCurrentBlock(Cond);
8664   }
8665 
8666   // Create the CaseBlock record that will be used to lower the branch.
8667   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8668                LeftProb, RightProb);
8669 
8670   if (W.MBB == SwitchMBB)
8671     visitSwitchCase(CB, SwitchMBB);
8672   else
8673     SwitchCases.push_back(CB);
8674 }
8675 
8676 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8677   // Extract cases from the switch.
8678   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8679   CaseClusterVector Clusters;
8680   Clusters.reserve(SI.getNumCases());
8681   for (auto I : SI.cases()) {
8682     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8683     const ConstantInt *CaseVal = I.getCaseValue();
8684     BranchProbability Prob =
8685         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
8686             : BranchProbability(1, SI.getNumCases() + 1);
8687     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
8688   }
8689 
8690   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8691 
8692   // Cluster adjacent cases with the same destination. We do this at all
8693   // optimization levels because it's cheap to do and will make codegen faster
8694   // if there are many clusters.
8695   sortAndRangeify(Clusters);
8696 
8697   if (TM.getOptLevel() != CodeGenOpt::None) {
8698     // Replace an unreachable default with the most popular destination.
8699     // FIXME: Exploit unreachable default more aggressively.
8700     bool UnreachableDefault =
8701         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8702     if (UnreachableDefault && !Clusters.empty()) {
8703       DenseMap<const BasicBlock *, unsigned> Popularity;
8704       unsigned MaxPop = 0;
8705       const BasicBlock *MaxBB = nullptr;
8706       for (auto I : SI.cases()) {
8707         const BasicBlock *BB = I.getCaseSuccessor();
8708         if (++Popularity[BB] > MaxPop) {
8709           MaxPop = Popularity[BB];
8710           MaxBB = BB;
8711         }
8712       }
8713       // Set new default.
8714       assert(MaxPop > 0 && MaxBB);
8715       DefaultMBB = FuncInfo.MBBMap[MaxBB];
8716 
8717       // Remove cases that were pointing to the destination that is now the
8718       // default.
8719       CaseClusterVector New;
8720       New.reserve(Clusters.size());
8721       for (CaseCluster &CC : Clusters) {
8722         if (CC.MBB != DefaultMBB)
8723           New.push_back(CC);
8724       }
8725       Clusters = std::move(New);
8726     }
8727   }
8728 
8729   // If there is only the default destination, jump there directly.
8730   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
8731   if (Clusters.empty()) {
8732     SwitchMBB->addSuccessor(DefaultMBB);
8733     if (DefaultMBB != NextBlock(SwitchMBB)) {
8734       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
8735                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
8736     }
8737     return;
8738   }
8739 
8740   findJumpTables(Clusters, &SI, DefaultMBB);
8741   findBitTestClusters(Clusters, &SI);
8742 
8743   DEBUG({
8744     dbgs() << "Case clusters: ";
8745     for (const CaseCluster &C : Clusters) {
8746       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
8747       if (C.Kind == CC_BitTests) dbgs() << "BT:";
8748 
8749       C.Low->getValue().print(dbgs(), true);
8750       if (C.Low != C.High) {
8751         dbgs() << '-';
8752         C.High->getValue().print(dbgs(), true);
8753       }
8754       dbgs() << ' ';
8755     }
8756     dbgs() << '\n';
8757   });
8758 
8759   assert(!Clusters.empty());
8760   SwitchWorkList WorkList;
8761   CaseClusterIt First = Clusters.begin();
8762   CaseClusterIt Last = Clusters.end() - 1;
8763   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
8764   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
8765 
8766   while (!WorkList.empty()) {
8767     SwitchWorkListItem W = WorkList.back();
8768     WorkList.pop_back();
8769     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
8770 
8771     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
8772       // For optimized builds, lower large range as a balanced binary tree.
8773       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
8774       continue;
8775     }
8776 
8777     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
8778   }
8779 }
8780