1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/DebugInfo.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include <algorithm> 62 using namespace llvm; 63 64 /// LimitFloatPrecision - Generate low-precision inline sequences for 65 /// some float libcalls (6, 8 or 12 bits). 66 static unsigned LimitFloatPrecision; 67 68 static cl::opt<unsigned, true> 69 LimitFPPrecision("limit-float-precision", 70 cl::desc("Generate low-precision inline sequences " 71 "for some float libcalls"), 72 cl::location(LimitFloatPrecision), 73 cl::init(0)); 74 75 // Limit the width of DAG chains. This is important in general to prevent 76 // prevent DAG-based analysis from blowing up. For example, alias analysis and 77 // load clustering may not complete in reasonable time. It is difficult to 78 // recognize and avoid this situation within each individual analysis, and 79 // future analyses are likely to have the same behavior. Limiting DAG width is 80 // the safe approach, and will be especially important with global DAGs. 81 // 82 // MaxParallelChains default is arbitrarily high to avoid affecting 83 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 84 // sequence over this should have been converted to llvm.memcpy by the 85 // frontend. It easy to induce this behavior with .ll code such as: 86 // %buffer = alloca [4096 x i8] 87 // %data = load [4096 x i8]* %argPtr 88 // store [4096 x i8] %data, [4096 x i8]* %buffer 89 static const unsigned MaxParallelChains = 64; 90 91 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 92 const SDValue *Parts, unsigned NumParts, 93 MVT PartVT, EVT ValueVT, const Value *V); 94 95 /// getCopyFromParts - Create a value that contains the specified legal parts 96 /// combined into the value they represent. If the parts combine to a type 97 /// larger then ValueVT then AssertOp can be used to specify whether the extra 98 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 99 /// (ISD::AssertSext). 100 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 101 const SDValue *Parts, 102 unsigned NumParts, MVT PartVT, EVT ValueVT, 103 const Value *V, 104 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 105 if (ValueVT.isVector()) 106 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 107 PartVT, ValueVT, V); 108 109 assert(NumParts > 0 && "No parts to assemble!"); 110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 111 SDValue Val = Parts[0]; 112 113 if (NumParts > 1) { 114 // Assemble the value from multiple parts. 115 if (ValueVT.isInteger()) { 116 unsigned PartBits = PartVT.getSizeInBits(); 117 unsigned ValueBits = ValueVT.getSizeInBits(); 118 119 // Assemble the power of 2 part. 120 unsigned RoundParts = NumParts & (NumParts - 1) ? 121 1 << Log2_32(NumParts) : NumParts; 122 unsigned RoundBits = PartBits * RoundParts; 123 EVT RoundVT = RoundBits == ValueBits ? 124 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 125 SDValue Lo, Hi; 126 127 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 128 129 if (RoundParts > 2) { 130 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 131 PartVT, HalfVT, V); 132 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 133 RoundParts / 2, PartVT, HalfVT, V); 134 } else { 135 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 136 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 137 } 138 139 if (TLI.isBigEndian()) 140 std::swap(Lo, Hi); 141 142 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 143 144 if (RoundParts < NumParts) { 145 // Assemble the trailing non-power-of-2 part. 146 unsigned OddParts = NumParts - RoundParts; 147 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 148 Hi = getCopyFromParts(DAG, DL, 149 Parts + RoundParts, OddParts, PartVT, OddVT, V); 150 151 // Combine the round and odd parts. 152 Lo = Val; 153 if (TLI.isBigEndian()) 154 std::swap(Lo, Hi); 155 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 156 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 157 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 158 DAG.getConstant(Lo.getValueType().getSizeInBits(), 159 TLI.getPointerTy())); 160 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 161 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 162 } 163 } else if (PartVT.isFloatingPoint()) { 164 // FP split into multiple FP parts (for ppcf128) 165 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 166 "Unexpected split"); 167 SDValue Lo, Hi; 168 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 169 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 170 if (TLI.isBigEndian()) 171 std::swap(Lo, Hi); 172 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 173 } else { 174 // FP split into integer parts (soft fp) 175 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 176 !PartVT.isVector() && "Unexpected split"); 177 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 178 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 179 } 180 } 181 182 // There is now one part, held in Val. Correct it to match ValueVT. 183 EVT PartEVT = Val.getValueType(); 184 185 if (PartEVT == ValueVT) 186 return Val; 187 188 if (PartEVT.isInteger() && ValueVT.isInteger()) { 189 if (ValueVT.bitsLT(PartEVT)) { 190 // For a truncate, see if we have any information to 191 // indicate whether the truncated bits will always be 192 // zero or sign-extension. 193 if (AssertOp != ISD::DELETED_NODE) 194 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 195 DAG.getValueType(ValueVT)); 196 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 197 } 198 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 199 } 200 201 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 202 // FP_ROUND's are always exact here. 203 if (ValueVT.bitsLT(Val.getValueType())) 204 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 205 DAG.getTargetConstant(1, TLI.getPointerTy())); 206 207 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 208 } 209 210 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 211 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 212 213 llvm_unreachable("Unknown mismatch!"); 214 } 215 216 /// getCopyFromPartsVector - Create a value that contains the specified legal 217 /// parts combined into the value they represent. If the parts combine to a 218 /// type larger then ValueVT then AssertOp can be used to specify whether the 219 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 220 /// ValueVT (ISD::AssertSext). 221 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 222 const SDValue *Parts, unsigned NumParts, 223 MVT PartVT, EVT ValueVT, const Value *V) { 224 assert(ValueVT.isVector() && "Not a vector value"); 225 assert(NumParts > 0 && "No parts to assemble!"); 226 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 227 SDValue Val = Parts[0]; 228 229 // Handle a multi-element vector. 230 if (NumParts > 1) { 231 EVT IntermediateVT; 232 MVT RegisterVT; 233 unsigned NumIntermediates; 234 unsigned NumRegs = 235 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 236 NumIntermediates, RegisterVT); 237 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 238 NumParts = NumRegs; // Silence a compiler warning. 239 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 240 assert(RegisterVT == Parts[0].getSimpleValueType() && 241 "Part type doesn't match part!"); 242 243 // Assemble the parts into intermediate operands. 244 SmallVector<SDValue, 8> Ops(NumIntermediates); 245 if (NumIntermediates == NumParts) { 246 // If the register was not expanded, truncate or copy the value, 247 // as appropriate. 248 for (unsigned i = 0; i != NumParts; ++i) 249 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 250 PartVT, IntermediateVT, V); 251 } else if (NumParts > 0) { 252 // If the intermediate type was expanded, build the intermediate 253 // operands from the parts. 254 assert(NumParts % NumIntermediates == 0 && 255 "Must expand into a divisible number of parts!"); 256 unsigned Factor = NumParts / NumIntermediates; 257 for (unsigned i = 0; i != NumIntermediates; ++i) 258 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 259 PartVT, IntermediateVT, V); 260 } 261 262 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 263 // intermediate operands. 264 Val = DAG.getNode(IntermediateVT.isVector() ? 265 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 266 ValueVT, &Ops[0], NumIntermediates); 267 } 268 269 // There is now one part, held in Val. Correct it to match ValueVT. 270 EVT PartEVT = Val.getValueType(); 271 272 if (PartEVT == ValueVT) 273 return Val; 274 275 if (PartEVT.isVector()) { 276 // If the element type of the source/dest vectors are the same, but the 277 // parts vector has more elements than the value vector, then we have a 278 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 279 // elements we want. 280 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 281 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 282 "Cannot narrow, it would be a lossy transformation"); 283 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 284 DAG.getConstant(0, TLI.getVectorIdxTy())); 285 } 286 287 // Vector/Vector bitcast. 288 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 289 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 290 291 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 292 "Cannot handle this kind of promotion"); 293 // Promoted vector extract 294 bool Smaller = ValueVT.bitsLE(PartEVT); 295 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 296 DL, ValueVT, Val); 297 298 } 299 300 // Trivial bitcast if the types are the same size and the destination 301 // vector type is legal. 302 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 303 TLI.isTypeLegal(ValueVT)) 304 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 305 306 // Handle cases such as i8 -> <1 x i1> 307 if (ValueVT.getVectorNumElements() != 1) { 308 LLVMContext &Ctx = *DAG.getContext(); 309 Twine ErrMsg("non-trivial scalar-to-vector conversion"); 310 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 311 if (const CallInst *CI = dyn_cast<CallInst>(I)) 312 if (isa<InlineAsm>(CI->getCalledValue())) 313 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 314 Ctx.emitError(I, ErrMsg); 315 } else { 316 Ctx.emitError(ErrMsg); 317 } 318 return DAG.getUNDEF(ValueVT); 319 } 320 321 if (ValueVT.getVectorNumElements() == 1 && 322 ValueVT.getVectorElementType() != PartEVT) { 323 bool Smaller = ValueVT.bitsLE(PartEVT); 324 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 325 DL, ValueVT.getScalarType(), Val); 326 } 327 328 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 329 } 330 331 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 332 SDValue Val, SDValue *Parts, unsigned NumParts, 333 MVT PartVT, const Value *V); 334 335 /// getCopyToParts - Create a series of nodes that contain the specified value 336 /// split into legal parts. If the parts contain more bits than Val, then, for 337 /// integers, ExtendKind can be used to specify how to generate the extra bits. 338 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 339 SDValue Val, SDValue *Parts, unsigned NumParts, 340 MVT PartVT, const Value *V, 341 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 342 EVT ValueVT = Val.getValueType(); 343 344 // Handle the vector case separately. 345 if (ValueVT.isVector()) 346 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 347 348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 349 unsigned PartBits = PartVT.getSizeInBits(); 350 unsigned OrigNumParts = NumParts; 351 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 352 353 if (NumParts == 0) 354 return; 355 356 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 357 EVT PartEVT = PartVT; 358 if (PartEVT == ValueVT) { 359 assert(NumParts == 1 && "No-op copy with multiple parts!"); 360 Parts[0] = Val; 361 return; 362 } 363 364 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 365 // If the parts cover more bits than the value has, promote the value. 366 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 367 assert(NumParts == 1 && "Do not know what to promote to!"); 368 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 369 } else { 370 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 371 ValueVT.isInteger() && 372 "Unknown mismatch!"); 373 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 374 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 375 if (PartVT == MVT::x86mmx) 376 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 377 } 378 } else if (PartBits == ValueVT.getSizeInBits()) { 379 // Different types of the same size. 380 assert(NumParts == 1 && PartEVT != ValueVT); 381 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 382 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 383 // If the parts cover less bits than value has, truncate the value. 384 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 385 ValueVT.isInteger() && 386 "Unknown mismatch!"); 387 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 388 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 389 if (PartVT == MVT::x86mmx) 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } 392 393 // The value may have changed - recompute ValueVT. 394 ValueVT = Val.getValueType(); 395 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 396 "Failed to tile the value with PartVT!"); 397 398 if (NumParts == 1) { 399 if (PartEVT != ValueVT) { 400 LLVMContext &Ctx = *DAG.getContext(); 401 Twine ErrMsg("scalar-to-vector conversion failed"); 402 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 403 if (const CallInst *CI = dyn_cast<CallInst>(I)) 404 if (isa<InlineAsm>(CI->getCalledValue())) 405 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 406 Ctx.emitError(I, ErrMsg); 407 } else { 408 Ctx.emitError(ErrMsg); 409 } 410 } 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// areValueTypesLegal - Return true if types of all the values are legal. 630 bool areValueTypesLegal(const TargetLowering &TLI) { 631 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 632 MVT RegisterVT = RegVTs[Value]; 633 if (!TLI.isTypeLegal(RegisterVT)) 634 return false; 635 } 636 return true; 637 } 638 639 /// append - Add the specified values to this one. 640 void append(const RegsForValue &RHS) { 641 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 642 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 643 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 644 } 645 646 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 647 /// this value and returns the result as a ValueVTs value. This uses 648 /// Chain/Flag as the input and updates them for the output Chain/Flag. 649 /// If the Flag pointer is NULL, no flag is used. 650 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 651 SDLoc dl, 652 SDValue &Chain, SDValue *Flag, 653 const Value *V = 0) const; 654 655 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 656 /// specified value into the registers specified by this object. This uses 657 /// Chain/Flag as the input and updates them for the output Chain/Flag. 658 /// If the Flag pointer is NULL, no flag is used. 659 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 660 SDValue &Chain, SDValue *Flag, const Value *V) const; 661 662 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 663 /// operand list. This adds the code marker, matching input operand index 664 /// (if applicable), and includes the number of values added into it. 665 void AddInlineAsmOperands(unsigned Kind, 666 bool HasMatching, unsigned MatchingIdx, 667 SelectionDAG &DAG, 668 std::vector<SDValue> &Ops) const; 669 }; 670 } 671 672 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 673 /// this value and returns the result as a ValueVT value. This uses 674 /// Chain/Flag as the input and updates them for the output Chain/Flag. 675 /// If the Flag pointer is NULL, no flag is used. 676 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 677 FunctionLoweringInfo &FuncInfo, 678 SDLoc dl, 679 SDValue &Chain, SDValue *Flag, 680 const Value *V) const { 681 // A Value with type {} or [0 x %t] needs no registers. 682 if (ValueVTs.empty()) 683 return SDValue(); 684 685 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 686 687 // Assemble the legal parts into the final values. 688 SmallVector<SDValue, 4> Values(ValueVTs.size()); 689 SmallVector<SDValue, 8> Parts; 690 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 691 // Copy the legal parts from the registers. 692 EVT ValueVT = ValueVTs[Value]; 693 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 694 MVT RegisterVT = RegVTs[Value]; 695 696 Parts.resize(NumRegs); 697 for (unsigned i = 0; i != NumRegs; ++i) { 698 SDValue P; 699 if (Flag == 0) { 700 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 701 } else { 702 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 703 *Flag = P.getValue(2); 704 } 705 706 Chain = P.getValue(1); 707 Parts[i] = P; 708 709 // If the source register was virtual and if we know something about it, 710 // add an assert node. 711 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 712 !RegisterVT.isInteger() || RegisterVT.isVector()) 713 continue; 714 715 const FunctionLoweringInfo::LiveOutInfo *LOI = 716 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 717 if (!LOI) 718 continue; 719 720 unsigned RegSize = RegisterVT.getSizeInBits(); 721 unsigned NumSignBits = LOI->NumSignBits; 722 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 723 724 if (NumZeroBits == RegSize) { 725 // The current value is a zero. 726 // Explicitly express that as it would be easier for 727 // optimizations to kick in. 728 Parts[i] = DAG.getConstant(0, RegisterVT); 729 continue; 730 } 731 732 // FIXME: We capture more information than the dag can represent. For 733 // now, just use the tightest assertzext/assertsext possible. 734 bool isSExt = true; 735 EVT FromVT(MVT::Other); 736 if (NumSignBits == RegSize) 737 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 738 else if (NumZeroBits >= RegSize-1) 739 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 740 else if (NumSignBits > RegSize-8) 741 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 742 else if (NumZeroBits >= RegSize-8) 743 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 744 else if (NumSignBits > RegSize-16) 745 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 746 else if (NumZeroBits >= RegSize-16) 747 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 748 else if (NumSignBits > RegSize-32) 749 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 750 else if (NumZeroBits >= RegSize-32) 751 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 752 else 753 continue; 754 755 // Add an assertion node. 756 assert(FromVT != MVT::Other); 757 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 758 RegisterVT, P, DAG.getValueType(FromVT)); 759 } 760 761 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 762 NumRegs, RegisterVT, ValueVT, V); 763 Part += NumRegs; 764 Parts.clear(); 765 } 766 767 return DAG.getNode(ISD::MERGE_VALUES, dl, 768 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 769 &Values[0], ValueVTs.size()); 770 } 771 772 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 773 /// specified value into the registers specified by this object. This uses 774 /// Chain/Flag as the input and updates them for the output Chain/Flag. 775 /// If the Flag pointer is NULL, no flag is used. 776 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 777 SDValue &Chain, SDValue *Flag, 778 const Value *V) const { 779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 780 781 // Get the list of the values's legal parts. 782 unsigned NumRegs = Regs.size(); 783 SmallVector<SDValue, 8> Parts(NumRegs); 784 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 785 EVT ValueVT = ValueVTs[Value]; 786 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 787 MVT RegisterVT = RegVTs[Value]; 788 ISD::NodeType ExtendKind = 789 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 790 791 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 792 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 793 Part += NumParts; 794 } 795 796 // Copy the parts into the registers. 797 SmallVector<SDValue, 8> Chains(NumRegs); 798 for (unsigned i = 0; i != NumRegs; ++i) { 799 SDValue Part; 800 if (Flag == 0) { 801 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 802 } else { 803 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 804 *Flag = Part.getValue(1); 805 } 806 807 Chains[i] = Part.getValue(0); 808 } 809 810 if (NumRegs == 1 || Flag) 811 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 812 // flagged to it. That is the CopyToReg nodes and the user are considered 813 // a single scheduling unit. If we create a TokenFactor and return it as 814 // chain, then the TokenFactor is both a predecessor (operand) of the 815 // user as well as a successor (the TF operands are flagged to the user). 816 // c1, f1 = CopyToReg 817 // c2, f2 = CopyToReg 818 // c3 = TokenFactor c1, c2 819 // ... 820 // = op c3, ..., f2 821 Chain = Chains[NumRegs-1]; 822 else 823 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 824 } 825 826 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 827 /// operand list. This adds the code marker and includes the number of 828 /// values added into it. 829 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 830 unsigned MatchingIdx, 831 SelectionDAG &DAG, 832 std::vector<SDValue> &Ops) const { 833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 834 835 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 836 if (HasMatching) 837 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 838 else if (!Regs.empty() && 839 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 840 // Put the register class of the virtual registers in the flag word. That 841 // way, later passes can recompute register class constraints for inline 842 // assembly as well as normal instructions. 843 // Don't do this for tied operands that can use the regclass information 844 // from the def. 845 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 846 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 847 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 848 } 849 850 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 851 Ops.push_back(Res); 852 853 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 854 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 855 MVT RegisterVT = RegVTs[Value]; 856 for (unsigned i = 0; i != NumRegs; ++i) { 857 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 858 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 859 } 860 } 861 } 862 863 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 864 const TargetLibraryInfo *li) { 865 AA = &aa; 866 GFI = gfi; 867 LibInfo = li; 868 TD = DAG.getTarget().getDataLayout(); 869 Context = DAG.getContext(); 870 LPadToCallSiteMap.clear(); 871 } 872 873 /// clear - Clear out the current SelectionDAG and the associated 874 /// state and prepare this SelectionDAGBuilder object to be used 875 /// for a new block. This doesn't clear out information about 876 /// additional blocks that are needed to complete switch lowering 877 /// or PHI node updating; that information is cleared out as it is 878 /// consumed. 879 void SelectionDAGBuilder::clear() { 880 NodeMap.clear(); 881 UnusedArgNodeMap.clear(); 882 PendingLoads.clear(); 883 PendingExports.clear(); 884 CurInst = NULL; 885 HasTailCall = false; 886 } 887 888 /// clearDanglingDebugInfo - Clear the dangling debug information 889 /// map. This function is separated from the clear so that debug 890 /// information that is dangling in a basic block can be properly 891 /// resolved in a different basic block. This allows the 892 /// SelectionDAG to resolve dangling debug information attached 893 /// to PHI nodes. 894 void SelectionDAGBuilder::clearDanglingDebugInfo() { 895 DanglingDebugInfoMap.clear(); 896 } 897 898 /// getRoot - Return the current virtual root of the Selection DAG, 899 /// flushing any PendingLoad items. This must be done before emitting 900 /// a store or any other node that may need to be ordered after any 901 /// prior load instructions. 902 /// 903 SDValue SelectionDAGBuilder::getRoot() { 904 if (PendingLoads.empty()) 905 return DAG.getRoot(); 906 907 if (PendingLoads.size() == 1) { 908 SDValue Root = PendingLoads[0]; 909 DAG.setRoot(Root); 910 PendingLoads.clear(); 911 return Root; 912 } 913 914 // Otherwise, we have to make a token factor node. 915 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 916 &PendingLoads[0], PendingLoads.size()); 917 PendingLoads.clear(); 918 DAG.setRoot(Root); 919 return Root; 920 } 921 922 /// getControlRoot - Similar to getRoot, but instead of flushing all the 923 /// PendingLoad items, flush all the PendingExports items. It is necessary 924 /// to do this before emitting a terminator instruction. 925 /// 926 SDValue SelectionDAGBuilder::getControlRoot() { 927 SDValue Root = DAG.getRoot(); 928 929 if (PendingExports.empty()) 930 return Root; 931 932 // Turn all of the CopyToReg chains into one factored node. 933 if (Root.getOpcode() != ISD::EntryToken) { 934 unsigned i = 0, e = PendingExports.size(); 935 for (; i != e; ++i) { 936 assert(PendingExports[i].getNode()->getNumOperands() > 1); 937 if (PendingExports[i].getNode()->getOperand(0) == Root) 938 break; // Don't add the root if we already indirectly depend on it. 939 } 940 941 if (i == e) 942 PendingExports.push_back(Root); 943 } 944 945 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 946 &PendingExports[0], 947 PendingExports.size()); 948 PendingExports.clear(); 949 DAG.setRoot(Root); 950 return Root; 951 } 952 953 void SelectionDAGBuilder::visit(const Instruction &I) { 954 // Set up outgoing PHI node register values before emitting the terminator. 955 if (isa<TerminatorInst>(&I)) 956 HandlePHINodesInSuccessorBlocks(I.getParent()); 957 958 ++SDNodeOrder; 959 960 CurInst = &I; 961 962 visit(I.getOpcode(), I); 963 964 if (!isa<TerminatorInst>(&I) && !HasTailCall) 965 CopyToExportRegsIfNeeded(&I); 966 967 CurInst = NULL; 968 } 969 970 void SelectionDAGBuilder::visitPHI(const PHINode &) { 971 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 972 } 973 974 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 975 // Note: this doesn't use InstVisitor, because it has to work with 976 // ConstantExpr's in addition to instructions. 977 switch (Opcode) { 978 default: llvm_unreachable("Unknown instruction type encountered!"); 979 // Build the switch statement using the Instruction.def file. 980 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 981 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 982 #include "llvm/IR/Instruction.def" 983 } 984 } 985 986 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 987 // generate the debug data structures now that we've seen its definition. 988 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 989 SDValue Val) { 990 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 991 if (DDI.getDI()) { 992 const DbgValueInst *DI = DDI.getDI(); 993 DebugLoc dl = DDI.getdl(); 994 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 995 MDNode *Variable = DI->getVariable(); 996 uint64_t Offset = DI->getOffset(); 997 SDDbgValue *SDV; 998 if (Val.getNode()) { 999 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 1000 SDV = DAG.getDbgValue(Variable, Val.getNode(), 1001 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 1002 DAG.AddDbgValue(SDV, Val.getNode(), false); 1003 } 1004 } else 1005 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1006 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1007 } 1008 } 1009 1010 /// getValue - Return an SDValue for the given Value. 1011 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1012 // If we already have an SDValue for this value, use it. It's important 1013 // to do this first, so that we don't create a CopyFromReg if we already 1014 // have a regular SDValue. 1015 SDValue &N = NodeMap[V]; 1016 if (N.getNode()) return N; 1017 1018 // If there's a virtual register allocated and initialized for this 1019 // value, use it. 1020 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1021 if (It != FuncInfo.ValueMap.end()) { 1022 unsigned InReg = It->second; 1023 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1024 InReg, V->getType()); 1025 SDValue Chain = DAG.getEntryNode(); 1026 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1027 resolveDanglingDebugInfo(V, N); 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getNonRegisterValue - Return an SDValue for the given Value, but 1039 /// don't look in FuncInfo.ValueMap for a virtual register. 1040 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1041 // If we already have an SDValue for this value, use it. 1042 SDValue &N = NodeMap[V]; 1043 if (N.getNode()) return N; 1044 1045 // Otherwise create a new SDValue and remember it. 1046 SDValue Val = getValueImpl(V); 1047 NodeMap[V] = Val; 1048 resolveDanglingDebugInfo(V, Val); 1049 return Val; 1050 } 1051 1052 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1053 /// Create an SDValue for the given value. 1054 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1055 const TargetLowering *TLI = TM.getTargetLowering(); 1056 1057 if (const Constant *C = dyn_cast<Constant>(V)) { 1058 EVT VT = TLI->getValueType(V->getType(), true); 1059 1060 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1061 return DAG.getConstant(*CI, VT); 1062 1063 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1064 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1065 1066 if (isa<ConstantPointerNull>(C)) 1067 return DAG.getConstant(0, TLI->getPointerTy()); 1068 1069 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1070 return DAG.getConstantFP(*CFP, VT); 1071 1072 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1073 return DAG.getUNDEF(VT); 1074 1075 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1076 visit(CE->getOpcode(), *CE); 1077 SDValue N1 = NodeMap[V]; 1078 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1079 return N1; 1080 } 1081 1082 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1083 SmallVector<SDValue, 4> Constants; 1084 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1085 OI != OE; ++OI) { 1086 SDNode *Val = getValue(*OI).getNode(); 1087 // If the operand is an empty aggregate, there are no values. 1088 if (!Val) continue; 1089 // Add each leaf value from the operand to the Constants list 1090 // to form a flattened list of all the values. 1091 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1092 Constants.push_back(SDValue(Val, i)); 1093 } 1094 1095 return DAG.getMergeValues(&Constants[0], Constants.size(), 1096 getCurSDLoc()); 1097 } 1098 1099 if (const ConstantDataSequential *CDS = 1100 dyn_cast<ConstantDataSequential>(C)) { 1101 SmallVector<SDValue, 4> Ops; 1102 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1103 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1104 // Add each leaf value from the operand to the Constants list 1105 // to form a flattened list of all the values. 1106 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1107 Ops.push_back(SDValue(Val, i)); 1108 } 1109 1110 if (isa<ArrayType>(CDS->getType())) 1111 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1112 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1113 VT, &Ops[0], Ops.size()); 1114 } 1115 1116 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1117 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1118 "Unknown struct or array constant!"); 1119 1120 SmallVector<EVT, 4> ValueVTs; 1121 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1122 unsigned NumElts = ValueVTs.size(); 1123 if (NumElts == 0) 1124 return SDValue(); // empty struct 1125 SmallVector<SDValue, 4> Constants(NumElts); 1126 for (unsigned i = 0; i != NumElts; ++i) { 1127 EVT EltVT = ValueVTs[i]; 1128 if (isa<UndefValue>(C)) 1129 Constants[i] = DAG.getUNDEF(EltVT); 1130 else if (EltVT.isFloatingPoint()) 1131 Constants[i] = DAG.getConstantFP(0, EltVT); 1132 else 1133 Constants[i] = DAG.getConstant(0, EltVT); 1134 } 1135 1136 return DAG.getMergeValues(&Constants[0], NumElts, 1137 getCurSDLoc()); 1138 } 1139 1140 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1141 return DAG.getBlockAddress(BA, VT); 1142 1143 VectorType *VecTy = cast<VectorType>(V->getType()); 1144 unsigned NumElements = VecTy->getNumElements(); 1145 1146 // Now that we know the number and type of the elements, get that number of 1147 // elements into the Ops array based on what kind of constant it is. 1148 SmallVector<SDValue, 16> Ops; 1149 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1150 for (unsigned i = 0; i != NumElements; ++i) 1151 Ops.push_back(getValue(CV->getOperand(i))); 1152 } else { 1153 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1154 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1155 1156 SDValue Op; 1157 if (EltVT.isFloatingPoint()) 1158 Op = DAG.getConstantFP(0, EltVT); 1159 else 1160 Op = DAG.getConstant(0, EltVT); 1161 Ops.assign(NumElements, Op); 1162 } 1163 1164 // Create a BUILD_VECTOR node. 1165 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1166 VT, &Ops[0], Ops.size()); 1167 } 1168 1169 // If this is a static alloca, generate it as the frameindex instead of 1170 // computation. 1171 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1172 DenseMap<const AllocaInst*, int>::iterator SI = 1173 FuncInfo.StaticAllocaMap.find(AI); 1174 if (SI != FuncInfo.StaticAllocaMap.end()) 1175 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1176 } 1177 1178 // If this is an instruction which fast-isel has deferred, select it now. 1179 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1180 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1181 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1182 SDValue Chain = DAG.getEntryNode(); 1183 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1184 } 1185 1186 llvm_unreachable("Can't get register for value!"); 1187 } 1188 1189 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1190 const TargetLowering *TLI = TM.getTargetLowering(); 1191 SDValue Chain = getControlRoot(); 1192 SmallVector<ISD::OutputArg, 8> Outs; 1193 SmallVector<SDValue, 8> OutVals; 1194 1195 if (!FuncInfo.CanLowerReturn) { 1196 unsigned DemoteReg = FuncInfo.DemoteRegister; 1197 const Function *F = I.getParent()->getParent(); 1198 1199 // Emit a store of the return value through the virtual register. 1200 // Leave Outs empty so that LowerReturn won't try to load return 1201 // registers the usual way. 1202 SmallVector<EVT, 1> PtrValueVTs; 1203 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1204 PtrValueVTs); 1205 1206 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1207 SDValue RetOp = getValue(I.getOperand(0)); 1208 1209 SmallVector<EVT, 4> ValueVTs; 1210 SmallVector<uint64_t, 4> Offsets; 1211 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1212 unsigned NumValues = ValueVTs.size(); 1213 1214 SmallVector<SDValue, 4> Chains(NumValues); 1215 for (unsigned i = 0; i != NumValues; ++i) { 1216 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1217 RetPtr.getValueType(), RetPtr, 1218 DAG.getIntPtrConstant(Offsets[i])); 1219 Chains[i] = 1220 DAG.getStore(Chain, getCurSDLoc(), 1221 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1222 // FIXME: better loc info would be nice. 1223 Add, MachinePointerInfo(), false, false, 0); 1224 } 1225 1226 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1227 MVT::Other, &Chains[0], NumValues); 1228 } else if (I.getNumOperands() != 0) { 1229 SmallVector<EVT, 4> ValueVTs; 1230 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1231 unsigned NumValues = ValueVTs.size(); 1232 if (NumValues) { 1233 SDValue RetOp = getValue(I.getOperand(0)); 1234 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1235 EVT VT = ValueVTs[j]; 1236 1237 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1238 1239 const Function *F = I.getParent()->getParent(); 1240 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1241 Attribute::SExt)) 1242 ExtendKind = ISD::SIGN_EXTEND; 1243 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1244 Attribute::ZExt)) 1245 ExtendKind = ISD::ZERO_EXTEND; 1246 1247 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1248 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1249 1250 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1251 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1252 SmallVector<SDValue, 4> Parts(NumParts); 1253 getCopyToParts(DAG, getCurSDLoc(), 1254 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1255 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1256 1257 // 'inreg' on function refers to return value 1258 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1259 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1260 Attribute::InReg)) 1261 Flags.setInReg(); 1262 1263 // Propagate extension type if any 1264 if (ExtendKind == ISD::SIGN_EXTEND) 1265 Flags.setSExt(); 1266 else if (ExtendKind == ISD::ZERO_EXTEND) 1267 Flags.setZExt(); 1268 1269 for (unsigned i = 0; i < NumParts; ++i) { 1270 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1271 /*isfixed=*/true, 0, 0)); 1272 OutVals.push_back(Parts[i]); 1273 } 1274 } 1275 } 1276 } 1277 1278 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1279 CallingConv::ID CallConv = 1280 DAG.getMachineFunction().getFunction()->getCallingConv(); 1281 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1282 Outs, OutVals, getCurSDLoc(), 1283 DAG); 1284 1285 // Verify that the target's LowerReturn behaved as expected. 1286 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1287 "LowerReturn didn't return a valid chain!"); 1288 1289 // Update the DAG with the new chain value resulting from return lowering. 1290 DAG.setRoot(Chain); 1291 } 1292 1293 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1294 /// created for it, emit nodes to copy the value into the virtual 1295 /// registers. 1296 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1297 // Skip empty types 1298 if (V->getType()->isEmptyTy()) 1299 return; 1300 1301 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1302 if (VMI != FuncInfo.ValueMap.end()) { 1303 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1304 CopyValueToVirtualRegister(V, VMI->second); 1305 } 1306 } 1307 1308 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1309 /// the current basic block, add it to ValueMap now so that we'll get a 1310 /// CopyTo/FromReg. 1311 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1312 // No need to export constants. 1313 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1314 1315 // Already exported? 1316 if (FuncInfo.isExportedInst(V)) return; 1317 1318 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1319 CopyValueToVirtualRegister(V, Reg); 1320 } 1321 1322 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1323 const BasicBlock *FromBB) { 1324 // The operands of the setcc have to be in this block. We don't know 1325 // how to export them from some other block. 1326 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1327 // Can export from current BB. 1328 if (VI->getParent() == FromBB) 1329 return true; 1330 1331 // Is already exported, noop. 1332 return FuncInfo.isExportedInst(V); 1333 } 1334 1335 // If this is an argument, we can export it if the BB is the entry block or 1336 // if it is already exported. 1337 if (isa<Argument>(V)) { 1338 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1339 return true; 1340 1341 // Otherwise, can only export this if it is already exported. 1342 return FuncInfo.isExportedInst(V); 1343 } 1344 1345 // Otherwise, constants can always be exported. 1346 return true; 1347 } 1348 1349 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1350 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1351 const MachineBasicBlock *Dst) const { 1352 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1353 if (!BPI) 1354 return 0; 1355 const BasicBlock *SrcBB = Src->getBasicBlock(); 1356 const BasicBlock *DstBB = Dst->getBasicBlock(); 1357 return BPI->getEdgeWeight(SrcBB, DstBB); 1358 } 1359 1360 void SelectionDAGBuilder:: 1361 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1362 uint32_t Weight /* = 0 */) { 1363 if (!Weight) 1364 Weight = getEdgeWeight(Src, Dst); 1365 Src->addSuccessor(Dst, Weight); 1366 } 1367 1368 1369 static bool InBlock(const Value *V, const BasicBlock *BB) { 1370 if (const Instruction *I = dyn_cast<Instruction>(V)) 1371 return I->getParent() == BB; 1372 return true; 1373 } 1374 1375 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1376 /// This function emits a branch and is used at the leaves of an OR or an 1377 /// AND operator tree. 1378 /// 1379 void 1380 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1381 MachineBasicBlock *TBB, 1382 MachineBasicBlock *FBB, 1383 MachineBasicBlock *CurBB, 1384 MachineBasicBlock *SwitchBB) { 1385 const BasicBlock *BB = CurBB->getBasicBlock(); 1386 1387 // If the leaf of the tree is a comparison, merge the condition into 1388 // the caseblock. 1389 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1390 // The operands of the cmp have to be in this block. We don't know 1391 // how to export them from some other block. If this is the first block 1392 // of the sequence, no exporting is needed. 1393 if (CurBB == SwitchBB || 1394 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1395 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1396 ISD::CondCode Condition; 1397 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1398 Condition = getICmpCondCode(IC->getPredicate()); 1399 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1400 Condition = getFCmpCondCode(FC->getPredicate()); 1401 if (TM.Options.NoNaNsFPMath) 1402 Condition = getFCmpCodeWithoutNaN(Condition); 1403 } else { 1404 Condition = ISD::SETEQ; // silence warning. 1405 llvm_unreachable("Unknown compare instruction"); 1406 } 1407 1408 CaseBlock CB(Condition, BOp->getOperand(0), 1409 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1410 SwitchCases.push_back(CB); 1411 return; 1412 } 1413 } 1414 1415 // Create a CaseBlock record representing this branch. 1416 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1417 NULL, TBB, FBB, CurBB); 1418 SwitchCases.push_back(CB); 1419 } 1420 1421 /// FindMergedConditions - If Cond is an expression like 1422 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1423 MachineBasicBlock *TBB, 1424 MachineBasicBlock *FBB, 1425 MachineBasicBlock *CurBB, 1426 MachineBasicBlock *SwitchBB, 1427 unsigned Opc) { 1428 // If this node is not part of the or/and tree, emit it as a branch. 1429 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1430 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1431 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1432 BOp->getParent() != CurBB->getBasicBlock() || 1433 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1434 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1435 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1436 return; 1437 } 1438 1439 // Create TmpBB after CurBB. 1440 MachineFunction::iterator BBI = CurBB; 1441 MachineFunction &MF = DAG.getMachineFunction(); 1442 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1443 CurBB->getParent()->insert(++BBI, TmpBB); 1444 1445 if (Opc == Instruction::Or) { 1446 // Codegen X | Y as: 1447 // jmp_if_X TBB 1448 // jmp TmpBB 1449 // TmpBB: 1450 // jmp_if_Y TBB 1451 // jmp FBB 1452 // 1453 1454 // Emit the LHS condition. 1455 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1456 1457 // Emit the RHS condition into TmpBB. 1458 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1459 } else { 1460 assert(Opc == Instruction::And && "Unknown merge op!"); 1461 // Codegen X & Y as: 1462 // jmp_if_X TmpBB 1463 // jmp FBB 1464 // TmpBB: 1465 // jmp_if_Y TBB 1466 // jmp FBB 1467 // 1468 // This requires creation of TmpBB after CurBB. 1469 1470 // Emit the LHS condition. 1471 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1472 1473 // Emit the RHS condition into TmpBB. 1474 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1475 } 1476 } 1477 1478 /// If the set of cases should be emitted as a series of branches, return true. 1479 /// If we should emit this as a bunch of and/or'd together conditions, return 1480 /// false. 1481 bool 1482 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1483 if (Cases.size() != 2) return true; 1484 1485 // If this is two comparisons of the same values or'd or and'd together, they 1486 // will get folded into a single comparison, so don't emit two blocks. 1487 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1488 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1489 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1490 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1491 return false; 1492 } 1493 1494 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1495 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1496 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1497 Cases[0].CC == Cases[1].CC && 1498 isa<Constant>(Cases[0].CmpRHS) && 1499 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1500 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1501 return false; 1502 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1503 return false; 1504 } 1505 1506 return true; 1507 } 1508 1509 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1510 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1511 1512 // Update machine-CFG edges. 1513 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1514 1515 // Figure out which block is immediately after the current one. 1516 MachineBasicBlock *NextBlock = 0; 1517 MachineFunction::iterator BBI = BrMBB; 1518 if (++BBI != FuncInfo.MF->end()) 1519 NextBlock = BBI; 1520 1521 if (I.isUnconditional()) { 1522 // Update machine-CFG edges. 1523 BrMBB->addSuccessor(Succ0MBB); 1524 1525 // If this is not a fall-through branch, emit the branch. 1526 if (Succ0MBB != NextBlock) 1527 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1528 MVT::Other, getControlRoot(), 1529 DAG.getBasicBlock(Succ0MBB))); 1530 1531 return; 1532 } 1533 1534 // If this condition is one of the special cases we handle, do special stuff 1535 // now. 1536 const Value *CondVal = I.getCondition(); 1537 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1538 1539 // If this is a series of conditions that are or'd or and'd together, emit 1540 // this as a sequence of branches instead of setcc's with and/or operations. 1541 // As long as jumps are not expensive, this should improve performance. 1542 // For example, instead of something like: 1543 // cmp A, B 1544 // C = seteq 1545 // cmp D, E 1546 // F = setle 1547 // or C, F 1548 // jnz foo 1549 // Emit: 1550 // cmp A, B 1551 // je foo 1552 // cmp D, E 1553 // jle foo 1554 // 1555 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1556 if (!TM.getTargetLowering()->isJumpExpensive() && 1557 BOp->hasOneUse() && 1558 (BOp->getOpcode() == Instruction::And || 1559 BOp->getOpcode() == Instruction::Or)) { 1560 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1561 BOp->getOpcode()); 1562 // If the compares in later blocks need to use values not currently 1563 // exported from this block, export them now. This block should always 1564 // be the first entry. 1565 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1566 1567 // Allow some cases to be rejected. 1568 if (ShouldEmitAsBranches(SwitchCases)) { 1569 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1570 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1571 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1572 } 1573 1574 // Emit the branch for this block. 1575 visitSwitchCase(SwitchCases[0], BrMBB); 1576 SwitchCases.erase(SwitchCases.begin()); 1577 return; 1578 } 1579 1580 // Okay, we decided not to do this, remove any inserted MBB's and clear 1581 // SwitchCases. 1582 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1583 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1584 1585 SwitchCases.clear(); 1586 } 1587 } 1588 1589 // Create a CaseBlock record representing this branch. 1590 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1591 NULL, Succ0MBB, Succ1MBB, BrMBB); 1592 1593 // Use visitSwitchCase to actually insert the fast branch sequence for this 1594 // cond branch. 1595 visitSwitchCase(CB, BrMBB); 1596 } 1597 1598 /// visitSwitchCase - Emits the necessary code to represent a single node in 1599 /// the binary search tree resulting from lowering a switch instruction. 1600 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1601 MachineBasicBlock *SwitchBB) { 1602 SDValue Cond; 1603 SDValue CondLHS = getValue(CB.CmpLHS); 1604 SDLoc dl = getCurSDLoc(); 1605 1606 // Build the setcc now. 1607 if (CB.CmpMHS == NULL) { 1608 // Fold "(X == true)" to X and "(X == false)" to !X to 1609 // handle common cases produced by branch lowering. 1610 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1611 CB.CC == ISD::SETEQ) 1612 Cond = CondLHS; 1613 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1614 CB.CC == ISD::SETEQ) { 1615 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1616 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1617 } else 1618 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1619 } else { 1620 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1621 1622 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1623 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1624 1625 SDValue CmpOp = getValue(CB.CmpMHS); 1626 EVT VT = CmpOp.getValueType(); 1627 1628 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1629 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1630 ISD::SETLE); 1631 } else { 1632 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1633 VT, CmpOp, DAG.getConstant(Low, VT)); 1634 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1635 DAG.getConstant(High-Low, VT), ISD::SETULE); 1636 } 1637 } 1638 1639 // Update successor info 1640 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1641 // TrueBB and FalseBB are always different unless the incoming IR is 1642 // degenerate. This only happens when running llc on weird IR. 1643 if (CB.TrueBB != CB.FalseBB) 1644 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1645 1646 // Set NextBlock to be the MBB immediately after the current one, if any. 1647 // This is used to avoid emitting unnecessary branches to the next block. 1648 MachineBasicBlock *NextBlock = 0; 1649 MachineFunction::iterator BBI = SwitchBB; 1650 if (++BBI != FuncInfo.MF->end()) 1651 NextBlock = BBI; 1652 1653 // If the lhs block is the next block, invert the condition so that we can 1654 // fall through to the lhs instead of the rhs block. 1655 if (CB.TrueBB == NextBlock) { 1656 std::swap(CB.TrueBB, CB.FalseBB); 1657 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1658 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1659 } 1660 1661 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1662 MVT::Other, getControlRoot(), Cond, 1663 DAG.getBasicBlock(CB.TrueBB)); 1664 1665 // Insert the false branch. Do this even if it's a fall through branch, 1666 // this makes it easier to do DAG optimizations which require inverting 1667 // the branch condition. 1668 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1669 DAG.getBasicBlock(CB.FalseBB)); 1670 1671 DAG.setRoot(BrCond); 1672 } 1673 1674 /// visitJumpTable - Emit JumpTable node in the current MBB 1675 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1676 // Emit the code for the jump table 1677 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1678 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1679 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1680 JT.Reg, PTy); 1681 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1682 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1683 MVT::Other, Index.getValue(1), 1684 Table, Index); 1685 DAG.setRoot(BrJumpTable); 1686 } 1687 1688 /// visitJumpTableHeader - This function emits necessary code to produce index 1689 /// in the JumpTable from switch case. 1690 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1691 JumpTableHeader &JTH, 1692 MachineBasicBlock *SwitchBB) { 1693 // Subtract the lowest switch case value from the value being switched on and 1694 // conditional branch to default mbb if the result is greater than the 1695 // difference between smallest and largest cases. 1696 SDValue SwitchOp = getValue(JTH.SValue); 1697 EVT VT = SwitchOp.getValueType(); 1698 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1699 DAG.getConstant(JTH.First, VT)); 1700 1701 // The SDNode we just created, which holds the value being switched on minus 1702 // the smallest case value, needs to be copied to a virtual register so it 1703 // can be used as an index into the jump table in a subsequent basic block. 1704 // This value may be smaller or larger than the target's pointer type, and 1705 // therefore require extension or truncating. 1706 const TargetLowering *TLI = TM.getTargetLowering(); 1707 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1708 1709 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1710 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1711 JumpTableReg, SwitchOp); 1712 JT.Reg = JumpTableReg; 1713 1714 // Emit the range check for the jump table, and branch to the default block 1715 // for the switch statement if the value being switched on exceeds the largest 1716 // case in the switch. 1717 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1718 TLI->getSetCCResultType(*DAG.getContext(), 1719 Sub.getValueType()), 1720 Sub, 1721 DAG.getConstant(JTH.Last - JTH.First,VT), 1722 ISD::SETUGT); 1723 1724 // Set NextBlock to be the MBB immediately after the current one, if any. 1725 // This is used to avoid emitting unnecessary branches to the next block. 1726 MachineBasicBlock *NextBlock = 0; 1727 MachineFunction::iterator BBI = SwitchBB; 1728 1729 if (++BBI != FuncInfo.MF->end()) 1730 NextBlock = BBI; 1731 1732 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1733 MVT::Other, CopyTo, CMP, 1734 DAG.getBasicBlock(JT.Default)); 1735 1736 if (JT.MBB != NextBlock) 1737 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1738 DAG.getBasicBlock(JT.MBB)); 1739 1740 DAG.setRoot(BrCond); 1741 } 1742 1743 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1744 /// tail spliced into a stack protector check success bb. 1745 /// 1746 /// For a high level explanation of how this fits into the stack protector 1747 /// generation see the comment on the declaration of class 1748 /// StackProtectorDescriptor. 1749 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1750 MachineBasicBlock *ParentBB) { 1751 1752 // First create the loads to the guard/stack slot for the comparison. 1753 const TargetLowering *TLI = TM.getTargetLowering(); 1754 EVT PtrTy = TLI->getPointerTy(); 1755 1756 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1757 int FI = MFI->getStackProtectorIndex(); 1758 1759 const Value *IRGuard = SPD.getGuard(); 1760 SDValue GuardPtr = getValue(IRGuard); 1761 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1762 1763 unsigned Align = 1764 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1765 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1766 GuardPtr, MachinePointerInfo(IRGuard, 0), 1767 true, false, false, Align); 1768 1769 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1770 StackSlotPtr, 1771 MachinePointerInfo::getFixedStack(FI), 1772 true, false, false, Align); 1773 1774 // Perform the comparison via a subtract/getsetcc. 1775 EVT VT = Guard.getValueType(); 1776 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1777 1778 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1779 TLI->getSetCCResultType(*DAG.getContext(), 1780 Sub.getValueType()), 1781 Sub, DAG.getConstant(0, VT), 1782 ISD::SETNE); 1783 1784 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1785 // branch to failure MBB. 1786 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1787 MVT::Other, StackSlot.getOperand(0), 1788 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1789 // Otherwise branch to success MBB. 1790 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1791 MVT::Other, BrCond, 1792 DAG.getBasicBlock(SPD.getSuccessMBB())); 1793 1794 DAG.setRoot(Br); 1795 } 1796 1797 /// Codegen the failure basic block for a stack protector check. 1798 /// 1799 /// A failure stack protector machine basic block consists simply of a call to 1800 /// __stack_chk_fail(). 1801 /// 1802 /// For a high level explanation of how this fits into the stack protector 1803 /// generation see the comment on the declaration of class 1804 /// StackProtectorDescriptor. 1805 void 1806 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1807 const TargetLowering *TLI = TM.getTargetLowering(); 1808 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1809 MVT::isVoid, 0, 0, false, getCurSDLoc(), 1810 false, false).second; 1811 DAG.setRoot(Chain); 1812 } 1813 1814 /// visitBitTestHeader - This function emits necessary code to produce value 1815 /// suitable for "bit tests" 1816 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1817 MachineBasicBlock *SwitchBB) { 1818 // Subtract the minimum value 1819 SDValue SwitchOp = getValue(B.SValue); 1820 EVT VT = SwitchOp.getValueType(); 1821 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1822 DAG.getConstant(B.First, VT)); 1823 1824 // Check range 1825 const TargetLowering *TLI = TM.getTargetLowering(); 1826 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1827 TLI->getSetCCResultType(*DAG.getContext(), 1828 Sub.getValueType()), 1829 Sub, DAG.getConstant(B.Range, VT), 1830 ISD::SETUGT); 1831 1832 // Determine the type of the test operands. 1833 bool UsePtrType = false; 1834 if (!TLI->isTypeLegal(VT)) 1835 UsePtrType = true; 1836 else { 1837 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1838 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1839 // Switch table case range are encoded into series of masks. 1840 // Just use pointer type, it's guaranteed to fit. 1841 UsePtrType = true; 1842 break; 1843 } 1844 } 1845 if (UsePtrType) { 1846 VT = TLI->getPointerTy(); 1847 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1848 } 1849 1850 B.RegVT = VT.getSimpleVT(); 1851 B.Reg = FuncInfo.CreateReg(B.RegVT); 1852 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1853 B.Reg, Sub); 1854 1855 // Set NextBlock to be the MBB immediately after the current one, if any. 1856 // This is used to avoid emitting unnecessary branches to the next block. 1857 MachineBasicBlock *NextBlock = 0; 1858 MachineFunction::iterator BBI = SwitchBB; 1859 if (++BBI != FuncInfo.MF->end()) 1860 NextBlock = BBI; 1861 1862 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1863 1864 addSuccessorWithWeight(SwitchBB, B.Default); 1865 addSuccessorWithWeight(SwitchBB, MBB); 1866 1867 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1868 MVT::Other, CopyTo, RangeCmp, 1869 DAG.getBasicBlock(B.Default)); 1870 1871 if (MBB != NextBlock) 1872 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1873 DAG.getBasicBlock(MBB)); 1874 1875 DAG.setRoot(BrRange); 1876 } 1877 1878 /// visitBitTestCase - this function produces one "bit test" 1879 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1880 MachineBasicBlock* NextMBB, 1881 uint32_t BranchWeightToNext, 1882 unsigned Reg, 1883 BitTestCase &B, 1884 MachineBasicBlock *SwitchBB) { 1885 MVT VT = BB.RegVT; 1886 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1887 Reg, VT); 1888 SDValue Cmp; 1889 unsigned PopCount = CountPopulation_64(B.Mask); 1890 const TargetLowering *TLI = TM.getTargetLowering(); 1891 if (PopCount == 1) { 1892 // Testing for a single bit; just compare the shift count with what it 1893 // would need to be to shift a 1 bit in that position. 1894 Cmp = DAG.getSetCC(getCurSDLoc(), 1895 TLI->getSetCCResultType(*DAG.getContext(), VT), 1896 ShiftOp, 1897 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1898 ISD::SETEQ); 1899 } else if (PopCount == BB.Range) { 1900 // There is only one zero bit in the range, test for it directly. 1901 Cmp = DAG.getSetCC(getCurSDLoc(), 1902 TLI->getSetCCResultType(*DAG.getContext(), VT), 1903 ShiftOp, 1904 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1905 ISD::SETNE); 1906 } else { 1907 // Make desired shift 1908 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1909 DAG.getConstant(1, VT), ShiftOp); 1910 1911 // Emit bit tests and jumps 1912 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1913 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1914 Cmp = DAG.getSetCC(getCurSDLoc(), 1915 TLI->getSetCCResultType(*DAG.getContext(), VT), 1916 AndOp, DAG.getConstant(0, VT), 1917 ISD::SETNE); 1918 } 1919 1920 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1921 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1922 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1923 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1924 1925 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1926 MVT::Other, getControlRoot(), 1927 Cmp, DAG.getBasicBlock(B.TargetBB)); 1928 1929 // Set NextBlock to be the MBB immediately after the current one, if any. 1930 // This is used to avoid emitting unnecessary branches to the next block. 1931 MachineBasicBlock *NextBlock = 0; 1932 MachineFunction::iterator BBI = SwitchBB; 1933 if (++BBI != FuncInfo.MF->end()) 1934 NextBlock = BBI; 1935 1936 if (NextMBB != NextBlock) 1937 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1938 DAG.getBasicBlock(NextMBB)); 1939 1940 DAG.setRoot(BrAnd); 1941 } 1942 1943 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1944 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1945 1946 // Retrieve successors. 1947 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1948 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1949 1950 const Value *Callee(I.getCalledValue()); 1951 const Function *Fn = dyn_cast<Function>(Callee); 1952 if (isa<InlineAsm>(Callee)) 1953 visitInlineAsm(&I); 1954 else if (Fn && Fn->isIntrinsic()) { 1955 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1956 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1957 } else 1958 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1959 1960 // If the value of the invoke is used outside of its defining block, make it 1961 // available as a virtual register. 1962 CopyToExportRegsIfNeeded(&I); 1963 1964 // Update successor info 1965 addSuccessorWithWeight(InvokeMBB, Return); 1966 addSuccessorWithWeight(InvokeMBB, LandingPad); 1967 1968 // Drop into normal successor. 1969 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1970 MVT::Other, getControlRoot(), 1971 DAG.getBasicBlock(Return))); 1972 } 1973 1974 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1975 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1976 } 1977 1978 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1979 assert(FuncInfo.MBB->isLandingPad() && 1980 "Call to landingpad not in landing pad!"); 1981 1982 MachineBasicBlock *MBB = FuncInfo.MBB; 1983 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1984 AddLandingPadInfo(LP, MMI, MBB); 1985 1986 // If there aren't registers to copy the values into (e.g., during SjLj 1987 // exceptions), then don't bother to create these DAG nodes. 1988 const TargetLowering *TLI = TM.getTargetLowering(); 1989 if (TLI->getExceptionPointerRegister() == 0 && 1990 TLI->getExceptionSelectorRegister() == 0) 1991 return; 1992 1993 SmallVector<EVT, 2> ValueVTs; 1994 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 1995 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 1996 1997 // Get the two live-in registers as SDValues. The physregs have already been 1998 // copied into virtual registers. 1999 SDValue Ops[2]; 2000 Ops[0] = DAG.getZExtOrTrunc( 2001 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2002 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2003 getCurSDLoc(), ValueVTs[0]); 2004 Ops[1] = DAG.getZExtOrTrunc( 2005 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2006 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2007 getCurSDLoc(), ValueVTs[1]); 2008 2009 // Merge into one. 2010 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2011 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 2012 &Ops[0], 2); 2013 setValue(&LP, Res); 2014 } 2015 2016 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2017 /// small case ranges). 2018 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2019 CaseRecVector& WorkList, 2020 const Value* SV, 2021 MachineBasicBlock *Default, 2022 MachineBasicBlock *SwitchBB) { 2023 // Size is the number of Cases represented by this range. 2024 size_t Size = CR.Range.second - CR.Range.first; 2025 if (Size > 3) 2026 return false; 2027 2028 // Get the MachineFunction which holds the current MBB. This is used when 2029 // inserting any additional MBBs necessary to represent the switch. 2030 MachineFunction *CurMF = FuncInfo.MF; 2031 2032 // Figure out which block is immediately after the current one. 2033 MachineBasicBlock *NextBlock = 0; 2034 MachineFunction::iterator BBI = CR.CaseBB; 2035 2036 if (++BBI != FuncInfo.MF->end()) 2037 NextBlock = BBI; 2038 2039 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2040 // If any two of the cases has the same destination, and if one value 2041 // is the same as the other, but has one bit unset that the other has set, 2042 // use bit manipulation to do two compares at once. For example: 2043 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2044 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2045 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2046 if (Size == 2 && CR.CaseBB == SwitchBB) { 2047 Case &Small = *CR.Range.first; 2048 Case &Big = *(CR.Range.second-1); 2049 2050 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2051 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2052 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2053 2054 // Check that there is only one bit different. 2055 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2056 (SmallValue | BigValue) == BigValue) { 2057 // Isolate the common bit. 2058 APInt CommonBit = BigValue & ~SmallValue; 2059 assert((SmallValue | CommonBit) == BigValue && 2060 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2061 2062 SDValue CondLHS = getValue(SV); 2063 EVT VT = CondLHS.getValueType(); 2064 SDLoc DL = getCurSDLoc(); 2065 2066 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2067 DAG.getConstant(CommonBit, VT)); 2068 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2069 Or, DAG.getConstant(BigValue, VT), 2070 ISD::SETEQ); 2071 2072 // Update successor info. 2073 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2074 addSuccessorWithWeight(SwitchBB, Small.BB, 2075 Small.ExtraWeight + Big.ExtraWeight); 2076 addSuccessorWithWeight(SwitchBB, Default, 2077 // The default destination is the first successor in IR. 2078 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2079 2080 // Insert the true branch. 2081 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2082 getControlRoot(), Cond, 2083 DAG.getBasicBlock(Small.BB)); 2084 2085 // Insert the false branch. 2086 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2087 DAG.getBasicBlock(Default)); 2088 2089 DAG.setRoot(BrCond); 2090 return true; 2091 } 2092 } 2093 } 2094 2095 // Order cases by weight so the most likely case will be checked first. 2096 uint32_t UnhandledWeights = 0; 2097 if (BPI) { 2098 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2099 uint32_t IWeight = I->ExtraWeight; 2100 UnhandledWeights += IWeight; 2101 for (CaseItr J = CR.Range.first; J < I; ++J) { 2102 uint32_t JWeight = J->ExtraWeight; 2103 if (IWeight > JWeight) 2104 std::swap(*I, *J); 2105 } 2106 } 2107 } 2108 // Rearrange the case blocks so that the last one falls through if possible. 2109 Case &BackCase = *(CR.Range.second-1); 2110 if (Size > 1 && 2111 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2112 // The last case block won't fall through into 'NextBlock' if we emit the 2113 // branches in this order. See if rearranging a case value would help. 2114 // We start at the bottom as it's the case with the least weight. 2115 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2116 if (I->BB == NextBlock) { 2117 std::swap(*I, BackCase); 2118 break; 2119 } 2120 } 2121 2122 // Create a CaseBlock record representing a conditional branch to 2123 // the Case's target mbb if the value being switched on SV is equal 2124 // to C. 2125 MachineBasicBlock *CurBlock = CR.CaseBB; 2126 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2127 MachineBasicBlock *FallThrough; 2128 if (I != E-1) { 2129 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2130 CurMF->insert(BBI, FallThrough); 2131 2132 // Put SV in a virtual register to make it available from the new blocks. 2133 ExportFromCurrentBlock(SV); 2134 } else { 2135 // If the last case doesn't match, go to the default block. 2136 FallThrough = Default; 2137 } 2138 2139 const Value *RHS, *LHS, *MHS; 2140 ISD::CondCode CC; 2141 if (I->High == I->Low) { 2142 // This is just small small case range :) containing exactly 1 case 2143 CC = ISD::SETEQ; 2144 LHS = SV; RHS = I->High; MHS = NULL; 2145 } else { 2146 CC = ISD::SETLE; 2147 LHS = I->Low; MHS = SV; RHS = I->High; 2148 } 2149 2150 // The false weight should be sum of all un-handled cases. 2151 UnhandledWeights -= I->ExtraWeight; 2152 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2153 /* me */ CurBlock, 2154 /* trueweight */ I->ExtraWeight, 2155 /* falseweight */ UnhandledWeights); 2156 2157 // If emitting the first comparison, just call visitSwitchCase to emit the 2158 // code into the current block. Otherwise, push the CaseBlock onto the 2159 // vector to be later processed by SDISel, and insert the node's MBB 2160 // before the next MBB. 2161 if (CurBlock == SwitchBB) 2162 visitSwitchCase(CB, SwitchBB); 2163 else 2164 SwitchCases.push_back(CB); 2165 2166 CurBlock = FallThrough; 2167 } 2168 2169 return true; 2170 } 2171 2172 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2173 return TLI.supportJumpTables() && 2174 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2175 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2176 } 2177 2178 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2179 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2180 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2181 return (LastExt - FirstExt + 1ULL); 2182 } 2183 2184 /// handleJTSwitchCase - Emit jumptable for current switch case range 2185 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2186 CaseRecVector &WorkList, 2187 const Value *SV, 2188 MachineBasicBlock *Default, 2189 MachineBasicBlock *SwitchBB) { 2190 Case& FrontCase = *CR.Range.first; 2191 Case& BackCase = *(CR.Range.second-1); 2192 2193 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2194 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2195 2196 APInt TSize(First.getBitWidth(), 0); 2197 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2198 TSize += I->size(); 2199 2200 const TargetLowering *TLI = TM.getTargetLowering(); 2201 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2202 return false; 2203 2204 APInt Range = ComputeRange(First, Last); 2205 // The density is TSize / Range. Require at least 40%. 2206 // It should not be possible for IntTSize to saturate for sane code, but make 2207 // sure we handle Range saturation correctly. 2208 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2209 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2210 if (IntTSize * 10 < IntRange * 4) 2211 return false; 2212 2213 DEBUG(dbgs() << "Lowering jump table\n" 2214 << "First entry: " << First << ". Last entry: " << Last << '\n' 2215 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2216 2217 // Get the MachineFunction which holds the current MBB. This is used when 2218 // inserting any additional MBBs necessary to represent the switch. 2219 MachineFunction *CurMF = FuncInfo.MF; 2220 2221 // Figure out which block is immediately after the current one. 2222 MachineFunction::iterator BBI = CR.CaseBB; 2223 ++BBI; 2224 2225 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2226 2227 // Create a new basic block to hold the code for loading the address 2228 // of the jump table, and jumping to it. Update successor information; 2229 // we will either branch to the default case for the switch, or the jump 2230 // table. 2231 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2232 CurMF->insert(BBI, JumpTableBB); 2233 2234 addSuccessorWithWeight(CR.CaseBB, Default); 2235 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2236 2237 // Build a vector of destination BBs, corresponding to each target 2238 // of the jump table. If the value of the jump table slot corresponds to 2239 // a case statement, push the case's BB onto the vector, otherwise, push 2240 // the default BB. 2241 std::vector<MachineBasicBlock*> DestBBs; 2242 APInt TEI = First; 2243 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2244 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2245 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2246 2247 if (Low.sle(TEI) && TEI.sle(High)) { 2248 DestBBs.push_back(I->BB); 2249 if (TEI==High) 2250 ++I; 2251 } else { 2252 DestBBs.push_back(Default); 2253 } 2254 } 2255 2256 // Calculate weight for each unique destination in CR. 2257 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2258 if (FuncInfo.BPI) 2259 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2260 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2261 DestWeights.find(I->BB); 2262 if (Itr != DestWeights.end()) 2263 Itr->second += I->ExtraWeight; 2264 else 2265 DestWeights[I->BB] = I->ExtraWeight; 2266 } 2267 2268 // Update successor info. Add one edge to each unique successor. 2269 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2270 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2271 E = DestBBs.end(); I != E; ++I) { 2272 if (!SuccsHandled[(*I)->getNumber()]) { 2273 SuccsHandled[(*I)->getNumber()] = true; 2274 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2275 DestWeights.find(*I); 2276 addSuccessorWithWeight(JumpTableBB, *I, 2277 Itr != DestWeights.end() ? Itr->second : 0); 2278 } 2279 } 2280 2281 // Create a jump table index for this jump table. 2282 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2283 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2284 ->createJumpTableIndex(DestBBs); 2285 2286 // Set the jump table information so that we can codegen it as a second 2287 // MachineBasicBlock 2288 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2289 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2290 if (CR.CaseBB == SwitchBB) 2291 visitJumpTableHeader(JT, JTH, SwitchBB); 2292 2293 JTCases.push_back(JumpTableBlock(JTH, JT)); 2294 return true; 2295 } 2296 2297 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2298 /// 2 subtrees. 2299 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2300 CaseRecVector& WorkList, 2301 const Value* SV, 2302 MachineBasicBlock* Default, 2303 MachineBasicBlock* SwitchBB) { 2304 // Get the MachineFunction which holds the current MBB. This is used when 2305 // inserting any additional MBBs necessary to represent the switch. 2306 MachineFunction *CurMF = FuncInfo.MF; 2307 2308 // Figure out which block is immediately after the current one. 2309 MachineFunction::iterator BBI = CR.CaseBB; 2310 ++BBI; 2311 2312 Case& FrontCase = *CR.Range.first; 2313 Case& BackCase = *(CR.Range.second-1); 2314 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2315 2316 // Size is the number of Cases represented by this range. 2317 unsigned Size = CR.Range.second - CR.Range.first; 2318 2319 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2320 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2321 double FMetric = 0; 2322 CaseItr Pivot = CR.Range.first + Size/2; 2323 2324 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2325 // (heuristically) allow us to emit JumpTable's later. 2326 APInt TSize(First.getBitWidth(), 0); 2327 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2328 I!=E; ++I) 2329 TSize += I->size(); 2330 2331 APInt LSize = FrontCase.size(); 2332 APInt RSize = TSize-LSize; 2333 DEBUG(dbgs() << "Selecting best pivot: \n" 2334 << "First: " << First << ", Last: " << Last <<'\n' 2335 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2336 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2337 J!=E; ++I, ++J) { 2338 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2339 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2340 APInt Range = ComputeRange(LEnd, RBegin); 2341 assert((Range - 2ULL).isNonNegative() && 2342 "Invalid case distance"); 2343 // Use volatile double here to avoid excess precision issues on some hosts, 2344 // e.g. that use 80-bit X87 registers. 2345 volatile double LDensity = 2346 (double)LSize.roundToDouble() / 2347 (LEnd - First + 1ULL).roundToDouble(); 2348 volatile double RDensity = 2349 (double)RSize.roundToDouble() / 2350 (Last - RBegin + 1ULL).roundToDouble(); 2351 double Metric = Range.logBase2()*(LDensity+RDensity); 2352 // Should always split in some non-trivial place 2353 DEBUG(dbgs() <<"=>Step\n" 2354 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2355 << "LDensity: " << LDensity 2356 << ", RDensity: " << RDensity << '\n' 2357 << "Metric: " << Metric << '\n'); 2358 if (FMetric < Metric) { 2359 Pivot = J; 2360 FMetric = Metric; 2361 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2362 } 2363 2364 LSize += J->size(); 2365 RSize -= J->size(); 2366 } 2367 2368 const TargetLowering *TLI = TM.getTargetLowering(); 2369 if (areJTsAllowed(*TLI)) { 2370 // If our case is dense we *really* should handle it earlier! 2371 assert((FMetric > 0) && "Should handle dense range earlier!"); 2372 } else { 2373 Pivot = CR.Range.first + Size/2; 2374 } 2375 2376 CaseRange LHSR(CR.Range.first, Pivot); 2377 CaseRange RHSR(Pivot, CR.Range.second); 2378 const Constant *C = Pivot->Low; 2379 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2380 2381 // We know that we branch to the LHS if the Value being switched on is 2382 // less than the Pivot value, C. We use this to optimize our binary 2383 // tree a bit, by recognizing that if SV is greater than or equal to the 2384 // LHS's Case Value, and that Case Value is exactly one less than the 2385 // Pivot's Value, then we can branch directly to the LHS's Target, 2386 // rather than creating a leaf node for it. 2387 if ((LHSR.second - LHSR.first) == 1 && 2388 LHSR.first->High == CR.GE && 2389 cast<ConstantInt>(C)->getValue() == 2390 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2391 TrueBB = LHSR.first->BB; 2392 } else { 2393 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2394 CurMF->insert(BBI, TrueBB); 2395 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2396 2397 // Put SV in a virtual register to make it available from the new blocks. 2398 ExportFromCurrentBlock(SV); 2399 } 2400 2401 // Similar to the optimization above, if the Value being switched on is 2402 // known to be less than the Constant CR.LT, and the current Case Value 2403 // is CR.LT - 1, then we can branch directly to the target block for 2404 // the current Case Value, rather than emitting a RHS leaf node for it. 2405 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2406 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2407 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2408 FalseBB = RHSR.first->BB; 2409 } else { 2410 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2411 CurMF->insert(BBI, FalseBB); 2412 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2413 2414 // Put SV in a virtual register to make it available from the new blocks. 2415 ExportFromCurrentBlock(SV); 2416 } 2417 2418 // Create a CaseBlock record representing a conditional branch to 2419 // the LHS node if the value being switched on SV is less than C. 2420 // Otherwise, branch to LHS. 2421 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2422 2423 if (CR.CaseBB == SwitchBB) 2424 visitSwitchCase(CB, SwitchBB); 2425 else 2426 SwitchCases.push_back(CB); 2427 2428 return true; 2429 } 2430 2431 /// handleBitTestsSwitchCase - if current case range has few destination and 2432 /// range span less, than machine word bitwidth, encode case range into series 2433 /// of masks and emit bit tests with these masks. 2434 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2435 CaseRecVector& WorkList, 2436 const Value* SV, 2437 MachineBasicBlock* Default, 2438 MachineBasicBlock* SwitchBB) { 2439 const TargetLowering *TLI = TM.getTargetLowering(); 2440 EVT PTy = TLI->getPointerTy(); 2441 unsigned IntPtrBits = PTy.getSizeInBits(); 2442 2443 Case& FrontCase = *CR.Range.first; 2444 Case& BackCase = *(CR.Range.second-1); 2445 2446 // Get the MachineFunction which holds the current MBB. This is used when 2447 // inserting any additional MBBs necessary to represent the switch. 2448 MachineFunction *CurMF = FuncInfo.MF; 2449 2450 // If target does not have legal shift left, do not emit bit tests at all. 2451 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2452 return false; 2453 2454 size_t numCmps = 0; 2455 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2456 I!=E; ++I) { 2457 // Single case counts one, case range - two. 2458 numCmps += (I->Low == I->High ? 1 : 2); 2459 } 2460 2461 // Count unique destinations 2462 SmallSet<MachineBasicBlock*, 4> Dests; 2463 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2464 Dests.insert(I->BB); 2465 if (Dests.size() > 3) 2466 // Don't bother the code below, if there are too much unique destinations 2467 return false; 2468 } 2469 DEBUG(dbgs() << "Total number of unique destinations: " 2470 << Dests.size() << '\n' 2471 << "Total number of comparisons: " << numCmps << '\n'); 2472 2473 // Compute span of values. 2474 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2475 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2476 APInt cmpRange = maxValue - minValue; 2477 2478 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2479 << "Low bound: " << minValue << '\n' 2480 << "High bound: " << maxValue << '\n'); 2481 2482 if (cmpRange.uge(IntPtrBits) || 2483 (!(Dests.size() == 1 && numCmps >= 3) && 2484 !(Dests.size() == 2 && numCmps >= 5) && 2485 !(Dests.size() >= 3 && numCmps >= 6))) 2486 return false; 2487 2488 DEBUG(dbgs() << "Emitting bit tests\n"); 2489 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2490 2491 // Optimize the case where all the case values fit in a 2492 // word without having to subtract minValue. In this case, 2493 // we can optimize away the subtraction. 2494 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2495 cmpRange = maxValue; 2496 } else { 2497 lowBound = minValue; 2498 } 2499 2500 CaseBitsVector CasesBits; 2501 unsigned i, count = 0; 2502 2503 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2504 MachineBasicBlock* Dest = I->BB; 2505 for (i = 0; i < count; ++i) 2506 if (Dest == CasesBits[i].BB) 2507 break; 2508 2509 if (i == count) { 2510 assert((count < 3) && "Too much destinations to test!"); 2511 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2512 count++; 2513 } 2514 2515 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2516 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2517 2518 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2519 uint64_t hi = (highValue - lowBound).getZExtValue(); 2520 CasesBits[i].ExtraWeight += I->ExtraWeight; 2521 2522 for (uint64_t j = lo; j <= hi; j++) { 2523 CasesBits[i].Mask |= 1ULL << j; 2524 CasesBits[i].Bits++; 2525 } 2526 2527 } 2528 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2529 2530 BitTestInfo BTC; 2531 2532 // Figure out which block is immediately after the current one. 2533 MachineFunction::iterator BBI = CR.CaseBB; 2534 ++BBI; 2535 2536 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2537 2538 DEBUG(dbgs() << "Cases:\n"); 2539 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2540 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2541 << ", Bits: " << CasesBits[i].Bits 2542 << ", BB: " << CasesBits[i].BB << '\n'); 2543 2544 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2545 CurMF->insert(BBI, CaseBB); 2546 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2547 CaseBB, 2548 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2549 2550 // Put SV in a virtual register to make it available from the new blocks. 2551 ExportFromCurrentBlock(SV); 2552 } 2553 2554 BitTestBlock BTB(lowBound, cmpRange, SV, 2555 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2556 CR.CaseBB, Default, BTC); 2557 2558 if (CR.CaseBB == SwitchBB) 2559 visitBitTestHeader(BTB, SwitchBB); 2560 2561 BitTestCases.push_back(BTB); 2562 2563 return true; 2564 } 2565 2566 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2567 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2568 const SwitchInst& SI) { 2569 size_t numCmps = 0; 2570 2571 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2572 // Start with "simple" cases 2573 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2574 i != e; ++i) { 2575 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2576 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2577 2578 uint32_t ExtraWeight = 2579 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2580 2581 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2582 SMBB, ExtraWeight)); 2583 } 2584 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2585 2586 // Merge case into clusters 2587 if (Cases.size() >= 2) 2588 // Must recompute end() each iteration because it may be 2589 // invalidated by erase if we hold on to it 2590 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2591 J != Cases.end(); ) { 2592 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2593 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2594 MachineBasicBlock* nextBB = J->BB; 2595 MachineBasicBlock* currentBB = I->BB; 2596 2597 // If the two neighboring cases go to the same destination, merge them 2598 // into a single case. 2599 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2600 I->High = J->High; 2601 I->ExtraWeight += J->ExtraWeight; 2602 J = Cases.erase(J); 2603 } else { 2604 I = J++; 2605 } 2606 } 2607 2608 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2609 if (I->Low != I->High) 2610 // A range counts double, since it requires two compares. 2611 ++numCmps; 2612 } 2613 2614 return numCmps; 2615 } 2616 2617 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2618 MachineBasicBlock *Last) { 2619 // Update JTCases. 2620 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2621 if (JTCases[i].first.HeaderBB == First) 2622 JTCases[i].first.HeaderBB = Last; 2623 2624 // Update BitTestCases. 2625 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2626 if (BitTestCases[i].Parent == First) 2627 BitTestCases[i].Parent = Last; 2628 } 2629 2630 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2631 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2632 2633 // Figure out which block is immediately after the current one. 2634 MachineBasicBlock *NextBlock = 0; 2635 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2636 2637 // If there is only the default destination, branch to it if it is not the 2638 // next basic block. Otherwise, just fall through. 2639 if (!SI.getNumCases()) { 2640 // Update machine-CFG edges. 2641 2642 // If this is not a fall-through branch, emit the branch. 2643 SwitchMBB->addSuccessor(Default); 2644 if (Default != NextBlock) 2645 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2646 MVT::Other, getControlRoot(), 2647 DAG.getBasicBlock(Default))); 2648 2649 return; 2650 } 2651 2652 // If there are any non-default case statements, create a vector of Cases 2653 // representing each one, and sort the vector so that we can efficiently 2654 // create a binary search tree from them. 2655 CaseVector Cases; 2656 size_t numCmps = Clusterify(Cases, SI); 2657 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2658 << ". Total compares: " << numCmps << '\n'); 2659 (void)numCmps; 2660 2661 // Get the Value to be switched on and default basic blocks, which will be 2662 // inserted into CaseBlock records, representing basic blocks in the binary 2663 // search tree. 2664 const Value *SV = SI.getCondition(); 2665 2666 // Push the initial CaseRec onto the worklist 2667 CaseRecVector WorkList; 2668 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2669 CaseRange(Cases.begin(),Cases.end()))); 2670 2671 while (!WorkList.empty()) { 2672 // Grab a record representing a case range to process off the worklist 2673 CaseRec CR = WorkList.back(); 2674 WorkList.pop_back(); 2675 2676 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2677 continue; 2678 2679 // If the range has few cases (two or less) emit a series of specific 2680 // tests. 2681 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2682 continue; 2683 2684 // If the switch has more than N blocks, and is at least 40% dense, and the 2685 // target supports indirect branches, then emit a jump table rather than 2686 // lowering the switch to a binary tree of conditional branches. 2687 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2688 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2689 continue; 2690 2691 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2692 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2693 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2694 } 2695 } 2696 2697 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2698 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2699 2700 // Update machine-CFG edges with unique successors. 2701 SmallSet<BasicBlock*, 32> Done; 2702 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2703 BasicBlock *BB = I.getSuccessor(i); 2704 bool Inserted = Done.insert(BB); 2705 if (!Inserted) 2706 continue; 2707 2708 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2709 addSuccessorWithWeight(IndirectBrMBB, Succ); 2710 } 2711 2712 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2713 MVT::Other, getControlRoot(), 2714 getValue(I.getAddress()))); 2715 } 2716 2717 void SelectionDAGBuilder::visitFSub(const User &I) { 2718 // -0.0 - X --> fneg 2719 Type *Ty = I.getType(); 2720 if (isa<Constant>(I.getOperand(0)) && 2721 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2722 SDValue Op2 = getValue(I.getOperand(1)); 2723 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2724 Op2.getValueType(), Op2)); 2725 return; 2726 } 2727 2728 visitBinary(I, ISD::FSUB); 2729 } 2730 2731 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2732 SDValue Op1 = getValue(I.getOperand(0)); 2733 SDValue Op2 = getValue(I.getOperand(1)); 2734 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2735 Op1.getValueType(), Op1, Op2)); 2736 } 2737 2738 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2739 SDValue Op1 = getValue(I.getOperand(0)); 2740 SDValue Op2 = getValue(I.getOperand(1)); 2741 2742 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2743 2744 // Coerce the shift amount to the right type if we can. 2745 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2746 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2747 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2748 SDLoc DL = getCurSDLoc(); 2749 2750 // If the operand is smaller than the shift count type, promote it. 2751 if (ShiftSize > Op2Size) 2752 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2753 2754 // If the operand is larger than the shift count type but the shift 2755 // count type has enough bits to represent any shift value, truncate 2756 // it now. This is a common case and it exposes the truncate to 2757 // optimization early. 2758 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2759 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2760 // Otherwise we'll need to temporarily settle for some other convenient 2761 // type. Type legalization will make adjustments once the shiftee is split. 2762 else 2763 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2764 } 2765 2766 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2767 Op1.getValueType(), Op1, Op2)); 2768 } 2769 2770 void SelectionDAGBuilder::visitSDiv(const User &I) { 2771 SDValue Op1 = getValue(I.getOperand(0)); 2772 SDValue Op2 = getValue(I.getOperand(1)); 2773 2774 // Turn exact SDivs into multiplications. 2775 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2776 // exact bit. 2777 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2778 !isa<ConstantSDNode>(Op1) && 2779 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2780 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2781 getCurSDLoc(), DAG)); 2782 else 2783 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2784 Op1, Op2)); 2785 } 2786 2787 void SelectionDAGBuilder::visitICmp(const User &I) { 2788 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2789 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2790 predicate = IC->getPredicate(); 2791 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2792 predicate = ICmpInst::Predicate(IC->getPredicate()); 2793 SDValue Op1 = getValue(I.getOperand(0)); 2794 SDValue Op2 = getValue(I.getOperand(1)); 2795 ISD::CondCode Opcode = getICmpCondCode(predicate); 2796 2797 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2798 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2799 } 2800 2801 void SelectionDAGBuilder::visitFCmp(const User &I) { 2802 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2803 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2804 predicate = FC->getPredicate(); 2805 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2806 predicate = FCmpInst::Predicate(FC->getPredicate()); 2807 SDValue Op1 = getValue(I.getOperand(0)); 2808 SDValue Op2 = getValue(I.getOperand(1)); 2809 ISD::CondCode Condition = getFCmpCondCode(predicate); 2810 if (TM.Options.NoNaNsFPMath) 2811 Condition = getFCmpCodeWithoutNaN(Condition); 2812 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2813 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2814 } 2815 2816 void SelectionDAGBuilder::visitSelect(const User &I) { 2817 SmallVector<EVT, 4> ValueVTs; 2818 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2819 unsigned NumValues = ValueVTs.size(); 2820 if (NumValues == 0) return; 2821 2822 SmallVector<SDValue, 4> Values(NumValues); 2823 SDValue Cond = getValue(I.getOperand(0)); 2824 SDValue TrueVal = getValue(I.getOperand(1)); 2825 SDValue FalseVal = getValue(I.getOperand(2)); 2826 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2827 ISD::VSELECT : ISD::SELECT; 2828 2829 for (unsigned i = 0; i != NumValues; ++i) 2830 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2831 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2832 Cond, 2833 SDValue(TrueVal.getNode(), 2834 TrueVal.getResNo() + i), 2835 SDValue(FalseVal.getNode(), 2836 FalseVal.getResNo() + i)); 2837 2838 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2839 DAG.getVTList(&ValueVTs[0], NumValues), 2840 &Values[0], NumValues)); 2841 } 2842 2843 void SelectionDAGBuilder::visitTrunc(const User &I) { 2844 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2845 SDValue N = getValue(I.getOperand(0)); 2846 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2847 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2848 } 2849 2850 void SelectionDAGBuilder::visitZExt(const User &I) { 2851 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2852 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2853 SDValue N = getValue(I.getOperand(0)); 2854 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2855 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2856 } 2857 2858 void SelectionDAGBuilder::visitSExt(const User &I) { 2859 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2860 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2861 SDValue N = getValue(I.getOperand(0)); 2862 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2863 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2864 } 2865 2866 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2867 // FPTrunc is never a no-op cast, no need to check 2868 SDValue N = getValue(I.getOperand(0)); 2869 const TargetLowering *TLI = TM.getTargetLowering(); 2870 EVT DestVT = TLI->getValueType(I.getType()); 2871 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2872 DestVT, N, 2873 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2874 } 2875 2876 void SelectionDAGBuilder::visitFPExt(const User &I) { 2877 // FPExt is never a no-op cast, no need to check 2878 SDValue N = getValue(I.getOperand(0)); 2879 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2880 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2881 } 2882 2883 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2884 // FPToUI is never a no-op cast, no need to check 2885 SDValue N = getValue(I.getOperand(0)); 2886 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2887 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2888 } 2889 2890 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2891 // FPToSI is never a no-op cast, no need to check 2892 SDValue N = getValue(I.getOperand(0)); 2893 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2894 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2895 } 2896 2897 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2898 // UIToFP is never a no-op cast, no need to check 2899 SDValue N = getValue(I.getOperand(0)); 2900 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2901 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2902 } 2903 2904 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2905 // SIToFP is never a no-op cast, no need to check 2906 SDValue N = getValue(I.getOperand(0)); 2907 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2908 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2909 } 2910 2911 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2912 // What to do depends on the size of the integer and the size of the pointer. 2913 // We can either truncate, zero extend, or no-op, accordingly. 2914 SDValue N = getValue(I.getOperand(0)); 2915 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2916 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2917 } 2918 2919 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2920 // What to do depends on the size of the integer and the size of the pointer. 2921 // We can either truncate, zero extend, or no-op, accordingly. 2922 SDValue N = getValue(I.getOperand(0)); 2923 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2924 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2925 } 2926 2927 void SelectionDAGBuilder::visitBitCast(const User &I) { 2928 SDValue N = getValue(I.getOperand(0)); 2929 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2930 2931 // BitCast assures us that source and destination are the same size so this is 2932 // either a BITCAST or a no-op. 2933 if (DestVT != N.getValueType()) 2934 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2935 DestVT, N)); // convert types. 2936 else 2937 setValue(&I, N); // noop cast. 2938 } 2939 2940 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2941 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2942 SDValue InVec = getValue(I.getOperand(0)); 2943 SDValue InVal = getValue(I.getOperand(1)); 2944 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2945 getCurSDLoc(), TLI.getVectorIdxTy()); 2946 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2947 TM.getTargetLowering()->getValueType(I.getType()), 2948 InVec, InVal, InIdx)); 2949 } 2950 2951 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2953 SDValue InVec = getValue(I.getOperand(0)); 2954 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2955 getCurSDLoc(), TLI.getVectorIdxTy()); 2956 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2957 TM.getTargetLowering()->getValueType(I.getType()), 2958 InVec, InIdx)); 2959 } 2960 2961 // Utility for visitShuffleVector - Return true if every element in Mask, 2962 // beginning from position Pos and ending in Pos+Size, falls within the 2963 // specified sequential range [L, L+Pos). or is undef. 2964 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2965 unsigned Pos, unsigned Size, int Low) { 2966 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2967 if (Mask[i] >= 0 && Mask[i] != Low) 2968 return false; 2969 return true; 2970 } 2971 2972 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2973 SDValue Src1 = getValue(I.getOperand(0)); 2974 SDValue Src2 = getValue(I.getOperand(1)); 2975 2976 SmallVector<int, 8> Mask; 2977 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2978 unsigned MaskNumElts = Mask.size(); 2979 2980 const TargetLowering *TLI = TM.getTargetLowering(); 2981 EVT VT = TLI->getValueType(I.getType()); 2982 EVT SrcVT = Src1.getValueType(); 2983 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2984 2985 if (SrcNumElts == MaskNumElts) { 2986 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2987 &Mask[0])); 2988 return; 2989 } 2990 2991 // Normalize the shuffle vector since mask and vector length don't match. 2992 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2993 // Mask is longer than the source vectors and is a multiple of the source 2994 // vectors. We can use concatenate vector to make the mask and vectors 2995 // lengths match. 2996 if (SrcNumElts*2 == MaskNumElts) { 2997 // First check for Src1 in low and Src2 in high 2998 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2999 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3000 // The shuffle is concatenating two vectors together. 3001 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3002 VT, Src1, Src2)); 3003 return; 3004 } 3005 // Then check for Src2 in low and Src1 in high 3006 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3007 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3008 // The shuffle is concatenating two vectors together. 3009 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3010 VT, Src2, Src1)); 3011 return; 3012 } 3013 } 3014 3015 // Pad both vectors with undefs to make them the same length as the mask. 3016 unsigned NumConcat = MaskNumElts / SrcNumElts; 3017 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3018 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3019 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3020 3021 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3022 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3023 MOps1[0] = Src1; 3024 MOps2[0] = Src2; 3025 3026 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3027 getCurSDLoc(), VT, 3028 &MOps1[0], NumConcat); 3029 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3030 getCurSDLoc(), VT, 3031 &MOps2[0], NumConcat); 3032 3033 // Readjust mask for new input vector length. 3034 SmallVector<int, 8> MappedOps; 3035 for (unsigned i = 0; i != MaskNumElts; ++i) { 3036 int Idx = Mask[i]; 3037 if (Idx >= (int)SrcNumElts) 3038 Idx -= SrcNumElts - MaskNumElts; 3039 MappedOps.push_back(Idx); 3040 } 3041 3042 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3043 &MappedOps[0])); 3044 return; 3045 } 3046 3047 if (SrcNumElts > MaskNumElts) { 3048 // Analyze the access pattern of the vector to see if we can extract 3049 // two subvectors and do the shuffle. The analysis is done by calculating 3050 // the range of elements the mask access on both vectors. 3051 int MinRange[2] = { static_cast<int>(SrcNumElts), 3052 static_cast<int>(SrcNumElts)}; 3053 int MaxRange[2] = {-1, -1}; 3054 3055 for (unsigned i = 0; i != MaskNumElts; ++i) { 3056 int Idx = Mask[i]; 3057 unsigned Input = 0; 3058 if (Idx < 0) 3059 continue; 3060 3061 if (Idx >= (int)SrcNumElts) { 3062 Input = 1; 3063 Idx -= SrcNumElts; 3064 } 3065 if (Idx > MaxRange[Input]) 3066 MaxRange[Input] = Idx; 3067 if (Idx < MinRange[Input]) 3068 MinRange[Input] = Idx; 3069 } 3070 3071 // Check if the access is smaller than the vector size and can we find 3072 // a reasonable extract index. 3073 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3074 // Extract. 3075 int StartIdx[2]; // StartIdx to extract from 3076 for (unsigned Input = 0; Input < 2; ++Input) { 3077 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3078 RangeUse[Input] = 0; // Unused 3079 StartIdx[Input] = 0; 3080 continue; 3081 } 3082 3083 // Find a good start index that is a multiple of the mask length. Then 3084 // see if the rest of the elements are in range. 3085 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3086 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3087 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3088 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3089 } 3090 3091 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3092 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3093 return; 3094 } 3095 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3096 // Extract appropriate subvector and generate a vector shuffle 3097 for (unsigned Input = 0; Input < 2; ++Input) { 3098 SDValue &Src = Input == 0 ? Src1 : Src2; 3099 if (RangeUse[Input] == 0) 3100 Src = DAG.getUNDEF(VT); 3101 else 3102 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3103 Src, DAG.getConstant(StartIdx[Input], 3104 TLI->getVectorIdxTy())); 3105 } 3106 3107 // Calculate new mask. 3108 SmallVector<int, 8> MappedOps; 3109 for (unsigned i = 0; i != MaskNumElts; ++i) { 3110 int Idx = Mask[i]; 3111 if (Idx >= 0) { 3112 if (Idx < (int)SrcNumElts) 3113 Idx -= StartIdx[0]; 3114 else 3115 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3116 } 3117 MappedOps.push_back(Idx); 3118 } 3119 3120 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3121 &MappedOps[0])); 3122 return; 3123 } 3124 } 3125 3126 // We can't use either concat vectors or extract subvectors so fall back to 3127 // replacing the shuffle with extract and build vector. 3128 // to insert and build vector. 3129 EVT EltVT = VT.getVectorElementType(); 3130 EVT IdxVT = TLI->getVectorIdxTy(); 3131 SmallVector<SDValue,8> Ops; 3132 for (unsigned i = 0; i != MaskNumElts; ++i) { 3133 int Idx = Mask[i]; 3134 SDValue Res; 3135 3136 if (Idx < 0) { 3137 Res = DAG.getUNDEF(EltVT); 3138 } else { 3139 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3140 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3141 3142 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3143 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3144 } 3145 3146 Ops.push_back(Res); 3147 } 3148 3149 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 3150 VT, &Ops[0], Ops.size())); 3151 } 3152 3153 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3154 const Value *Op0 = I.getOperand(0); 3155 const Value *Op1 = I.getOperand(1); 3156 Type *AggTy = I.getType(); 3157 Type *ValTy = Op1->getType(); 3158 bool IntoUndef = isa<UndefValue>(Op0); 3159 bool FromUndef = isa<UndefValue>(Op1); 3160 3161 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3162 3163 const TargetLowering *TLI = TM.getTargetLowering(); 3164 SmallVector<EVT, 4> AggValueVTs; 3165 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3166 SmallVector<EVT, 4> ValValueVTs; 3167 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3168 3169 unsigned NumAggValues = AggValueVTs.size(); 3170 unsigned NumValValues = ValValueVTs.size(); 3171 SmallVector<SDValue, 4> Values(NumAggValues); 3172 3173 SDValue Agg = getValue(Op0); 3174 unsigned i = 0; 3175 // Copy the beginning value(s) from the original aggregate. 3176 for (; i != LinearIndex; ++i) 3177 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3178 SDValue(Agg.getNode(), Agg.getResNo() + i); 3179 // Copy values from the inserted value(s). 3180 if (NumValValues) { 3181 SDValue Val = getValue(Op1); 3182 for (; i != LinearIndex + NumValValues; ++i) 3183 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3184 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3185 } 3186 // Copy remaining value(s) from the original aggregate. 3187 for (; i != NumAggValues; ++i) 3188 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3189 SDValue(Agg.getNode(), Agg.getResNo() + i); 3190 3191 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3192 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3193 &Values[0], NumAggValues)); 3194 } 3195 3196 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3197 const Value *Op0 = I.getOperand(0); 3198 Type *AggTy = Op0->getType(); 3199 Type *ValTy = I.getType(); 3200 bool OutOfUndef = isa<UndefValue>(Op0); 3201 3202 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3203 3204 const TargetLowering *TLI = TM.getTargetLowering(); 3205 SmallVector<EVT, 4> ValValueVTs; 3206 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3207 3208 unsigned NumValValues = ValValueVTs.size(); 3209 3210 // Ignore a extractvalue that produces an empty object 3211 if (!NumValValues) { 3212 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3213 return; 3214 } 3215 3216 SmallVector<SDValue, 4> Values(NumValValues); 3217 3218 SDValue Agg = getValue(Op0); 3219 // Copy out the selected value(s). 3220 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3221 Values[i - LinearIndex] = 3222 OutOfUndef ? 3223 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3224 SDValue(Agg.getNode(), Agg.getResNo() + i); 3225 3226 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3227 DAG.getVTList(&ValValueVTs[0], NumValValues), 3228 &Values[0], NumValValues)); 3229 } 3230 3231 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3232 SDValue N = getValue(I.getOperand(0)); 3233 // Note that the pointer operand may be a vector of pointers. Take the scalar 3234 // element which holds a pointer. 3235 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3236 3237 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3238 OI != E; ++OI) { 3239 const Value *Idx = *OI; 3240 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3241 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3242 if (Field) { 3243 // N = N + Offset 3244 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3245 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3246 DAG.getConstant(Offset, N.getValueType())); 3247 } 3248 3249 Ty = StTy->getElementType(Field); 3250 } else { 3251 uint32_t AS = 0; 3252 if (PointerType *PtrType = dyn_cast<PointerType>(Ty)) { 3253 AS = PtrType->getAddressSpace(); 3254 } 3255 Ty = cast<SequentialType>(Ty)->getElementType(); 3256 3257 // If this is a constant subscript, handle it quickly. 3258 const TargetLowering *TLI = TM.getTargetLowering(); 3259 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3260 if (CI->isZero()) continue; 3261 uint64_t Offs = 3262 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3263 SDValue OffsVal; 3264 EVT PTy = TLI->getPointerTy(AS); 3265 unsigned PtrBits = PTy.getSizeInBits(); 3266 if (PtrBits < 64) 3267 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3268 DAG.getConstant(Offs, MVT::i64)); 3269 else 3270 OffsVal = DAG.getConstant(Offs, PTy); 3271 3272 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3273 OffsVal); 3274 continue; 3275 } 3276 3277 // N = N + Idx * ElementSize; 3278 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3279 TD->getTypeAllocSize(Ty)); 3280 SDValue IdxN = getValue(Idx); 3281 3282 // If the index is smaller or larger than intptr_t, truncate or extend 3283 // it. 3284 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3285 3286 // If this is a multiply by a power of two, turn it into a shl 3287 // immediately. This is a very common case. 3288 if (ElementSize != 1) { 3289 if (ElementSize.isPowerOf2()) { 3290 unsigned Amt = ElementSize.logBase2(); 3291 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3292 N.getValueType(), IdxN, 3293 DAG.getConstant(Amt, IdxN.getValueType())); 3294 } else { 3295 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3296 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3297 N.getValueType(), IdxN, Scale); 3298 } 3299 } 3300 3301 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3302 N.getValueType(), N, IdxN); 3303 } 3304 } 3305 3306 setValue(&I, N); 3307 } 3308 3309 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3310 // If this is a fixed sized alloca in the entry block of the function, 3311 // allocate it statically on the stack. 3312 if (FuncInfo.StaticAllocaMap.count(&I)) 3313 return; // getValue will auto-populate this. 3314 3315 Type *Ty = I.getAllocatedType(); 3316 const TargetLowering *TLI = TM.getTargetLowering(); 3317 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3318 unsigned Align = 3319 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3320 I.getAlignment()); 3321 3322 SDValue AllocSize = getValue(I.getArraySize()); 3323 3324 EVT IntPtr = TLI->getPointerTy(); 3325 if (AllocSize.getValueType() != IntPtr) 3326 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3327 3328 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3329 AllocSize, 3330 DAG.getConstant(TySize, IntPtr)); 3331 3332 // Handle alignment. If the requested alignment is less than or equal to 3333 // the stack alignment, ignore it. If the size is greater than or equal to 3334 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3335 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3336 if (Align <= StackAlign) 3337 Align = 0; 3338 3339 // Round the size of the allocation up to the stack alignment size 3340 // by add SA-1 to the size. 3341 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3342 AllocSize.getValueType(), AllocSize, 3343 DAG.getIntPtrConstant(StackAlign-1)); 3344 3345 // Mask out the low bits for alignment purposes. 3346 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3347 AllocSize.getValueType(), AllocSize, 3348 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3349 3350 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3351 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3352 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), 3353 VTs, Ops, 3); 3354 setValue(&I, DSA); 3355 DAG.setRoot(DSA.getValue(1)); 3356 3357 // Inform the Frame Information that we have just allocated a variable-sized 3358 // object. 3359 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3360 } 3361 3362 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3363 if (I.isAtomic()) 3364 return visitAtomicLoad(I); 3365 3366 const Value *SV = I.getOperand(0); 3367 SDValue Ptr = getValue(SV); 3368 3369 Type *Ty = I.getType(); 3370 3371 bool isVolatile = I.isVolatile(); 3372 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3373 bool isInvariant = I.getMetadata("invariant.load") != 0; 3374 unsigned Alignment = I.getAlignment(); 3375 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3376 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3377 3378 SmallVector<EVT, 4> ValueVTs; 3379 SmallVector<uint64_t, 4> Offsets; 3380 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3381 unsigned NumValues = ValueVTs.size(); 3382 if (NumValues == 0) 3383 return; 3384 3385 SDValue Root; 3386 bool ConstantMemory = false; 3387 if (I.isVolatile() || NumValues > MaxParallelChains) 3388 // Serialize volatile loads with other side effects. 3389 Root = getRoot(); 3390 else if (AA->pointsToConstantMemory( 3391 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3392 // Do not serialize (non-volatile) loads of constant memory with anything. 3393 Root = DAG.getEntryNode(); 3394 ConstantMemory = true; 3395 } else { 3396 // Do not serialize non-volatile loads against each other. 3397 Root = DAG.getRoot(); 3398 } 3399 3400 SmallVector<SDValue, 4> Values(NumValues); 3401 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3402 NumValues)); 3403 EVT PtrVT = Ptr.getValueType(); 3404 unsigned ChainI = 0; 3405 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3406 // Serializing loads here may result in excessive register pressure, and 3407 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3408 // could recover a bit by hoisting nodes upward in the chain by recognizing 3409 // they are side-effect free or do not alias. The optimizer should really 3410 // avoid this case by converting large object/array copies to llvm.memcpy 3411 // (MaxParallelChains should always remain as failsafe). 3412 if (ChainI == MaxParallelChains) { 3413 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3414 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3415 MVT::Other, &Chains[0], ChainI); 3416 Root = Chain; 3417 ChainI = 0; 3418 } 3419 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3420 PtrVT, Ptr, 3421 DAG.getConstant(Offsets[i], PtrVT)); 3422 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3423 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3424 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3425 Ranges); 3426 3427 Values[i] = L; 3428 Chains[ChainI] = L.getValue(1); 3429 } 3430 3431 if (!ConstantMemory) { 3432 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3433 MVT::Other, &Chains[0], ChainI); 3434 if (isVolatile) 3435 DAG.setRoot(Chain); 3436 else 3437 PendingLoads.push_back(Chain); 3438 } 3439 3440 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3441 DAG.getVTList(&ValueVTs[0], NumValues), 3442 &Values[0], NumValues)); 3443 } 3444 3445 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3446 if (I.isAtomic()) 3447 return visitAtomicStore(I); 3448 3449 const Value *SrcV = I.getOperand(0); 3450 const Value *PtrV = I.getOperand(1); 3451 3452 SmallVector<EVT, 4> ValueVTs; 3453 SmallVector<uint64_t, 4> Offsets; 3454 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3455 unsigned NumValues = ValueVTs.size(); 3456 if (NumValues == 0) 3457 return; 3458 3459 // Get the lowered operands. Note that we do this after 3460 // checking if NumResults is zero, because with zero results 3461 // the operands won't have values in the map. 3462 SDValue Src = getValue(SrcV); 3463 SDValue Ptr = getValue(PtrV); 3464 3465 SDValue Root = getRoot(); 3466 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3467 NumValues)); 3468 EVT PtrVT = Ptr.getValueType(); 3469 bool isVolatile = I.isVolatile(); 3470 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3471 unsigned Alignment = I.getAlignment(); 3472 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3473 3474 unsigned ChainI = 0; 3475 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3476 // See visitLoad comments. 3477 if (ChainI == MaxParallelChains) { 3478 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3479 MVT::Other, &Chains[0], ChainI); 3480 Root = Chain; 3481 ChainI = 0; 3482 } 3483 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3484 DAG.getConstant(Offsets[i], PtrVT)); 3485 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3486 SDValue(Src.getNode(), Src.getResNo() + i), 3487 Add, MachinePointerInfo(PtrV, Offsets[i]), 3488 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3489 Chains[ChainI] = St; 3490 } 3491 3492 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3493 MVT::Other, &Chains[0], ChainI); 3494 DAG.setRoot(StoreNode); 3495 } 3496 3497 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3498 SynchronizationScope Scope, 3499 bool Before, SDLoc dl, 3500 SelectionDAG &DAG, 3501 const TargetLowering &TLI) { 3502 // Fence, if necessary 3503 if (Before) { 3504 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3505 Order = Release; 3506 else if (Order == Acquire || Order == Monotonic) 3507 return Chain; 3508 } else { 3509 if (Order == AcquireRelease) 3510 Order = Acquire; 3511 else if (Order == Release || Order == Monotonic) 3512 return Chain; 3513 } 3514 SDValue Ops[3]; 3515 Ops[0] = Chain; 3516 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3517 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3518 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3519 } 3520 3521 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3522 SDLoc dl = getCurSDLoc(); 3523 AtomicOrdering Order = I.getOrdering(); 3524 SynchronizationScope Scope = I.getSynchScope(); 3525 3526 SDValue InChain = getRoot(); 3527 3528 const TargetLowering *TLI = TM.getTargetLowering(); 3529 if (TLI->getInsertFencesForAtomic()) 3530 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3531 DAG, *TLI); 3532 3533 SDValue L = 3534 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3535 getValue(I.getCompareOperand()).getSimpleValueType(), 3536 InChain, 3537 getValue(I.getPointerOperand()), 3538 getValue(I.getCompareOperand()), 3539 getValue(I.getNewValOperand()), 3540 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3541 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3542 Scope); 3543 3544 SDValue OutChain = L.getValue(1); 3545 3546 if (TLI->getInsertFencesForAtomic()) 3547 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3548 DAG, *TLI); 3549 3550 setValue(&I, L); 3551 DAG.setRoot(OutChain); 3552 } 3553 3554 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3555 SDLoc dl = getCurSDLoc(); 3556 ISD::NodeType NT; 3557 switch (I.getOperation()) { 3558 default: llvm_unreachable("Unknown atomicrmw operation"); 3559 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3560 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3561 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3562 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3563 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3564 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3565 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3566 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3567 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3568 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3569 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3570 } 3571 AtomicOrdering Order = I.getOrdering(); 3572 SynchronizationScope Scope = I.getSynchScope(); 3573 3574 SDValue InChain = getRoot(); 3575 3576 const TargetLowering *TLI = TM.getTargetLowering(); 3577 if (TLI->getInsertFencesForAtomic()) 3578 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3579 DAG, *TLI); 3580 3581 SDValue L = 3582 DAG.getAtomic(NT, dl, 3583 getValue(I.getValOperand()).getSimpleValueType(), 3584 InChain, 3585 getValue(I.getPointerOperand()), 3586 getValue(I.getValOperand()), 3587 I.getPointerOperand(), 0 /* Alignment */, 3588 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3589 Scope); 3590 3591 SDValue OutChain = L.getValue(1); 3592 3593 if (TLI->getInsertFencesForAtomic()) 3594 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3595 DAG, *TLI); 3596 3597 setValue(&I, L); 3598 DAG.setRoot(OutChain); 3599 } 3600 3601 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3602 SDLoc dl = getCurSDLoc(); 3603 const TargetLowering *TLI = TM.getTargetLowering(); 3604 SDValue Ops[3]; 3605 Ops[0] = getRoot(); 3606 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3607 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3608 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3609 } 3610 3611 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3612 SDLoc dl = getCurSDLoc(); 3613 AtomicOrdering Order = I.getOrdering(); 3614 SynchronizationScope Scope = I.getSynchScope(); 3615 3616 SDValue InChain = getRoot(); 3617 3618 const TargetLowering *TLI = TM.getTargetLowering(); 3619 EVT VT = TLI->getValueType(I.getType()); 3620 3621 if (I.getAlignment() < VT.getSizeInBits() / 8) 3622 report_fatal_error("Cannot generate unaligned atomic load"); 3623 3624 SDValue L = 3625 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3626 getValue(I.getPointerOperand()), 3627 I.getPointerOperand(), I.getAlignment(), 3628 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3629 Scope); 3630 3631 SDValue OutChain = L.getValue(1); 3632 3633 if (TLI->getInsertFencesForAtomic()) 3634 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3635 DAG, *TLI); 3636 3637 setValue(&I, L); 3638 DAG.setRoot(OutChain); 3639 } 3640 3641 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3642 SDLoc dl = getCurSDLoc(); 3643 3644 AtomicOrdering Order = I.getOrdering(); 3645 SynchronizationScope Scope = I.getSynchScope(); 3646 3647 SDValue InChain = getRoot(); 3648 3649 const TargetLowering *TLI = TM.getTargetLowering(); 3650 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3651 3652 if (I.getAlignment() < VT.getSizeInBits() / 8) 3653 report_fatal_error("Cannot generate unaligned atomic store"); 3654 3655 if (TLI->getInsertFencesForAtomic()) 3656 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3657 DAG, *TLI); 3658 3659 SDValue OutChain = 3660 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3661 InChain, 3662 getValue(I.getPointerOperand()), 3663 getValue(I.getValueOperand()), 3664 I.getPointerOperand(), I.getAlignment(), 3665 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3666 Scope); 3667 3668 if (TLI->getInsertFencesForAtomic()) 3669 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3670 DAG, *TLI); 3671 3672 DAG.setRoot(OutChain); 3673 } 3674 3675 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3676 /// node. 3677 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3678 unsigned Intrinsic) { 3679 bool HasChain = !I.doesNotAccessMemory(); 3680 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3681 3682 // Build the operand list. 3683 SmallVector<SDValue, 8> Ops; 3684 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3685 if (OnlyLoad) { 3686 // We don't need to serialize loads against other loads. 3687 Ops.push_back(DAG.getRoot()); 3688 } else { 3689 Ops.push_back(getRoot()); 3690 } 3691 } 3692 3693 // Info is set by getTgtMemInstrinsic 3694 TargetLowering::IntrinsicInfo Info; 3695 const TargetLowering *TLI = TM.getTargetLowering(); 3696 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3697 3698 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3699 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3700 Info.opc == ISD::INTRINSIC_W_CHAIN) 3701 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3702 3703 // Add all operands of the call to the operand list. 3704 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3705 SDValue Op = getValue(I.getArgOperand(i)); 3706 Ops.push_back(Op); 3707 } 3708 3709 SmallVector<EVT, 4> ValueVTs; 3710 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3711 3712 if (HasChain) 3713 ValueVTs.push_back(MVT::Other); 3714 3715 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3716 3717 // Create the node. 3718 SDValue Result; 3719 if (IsTgtIntrinsic) { 3720 // This is target intrinsic that touches memory 3721 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3722 VTs, &Ops[0], Ops.size(), 3723 Info.memVT, 3724 MachinePointerInfo(Info.ptrVal, Info.offset), 3725 Info.align, Info.vol, 3726 Info.readMem, Info.writeMem); 3727 } else if (!HasChain) { 3728 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), 3729 VTs, &Ops[0], Ops.size()); 3730 } else if (!I.getType()->isVoidTy()) { 3731 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), 3732 VTs, &Ops[0], Ops.size()); 3733 } else { 3734 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), 3735 VTs, &Ops[0], Ops.size()); 3736 } 3737 3738 if (HasChain) { 3739 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3740 if (OnlyLoad) 3741 PendingLoads.push_back(Chain); 3742 else 3743 DAG.setRoot(Chain); 3744 } 3745 3746 if (!I.getType()->isVoidTy()) { 3747 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3748 EVT VT = TLI->getValueType(PTy); 3749 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3750 } 3751 3752 setValue(&I, Result); 3753 } 3754 } 3755 3756 /// GetSignificand - Get the significand and build it into a floating-point 3757 /// number with exponent of 1: 3758 /// 3759 /// Op = (Op & 0x007fffff) | 0x3f800000; 3760 /// 3761 /// where Op is the hexadecimal representation of floating point value. 3762 static SDValue 3763 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3764 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3765 DAG.getConstant(0x007fffff, MVT::i32)); 3766 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3767 DAG.getConstant(0x3f800000, MVT::i32)); 3768 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3769 } 3770 3771 /// GetExponent - Get the exponent: 3772 /// 3773 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3774 /// 3775 /// where Op is the hexadecimal representation of floating point value. 3776 static SDValue 3777 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3778 SDLoc dl) { 3779 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3780 DAG.getConstant(0x7f800000, MVT::i32)); 3781 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3782 DAG.getConstant(23, TLI.getPointerTy())); 3783 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3784 DAG.getConstant(127, MVT::i32)); 3785 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3786 } 3787 3788 /// getF32Constant - Get 32-bit floating point constant. 3789 static SDValue 3790 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3791 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3792 MVT::f32); 3793 } 3794 3795 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3796 /// limited-precision mode. 3797 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3798 const TargetLowering &TLI) { 3799 if (Op.getValueType() == MVT::f32 && 3800 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3801 3802 // Put the exponent in the right bit position for later addition to the 3803 // final result: 3804 // 3805 // #define LOG2OFe 1.4426950f 3806 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3807 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3808 getF32Constant(DAG, 0x3fb8aa3b)); 3809 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3810 3811 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3812 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3813 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3814 3815 // IntegerPartOfX <<= 23; 3816 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3817 DAG.getConstant(23, TLI.getPointerTy())); 3818 3819 SDValue TwoToFracPartOfX; 3820 if (LimitFloatPrecision <= 6) { 3821 // For floating-point precision of 6: 3822 // 3823 // TwoToFractionalPartOfX = 3824 // 0.997535578f + 3825 // (0.735607626f + 0.252464424f * x) * x; 3826 // 3827 // error 0.0144103317, which is 6 bits 3828 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3829 getF32Constant(DAG, 0x3e814304)); 3830 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3831 getF32Constant(DAG, 0x3f3c50c8)); 3832 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3833 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3834 getF32Constant(DAG, 0x3f7f5e7e)); 3835 } else if (LimitFloatPrecision <= 12) { 3836 // For floating-point precision of 12: 3837 // 3838 // TwoToFractionalPartOfX = 3839 // 0.999892986f + 3840 // (0.696457318f + 3841 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3842 // 3843 // 0.000107046256 error, which is 13 to 14 bits 3844 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3845 getF32Constant(DAG, 0x3da235e3)); 3846 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3847 getF32Constant(DAG, 0x3e65b8f3)); 3848 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3849 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3850 getF32Constant(DAG, 0x3f324b07)); 3851 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3852 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3853 getF32Constant(DAG, 0x3f7ff8fd)); 3854 } else { // LimitFloatPrecision <= 18 3855 // For floating-point precision of 18: 3856 // 3857 // TwoToFractionalPartOfX = 3858 // 0.999999982f + 3859 // (0.693148872f + 3860 // (0.240227044f + 3861 // (0.554906021e-1f + 3862 // (0.961591928e-2f + 3863 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3864 // 3865 // error 2.47208000*10^(-7), which is better than 18 bits 3866 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3867 getF32Constant(DAG, 0x3924b03e)); 3868 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3869 getF32Constant(DAG, 0x3ab24b87)); 3870 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3871 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3872 getF32Constant(DAG, 0x3c1d8c17)); 3873 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3874 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3875 getF32Constant(DAG, 0x3d634a1d)); 3876 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3877 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3878 getF32Constant(DAG, 0x3e75fe14)); 3879 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3880 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3881 getF32Constant(DAG, 0x3f317234)); 3882 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3883 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3884 getF32Constant(DAG, 0x3f800000)); 3885 } 3886 3887 // Add the exponent into the result in integer domain. 3888 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3889 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3890 DAG.getNode(ISD::ADD, dl, MVT::i32, 3891 t13, IntegerPartOfX)); 3892 } 3893 3894 // No special expansion. 3895 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3896 } 3897 3898 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3899 /// limited-precision mode. 3900 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3901 const TargetLowering &TLI) { 3902 if (Op.getValueType() == MVT::f32 && 3903 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3904 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3905 3906 // Scale the exponent by log(2) [0.69314718f]. 3907 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3908 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3909 getF32Constant(DAG, 0x3f317218)); 3910 3911 // Get the significand and build it into a floating-point number with 3912 // exponent of 1. 3913 SDValue X = GetSignificand(DAG, Op1, dl); 3914 3915 SDValue LogOfMantissa; 3916 if (LimitFloatPrecision <= 6) { 3917 // For floating-point precision of 6: 3918 // 3919 // LogofMantissa = 3920 // -1.1609546f + 3921 // (1.4034025f - 0.23903021f * x) * x; 3922 // 3923 // error 0.0034276066, which is better than 8 bits 3924 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3925 getF32Constant(DAG, 0xbe74c456)); 3926 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3927 getF32Constant(DAG, 0x3fb3a2b1)); 3928 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3929 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3930 getF32Constant(DAG, 0x3f949a29)); 3931 } else if (LimitFloatPrecision <= 12) { 3932 // For floating-point precision of 12: 3933 // 3934 // LogOfMantissa = 3935 // -1.7417939f + 3936 // (2.8212026f + 3937 // (-1.4699568f + 3938 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3939 // 3940 // error 0.000061011436, which is 14 bits 3941 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3942 getF32Constant(DAG, 0xbd67b6d6)); 3943 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3944 getF32Constant(DAG, 0x3ee4f4b8)); 3945 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3946 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3947 getF32Constant(DAG, 0x3fbc278b)); 3948 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3949 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3950 getF32Constant(DAG, 0x40348e95)); 3951 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3952 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3953 getF32Constant(DAG, 0x3fdef31a)); 3954 } else { // LimitFloatPrecision <= 18 3955 // For floating-point precision of 18: 3956 // 3957 // LogOfMantissa = 3958 // -2.1072184f + 3959 // (4.2372794f + 3960 // (-3.7029485f + 3961 // (2.2781945f + 3962 // (-0.87823314f + 3963 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3964 // 3965 // error 0.0000023660568, which is better than 18 bits 3966 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3967 getF32Constant(DAG, 0xbc91e5ac)); 3968 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3969 getF32Constant(DAG, 0x3e4350aa)); 3970 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3971 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3972 getF32Constant(DAG, 0x3f60d3e3)); 3973 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3974 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3975 getF32Constant(DAG, 0x4011cdf0)); 3976 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3977 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3978 getF32Constant(DAG, 0x406cfd1c)); 3979 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3980 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3981 getF32Constant(DAG, 0x408797cb)); 3982 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3983 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3984 getF32Constant(DAG, 0x4006dcab)); 3985 } 3986 3987 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3988 } 3989 3990 // No special expansion. 3991 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3992 } 3993 3994 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3995 /// limited-precision mode. 3996 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3997 const TargetLowering &TLI) { 3998 if (Op.getValueType() == MVT::f32 && 3999 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4000 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4001 4002 // Get the exponent. 4003 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4004 4005 // Get the significand and build it into a floating-point number with 4006 // exponent of 1. 4007 SDValue X = GetSignificand(DAG, Op1, dl); 4008 4009 // Different possible minimax approximations of significand in 4010 // floating-point for various degrees of accuracy over [1,2]. 4011 SDValue Log2ofMantissa; 4012 if (LimitFloatPrecision <= 6) { 4013 // For floating-point precision of 6: 4014 // 4015 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4016 // 4017 // error 0.0049451742, which is more than 7 bits 4018 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4019 getF32Constant(DAG, 0xbeb08fe0)); 4020 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4021 getF32Constant(DAG, 0x40019463)); 4022 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4023 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4024 getF32Constant(DAG, 0x3fd6633d)); 4025 } else if (LimitFloatPrecision <= 12) { 4026 // For floating-point precision of 12: 4027 // 4028 // Log2ofMantissa = 4029 // -2.51285454f + 4030 // (4.07009056f + 4031 // (-2.12067489f + 4032 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4033 // 4034 // error 0.0000876136000, which is better than 13 bits 4035 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4036 getF32Constant(DAG, 0xbda7262e)); 4037 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4038 getF32Constant(DAG, 0x3f25280b)); 4039 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4040 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4041 getF32Constant(DAG, 0x4007b923)); 4042 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4043 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4044 getF32Constant(DAG, 0x40823e2f)); 4045 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4046 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4047 getF32Constant(DAG, 0x4020d29c)); 4048 } else { // LimitFloatPrecision <= 18 4049 // For floating-point precision of 18: 4050 // 4051 // Log2ofMantissa = 4052 // -3.0400495f + 4053 // (6.1129976f + 4054 // (-5.3420409f + 4055 // (3.2865683f + 4056 // (-1.2669343f + 4057 // (0.27515199f - 4058 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4059 // 4060 // error 0.0000018516, which is better than 18 bits 4061 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4062 getF32Constant(DAG, 0xbcd2769e)); 4063 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4064 getF32Constant(DAG, 0x3e8ce0b9)); 4065 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4066 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4067 getF32Constant(DAG, 0x3fa22ae7)); 4068 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4069 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4070 getF32Constant(DAG, 0x40525723)); 4071 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4072 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4073 getF32Constant(DAG, 0x40aaf200)); 4074 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4075 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4076 getF32Constant(DAG, 0x40c39dad)); 4077 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4078 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4079 getF32Constant(DAG, 0x4042902c)); 4080 } 4081 4082 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4083 } 4084 4085 // No special expansion. 4086 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4087 } 4088 4089 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4090 /// limited-precision mode. 4091 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4092 const TargetLowering &TLI) { 4093 if (Op.getValueType() == MVT::f32 && 4094 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4095 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4096 4097 // Scale the exponent by log10(2) [0.30102999f]. 4098 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4099 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4100 getF32Constant(DAG, 0x3e9a209a)); 4101 4102 // Get the significand and build it into a floating-point number with 4103 // exponent of 1. 4104 SDValue X = GetSignificand(DAG, Op1, dl); 4105 4106 SDValue Log10ofMantissa; 4107 if (LimitFloatPrecision <= 6) { 4108 // For floating-point precision of 6: 4109 // 4110 // Log10ofMantissa = 4111 // -0.50419619f + 4112 // (0.60948995f - 0.10380950f * x) * x; 4113 // 4114 // error 0.0014886165, which is 6 bits 4115 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4116 getF32Constant(DAG, 0xbdd49a13)); 4117 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4118 getF32Constant(DAG, 0x3f1c0789)); 4119 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4120 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4121 getF32Constant(DAG, 0x3f011300)); 4122 } else if (LimitFloatPrecision <= 12) { 4123 // For floating-point precision of 12: 4124 // 4125 // Log10ofMantissa = 4126 // -0.64831180f + 4127 // (0.91751397f + 4128 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4129 // 4130 // error 0.00019228036, which is better than 12 bits 4131 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4132 getF32Constant(DAG, 0x3d431f31)); 4133 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4134 getF32Constant(DAG, 0x3ea21fb2)); 4135 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4136 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4137 getF32Constant(DAG, 0x3f6ae232)); 4138 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4139 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4140 getF32Constant(DAG, 0x3f25f7c3)); 4141 } else { // LimitFloatPrecision <= 18 4142 // For floating-point precision of 18: 4143 // 4144 // Log10ofMantissa = 4145 // -0.84299375f + 4146 // (1.5327582f + 4147 // (-1.0688956f + 4148 // (0.49102474f + 4149 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4150 // 4151 // error 0.0000037995730, which is better than 18 bits 4152 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4153 getF32Constant(DAG, 0x3c5d51ce)); 4154 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4155 getF32Constant(DAG, 0x3e00685a)); 4156 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4157 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4158 getF32Constant(DAG, 0x3efb6798)); 4159 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4160 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4161 getF32Constant(DAG, 0x3f88d192)); 4162 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4163 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4164 getF32Constant(DAG, 0x3fc4316c)); 4165 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4166 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4167 getF32Constant(DAG, 0x3f57ce70)); 4168 } 4169 4170 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4171 } 4172 4173 // No special expansion. 4174 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4175 } 4176 4177 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4178 /// limited-precision mode. 4179 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4180 const TargetLowering &TLI) { 4181 if (Op.getValueType() == MVT::f32 && 4182 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4183 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4184 4185 // FractionalPartOfX = x - (float)IntegerPartOfX; 4186 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4187 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4188 4189 // IntegerPartOfX <<= 23; 4190 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4191 DAG.getConstant(23, TLI.getPointerTy())); 4192 4193 SDValue TwoToFractionalPartOfX; 4194 if (LimitFloatPrecision <= 6) { 4195 // For floating-point precision of 6: 4196 // 4197 // TwoToFractionalPartOfX = 4198 // 0.997535578f + 4199 // (0.735607626f + 0.252464424f * x) * x; 4200 // 4201 // error 0.0144103317, which is 6 bits 4202 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4203 getF32Constant(DAG, 0x3e814304)); 4204 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4205 getF32Constant(DAG, 0x3f3c50c8)); 4206 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4207 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4208 getF32Constant(DAG, 0x3f7f5e7e)); 4209 } else if (LimitFloatPrecision <= 12) { 4210 // For floating-point precision of 12: 4211 // 4212 // TwoToFractionalPartOfX = 4213 // 0.999892986f + 4214 // (0.696457318f + 4215 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4216 // 4217 // error 0.000107046256, which is 13 to 14 bits 4218 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4219 getF32Constant(DAG, 0x3da235e3)); 4220 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4221 getF32Constant(DAG, 0x3e65b8f3)); 4222 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4223 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4224 getF32Constant(DAG, 0x3f324b07)); 4225 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4226 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4227 getF32Constant(DAG, 0x3f7ff8fd)); 4228 } else { // LimitFloatPrecision <= 18 4229 // For floating-point precision of 18: 4230 // 4231 // TwoToFractionalPartOfX = 4232 // 0.999999982f + 4233 // (0.693148872f + 4234 // (0.240227044f + 4235 // (0.554906021e-1f + 4236 // (0.961591928e-2f + 4237 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4238 // error 2.47208000*10^(-7), which is better than 18 bits 4239 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4240 getF32Constant(DAG, 0x3924b03e)); 4241 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4242 getF32Constant(DAG, 0x3ab24b87)); 4243 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4244 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4245 getF32Constant(DAG, 0x3c1d8c17)); 4246 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4247 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4248 getF32Constant(DAG, 0x3d634a1d)); 4249 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4250 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4251 getF32Constant(DAG, 0x3e75fe14)); 4252 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4253 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4254 getF32Constant(DAG, 0x3f317234)); 4255 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4256 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4257 getF32Constant(DAG, 0x3f800000)); 4258 } 4259 4260 // Add the exponent into the result in integer domain. 4261 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4262 TwoToFractionalPartOfX); 4263 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4264 DAG.getNode(ISD::ADD, dl, MVT::i32, 4265 t13, IntegerPartOfX)); 4266 } 4267 4268 // No special expansion. 4269 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4270 } 4271 4272 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4273 /// limited-precision mode with x == 10.0f. 4274 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4275 SelectionDAG &DAG, const TargetLowering &TLI) { 4276 bool IsExp10 = false; 4277 if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 && 4278 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4279 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4280 APFloat Ten(10.0f); 4281 IsExp10 = LHSC->isExactlyValue(Ten); 4282 } 4283 } 4284 4285 if (IsExp10) { 4286 // Put the exponent in the right bit position for later addition to the 4287 // final result: 4288 // 4289 // #define LOG2OF10 3.3219281f 4290 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4291 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4292 getF32Constant(DAG, 0x40549a78)); 4293 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4294 4295 // FractionalPartOfX = x - (float)IntegerPartOfX; 4296 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4297 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4298 4299 // IntegerPartOfX <<= 23; 4300 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4301 DAG.getConstant(23, TLI.getPointerTy())); 4302 4303 SDValue TwoToFractionalPartOfX; 4304 if (LimitFloatPrecision <= 6) { 4305 // For floating-point precision of 6: 4306 // 4307 // twoToFractionalPartOfX = 4308 // 0.997535578f + 4309 // (0.735607626f + 0.252464424f * x) * x; 4310 // 4311 // error 0.0144103317, which is 6 bits 4312 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4313 getF32Constant(DAG, 0x3e814304)); 4314 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4315 getF32Constant(DAG, 0x3f3c50c8)); 4316 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4317 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4318 getF32Constant(DAG, 0x3f7f5e7e)); 4319 } else if (LimitFloatPrecision <= 12) { 4320 // For floating-point precision of 12: 4321 // 4322 // TwoToFractionalPartOfX = 4323 // 0.999892986f + 4324 // (0.696457318f + 4325 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4326 // 4327 // error 0.000107046256, which is 13 to 14 bits 4328 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4329 getF32Constant(DAG, 0x3da235e3)); 4330 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4331 getF32Constant(DAG, 0x3e65b8f3)); 4332 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4333 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4334 getF32Constant(DAG, 0x3f324b07)); 4335 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4336 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4337 getF32Constant(DAG, 0x3f7ff8fd)); 4338 } else { // LimitFloatPrecision <= 18 4339 // For floating-point precision of 18: 4340 // 4341 // TwoToFractionalPartOfX = 4342 // 0.999999982f + 4343 // (0.693148872f + 4344 // (0.240227044f + 4345 // (0.554906021e-1f + 4346 // (0.961591928e-2f + 4347 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4348 // error 2.47208000*10^(-7), which is better than 18 bits 4349 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4350 getF32Constant(DAG, 0x3924b03e)); 4351 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4352 getF32Constant(DAG, 0x3ab24b87)); 4353 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4354 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4355 getF32Constant(DAG, 0x3c1d8c17)); 4356 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4357 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4358 getF32Constant(DAG, 0x3d634a1d)); 4359 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4360 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4361 getF32Constant(DAG, 0x3e75fe14)); 4362 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4363 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4364 getF32Constant(DAG, 0x3f317234)); 4365 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4366 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4367 getF32Constant(DAG, 0x3f800000)); 4368 } 4369 4370 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4371 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4372 DAG.getNode(ISD::ADD, dl, MVT::i32, 4373 t13, IntegerPartOfX)); 4374 } 4375 4376 // No special expansion. 4377 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4378 } 4379 4380 4381 /// ExpandPowI - Expand a llvm.powi intrinsic. 4382 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4383 SelectionDAG &DAG) { 4384 // If RHS is a constant, we can expand this out to a multiplication tree, 4385 // otherwise we end up lowering to a call to __powidf2 (for example). When 4386 // optimizing for size, we only want to do this if the expansion would produce 4387 // a small number of multiplies, otherwise we do the full expansion. 4388 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4389 // Get the exponent as a positive value. 4390 unsigned Val = RHSC->getSExtValue(); 4391 if ((int)Val < 0) Val = -Val; 4392 4393 // powi(x, 0) -> 1.0 4394 if (Val == 0) 4395 return DAG.getConstantFP(1.0, LHS.getValueType()); 4396 4397 const Function *F = DAG.getMachineFunction().getFunction(); 4398 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4399 Attribute::OptimizeForSize) || 4400 // If optimizing for size, don't insert too many multiplies. This 4401 // inserts up to 5 multiplies. 4402 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4403 // We use the simple binary decomposition method to generate the multiply 4404 // sequence. There are more optimal ways to do this (for example, 4405 // powi(x,15) generates one more multiply than it should), but this has 4406 // the benefit of being both really simple and much better than a libcall. 4407 SDValue Res; // Logically starts equal to 1.0 4408 SDValue CurSquare = LHS; 4409 while (Val) { 4410 if (Val & 1) { 4411 if (Res.getNode()) 4412 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4413 else 4414 Res = CurSquare; // 1.0*CurSquare. 4415 } 4416 4417 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4418 CurSquare, CurSquare); 4419 Val >>= 1; 4420 } 4421 4422 // If the original was negative, invert the result, producing 1/(x*x*x). 4423 if (RHSC->getSExtValue() < 0) 4424 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4425 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4426 return Res; 4427 } 4428 } 4429 4430 // Otherwise, expand to a libcall. 4431 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4432 } 4433 4434 // getTruncatedArgReg - Find underlying register used for an truncated 4435 // argument. 4436 static unsigned getTruncatedArgReg(const SDValue &N) { 4437 if (N.getOpcode() != ISD::TRUNCATE) 4438 return 0; 4439 4440 const SDValue &Ext = N.getOperand(0); 4441 if (Ext.getOpcode() == ISD::AssertZext || 4442 Ext.getOpcode() == ISD::AssertSext) { 4443 const SDValue &CFR = Ext.getOperand(0); 4444 if (CFR.getOpcode() == ISD::CopyFromReg) 4445 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4446 if (CFR.getOpcode() == ISD::TRUNCATE) 4447 return getTruncatedArgReg(CFR); 4448 } 4449 return 0; 4450 } 4451 4452 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4453 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4454 /// At the end of instruction selection, they will be inserted to the entry BB. 4455 bool 4456 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4457 int64_t Offset, 4458 const SDValue &N) { 4459 const Argument *Arg = dyn_cast<Argument>(V); 4460 if (!Arg) 4461 return false; 4462 4463 MachineFunction &MF = DAG.getMachineFunction(); 4464 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4465 4466 // Ignore inlined function arguments here. 4467 DIVariable DV(Variable); 4468 if (DV.isInlinedFnArgument(MF.getFunction())) 4469 return false; 4470 4471 Optional<MachineOperand> Op; 4472 // Some arguments' frame index is recorded during argument lowering. 4473 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4474 Op = MachineOperand::CreateFI(FI); 4475 4476 if (!Op && N.getNode()) { 4477 unsigned Reg; 4478 if (N.getOpcode() == ISD::CopyFromReg) 4479 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4480 else 4481 Reg = getTruncatedArgReg(N); 4482 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4483 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4484 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4485 if (PR) 4486 Reg = PR; 4487 } 4488 if (Reg) 4489 Op = MachineOperand::CreateReg(Reg, false); 4490 } 4491 4492 if (!Op) { 4493 // Check if ValueMap has reg number. 4494 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4495 if (VMI != FuncInfo.ValueMap.end()) 4496 Op = MachineOperand::CreateReg(VMI->second, false); 4497 } 4498 4499 if (!Op && N.getNode()) 4500 // Check if frame index is available. 4501 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4502 if (FrameIndexSDNode *FINode = 4503 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4504 Op = MachineOperand::CreateFI(FINode->getIndex()); 4505 4506 if (!Op) 4507 return false; 4508 4509 // FIXME: This does not handle register-indirect values at offset 0. 4510 bool IsIndirect = Offset != 0; 4511 if (Op->isReg()) 4512 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4513 TII->get(TargetOpcode::DBG_VALUE), 4514 IsIndirect, 4515 Op->getReg(), Offset, Variable)); 4516 else 4517 FuncInfo.ArgDbgValues.push_back( 4518 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4519 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4520 4521 return true; 4522 } 4523 4524 // VisualStudio defines setjmp as _setjmp 4525 #if defined(_MSC_VER) && defined(setjmp) && \ 4526 !defined(setjmp_undefined_for_msvc) 4527 # pragma push_macro("setjmp") 4528 # undef setjmp 4529 # define setjmp_undefined_for_msvc 4530 #endif 4531 4532 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4533 /// we want to emit this as a call to a named external function, return the name 4534 /// otherwise lower it and return null. 4535 const char * 4536 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4537 const TargetLowering *TLI = TM.getTargetLowering(); 4538 SDLoc sdl = getCurSDLoc(); 4539 DebugLoc dl = getCurDebugLoc(); 4540 SDValue Res; 4541 4542 switch (Intrinsic) { 4543 default: 4544 // By default, turn this into a target intrinsic node. 4545 visitTargetIntrinsic(I, Intrinsic); 4546 return 0; 4547 case Intrinsic::vastart: visitVAStart(I); return 0; 4548 case Intrinsic::vaend: visitVAEnd(I); return 0; 4549 case Intrinsic::vacopy: visitVACopy(I); return 0; 4550 case Intrinsic::returnaddress: 4551 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4552 getValue(I.getArgOperand(0)))); 4553 return 0; 4554 case Intrinsic::frameaddress: 4555 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4556 getValue(I.getArgOperand(0)))); 4557 return 0; 4558 case Intrinsic::setjmp: 4559 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4560 case Intrinsic::longjmp: 4561 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4562 case Intrinsic::memcpy: { 4563 // Assert for address < 256 since we support only user defined address 4564 // spaces. 4565 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4566 < 256 && 4567 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4568 < 256 && 4569 "Unknown address space"); 4570 SDValue Op1 = getValue(I.getArgOperand(0)); 4571 SDValue Op2 = getValue(I.getArgOperand(1)); 4572 SDValue Op3 = getValue(I.getArgOperand(2)); 4573 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4574 if (!Align) 4575 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4576 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4577 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4578 MachinePointerInfo(I.getArgOperand(0)), 4579 MachinePointerInfo(I.getArgOperand(1)))); 4580 return 0; 4581 } 4582 case Intrinsic::memset: { 4583 // Assert for address < 256 since we support only user defined address 4584 // spaces. 4585 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4586 < 256 && 4587 "Unknown address space"); 4588 SDValue Op1 = getValue(I.getArgOperand(0)); 4589 SDValue Op2 = getValue(I.getArgOperand(1)); 4590 SDValue Op3 = getValue(I.getArgOperand(2)); 4591 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4592 if (!Align) 4593 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4594 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4595 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4596 MachinePointerInfo(I.getArgOperand(0)))); 4597 return 0; 4598 } 4599 case Intrinsic::memmove: { 4600 // Assert for address < 256 since we support only user defined address 4601 // spaces. 4602 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4603 < 256 && 4604 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4605 < 256 && 4606 "Unknown address space"); 4607 SDValue Op1 = getValue(I.getArgOperand(0)); 4608 SDValue Op2 = getValue(I.getArgOperand(1)); 4609 SDValue Op3 = getValue(I.getArgOperand(2)); 4610 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4611 if (!Align) 4612 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4613 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4614 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4615 MachinePointerInfo(I.getArgOperand(0)), 4616 MachinePointerInfo(I.getArgOperand(1)))); 4617 return 0; 4618 } 4619 case Intrinsic::dbg_declare: { 4620 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4621 MDNode *Variable = DI.getVariable(); 4622 const Value *Address = DI.getAddress(); 4623 DIVariable DIVar(Variable); 4624 assert((!DIVar || DIVar.isVariable()) && 4625 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4626 if (!Address || !DIVar) { 4627 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4628 return 0; 4629 } 4630 4631 // Check if address has undef value. 4632 if (isa<UndefValue>(Address) || 4633 (Address->use_empty() && !isa<Argument>(Address))) { 4634 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4635 return 0; 4636 } 4637 4638 SDValue &N = NodeMap[Address]; 4639 if (!N.getNode() && isa<Argument>(Address)) 4640 // Check unused arguments map. 4641 N = UnusedArgNodeMap[Address]; 4642 SDDbgValue *SDV; 4643 if (N.getNode()) { 4644 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4645 Address = BCI->getOperand(0); 4646 // Parameters are handled specially. 4647 bool isParameter = 4648 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4649 isa<Argument>(Address)); 4650 4651 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4652 4653 if (isParameter && !AI) { 4654 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4655 if (FINode) 4656 // Byval parameter. We have a frame index at this point. 4657 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4658 0, dl, SDNodeOrder); 4659 else { 4660 // Address is an argument, so try to emit its dbg value using 4661 // virtual register info from the FuncInfo.ValueMap. 4662 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4663 return 0; 4664 } 4665 } else if (AI) 4666 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4667 0, dl, SDNodeOrder); 4668 else { 4669 // Can't do anything with other non-AI cases yet. 4670 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4671 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4672 DEBUG(Address->dump()); 4673 return 0; 4674 } 4675 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4676 } else { 4677 // If Address is an argument then try to emit its dbg value using 4678 // virtual register info from the FuncInfo.ValueMap. 4679 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4680 // If variable is pinned by a alloca in dominating bb then 4681 // use StaticAllocaMap. 4682 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4683 if (AI->getParent() != DI.getParent()) { 4684 DenseMap<const AllocaInst*, int>::iterator SI = 4685 FuncInfo.StaticAllocaMap.find(AI); 4686 if (SI != FuncInfo.StaticAllocaMap.end()) { 4687 SDV = DAG.getDbgValue(Variable, SI->second, 4688 0, dl, SDNodeOrder); 4689 DAG.AddDbgValue(SDV, 0, false); 4690 return 0; 4691 } 4692 } 4693 } 4694 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4695 } 4696 } 4697 return 0; 4698 } 4699 case Intrinsic::dbg_value: { 4700 const DbgValueInst &DI = cast<DbgValueInst>(I); 4701 DIVariable DIVar(DI.getVariable()); 4702 assert((!DIVar || DIVar.isVariable()) && 4703 "Variable in DbgValueInst should be either null or a DIVariable."); 4704 if (!DIVar) 4705 return 0; 4706 4707 MDNode *Variable = DI.getVariable(); 4708 uint64_t Offset = DI.getOffset(); 4709 const Value *V = DI.getValue(); 4710 if (!V) 4711 return 0; 4712 4713 SDDbgValue *SDV; 4714 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4715 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4716 DAG.AddDbgValue(SDV, 0, false); 4717 } else { 4718 // Do not use getValue() in here; we don't want to generate code at 4719 // this point if it hasn't been done yet. 4720 SDValue N = NodeMap[V]; 4721 if (!N.getNode() && isa<Argument>(V)) 4722 // Check unused arguments map. 4723 N = UnusedArgNodeMap[V]; 4724 if (N.getNode()) { 4725 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4726 SDV = DAG.getDbgValue(Variable, N.getNode(), 4727 N.getResNo(), Offset, dl, SDNodeOrder); 4728 DAG.AddDbgValue(SDV, N.getNode(), false); 4729 } 4730 } else if (!V->use_empty() ) { 4731 // Do not call getValue(V) yet, as we don't want to generate code. 4732 // Remember it for later. 4733 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4734 DanglingDebugInfoMap[V] = DDI; 4735 } else { 4736 // We may expand this to cover more cases. One case where we have no 4737 // data available is an unreferenced parameter. 4738 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4739 } 4740 } 4741 4742 // Build a debug info table entry. 4743 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4744 V = BCI->getOperand(0); 4745 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4746 // Don't handle byval struct arguments or VLAs, for example. 4747 if (!AI) { 4748 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4749 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4750 return 0; 4751 } 4752 DenseMap<const AllocaInst*, int>::iterator SI = 4753 FuncInfo.StaticAllocaMap.find(AI); 4754 if (SI == FuncInfo.StaticAllocaMap.end()) 4755 return 0; // VLAs. 4756 int FI = SI->second; 4757 4758 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4759 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4760 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4761 return 0; 4762 } 4763 4764 case Intrinsic::eh_typeid_for: { 4765 // Find the type id for the given typeinfo. 4766 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4767 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4768 Res = DAG.getConstant(TypeID, MVT::i32); 4769 setValue(&I, Res); 4770 return 0; 4771 } 4772 4773 case Intrinsic::eh_return_i32: 4774 case Intrinsic::eh_return_i64: 4775 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4776 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4777 MVT::Other, 4778 getControlRoot(), 4779 getValue(I.getArgOperand(0)), 4780 getValue(I.getArgOperand(1)))); 4781 return 0; 4782 case Intrinsic::eh_unwind_init: 4783 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4784 return 0; 4785 case Intrinsic::eh_dwarf_cfa: { 4786 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4787 TLI->getPointerTy()); 4788 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4789 CfaArg.getValueType(), 4790 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4791 CfaArg.getValueType()), 4792 CfaArg); 4793 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4794 TLI->getPointerTy(), 4795 DAG.getConstant(0, TLI->getPointerTy())); 4796 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4797 FA, Offset)); 4798 return 0; 4799 } 4800 case Intrinsic::eh_sjlj_callsite: { 4801 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4802 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4803 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4804 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4805 4806 MMI.setCurrentCallSite(CI->getZExtValue()); 4807 return 0; 4808 } 4809 case Intrinsic::eh_sjlj_functioncontext: { 4810 // Get and store the index of the function context. 4811 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4812 AllocaInst *FnCtx = 4813 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4814 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4815 MFI->setFunctionContextIndex(FI); 4816 return 0; 4817 } 4818 case Intrinsic::eh_sjlj_setjmp: { 4819 SDValue Ops[2]; 4820 Ops[0] = getRoot(); 4821 Ops[1] = getValue(I.getArgOperand(0)); 4822 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4823 DAG.getVTList(MVT::i32, MVT::Other), 4824 Ops, 2); 4825 setValue(&I, Op.getValue(0)); 4826 DAG.setRoot(Op.getValue(1)); 4827 return 0; 4828 } 4829 case Intrinsic::eh_sjlj_longjmp: { 4830 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4831 getRoot(), getValue(I.getArgOperand(0)))); 4832 return 0; 4833 } 4834 4835 case Intrinsic::x86_mmx_pslli_w: 4836 case Intrinsic::x86_mmx_pslli_d: 4837 case Intrinsic::x86_mmx_pslli_q: 4838 case Intrinsic::x86_mmx_psrli_w: 4839 case Intrinsic::x86_mmx_psrli_d: 4840 case Intrinsic::x86_mmx_psrli_q: 4841 case Intrinsic::x86_mmx_psrai_w: 4842 case Intrinsic::x86_mmx_psrai_d: { 4843 SDValue ShAmt = getValue(I.getArgOperand(1)); 4844 if (isa<ConstantSDNode>(ShAmt)) { 4845 visitTargetIntrinsic(I, Intrinsic); 4846 return 0; 4847 } 4848 unsigned NewIntrinsic = 0; 4849 EVT ShAmtVT = MVT::v2i32; 4850 switch (Intrinsic) { 4851 case Intrinsic::x86_mmx_pslli_w: 4852 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4853 break; 4854 case Intrinsic::x86_mmx_pslli_d: 4855 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4856 break; 4857 case Intrinsic::x86_mmx_pslli_q: 4858 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4859 break; 4860 case Intrinsic::x86_mmx_psrli_w: 4861 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4862 break; 4863 case Intrinsic::x86_mmx_psrli_d: 4864 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4865 break; 4866 case Intrinsic::x86_mmx_psrli_q: 4867 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4868 break; 4869 case Intrinsic::x86_mmx_psrai_w: 4870 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4871 break; 4872 case Intrinsic::x86_mmx_psrai_d: 4873 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4874 break; 4875 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4876 } 4877 4878 // The vector shift intrinsics with scalars uses 32b shift amounts but 4879 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4880 // to be zero. 4881 // We must do this early because v2i32 is not a legal type. 4882 SDValue ShOps[2]; 4883 ShOps[0] = ShAmt; 4884 ShOps[1] = DAG.getConstant(0, MVT::i32); 4885 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); 4886 EVT DestVT = TLI->getValueType(I.getType()); 4887 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4888 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4889 DAG.getConstant(NewIntrinsic, MVT::i32), 4890 getValue(I.getArgOperand(0)), ShAmt); 4891 setValue(&I, Res); 4892 return 0; 4893 } 4894 case Intrinsic::x86_avx_vinsertf128_pd_256: 4895 case Intrinsic::x86_avx_vinsertf128_ps_256: 4896 case Intrinsic::x86_avx_vinsertf128_si_256: 4897 case Intrinsic::x86_avx2_vinserti128: { 4898 EVT DestVT = TLI->getValueType(I.getType()); 4899 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4900 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4901 ElVT.getVectorNumElements(); 4902 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4903 getValue(I.getArgOperand(0)), 4904 getValue(I.getArgOperand(1)), 4905 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4906 setValue(&I, Res); 4907 return 0; 4908 } 4909 case Intrinsic::x86_avx_vextractf128_pd_256: 4910 case Intrinsic::x86_avx_vextractf128_ps_256: 4911 case Intrinsic::x86_avx_vextractf128_si_256: 4912 case Intrinsic::x86_avx2_vextracti128: { 4913 EVT DestVT = TLI->getValueType(I.getType()); 4914 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4915 DestVT.getVectorNumElements(); 4916 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4917 getValue(I.getArgOperand(0)), 4918 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4919 setValue(&I, Res); 4920 return 0; 4921 } 4922 case Intrinsic::convertff: 4923 case Intrinsic::convertfsi: 4924 case Intrinsic::convertfui: 4925 case Intrinsic::convertsif: 4926 case Intrinsic::convertuif: 4927 case Intrinsic::convertss: 4928 case Intrinsic::convertsu: 4929 case Intrinsic::convertus: 4930 case Intrinsic::convertuu: { 4931 ISD::CvtCode Code = ISD::CVT_INVALID; 4932 switch (Intrinsic) { 4933 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4934 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4935 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4936 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4937 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4938 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4939 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4940 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4941 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4942 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4943 } 4944 EVT DestVT = TLI->getValueType(I.getType()); 4945 const Value *Op1 = I.getArgOperand(0); 4946 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4947 DAG.getValueType(DestVT), 4948 DAG.getValueType(getValue(Op1).getValueType()), 4949 getValue(I.getArgOperand(1)), 4950 getValue(I.getArgOperand(2)), 4951 Code); 4952 setValue(&I, Res); 4953 return 0; 4954 } 4955 case Intrinsic::powi: 4956 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4957 getValue(I.getArgOperand(1)), DAG)); 4958 return 0; 4959 case Intrinsic::log: 4960 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4961 return 0; 4962 case Intrinsic::log2: 4963 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4964 return 0; 4965 case Intrinsic::log10: 4966 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4967 return 0; 4968 case Intrinsic::exp: 4969 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4970 return 0; 4971 case Intrinsic::exp2: 4972 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4973 return 0; 4974 case Intrinsic::pow: 4975 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4976 getValue(I.getArgOperand(1)), DAG, *TLI)); 4977 return 0; 4978 case Intrinsic::sqrt: 4979 case Intrinsic::fabs: 4980 case Intrinsic::sin: 4981 case Intrinsic::cos: 4982 case Intrinsic::floor: 4983 case Intrinsic::ceil: 4984 case Intrinsic::trunc: 4985 case Intrinsic::rint: 4986 case Intrinsic::nearbyint: 4987 case Intrinsic::round: { 4988 unsigned Opcode; 4989 switch (Intrinsic) { 4990 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4991 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4992 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4993 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4994 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4995 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4996 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4997 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4998 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4999 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5000 case Intrinsic::round: Opcode = ISD::FROUND; break; 5001 } 5002 5003 setValue(&I, DAG.getNode(Opcode, sdl, 5004 getValue(I.getArgOperand(0)).getValueType(), 5005 getValue(I.getArgOperand(0)))); 5006 return 0; 5007 } 5008 case Intrinsic::copysign: 5009 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5010 getValue(I.getArgOperand(0)).getValueType(), 5011 getValue(I.getArgOperand(0)), 5012 getValue(I.getArgOperand(1)))); 5013 return 0; 5014 case Intrinsic::fma: 5015 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5016 getValue(I.getArgOperand(0)).getValueType(), 5017 getValue(I.getArgOperand(0)), 5018 getValue(I.getArgOperand(1)), 5019 getValue(I.getArgOperand(2)))); 5020 return 0; 5021 case Intrinsic::fmuladd: { 5022 EVT VT = TLI->getValueType(I.getType()); 5023 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5024 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5025 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5026 getValue(I.getArgOperand(0)).getValueType(), 5027 getValue(I.getArgOperand(0)), 5028 getValue(I.getArgOperand(1)), 5029 getValue(I.getArgOperand(2)))); 5030 } else { 5031 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5032 getValue(I.getArgOperand(0)).getValueType(), 5033 getValue(I.getArgOperand(0)), 5034 getValue(I.getArgOperand(1))); 5035 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5036 getValue(I.getArgOperand(0)).getValueType(), 5037 Mul, 5038 getValue(I.getArgOperand(2))); 5039 setValue(&I, Add); 5040 } 5041 return 0; 5042 } 5043 case Intrinsic::convert_to_fp16: 5044 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 5045 MVT::i16, getValue(I.getArgOperand(0)))); 5046 return 0; 5047 case Intrinsic::convert_from_fp16: 5048 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 5049 MVT::f32, getValue(I.getArgOperand(0)))); 5050 return 0; 5051 case Intrinsic::pcmarker: { 5052 SDValue Tmp = getValue(I.getArgOperand(0)); 5053 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5054 return 0; 5055 } 5056 case Intrinsic::readcyclecounter: { 5057 SDValue Op = getRoot(); 5058 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5059 DAG.getVTList(MVT::i64, MVT::Other), 5060 &Op, 1); 5061 setValue(&I, Res); 5062 DAG.setRoot(Res.getValue(1)); 5063 return 0; 5064 } 5065 case Intrinsic::bswap: 5066 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5067 getValue(I.getArgOperand(0)).getValueType(), 5068 getValue(I.getArgOperand(0)))); 5069 return 0; 5070 case Intrinsic::cttz: { 5071 SDValue Arg = getValue(I.getArgOperand(0)); 5072 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5073 EVT Ty = Arg.getValueType(); 5074 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5075 sdl, Ty, Arg)); 5076 return 0; 5077 } 5078 case Intrinsic::ctlz: { 5079 SDValue Arg = getValue(I.getArgOperand(0)); 5080 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5081 EVT Ty = Arg.getValueType(); 5082 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5083 sdl, Ty, Arg)); 5084 return 0; 5085 } 5086 case Intrinsic::ctpop: { 5087 SDValue Arg = getValue(I.getArgOperand(0)); 5088 EVT Ty = Arg.getValueType(); 5089 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5090 return 0; 5091 } 5092 case Intrinsic::stacksave: { 5093 SDValue Op = getRoot(); 5094 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5095 DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1); 5096 setValue(&I, Res); 5097 DAG.setRoot(Res.getValue(1)); 5098 return 0; 5099 } 5100 case Intrinsic::stackrestore: { 5101 Res = getValue(I.getArgOperand(0)); 5102 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5103 return 0; 5104 } 5105 case Intrinsic::stackprotector: { 5106 // Emit code into the DAG to store the stack guard onto the stack. 5107 MachineFunction &MF = DAG.getMachineFunction(); 5108 MachineFrameInfo *MFI = MF.getFrameInfo(); 5109 EVT PtrTy = TLI->getPointerTy(); 5110 5111 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5112 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5113 5114 int FI = FuncInfo.StaticAllocaMap[Slot]; 5115 MFI->setStackProtectorIndex(FI); 5116 5117 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5118 5119 // Store the stack protector onto the stack. 5120 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5121 MachinePointerInfo::getFixedStack(FI), 5122 true, false, 0); 5123 setValue(&I, Res); 5124 DAG.setRoot(Res); 5125 return 0; 5126 } 5127 case Intrinsic::objectsize: { 5128 // If we don't know by now, we're never going to know. 5129 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5130 5131 assert(CI && "Non-constant type in __builtin_object_size?"); 5132 5133 SDValue Arg = getValue(I.getCalledValue()); 5134 EVT Ty = Arg.getValueType(); 5135 5136 if (CI->isZero()) 5137 Res = DAG.getConstant(-1ULL, Ty); 5138 else 5139 Res = DAG.getConstant(0, Ty); 5140 5141 setValue(&I, Res); 5142 return 0; 5143 } 5144 case Intrinsic::annotation: 5145 case Intrinsic::ptr_annotation: 5146 // Drop the intrinsic, but forward the value 5147 setValue(&I, getValue(I.getOperand(0))); 5148 return 0; 5149 case Intrinsic::var_annotation: 5150 // Discard annotate attributes 5151 return 0; 5152 5153 case Intrinsic::init_trampoline: { 5154 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5155 5156 SDValue Ops[6]; 5157 Ops[0] = getRoot(); 5158 Ops[1] = getValue(I.getArgOperand(0)); 5159 Ops[2] = getValue(I.getArgOperand(1)); 5160 Ops[3] = getValue(I.getArgOperand(2)); 5161 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5162 Ops[5] = DAG.getSrcValue(F); 5163 5164 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); 5165 5166 DAG.setRoot(Res); 5167 return 0; 5168 } 5169 case Intrinsic::adjust_trampoline: { 5170 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5171 TLI->getPointerTy(), 5172 getValue(I.getArgOperand(0)))); 5173 return 0; 5174 } 5175 case Intrinsic::gcroot: 5176 if (GFI) { 5177 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5178 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5179 5180 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5181 GFI->addStackRoot(FI->getIndex(), TypeMap); 5182 } 5183 return 0; 5184 case Intrinsic::gcread: 5185 case Intrinsic::gcwrite: 5186 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5187 case Intrinsic::flt_rounds: 5188 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5189 return 0; 5190 5191 case Intrinsic::expect: { 5192 // Just replace __builtin_expect(exp, c) with EXP. 5193 setValue(&I, getValue(I.getArgOperand(0))); 5194 return 0; 5195 } 5196 5197 case Intrinsic::debugtrap: 5198 case Intrinsic::trap: { 5199 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5200 if (TrapFuncName.empty()) { 5201 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5202 ISD::TRAP : ISD::DEBUGTRAP; 5203 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5204 return 0; 5205 } 5206 TargetLowering::ArgListTy Args; 5207 TargetLowering:: 5208 CallLoweringInfo CLI(getRoot(), I.getType(), 5209 false, false, false, false, 0, CallingConv::C, 5210 /*isTailCall=*/false, 5211 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5212 DAG.getExternalSymbol(TrapFuncName.data(), 5213 TLI->getPointerTy()), 5214 Args, DAG, sdl); 5215 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5216 DAG.setRoot(Result.second); 5217 return 0; 5218 } 5219 5220 case Intrinsic::uadd_with_overflow: 5221 case Intrinsic::sadd_with_overflow: 5222 case Intrinsic::usub_with_overflow: 5223 case Intrinsic::ssub_with_overflow: 5224 case Intrinsic::umul_with_overflow: 5225 case Intrinsic::smul_with_overflow: { 5226 ISD::NodeType Op; 5227 switch (Intrinsic) { 5228 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5229 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5230 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5231 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5232 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5233 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5234 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5235 } 5236 SDValue Op1 = getValue(I.getArgOperand(0)); 5237 SDValue Op2 = getValue(I.getArgOperand(1)); 5238 5239 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5240 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5241 return 0; 5242 } 5243 case Intrinsic::prefetch: { 5244 SDValue Ops[5]; 5245 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5246 Ops[0] = getRoot(); 5247 Ops[1] = getValue(I.getArgOperand(0)); 5248 Ops[2] = getValue(I.getArgOperand(1)); 5249 Ops[3] = getValue(I.getArgOperand(2)); 5250 Ops[4] = getValue(I.getArgOperand(3)); 5251 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5252 DAG.getVTList(MVT::Other), 5253 &Ops[0], 5, 5254 EVT::getIntegerVT(*Context, 8), 5255 MachinePointerInfo(I.getArgOperand(0)), 5256 0, /* align */ 5257 false, /* volatile */ 5258 rw==0, /* read */ 5259 rw==1)); /* write */ 5260 return 0; 5261 } 5262 case Intrinsic::lifetime_start: 5263 case Intrinsic::lifetime_end: { 5264 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5265 // Stack coloring is not enabled in O0, discard region information. 5266 if (TM.getOptLevel() == CodeGenOpt::None) 5267 return 0; 5268 5269 SmallVector<Value *, 4> Allocas; 5270 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); 5271 5272 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5273 E = Allocas.end(); Object != E; ++Object) { 5274 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5275 5276 // Could not find an Alloca. 5277 if (!LifetimeObject) 5278 continue; 5279 5280 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5281 5282 SDValue Ops[2]; 5283 Ops[0] = getRoot(); 5284 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5285 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5286 5287 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); 5288 DAG.setRoot(Res); 5289 } 5290 return 0; 5291 } 5292 case Intrinsic::invariant_start: 5293 // Discard region information. 5294 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5295 return 0; 5296 case Intrinsic::invariant_end: 5297 // Discard region information. 5298 return 0; 5299 case Intrinsic::stackprotectorcheck: { 5300 // Do not actually emit anything for this basic block. Instead we initialize 5301 // the stack protector descriptor and export the guard variable so we can 5302 // access it in FinishBasicBlock. 5303 const BasicBlock *BB = I.getParent(); 5304 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5305 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5306 5307 // Flush our exports since we are going to process a terminator. 5308 (void)getControlRoot(); 5309 return 0; 5310 } 5311 case Intrinsic::donothing: 5312 // ignore 5313 return 0; 5314 } 5315 } 5316 5317 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5318 bool isTailCall, 5319 MachineBasicBlock *LandingPad) { 5320 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5321 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5322 Type *RetTy = FTy->getReturnType(); 5323 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5324 MCSymbol *BeginLabel = 0; 5325 5326 TargetLowering::ArgListTy Args; 5327 TargetLowering::ArgListEntry Entry; 5328 Args.reserve(CS.arg_size()); 5329 5330 // Check whether the function can return without sret-demotion. 5331 SmallVector<ISD::OutputArg, 4> Outs; 5332 const TargetLowering *TLI = TM.getTargetLowering(); 5333 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5334 5335 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5336 DAG.getMachineFunction(), 5337 FTy->isVarArg(), Outs, 5338 FTy->getContext()); 5339 5340 SDValue DemoteStackSlot; 5341 int DemoteStackIdx = -100; 5342 5343 if (!CanLowerReturn) { 5344 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5345 FTy->getReturnType()); 5346 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5347 FTy->getReturnType()); 5348 MachineFunction &MF = DAG.getMachineFunction(); 5349 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5350 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5351 5352 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5353 Entry.Node = DemoteStackSlot; 5354 Entry.Ty = StackSlotPtrType; 5355 Entry.isSExt = false; 5356 Entry.isZExt = false; 5357 Entry.isInReg = false; 5358 Entry.isSRet = true; 5359 Entry.isNest = false; 5360 Entry.isByVal = false; 5361 Entry.isReturned = false; 5362 Entry.Alignment = Align; 5363 Args.push_back(Entry); 5364 RetTy = Type::getVoidTy(FTy->getContext()); 5365 } 5366 5367 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5368 i != e; ++i) { 5369 const Value *V = *i; 5370 5371 // Skip empty types 5372 if (V->getType()->isEmptyTy()) 5373 continue; 5374 5375 SDValue ArgNode = getValue(V); 5376 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5377 5378 unsigned attrInd = i - CS.arg_begin() + 1; 5379 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5380 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5381 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5382 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5383 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5384 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5385 Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned); 5386 Entry.Alignment = CS.getParamAlignment(attrInd); 5387 Args.push_back(Entry); 5388 } 5389 5390 if (LandingPad) { 5391 // Insert a label before the invoke call to mark the try range. This can be 5392 // used to detect deletion of the invoke via the MachineModuleInfo. 5393 BeginLabel = MMI.getContext().CreateTempSymbol(); 5394 5395 // For SjLj, keep track of which landing pads go with which invokes 5396 // so as to maintain the ordering of pads in the LSDA. 5397 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5398 if (CallSiteIndex) { 5399 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5400 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5401 5402 // Now that the call site is handled, stop tracking it. 5403 MMI.setCurrentCallSite(0); 5404 } 5405 5406 // Both PendingLoads and PendingExports must be flushed here; 5407 // this call might not return. 5408 (void)getRoot(); 5409 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5410 } 5411 5412 // Check if target-independent constraints permit a tail call here. 5413 // Target-dependent constraints are checked within TLI->LowerCallTo. 5414 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5415 isTailCall = false; 5416 5417 TargetLowering:: 5418 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5419 getCurSDLoc(), CS); 5420 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5421 assert((isTailCall || Result.second.getNode()) && 5422 "Non-null chain expected with non-tail call!"); 5423 assert((Result.second.getNode() || !Result.first.getNode()) && 5424 "Null value expected with tail call!"); 5425 if (Result.first.getNode()) { 5426 setValue(CS.getInstruction(), Result.first); 5427 } else if (!CanLowerReturn && Result.second.getNode()) { 5428 // The instruction result is the result of loading from the 5429 // hidden sret parameter. 5430 SmallVector<EVT, 1> PVTs; 5431 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5432 5433 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5434 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5435 EVT PtrVT = PVTs[0]; 5436 5437 SmallVector<EVT, 4> RetTys; 5438 SmallVector<uint64_t, 4> Offsets; 5439 RetTy = FTy->getReturnType(); 5440 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5441 5442 unsigned NumValues = RetTys.size(); 5443 SmallVector<SDValue, 4> Values(NumValues); 5444 SmallVector<SDValue, 4> Chains(NumValues); 5445 5446 for (unsigned i = 0; i < NumValues; ++i) { 5447 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5448 DemoteStackSlot, 5449 DAG.getConstant(Offsets[i], PtrVT)); 5450 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5451 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5452 false, false, false, 1); 5453 Values[i] = L; 5454 Chains[i] = L.getValue(1); 5455 } 5456 5457 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5458 MVT::Other, &Chains[0], NumValues); 5459 PendingLoads.push_back(Chain); 5460 5461 setValue(CS.getInstruction(), 5462 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5463 DAG.getVTList(&RetTys[0], RetTys.size()), 5464 &Values[0], Values.size())); 5465 } 5466 5467 if (!Result.second.getNode()) { 5468 // As a special case, a null chain means that a tail call has been emitted and 5469 // the DAG root is already updated. 5470 HasTailCall = true; 5471 5472 // Since there's no actual continuation from this block, nothing can be 5473 // relying on us setting vregs for them. 5474 PendingExports.clear(); 5475 } else { 5476 DAG.setRoot(Result.second); 5477 } 5478 5479 if (LandingPad) { 5480 // Insert a label at the end of the invoke call to mark the try range. This 5481 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5482 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5483 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5484 5485 // Inform MachineModuleInfo of range. 5486 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5487 } 5488 } 5489 5490 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5491 /// value is equal or not-equal to zero. 5492 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5493 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5494 UI != E; ++UI) { 5495 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5496 if (IC->isEquality()) 5497 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5498 if (C->isNullValue()) 5499 continue; 5500 // Unknown instruction. 5501 return false; 5502 } 5503 return true; 5504 } 5505 5506 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5507 Type *LoadTy, 5508 SelectionDAGBuilder &Builder) { 5509 5510 // Check to see if this load can be trivially constant folded, e.g. if the 5511 // input is from a string literal. 5512 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5513 // Cast pointer to the type we really want to load. 5514 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5515 PointerType::getUnqual(LoadTy)); 5516 5517 if (const Constant *LoadCst = 5518 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5519 Builder.TD)) 5520 return Builder.getValue(LoadCst); 5521 } 5522 5523 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5524 // still constant memory, the input chain can be the entry node. 5525 SDValue Root; 5526 bool ConstantMemory = false; 5527 5528 // Do not serialize (non-volatile) loads of constant memory with anything. 5529 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5530 Root = Builder.DAG.getEntryNode(); 5531 ConstantMemory = true; 5532 } else { 5533 // Do not serialize non-volatile loads against each other. 5534 Root = Builder.DAG.getRoot(); 5535 } 5536 5537 SDValue Ptr = Builder.getValue(PtrVal); 5538 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5539 Ptr, MachinePointerInfo(PtrVal), 5540 false /*volatile*/, 5541 false /*nontemporal*/, 5542 false /*isinvariant*/, 1 /* align=1 */); 5543 5544 if (!ConstantMemory) 5545 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5546 return LoadVal; 5547 } 5548 5549 /// processIntegerCallValue - Record the value for an instruction that 5550 /// produces an integer result, converting the type where necessary. 5551 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5552 SDValue Value, 5553 bool IsSigned) { 5554 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5555 if (IsSigned) 5556 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5557 else 5558 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5559 setValue(&I, Value); 5560 } 5561 5562 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5563 /// If so, return true and lower it, otherwise return false and it will be 5564 /// lowered like a normal call. 5565 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5566 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5567 if (I.getNumArgOperands() != 3) 5568 return false; 5569 5570 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5571 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5572 !I.getArgOperand(2)->getType()->isIntegerTy() || 5573 !I.getType()->isIntegerTy()) 5574 return false; 5575 5576 const Value *Size = I.getArgOperand(2); 5577 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5578 if (CSize && CSize->getZExtValue() == 0) { 5579 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5580 setValue(&I, DAG.getConstant(0, CallVT)); 5581 return true; 5582 } 5583 5584 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5585 std::pair<SDValue, SDValue> Res = 5586 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5587 getValue(LHS), getValue(RHS), getValue(Size), 5588 MachinePointerInfo(LHS), 5589 MachinePointerInfo(RHS)); 5590 if (Res.first.getNode()) { 5591 processIntegerCallValue(I, Res.first, true); 5592 PendingLoads.push_back(Res.second); 5593 return true; 5594 } 5595 5596 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5597 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5598 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5599 bool ActuallyDoIt = true; 5600 MVT LoadVT; 5601 Type *LoadTy; 5602 switch (CSize->getZExtValue()) { 5603 default: 5604 LoadVT = MVT::Other; 5605 LoadTy = 0; 5606 ActuallyDoIt = false; 5607 break; 5608 case 2: 5609 LoadVT = MVT::i16; 5610 LoadTy = Type::getInt16Ty(CSize->getContext()); 5611 break; 5612 case 4: 5613 LoadVT = MVT::i32; 5614 LoadTy = Type::getInt32Ty(CSize->getContext()); 5615 break; 5616 case 8: 5617 LoadVT = MVT::i64; 5618 LoadTy = Type::getInt64Ty(CSize->getContext()); 5619 break; 5620 /* 5621 case 16: 5622 LoadVT = MVT::v4i32; 5623 LoadTy = Type::getInt32Ty(CSize->getContext()); 5624 LoadTy = VectorType::get(LoadTy, 4); 5625 break; 5626 */ 5627 } 5628 5629 // This turns into unaligned loads. We only do this if the target natively 5630 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5631 // we'll only produce a small number of byte loads. 5632 5633 // Require that we can find a legal MVT, and only do this if the target 5634 // supports unaligned loads of that type. Expanding into byte loads would 5635 // bloat the code. 5636 const TargetLowering *TLI = TM.getTargetLowering(); 5637 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5638 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5639 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5640 if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT)) 5641 ActuallyDoIt = false; 5642 } 5643 5644 if (ActuallyDoIt) { 5645 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5646 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5647 5648 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5649 ISD::SETNE); 5650 processIntegerCallValue(I, Res, false); 5651 return true; 5652 } 5653 } 5654 5655 5656 return false; 5657 } 5658 5659 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5660 /// form. If so, return true and lower it, otherwise return false and it 5661 /// will be lowered like a normal call. 5662 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5663 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5664 if (I.getNumArgOperands() != 3) 5665 return false; 5666 5667 const Value *Src = I.getArgOperand(0); 5668 const Value *Char = I.getArgOperand(1); 5669 const Value *Length = I.getArgOperand(2); 5670 if (!Src->getType()->isPointerTy() || 5671 !Char->getType()->isIntegerTy() || 5672 !Length->getType()->isIntegerTy() || 5673 !I.getType()->isPointerTy()) 5674 return false; 5675 5676 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5677 std::pair<SDValue, SDValue> Res = 5678 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5679 getValue(Src), getValue(Char), getValue(Length), 5680 MachinePointerInfo(Src)); 5681 if (Res.first.getNode()) { 5682 setValue(&I, Res.first); 5683 PendingLoads.push_back(Res.second); 5684 return true; 5685 } 5686 5687 return false; 5688 } 5689 5690 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5691 /// optimized form. If so, return true and lower it, otherwise return false 5692 /// and it will be lowered like a normal call. 5693 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5694 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5695 if (I.getNumArgOperands() != 2) 5696 return false; 5697 5698 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5699 if (!Arg0->getType()->isPointerTy() || 5700 !Arg1->getType()->isPointerTy() || 5701 !I.getType()->isPointerTy()) 5702 return false; 5703 5704 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5705 std::pair<SDValue, SDValue> Res = 5706 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5707 getValue(Arg0), getValue(Arg1), 5708 MachinePointerInfo(Arg0), 5709 MachinePointerInfo(Arg1), isStpcpy); 5710 if (Res.first.getNode()) { 5711 setValue(&I, Res.first); 5712 DAG.setRoot(Res.second); 5713 return true; 5714 } 5715 5716 return false; 5717 } 5718 5719 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5720 /// If so, return true and lower it, otherwise return false and it will be 5721 /// lowered like a normal call. 5722 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5723 // Verify that the prototype makes sense. int strcmp(void*,void*) 5724 if (I.getNumArgOperands() != 2) 5725 return false; 5726 5727 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5728 if (!Arg0->getType()->isPointerTy() || 5729 !Arg1->getType()->isPointerTy() || 5730 !I.getType()->isIntegerTy()) 5731 return false; 5732 5733 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5734 std::pair<SDValue, SDValue> Res = 5735 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5736 getValue(Arg0), getValue(Arg1), 5737 MachinePointerInfo(Arg0), 5738 MachinePointerInfo(Arg1)); 5739 if (Res.first.getNode()) { 5740 processIntegerCallValue(I, Res.first, true); 5741 PendingLoads.push_back(Res.second); 5742 return true; 5743 } 5744 5745 return false; 5746 } 5747 5748 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5749 /// form. If so, return true and lower it, otherwise return false and it 5750 /// will be lowered like a normal call. 5751 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5752 // Verify that the prototype makes sense. size_t strlen(char *) 5753 if (I.getNumArgOperands() != 1) 5754 return false; 5755 5756 const Value *Arg0 = I.getArgOperand(0); 5757 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5758 return false; 5759 5760 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5761 std::pair<SDValue, SDValue> Res = 5762 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5763 getValue(Arg0), MachinePointerInfo(Arg0)); 5764 if (Res.first.getNode()) { 5765 processIntegerCallValue(I, Res.first, false); 5766 PendingLoads.push_back(Res.second); 5767 return true; 5768 } 5769 5770 return false; 5771 } 5772 5773 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5774 /// form. If so, return true and lower it, otherwise return false and it 5775 /// will be lowered like a normal call. 5776 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5777 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5778 if (I.getNumArgOperands() != 2) 5779 return false; 5780 5781 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5782 if (!Arg0->getType()->isPointerTy() || 5783 !Arg1->getType()->isIntegerTy() || 5784 !I.getType()->isIntegerTy()) 5785 return false; 5786 5787 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5788 std::pair<SDValue, SDValue> Res = 5789 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5790 getValue(Arg0), getValue(Arg1), 5791 MachinePointerInfo(Arg0)); 5792 if (Res.first.getNode()) { 5793 processIntegerCallValue(I, Res.first, false); 5794 PendingLoads.push_back(Res.second); 5795 return true; 5796 } 5797 5798 return false; 5799 } 5800 5801 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5802 /// operation (as expected), translate it to an SDNode with the specified opcode 5803 /// and return true. 5804 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5805 unsigned Opcode) { 5806 // Sanity check that it really is a unary floating-point call. 5807 if (I.getNumArgOperands() != 1 || 5808 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5809 I.getType() != I.getArgOperand(0)->getType() || 5810 !I.onlyReadsMemory()) 5811 return false; 5812 5813 SDValue Tmp = getValue(I.getArgOperand(0)); 5814 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5815 return true; 5816 } 5817 5818 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5819 // Handle inline assembly differently. 5820 if (isa<InlineAsm>(I.getCalledValue())) { 5821 visitInlineAsm(&I); 5822 return; 5823 } 5824 5825 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5826 ComputeUsesVAFloatArgument(I, &MMI); 5827 5828 const char *RenameFn = 0; 5829 if (Function *F = I.getCalledFunction()) { 5830 if (F->isDeclaration()) { 5831 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5832 if (unsigned IID = II->getIntrinsicID(F)) { 5833 RenameFn = visitIntrinsicCall(I, IID); 5834 if (!RenameFn) 5835 return; 5836 } 5837 } 5838 if (unsigned IID = F->getIntrinsicID()) { 5839 RenameFn = visitIntrinsicCall(I, IID); 5840 if (!RenameFn) 5841 return; 5842 } 5843 } 5844 5845 // Check for well-known libc/libm calls. If the function is internal, it 5846 // can't be a library call. 5847 LibFunc::Func Func; 5848 if (!F->hasLocalLinkage() && F->hasName() && 5849 LibInfo->getLibFunc(F->getName(), Func) && 5850 LibInfo->hasOptimizedCodeGen(Func)) { 5851 switch (Func) { 5852 default: break; 5853 case LibFunc::copysign: 5854 case LibFunc::copysignf: 5855 case LibFunc::copysignl: 5856 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5857 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5858 I.getType() == I.getArgOperand(0)->getType() && 5859 I.getType() == I.getArgOperand(1)->getType() && 5860 I.onlyReadsMemory()) { 5861 SDValue LHS = getValue(I.getArgOperand(0)); 5862 SDValue RHS = getValue(I.getArgOperand(1)); 5863 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5864 LHS.getValueType(), LHS, RHS)); 5865 return; 5866 } 5867 break; 5868 case LibFunc::fabs: 5869 case LibFunc::fabsf: 5870 case LibFunc::fabsl: 5871 if (visitUnaryFloatCall(I, ISD::FABS)) 5872 return; 5873 break; 5874 case LibFunc::sin: 5875 case LibFunc::sinf: 5876 case LibFunc::sinl: 5877 if (visitUnaryFloatCall(I, ISD::FSIN)) 5878 return; 5879 break; 5880 case LibFunc::cos: 5881 case LibFunc::cosf: 5882 case LibFunc::cosl: 5883 if (visitUnaryFloatCall(I, ISD::FCOS)) 5884 return; 5885 break; 5886 case LibFunc::sqrt: 5887 case LibFunc::sqrtf: 5888 case LibFunc::sqrtl: 5889 case LibFunc::sqrt_finite: 5890 case LibFunc::sqrtf_finite: 5891 case LibFunc::sqrtl_finite: 5892 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5893 return; 5894 break; 5895 case LibFunc::floor: 5896 case LibFunc::floorf: 5897 case LibFunc::floorl: 5898 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5899 return; 5900 break; 5901 case LibFunc::nearbyint: 5902 case LibFunc::nearbyintf: 5903 case LibFunc::nearbyintl: 5904 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5905 return; 5906 break; 5907 case LibFunc::ceil: 5908 case LibFunc::ceilf: 5909 case LibFunc::ceill: 5910 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5911 return; 5912 break; 5913 case LibFunc::rint: 5914 case LibFunc::rintf: 5915 case LibFunc::rintl: 5916 if (visitUnaryFloatCall(I, ISD::FRINT)) 5917 return; 5918 break; 5919 case LibFunc::round: 5920 case LibFunc::roundf: 5921 case LibFunc::roundl: 5922 if (visitUnaryFloatCall(I, ISD::FROUND)) 5923 return; 5924 break; 5925 case LibFunc::trunc: 5926 case LibFunc::truncf: 5927 case LibFunc::truncl: 5928 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5929 return; 5930 break; 5931 case LibFunc::log2: 5932 case LibFunc::log2f: 5933 case LibFunc::log2l: 5934 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5935 return; 5936 break; 5937 case LibFunc::exp2: 5938 case LibFunc::exp2f: 5939 case LibFunc::exp2l: 5940 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5941 return; 5942 break; 5943 case LibFunc::memcmp: 5944 if (visitMemCmpCall(I)) 5945 return; 5946 break; 5947 case LibFunc::memchr: 5948 if (visitMemChrCall(I)) 5949 return; 5950 break; 5951 case LibFunc::strcpy: 5952 if (visitStrCpyCall(I, false)) 5953 return; 5954 break; 5955 case LibFunc::stpcpy: 5956 if (visitStrCpyCall(I, true)) 5957 return; 5958 break; 5959 case LibFunc::strcmp: 5960 if (visitStrCmpCall(I)) 5961 return; 5962 break; 5963 case LibFunc::strlen: 5964 if (visitStrLenCall(I)) 5965 return; 5966 break; 5967 case LibFunc::strnlen: 5968 if (visitStrNLenCall(I)) 5969 return; 5970 break; 5971 } 5972 } 5973 } 5974 5975 SDValue Callee; 5976 if (!RenameFn) 5977 Callee = getValue(I.getCalledValue()); 5978 else 5979 Callee = DAG.getExternalSymbol(RenameFn, 5980 TM.getTargetLowering()->getPointerTy()); 5981 5982 // Check if we can potentially perform a tail call. More detailed checking is 5983 // be done within LowerCallTo, after more information about the call is known. 5984 LowerCallTo(&I, Callee, I.isTailCall()); 5985 } 5986 5987 namespace { 5988 5989 /// AsmOperandInfo - This contains information for each constraint that we are 5990 /// lowering. 5991 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5992 public: 5993 /// CallOperand - If this is the result output operand or a clobber 5994 /// this is null, otherwise it is the incoming operand to the CallInst. 5995 /// This gets modified as the asm is processed. 5996 SDValue CallOperand; 5997 5998 /// AssignedRegs - If this is a register or register class operand, this 5999 /// contains the set of register corresponding to the operand. 6000 RegsForValue AssignedRegs; 6001 6002 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6003 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 6004 } 6005 6006 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6007 /// corresponds to. If there is no Value* for this operand, it returns 6008 /// MVT::Other. 6009 EVT getCallOperandValEVT(LLVMContext &Context, 6010 const TargetLowering &TLI, 6011 const DataLayout *TD) const { 6012 if (CallOperandVal == 0) return MVT::Other; 6013 6014 if (isa<BasicBlock>(CallOperandVal)) 6015 return TLI.getPointerTy(); 6016 6017 llvm::Type *OpTy = CallOperandVal->getType(); 6018 6019 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6020 // If this is an indirect operand, the operand is a pointer to the 6021 // accessed type. 6022 if (isIndirect) { 6023 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6024 if (!PtrTy) 6025 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6026 OpTy = PtrTy->getElementType(); 6027 } 6028 6029 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6030 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6031 if (STy->getNumElements() == 1) 6032 OpTy = STy->getElementType(0); 6033 6034 // If OpTy is not a single value, it may be a struct/union that we 6035 // can tile with integers. 6036 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6037 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 6038 switch (BitSize) { 6039 default: break; 6040 case 1: 6041 case 8: 6042 case 16: 6043 case 32: 6044 case 64: 6045 case 128: 6046 OpTy = IntegerType::get(Context, BitSize); 6047 break; 6048 } 6049 } 6050 6051 return TLI.getValueType(OpTy, true); 6052 } 6053 }; 6054 6055 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6056 6057 } // end anonymous namespace 6058 6059 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6060 /// specified operand. We prefer to assign virtual registers, to allow the 6061 /// register allocator to handle the assignment process. However, if the asm 6062 /// uses features that we can't model on machineinstrs, we have SDISel do the 6063 /// allocation. This produces generally horrible, but correct, code. 6064 /// 6065 /// OpInfo describes the operand. 6066 /// 6067 static void GetRegistersForValue(SelectionDAG &DAG, 6068 const TargetLowering &TLI, 6069 SDLoc DL, 6070 SDISelAsmOperandInfo &OpInfo) { 6071 LLVMContext &Context = *DAG.getContext(); 6072 6073 MachineFunction &MF = DAG.getMachineFunction(); 6074 SmallVector<unsigned, 4> Regs; 6075 6076 // If this is a constraint for a single physreg, or a constraint for a 6077 // register class, find it. 6078 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6079 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6080 OpInfo.ConstraintVT); 6081 6082 unsigned NumRegs = 1; 6083 if (OpInfo.ConstraintVT != MVT::Other) { 6084 // If this is a FP input in an integer register (or visa versa) insert a bit 6085 // cast of the input value. More generally, handle any case where the input 6086 // value disagrees with the register class we plan to stick this in. 6087 if (OpInfo.Type == InlineAsm::isInput && 6088 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6089 // Try to convert to the first EVT that the reg class contains. If the 6090 // types are identical size, use a bitcast to convert (e.g. two differing 6091 // vector types). 6092 MVT RegVT = *PhysReg.second->vt_begin(); 6093 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 6094 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6095 RegVT, OpInfo.CallOperand); 6096 OpInfo.ConstraintVT = RegVT; 6097 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6098 // If the input is a FP value and we want it in FP registers, do a 6099 // bitcast to the corresponding integer type. This turns an f64 value 6100 // into i64, which can be passed with two i32 values on a 32-bit 6101 // machine. 6102 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6103 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6104 RegVT, OpInfo.CallOperand); 6105 OpInfo.ConstraintVT = RegVT; 6106 } 6107 } 6108 6109 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6110 } 6111 6112 MVT RegVT; 6113 EVT ValueVT = OpInfo.ConstraintVT; 6114 6115 // If this is a constraint for a specific physical register, like {r17}, 6116 // assign it now. 6117 if (unsigned AssignedReg = PhysReg.first) { 6118 const TargetRegisterClass *RC = PhysReg.second; 6119 if (OpInfo.ConstraintVT == MVT::Other) 6120 ValueVT = *RC->vt_begin(); 6121 6122 // Get the actual register value type. This is important, because the user 6123 // may have asked for (e.g.) the AX register in i32 type. We need to 6124 // remember that AX is actually i16 to get the right extension. 6125 RegVT = *RC->vt_begin(); 6126 6127 // This is a explicit reference to a physical register. 6128 Regs.push_back(AssignedReg); 6129 6130 // If this is an expanded reference, add the rest of the regs to Regs. 6131 if (NumRegs != 1) { 6132 TargetRegisterClass::iterator I = RC->begin(); 6133 for (; *I != AssignedReg; ++I) 6134 assert(I != RC->end() && "Didn't find reg!"); 6135 6136 // Already added the first reg. 6137 --NumRegs; ++I; 6138 for (; NumRegs; --NumRegs, ++I) { 6139 assert(I != RC->end() && "Ran out of registers to allocate!"); 6140 Regs.push_back(*I); 6141 } 6142 } 6143 6144 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6145 return; 6146 } 6147 6148 // Otherwise, if this was a reference to an LLVM register class, create vregs 6149 // for this reference. 6150 if (const TargetRegisterClass *RC = PhysReg.second) { 6151 RegVT = *RC->vt_begin(); 6152 if (OpInfo.ConstraintVT == MVT::Other) 6153 ValueVT = RegVT; 6154 6155 // Create the appropriate number of virtual registers. 6156 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6157 for (; NumRegs; --NumRegs) 6158 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6159 6160 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6161 return; 6162 } 6163 6164 // Otherwise, we couldn't allocate enough registers for this. 6165 } 6166 6167 /// visitInlineAsm - Handle a call to an InlineAsm object. 6168 /// 6169 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6170 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6171 6172 /// ConstraintOperands - Information about all of the constraints. 6173 SDISelAsmOperandInfoVector ConstraintOperands; 6174 6175 const TargetLowering *TLI = TM.getTargetLowering(); 6176 TargetLowering::AsmOperandInfoVector 6177 TargetConstraints = TLI->ParseConstraints(CS); 6178 6179 bool hasMemory = false; 6180 6181 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6182 unsigned ResNo = 0; // ResNo - The result number of the next output. 6183 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6184 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6185 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6186 6187 MVT OpVT = MVT::Other; 6188 6189 // Compute the value type for each operand. 6190 switch (OpInfo.Type) { 6191 case InlineAsm::isOutput: 6192 // Indirect outputs just consume an argument. 6193 if (OpInfo.isIndirect) { 6194 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6195 break; 6196 } 6197 6198 // The return value of the call is this value. As such, there is no 6199 // corresponding argument. 6200 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6201 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6202 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6203 } else { 6204 assert(ResNo == 0 && "Asm only has one result!"); 6205 OpVT = TLI->getSimpleValueType(CS.getType()); 6206 } 6207 ++ResNo; 6208 break; 6209 case InlineAsm::isInput: 6210 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6211 break; 6212 case InlineAsm::isClobber: 6213 // Nothing to do. 6214 break; 6215 } 6216 6217 // If this is an input or an indirect output, process the call argument. 6218 // BasicBlocks are labels, currently appearing only in asm's. 6219 if (OpInfo.CallOperandVal) { 6220 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6221 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6222 } else { 6223 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6224 } 6225 6226 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD). 6227 getSimpleVT(); 6228 } 6229 6230 OpInfo.ConstraintVT = OpVT; 6231 6232 // Indirect operand accesses access memory. 6233 if (OpInfo.isIndirect) 6234 hasMemory = true; 6235 else { 6236 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6237 TargetLowering::ConstraintType 6238 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6239 if (CType == TargetLowering::C_Memory) { 6240 hasMemory = true; 6241 break; 6242 } 6243 } 6244 } 6245 } 6246 6247 SDValue Chain, Flag; 6248 6249 // We won't need to flush pending loads if this asm doesn't touch 6250 // memory and is nonvolatile. 6251 if (hasMemory || IA->hasSideEffects()) 6252 Chain = getRoot(); 6253 else 6254 Chain = DAG.getRoot(); 6255 6256 // Second pass over the constraints: compute which constraint option to use 6257 // and assign registers to constraints that want a specific physreg. 6258 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6259 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6260 6261 // If this is an output operand with a matching input operand, look up the 6262 // matching input. If their types mismatch, e.g. one is an integer, the 6263 // other is floating point, or their sizes are different, flag it as an 6264 // error. 6265 if (OpInfo.hasMatchingInput()) { 6266 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6267 6268 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6269 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6270 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6271 OpInfo.ConstraintVT); 6272 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6273 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6274 Input.ConstraintVT); 6275 if ((OpInfo.ConstraintVT.isInteger() != 6276 Input.ConstraintVT.isInteger()) || 6277 (MatchRC.second != InputRC.second)) { 6278 report_fatal_error("Unsupported asm: input constraint" 6279 " with a matching output constraint of" 6280 " incompatible type!"); 6281 } 6282 Input.ConstraintVT = OpInfo.ConstraintVT; 6283 } 6284 } 6285 6286 // Compute the constraint code and ConstraintType to use. 6287 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6288 6289 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6290 OpInfo.Type == InlineAsm::isClobber) 6291 continue; 6292 6293 // If this is a memory input, and if the operand is not indirect, do what we 6294 // need to to provide an address for the memory input. 6295 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6296 !OpInfo.isIndirect) { 6297 assert((OpInfo.isMultipleAlternative || 6298 (OpInfo.Type == InlineAsm::isInput)) && 6299 "Can only indirectify direct input operands!"); 6300 6301 // Memory operands really want the address of the value. If we don't have 6302 // an indirect input, put it in the constpool if we can, otherwise spill 6303 // it to a stack slot. 6304 // TODO: This isn't quite right. We need to handle these according to 6305 // the addressing mode that the constraint wants. Also, this may take 6306 // an additional register for the computation and we don't want that 6307 // either. 6308 6309 // If the operand is a float, integer, or vector constant, spill to a 6310 // constant pool entry to get its address. 6311 const Value *OpVal = OpInfo.CallOperandVal; 6312 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6313 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6314 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6315 TLI->getPointerTy()); 6316 } else { 6317 // Otherwise, create a stack slot and emit a store to it before the 6318 // asm. 6319 Type *Ty = OpVal->getType(); 6320 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6321 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6322 MachineFunction &MF = DAG.getMachineFunction(); 6323 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6324 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6325 Chain = DAG.getStore(Chain, getCurSDLoc(), 6326 OpInfo.CallOperand, StackSlot, 6327 MachinePointerInfo::getFixedStack(SSFI), 6328 false, false, 0); 6329 OpInfo.CallOperand = StackSlot; 6330 } 6331 6332 // There is no longer a Value* corresponding to this operand. 6333 OpInfo.CallOperandVal = 0; 6334 6335 // It is now an indirect operand. 6336 OpInfo.isIndirect = true; 6337 } 6338 6339 // If this constraint is for a specific register, allocate it before 6340 // anything else. 6341 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6342 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6343 } 6344 6345 // Second pass - Loop over all of the operands, assigning virtual or physregs 6346 // to register class operands. 6347 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6348 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6349 6350 // C_Register operands have already been allocated, Other/Memory don't need 6351 // to be. 6352 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6353 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6354 } 6355 6356 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6357 std::vector<SDValue> AsmNodeOperands; 6358 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6359 AsmNodeOperands.push_back( 6360 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6361 TLI->getPointerTy())); 6362 6363 // If we have a !srcloc metadata node associated with it, we want to attach 6364 // this to the ultimately generated inline asm machineinstr. To do this, we 6365 // pass in the third operand as this (potentially null) inline asm MDNode. 6366 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6367 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6368 6369 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6370 // bits as operand 3. 6371 unsigned ExtraInfo = 0; 6372 if (IA->hasSideEffects()) 6373 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6374 if (IA->isAlignStack()) 6375 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6376 // Set the asm dialect. 6377 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6378 6379 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6380 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6381 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6382 6383 // Compute the constraint code and ConstraintType to use. 6384 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6385 6386 // Ideally, we would only check against memory constraints. However, the 6387 // meaning of an other constraint can be target-specific and we can't easily 6388 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6389 // for other constriants as well. 6390 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6391 OpInfo.ConstraintType == TargetLowering::C_Other) { 6392 if (OpInfo.Type == InlineAsm::isInput) 6393 ExtraInfo |= InlineAsm::Extra_MayLoad; 6394 else if (OpInfo.Type == InlineAsm::isOutput) 6395 ExtraInfo |= InlineAsm::Extra_MayStore; 6396 else if (OpInfo.Type == InlineAsm::isClobber) 6397 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6398 } 6399 } 6400 6401 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6402 TLI->getPointerTy())); 6403 6404 // Loop over all of the inputs, copying the operand values into the 6405 // appropriate registers and processing the output regs. 6406 RegsForValue RetValRegs; 6407 6408 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6409 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6410 6411 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6412 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6413 6414 switch (OpInfo.Type) { 6415 case InlineAsm::isOutput: { 6416 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6417 OpInfo.ConstraintType != TargetLowering::C_Register) { 6418 // Memory output, or 'other' output (e.g. 'X' constraint). 6419 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6420 6421 // Add information to the INLINEASM node to know about this output. 6422 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6423 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6424 TLI->getPointerTy())); 6425 AsmNodeOperands.push_back(OpInfo.CallOperand); 6426 break; 6427 } 6428 6429 // Otherwise, this is a register or register class output. 6430 6431 // Copy the output from the appropriate register. Find a register that 6432 // we can use. 6433 if (OpInfo.AssignedRegs.Regs.empty()) { 6434 LLVMContext &Ctx = *DAG.getContext(); 6435 Ctx.emitError(CS.getInstruction(), 6436 "couldn't allocate output register for constraint '" + 6437 Twine(OpInfo.ConstraintCode) + "'"); 6438 return; 6439 } 6440 6441 // If this is an indirect operand, store through the pointer after the 6442 // asm. 6443 if (OpInfo.isIndirect) { 6444 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6445 OpInfo.CallOperandVal)); 6446 } else { 6447 // This is the result value of the call. 6448 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6449 // Concatenate this output onto the outputs list. 6450 RetValRegs.append(OpInfo.AssignedRegs); 6451 } 6452 6453 // Add information to the INLINEASM node to know that this register is 6454 // set. 6455 OpInfo.AssignedRegs 6456 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6457 ? InlineAsm::Kind_RegDefEarlyClobber 6458 : InlineAsm::Kind_RegDef, 6459 false, 0, DAG, AsmNodeOperands); 6460 break; 6461 } 6462 case InlineAsm::isInput: { 6463 SDValue InOperandVal = OpInfo.CallOperand; 6464 6465 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6466 // If this is required to match an output register we have already set, 6467 // just use its register. 6468 unsigned OperandNo = OpInfo.getMatchedOperand(); 6469 6470 // Scan until we find the definition we already emitted of this operand. 6471 // When we find it, create a RegsForValue operand. 6472 unsigned CurOp = InlineAsm::Op_FirstOperand; 6473 for (; OperandNo; --OperandNo) { 6474 // Advance to the next operand. 6475 unsigned OpFlag = 6476 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6477 assert((InlineAsm::isRegDefKind(OpFlag) || 6478 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6479 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6480 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6481 } 6482 6483 unsigned OpFlag = 6484 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6485 if (InlineAsm::isRegDefKind(OpFlag) || 6486 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6487 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6488 if (OpInfo.isIndirect) { 6489 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6490 LLVMContext &Ctx = *DAG.getContext(); 6491 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6492 " don't know how to handle tied " 6493 "indirect register inputs"); 6494 return; 6495 } 6496 6497 RegsForValue MatchedRegs; 6498 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6499 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6500 MatchedRegs.RegVTs.push_back(RegVT); 6501 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6502 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6503 i != e; ++i) { 6504 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6505 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6506 else { 6507 LLVMContext &Ctx = *DAG.getContext(); 6508 Ctx.emitError(CS.getInstruction(), 6509 "inline asm error: This value" 6510 " type register class is not natively supported!"); 6511 return; 6512 } 6513 } 6514 // Use the produced MatchedRegs object to 6515 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6516 Chain, &Flag, CS.getInstruction()); 6517 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6518 true, OpInfo.getMatchedOperand(), 6519 DAG, AsmNodeOperands); 6520 break; 6521 } 6522 6523 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6524 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6525 "Unexpected number of operands"); 6526 // Add information to the INLINEASM node to know about this input. 6527 // See InlineAsm.h isUseOperandTiedToDef. 6528 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6529 OpInfo.getMatchedOperand()); 6530 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6531 TLI->getPointerTy())); 6532 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6533 break; 6534 } 6535 6536 // Treat indirect 'X' constraint as memory. 6537 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6538 OpInfo.isIndirect) 6539 OpInfo.ConstraintType = TargetLowering::C_Memory; 6540 6541 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6542 std::vector<SDValue> Ops; 6543 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6544 Ops, DAG); 6545 if (Ops.empty()) { 6546 LLVMContext &Ctx = *DAG.getContext(); 6547 Ctx.emitError(CS.getInstruction(), 6548 "invalid operand for inline asm constraint '" + 6549 Twine(OpInfo.ConstraintCode) + "'"); 6550 return; 6551 } 6552 6553 // Add information to the INLINEASM node to know about this input. 6554 unsigned ResOpType = 6555 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6556 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6557 TLI->getPointerTy())); 6558 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6559 break; 6560 } 6561 6562 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6563 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6564 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6565 "Memory operands expect pointer values"); 6566 6567 // Add information to the INLINEASM node to know about this input. 6568 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6569 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6570 TLI->getPointerTy())); 6571 AsmNodeOperands.push_back(InOperandVal); 6572 break; 6573 } 6574 6575 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6576 OpInfo.ConstraintType == TargetLowering::C_Register) && 6577 "Unknown constraint type!"); 6578 6579 // TODO: Support this. 6580 if (OpInfo.isIndirect) { 6581 LLVMContext &Ctx = *DAG.getContext(); 6582 Ctx.emitError(CS.getInstruction(), 6583 "Don't know how to handle indirect register inputs yet " 6584 "for constraint '" + 6585 Twine(OpInfo.ConstraintCode) + "'"); 6586 return; 6587 } 6588 6589 // Copy the input into the appropriate registers. 6590 if (OpInfo.AssignedRegs.Regs.empty()) { 6591 LLVMContext &Ctx = *DAG.getContext(); 6592 Ctx.emitError(CS.getInstruction(), 6593 "couldn't allocate input reg for constraint '" + 6594 Twine(OpInfo.ConstraintCode) + "'"); 6595 return; 6596 } 6597 6598 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6599 Chain, &Flag, CS.getInstruction()); 6600 6601 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6602 DAG, AsmNodeOperands); 6603 break; 6604 } 6605 case InlineAsm::isClobber: { 6606 // Add the clobbered value to the operand list, so that the register 6607 // allocator is aware that the physreg got clobbered. 6608 if (!OpInfo.AssignedRegs.Regs.empty()) 6609 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6610 false, 0, DAG, 6611 AsmNodeOperands); 6612 break; 6613 } 6614 } 6615 } 6616 6617 // Finish up input operands. Set the input chain and add the flag last. 6618 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6619 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6620 6621 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6622 DAG.getVTList(MVT::Other, MVT::Glue), 6623 &AsmNodeOperands[0], AsmNodeOperands.size()); 6624 Flag = Chain.getValue(1); 6625 6626 // If this asm returns a register value, copy the result from that register 6627 // and set it as the value of the call. 6628 if (!RetValRegs.Regs.empty()) { 6629 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6630 Chain, &Flag, CS.getInstruction()); 6631 6632 // FIXME: Why don't we do this for inline asms with MRVs? 6633 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6634 EVT ResultType = TLI->getValueType(CS.getType()); 6635 6636 // If any of the results of the inline asm is a vector, it may have the 6637 // wrong width/num elts. This can happen for register classes that can 6638 // contain multiple different value types. The preg or vreg allocated may 6639 // not have the same VT as was expected. Convert it to the right type 6640 // with bit_convert. 6641 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6642 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6643 ResultType, Val); 6644 6645 } else if (ResultType != Val.getValueType() && 6646 ResultType.isInteger() && Val.getValueType().isInteger()) { 6647 // If a result value was tied to an input value, the computed result may 6648 // have a wider width than the expected result. Extract the relevant 6649 // portion. 6650 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6651 } 6652 6653 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6654 } 6655 6656 setValue(CS.getInstruction(), Val); 6657 // Don't need to use this as a chain in this case. 6658 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6659 return; 6660 } 6661 6662 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6663 6664 // Process indirect outputs, first output all of the flagged copies out of 6665 // physregs. 6666 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6667 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6668 const Value *Ptr = IndirectStoresToEmit[i].second; 6669 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6670 Chain, &Flag, IA); 6671 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6672 } 6673 6674 // Emit the non-flagged stores from the physregs. 6675 SmallVector<SDValue, 8> OutChains; 6676 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6677 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6678 StoresToEmit[i].first, 6679 getValue(StoresToEmit[i].second), 6680 MachinePointerInfo(StoresToEmit[i].second), 6681 false, false, 0); 6682 OutChains.push_back(Val); 6683 } 6684 6685 if (!OutChains.empty()) 6686 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 6687 &OutChains[0], OutChains.size()); 6688 6689 DAG.setRoot(Chain); 6690 } 6691 6692 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6693 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6694 MVT::Other, getRoot(), 6695 getValue(I.getArgOperand(0)), 6696 DAG.getSrcValue(I.getArgOperand(0)))); 6697 } 6698 6699 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6700 const TargetLowering *TLI = TM.getTargetLowering(); 6701 const DataLayout &TD = *TLI->getDataLayout(); 6702 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6703 getRoot(), getValue(I.getOperand(0)), 6704 DAG.getSrcValue(I.getOperand(0)), 6705 TD.getABITypeAlignment(I.getType())); 6706 setValue(&I, V); 6707 DAG.setRoot(V.getValue(1)); 6708 } 6709 6710 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6711 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6712 MVT::Other, getRoot(), 6713 getValue(I.getArgOperand(0)), 6714 DAG.getSrcValue(I.getArgOperand(0)))); 6715 } 6716 6717 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6718 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6719 MVT::Other, getRoot(), 6720 getValue(I.getArgOperand(0)), 6721 getValue(I.getArgOperand(1)), 6722 DAG.getSrcValue(I.getArgOperand(0)), 6723 DAG.getSrcValue(I.getArgOperand(1)))); 6724 } 6725 6726 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6727 /// implementation, which just calls LowerCall. 6728 /// FIXME: When all targets are 6729 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6730 std::pair<SDValue, SDValue> 6731 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6732 // Handle the incoming return values from the call. 6733 CLI.Ins.clear(); 6734 SmallVector<EVT, 4> RetTys; 6735 ComputeValueVTs(*this, CLI.RetTy, RetTys); 6736 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6737 EVT VT = RetTys[I]; 6738 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6739 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6740 for (unsigned i = 0; i != NumRegs; ++i) { 6741 ISD::InputArg MyFlags; 6742 MyFlags.VT = RegisterVT; 6743 MyFlags.Used = CLI.IsReturnValueUsed; 6744 if (CLI.RetSExt) 6745 MyFlags.Flags.setSExt(); 6746 if (CLI.RetZExt) 6747 MyFlags.Flags.setZExt(); 6748 if (CLI.IsInReg) 6749 MyFlags.Flags.setInReg(); 6750 CLI.Ins.push_back(MyFlags); 6751 } 6752 } 6753 6754 // Handle all of the outgoing arguments. 6755 CLI.Outs.clear(); 6756 CLI.OutVals.clear(); 6757 ArgListTy &Args = CLI.Args; 6758 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6759 SmallVector<EVT, 4> ValueVTs; 6760 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6761 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6762 Value != NumValues; ++Value) { 6763 EVT VT = ValueVTs[Value]; 6764 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6765 SDValue Op = SDValue(Args[i].Node.getNode(), 6766 Args[i].Node.getResNo() + Value); 6767 ISD::ArgFlagsTy Flags; 6768 unsigned OriginalAlignment = 6769 getDataLayout()->getABITypeAlignment(ArgTy); 6770 6771 if (Args[i].isZExt) 6772 Flags.setZExt(); 6773 if (Args[i].isSExt) 6774 Flags.setSExt(); 6775 if (Args[i].isInReg) 6776 Flags.setInReg(); 6777 if (Args[i].isSRet) 6778 Flags.setSRet(); 6779 if (Args[i].isByVal) { 6780 Flags.setByVal(); 6781 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6782 Type *ElementTy = Ty->getElementType(); 6783 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6784 // For ByVal, alignment should come from FE. BE will guess if this 6785 // info is not there but there are cases it cannot get right. 6786 unsigned FrameAlign; 6787 if (Args[i].Alignment) 6788 FrameAlign = Args[i].Alignment; 6789 else 6790 FrameAlign = getByValTypeAlignment(ElementTy); 6791 Flags.setByValAlign(FrameAlign); 6792 } 6793 if (Args[i].isNest) 6794 Flags.setNest(); 6795 Flags.setOrigAlign(OriginalAlignment); 6796 6797 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6798 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6799 SmallVector<SDValue, 4> Parts(NumParts); 6800 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6801 6802 if (Args[i].isSExt) 6803 ExtendKind = ISD::SIGN_EXTEND; 6804 else if (Args[i].isZExt) 6805 ExtendKind = ISD::ZERO_EXTEND; 6806 6807 // Conservatively only handle 'returned' on non-vectors for now 6808 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6809 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6810 "unexpected use of 'returned'"); 6811 // Before passing 'returned' to the target lowering code, ensure that 6812 // either the register MVT and the actual EVT are the same size or that 6813 // the return value and argument are extended in the same way; in these 6814 // cases it's safe to pass the argument register value unchanged as the 6815 // return register value (although it's at the target's option whether 6816 // to do so) 6817 // TODO: allow code generation to take advantage of partially preserved 6818 // registers rather than clobbering the entire register when the 6819 // parameter extension method is not compatible with the return 6820 // extension method 6821 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6822 (ExtendKind != ISD::ANY_EXTEND && 6823 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6824 Flags.setReturned(); 6825 } 6826 6827 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 6828 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); 6829 6830 for (unsigned j = 0; j != NumParts; ++j) { 6831 // if it isn't first piece, alignment must be 1 6832 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6833 i < CLI.NumFixedArgs, 6834 i, j*Parts[j].getValueType().getStoreSize()); 6835 if (NumParts > 1 && j == 0) 6836 MyFlags.Flags.setSplit(); 6837 else if (j != 0) 6838 MyFlags.Flags.setOrigAlign(1); 6839 6840 CLI.Outs.push_back(MyFlags); 6841 CLI.OutVals.push_back(Parts[j]); 6842 } 6843 } 6844 } 6845 6846 SmallVector<SDValue, 4> InVals; 6847 CLI.Chain = LowerCall(CLI, InVals); 6848 6849 // Verify that the target's LowerCall behaved as expected. 6850 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6851 "LowerCall didn't return a valid chain!"); 6852 assert((!CLI.IsTailCall || InVals.empty()) && 6853 "LowerCall emitted a return value for a tail call!"); 6854 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6855 "LowerCall didn't emit the correct number of values!"); 6856 6857 // For a tail call, the return value is merely live-out and there aren't 6858 // any nodes in the DAG representing it. Return a special value to 6859 // indicate that a tail call has been emitted and no more Instructions 6860 // should be processed in the current block. 6861 if (CLI.IsTailCall) { 6862 CLI.DAG.setRoot(CLI.Chain); 6863 return std::make_pair(SDValue(), SDValue()); 6864 } 6865 6866 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6867 assert(InVals[i].getNode() && 6868 "LowerCall emitted a null value!"); 6869 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6870 "LowerCall emitted a value with the wrong type!"); 6871 }); 6872 6873 // Collect the legal value parts into potentially illegal values 6874 // that correspond to the original function's return values. 6875 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6876 if (CLI.RetSExt) 6877 AssertOp = ISD::AssertSext; 6878 else if (CLI.RetZExt) 6879 AssertOp = ISD::AssertZext; 6880 SmallVector<SDValue, 4> ReturnValues; 6881 unsigned CurReg = 0; 6882 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6883 EVT VT = RetTys[I]; 6884 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6885 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6886 6887 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6888 NumRegs, RegisterVT, VT, NULL, 6889 AssertOp)); 6890 CurReg += NumRegs; 6891 } 6892 6893 // For a function returning void, there is no return value. We can't create 6894 // such a node, so we just return a null return value in that case. In 6895 // that case, nothing will actually look at the value. 6896 if (ReturnValues.empty()) 6897 return std::make_pair(SDValue(), CLI.Chain); 6898 6899 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6900 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 6901 &ReturnValues[0], ReturnValues.size()); 6902 return std::make_pair(Res, CLI.Chain); 6903 } 6904 6905 void TargetLowering::LowerOperationWrapper(SDNode *N, 6906 SmallVectorImpl<SDValue> &Results, 6907 SelectionDAG &DAG) const { 6908 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6909 if (Res.getNode()) 6910 Results.push_back(Res); 6911 } 6912 6913 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6914 llvm_unreachable("LowerOperation not implemented for this target!"); 6915 } 6916 6917 void 6918 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6919 SDValue Op = getNonRegisterValue(V); 6920 assert((Op.getOpcode() != ISD::CopyFromReg || 6921 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6922 "Copy from a reg to the same reg!"); 6923 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6924 6925 const TargetLowering *TLI = TM.getTargetLowering(); 6926 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 6927 SDValue Chain = DAG.getEntryNode(); 6928 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V); 6929 PendingExports.push_back(Chain); 6930 } 6931 6932 #include "llvm/CodeGen/SelectionDAGISel.h" 6933 6934 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6935 /// entry block, return true. This includes arguments used by switches, since 6936 /// the switch may expand into multiple basic blocks. 6937 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6938 // With FastISel active, we may be splitting blocks, so force creation 6939 // of virtual registers for all non-dead arguments. 6940 if (FastISel) 6941 return A->use_empty(); 6942 6943 const BasicBlock *Entry = A->getParent()->begin(); 6944 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6945 UI != E; ++UI) { 6946 const User *U = *UI; 6947 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6948 return false; // Use not in entry block. 6949 } 6950 return true; 6951 } 6952 6953 void SelectionDAGISel::LowerArguments(const Function &F) { 6954 SelectionDAG &DAG = SDB->DAG; 6955 SDLoc dl = SDB->getCurSDLoc(); 6956 const TargetLowering *TLI = getTargetLowering(); 6957 const DataLayout *TD = TLI->getDataLayout(); 6958 SmallVector<ISD::InputArg, 16> Ins; 6959 6960 if (!FuncInfo->CanLowerReturn) { 6961 // Put in an sret pointer parameter before all the other parameters. 6962 SmallVector<EVT, 1> ValueVTs; 6963 ComputeValueVTs(*getTargetLowering(), 6964 PointerType::getUnqual(F.getReturnType()), ValueVTs); 6965 6966 // NOTE: Assuming that a pointer will never break down to more than one VT 6967 // or one register. 6968 ISD::ArgFlagsTy Flags; 6969 Flags.setSRet(); 6970 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 6971 ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0); 6972 Ins.push_back(RetArg); 6973 } 6974 6975 // Set up the incoming argument description vector. 6976 unsigned Idx = 1; 6977 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6978 I != E; ++I, ++Idx) { 6979 SmallVector<EVT, 4> ValueVTs; 6980 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 6981 bool isArgValueUsed = !I->use_empty(); 6982 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6983 Value != NumValues; ++Value) { 6984 EVT VT = ValueVTs[Value]; 6985 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6986 ISD::ArgFlagsTy Flags; 6987 unsigned OriginalAlignment = 6988 TD->getABITypeAlignment(ArgTy); 6989 6990 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 6991 Flags.setZExt(); 6992 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 6993 Flags.setSExt(); 6994 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 6995 Flags.setInReg(); 6996 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 6997 Flags.setSRet(); 6998 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) { 6999 Flags.setByVal(); 7000 PointerType *Ty = cast<PointerType>(I->getType()); 7001 Type *ElementTy = Ty->getElementType(); 7002 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 7003 // For ByVal, alignment should be passed from FE. BE will guess if 7004 // this info is not there but there are cases it cannot get right. 7005 unsigned FrameAlign; 7006 if (F.getParamAlignment(Idx)) 7007 FrameAlign = F.getParamAlignment(Idx); 7008 else 7009 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7010 Flags.setByValAlign(FrameAlign); 7011 } 7012 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7013 Flags.setNest(); 7014 Flags.setOrigAlign(OriginalAlignment); 7015 7016 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7017 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7018 for (unsigned i = 0; i != NumRegs; ++i) { 7019 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed, 7020 Idx-1, i*RegisterVT.getStoreSize()); 7021 if (NumRegs > 1 && i == 0) 7022 MyFlags.Flags.setSplit(); 7023 // if it isn't first piece, alignment must be 1 7024 else if (i > 0) 7025 MyFlags.Flags.setOrigAlign(1); 7026 Ins.push_back(MyFlags); 7027 } 7028 } 7029 } 7030 7031 // Call the target to set up the argument values. 7032 SmallVector<SDValue, 8> InVals; 7033 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7034 F.isVarArg(), Ins, 7035 dl, DAG, InVals); 7036 7037 // Verify that the target's LowerFormalArguments behaved as expected. 7038 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7039 "LowerFormalArguments didn't return a valid chain!"); 7040 assert(InVals.size() == Ins.size() && 7041 "LowerFormalArguments didn't emit the correct number of values!"); 7042 DEBUG({ 7043 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7044 assert(InVals[i].getNode() && 7045 "LowerFormalArguments emitted a null value!"); 7046 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7047 "LowerFormalArguments emitted a value with the wrong type!"); 7048 } 7049 }); 7050 7051 // Update the DAG with the new chain value resulting from argument lowering. 7052 DAG.setRoot(NewRoot); 7053 7054 // Set up the argument values. 7055 unsigned i = 0; 7056 Idx = 1; 7057 if (!FuncInfo->CanLowerReturn) { 7058 // Create a virtual register for the sret pointer, and put in a copy 7059 // from the sret argument into it. 7060 SmallVector<EVT, 1> ValueVTs; 7061 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7062 MVT VT = ValueVTs[0].getSimpleVT(); 7063 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7064 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7065 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7066 RegVT, VT, NULL, AssertOp); 7067 7068 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7069 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7070 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7071 FuncInfo->DemoteRegister = SRetReg; 7072 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7073 SRetReg, ArgValue); 7074 DAG.setRoot(NewRoot); 7075 7076 // i indexes lowered arguments. Bump it past the hidden sret argument. 7077 // Idx indexes LLVM arguments. Don't touch it. 7078 ++i; 7079 } 7080 7081 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7082 ++I, ++Idx) { 7083 SmallVector<SDValue, 4> ArgValues; 7084 SmallVector<EVT, 4> ValueVTs; 7085 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7086 unsigned NumValues = ValueVTs.size(); 7087 7088 // If this argument is unused then remember its value. It is used to generate 7089 // debugging information. 7090 if (I->use_empty() && NumValues) { 7091 SDB->setUnusedArgValue(I, InVals[i]); 7092 7093 // Also remember any frame index for use in FastISel. 7094 if (FrameIndexSDNode *FI = 7095 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7096 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7097 } 7098 7099 for (unsigned Val = 0; Val != NumValues; ++Val) { 7100 EVT VT = ValueVTs[Val]; 7101 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7102 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7103 7104 if (!I->use_empty()) { 7105 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7106 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7107 AssertOp = ISD::AssertSext; 7108 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7109 AssertOp = ISD::AssertZext; 7110 7111 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7112 NumParts, PartVT, VT, 7113 NULL, AssertOp)); 7114 } 7115 7116 i += NumParts; 7117 } 7118 7119 // We don't need to do anything else for unused arguments. 7120 if (ArgValues.empty()) 7121 continue; 7122 7123 // Note down frame index. 7124 if (FrameIndexSDNode *FI = 7125 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7126 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7127 7128 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 7129 SDB->getCurSDLoc()); 7130 7131 SDB->setValue(I, Res); 7132 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7133 if (LoadSDNode *LNode = 7134 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7135 if (FrameIndexSDNode *FI = 7136 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7137 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7138 } 7139 7140 // If this argument is live outside of the entry block, insert a copy from 7141 // wherever we got it to the vreg that other BB's will reference it as. 7142 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7143 // If we can, though, try to skip creating an unnecessary vreg. 7144 // FIXME: This isn't very clean... it would be nice to make this more 7145 // general. It's also subtly incompatible with the hacks FastISel 7146 // uses with vregs. 7147 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7148 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7149 FuncInfo->ValueMap[I] = Reg; 7150 continue; 7151 } 7152 } 7153 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7154 FuncInfo->InitializeRegForValue(I); 7155 SDB->CopyToExportRegsIfNeeded(I); 7156 } 7157 } 7158 7159 assert(i == InVals.size() && "Argument register count mismatch!"); 7160 7161 // Finally, if the target has anything special to do, allow it to do so. 7162 // FIXME: this should insert code into the DAG! 7163 EmitFunctionEntryCode(); 7164 } 7165 7166 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7167 /// ensure constants are generated when needed. Remember the virtual registers 7168 /// that need to be added to the Machine PHI nodes as input. We cannot just 7169 /// directly add them, because expansion might result in multiple MBB's for one 7170 /// BB. As such, the start of the BB might correspond to a different MBB than 7171 /// the end. 7172 /// 7173 void 7174 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7175 const TerminatorInst *TI = LLVMBB->getTerminator(); 7176 7177 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7178 7179 // Check successor nodes' PHI nodes that expect a constant to be available 7180 // from this block. 7181 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7182 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7183 if (!isa<PHINode>(SuccBB->begin())) continue; 7184 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7185 7186 // If this terminator has multiple identical successors (common for 7187 // switches), only handle each succ once. 7188 if (!SuccsHandled.insert(SuccMBB)) continue; 7189 7190 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7191 7192 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7193 // nodes and Machine PHI nodes, but the incoming operands have not been 7194 // emitted yet. 7195 for (BasicBlock::const_iterator I = SuccBB->begin(); 7196 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7197 // Ignore dead phi's. 7198 if (PN->use_empty()) continue; 7199 7200 // Skip empty types 7201 if (PN->getType()->isEmptyTy()) 7202 continue; 7203 7204 unsigned Reg; 7205 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7206 7207 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7208 unsigned &RegOut = ConstantsOut[C]; 7209 if (RegOut == 0) { 7210 RegOut = FuncInfo.CreateRegs(C->getType()); 7211 CopyValueToVirtualRegister(C, RegOut); 7212 } 7213 Reg = RegOut; 7214 } else { 7215 DenseMap<const Value *, unsigned>::iterator I = 7216 FuncInfo.ValueMap.find(PHIOp); 7217 if (I != FuncInfo.ValueMap.end()) 7218 Reg = I->second; 7219 else { 7220 assert(isa<AllocaInst>(PHIOp) && 7221 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7222 "Didn't codegen value into a register!??"); 7223 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7224 CopyValueToVirtualRegister(PHIOp, Reg); 7225 } 7226 } 7227 7228 // Remember that this register needs to added to the machine PHI node as 7229 // the input for this MBB. 7230 SmallVector<EVT, 4> ValueVTs; 7231 const TargetLowering *TLI = TM.getTargetLowering(); 7232 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7233 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7234 EVT VT = ValueVTs[vti]; 7235 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7236 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7237 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7238 Reg += NumRegisters; 7239 } 7240 } 7241 } 7242 7243 ConstantsOut.clear(); 7244 } 7245 7246 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7247 /// is 0. 7248 MachineBasicBlock * 7249 SelectionDAGBuilder::StackProtectorDescriptor:: 7250 AddSuccessorMBB(const BasicBlock *BB, 7251 MachineBasicBlock *ParentMBB, 7252 MachineBasicBlock *SuccMBB) { 7253 // If SuccBB has not been created yet, create it. 7254 if (!SuccMBB) { 7255 MachineFunction *MF = ParentMBB->getParent(); 7256 MachineFunction::iterator BBI = ParentMBB; 7257 SuccMBB = MF->CreateMachineBasicBlock(BB); 7258 MF->insert(++BBI, SuccMBB); 7259 } 7260 // Add it as a successor of ParentMBB. 7261 ParentMBB->addSuccessor(SuccMBB); 7262 return SuccMBB; 7263 } 7264