xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision bbcfce4badac3dfeb64c1bb413bbe0dc53eca326)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/Analysis/VectorUtils.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/FunctionLoweringInfo.h"
42 #include "llvm/CodeGen/GCMetadata.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGen/WinEHFuncInfo.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/CallingConv.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/ConstantRange.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DebugInfoMetadata.h"
78 #include "llvm/IR/DebugLoc.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GetElementPtrTypeIterator.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/Intrinsics.h"
88 #include "llvm/IR/IntrinsicsAArch64.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PatternMatch.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/MC/MCContext.h"
100 #include "llvm/MC/MCSymbol.h"
101 #include "llvm/Support/AtomicOrdering.h"
102 #include "llvm/Support/BranchProbability.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CodeGen.h"
105 #include "llvm/Support/CommandLine.h"
106 #include "llvm/Support/Compiler.h"
107 #include "llvm/Support/Debug.h"
108 #include "llvm/Support/ErrorHandling.h"
109 #include "llvm/Support/MachineValueType.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Target/TargetIntrinsicInfo.h"
113 #include "llvm/Target/TargetMachine.h"
114 #include "llvm/Target/TargetOptions.h"
115 #include "llvm/Transforms/Utils/Local.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cstddef>
119 #include <cstdint>
120 #include <cstring>
121 #include <iterator>
122 #include <limits>
123 #include <numeric>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127 
128 using namespace llvm;
129 using namespace PatternMatch;
130 using namespace SwitchCG;
131 
132 #define DEBUG_TYPE "isel"
133 
134 /// LimitFloatPrecision - Generate low-precision inline sequences for
135 /// some float libcalls (6, 8 or 12 bits).
136 static unsigned LimitFloatPrecision;
137 
138 static cl::opt<unsigned, true>
139     LimitFPPrecision("limit-float-precision",
140                      cl::desc("Generate low-precision inline sequences "
141                               "for some float libcalls"),
142                      cl::location(LimitFloatPrecision), cl::Hidden,
143                      cl::init(0));
144 
145 static cl::opt<unsigned> SwitchPeelThreshold(
146     "switch-peel-threshold", cl::Hidden, cl::init(66),
147     cl::desc("Set the case probability threshold for peeling the case from a "
148              "switch statement. A value greater than 100 will void this "
149              "optimization"));
150 
151 // Limit the width of DAG chains. This is important in general to prevent
152 // DAG-based analysis from blowing up. For example, alias analysis and
153 // load clustering may not complete in reasonable time. It is difficult to
154 // recognize and avoid this situation within each individual analysis, and
155 // future analyses are likely to have the same behavior. Limiting DAG width is
156 // the safe approach and will be especially important with global DAGs.
157 //
158 // MaxParallelChains default is arbitrarily high to avoid affecting
159 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
160 // sequence over this should have been converted to llvm.memcpy by the
161 // frontend. It is easy to induce this behavior with .ll code such as:
162 // %buffer = alloca [4096 x i8]
163 // %data = load [4096 x i8]* %argPtr
164 // store [4096 x i8] %data, [4096 x i8]* %buffer
165 static const unsigned MaxParallelChains = 64;
166 
167 // Return the calling convention if the Value passed requires ABI mangling as it
168 // is a parameter to a function or a return value from a function which is not
169 // an intrinsic.
170 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
171   if (auto *R = dyn_cast<ReturnInst>(V))
172     return R->getParent()->getParent()->getCallingConv();
173 
174   if (auto *CI = dyn_cast<CallInst>(V)) {
175     const bool IsInlineAsm = CI->isInlineAsm();
176     const bool IsIndirectFunctionCall =
177         !IsInlineAsm && !CI->getCalledFunction();
178 
179     // It is possible that the call instruction is an inline asm statement or an
180     // indirect function call in which case the return value of
181     // getCalledFunction() would be nullptr.
182     const bool IsInstrinsicCall =
183         !IsInlineAsm && !IsIndirectFunctionCall &&
184         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
185 
186     if (!IsInlineAsm && !IsInstrinsicCall)
187       return CI->getCallingConv();
188   }
189 
190   return None;
191 }
192 
193 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
194                                       const SDValue *Parts, unsigned NumParts,
195                                       MVT PartVT, EVT ValueVT, const Value *V,
196                                       Optional<CallingConv::ID> CC);
197 
198 /// getCopyFromParts - Create a value that contains the specified legal parts
199 /// combined into the value they represent.  If the parts combine to a type
200 /// larger than ValueVT then AssertOp can be used to specify whether the extra
201 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
202 /// (ISD::AssertSext).
203 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
204                                 const SDValue *Parts, unsigned NumParts,
205                                 MVT PartVT, EVT ValueVT, const Value *V,
206                                 Optional<CallingConv::ID> CC = None,
207                                 Optional<ISD::NodeType> AssertOp = None) {
208   if (ValueVT.isVector())
209     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
210                                   CC);
211 
212   assert(NumParts > 0 && "No parts to assemble!");
213   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
214   SDValue Val = Parts[0];
215 
216   if (NumParts > 1) {
217     // Assemble the value from multiple parts.
218     if (ValueVT.isInteger()) {
219       unsigned PartBits = PartVT.getSizeInBits();
220       unsigned ValueBits = ValueVT.getSizeInBits();
221 
222       // Assemble the power of 2 part.
223       unsigned RoundParts =
224           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
225       unsigned RoundBits = PartBits * RoundParts;
226       EVT RoundVT = RoundBits == ValueBits ?
227         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
228       SDValue Lo, Hi;
229 
230       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
231 
232       if (RoundParts > 2) {
233         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
234                               PartVT, HalfVT, V);
235         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
236                               RoundParts / 2, PartVT, HalfVT, V);
237       } else {
238         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
239         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
240       }
241 
242       if (DAG.getDataLayout().isBigEndian())
243         std::swap(Lo, Hi);
244 
245       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
246 
247       if (RoundParts < NumParts) {
248         // Assemble the trailing non-power-of-2 part.
249         unsigned OddParts = NumParts - RoundParts;
250         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
251         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
252                               OddVT, V, CC);
253 
254         // Combine the round and odd parts.
255         Lo = Val;
256         if (DAG.getDataLayout().isBigEndian())
257           std::swap(Lo, Hi);
258         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
259         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
260         Hi =
261             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
262                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
263                                         TLI.getPointerTy(DAG.getDataLayout())));
264         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
265         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
266       }
267     } else if (PartVT.isFloatingPoint()) {
268       // FP split into multiple FP parts (for ppcf128)
269       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
270              "Unexpected split");
271       SDValue Lo, Hi;
272       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
273       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
274       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
275         std::swap(Lo, Hi);
276       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
277     } else {
278       // FP split into integer parts (soft fp)
279       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
280              !PartVT.isVector() && "Unexpected split");
281       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
282       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
283     }
284   }
285 
286   // There is now one part, held in Val.  Correct it to match ValueVT.
287   // PartEVT is the type of the register class that holds the value.
288   // ValueVT is the type of the inline asm operation.
289   EVT PartEVT = Val.getValueType();
290 
291   if (PartEVT == ValueVT)
292     return Val;
293 
294   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
295       ValueVT.bitsLT(PartEVT)) {
296     // For an FP value in an integer part, we need to truncate to the right
297     // width first.
298     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
299     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
300   }
301 
302   // Handle types that have the same size.
303   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
304     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
305 
306   // Handle types with different sizes.
307   if (PartEVT.isInteger() && ValueVT.isInteger()) {
308     if (ValueVT.bitsLT(PartEVT)) {
309       // For a truncate, see if we have any information to
310       // indicate whether the truncated bits will always be
311       // zero or sign-extension.
312       if (AssertOp.hasValue())
313         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
314                           DAG.getValueType(ValueVT));
315       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
316     }
317     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
318   }
319 
320   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
321     // FP_ROUND's are always exact here.
322     if (ValueVT.bitsLT(Val.getValueType()))
323       return DAG.getNode(
324           ISD::FP_ROUND, DL, ValueVT, Val,
325           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
326 
327     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
328   }
329 
330   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
331   // then truncating.
332   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
333       ValueVT.bitsLT(PartEVT)) {
334     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
335     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
336   }
337 
338   report_fatal_error("Unknown mismatch in getCopyFromParts!");
339 }
340 
341 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
342                                               const Twine &ErrMsg) {
343   const Instruction *I = dyn_cast_or_null<Instruction>(V);
344   if (!V)
345     return Ctx.emitError(ErrMsg);
346 
347   const char *AsmError = ", possible invalid constraint for vector type";
348   if (const CallInst *CI = dyn_cast<CallInst>(I))
349     if (isa<InlineAsm>(CI->getCalledValue()))
350       return Ctx.emitError(I, ErrMsg + AsmError);
351 
352   return Ctx.emitError(I, ErrMsg);
353 }
354 
355 /// getCopyFromPartsVector - Create a value that contains the specified legal
356 /// parts combined into the value they represent.  If the parts combine to a
357 /// type larger than ValueVT then AssertOp can be used to specify whether the
358 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
359 /// ValueVT (ISD::AssertSext).
360 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
361                                       const SDValue *Parts, unsigned NumParts,
362                                       MVT PartVT, EVT ValueVT, const Value *V,
363                                       Optional<CallingConv::ID> CallConv) {
364   assert(ValueVT.isVector() && "Not a vector value");
365   assert(NumParts > 0 && "No parts to assemble!");
366   const bool IsABIRegCopy = CallConv.hasValue();
367 
368   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
369   SDValue Val = Parts[0];
370 
371   // Handle a multi-element vector.
372   if (NumParts > 1) {
373     EVT IntermediateVT;
374     MVT RegisterVT;
375     unsigned NumIntermediates;
376     unsigned NumRegs;
377 
378     if (IsABIRegCopy) {
379       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
380           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
381           NumIntermediates, RegisterVT);
382     } else {
383       NumRegs =
384           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
385                                      NumIntermediates, RegisterVT);
386     }
387 
388     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
389     NumParts = NumRegs; // Silence a compiler warning.
390     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
391     assert(RegisterVT.getSizeInBits() ==
392            Parts[0].getSimpleValueType().getSizeInBits() &&
393            "Part type sizes don't match!");
394 
395     // Assemble the parts into intermediate operands.
396     SmallVector<SDValue, 8> Ops(NumIntermediates);
397     if (NumIntermediates == NumParts) {
398       // If the register was not expanded, truncate or copy the value,
399       // as appropriate.
400       for (unsigned i = 0; i != NumParts; ++i)
401         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
402                                   PartVT, IntermediateVT, V);
403     } else if (NumParts > 0) {
404       // If the intermediate type was expanded, build the intermediate
405       // operands from the parts.
406       assert(NumParts % NumIntermediates == 0 &&
407              "Must expand into a divisible number of parts!");
408       unsigned Factor = NumParts / NumIntermediates;
409       for (unsigned i = 0; i != NumIntermediates; ++i)
410         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
411                                   PartVT, IntermediateVT, V);
412     }
413 
414     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
415     // intermediate operands.
416     EVT BuiltVectorTy =
417         IntermediateVT.isVector()
418             ? EVT::getVectorVT(
419                   *DAG.getContext(), IntermediateVT.getScalarType(),
420                   IntermediateVT.getVectorElementCount() * NumParts)
421             : EVT::getVectorVT(*DAG.getContext(),
422                                IntermediateVT.getScalarType(),
423                                NumIntermediates);
424     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
425                                                 : ISD::BUILD_VECTOR,
426                       DL, BuiltVectorTy, Ops);
427   }
428 
429   // There is now one part, held in Val.  Correct it to match ValueVT.
430   EVT PartEVT = Val.getValueType();
431 
432   if (PartEVT == ValueVT)
433     return Val;
434 
435   if (PartEVT.isVector()) {
436     // If the element type of the source/dest vectors are the same, but the
437     // parts vector has more elements than the value vector, then we have a
438     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
439     // elements we want.
440     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
441       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
442              "Cannot narrow, it would be a lossy transformation");
443       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
444                          DAG.getVectorIdxConstant(0, DL));
445     }
446 
447     // Vector/Vector bitcast.
448     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
449       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
450 
451     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
452       "Cannot handle this kind of promotion");
453     // Promoted vector extract
454     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
455 
456   }
457 
458   // Trivial bitcast if the types are the same size and the destination
459   // vector type is legal.
460   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
461       TLI.isTypeLegal(ValueVT))
462     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
463 
464   if (ValueVT.getVectorNumElements() != 1) {
465      // Certain ABIs require that vectors are passed as integers. For vectors
466      // are the same size, this is an obvious bitcast.
467      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
468        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
469      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
470        // Bitcast Val back the original type and extract the corresponding
471        // vector we want.
472        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
473        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
474                                            ValueVT.getVectorElementType(), Elts);
475        Val = DAG.getBitcast(WiderVecType, Val);
476        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
477                           DAG.getVectorIdxConstant(0, DL));
478      }
479 
480      diagnosePossiblyInvalidConstraint(
481          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
482      return DAG.getUNDEF(ValueVT);
483   }
484 
485   // Handle cases such as i8 -> <1 x i1>
486   EVT ValueSVT = ValueVT.getVectorElementType();
487   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
488     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
489       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
490     else
491       Val = ValueVT.isFloatingPoint()
492                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
493                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
494   }
495 
496   return DAG.getBuildVector(ValueVT, DL, Val);
497 }
498 
499 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
500                                  SDValue Val, SDValue *Parts, unsigned NumParts,
501                                  MVT PartVT, const Value *V,
502                                  Optional<CallingConv::ID> CallConv);
503 
504 /// getCopyToParts - Create a series of nodes that contain the specified value
505 /// split into legal parts.  If the parts contain more bits than Val, then, for
506 /// integers, ExtendKind can be used to specify how to generate the extra bits.
507 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
508                            SDValue *Parts, unsigned NumParts, MVT PartVT,
509                            const Value *V,
510                            Optional<CallingConv::ID> CallConv = None,
511                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
512   EVT ValueVT = Val.getValueType();
513 
514   // Handle the vector case separately.
515   if (ValueVT.isVector())
516     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
517                                 CallConv);
518 
519   unsigned PartBits = PartVT.getSizeInBits();
520   unsigned OrigNumParts = NumParts;
521   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
522          "Copying to an illegal type!");
523 
524   if (NumParts == 0)
525     return;
526 
527   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
528   EVT PartEVT = PartVT;
529   if (PartEVT == ValueVT) {
530     assert(NumParts == 1 && "No-op copy with multiple parts!");
531     Parts[0] = Val;
532     return;
533   }
534 
535   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
536     // If the parts cover more bits than the value has, promote the value.
537     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
538       assert(NumParts == 1 && "Do not know what to promote to!");
539       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
540     } else {
541       if (ValueVT.isFloatingPoint()) {
542         // FP values need to be bitcast, then extended if they are being put
543         // into a larger container.
544         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
545         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
546       }
547       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
548              ValueVT.isInteger() &&
549              "Unknown mismatch!");
550       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
551       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
552       if (PartVT == MVT::x86mmx)
553         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555   } else if (PartBits == ValueVT.getSizeInBits()) {
556     // Different types of the same size.
557     assert(NumParts == 1 && PartEVT != ValueVT);
558     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
560     // If the parts cover less bits than value has, truncate the value.
561     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
562            ValueVT.isInteger() &&
563            "Unknown mismatch!");
564     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
565     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
566     if (PartVT == MVT::x86mmx)
567       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
568   }
569 
570   // The value may have changed - recompute ValueVT.
571   ValueVT = Val.getValueType();
572   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
573          "Failed to tile the value with PartVT!");
574 
575   if (NumParts == 1) {
576     if (PartEVT != ValueVT) {
577       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
578                                         "scalar-to-vector conversion failed");
579       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
580     }
581 
582     Parts[0] = Val;
583     return;
584   }
585 
586   // Expand the value into multiple parts.
587   if (NumParts & (NumParts - 1)) {
588     // The number of parts is not a power of 2.  Split off and copy the tail.
589     assert(PartVT.isInteger() && ValueVT.isInteger() &&
590            "Do not know what to expand to!");
591     unsigned RoundParts = 1 << Log2_32(NumParts);
592     unsigned RoundBits = RoundParts * PartBits;
593     unsigned OddParts = NumParts - RoundParts;
594     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
595       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
596 
597     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
598                    CallConv);
599 
600     if (DAG.getDataLayout().isBigEndian())
601       // The odd parts were reversed by getCopyToParts - unreverse them.
602       std::reverse(Parts + RoundParts, Parts + NumParts);
603 
604     NumParts = RoundParts;
605     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
606     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
607   }
608 
609   // The number of parts is a power of 2.  Repeatedly bisect the value using
610   // EXTRACT_ELEMENT.
611   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
612                          EVT::getIntegerVT(*DAG.getContext(),
613                                            ValueVT.getSizeInBits()),
614                          Val);
615 
616   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
617     for (unsigned i = 0; i < NumParts; i += StepSize) {
618       unsigned ThisBits = StepSize * PartBits / 2;
619       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
620       SDValue &Part0 = Parts[i];
621       SDValue &Part1 = Parts[i+StepSize/2];
622 
623       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
624                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
625       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
626                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
627 
628       if (ThisBits == PartBits && ThisVT != PartVT) {
629         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
630         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
631       }
632     }
633   }
634 
635   if (DAG.getDataLayout().isBigEndian())
636     std::reverse(Parts, Parts + OrigNumParts);
637 }
638 
639 static SDValue widenVectorToPartType(SelectionDAG &DAG,
640                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
641   if (!PartVT.isVector())
642     return SDValue();
643 
644   EVT ValueVT = Val.getValueType();
645   unsigned PartNumElts = PartVT.getVectorNumElements();
646   unsigned ValueNumElts = ValueVT.getVectorNumElements();
647   if (PartNumElts > ValueNumElts &&
648       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
649     EVT ElementVT = PartVT.getVectorElementType();
650     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
651     // undef elements.
652     SmallVector<SDValue, 16> Ops;
653     DAG.ExtractVectorElements(Val, Ops);
654     SDValue EltUndef = DAG.getUNDEF(ElementVT);
655     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
656       Ops.push_back(EltUndef);
657 
658     // FIXME: Use CONCAT for 2x -> 4x.
659     return DAG.getBuildVector(PartVT, DL, Ops);
660   }
661 
662   return SDValue();
663 }
664 
665 /// getCopyToPartsVector - Create a series of nodes that contain the specified
666 /// value split into legal parts.
667 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
668                                  SDValue Val, SDValue *Parts, unsigned NumParts,
669                                  MVT PartVT, const Value *V,
670                                  Optional<CallingConv::ID> CallConv) {
671   EVT ValueVT = Val.getValueType();
672   assert(ValueVT.isVector() && "Not a vector");
673   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
674   const bool IsABIRegCopy = CallConv.hasValue();
675 
676   if (NumParts == 1) {
677     EVT PartEVT = PartVT;
678     if (PartEVT == ValueVT) {
679       // Nothing to do.
680     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
681       // Bitconvert vector->vector case.
682       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
683     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
684       Val = Widened;
685     } else if (PartVT.isVector() &&
686                PartEVT.getVectorElementType().bitsGE(
687                  ValueVT.getVectorElementType()) &&
688                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
689 
690       // Promoted vector extract
691       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
692     } else {
693       if (ValueVT.getVectorNumElements() == 1) {
694         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
695                           DAG.getVectorIdxConstant(0, DL));
696       } else {
697         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
698                "lossy conversion of vector to scalar type");
699         EVT IntermediateType =
700             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
701         Val = DAG.getBitcast(IntermediateType, Val);
702         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
703       }
704     }
705 
706     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
707     Parts[0] = Val;
708     return;
709   }
710 
711   // Handle a multi-element vector.
712   EVT IntermediateVT;
713   MVT RegisterVT;
714   unsigned NumIntermediates;
715   unsigned NumRegs;
716   if (IsABIRegCopy) {
717     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
718         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
719         NumIntermediates, RegisterVT);
720   } else {
721     NumRegs =
722         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
723                                    NumIntermediates, RegisterVT);
724   }
725 
726   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
727   NumParts = NumRegs; // Silence a compiler warning.
728   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
729 
730   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
731     IntermediateVT.getVectorNumElements() : 1;
732 
733   // Convert the vector to the appropriate type if necessary.
734   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
735 
736   EVT BuiltVectorTy = EVT::getVectorVT(
737       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
738   if (ValueVT != BuiltVectorTy) {
739     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
740       Val = Widened;
741 
742     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
743   }
744 
745   // Split the vector into intermediate operands.
746   SmallVector<SDValue, 8> Ops(NumIntermediates);
747   for (unsigned i = 0; i != NumIntermediates; ++i) {
748     if (IntermediateVT.isVector()) {
749       Ops[i] =
750           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
751                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
752     } else {
753       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
754                            DAG.getVectorIdxConstant(i, DL));
755     }
756   }
757 
758   // Split the intermediate operands into legal parts.
759   if (NumParts == NumIntermediates) {
760     // If the register was not expanded, promote or copy the value,
761     // as appropriate.
762     for (unsigned i = 0; i != NumParts; ++i)
763       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
764   } else if (NumParts > 0) {
765     // If the intermediate type was expanded, split each the value into
766     // legal parts.
767     assert(NumIntermediates != 0 && "division by zero");
768     assert(NumParts % NumIntermediates == 0 &&
769            "Must expand into a divisible number of parts!");
770     unsigned Factor = NumParts / NumIntermediates;
771     for (unsigned i = 0; i != NumIntermediates; ++i)
772       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
773                      CallConv);
774   }
775 }
776 
777 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
778                            EVT valuevt, Optional<CallingConv::ID> CC)
779     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
780       RegCount(1, regs.size()), CallConv(CC) {}
781 
782 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
783                            const DataLayout &DL, unsigned Reg, Type *Ty,
784                            Optional<CallingConv::ID> CC) {
785   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
786 
787   CallConv = CC;
788 
789   for (EVT ValueVT : ValueVTs) {
790     unsigned NumRegs =
791         isABIMangled()
792             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
793             : TLI.getNumRegisters(Context, ValueVT);
794     MVT RegisterVT =
795         isABIMangled()
796             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
797             : TLI.getRegisterType(Context, ValueVT);
798     for (unsigned i = 0; i != NumRegs; ++i)
799       Regs.push_back(Reg + i);
800     RegVTs.push_back(RegisterVT);
801     RegCount.push_back(NumRegs);
802     Reg += NumRegs;
803   }
804 }
805 
806 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
807                                       FunctionLoweringInfo &FuncInfo,
808                                       const SDLoc &dl, SDValue &Chain,
809                                       SDValue *Flag, const Value *V) const {
810   // A Value with type {} or [0 x %t] needs no registers.
811   if (ValueVTs.empty())
812     return SDValue();
813 
814   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
815 
816   // Assemble the legal parts into the final values.
817   SmallVector<SDValue, 4> Values(ValueVTs.size());
818   SmallVector<SDValue, 8> Parts;
819   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
820     // Copy the legal parts from the registers.
821     EVT ValueVT = ValueVTs[Value];
822     unsigned NumRegs = RegCount[Value];
823     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
824                                           *DAG.getContext(),
825                                           CallConv.getValue(), RegVTs[Value])
826                                     : RegVTs[Value];
827 
828     Parts.resize(NumRegs);
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       SDValue P;
831       if (!Flag) {
832         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
833       } else {
834         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
835         *Flag = P.getValue(2);
836       }
837 
838       Chain = P.getValue(1);
839       Parts[i] = P;
840 
841       // If the source register was virtual and if we know something about it,
842       // add an assert node.
843       if (!Register::isVirtualRegister(Regs[Part + i]) ||
844           !RegisterVT.isInteger())
845         continue;
846 
847       const FunctionLoweringInfo::LiveOutInfo *LOI =
848         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
849       if (!LOI)
850         continue;
851 
852       unsigned RegSize = RegisterVT.getScalarSizeInBits();
853       unsigned NumSignBits = LOI->NumSignBits;
854       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
855 
856       if (NumZeroBits == RegSize) {
857         // The current value is a zero.
858         // Explicitly express that as it would be easier for
859         // optimizations to kick in.
860         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
861         continue;
862       }
863 
864       // FIXME: We capture more information than the dag can represent.  For
865       // now, just use the tightest assertzext/assertsext possible.
866       bool isSExt;
867       EVT FromVT(MVT::Other);
868       if (NumZeroBits) {
869         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
870         isSExt = false;
871       } else if (NumSignBits > 1) {
872         FromVT =
873             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
874         isSExt = true;
875       } else {
876         continue;
877       }
878       // Add an assertion node.
879       assert(FromVT != MVT::Other);
880       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
881                              RegisterVT, P, DAG.getValueType(FromVT));
882     }
883 
884     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
885                                      RegisterVT, ValueVT, V, CallConv);
886     Part += NumRegs;
887     Parts.clear();
888   }
889 
890   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
891 }
892 
893 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
894                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
895                                  const Value *V,
896                                  ISD::NodeType PreferredExtendType) const {
897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
898   ISD::NodeType ExtendKind = PreferredExtendType;
899 
900   // Get the list of the values's legal parts.
901   unsigned NumRegs = Regs.size();
902   SmallVector<SDValue, 8> Parts(NumRegs);
903   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
904     unsigned NumParts = RegCount[Value];
905 
906     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
907                                           *DAG.getContext(),
908                                           CallConv.getValue(), RegVTs[Value])
909                                     : RegVTs[Value];
910 
911     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
912       ExtendKind = ISD::ZERO_EXTEND;
913 
914     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
915                    NumParts, RegisterVT, V, CallConv, ExtendKind);
916     Part += NumParts;
917   }
918 
919   // Copy the parts into the registers.
920   SmallVector<SDValue, 8> Chains(NumRegs);
921   for (unsigned i = 0; i != NumRegs; ++i) {
922     SDValue Part;
923     if (!Flag) {
924       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
925     } else {
926       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
927       *Flag = Part.getValue(1);
928     }
929 
930     Chains[i] = Part.getValue(0);
931   }
932 
933   if (NumRegs == 1 || Flag)
934     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
935     // flagged to it. That is the CopyToReg nodes and the user are considered
936     // a single scheduling unit. If we create a TokenFactor and return it as
937     // chain, then the TokenFactor is both a predecessor (operand) of the
938     // user as well as a successor (the TF operands are flagged to the user).
939     // c1, f1 = CopyToReg
940     // c2, f2 = CopyToReg
941     // c3     = TokenFactor c1, c2
942     // ...
943     //        = op c3, ..., f2
944     Chain = Chains[NumRegs-1];
945   else
946     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
947 }
948 
949 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
950                                         unsigned MatchingIdx, const SDLoc &dl,
951                                         SelectionDAG &DAG,
952                                         std::vector<SDValue> &Ops) const {
953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
954 
955   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
956   if (HasMatching)
957     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
958   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
959     // Put the register class of the virtual registers in the flag word.  That
960     // way, later passes can recompute register class constraints for inline
961     // assembly as well as normal instructions.
962     // Don't do this for tied operands that can use the regclass information
963     // from the def.
964     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
965     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
966     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
967   }
968 
969   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
970   Ops.push_back(Res);
971 
972   if (Code == InlineAsm::Kind_Clobber) {
973     // Clobbers should always have a 1:1 mapping with registers, and may
974     // reference registers that have illegal (e.g. vector) types. Hence, we
975     // shouldn't try to apply any sort of splitting logic to them.
976     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
977            "No 1:1 mapping from clobbers to regs?");
978     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
979     (void)SP;
980     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
981       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
982       assert(
983           (Regs[I] != SP ||
984            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
985           "If we clobbered the stack pointer, MFI should know about it.");
986     }
987     return;
988   }
989 
990   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
991     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
992     MVT RegisterVT = RegVTs[Value];
993     for (unsigned i = 0; i != NumRegs; ++i) {
994       assert(Reg < Regs.size() && "Mismatch in # registers expected");
995       unsigned TheReg = Regs[Reg++];
996       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
997     }
998   }
999 }
1000 
1001 SmallVector<std::pair<unsigned, unsigned>, 4>
1002 RegsForValue::getRegsAndSizes() const {
1003   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1004   unsigned I = 0;
1005   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1006     unsigned RegCount = std::get<0>(CountAndVT);
1007     MVT RegisterVT = std::get<1>(CountAndVT);
1008     unsigned RegisterSize = RegisterVT.getSizeInBits();
1009     for (unsigned E = I + RegCount; I != E; ++I)
1010       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1011   }
1012   return OutVec;
1013 }
1014 
1015 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1016                                const TargetLibraryInfo *li) {
1017   AA = aa;
1018   GFI = gfi;
1019   LibInfo = li;
1020   DL = &DAG.getDataLayout();
1021   Context = DAG.getContext();
1022   LPadToCallSiteMap.clear();
1023   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1024 }
1025 
1026 void SelectionDAGBuilder::clear() {
1027   NodeMap.clear();
1028   UnusedArgNodeMap.clear();
1029   PendingLoads.clear();
1030   PendingExports.clear();
1031   PendingConstrainedFP.clear();
1032   PendingConstrainedFPStrict.clear();
1033   CurInst = nullptr;
1034   HasTailCall = false;
1035   SDNodeOrder = LowestSDNodeOrder;
1036   StatepointLowering.clear();
1037 }
1038 
1039 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1040   DanglingDebugInfoMap.clear();
1041 }
1042 
1043 // Update DAG root to include dependencies on Pending chains.
1044 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1045   SDValue Root = DAG.getRoot();
1046 
1047   if (Pending.empty())
1048     return Root;
1049 
1050   // Add current root to PendingChains, unless we already indirectly
1051   // depend on it.
1052   if (Root.getOpcode() != ISD::EntryToken) {
1053     unsigned i = 0, e = Pending.size();
1054     for (; i != e; ++i) {
1055       assert(Pending[i].getNode()->getNumOperands() > 1);
1056       if (Pending[i].getNode()->getOperand(0) == Root)
1057         break;  // Don't add the root if we already indirectly depend on it.
1058     }
1059 
1060     if (i == e)
1061       Pending.push_back(Root);
1062   }
1063 
1064   if (Pending.size() == 1)
1065     Root = Pending[0];
1066   else
1067     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1068 
1069   DAG.setRoot(Root);
1070   Pending.clear();
1071   return Root;
1072 }
1073 
1074 SDValue SelectionDAGBuilder::getMemoryRoot() {
1075   return updateRoot(PendingLoads);
1076 }
1077 
1078 SDValue SelectionDAGBuilder::getRoot() {
1079   // Chain up all pending constrained intrinsics together with all
1080   // pending loads, by simply appending them to PendingLoads and
1081   // then calling getMemoryRoot().
1082   PendingLoads.reserve(PendingLoads.size() +
1083                        PendingConstrainedFP.size() +
1084                        PendingConstrainedFPStrict.size());
1085   PendingLoads.append(PendingConstrainedFP.begin(),
1086                       PendingConstrainedFP.end());
1087   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1088                       PendingConstrainedFPStrict.end());
1089   PendingConstrainedFP.clear();
1090   PendingConstrainedFPStrict.clear();
1091   return getMemoryRoot();
1092 }
1093 
1094 SDValue SelectionDAGBuilder::getControlRoot() {
1095   // We need to emit pending fpexcept.strict constrained intrinsics,
1096   // so append them to the PendingExports list.
1097   PendingExports.append(PendingConstrainedFPStrict.begin(),
1098                         PendingConstrainedFPStrict.end());
1099   PendingConstrainedFPStrict.clear();
1100   return updateRoot(PendingExports);
1101 }
1102 
1103 void SelectionDAGBuilder::visit(const Instruction &I) {
1104   // Set up outgoing PHI node register values before emitting the terminator.
1105   if (I.isTerminator()) {
1106     HandlePHINodesInSuccessorBlocks(I.getParent());
1107   }
1108 
1109   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1110   if (!isa<DbgInfoIntrinsic>(I))
1111     ++SDNodeOrder;
1112 
1113   CurInst = &I;
1114 
1115   visit(I.getOpcode(), I);
1116 
1117   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1118     // ConstrainedFPIntrinsics handle their own FMF.
1119     if (!isa<ConstrainedFPIntrinsic>(&I)) {
1120       // Propagate the fast-math-flags of this IR instruction to the DAG node that
1121       // maps to this instruction.
1122       // TODO: We could handle all flags (nsw, etc) here.
1123       // TODO: If an IR instruction maps to >1 node, only the final node will have
1124       //       flags set.
1125       if (SDNode *Node = getNodeForIRValue(&I)) {
1126         SDNodeFlags IncomingFlags;
1127         IncomingFlags.copyFMF(*FPMO);
1128         if (!Node->getFlags().isDefined())
1129           Node->setFlags(IncomingFlags);
1130         else
1131           Node->intersectFlagsWith(IncomingFlags);
1132       }
1133     }
1134   }
1135 
1136   if (!I.isTerminator() && !HasTailCall &&
1137       !isStatepoint(&I)) // statepoints handle their exports internally
1138     CopyToExportRegsIfNeeded(&I);
1139 
1140   CurInst = nullptr;
1141 }
1142 
1143 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1144   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1145 }
1146 
1147 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1148   // Note: this doesn't use InstVisitor, because it has to work with
1149   // ConstantExpr's in addition to instructions.
1150   switch (Opcode) {
1151   default: llvm_unreachable("Unknown instruction type encountered!");
1152     // Build the switch statement using the Instruction.def file.
1153 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1154     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1155 #include "llvm/IR/Instruction.def"
1156   }
1157 }
1158 
1159 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1160                                                 const DIExpression *Expr) {
1161   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1162     const DbgValueInst *DI = DDI.getDI();
1163     DIVariable *DanglingVariable = DI->getVariable();
1164     DIExpression *DanglingExpr = DI->getExpression();
1165     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1166       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1167       return true;
1168     }
1169     return false;
1170   };
1171 
1172   for (auto &DDIMI : DanglingDebugInfoMap) {
1173     DanglingDebugInfoVector &DDIV = DDIMI.second;
1174 
1175     // If debug info is to be dropped, run it through final checks to see
1176     // whether it can be salvaged.
1177     for (auto &DDI : DDIV)
1178       if (isMatchingDbgValue(DDI))
1179         salvageUnresolvedDbgValue(DDI);
1180 
1181     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1182   }
1183 }
1184 
1185 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1186 // generate the debug data structures now that we've seen its definition.
1187 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1188                                                    SDValue Val) {
1189   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1190   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1191     return;
1192 
1193   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1194   for (auto &DDI : DDIV) {
1195     const DbgValueInst *DI = DDI.getDI();
1196     assert(DI && "Ill-formed DanglingDebugInfo");
1197     DebugLoc dl = DDI.getdl();
1198     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1199     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1200     DILocalVariable *Variable = DI->getVariable();
1201     DIExpression *Expr = DI->getExpression();
1202     assert(Variable->isValidLocationForIntrinsic(dl) &&
1203            "Expected inlined-at fields to agree");
1204     SDDbgValue *SDV;
1205     if (Val.getNode()) {
1206       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1207       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1208       // we couldn't resolve it directly when examining the DbgValue intrinsic
1209       // in the first place we should not be more successful here). Unless we
1210       // have some test case that prove this to be correct we should avoid
1211       // calling EmitFuncArgumentDbgValue here.
1212       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1213         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1214                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1215         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1216         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1217         // inserted after the definition of Val when emitting the instructions
1218         // after ISel. An alternative could be to teach
1219         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1220         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1221                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1222                    << ValSDNodeOrder << "\n");
1223         SDV = getDbgValue(Val, Variable, Expr, dl,
1224                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1225         DAG.AddDbgValue(SDV, Val.getNode(), false);
1226       } else
1227         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1228                           << "in EmitFuncArgumentDbgValue\n");
1229     } else {
1230       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1231       auto Undef =
1232           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1233       auto SDV =
1234           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1235       DAG.AddDbgValue(SDV, nullptr, false);
1236     }
1237   }
1238   DDIV.clear();
1239 }
1240 
1241 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1242   Value *V = DDI.getDI()->getValue();
1243   DILocalVariable *Var = DDI.getDI()->getVariable();
1244   DIExpression *Expr = DDI.getDI()->getExpression();
1245   DebugLoc DL = DDI.getdl();
1246   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1247   unsigned SDOrder = DDI.getSDNodeOrder();
1248 
1249   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1250   // that DW_OP_stack_value is desired.
1251   assert(isa<DbgValueInst>(DDI.getDI()));
1252   bool StackValue = true;
1253 
1254   // Can this Value can be encoded without any further work?
1255   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1256     return;
1257 
1258   // Attempt to salvage back through as many instructions as possible. Bail if
1259   // a non-instruction is seen, such as a constant expression or global
1260   // variable. FIXME: Further work could recover those too.
1261   while (isa<Instruction>(V)) {
1262     Instruction &VAsInst = *cast<Instruction>(V);
1263     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1264 
1265     // If we cannot salvage any further, and haven't yet found a suitable debug
1266     // expression, bail out.
1267     if (!NewExpr)
1268       break;
1269 
1270     // New value and expr now represent this debuginfo.
1271     V = VAsInst.getOperand(0);
1272     Expr = NewExpr;
1273 
1274     // Some kind of simplification occurred: check whether the operand of the
1275     // salvaged debug expression can be encoded in this DAG.
1276     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1277       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1278                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1279       return;
1280     }
1281   }
1282 
1283   // This was the final opportunity to salvage this debug information, and it
1284   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1285   // any earlier variable location.
1286   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1287   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1288   DAG.AddDbgValue(SDV, nullptr, false);
1289 
1290   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1291                     << "\n");
1292   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1293                     << "\n");
1294 }
1295 
1296 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1297                                            DIExpression *Expr, DebugLoc dl,
1298                                            DebugLoc InstDL, unsigned Order) {
1299   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1300   SDDbgValue *SDV;
1301   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1302       isa<ConstantPointerNull>(V)) {
1303     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1304     DAG.AddDbgValue(SDV, nullptr, false);
1305     return true;
1306   }
1307 
1308   // If the Value is a frame index, we can create a FrameIndex debug value
1309   // without relying on the DAG at all.
1310   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1311     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1312     if (SI != FuncInfo.StaticAllocaMap.end()) {
1313       auto SDV =
1314           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1315                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1316       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1317       // is still available even if the SDNode gets optimized out.
1318       DAG.AddDbgValue(SDV, nullptr, false);
1319       return true;
1320     }
1321   }
1322 
1323   // Do not use getValue() in here; we don't want to generate code at
1324   // this point if it hasn't been done yet.
1325   SDValue N = NodeMap[V];
1326   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1327     N = UnusedArgNodeMap[V];
1328   if (N.getNode()) {
1329     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1330       return true;
1331     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1332     DAG.AddDbgValue(SDV, N.getNode(), false);
1333     return true;
1334   }
1335 
1336   // Special rules apply for the first dbg.values of parameter variables in a
1337   // function. Identify them by the fact they reference Argument Values, that
1338   // they're parameters, and they are parameters of the current function. We
1339   // need to let them dangle until they get an SDNode.
1340   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1341                        !InstDL.getInlinedAt();
1342   if (!IsParamOfFunc) {
1343     // The value is not used in this block yet (or it would have an SDNode).
1344     // We still want the value to appear for the user if possible -- if it has
1345     // an associated VReg, we can refer to that instead.
1346     auto VMI = FuncInfo.ValueMap.find(V);
1347     if (VMI != FuncInfo.ValueMap.end()) {
1348       unsigned Reg = VMI->second;
1349       // If this is a PHI node, it may be split up into several MI PHI nodes
1350       // (in FunctionLoweringInfo::set).
1351       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1352                        V->getType(), None);
1353       if (RFV.occupiesMultipleRegs()) {
1354         unsigned Offset = 0;
1355         unsigned BitsToDescribe = 0;
1356         if (auto VarSize = Var->getSizeInBits())
1357           BitsToDescribe = *VarSize;
1358         if (auto Fragment = Expr->getFragmentInfo())
1359           BitsToDescribe = Fragment->SizeInBits;
1360         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1361           unsigned RegisterSize = RegAndSize.second;
1362           // Bail out if all bits are described already.
1363           if (Offset >= BitsToDescribe)
1364             break;
1365           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1366               ? BitsToDescribe - Offset
1367               : RegisterSize;
1368           auto FragmentExpr = DIExpression::createFragmentExpression(
1369               Expr, Offset, FragmentSize);
1370           if (!FragmentExpr)
1371               continue;
1372           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1373                                     false, dl, SDNodeOrder);
1374           DAG.AddDbgValue(SDV, nullptr, false);
1375           Offset += RegisterSize;
1376         }
1377       } else {
1378         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1379         DAG.AddDbgValue(SDV, nullptr, false);
1380       }
1381       return true;
1382     }
1383   }
1384 
1385   return false;
1386 }
1387 
1388 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1389   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1390   for (auto &Pair : DanglingDebugInfoMap)
1391     for (auto &DDI : Pair.second)
1392       salvageUnresolvedDbgValue(DDI);
1393   clearDanglingDebugInfo();
1394 }
1395 
1396 /// getCopyFromRegs - If there was virtual register allocated for the value V
1397 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1398 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1399   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1400   SDValue Result;
1401 
1402   if (It != FuncInfo.ValueMap.end()) {
1403     Register InReg = It->second;
1404 
1405     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1406                      DAG.getDataLayout(), InReg, Ty,
1407                      None); // This is not an ABI copy.
1408     SDValue Chain = DAG.getEntryNode();
1409     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1410                                  V);
1411     resolveDanglingDebugInfo(V, Result);
1412   }
1413 
1414   return Result;
1415 }
1416 
1417 /// getValue - Return an SDValue for the given Value.
1418 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1419   // If we already have an SDValue for this value, use it. It's important
1420   // to do this first, so that we don't create a CopyFromReg if we already
1421   // have a regular SDValue.
1422   SDValue &N = NodeMap[V];
1423   if (N.getNode()) return N;
1424 
1425   // If there's a virtual register allocated and initialized for this
1426   // value, use it.
1427   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1428     return copyFromReg;
1429 
1430   // Otherwise create a new SDValue and remember it.
1431   SDValue Val = getValueImpl(V);
1432   NodeMap[V] = Val;
1433   resolveDanglingDebugInfo(V, Val);
1434   return Val;
1435 }
1436 
1437 /// getNonRegisterValue - Return an SDValue for the given Value, but
1438 /// don't look in FuncInfo.ValueMap for a virtual register.
1439 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1440   // If we already have an SDValue for this value, use it.
1441   SDValue &N = NodeMap[V];
1442   if (N.getNode()) {
1443     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1444       // Remove the debug location from the node as the node is about to be used
1445       // in a location which may differ from the original debug location.  This
1446       // is relevant to Constant and ConstantFP nodes because they can appear
1447       // as constant expressions inside PHI nodes.
1448       N->setDebugLoc(DebugLoc());
1449     }
1450     return N;
1451   }
1452 
1453   // Otherwise create a new SDValue and remember it.
1454   SDValue Val = getValueImpl(V);
1455   NodeMap[V] = Val;
1456   resolveDanglingDebugInfo(V, Val);
1457   return Val;
1458 }
1459 
1460 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1461 /// Create an SDValue for the given value.
1462 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1463   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1464 
1465   if (const Constant *C = dyn_cast<Constant>(V)) {
1466     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1467 
1468     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1469       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1470 
1471     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1472       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1473 
1474     if (isa<ConstantPointerNull>(C)) {
1475       unsigned AS = V->getType()->getPointerAddressSpace();
1476       return DAG.getConstant(0, getCurSDLoc(),
1477                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1478     }
1479 
1480     if (match(C, m_VScale(DAG.getDataLayout())))
1481       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1482 
1483     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1484       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1485 
1486     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1487       return DAG.getUNDEF(VT);
1488 
1489     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1490       visit(CE->getOpcode(), *CE);
1491       SDValue N1 = NodeMap[V];
1492       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1493       return N1;
1494     }
1495 
1496     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1497       SmallVector<SDValue, 4> Constants;
1498       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1499            OI != OE; ++OI) {
1500         SDNode *Val = getValue(*OI).getNode();
1501         // If the operand is an empty aggregate, there are no values.
1502         if (!Val) continue;
1503         // Add each leaf value from the operand to the Constants list
1504         // to form a flattened list of all the values.
1505         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1506           Constants.push_back(SDValue(Val, i));
1507       }
1508 
1509       return DAG.getMergeValues(Constants, getCurSDLoc());
1510     }
1511 
1512     if (const ConstantDataSequential *CDS =
1513           dyn_cast<ConstantDataSequential>(C)) {
1514       SmallVector<SDValue, 4> Ops;
1515       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1516         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1517         // Add each leaf value from the operand to the Constants list
1518         // to form a flattened list of all the values.
1519         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1520           Ops.push_back(SDValue(Val, i));
1521       }
1522 
1523       if (isa<ArrayType>(CDS->getType()))
1524         return DAG.getMergeValues(Ops, getCurSDLoc());
1525       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1526     }
1527 
1528     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1529       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1530              "Unknown struct or array constant!");
1531 
1532       SmallVector<EVT, 4> ValueVTs;
1533       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1534       unsigned NumElts = ValueVTs.size();
1535       if (NumElts == 0)
1536         return SDValue(); // empty struct
1537       SmallVector<SDValue, 4> Constants(NumElts);
1538       for (unsigned i = 0; i != NumElts; ++i) {
1539         EVT EltVT = ValueVTs[i];
1540         if (isa<UndefValue>(C))
1541           Constants[i] = DAG.getUNDEF(EltVT);
1542         else if (EltVT.isFloatingPoint())
1543           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1544         else
1545           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1546       }
1547 
1548       return DAG.getMergeValues(Constants, getCurSDLoc());
1549     }
1550 
1551     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1552       return DAG.getBlockAddress(BA, VT);
1553 
1554     VectorType *VecTy = cast<VectorType>(V->getType());
1555     unsigned NumElements = VecTy->getNumElements();
1556 
1557     // Now that we know the number and type of the elements, get that number of
1558     // elements into the Ops array based on what kind of constant it is.
1559     SmallVector<SDValue, 16> Ops;
1560     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1561       for (unsigned i = 0; i != NumElements; ++i)
1562         Ops.push_back(getValue(CV->getOperand(i)));
1563     } else {
1564       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1565       EVT EltVT =
1566           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1567 
1568       SDValue Op;
1569       if (EltVT.isFloatingPoint())
1570         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1571       else
1572         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1573       Ops.assign(NumElements, Op);
1574     }
1575 
1576     // Create a BUILD_VECTOR node.
1577     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1578   }
1579 
1580   // If this is a static alloca, generate it as the frameindex instead of
1581   // computation.
1582   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1583     DenseMap<const AllocaInst*, int>::iterator SI =
1584       FuncInfo.StaticAllocaMap.find(AI);
1585     if (SI != FuncInfo.StaticAllocaMap.end())
1586       return DAG.getFrameIndex(SI->second,
1587                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1588   }
1589 
1590   // If this is an instruction which fast-isel has deferred, select it now.
1591   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1592     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1593 
1594     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1595                      Inst->getType(), getABIRegCopyCC(V));
1596     SDValue Chain = DAG.getEntryNode();
1597     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1598   }
1599 
1600   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1601     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1602   }
1603   llvm_unreachable("Can't get register for value!");
1604 }
1605 
1606 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1607   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1608   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1609   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1610   bool IsSEH = isAsynchronousEHPersonality(Pers);
1611   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1612   if (!IsSEH)
1613     CatchPadMBB->setIsEHScopeEntry();
1614   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1615   if (IsMSVCCXX || IsCoreCLR)
1616     CatchPadMBB->setIsEHFuncletEntry();
1617 }
1618 
1619 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1620   // Update machine-CFG edge.
1621   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1622   FuncInfo.MBB->addSuccessor(TargetMBB);
1623 
1624   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1625   bool IsSEH = isAsynchronousEHPersonality(Pers);
1626   if (IsSEH) {
1627     // If this is not a fall-through branch or optimizations are switched off,
1628     // emit the branch.
1629     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1630         TM.getOptLevel() == CodeGenOpt::None)
1631       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1632                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1633     return;
1634   }
1635 
1636   // Figure out the funclet membership for the catchret's successor.
1637   // This will be used by the FuncletLayout pass to determine how to order the
1638   // BB's.
1639   // A 'catchret' returns to the outer scope's color.
1640   Value *ParentPad = I.getCatchSwitchParentPad();
1641   const BasicBlock *SuccessorColor;
1642   if (isa<ConstantTokenNone>(ParentPad))
1643     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1644   else
1645     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1646   assert(SuccessorColor && "No parent funclet for catchret!");
1647   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1648   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1649 
1650   // Create the terminator node.
1651   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1652                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1653                             DAG.getBasicBlock(SuccessorColorMBB));
1654   DAG.setRoot(Ret);
1655 }
1656 
1657 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1658   // Don't emit any special code for the cleanuppad instruction. It just marks
1659   // the start of an EH scope/funclet.
1660   FuncInfo.MBB->setIsEHScopeEntry();
1661   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1662   if (Pers != EHPersonality::Wasm_CXX) {
1663     FuncInfo.MBB->setIsEHFuncletEntry();
1664     FuncInfo.MBB->setIsCleanupFuncletEntry();
1665   }
1666 }
1667 
1668 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1669 // the control flow always stops at the single catch pad, as it does for a
1670 // cleanup pad. In case the exception caught is not of the types the catch pad
1671 // catches, it will be rethrown by a rethrow.
1672 static void findWasmUnwindDestinations(
1673     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1674     BranchProbability Prob,
1675     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1676         &UnwindDests) {
1677   while (EHPadBB) {
1678     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1679     if (isa<CleanupPadInst>(Pad)) {
1680       // Stop on cleanup pads.
1681       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1682       UnwindDests.back().first->setIsEHScopeEntry();
1683       break;
1684     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1685       // Add the catchpad handlers to the possible destinations. We don't
1686       // continue to the unwind destination of the catchswitch for wasm.
1687       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1688         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1689         UnwindDests.back().first->setIsEHScopeEntry();
1690       }
1691       break;
1692     } else {
1693       continue;
1694     }
1695   }
1696 }
1697 
1698 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1699 /// many places it could ultimately go. In the IR, we have a single unwind
1700 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1701 /// This function skips over imaginary basic blocks that hold catchswitch
1702 /// instructions, and finds all the "real" machine
1703 /// basic block destinations. As those destinations may not be successors of
1704 /// EHPadBB, here we also calculate the edge probability to those destinations.
1705 /// The passed-in Prob is the edge probability to EHPadBB.
1706 static void findUnwindDestinations(
1707     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1708     BranchProbability Prob,
1709     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1710         &UnwindDests) {
1711   EHPersonality Personality =
1712     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1713   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1714   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1715   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1716   bool IsSEH = isAsynchronousEHPersonality(Personality);
1717 
1718   if (IsWasmCXX) {
1719     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1720     assert(UnwindDests.size() <= 1 &&
1721            "There should be at most one unwind destination for wasm");
1722     return;
1723   }
1724 
1725   while (EHPadBB) {
1726     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1727     BasicBlock *NewEHPadBB = nullptr;
1728     if (isa<LandingPadInst>(Pad)) {
1729       // Stop on landingpads. They are not funclets.
1730       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1731       break;
1732     } else if (isa<CleanupPadInst>(Pad)) {
1733       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1734       // personalities.
1735       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1736       UnwindDests.back().first->setIsEHScopeEntry();
1737       UnwindDests.back().first->setIsEHFuncletEntry();
1738       break;
1739     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1740       // Add the catchpad handlers to the possible destinations.
1741       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1742         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1743         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1744         if (IsMSVCCXX || IsCoreCLR)
1745           UnwindDests.back().first->setIsEHFuncletEntry();
1746         if (!IsSEH)
1747           UnwindDests.back().first->setIsEHScopeEntry();
1748       }
1749       NewEHPadBB = CatchSwitch->getUnwindDest();
1750     } else {
1751       continue;
1752     }
1753 
1754     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1755     if (BPI && NewEHPadBB)
1756       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1757     EHPadBB = NewEHPadBB;
1758   }
1759 }
1760 
1761 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1762   // Update successor info.
1763   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1764   auto UnwindDest = I.getUnwindDest();
1765   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1766   BranchProbability UnwindDestProb =
1767       (BPI && UnwindDest)
1768           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1769           : BranchProbability::getZero();
1770   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1771   for (auto &UnwindDest : UnwindDests) {
1772     UnwindDest.first->setIsEHPad();
1773     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1774   }
1775   FuncInfo.MBB->normalizeSuccProbs();
1776 
1777   // Create the terminator node.
1778   SDValue Ret =
1779       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1780   DAG.setRoot(Ret);
1781 }
1782 
1783 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1784   report_fatal_error("visitCatchSwitch not yet implemented!");
1785 }
1786 
1787 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1788   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1789   auto &DL = DAG.getDataLayout();
1790   SDValue Chain = getControlRoot();
1791   SmallVector<ISD::OutputArg, 8> Outs;
1792   SmallVector<SDValue, 8> OutVals;
1793 
1794   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1795   // lower
1796   //
1797   //   %val = call <ty> @llvm.experimental.deoptimize()
1798   //   ret <ty> %val
1799   //
1800   // differently.
1801   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1802     LowerDeoptimizingReturn();
1803     return;
1804   }
1805 
1806   if (!FuncInfo.CanLowerReturn) {
1807     unsigned DemoteReg = FuncInfo.DemoteRegister;
1808     const Function *F = I.getParent()->getParent();
1809 
1810     // Emit a store of the return value through the virtual register.
1811     // Leave Outs empty so that LowerReturn won't try to load return
1812     // registers the usual way.
1813     SmallVector<EVT, 1> PtrValueVTs;
1814     ComputeValueVTs(TLI, DL,
1815                     F->getReturnType()->getPointerTo(
1816                         DAG.getDataLayout().getAllocaAddrSpace()),
1817                     PtrValueVTs);
1818 
1819     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1820                                         DemoteReg, PtrValueVTs[0]);
1821     SDValue RetOp = getValue(I.getOperand(0));
1822 
1823     SmallVector<EVT, 4> ValueVTs, MemVTs;
1824     SmallVector<uint64_t, 4> Offsets;
1825     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1826                     &Offsets);
1827     unsigned NumValues = ValueVTs.size();
1828 
1829     SmallVector<SDValue, 4> Chains(NumValues);
1830     for (unsigned i = 0; i != NumValues; ++i) {
1831       // An aggregate return value cannot wrap around the address space, so
1832       // offsets to its parts don't wrap either.
1833       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1834 
1835       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1836       if (MemVTs[i] != ValueVTs[i])
1837         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1838       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1839           // FIXME: better loc info would be nice.
1840           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1841     }
1842 
1843     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1844                         MVT::Other, Chains);
1845   } else if (I.getNumOperands() != 0) {
1846     SmallVector<EVT, 4> ValueVTs;
1847     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1848     unsigned NumValues = ValueVTs.size();
1849     if (NumValues) {
1850       SDValue RetOp = getValue(I.getOperand(0));
1851 
1852       const Function *F = I.getParent()->getParent();
1853 
1854       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1855           I.getOperand(0)->getType(), F->getCallingConv(),
1856           /*IsVarArg*/ false);
1857 
1858       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1859       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1860                                           Attribute::SExt))
1861         ExtendKind = ISD::SIGN_EXTEND;
1862       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1863                                                Attribute::ZExt))
1864         ExtendKind = ISD::ZERO_EXTEND;
1865 
1866       LLVMContext &Context = F->getContext();
1867       bool RetInReg = F->getAttributes().hasAttribute(
1868           AttributeList::ReturnIndex, Attribute::InReg);
1869 
1870       for (unsigned j = 0; j != NumValues; ++j) {
1871         EVT VT = ValueVTs[j];
1872 
1873         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1874           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1875 
1876         CallingConv::ID CC = F->getCallingConv();
1877 
1878         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1879         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1880         SmallVector<SDValue, 4> Parts(NumParts);
1881         getCopyToParts(DAG, getCurSDLoc(),
1882                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1883                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1884 
1885         // 'inreg' on function refers to return value
1886         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1887         if (RetInReg)
1888           Flags.setInReg();
1889 
1890         if (I.getOperand(0)->getType()->isPointerTy()) {
1891           Flags.setPointer();
1892           Flags.setPointerAddrSpace(
1893               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1894         }
1895 
1896         if (NeedsRegBlock) {
1897           Flags.setInConsecutiveRegs();
1898           if (j == NumValues - 1)
1899             Flags.setInConsecutiveRegsLast();
1900         }
1901 
1902         // Propagate extension type if any
1903         if (ExtendKind == ISD::SIGN_EXTEND)
1904           Flags.setSExt();
1905         else if (ExtendKind == ISD::ZERO_EXTEND)
1906           Flags.setZExt();
1907 
1908         for (unsigned i = 0; i < NumParts; ++i) {
1909           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1910                                         VT, /*isfixed=*/true, 0, 0));
1911           OutVals.push_back(Parts[i]);
1912         }
1913       }
1914     }
1915   }
1916 
1917   // Push in swifterror virtual register as the last element of Outs. This makes
1918   // sure swifterror virtual register will be returned in the swifterror
1919   // physical register.
1920   const Function *F = I.getParent()->getParent();
1921   if (TLI.supportSwiftError() &&
1922       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1923     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1924     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1925     Flags.setSwiftError();
1926     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1927                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1928                                   true /*isfixed*/, 1 /*origidx*/,
1929                                   0 /*partOffs*/));
1930     // Create SDNode for the swifterror virtual register.
1931     OutVals.push_back(
1932         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1933                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1934                         EVT(TLI.getPointerTy(DL))));
1935   }
1936 
1937   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1938   CallingConv::ID CallConv =
1939     DAG.getMachineFunction().getFunction().getCallingConv();
1940   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1941       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1942 
1943   // Verify that the target's LowerReturn behaved as expected.
1944   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1945          "LowerReturn didn't return a valid chain!");
1946 
1947   // Update the DAG with the new chain value resulting from return lowering.
1948   DAG.setRoot(Chain);
1949 }
1950 
1951 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1952 /// created for it, emit nodes to copy the value into the virtual
1953 /// registers.
1954 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1955   // Skip empty types
1956   if (V->getType()->isEmptyTy())
1957     return;
1958 
1959   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1960   if (VMI != FuncInfo.ValueMap.end()) {
1961     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1962     CopyValueToVirtualRegister(V, VMI->second);
1963   }
1964 }
1965 
1966 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1967 /// the current basic block, add it to ValueMap now so that we'll get a
1968 /// CopyTo/FromReg.
1969 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1970   // No need to export constants.
1971   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1972 
1973   // Already exported?
1974   if (FuncInfo.isExportedInst(V)) return;
1975 
1976   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1977   CopyValueToVirtualRegister(V, Reg);
1978 }
1979 
1980 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1981                                                      const BasicBlock *FromBB) {
1982   // The operands of the setcc have to be in this block.  We don't know
1983   // how to export them from some other block.
1984   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1985     // Can export from current BB.
1986     if (VI->getParent() == FromBB)
1987       return true;
1988 
1989     // Is already exported, noop.
1990     return FuncInfo.isExportedInst(V);
1991   }
1992 
1993   // If this is an argument, we can export it if the BB is the entry block or
1994   // if it is already exported.
1995   if (isa<Argument>(V)) {
1996     if (FromBB == &FromBB->getParent()->getEntryBlock())
1997       return true;
1998 
1999     // Otherwise, can only export this if it is already exported.
2000     return FuncInfo.isExportedInst(V);
2001   }
2002 
2003   // Otherwise, constants can always be exported.
2004   return true;
2005 }
2006 
2007 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2008 BranchProbability
2009 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2010                                         const MachineBasicBlock *Dst) const {
2011   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2012   const BasicBlock *SrcBB = Src->getBasicBlock();
2013   const BasicBlock *DstBB = Dst->getBasicBlock();
2014   if (!BPI) {
2015     // If BPI is not available, set the default probability as 1 / N, where N is
2016     // the number of successors.
2017     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2018     return BranchProbability(1, SuccSize);
2019   }
2020   return BPI->getEdgeProbability(SrcBB, DstBB);
2021 }
2022 
2023 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2024                                                MachineBasicBlock *Dst,
2025                                                BranchProbability Prob) {
2026   if (!FuncInfo.BPI)
2027     Src->addSuccessorWithoutProb(Dst);
2028   else {
2029     if (Prob.isUnknown())
2030       Prob = getEdgeProbability(Src, Dst);
2031     Src->addSuccessor(Dst, Prob);
2032   }
2033 }
2034 
2035 static bool InBlock(const Value *V, const BasicBlock *BB) {
2036   if (const Instruction *I = dyn_cast<Instruction>(V))
2037     return I->getParent() == BB;
2038   return true;
2039 }
2040 
2041 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2042 /// This function emits a branch and is used at the leaves of an OR or an
2043 /// AND operator tree.
2044 void
2045 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2046                                                   MachineBasicBlock *TBB,
2047                                                   MachineBasicBlock *FBB,
2048                                                   MachineBasicBlock *CurBB,
2049                                                   MachineBasicBlock *SwitchBB,
2050                                                   BranchProbability TProb,
2051                                                   BranchProbability FProb,
2052                                                   bool InvertCond) {
2053   const BasicBlock *BB = CurBB->getBasicBlock();
2054 
2055   // If the leaf of the tree is a comparison, merge the condition into
2056   // the caseblock.
2057   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2058     // The operands of the cmp have to be in this block.  We don't know
2059     // how to export them from some other block.  If this is the first block
2060     // of the sequence, no exporting is needed.
2061     if (CurBB == SwitchBB ||
2062         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2063          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2064       ISD::CondCode Condition;
2065       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2066         ICmpInst::Predicate Pred =
2067             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2068         Condition = getICmpCondCode(Pred);
2069       } else {
2070         const FCmpInst *FC = cast<FCmpInst>(Cond);
2071         FCmpInst::Predicate Pred =
2072             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2073         Condition = getFCmpCondCode(Pred);
2074         if (TM.Options.NoNaNsFPMath)
2075           Condition = getFCmpCodeWithoutNaN(Condition);
2076       }
2077 
2078       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2079                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2080       SL->SwitchCases.push_back(CB);
2081       return;
2082     }
2083   }
2084 
2085   // Create a CaseBlock record representing this branch.
2086   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2087   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2088                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2089   SL->SwitchCases.push_back(CB);
2090 }
2091 
2092 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2093                                                MachineBasicBlock *TBB,
2094                                                MachineBasicBlock *FBB,
2095                                                MachineBasicBlock *CurBB,
2096                                                MachineBasicBlock *SwitchBB,
2097                                                Instruction::BinaryOps Opc,
2098                                                BranchProbability TProb,
2099                                                BranchProbability FProb,
2100                                                bool InvertCond) {
2101   // Skip over not part of the tree and remember to invert op and operands at
2102   // next level.
2103   Value *NotCond;
2104   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2105       InBlock(NotCond, CurBB->getBasicBlock())) {
2106     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2107                          !InvertCond);
2108     return;
2109   }
2110 
2111   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2112   // Compute the effective opcode for Cond, taking into account whether it needs
2113   // to be inverted, e.g.
2114   //   and (not (or A, B)), C
2115   // gets lowered as
2116   //   and (and (not A, not B), C)
2117   unsigned BOpc = 0;
2118   if (BOp) {
2119     BOpc = BOp->getOpcode();
2120     if (InvertCond) {
2121       if (BOpc == Instruction::And)
2122         BOpc = Instruction::Or;
2123       else if (BOpc == Instruction::Or)
2124         BOpc = Instruction::And;
2125     }
2126   }
2127 
2128   // If this node is not part of the or/and tree, emit it as a branch.
2129   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2130       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2131       BOp->getParent() != CurBB->getBasicBlock() ||
2132       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2133       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2134     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2135                                  TProb, FProb, InvertCond);
2136     return;
2137   }
2138 
2139   //  Create TmpBB after CurBB.
2140   MachineFunction::iterator BBI(CurBB);
2141   MachineFunction &MF = DAG.getMachineFunction();
2142   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2143   CurBB->getParent()->insert(++BBI, TmpBB);
2144 
2145   if (Opc == Instruction::Or) {
2146     // Codegen X | Y as:
2147     // BB1:
2148     //   jmp_if_X TBB
2149     //   jmp TmpBB
2150     // TmpBB:
2151     //   jmp_if_Y TBB
2152     //   jmp FBB
2153     //
2154 
2155     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2156     // The requirement is that
2157     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2158     //     = TrueProb for original BB.
2159     // Assuming the original probabilities are A and B, one choice is to set
2160     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2161     // A/(1+B) and 2B/(1+B). This choice assumes that
2162     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2163     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2164     // TmpBB, but the math is more complicated.
2165 
2166     auto NewTrueProb = TProb / 2;
2167     auto NewFalseProb = TProb / 2 + FProb;
2168     // Emit the LHS condition.
2169     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2170                          NewTrueProb, NewFalseProb, InvertCond);
2171 
2172     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2173     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2174     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2175     // Emit the RHS condition into TmpBB.
2176     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2177                          Probs[0], Probs[1], InvertCond);
2178   } else {
2179     assert(Opc == Instruction::And && "Unknown merge op!");
2180     // Codegen X & Y as:
2181     // BB1:
2182     //   jmp_if_X TmpBB
2183     //   jmp FBB
2184     // TmpBB:
2185     //   jmp_if_Y TBB
2186     //   jmp FBB
2187     //
2188     //  This requires creation of TmpBB after CurBB.
2189 
2190     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2191     // The requirement is that
2192     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2193     //     = FalseProb for original BB.
2194     // Assuming the original probabilities are A and B, one choice is to set
2195     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2196     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2197     // TrueProb for BB1 * FalseProb for TmpBB.
2198 
2199     auto NewTrueProb = TProb + FProb / 2;
2200     auto NewFalseProb = FProb / 2;
2201     // Emit the LHS condition.
2202     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2203                          NewTrueProb, NewFalseProb, InvertCond);
2204 
2205     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2206     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2207     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2208     // Emit the RHS condition into TmpBB.
2209     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2210                          Probs[0], Probs[1], InvertCond);
2211   }
2212 }
2213 
2214 /// If the set of cases should be emitted as a series of branches, return true.
2215 /// If we should emit this as a bunch of and/or'd together conditions, return
2216 /// false.
2217 bool
2218 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2219   if (Cases.size() != 2) return true;
2220 
2221   // If this is two comparisons of the same values or'd or and'd together, they
2222   // will get folded into a single comparison, so don't emit two blocks.
2223   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2224        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2225       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2226        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2227     return false;
2228   }
2229 
2230   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2231   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2232   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2233       Cases[0].CC == Cases[1].CC &&
2234       isa<Constant>(Cases[0].CmpRHS) &&
2235       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2236     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2237       return false;
2238     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2239       return false;
2240   }
2241 
2242   return true;
2243 }
2244 
2245 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2246   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2247 
2248   // Update machine-CFG edges.
2249   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2250 
2251   if (I.isUnconditional()) {
2252     // Update machine-CFG edges.
2253     BrMBB->addSuccessor(Succ0MBB);
2254 
2255     // If this is not a fall-through branch or optimizations are switched off,
2256     // emit the branch.
2257     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2258       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2259                               MVT::Other, getControlRoot(),
2260                               DAG.getBasicBlock(Succ0MBB)));
2261 
2262     return;
2263   }
2264 
2265   // If this condition is one of the special cases we handle, do special stuff
2266   // now.
2267   const Value *CondVal = I.getCondition();
2268   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2269 
2270   // If this is a series of conditions that are or'd or and'd together, emit
2271   // this as a sequence of branches instead of setcc's with and/or operations.
2272   // As long as jumps are not expensive, this should improve performance.
2273   // For example, instead of something like:
2274   //     cmp A, B
2275   //     C = seteq
2276   //     cmp D, E
2277   //     F = setle
2278   //     or C, F
2279   //     jnz foo
2280   // Emit:
2281   //     cmp A, B
2282   //     je foo
2283   //     cmp D, E
2284   //     jle foo
2285   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2286     Instruction::BinaryOps Opcode = BOp->getOpcode();
2287     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2288         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2289         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2290       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2291                            Opcode,
2292                            getEdgeProbability(BrMBB, Succ0MBB),
2293                            getEdgeProbability(BrMBB, Succ1MBB),
2294                            /*InvertCond=*/false);
2295       // If the compares in later blocks need to use values not currently
2296       // exported from this block, export them now.  This block should always
2297       // be the first entry.
2298       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2299 
2300       // Allow some cases to be rejected.
2301       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2302         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2303           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2304           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2305         }
2306 
2307         // Emit the branch for this block.
2308         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2309         SL->SwitchCases.erase(SL->SwitchCases.begin());
2310         return;
2311       }
2312 
2313       // Okay, we decided not to do this, remove any inserted MBB's and clear
2314       // SwitchCases.
2315       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2316         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2317 
2318       SL->SwitchCases.clear();
2319     }
2320   }
2321 
2322   // Create a CaseBlock record representing this branch.
2323   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2324                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2325 
2326   // Use visitSwitchCase to actually insert the fast branch sequence for this
2327   // cond branch.
2328   visitSwitchCase(CB, BrMBB);
2329 }
2330 
2331 /// visitSwitchCase - Emits the necessary code to represent a single node in
2332 /// the binary search tree resulting from lowering a switch instruction.
2333 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2334                                           MachineBasicBlock *SwitchBB) {
2335   SDValue Cond;
2336   SDValue CondLHS = getValue(CB.CmpLHS);
2337   SDLoc dl = CB.DL;
2338 
2339   if (CB.CC == ISD::SETTRUE) {
2340     // Branch or fall through to TrueBB.
2341     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2342     SwitchBB->normalizeSuccProbs();
2343     if (CB.TrueBB != NextBlock(SwitchBB)) {
2344       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2345                               DAG.getBasicBlock(CB.TrueBB)));
2346     }
2347     return;
2348   }
2349 
2350   auto &TLI = DAG.getTargetLoweringInfo();
2351   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2352 
2353   // Build the setcc now.
2354   if (!CB.CmpMHS) {
2355     // Fold "(X == true)" to X and "(X == false)" to !X to
2356     // handle common cases produced by branch lowering.
2357     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2358         CB.CC == ISD::SETEQ)
2359       Cond = CondLHS;
2360     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2361              CB.CC == ISD::SETEQ) {
2362       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2363       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2364     } else {
2365       SDValue CondRHS = getValue(CB.CmpRHS);
2366 
2367       // If a pointer's DAG type is larger than its memory type then the DAG
2368       // values are zero-extended. This breaks signed comparisons so truncate
2369       // back to the underlying type before doing the compare.
2370       if (CondLHS.getValueType() != MemVT) {
2371         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2372         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2373       }
2374       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2375     }
2376   } else {
2377     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2378 
2379     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2380     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2381 
2382     SDValue CmpOp = getValue(CB.CmpMHS);
2383     EVT VT = CmpOp.getValueType();
2384 
2385     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2386       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2387                           ISD::SETLE);
2388     } else {
2389       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2390                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2391       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2392                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2393     }
2394   }
2395 
2396   // Update successor info
2397   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2398   // TrueBB and FalseBB are always different unless the incoming IR is
2399   // degenerate. This only happens when running llc on weird IR.
2400   if (CB.TrueBB != CB.FalseBB)
2401     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2402   SwitchBB->normalizeSuccProbs();
2403 
2404   // If the lhs block is the next block, invert the condition so that we can
2405   // fall through to the lhs instead of the rhs block.
2406   if (CB.TrueBB == NextBlock(SwitchBB)) {
2407     std::swap(CB.TrueBB, CB.FalseBB);
2408     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2409     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2410   }
2411 
2412   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2413                                MVT::Other, getControlRoot(), Cond,
2414                                DAG.getBasicBlock(CB.TrueBB));
2415 
2416   // Insert the false branch. Do this even if it's a fall through branch,
2417   // this makes it easier to do DAG optimizations which require inverting
2418   // the branch condition.
2419   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2420                        DAG.getBasicBlock(CB.FalseBB));
2421 
2422   DAG.setRoot(BrCond);
2423 }
2424 
2425 /// visitJumpTable - Emit JumpTable node in the current MBB
2426 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2427   // Emit the code for the jump table
2428   assert(JT.Reg != -1U && "Should lower JT Header first!");
2429   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2430   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2431                                      JT.Reg, PTy);
2432   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2433   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2434                                     MVT::Other, Index.getValue(1),
2435                                     Table, Index);
2436   DAG.setRoot(BrJumpTable);
2437 }
2438 
2439 /// visitJumpTableHeader - This function emits necessary code to produce index
2440 /// in the JumpTable from switch case.
2441 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2442                                                JumpTableHeader &JTH,
2443                                                MachineBasicBlock *SwitchBB) {
2444   SDLoc dl = getCurSDLoc();
2445 
2446   // Subtract the lowest switch case value from the value being switched on.
2447   SDValue SwitchOp = getValue(JTH.SValue);
2448   EVT VT = SwitchOp.getValueType();
2449   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2450                             DAG.getConstant(JTH.First, dl, VT));
2451 
2452   // The SDNode we just created, which holds the value being switched on minus
2453   // the smallest case value, needs to be copied to a virtual register so it
2454   // can be used as an index into the jump table in a subsequent basic block.
2455   // This value may be smaller or larger than the target's pointer type, and
2456   // therefore require extension or truncating.
2457   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2458   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2459 
2460   unsigned JumpTableReg =
2461       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2462   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2463                                     JumpTableReg, SwitchOp);
2464   JT.Reg = JumpTableReg;
2465 
2466   if (!JTH.OmitRangeCheck) {
2467     // Emit the range check for the jump table, and branch to the default block
2468     // for the switch statement if the value being switched on exceeds the
2469     // largest case in the switch.
2470     SDValue CMP = DAG.getSetCC(
2471         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2472                                    Sub.getValueType()),
2473         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2474 
2475     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2476                                  MVT::Other, CopyTo, CMP,
2477                                  DAG.getBasicBlock(JT.Default));
2478 
2479     // Avoid emitting unnecessary branches to the next block.
2480     if (JT.MBB != NextBlock(SwitchBB))
2481       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2482                            DAG.getBasicBlock(JT.MBB));
2483 
2484     DAG.setRoot(BrCond);
2485   } else {
2486     // Avoid emitting unnecessary branches to the next block.
2487     if (JT.MBB != NextBlock(SwitchBB))
2488       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2489                               DAG.getBasicBlock(JT.MBB)));
2490     else
2491       DAG.setRoot(CopyTo);
2492   }
2493 }
2494 
2495 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2496 /// variable if there exists one.
2497 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2498                                  SDValue &Chain) {
2499   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2500   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2501   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2502   MachineFunction &MF = DAG.getMachineFunction();
2503   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2504   MachineSDNode *Node =
2505       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2506   if (Global) {
2507     MachinePointerInfo MPInfo(Global);
2508     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2509                  MachineMemOperand::MODereferenceable;
2510     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2511         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2512     DAG.setNodeMemRefs(Node, {MemRef});
2513   }
2514   if (PtrTy != PtrMemTy)
2515     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2516   return SDValue(Node, 0);
2517 }
2518 
2519 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2520 /// tail spliced into a stack protector check success bb.
2521 ///
2522 /// For a high level explanation of how this fits into the stack protector
2523 /// generation see the comment on the declaration of class
2524 /// StackProtectorDescriptor.
2525 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2526                                                   MachineBasicBlock *ParentBB) {
2527 
2528   // First create the loads to the guard/stack slot for the comparison.
2529   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2530   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2531   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2532 
2533   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2534   int FI = MFI.getStackProtectorIndex();
2535 
2536   SDValue Guard;
2537   SDLoc dl = getCurSDLoc();
2538   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2539   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2540   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2541 
2542   // Generate code to load the content of the guard slot.
2543   SDValue GuardVal = DAG.getLoad(
2544       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2545       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2546       MachineMemOperand::MOVolatile);
2547 
2548   if (TLI.useStackGuardXorFP())
2549     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2550 
2551   // Retrieve guard check function, nullptr if instrumentation is inlined.
2552   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2553     // The target provides a guard check function to validate the guard value.
2554     // Generate a call to that function with the content of the guard slot as
2555     // argument.
2556     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2557     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2558 
2559     TargetLowering::ArgListTy Args;
2560     TargetLowering::ArgListEntry Entry;
2561     Entry.Node = GuardVal;
2562     Entry.Ty = FnTy->getParamType(0);
2563     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2564       Entry.IsInReg = true;
2565     Args.push_back(Entry);
2566 
2567     TargetLowering::CallLoweringInfo CLI(DAG);
2568     CLI.setDebugLoc(getCurSDLoc())
2569         .setChain(DAG.getEntryNode())
2570         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2571                    getValue(GuardCheckFn), std::move(Args));
2572 
2573     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2574     DAG.setRoot(Result.second);
2575     return;
2576   }
2577 
2578   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2579   // Otherwise, emit a volatile load to retrieve the stack guard value.
2580   SDValue Chain = DAG.getEntryNode();
2581   if (TLI.useLoadStackGuardNode()) {
2582     Guard = getLoadStackGuard(DAG, dl, Chain);
2583   } else {
2584     const Value *IRGuard = TLI.getSDagStackGuard(M);
2585     SDValue GuardPtr = getValue(IRGuard);
2586 
2587     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2588                         MachinePointerInfo(IRGuard, 0), Align,
2589                         MachineMemOperand::MOVolatile);
2590   }
2591 
2592   // Perform the comparison via a getsetcc.
2593   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2594                                                         *DAG.getContext(),
2595                                                         Guard.getValueType()),
2596                              Guard, GuardVal, ISD::SETNE);
2597 
2598   // If the guard/stackslot do not equal, branch to failure MBB.
2599   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2600                                MVT::Other, GuardVal.getOperand(0),
2601                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2602   // Otherwise branch to success MBB.
2603   SDValue Br = DAG.getNode(ISD::BR, dl,
2604                            MVT::Other, BrCond,
2605                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2606 
2607   DAG.setRoot(Br);
2608 }
2609 
2610 /// Codegen the failure basic block for a stack protector check.
2611 ///
2612 /// A failure stack protector machine basic block consists simply of a call to
2613 /// __stack_chk_fail().
2614 ///
2615 /// For a high level explanation of how this fits into the stack protector
2616 /// generation see the comment on the declaration of class
2617 /// StackProtectorDescriptor.
2618 void
2619 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2620   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2621   TargetLowering::MakeLibCallOptions CallOptions;
2622   CallOptions.setDiscardResult(true);
2623   SDValue Chain =
2624       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2625                       None, CallOptions, getCurSDLoc()).second;
2626   // On PS4, the "return address" must still be within the calling function,
2627   // even if it's at the very end, so emit an explicit TRAP here.
2628   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2629   if (TM.getTargetTriple().isPS4CPU())
2630     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2631 
2632   DAG.setRoot(Chain);
2633 }
2634 
2635 /// visitBitTestHeader - This function emits necessary code to produce value
2636 /// suitable for "bit tests"
2637 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2638                                              MachineBasicBlock *SwitchBB) {
2639   SDLoc dl = getCurSDLoc();
2640 
2641   // Subtract the minimum value.
2642   SDValue SwitchOp = getValue(B.SValue);
2643   EVT VT = SwitchOp.getValueType();
2644   SDValue RangeSub =
2645       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2646 
2647   // Determine the type of the test operands.
2648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2649   bool UsePtrType = false;
2650   if (!TLI.isTypeLegal(VT)) {
2651     UsePtrType = true;
2652   } else {
2653     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2654       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2655         // Switch table case range are encoded into series of masks.
2656         // Just use pointer type, it's guaranteed to fit.
2657         UsePtrType = true;
2658         break;
2659       }
2660   }
2661   SDValue Sub = RangeSub;
2662   if (UsePtrType) {
2663     VT = TLI.getPointerTy(DAG.getDataLayout());
2664     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2665   }
2666 
2667   B.RegVT = VT.getSimpleVT();
2668   B.Reg = FuncInfo.CreateReg(B.RegVT);
2669   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2670 
2671   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2672 
2673   if (!B.OmitRangeCheck)
2674     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2675   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2676   SwitchBB->normalizeSuccProbs();
2677 
2678   SDValue Root = CopyTo;
2679   if (!B.OmitRangeCheck) {
2680     // Conditional branch to the default block.
2681     SDValue RangeCmp = DAG.getSetCC(dl,
2682         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2683                                RangeSub.getValueType()),
2684         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2685         ISD::SETUGT);
2686 
2687     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2688                        DAG.getBasicBlock(B.Default));
2689   }
2690 
2691   // Avoid emitting unnecessary branches to the next block.
2692   if (MBB != NextBlock(SwitchBB))
2693     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2694 
2695   DAG.setRoot(Root);
2696 }
2697 
2698 /// visitBitTestCase - this function produces one "bit test"
2699 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2700                                            MachineBasicBlock* NextMBB,
2701                                            BranchProbability BranchProbToNext,
2702                                            unsigned Reg,
2703                                            BitTestCase &B,
2704                                            MachineBasicBlock *SwitchBB) {
2705   SDLoc dl = getCurSDLoc();
2706   MVT VT = BB.RegVT;
2707   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2708   SDValue Cmp;
2709   unsigned PopCount = countPopulation(B.Mask);
2710   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2711   if (PopCount == 1) {
2712     // Testing for a single bit; just compare the shift count with what it
2713     // would need to be to shift a 1 bit in that position.
2714     Cmp = DAG.getSetCC(
2715         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2716         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2717         ISD::SETEQ);
2718   } else if (PopCount == BB.Range) {
2719     // There is only one zero bit in the range, test for it directly.
2720     Cmp = DAG.getSetCC(
2721         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2722         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2723         ISD::SETNE);
2724   } else {
2725     // Make desired shift
2726     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2727                                     DAG.getConstant(1, dl, VT), ShiftOp);
2728 
2729     // Emit bit tests and jumps
2730     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2731                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2732     Cmp = DAG.getSetCC(
2733         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2734         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2735   }
2736 
2737   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2738   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2739   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2740   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2741   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2742   // one as they are relative probabilities (and thus work more like weights),
2743   // and hence we need to normalize them to let the sum of them become one.
2744   SwitchBB->normalizeSuccProbs();
2745 
2746   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2747                               MVT::Other, getControlRoot(),
2748                               Cmp, DAG.getBasicBlock(B.TargetBB));
2749 
2750   // Avoid emitting unnecessary branches to the next block.
2751   if (NextMBB != NextBlock(SwitchBB))
2752     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2753                         DAG.getBasicBlock(NextMBB));
2754 
2755   DAG.setRoot(BrAnd);
2756 }
2757 
2758 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2759   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2760 
2761   // Retrieve successors. Look through artificial IR level blocks like
2762   // catchswitch for successors.
2763   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2764   const BasicBlock *EHPadBB = I.getSuccessor(1);
2765 
2766   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2767   // have to do anything here to lower funclet bundles.
2768   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2769                                         LLVMContext::OB_funclet,
2770                                         LLVMContext::OB_cfguardtarget}) &&
2771          "Cannot lower invokes with arbitrary operand bundles yet!");
2772 
2773   const Value *Callee(I.getCalledValue());
2774   const Function *Fn = dyn_cast<Function>(Callee);
2775   if (isa<InlineAsm>(Callee))
2776     visitInlineAsm(I);
2777   else if (Fn && Fn->isIntrinsic()) {
2778     switch (Fn->getIntrinsicID()) {
2779     default:
2780       llvm_unreachable("Cannot invoke this intrinsic");
2781     case Intrinsic::donothing:
2782       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2783       break;
2784     case Intrinsic::experimental_patchpoint_void:
2785     case Intrinsic::experimental_patchpoint_i64:
2786       visitPatchpoint(I, EHPadBB);
2787       break;
2788     case Intrinsic::experimental_gc_statepoint:
2789       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2790       break;
2791     case Intrinsic::wasm_rethrow_in_catch: {
2792       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2793       // special because it can be invoked, so we manually lower it to a DAG
2794       // node here.
2795       SmallVector<SDValue, 8> Ops;
2796       Ops.push_back(getRoot()); // inchain
2797       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2798       Ops.push_back(
2799           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2800                                 TLI.getPointerTy(DAG.getDataLayout())));
2801       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2802       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2803       break;
2804     }
2805     }
2806   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2807     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2808     // Eventually we will support lowering the @llvm.experimental.deoptimize
2809     // intrinsic, and right now there are no plans to support other intrinsics
2810     // with deopt state.
2811     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2812   } else {
2813     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2814   }
2815 
2816   // If the value of the invoke is used outside of its defining block, make it
2817   // available as a virtual register.
2818   // We already took care of the exported value for the statepoint instruction
2819   // during call to the LowerStatepoint.
2820   if (!isStatepoint(I)) {
2821     CopyToExportRegsIfNeeded(&I);
2822   }
2823 
2824   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2825   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2826   BranchProbability EHPadBBProb =
2827       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2828           : BranchProbability::getZero();
2829   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2830 
2831   // Update successor info.
2832   addSuccessorWithProb(InvokeMBB, Return);
2833   for (auto &UnwindDest : UnwindDests) {
2834     UnwindDest.first->setIsEHPad();
2835     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2836   }
2837   InvokeMBB->normalizeSuccProbs();
2838 
2839   // Drop into normal successor.
2840   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2841                           DAG.getBasicBlock(Return)));
2842 }
2843 
2844 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2845   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2846 
2847   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2848   // have to do anything here to lower funclet bundles.
2849   assert(!I.hasOperandBundlesOtherThan(
2850              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2851          "Cannot lower callbrs with arbitrary operand bundles yet!");
2852 
2853   assert(isa<InlineAsm>(I.getCalledValue()) &&
2854          "Only know how to handle inlineasm callbr");
2855   visitInlineAsm(I);
2856   CopyToExportRegsIfNeeded(&I);
2857 
2858   // Retrieve successors.
2859   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2860   Return->setInlineAsmBrDefaultTarget();
2861 
2862   // Update successor info.
2863   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2864   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2865     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2866     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2867     CallBrMBB->addInlineAsmBrIndirectTarget(Target);
2868   }
2869   CallBrMBB->normalizeSuccProbs();
2870 
2871   // Drop into default successor.
2872   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2873                           MVT::Other, getControlRoot(),
2874                           DAG.getBasicBlock(Return)));
2875 }
2876 
2877 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2878   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2879 }
2880 
2881 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2882   assert(FuncInfo.MBB->isEHPad() &&
2883          "Call to landingpad not in landing pad!");
2884 
2885   // If there aren't registers to copy the values into (e.g., during SjLj
2886   // exceptions), then don't bother to create these DAG nodes.
2887   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2888   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2889   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2890       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2891     return;
2892 
2893   // If landingpad's return type is token type, we don't create DAG nodes
2894   // for its exception pointer and selector value. The extraction of exception
2895   // pointer or selector value from token type landingpads is not currently
2896   // supported.
2897   if (LP.getType()->isTokenTy())
2898     return;
2899 
2900   SmallVector<EVT, 2> ValueVTs;
2901   SDLoc dl = getCurSDLoc();
2902   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2903   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2904 
2905   // Get the two live-in registers as SDValues. The physregs have already been
2906   // copied into virtual registers.
2907   SDValue Ops[2];
2908   if (FuncInfo.ExceptionPointerVirtReg) {
2909     Ops[0] = DAG.getZExtOrTrunc(
2910         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2911                            FuncInfo.ExceptionPointerVirtReg,
2912                            TLI.getPointerTy(DAG.getDataLayout())),
2913         dl, ValueVTs[0]);
2914   } else {
2915     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2916   }
2917   Ops[1] = DAG.getZExtOrTrunc(
2918       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2919                          FuncInfo.ExceptionSelectorVirtReg,
2920                          TLI.getPointerTy(DAG.getDataLayout())),
2921       dl, ValueVTs[1]);
2922 
2923   // Merge into one.
2924   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2925                             DAG.getVTList(ValueVTs), Ops);
2926   setValue(&LP, Res);
2927 }
2928 
2929 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2930                                            MachineBasicBlock *Last) {
2931   // Update JTCases.
2932   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2933     if (SL->JTCases[i].first.HeaderBB == First)
2934       SL->JTCases[i].first.HeaderBB = Last;
2935 
2936   // Update BitTestCases.
2937   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2938     if (SL->BitTestCases[i].Parent == First)
2939       SL->BitTestCases[i].Parent = Last;
2940 
2941   // SelectionDAGISel::FinishBasicBlock will add PHI operands for the
2942   // successors of the fallthrough block. Here, we add PHI operands for the
2943   // successors of the INLINEASM_BR block itself.
2944   if (First->getFirstTerminator()->getOpcode() == TargetOpcode::INLINEASM_BR)
2945     for (std::pair<MachineInstr *, unsigned> &pair : FuncInfo.PHINodesToUpdate)
2946       if (First->isSuccessor(pair.first->getParent()))
2947         MachineInstrBuilder(*First->getParent(), pair.first)
2948             .addReg(pair.second)
2949             .addMBB(First);
2950 }
2951 
2952 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2953   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2954 
2955   // Update machine-CFG edges with unique successors.
2956   SmallSet<BasicBlock*, 32> Done;
2957   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2958     BasicBlock *BB = I.getSuccessor(i);
2959     bool Inserted = Done.insert(BB).second;
2960     if (!Inserted)
2961         continue;
2962 
2963     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2964     addSuccessorWithProb(IndirectBrMBB, Succ);
2965   }
2966   IndirectBrMBB->normalizeSuccProbs();
2967 
2968   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2969                           MVT::Other, getControlRoot(),
2970                           getValue(I.getAddress())));
2971 }
2972 
2973 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2974   if (!DAG.getTarget().Options.TrapUnreachable)
2975     return;
2976 
2977   // We may be able to ignore unreachable behind a noreturn call.
2978   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2979     const BasicBlock &BB = *I.getParent();
2980     if (&I != &BB.front()) {
2981       BasicBlock::const_iterator PredI =
2982         std::prev(BasicBlock::const_iterator(&I));
2983       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2984         if (Call->doesNotReturn())
2985           return;
2986       }
2987     }
2988   }
2989 
2990   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2991 }
2992 
2993 void SelectionDAGBuilder::visitFSub(const User &I) {
2994   // -0.0 - X --> fneg
2995   Type *Ty = I.getType();
2996   if (isa<Constant>(I.getOperand(0)) &&
2997       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2998     SDValue Op2 = getValue(I.getOperand(1));
2999     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
3000                              Op2.getValueType(), Op2));
3001     return;
3002   }
3003 
3004   visitBinary(I, ISD::FSUB);
3005 }
3006 
3007 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3008   SDNodeFlags Flags;
3009 
3010   SDValue Op = getValue(I.getOperand(0));
3011   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3012                                     Op, Flags);
3013   setValue(&I, UnNodeValue);
3014 }
3015 
3016 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3017   SDNodeFlags Flags;
3018   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3019     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3020     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3021   }
3022   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3023     Flags.setExact(ExactOp->isExact());
3024   }
3025 
3026   SDValue Op1 = getValue(I.getOperand(0));
3027   SDValue Op2 = getValue(I.getOperand(1));
3028   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3029                                      Op1, Op2, Flags);
3030   setValue(&I, BinNodeValue);
3031 }
3032 
3033 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3034   SDValue Op1 = getValue(I.getOperand(0));
3035   SDValue Op2 = getValue(I.getOperand(1));
3036 
3037   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3038       Op1.getValueType(), DAG.getDataLayout());
3039 
3040   // Coerce the shift amount to the right type if we can.
3041   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3042     unsigned ShiftSize = ShiftTy.getSizeInBits();
3043     unsigned Op2Size = Op2.getValueSizeInBits();
3044     SDLoc DL = getCurSDLoc();
3045 
3046     // If the operand is smaller than the shift count type, promote it.
3047     if (ShiftSize > Op2Size)
3048       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3049 
3050     // If the operand is larger than the shift count type but the shift
3051     // count type has enough bits to represent any shift value, truncate
3052     // it now. This is a common case and it exposes the truncate to
3053     // optimization early.
3054     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3055       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3056     // Otherwise we'll need to temporarily settle for some other convenient
3057     // type.  Type legalization will make adjustments once the shiftee is split.
3058     else
3059       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3060   }
3061 
3062   bool nuw = false;
3063   bool nsw = false;
3064   bool exact = false;
3065 
3066   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3067 
3068     if (const OverflowingBinaryOperator *OFBinOp =
3069             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3070       nuw = OFBinOp->hasNoUnsignedWrap();
3071       nsw = OFBinOp->hasNoSignedWrap();
3072     }
3073     if (const PossiblyExactOperator *ExactOp =
3074             dyn_cast<const PossiblyExactOperator>(&I))
3075       exact = ExactOp->isExact();
3076   }
3077   SDNodeFlags Flags;
3078   Flags.setExact(exact);
3079   Flags.setNoSignedWrap(nsw);
3080   Flags.setNoUnsignedWrap(nuw);
3081   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3082                             Flags);
3083   setValue(&I, Res);
3084 }
3085 
3086 void SelectionDAGBuilder::visitSDiv(const User &I) {
3087   SDValue Op1 = getValue(I.getOperand(0));
3088   SDValue Op2 = getValue(I.getOperand(1));
3089 
3090   SDNodeFlags Flags;
3091   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3092                  cast<PossiblyExactOperator>(&I)->isExact());
3093   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3094                            Op2, Flags));
3095 }
3096 
3097 void SelectionDAGBuilder::visitICmp(const User &I) {
3098   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3099   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3100     predicate = IC->getPredicate();
3101   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3102     predicate = ICmpInst::Predicate(IC->getPredicate());
3103   SDValue Op1 = getValue(I.getOperand(0));
3104   SDValue Op2 = getValue(I.getOperand(1));
3105   ISD::CondCode Opcode = getICmpCondCode(predicate);
3106 
3107   auto &TLI = DAG.getTargetLoweringInfo();
3108   EVT MemVT =
3109       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3110 
3111   // If a pointer's DAG type is larger than its memory type then the DAG values
3112   // are zero-extended. This breaks signed comparisons so truncate back to the
3113   // underlying type before doing the compare.
3114   if (Op1.getValueType() != MemVT) {
3115     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3116     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3117   }
3118 
3119   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3120                                                         I.getType());
3121   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3122 }
3123 
3124 void SelectionDAGBuilder::visitFCmp(const User &I) {
3125   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3126   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3127     predicate = FC->getPredicate();
3128   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3129     predicate = FCmpInst::Predicate(FC->getPredicate());
3130   SDValue Op1 = getValue(I.getOperand(0));
3131   SDValue Op2 = getValue(I.getOperand(1));
3132 
3133   ISD::CondCode Condition = getFCmpCondCode(predicate);
3134   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3135   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3136     Condition = getFCmpCodeWithoutNaN(Condition);
3137 
3138   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3139                                                         I.getType());
3140   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3141 }
3142 
3143 // Check if the condition of the select has one use or two users that are both
3144 // selects with the same condition.
3145 static bool hasOnlySelectUsers(const Value *Cond) {
3146   return llvm::all_of(Cond->users(), [](const Value *V) {
3147     return isa<SelectInst>(V);
3148   });
3149 }
3150 
3151 void SelectionDAGBuilder::visitSelect(const User &I) {
3152   SmallVector<EVT, 4> ValueVTs;
3153   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3154                   ValueVTs);
3155   unsigned NumValues = ValueVTs.size();
3156   if (NumValues == 0) return;
3157 
3158   SmallVector<SDValue, 4> Values(NumValues);
3159   SDValue Cond     = getValue(I.getOperand(0));
3160   SDValue LHSVal   = getValue(I.getOperand(1));
3161   SDValue RHSVal   = getValue(I.getOperand(2));
3162   SmallVector<SDValue, 1> BaseOps(1, Cond);
3163   ISD::NodeType OpCode =
3164       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3165 
3166   bool IsUnaryAbs = false;
3167 
3168   // Min/max matching is only viable if all output VTs are the same.
3169   if (is_splat(ValueVTs)) {
3170     EVT VT = ValueVTs[0];
3171     LLVMContext &Ctx = *DAG.getContext();
3172     auto &TLI = DAG.getTargetLoweringInfo();
3173 
3174     // We care about the legality of the operation after it has been type
3175     // legalized.
3176     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3177       VT = TLI.getTypeToTransformTo(Ctx, VT);
3178 
3179     // If the vselect is legal, assume we want to leave this as a vector setcc +
3180     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3181     // min/max is legal on the scalar type.
3182     bool UseScalarMinMax = VT.isVector() &&
3183       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3184 
3185     Value *LHS, *RHS;
3186     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3187     ISD::NodeType Opc = ISD::DELETED_NODE;
3188     switch (SPR.Flavor) {
3189     case SPF_UMAX:    Opc = ISD::UMAX; break;
3190     case SPF_UMIN:    Opc = ISD::UMIN; break;
3191     case SPF_SMAX:    Opc = ISD::SMAX; break;
3192     case SPF_SMIN:    Opc = ISD::SMIN; break;
3193     case SPF_FMINNUM:
3194       switch (SPR.NaNBehavior) {
3195       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3196       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3197       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3198       case SPNB_RETURNS_ANY: {
3199         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3200           Opc = ISD::FMINNUM;
3201         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3202           Opc = ISD::FMINIMUM;
3203         else if (UseScalarMinMax)
3204           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3205             ISD::FMINNUM : ISD::FMINIMUM;
3206         break;
3207       }
3208       }
3209       break;
3210     case SPF_FMAXNUM:
3211       switch (SPR.NaNBehavior) {
3212       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3213       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3214       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3215       case SPNB_RETURNS_ANY:
3216 
3217         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3218           Opc = ISD::FMAXNUM;
3219         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3220           Opc = ISD::FMAXIMUM;
3221         else if (UseScalarMinMax)
3222           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3223             ISD::FMAXNUM : ISD::FMAXIMUM;
3224         break;
3225       }
3226       break;
3227     case SPF_ABS:
3228       IsUnaryAbs = true;
3229       Opc = ISD::ABS;
3230       break;
3231     case SPF_NABS:
3232       // TODO: we need to produce sub(0, abs(X)).
3233     default: break;
3234     }
3235 
3236     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3237         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3238          (UseScalarMinMax &&
3239           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3240         // If the underlying comparison instruction is used by any other
3241         // instruction, the consumed instructions won't be destroyed, so it is
3242         // not profitable to convert to a min/max.
3243         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3244       OpCode = Opc;
3245       LHSVal = getValue(LHS);
3246       RHSVal = getValue(RHS);
3247       BaseOps.clear();
3248     }
3249 
3250     if (IsUnaryAbs) {
3251       OpCode = Opc;
3252       LHSVal = getValue(LHS);
3253       BaseOps.clear();
3254     }
3255   }
3256 
3257   if (IsUnaryAbs) {
3258     for (unsigned i = 0; i != NumValues; ++i) {
3259       Values[i] =
3260           DAG.getNode(OpCode, getCurSDLoc(),
3261                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3262                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3263     }
3264   } else {
3265     for (unsigned i = 0; i != NumValues; ++i) {
3266       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3267       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3268       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3269       Values[i] = DAG.getNode(
3270           OpCode, getCurSDLoc(),
3271           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3272     }
3273   }
3274 
3275   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3276                            DAG.getVTList(ValueVTs), Values));
3277 }
3278 
3279 void SelectionDAGBuilder::visitTrunc(const User &I) {
3280   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3281   SDValue N = getValue(I.getOperand(0));
3282   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3283                                                         I.getType());
3284   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3285 }
3286 
3287 void SelectionDAGBuilder::visitZExt(const User &I) {
3288   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3289   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3290   SDValue N = getValue(I.getOperand(0));
3291   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3292                                                         I.getType());
3293   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3294 }
3295 
3296 void SelectionDAGBuilder::visitSExt(const User &I) {
3297   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3298   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3299   SDValue N = getValue(I.getOperand(0));
3300   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3301                                                         I.getType());
3302   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3303 }
3304 
3305 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3306   // FPTrunc is never a no-op cast, no need to check
3307   SDValue N = getValue(I.getOperand(0));
3308   SDLoc dl = getCurSDLoc();
3309   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3310   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3311   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3312                            DAG.getTargetConstant(
3313                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3314 }
3315 
3316 void SelectionDAGBuilder::visitFPExt(const User &I) {
3317   // FPExt is never a no-op cast, no need to check
3318   SDValue N = getValue(I.getOperand(0));
3319   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3320                                                         I.getType());
3321   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3322 }
3323 
3324 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3325   // FPToUI is never a no-op cast, no need to check
3326   SDValue N = getValue(I.getOperand(0));
3327   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3328                                                         I.getType());
3329   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3330 }
3331 
3332 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3333   // FPToSI is never a no-op cast, no need to check
3334   SDValue N = getValue(I.getOperand(0));
3335   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3336                                                         I.getType());
3337   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3338 }
3339 
3340 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3341   // UIToFP is never a no-op cast, no need to check
3342   SDValue N = getValue(I.getOperand(0));
3343   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3344                                                         I.getType());
3345   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3346 }
3347 
3348 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3349   // SIToFP is never a no-op cast, no need to check
3350   SDValue N = getValue(I.getOperand(0));
3351   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3352                                                         I.getType());
3353   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3354 }
3355 
3356 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3357   // What to do depends on the size of the integer and the size of the pointer.
3358   // We can either truncate, zero extend, or no-op, accordingly.
3359   SDValue N = getValue(I.getOperand(0));
3360   auto &TLI = DAG.getTargetLoweringInfo();
3361   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3362                                                         I.getType());
3363   EVT PtrMemVT =
3364       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3365   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3366   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3367   setValue(&I, N);
3368 }
3369 
3370 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3371   // What to do depends on the size of the integer and the size of the pointer.
3372   // We can either truncate, zero extend, or no-op, accordingly.
3373   SDValue N = getValue(I.getOperand(0));
3374   auto &TLI = DAG.getTargetLoweringInfo();
3375   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3376   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3377   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3378   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3379   setValue(&I, N);
3380 }
3381 
3382 void SelectionDAGBuilder::visitBitCast(const User &I) {
3383   SDValue N = getValue(I.getOperand(0));
3384   SDLoc dl = getCurSDLoc();
3385   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3386                                                         I.getType());
3387 
3388   // BitCast assures us that source and destination are the same size so this is
3389   // either a BITCAST or a no-op.
3390   if (DestVT != N.getValueType())
3391     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3392                              DestVT, N)); // convert types.
3393   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3394   // might fold any kind of constant expression to an integer constant and that
3395   // is not what we are looking for. Only recognize a bitcast of a genuine
3396   // constant integer as an opaque constant.
3397   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3398     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3399                                  /*isOpaque*/true));
3400   else
3401     setValue(&I, N);            // noop cast.
3402 }
3403 
3404 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3405   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3406   const Value *SV = I.getOperand(0);
3407   SDValue N = getValue(SV);
3408   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3409 
3410   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3411   unsigned DestAS = I.getType()->getPointerAddressSpace();
3412 
3413   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3414     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3415 
3416   setValue(&I, N);
3417 }
3418 
3419 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3421   SDValue InVec = getValue(I.getOperand(0));
3422   SDValue InVal = getValue(I.getOperand(1));
3423   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3424                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3425   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3426                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3427                            InVec, InVal, InIdx));
3428 }
3429 
3430 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3432   SDValue InVec = getValue(I.getOperand(0));
3433   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3434                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3435   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3436                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3437                            InVec, InIdx));
3438 }
3439 
3440 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3441   SDValue Src1 = getValue(I.getOperand(0));
3442   SDValue Src2 = getValue(I.getOperand(1));
3443   ArrayRef<int> Mask;
3444   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3445     Mask = SVI->getShuffleMask();
3446   else
3447     Mask = cast<ConstantExpr>(I).getShuffleMask();
3448   SDLoc DL = getCurSDLoc();
3449   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3450   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3451   EVT SrcVT = Src1.getValueType();
3452   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3453 
3454   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3455       VT.isScalableVector()) {
3456     // Canonical splat form of first element of first input vector.
3457     SDValue FirstElt =
3458         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3459                     DAG.getVectorIdxConstant(0, DL));
3460     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3461     return;
3462   }
3463 
3464   // For now, we only handle splats for scalable vectors.
3465   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3466   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3467   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3468 
3469   unsigned MaskNumElts = Mask.size();
3470 
3471   if (SrcNumElts == MaskNumElts) {
3472     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3473     return;
3474   }
3475 
3476   // Normalize the shuffle vector since mask and vector length don't match.
3477   if (SrcNumElts < MaskNumElts) {
3478     // Mask is longer than the source vectors. We can use concatenate vector to
3479     // make the mask and vectors lengths match.
3480 
3481     if (MaskNumElts % SrcNumElts == 0) {
3482       // Mask length is a multiple of the source vector length.
3483       // Check if the shuffle is some kind of concatenation of the input
3484       // vectors.
3485       unsigned NumConcat = MaskNumElts / SrcNumElts;
3486       bool IsConcat = true;
3487       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3488       for (unsigned i = 0; i != MaskNumElts; ++i) {
3489         int Idx = Mask[i];
3490         if (Idx < 0)
3491           continue;
3492         // Ensure the indices in each SrcVT sized piece are sequential and that
3493         // the same source is used for the whole piece.
3494         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3495             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3496              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3497           IsConcat = false;
3498           break;
3499         }
3500         // Remember which source this index came from.
3501         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3502       }
3503 
3504       // The shuffle is concatenating multiple vectors together. Just emit
3505       // a CONCAT_VECTORS operation.
3506       if (IsConcat) {
3507         SmallVector<SDValue, 8> ConcatOps;
3508         for (auto Src : ConcatSrcs) {
3509           if (Src < 0)
3510             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3511           else if (Src == 0)
3512             ConcatOps.push_back(Src1);
3513           else
3514             ConcatOps.push_back(Src2);
3515         }
3516         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3517         return;
3518       }
3519     }
3520 
3521     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3522     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3523     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3524                                     PaddedMaskNumElts);
3525 
3526     // Pad both vectors with undefs to make them the same length as the mask.
3527     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3528 
3529     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3530     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3531     MOps1[0] = Src1;
3532     MOps2[0] = Src2;
3533 
3534     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3535     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3536 
3537     // Readjust mask for new input vector length.
3538     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3539     for (unsigned i = 0; i != MaskNumElts; ++i) {
3540       int Idx = Mask[i];
3541       if (Idx >= (int)SrcNumElts)
3542         Idx -= SrcNumElts - PaddedMaskNumElts;
3543       MappedOps[i] = Idx;
3544     }
3545 
3546     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3547 
3548     // If the concatenated vector was padded, extract a subvector with the
3549     // correct number of elements.
3550     if (MaskNumElts != PaddedMaskNumElts)
3551       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3552                            DAG.getVectorIdxConstant(0, DL));
3553 
3554     setValue(&I, Result);
3555     return;
3556   }
3557 
3558   if (SrcNumElts > MaskNumElts) {
3559     // Analyze the access pattern of the vector to see if we can extract
3560     // two subvectors and do the shuffle.
3561     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3562     bool CanExtract = true;
3563     for (int Idx : Mask) {
3564       unsigned Input = 0;
3565       if (Idx < 0)
3566         continue;
3567 
3568       if (Idx >= (int)SrcNumElts) {
3569         Input = 1;
3570         Idx -= SrcNumElts;
3571       }
3572 
3573       // If all the indices come from the same MaskNumElts sized portion of
3574       // the sources we can use extract. Also make sure the extract wouldn't
3575       // extract past the end of the source.
3576       int NewStartIdx = alignDown(Idx, MaskNumElts);
3577       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3578           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3579         CanExtract = false;
3580       // Make sure we always update StartIdx as we use it to track if all
3581       // elements are undef.
3582       StartIdx[Input] = NewStartIdx;
3583     }
3584 
3585     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3586       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3587       return;
3588     }
3589     if (CanExtract) {
3590       // Extract appropriate subvector and generate a vector shuffle
3591       for (unsigned Input = 0; Input < 2; ++Input) {
3592         SDValue &Src = Input == 0 ? Src1 : Src2;
3593         if (StartIdx[Input] < 0)
3594           Src = DAG.getUNDEF(VT);
3595         else {
3596           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3597                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3598         }
3599       }
3600 
3601       // Calculate new mask.
3602       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3603       for (int &Idx : MappedOps) {
3604         if (Idx >= (int)SrcNumElts)
3605           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3606         else if (Idx >= 0)
3607           Idx -= StartIdx[0];
3608       }
3609 
3610       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3611       return;
3612     }
3613   }
3614 
3615   // We can't use either concat vectors or extract subvectors so fall back to
3616   // replacing the shuffle with extract and build vector.
3617   // to insert and build vector.
3618   EVT EltVT = VT.getVectorElementType();
3619   SmallVector<SDValue,8> Ops;
3620   for (int Idx : Mask) {
3621     SDValue Res;
3622 
3623     if (Idx < 0) {
3624       Res = DAG.getUNDEF(EltVT);
3625     } else {
3626       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3627       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3628 
3629       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3630                         DAG.getVectorIdxConstant(Idx, DL));
3631     }
3632 
3633     Ops.push_back(Res);
3634   }
3635 
3636   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3637 }
3638 
3639 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3640   ArrayRef<unsigned> Indices;
3641   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3642     Indices = IV->getIndices();
3643   else
3644     Indices = cast<ConstantExpr>(&I)->getIndices();
3645 
3646   const Value *Op0 = I.getOperand(0);
3647   const Value *Op1 = I.getOperand(1);
3648   Type *AggTy = I.getType();
3649   Type *ValTy = Op1->getType();
3650   bool IntoUndef = isa<UndefValue>(Op0);
3651   bool FromUndef = isa<UndefValue>(Op1);
3652 
3653   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3654 
3655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3656   SmallVector<EVT, 4> AggValueVTs;
3657   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3658   SmallVector<EVT, 4> ValValueVTs;
3659   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3660 
3661   unsigned NumAggValues = AggValueVTs.size();
3662   unsigned NumValValues = ValValueVTs.size();
3663   SmallVector<SDValue, 4> Values(NumAggValues);
3664 
3665   // Ignore an insertvalue that produces an empty object
3666   if (!NumAggValues) {
3667     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3668     return;
3669   }
3670 
3671   SDValue Agg = getValue(Op0);
3672   unsigned i = 0;
3673   // Copy the beginning value(s) from the original aggregate.
3674   for (; i != LinearIndex; ++i)
3675     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3676                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3677   // Copy values from the inserted value(s).
3678   if (NumValValues) {
3679     SDValue Val = getValue(Op1);
3680     for (; i != LinearIndex + NumValValues; ++i)
3681       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3682                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3683   }
3684   // Copy remaining value(s) from the original aggregate.
3685   for (; i != NumAggValues; ++i)
3686     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3687                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3688 
3689   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3690                            DAG.getVTList(AggValueVTs), Values));
3691 }
3692 
3693 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3694   ArrayRef<unsigned> Indices;
3695   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3696     Indices = EV->getIndices();
3697   else
3698     Indices = cast<ConstantExpr>(&I)->getIndices();
3699 
3700   const Value *Op0 = I.getOperand(0);
3701   Type *AggTy = Op0->getType();
3702   Type *ValTy = I.getType();
3703   bool OutOfUndef = isa<UndefValue>(Op0);
3704 
3705   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3706 
3707   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3708   SmallVector<EVT, 4> ValValueVTs;
3709   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3710 
3711   unsigned NumValValues = ValValueVTs.size();
3712 
3713   // Ignore a extractvalue that produces an empty object
3714   if (!NumValValues) {
3715     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3716     return;
3717   }
3718 
3719   SmallVector<SDValue, 4> Values(NumValValues);
3720 
3721   SDValue Agg = getValue(Op0);
3722   // Copy out the selected value(s).
3723   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3724     Values[i - LinearIndex] =
3725       OutOfUndef ?
3726         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3727         SDValue(Agg.getNode(), Agg.getResNo() + i);
3728 
3729   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3730                            DAG.getVTList(ValValueVTs), Values));
3731 }
3732 
3733 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3734   Value *Op0 = I.getOperand(0);
3735   // Note that the pointer operand may be a vector of pointers. Take the scalar
3736   // element which holds a pointer.
3737   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3738   SDValue N = getValue(Op0);
3739   SDLoc dl = getCurSDLoc();
3740   auto &TLI = DAG.getTargetLoweringInfo();
3741   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3742   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3743 
3744   // Normalize Vector GEP - all scalar operands should be converted to the
3745   // splat vector.
3746   bool IsVectorGEP = I.getType()->isVectorTy();
3747   ElementCount VectorElementCount =
3748       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3749                   : ElementCount(0, false);
3750 
3751   if (IsVectorGEP && !N.getValueType().isVector()) {
3752     LLVMContext &Context = *DAG.getContext();
3753     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3754     if (VectorElementCount.Scalable)
3755       N = DAG.getSplatVector(VT, dl, N);
3756     else
3757       N = DAG.getSplatBuildVector(VT, dl, N);
3758   }
3759 
3760   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3761        GTI != E; ++GTI) {
3762     const Value *Idx = GTI.getOperand();
3763     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3764       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3765       if (Field) {
3766         // N = N + Offset
3767         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3768 
3769         // In an inbounds GEP with an offset that is nonnegative even when
3770         // interpreted as signed, assume there is no unsigned overflow.
3771         SDNodeFlags Flags;
3772         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3773           Flags.setNoUnsignedWrap(true);
3774 
3775         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3776                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3777       }
3778     } else {
3779       // IdxSize is the width of the arithmetic according to IR semantics.
3780       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3781       // (and fix up the result later).
3782       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3783       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3784       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3785       // We intentionally mask away the high bits here; ElementSize may not
3786       // fit in IdxTy.
3787       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3788       bool ElementScalable = ElementSize.isScalable();
3789 
3790       // If this is a scalar constant or a splat vector of constants,
3791       // handle it quickly.
3792       const auto *C = dyn_cast<Constant>(Idx);
3793       if (C && isa<VectorType>(C->getType()))
3794         C = C->getSplatValue();
3795 
3796       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3797       if (CI && CI->isZero())
3798         continue;
3799       if (CI && !ElementScalable) {
3800         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3801         LLVMContext &Context = *DAG.getContext();
3802         SDValue OffsVal;
3803         if (IsVectorGEP)
3804           OffsVal = DAG.getConstant(
3805               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3806         else
3807           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3808 
3809         // In an inbounds GEP with an offset that is nonnegative even when
3810         // interpreted as signed, assume there is no unsigned overflow.
3811         SDNodeFlags Flags;
3812         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3813           Flags.setNoUnsignedWrap(true);
3814 
3815         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3816 
3817         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3818         continue;
3819       }
3820 
3821       // N = N + Idx * ElementMul;
3822       SDValue IdxN = getValue(Idx);
3823 
3824       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3825         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3826                                   VectorElementCount);
3827         if (VectorElementCount.Scalable)
3828           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3829         else
3830           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3831       }
3832 
3833       // If the index is smaller or larger than intptr_t, truncate or extend
3834       // it.
3835       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3836 
3837       if (ElementScalable) {
3838         EVT VScaleTy = N.getValueType().getScalarType();
3839         SDValue VScale = DAG.getNode(
3840             ISD::VSCALE, dl, VScaleTy,
3841             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3842         if (IsVectorGEP)
3843           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3844         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3845       } else {
3846         // If this is a multiply by a power of two, turn it into a shl
3847         // immediately.  This is a very common case.
3848         if (ElementMul != 1) {
3849           if (ElementMul.isPowerOf2()) {
3850             unsigned Amt = ElementMul.logBase2();
3851             IdxN = DAG.getNode(ISD::SHL, dl,
3852                                N.getValueType(), IdxN,
3853                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3854           } else {
3855             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3856                                             IdxN.getValueType());
3857             IdxN = DAG.getNode(ISD::MUL, dl,
3858                                N.getValueType(), IdxN, Scale);
3859           }
3860         }
3861       }
3862 
3863       N = DAG.getNode(ISD::ADD, dl,
3864                       N.getValueType(), N, IdxN);
3865     }
3866   }
3867 
3868   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3869     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3870 
3871   setValue(&I, N);
3872 }
3873 
3874 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3875   // If this is a fixed sized alloca in the entry block of the function,
3876   // allocate it statically on the stack.
3877   if (FuncInfo.StaticAllocaMap.count(&I))
3878     return;   // getValue will auto-populate this.
3879 
3880   SDLoc dl = getCurSDLoc();
3881   Type *Ty = I.getAllocatedType();
3882   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3883   auto &DL = DAG.getDataLayout();
3884   uint64_t TySize = DL.getTypeAllocSize(Ty);
3885   MaybeAlign Alignment = max(DL.getPrefTypeAlign(Ty), I.getAlign());
3886 
3887   SDValue AllocSize = getValue(I.getArraySize());
3888 
3889   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3890   if (AllocSize.getValueType() != IntPtr)
3891     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3892 
3893   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3894                           AllocSize,
3895                           DAG.getConstant(TySize, dl, IntPtr));
3896 
3897   // Handle alignment.  If the requested alignment is less than or equal to
3898   // the stack alignment, ignore it.  If the size is greater than or equal to
3899   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3900   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3901   if (Alignment <= StackAlign)
3902     Alignment = None;
3903 
3904   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3905   // Round the size of the allocation up to the stack alignment size
3906   // by add SA-1 to the size. This doesn't overflow because we're computing
3907   // an address inside an alloca.
3908   SDNodeFlags Flags;
3909   Flags.setNoUnsignedWrap(true);
3910   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3911                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3912 
3913   // Mask out the low bits for alignment purposes.
3914   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3915                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3916 
3917   SDValue Ops[] = {
3918       getRoot(), AllocSize,
3919       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3920   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3921   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3922   setValue(&I, DSA);
3923   DAG.setRoot(DSA.getValue(1));
3924 
3925   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3926 }
3927 
3928 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3929   if (I.isAtomic())
3930     return visitAtomicLoad(I);
3931 
3932   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3933   const Value *SV = I.getOperand(0);
3934   if (TLI.supportSwiftError()) {
3935     // Swifterror values can come from either a function parameter with
3936     // swifterror attribute or an alloca with swifterror attribute.
3937     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3938       if (Arg->hasSwiftErrorAttr())
3939         return visitLoadFromSwiftError(I);
3940     }
3941 
3942     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3943       if (Alloca->isSwiftError())
3944         return visitLoadFromSwiftError(I);
3945     }
3946   }
3947 
3948   SDValue Ptr = getValue(SV);
3949 
3950   Type *Ty = I.getType();
3951   Align Alignment = DL->getValueOrABITypeAlignment(I.getAlign(), Ty);
3952 
3953   AAMDNodes AAInfo;
3954   I.getAAMetadata(AAInfo);
3955   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3956 
3957   SmallVector<EVT, 4> ValueVTs, MemVTs;
3958   SmallVector<uint64_t, 4> Offsets;
3959   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3960   unsigned NumValues = ValueVTs.size();
3961   if (NumValues == 0)
3962     return;
3963 
3964   bool isVolatile = I.isVolatile();
3965 
3966   SDValue Root;
3967   bool ConstantMemory = false;
3968   if (isVolatile)
3969     // Serialize volatile loads with other side effects.
3970     Root = getRoot();
3971   else if (NumValues > MaxParallelChains)
3972     Root = getMemoryRoot();
3973   else if (AA &&
3974            AA->pointsToConstantMemory(MemoryLocation(
3975                SV,
3976                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3977                AAInfo))) {
3978     // Do not serialize (non-volatile) loads of constant memory with anything.
3979     Root = DAG.getEntryNode();
3980     ConstantMemory = true;
3981   } else {
3982     // Do not serialize non-volatile loads against each other.
3983     Root = DAG.getRoot();
3984   }
3985 
3986   SDLoc dl = getCurSDLoc();
3987 
3988   if (isVolatile)
3989     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3990 
3991   // An aggregate load cannot wrap around the address space, so offsets to its
3992   // parts don't wrap either.
3993   SDNodeFlags Flags;
3994   Flags.setNoUnsignedWrap(true);
3995 
3996   SmallVector<SDValue, 4> Values(NumValues);
3997   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3998   EVT PtrVT = Ptr.getValueType();
3999 
4000   MachineMemOperand::Flags MMOFlags
4001     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4002 
4003   unsigned ChainI = 0;
4004   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4005     // Serializing loads here may result in excessive register pressure, and
4006     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4007     // could recover a bit by hoisting nodes upward in the chain by recognizing
4008     // they are side-effect free or do not alias. The optimizer should really
4009     // avoid this case by converting large object/array copies to llvm.memcpy
4010     // (MaxParallelChains should always remain as failsafe).
4011     if (ChainI == MaxParallelChains) {
4012       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4013       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4014                                   makeArrayRef(Chains.data(), ChainI));
4015       Root = Chain;
4016       ChainI = 0;
4017     }
4018     SDValue A = DAG.getNode(ISD::ADD, dl,
4019                             PtrVT, Ptr,
4020                             DAG.getConstant(Offsets[i], dl, PtrVT),
4021                             Flags);
4022 
4023     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4024                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4025                             MMOFlags, AAInfo, Ranges);
4026     Chains[ChainI] = L.getValue(1);
4027 
4028     if (MemVTs[i] != ValueVTs[i])
4029       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4030 
4031     Values[i] = L;
4032   }
4033 
4034   if (!ConstantMemory) {
4035     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4036                                 makeArrayRef(Chains.data(), ChainI));
4037     if (isVolatile)
4038       DAG.setRoot(Chain);
4039     else
4040       PendingLoads.push_back(Chain);
4041   }
4042 
4043   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4044                            DAG.getVTList(ValueVTs), Values));
4045 }
4046 
4047 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4048   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4049          "call visitStoreToSwiftError when backend supports swifterror");
4050 
4051   SmallVector<EVT, 4> ValueVTs;
4052   SmallVector<uint64_t, 4> Offsets;
4053   const Value *SrcV = I.getOperand(0);
4054   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4055                   SrcV->getType(), ValueVTs, &Offsets);
4056   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4057          "expect a single EVT for swifterror");
4058 
4059   SDValue Src = getValue(SrcV);
4060   // Create a virtual register, then update the virtual register.
4061   Register VReg =
4062       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4063   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4064   // Chain can be getRoot or getControlRoot.
4065   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4066                                       SDValue(Src.getNode(), Src.getResNo()));
4067   DAG.setRoot(CopyNode);
4068 }
4069 
4070 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4071   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4072          "call visitLoadFromSwiftError when backend supports swifterror");
4073 
4074   assert(!I.isVolatile() &&
4075          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4076          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4077          "Support volatile, non temporal, invariant for load_from_swift_error");
4078 
4079   const Value *SV = I.getOperand(0);
4080   Type *Ty = I.getType();
4081   AAMDNodes AAInfo;
4082   I.getAAMetadata(AAInfo);
4083   assert(
4084       (!AA ||
4085        !AA->pointsToConstantMemory(MemoryLocation(
4086            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4087            AAInfo))) &&
4088       "load_from_swift_error should not be constant memory");
4089 
4090   SmallVector<EVT, 4> ValueVTs;
4091   SmallVector<uint64_t, 4> Offsets;
4092   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4093                   ValueVTs, &Offsets);
4094   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4095          "expect a single EVT for swifterror");
4096 
4097   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4098   SDValue L = DAG.getCopyFromReg(
4099       getRoot(), getCurSDLoc(),
4100       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4101 
4102   setValue(&I, L);
4103 }
4104 
4105 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4106   if (I.isAtomic())
4107     return visitAtomicStore(I);
4108 
4109   const Value *SrcV = I.getOperand(0);
4110   const Value *PtrV = I.getOperand(1);
4111 
4112   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4113   if (TLI.supportSwiftError()) {
4114     // Swifterror values can come from either a function parameter with
4115     // swifterror attribute or an alloca with swifterror attribute.
4116     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4117       if (Arg->hasSwiftErrorAttr())
4118         return visitStoreToSwiftError(I);
4119     }
4120 
4121     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4122       if (Alloca->isSwiftError())
4123         return visitStoreToSwiftError(I);
4124     }
4125   }
4126 
4127   SmallVector<EVT, 4> ValueVTs, MemVTs;
4128   SmallVector<uint64_t, 4> Offsets;
4129   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4130                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4131   unsigned NumValues = ValueVTs.size();
4132   if (NumValues == 0)
4133     return;
4134 
4135   // Get the lowered operands. Note that we do this after
4136   // checking if NumResults is zero, because with zero results
4137   // the operands won't have values in the map.
4138   SDValue Src = getValue(SrcV);
4139   SDValue Ptr = getValue(PtrV);
4140 
4141   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4142   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4143   SDLoc dl = getCurSDLoc();
4144   Align Alignment =
4145       DL->getValueOrABITypeAlignment(I.getAlign(), SrcV->getType());
4146   AAMDNodes AAInfo;
4147   I.getAAMetadata(AAInfo);
4148 
4149   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4150 
4151   // An aggregate load cannot wrap around the address space, so offsets to its
4152   // parts don't wrap either.
4153   SDNodeFlags Flags;
4154   Flags.setNoUnsignedWrap(true);
4155 
4156   unsigned ChainI = 0;
4157   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4158     // See visitLoad comments.
4159     if (ChainI == MaxParallelChains) {
4160       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4161                                   makeArrayRef(Chains.data(), ChainI));
4162       Root = Chain;
4163       ChainI = 0;
4164     }
4165     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4166     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4167     if (MemVTs[i] != ValueVTs[i])
4168       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4169     SDValue St =
4170         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4171                      Alignment, MMOFlags, AAInfo);
4172     Chains[ChainI] = St;
4173   }
4174 
4175   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4176                                   makeArrayRef(Chains.data(), ChainI));
4177   DAG.setRoot(StoreNode);
4178 }
4179 
4180 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4181                                            bool IsCompressing) {
4182   SDLoc sdl = getCurSDLoc();
4183 
4184   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4185                                MaybeAlign &Alignment) {
4186     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4187     Src0 = I.getArgOperand(0);
4188     Ptr = I.getArgOperand(1);
4189     Alignment =
4190         MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
4191     Mask = I.getArgOperand(3);
4192   };
4193   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4194                                     MaybeAlign &Alignment) {
4195     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4196     Src0 = I.getArgOperand(0);
4197     Ptr = I.getArgOperand(1);
4198     Mask = I.getArgOperand(2);
4199     Alignment = None;
4200   };
4201 
4202   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4203   MaybeAlign Alignment;
4204   if (IsCompressing)
4205     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4206   else
4207     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4208 
4209   SDValue Ptr = getValue(PtrOperand);
4210   SDValue Src0 = getValue(Src0Operand);
4211   SDValue Mask = getValue(MaskOperand);
4212   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4213 
4214   EVT VT = Src0.getValueType();
4215   if (!Alignment)
4216     Alignment = DAG.getEVTAlign(VT);
4217 
4218   AAMDNodes AAInfo;
4219   I.getAAMetadata(AAInfo);
4220 
4221   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4222       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4223       // TODO: Make MachineMemOperands aware of scalable
4224       // vectors.
4225       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4226   SDValue StoreNode =
4227       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4228                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4229   DAG.setRoot(StoreNode);
4230   setValue(&I, StoreNode);
4231 }
4232 
4233 // Get a uniform base for the Gather/Scatter intrinsic.
4234 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4235 // We try to represent it as a base pointer + vector of indices.
4236 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4237 // The first operand of the GEP may be a single pointer or a vector of pointers
4238 // Example:
4239 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4240 //  or
4241 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4242 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4243 //
4244 // When the first GEP operand is a single pointer - it is the uniform base we
4245 // are looking for. If first operand of the GEP is a splat vector - we
4246 // extract the splat value and use it as a uniform base.
4247 // In all other cases the function returns 'false'.
4248 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4249                            ISD::MemIndexType &IndexType, SDValue &Scale,
4250                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4251   SelectionDAG& DAG = SDB->DAG;
4252   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4253   const DataLayout &DL = DAG.getDataLayout();
4254 
4255   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4256 
4257   // Handle splat constant pointer.
4258   if (auto *C = dyn_cast<Constant>(Ptr)) {
4259     C = C->getSplatValue();
4260     if (!C)
4261       return false;
4262 
4263     Base = SDB->getValue(C);
4264 
4265     unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements();
4266     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4267     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4268     IndexType = ISD::SIGNED_SCALED;
4269     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4270     return true;
4271   }
4272 
4273   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4274   if (!GEP || GEP->getParent() != CurBB)
4275     return false;
4276 
4277   if (GEP->getNumOperands() != 2)
4278     return false;
4279 
4280   const Value *BasePtr = GEP->getPointerOperand();
4281   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4282 
4283   // Make sure the base is scalar and the index is a vector.
4284   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4285     return false;
4286 
4287   Base = SDB->getValue(BasePtr);
4288   Index = SDB->getValue(IndexVal);
4289   IndexType = ISD::SIGNED_SCALED;
4290   Scale = DAG.getTargetConstant(
4291               DL.getTypeAllocSize(GEP->getResultElementType()),
4292               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4293   return true;
4294 }
4295 
4296 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4297   SDLoc sdl = getCurSDLoc();
4298 
4299   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4300   const Value *Ptr = I.getArgOperand(1);
4301   SDValue Src0 = getValue(I.getArgOperand(0));
4302   SDValue Mask = getValue(I.getArgOperand(3));
4303   EVT VT = Src0.getValueType();
4304   MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
4305   if (!Alignment)
4306     Alignment = DAG.getEVTAlign(VT);
4307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4308 
4309   AAMDNodes AAInfo;
4310   I.getAAMetadata(AAInfo);
4311 
4312   SDValue Base;
4313   SDValue Index;
4314   ISD::MemIndexType IndexType;
4315   SDValue Scale;
4316   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4317                                     I.getParent());
4318 
4319   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4320   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4321       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4322       // TODO: Make MachineMemOperands aware of scalable
4323       // vectors.
4324       MemoryLocation::UnknownSize, *Alignment, AAInfo);
4325   if (!UniformBase) {
4326     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4327     Index = getValue(Ptr);
4328     IndexType = ISD::SIGNED_SCALED;
4329     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4330   }
4331   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4332   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4333                                          Ops, MMO, IndexType);
4334   DAG.setRoot(Scatter);
4335   setValue(&I, Scatter);
4336 }
4337 
4338 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4339   SDLoc sdl = getCurSDLoc();
4340 
4341   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4342                               MaybeAlign &Alignment) {
4343     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4344     Ptr = I.getArgOperand(0);
4345     Alignment =
4346         MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
4347     Mask = I.getArgOperand(2);
4348     Src0 = I.getArgOperand(3);
4349   };
4350   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4351                                  MaybeAlign &Alignment) {
4352     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4353     Ptr = I.getArgOperand(0);
4354     Alignment = None;
4355     Mask = I.getArgOperand(1);
4356     Src0 = I.getArgOperand(2);
4357   };
4358 
4359   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4360   MaybeAlign Alignment;
4361   if (IsExpanding)
4362     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4363   else
4364     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4365 
4366   SDValue Ptr = getValue(PtrOperand);
4367   SDValue Src0 = getValue(Src0Operand);
4368   SDValue Mask = getValue(MaskOperand);
4369   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4370 
4371   EVT VT = Src0.getValueType();
4372   if (!Alignment)
4373     Alignment = DAG.getEVTAlign(VT);
4374 
4375   AAMDNodes AAInfo;
4376   I.getAAMetadata(AAInfo);
4377   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4378 
4379   // Do not serialize masked loads of constant memory with anything.
4380   MemoryLocation ML;
4381   if (VT.isScalableVector())
4382     ML = MemoryLocation(PtrOperand);
4383   else
4384     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4385                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4386                            AAInfo);
4387   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4388 
4389   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4390 
4391   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4392       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4393       // TODO: Make MachineMemOperands aware of scalable
4394       // vectors.
4395       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4396 
4397   SDValue Load =
4398       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4399                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4400   if (AddToChain)
4401     PendingLoads.push_back(Load.getValue(1));
4402   setValue(&I, Load);
4403 }
4404 
4405 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4406   SDLoc sdl = getCurSDLoc();
4407 
4408   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4409   const Value *Ptr = I.getArgOperand(0);
4410   SDValue Src0 = getValue(I.getArgOperand(3));
4411   SDValue Mask = getValue(I.getArgOperand(2));
4412 
4413   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4414   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4415   MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
4416   if (!Alignment)
4417     Alignment = DAG.getEVTAlign(VT);
4418 
4419   AAMDNodes AAInfo;
4420   I.getAAMetadata(AAInfo);
4421   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4422 
4423   SDValue Root = DAG.getRoot();
4424   SDValue Base;
4425   SDValue Index;
4426   ISD::MemIndexType IndexType;
4427   SDValue Scale;
4428   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4429                                     I.getParent());
4430   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4431   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4432       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4433       // TODO: Make MachineMemOperands aware of scalable
4434       // vectors.
4435       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4436 
4437   if (!UniformBase) {
4438     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4439     Index = getValue(Ptr);
4440     IndexType = ISD::SIGNED_SCALED;
4441     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4442   }
4443   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4444   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4445                                        Ops, MMO, IndexType);
4446 
4447   PendingLoads.push_back(Gather.getValue(1));
4448   setValue(&I, Gather);
4449 }
4450 
4451 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4452   SDLoc dl = getCurSDLoc();
4453   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4454   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4455   SyncScope::ID SSID = I.getSyncScopeID();
4456 
4457   SDValue InChain = getRoot();
4458 
4459   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4460   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4461 
4462   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4463   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4464 
4465   MachineFunction &MF = DAG.getMachineFunction();
4466   MachineMemOperand *MMO = MF.getMachineMemOperand(
4467       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4468       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4469       FailureOrdering);
4470 
4471   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4472                                    dl, MemVT, VTs, InChain,
4473                                    getValue(I.getPointerOperand()),
4474                                    getValue(I.getCompareOperand()),
4475                                    getValue(I.getNewValOperand()), MMO);
4476 
4477   SDValue OutChain = L.getValue(2);
4478 
4479   setValue(&I, L);
4480   DAG.setRoot(OutChain);
4481 }
4482 
4483 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4484   SDLoc dl = getCurSDLoc();
4485   ISD::NodeType NT;
4486   switch (I.getOperation()) {
4487   default: llvm_unreachable("Unknown atomicrmw operation");
4488   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4489   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4490   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4491   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4492   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4493   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4494   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4495   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4496   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4497   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4498   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4499   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4500   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4501   }
4502   AtomicOrdering Ordering = I.getOrdering();
4503   SyncScope::ID SSID = I.getSyncScopeID();
4504 
4505   SDValue InChain = getRoot();
4506 
4507   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4508   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4509   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4510 
4511   MachineFunction &MF = DAG.getMachineFunction();
4512   MachineMemOperand *MMO = MF.getMachineMemOperand(
4513       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4514       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4515 
4516   SDValue L =
4517     DAG.getAtomic(NT, dl, MemVT, InChain,
4518                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4519                   MMO);
4520 
4521   SDValue OutChain = L.getValue(1);
4522 
4523   setValue(&I, L);
4524   DAG.setRoot(OutChain);
4525 }
4526 
4527 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4528   SDLoc dl = getCurSDLoc();
4529   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4530   SDValue Ops[3];
4531   Ops[0] = getRoot();
4532   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4533                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4534   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4535                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4536   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4537 }
4538 
4539 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4540   SDLoc dl = getCurSDLoc();
4541   AtomicOrdering Order = I.getOrdering();
4542   SyncScope::ID SSID = I.getSyncScopeID();
4543 
4544   SDValue InChain = getRoot();
4545 
4546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4547   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4548   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4549 
4550   if (!TLI.supportsUnalignedAtomics() &&
4551       I.getAlignment() < MemVT.getSizeInBits() / 8)
4552     report_fatal_error("Cannot generate unaligned atomic load");
4553 
4554   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4555 
4556   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4557       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4558       *I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4559 
4560   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4561 
4562   SDValue Ptr = getValue(I.getPointerOperand());
4563 
4564   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4565     // TODO: Once this is better exercised by tests, it should be merged with
4566     // the normal path for loads to prevent future divergence.
4567     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4568     if (MemVT != VT)
4569       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4570 
4571     setValue(&I, L);
4572     SDValue OutChain = L.getValue(1);
4573     if (!I.isUnordered())
4574       DAG.setRoot(OutChain);
4575     else
4576       PendingLoads.push_back(OutChain);
4577     return;
4578   }
4579 
4580   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4581                             Ptr, MMO);
4582 
4583   SDValue OutChain = L.getValue(1);
4584   if (MemVT != VT)
4585     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4586 
4587   setValue(&I, L);
4588   DAG.setRoot(OutChain);
4589 }
4590 
4591 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4592   SDLoc dl = getCurSDLoc();
4593 
4594   AtomicOrdering Ordering = I.getOrdering();
4595   SyncScope::ID SSID = I.getSyncScopeID();
4596 
4597   SDValue InChain = getRoot();
4598 
4599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4600   EVT MemVT =
4601       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4602 
4603   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4604     report_fatal_error("Cannot generate unaligned atomic store");
4605 
4606   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4607 
4608   MachineFunction &MF = DAG.getMachineFunction();
4609   MachineMemOperand *MMO = MF.getMachineMemOperand(
4610       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4611       *I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4612 
4613   SDValue Val = getValue(I.getValueOperand());
4614   if (Val.getValueType() != MemVT)
4615     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4616   SDValue Ptr = getValue(I.getPointerOperand());
4617 
4618   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4619     // TODO: Once this is better exercised by tests, it should be merged with
4620     // the normal path for stores to prevent future divergence.
4621     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4622     DAG.setRoot(S);
4623     return;
4624   }
4625   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4626                                    Ptr, Val, MMO);
4627 
4628 
4629   DAG.setRoot(OutChain);
4630 }
4631 
4632 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4633 /// node.
4634 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4635                                                unsigned Intrinsic) {
4636   // Ignore the callsite's attributes. A specific call site may be marked with
4637   // readnone, but the lowering code will expect the chain based on the
4638   // definition.
4639   const Function *F = I.getCalledFunction();
4640   bool HasChain = !F->doesNotAccessMemory();
4641   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4642 
4643   // Build the operand list.
4644   SmallVector<SDValue, 8> Ops;
4645   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4646     if (OnlyLoad) {
4647       // We don't need to serialize loads against other loads.
4648       Ops.push_back(DAG.getRoot());
4649     } else {
4650       Ops.push_back(getRoot());
4651     }
4652   }
4653 
4654   // Info is set by getTgtMemInstrinsic
4655   TargetLowering::IntrinsicInfo Info;
4656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4657   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4658                                                DAG.getMachineFunction(),
4659                                                Intrinsic);
4660 
4661   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4662   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4663       Info.opc == ISD::INTRINSIC_W_CHAIN)
4664     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4665                                         TLI.getPointerTy(DAG.getDataLayout())));
4666 
4667   // Add all operands of the call to the operand list.
4668   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4669     const Value *Arg = I.getArgOperand(i);
4670     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4671       Ops.push_back(getValue(Arg));
4672       continue;
4673     }
4674 
4675     // Use TargetConstant instead of a regular constant for immarg.
4676     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4677     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4678       assert(CI->getBitWidth() <= 64 &&
4679              "large intrinsic immediates not handled");
4680       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4681     } else {
4682       Ops.push_back(
4683           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4684     }
4685   }
4686 
4687   SmallVector<EVT, 4> ValueVTs;
4688   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4689 
4690   if (HasChain)
4691     ValueVTs.push_back(MVT::Other);
4692 
4693   SDVTList VTs = DAG.getVTList(ValueVTs);
4694 
4695   // Create the node.
4696   SDValue Result;
4697   if (IsTgtIntrinsic) {
4698     // This is target intrinsic that touches memory
4699     AAMDNodes AAInfo;
4700     I.getAAMetadata(AAInfo);
4701     Result =
4702         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4703                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4704                                 Info.align, Info.flags, Info.size, AAInfo);
4705   } else if (!HasChain) {
4706     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4707   } else if (!I.getType()->isVoidTy()) {
4708     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4709   } else {
4710     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4711   }
4712 
4713   if (HasChain) {
4714     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4715     if (OnlyLoad)
4716       PendingLoads.push_back(Chain);
4717     else
4718       DAG.setRoot(Chain);
4719   }
4720 
4721   if (!I.getType()->isVoidTy()) {
4722     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4723       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4724       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4725     } else
4726       Result = lowerRangeToAssertZExt(DAG, I, Result);
4727 
4728     setValue(&I, Result);
4729   }
4730 }
4731 
4732 /// GetSignificand - Get the significand and build it into a floating-point
4733 /// number with exponent of 1:
4734 ///
4735 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4736 ///
4737 /// where Op is the hexadecimal representation of floating point value.
4738 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4739   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4740                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4741   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4742                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4743   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4744 }
4745 
4746 /// GetExponent - Get the exponent:
4747 ///
4748 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4749 ///
4750 /// where Op is the hexadecimal representation of floating point value.
4751 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4752                            const TargetLowering &TLI, const SDLoc &dl) {
4753   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4754                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4755   SDValue t1 = DAG.getNode(
4756       ISD::SRL, dl, MVT::i32, t0,
4757       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4758   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4759                            DAG.getConstant(127, dl, MVT::i32));
4760   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4761 }
4762 
4763 /// getF32Constant - Get 32-bit floating point constant.
4764 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4765                               const SDLoc &dl) {
4766   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4767                            MVT::f32);
4768 }
4769 
4770 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4771                                        SelectionDAG &DAG) {
4772   // TODO: What fast-math-flags should be set on the floating-point nodes?
4773 
4774   //   IntegerPartOfX = ((int32_t)(t0);
4775   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4776 
4777   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4778   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4779   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4780 
4781   //   IntegerPartOfX <<= 23;
4782   IntegerPartOfX = DAG.getNode(
4783       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4784       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4785                                   DAG.getDataLayout())));
4786 
4787   SDValue TwoToFractionalPartOfX;
4788   if (LimitFloatPrecision <= 6) {
4789     // For floating-point precision of 6:
4790     //
4791     //   TwoToFractionalPartOfX =
4792     //     0.997535578f +
4793     //       (0.735607626f + 0.252464424f * x) * x;
4794     //
4795     // error 0.0144103317, which is 6 bits
4796     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4797                              getF32Constant(DAG, 0x3e814304, dl));
4798     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4799                              getF32Constant(DAG, 0x3f3c50c8, dl));
4800     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4801     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4802                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4803   } else if (LimitFloatPrecision <= 12) {
4804     // For floating-point precision of 12:
4805     //
4806     //   TwoToFractionalPartOfX =
4807     //     0.999892986f +
4808     //       (0.696457318f +
4809     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4810     //
4811     // error 0.000107046256, which is 13 to 14 bits
4812     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4813                              getF32Constant(DAG, 0x3da235e3, dl));
4814     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4815                              getF32Constant(DAG, 0x3e65b8f3, dl));
4816     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4817     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4818                              getF32Constant(DAG, 0x3f324b07, dl));
4819     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4820     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4821                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4822   } else { // LimitFloatPrecision <= 18
4823     // For floating-point precision of 18:
4824     //
4825     //   TwoToFractionalPartOfX =
4826     //     0.999999982f +
4827     //       (0.693148872f +
4828     //         (0.240227044f +
4829     //           (0.554906021e-1f +
4830     //             (0.961591928e-2f +
4831     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4832     // error 2.47208000*10^(-7), which is better than 18 bits
4833     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4834                              getF32Constant(DAG, 0x3924b03e, dl));
4835     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4836                              getF32Constant(DAG, 0x3ab24b87, dl));
4837     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4838     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4839                              getF32Constant(DAG, 0x3c1d8c17, dl));
4840     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4841     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4842                              getF32Constant(DAG, 0x3d634a1d, dl));
4843     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4844     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4845                              getF32Constant(DAG, 0x3e75fe14, dl));
4846     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4847     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4848                               getF32Constant(DAG, 0x3f317234, dl));
4849     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4850     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4851                                          getF32Constant(DAG, 0x3f800000, dl));
4852   }
4853 
4854   // Add the exponent into the result in integer domain.
4855   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4856   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4857                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4858 }
4859 
4860 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4861 /// limited-precision mode.
4862 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4863                          const TargetLowering &TLI) {
4864   if (Op.getValueType() == MVT::f32 &&
4865       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4866 
4867     // Put the exponent in the right bit position for later addition to the
4868     // final result:
4869     //
4870     // t0 = Op * log2(e)
4871 
4872     // TODO: What fast-math-flags should be set here?
4873     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4874                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4875     return getLimitedPrecisionExp2(t0, dl, DAG);
4876   }
4877 
4878   // No special expansion.
4879   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4880 }
4881 
4882 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4883 /// limited-precision mode.
4884 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4885                          const TargetLowering &TLI) {
4886   // TODO: What fast-math-flags should be set on the floating-point nodes?
4887 
4888   if (Op.getValueType() == MVT::f32 &&
4889       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4890     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4891 
4892     // Scale the exponent by log(2).
4893     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4894     SDValue LogOfExponent =
4895         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4896                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4897 
4898     // Get the significand and build it into a floating-point number with
4899     // exponent of 1.
4900     SDValue X = GetSignificand(DAG, Op1, dl);
4901 
4902     SDValue LogOfMantissa;
4903     if (LimitFloatPrecision <= 6) {
4904       // For floating-point precision of 6:
4905       //
4906       //   LogofMantissa =
4907       //     -1.1609546f +
4908       //       (1.4034025f - 0.23903021f * x) * x;
4909       //
4910       // error 0.0034276066, which is better than 8 bits
4911       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4912                                getF32Constant(DAG, 0xbe74c456, dl));
4913       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4914                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4915       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4916       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4917                                   getF32Constant(DAG, 0x3f949a29, dl));
4918     } else if (LimitFloatPrecision <= 12) {
4919       // For floating-point precision of 12:
4920       //
4921       //   LogOfMantissa =
4922       //     -1.7417939f +
4923       //       (2.8212026f +
4924       //         (-1.4699568f +
4925       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4926       //
4927       // error 0.000061011436, which is 14 bits
4928       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4929                                getF32Constant(DAG, 0xbd67b6d6, dl));
4930       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4931                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4932       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4933       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4934                                getF32Constant(DAG, 0x3fbc278b, dl));
4935       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4936       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4937                                getF32Constant(DAG, 0x40348e95, dl));
4938       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4939       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4940                                   getF32Constant(DAG, 0x3fdef31a, dl));
4941     } else { // LimitFloatPrecision <= 18
4942       // For floating-point precision of 18:
4943       //
4944       //   LogOfMantissa =
4945       //     -2.1072184f +
4946       //       (4.2372794f +
4947       //         (-3.7029485f +
4948       //           (2.2781945f +
4949       //             (-0.87823314f +
4950       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4951       //
4952       // error 0.0000023660568, which is better than 18 bits
4953       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4954                                getF32Constant(DAG, 0xbc91e5ac, dl));
4955       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4956                                getF32Constant(DAG, 0x3e4350aa, dl));
4957       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4958       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4959                                getF32Constant(DAG, 0x3f60d3e3, dl));
4960       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4961       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4962                                getF32Constant(DAG, 0x4011cdf0, dl));
4963       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4964       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4965                                getF32Constant(DAG, 0x406cfd1c, dl));
4966       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4967       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4968                                getF32Constant(DAG, 0x408797cb, dl));
4969       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4970       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4971                                   getF32Constant(DAG, 0x4006dcab, dl));
4972     }
4973 
4974     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4975   }
4976 
4977   // No special expansion.
4978   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4979 }
4980 
4981 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4982 /// limited-precision mode.
4983 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4984                           const TargetLowering &TLI) {
4985   // TODO: What fast-math-flags should be set on the floating-point nodes?
4986 
4987   if (Op.getValueType() == MVT::f32 &&
4988       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4989     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4990 
4991     // Get the exponent.
4992     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4993 
4994     // Get the significand and build it into a floating-point number with
4995     // exponent of 1.
4996     SDValue X = GetSignificand(DAG, Op1, dl);
4997 
4998     // Different possible minimax approximations of significand in
4999     // floating-point for various degrees of accuracy over [1,2].
5000     SDValue Log2ofMantissa;
5001     if (LimitFloatPrecision <= 6) {
5002       // For floating-point precision of 6:
5003       //
5004       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5005       //
5006       // error 0.0049451742, which is more than 7 bits
5007       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5008                                getF32Constant(DAG, 0xbeb08fe0, dl));
5009       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5010                                getF32Constant(DAG, 0x40019463, dl));
5011       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5012       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5013                                    getF32Constant(DAG, 0x3fd6633d, dl));
5014     } else if (LimitFloatPrecision <= 12) {
5015       // For floating-point precision of 12:
5016       //
5017       //   Log2ofMantissa =
5018       //     -2.51285454f +
5019       //       (4.07009056f +
5020       //         (-2.12067489f +
5021       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5022       //
5023       // error 0.0000876136000, which is better than 13 bits
5024       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5025                                getF32Constant(DAG, 0xbda7262e, dl));
5026       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5027                                getF32Constant(DAG, 0x3f25280b, dl));
5028       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5029       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5030                                getF32Constant(DAG, 0x4007b923, dl));
5031       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5032       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5033                                getF32Constant(DAG, 0x40823e2f, dl));
5034       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5035       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5036                                    getF32Constant(DAG, 0x4020d29c, dl));
5037     } else { // LimitFloatPrecision <= 18
5038       // For floating-point precision of 18:
5039       //
5040       //   Log2ofMantissa =
5041       //     -3.0400495f +
5042       //       (6.1129976f +
5043       //         (-5.3420409f +
5044       //           (3.2865683f +
5045       //             (-1.2669343f +
5046       //               (0.27515199f -
5047       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5048       //
5049       // error 0.0000018516, which is better than 18 bits
5050       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5051                                getF32Constant(DAG, 0xbcd2769e, dl));
5052       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5053                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5054       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5055       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5056                                getF32Constant(DAG, 0x3fa22ae7, dl));
5057       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5058       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5059                                getF32Constant(DAG, 0x40525723, dl));
5060       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5061       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5062                                getF32Constant(DAG, 0x40aaf200, dl));
5063       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5064       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5065                                getF32Constant(DAG, 0x40c39dad, dl));
5066       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5067       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5068                                    getF32Constant(DAG, 0x4042902c, dl));
5069     }
5070 
5071     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5072   }
5073 
5074   // No special expansion.
5075   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5076 }
5077 
5078 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5079 /// limited-precision mode.
5080 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5081                            const TargetLowering &TLI) {
5082   // TODO: What fast-math-flags should be set on the floating-point nodes?
5083 
5084   if (Op.getValueType() == MVT::f32 &&
5085       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5086     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5087 
5088     // Scale the exponent by log10(2) [0.30102999f].
5089     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5090     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5091                                         getF32Constant(DAG, 0x3e9a209a, dl));
5092 
5093     // Get the significand and build it into a floating-point number with
5094     // exponent of 1.
5095     SDValue X = GetSignificand(DAG, Op1, dl);
5096 
5097     SDValue Log10ofMantissa;
5098     if (LimitFloatPrecision <= 6) {
5099       // For floating-point precision of 6:
5100       //
5101       //   Log10ofMantissa =
5102       //     -0.50419619f +
5103       //       (0.60948995f - 0.10380950f * x) * x;
5104       //
5105       // error 0.0014886165, which is 6 bits
5106       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5107                                getF32Constant(DAG, 0xbdd49a13, dl));
5108       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5109                                getF32Constant(DAG, 0x3f1c0789, dl));
5110       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5111       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5112                                     getF32Constant(DAG, 0x3f011300, dl));
5113     } else if (LimitFloatPrecision <= 12) {
5114       // For floating-point precision of 12:
5115       //
5116       //   Log10ofMantissa =
5117       //     -0.64831180f +
5118       //       (0.91751397f +
5119       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5120       //
5121       // error 0.00019228036, which is better than 12 bits
5122       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5123                                getF32Constant(DAG, 0x3d431f31, dl));
5124       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5125                                getF32Constant(DAG, 0x3ea21fb2, dl));
5126       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5127       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5128                                getF32Constant(DAG, 0x3f6ae232, dl));
5129       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5130       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5131                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5132     } else { // LimitFloatPrecision <= 18
5133       // For floating-point precision of 18:
5134       //
5135       //   Log10ofMantissa =
5136       //     -0.84299375f +
5137       //       (1.5327582f +
5138       //         (-1.0688956f +
5139       //           (0.49102474f +
5140       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5141       //
5142       // error 0.0000037995730, which is better than 18 bits
5143       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5144                                getF32Constant(DAG, 0x3c5d51ce, dl));
5145       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5146                                getF32Constant(DAG, 0x3e00685a, dl));
5147       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5148       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5149                                getF32Constant(DAG, 0x3efb6798, dl));
5150       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5151       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5152                                getF32Constant(DAG, 0x3f88d192, dl));
5153       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5154       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5155                                getF32Constant(DAG, 0x3fc4316c, dl));
5156       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5157       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5158                                     getF32Constant(DAG, 0x3f57ce70, dl));
5159     }
5160 
5161     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5162   }
5163 
5164   // No special expansion.
5165   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5166 }
5167 
5168 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5169 /// limited-precision mode.
5170 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5171                           const TargetLowering &TLI) {
5172   if (Op.getValueType() == MVT::f32 &&
5173       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5174     return getLimitedPrecisionExp2(Op, dl, DAG);
5175 
5176   // No special expansion.
5177   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5178 }
5179 
5180 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5181 /// limited-precision mode with x == 10.0f.
5182 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5183                          SelectionDAG &DAG, const TargetLowering &TLI) {
5184   bool IsExp10 = false;
5185   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5186       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5187     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5188       APFloat Ten(10.0f);
5189       IsExp10 = LHSC->isExactlyValue(Ten);
5190     }
5191   }
5192 
5193   // TODO: What fast-math-flags should be set on the FMUL node?
5194   if (IsExp10) {
5195     // Put the exponent in the right bit position for later addition to the
5196     // final result:
5197     //
5198     //   #define LOG2OF10 3.3219281f
5199     //   t0 = Op * LOG2OF10;
5200     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5201                              getF32Constant(DAG, 0x40549a78, dl));
5202     return getLimitedPrecisionExp2(t0, dl, DAG);
5203   }
5204 
5205   // No special expansion.
5206   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5207 }
5208 
5209 /// ExpandPowI - Expand a llvm.powi intrinsic.
5210 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5211                           SelectionDAG &DAG) {
5212   // If RHS is a constant, we can expand this out to a multiplication tree,
5213   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5214   // optimizing for size, we only want to do this if the expansion would produce
5215   // a small number of multiplies, otherwise we do the full expansion.
5216   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5217     // Get the exponent as a positive value.
5218     unsigned Val = RHSC->getSExtValue();
5219     if ((int)Val < 0) Val = -Val;
5220 
5221     // powi(x, 0) -> 1.0
5222     if (Val == 0)
5223       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5224 
5225     bool OptForSize = DAG.shouldOptForSize();
5226     if (!OptForSize ||
5227         // If optimizing for size, don't insert too many multiplies.
5228         // This inserts up to 5 multiplies.
5229         countPopulation(Val) + Log2_32(Val) < 7) {
5230       // We use the simple binary decomposition method to generate the multiply
5231       // sequence.  There are more optimal ways to do this (for example,
5232       // powi(x,15) generates one more multiply than it should), but this has
5233       // the benefit of being both really simple and much better than a libcall.
5234       SDValue Res;  // Logically starts equal to 1.0
5235       SDValue CurSquare = LHS;
5236       // TODO: Intrinsics should have fast-math-flags that propagate to these
5237       // nodes.
5238       while (Val) {
5239         if (Val & 1) {
5240           if (Res.getNode())
5241             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5242           else
5243             Res = CurSquare;  // 1.0*CurSquare.
5244         }
5245 
5246         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5247                                 CurSquare, CurSquare);
5248         Val >>= 1;
5249       }
5250 
5251       // If the original was negative, invert the result, producing 1/(x*x*x).
5252       if (RHSC->getSExtValue() < 0)
5253         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5254                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5255       return Res;
5256     }
5257   }
5258 
5259   // Otherwise, expand to a libcall.
5260   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5261 }
5262 
5263 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5264                             SDValue LHS, SDValue RHS, SDValue Scale,
5265                             SelectionDAG &DAG, const TargetLowering &TLI) {
5266   EVT VT = LHS.getValueType();
5267   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5268   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5269   LLVMContext &Ctx = *DAG.getContext();
5270 
5271   // If the type is legal but the operation isn't, this node might survive all
5272   // the way to operation legalization. If we end up there and we do not have
5273   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5274   // node.
5275 
5276   // Coax the legalizer into expanding the node during type legalization instead
5277   // by bumping the size by one bit. This will force it to Promote, enabling the
5278   // early expansion and avoiding the need to expand later.
5279 
5280   // We don't have to do this if Scale is 0; that can always be expanded, unless
5281   // it's a saturating signed operation. Those can experience true integer
5282   // division overflow, a case which we must avoid.
5283 
5284   // FIXME: We wouldn't have to do this (or any of the early
5285   // expansion/promotion) if it was possible to expand a libcall of an
5286   // illegal type during operation legalization. But it's not, so things
5287   // get a bit hacky.
5288   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5289   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5290       (TLI.isTypeLegal(VT) ||
5291        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5292     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5293         Opcode, VT, ScaleInt);
5294     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5295       EVT PromVT;
5296       if (VT.isScalarInteger())
5297         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5298       else if (VT.isVector()) {
5299         PromVT = VT.getVectorElementType();
5300         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5301         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5302       } else
5303         llvm_unreachable("Wrong VT for DIVFIX?");
5304       if (Signed) {
5305         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5306         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5307       } else {
5308         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5309         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5310       }
5311       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5312       // For saturating operations, we need to shift up the LHS to get the
5313       // proper saturation width, and then shift down again afterwards.
5314       if (Saturating)
5315         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5316                           DAG.getConstant(1, DL, ShiftTy));
5317       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5318       if (Saturating)
5319         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5320                           DAG.getConstant(1, DL, ShiftTy));
5321       return DAG.getZExtOrTrunc(Res, DL, VT);
5322     }
5323   }
5324 
5325   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5326 }
5327 
5328 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5329 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5330 static void
5331 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5332                      const SDValue &N) {
5333   switch (N.getOpcode()) {
5334   case ISD::CopyFromReg: {
5335     SDValue Op = N.getOperand(1);
5336     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5337                       Op.getValueType().getSizeInBits());
5338     return;
5339   }
5340   case ISD::BITCAST:
5341   case ISD::AssertZext:
5342   case ISD::AssertSext:
5343   case ISD::TRUNCATE:
5344     getUnderlyingArgRegs(Regs, N.getOperand(0));
5345     return;
5346   case ISD::BUILD_PAIR:
5347   case ISD::BUILD_VECTOR:
5348   case ISD::CONCAT_VECTORS:
5349     for (SDValue Op : N->op_values())
5350       getUnderlyingArgRegs(Regs, Op);
5351     return;
5352   default:
5353     return;
5354   }
5355 }
5356 
5357 /// If the DbgValueInst is a dbg_value of a function argument, create the
5358 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5359 /// instruction selection, they will be inserted to the entry BB.
5360 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5361     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5362     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5363   const Argument *Arg = dyn_cast<Argument>(V);
5364   if (!Arg)
5365     return false;
5366 
5367   if (!IsDbgDeclare) {
5368     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5369     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5370     // the entry block.
5371     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5372     if (!IsInEntryBlock)
5373       return false;
5374 
5375     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5376     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5377     // variable that also is a param.
5378     //
5379     // Although, if we are at the top of the entry block already, we can still
5380     // emit using ArgDbgValue. This might catch some situations when the
5381     // dbg.value refers to an argument that isn't used in the entry block, so
5382     // any CopyToReg node would be optimized out and the only way to express
5383     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5384     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5385     // we should only emit as ArgDbgValue if the Variable is an argument to the
5386     // current function, and the dbg.value intrinsic is found in the entry
5387     // block.
5388     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5389         !DL->getInlinedAt();
5390     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5391     if (!IsInPrologue && !VariableIsFunctionInputArg)
5392       return false;
5393 
5394     // Here we assume that a function argument on IR level only can be used to
5395     // describe one input parameter on source level. If we for example have
5396     // source code like this
5397     //
5398     //    struct A { long x, y; };
5399     //    void foo(struct A a, long b) {
5400     //      ...
5401     //      b = a.x;
5402     //      ...
5403     //    }
5404     //
5405     // and IR like this
5406     //
5407     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5408     //  entry:
5409     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5410     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5411     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5412     //    ...
5413     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5414     //    ...
5415     //
5416     // then the last dbg.value is describing a parameter "b" using a value that
5417     // is an argument. But since we already has used %a1 to describe a parameter
5418     // we should not handle that last dbg.value here (that would result in an
5419     // incorrect hoisting of the DBG_VALUE to the function entry).
5420     // Notice that we allow one dbg.value per IR level argument, to accommodate
5421     // for the situation with fragments above.
5422     if (VariableIsFunctionInputArg) {
5423       unsigned ArgNo = Arg->getArgNo();
5424       if (ArgNo >= FuncInfo.DescribedArgs.size())
5425         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5426       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5427         return false;
5428       FuncInfo.DescribedArgs.set(ArgNo);
5429     }
5430   }
5431 
5432   MachineFunction &MF = DAG.getMachineFunction();
5433   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5434 
5435   bool IsIndirect = false;
5436   Optional<MachineOperand> Op;
5437   // Some arguments' frame index is recorded during argument lowering.
5438   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5439   if (FI != std::numeric_limits<int>::max())
5440     Op = MachineOperand::CreateFI(FI);
5441 
5442   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5443   if (!Op && N.getNode()) {
5444     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5445     Register Reg;
5446     if (ArgRegsAndSizes.size() == 1)
5447       Reg = ArgRegsAndSizes.front().first;
5448 
5449     if (Reg && Reg.isVirtual()) {
5450       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5451       Register PR = RegInfo.getLiveInPhysReg(Reg);
5452       if (PR)
5453         Reg = PR;
5454     }
5455     if (Reg) {
5456       Op = MachineOperand::CreateReg(Reg, false);
5457       IsIndirect = IsDbgDeclare;
5458     }
5459   }
5460 
5461   if (!Op && N.getNode()) {
5462     // Check if frame index is available.
5463     SDValue LCandidate = peekThroughBitcasts(N);
5464     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5465       if (FrameIndexSDNode *FINode =
5466           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5467         Op = MachineOperand::CreateFI(FINode->getIndex());
5468   }
5469 
5470   if (!Op) {
5471     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5472     auto splitMultiRegDbgValue
5473       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5474       unsigned Offset = 0;
5475       for (auto RegAndSize : SplitRegs) {
5476         // If the expression is already a fragment, the current register
5477         // offset+size might extend beyond the fragment. In this case, only
5478         // the register bits that are inside the fragment are relevant.
5479         int RegFragmentSizeInBits = RegAndSize.second;
5480         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5481           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5482           // The register is entirely outside the expression fragment,
5483           // so is irrelevant for debug info.
5484           if (Offset >= ExprFragmentSizeInBits)
5485             break;
5486           // The register is partially outside the expression fragment, only
5487           // the low bits within the fragment are relevant for debug info.
5488           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5489             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5490           }
5491         }
5492 
5493         auto FragmentExpr = DIExpression::createFragmentExpression(
5494             Expr, Offset, RegFragmentSizeInBits);
5495         Offset += RegAndSize.second;
5496         // If a valid fragment expression cannot be created, the variable's
5497         // correct value cannot be determined and so it is set as Undef.
5498         if (!FragmentExpr) {
5499           SDDbgValue *SDV = DAG.getConstantDbgValue(
5500               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5501           DAG.AddDbgValue(SDV, nullptr, false);
5502           continue;
5503         }
5504         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5505         FuncInfo.ArgDbgValues.push_back(
5506           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5507                   RegAndSize.first, Variable, *FragmentExpr));
5508       }
5509     };
5510 
5511     // Check if ValueMap has reg number.
5512     DenseMap<const Value *, Register>::const_iterator
5513       VMI = FuncInfo.ValueMap.find(V);
5514     if (VMI != FuncInfo.ValueMap.end()) {
5515       const auto &TLI = DAG.getTargetLoweringInfo();
5516       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5517                        V->getType(), getABIRegCopyCC(V));
5518       if (RFV.occupiesMultipleRegs()) {
5519         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5520         return true;
5521       }
5522 
5523       Op = MachineOperand::CreateReg(VMI->second, false);
5524       IsIndirect = IsDbgDeclare;
5525     } else if (ArgRegsAndSizes.size() > 1) {
5526       // This was split due to the calling convention, and no virtual register
5527       // mapping exists for the value.
5528       splitMultiRegDbgValue(ArgRegsAndSizes);
5529       return true;
5530     }
5531   }
5532 
5533   if (!Op)
5534     return false;
5535 
5536   assert(Variable->isValidLocationForIntrinsic(DL) &&
5537          "Expected inlined-at fields to agree");
5538   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5539   FuncInfo.ArgDbgValues.push_back(
5540       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5541               *Op, Variable, Expr));
5542 
5543   return true;
5544 }
5545 
5546 /// Return the appropriate SDDbgValue based on N.
5547 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5548                                              DILocalVariable *Variable,
5549                                              DIExpression *Expr,
5550                                              const DebugLoc &dl,
5551                                              unsigned DbgSDNodeOrder) {
5552   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5553     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5554     // stack slot locations.
5555     //
5556     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5557     // debug values here after optimization:
5558     //
5559     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5560     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5561     //
5562     // Both describe the direct values of their associated variables.
5563     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5564                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5565   }
5566   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5567                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5568 }
5569 
5570 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5571   switch (Intrinsic) {
5572   case Intrinsic::smul_fix:
5573     return ISD::SMULFIX;
5574   case Intrinsic::umul_fix:
5575     return ISD::UMULFIX;
5576   case Intrinsic::smul_fix_sat:
5577     return ISD::SMULFIXSAT;
5578   case Intrinsic::umul_fix_sat:
5579     return ISD::UMULFIXSAT;
5580   case Intrinsic::sdiv_fix:
5581     return ISD::SDIVFIX;
5582   case Intrinsic::udiv_fix:
5583     return ISD::UDIVFIX;
5584   case Intrinsic::sdiv_fix_sat:
5585     return ISD::SDIVFIXSAT;
5586   case Intrinsic::udiv_fix_sat:
5587     return ISD::UDIVFIXSAT;
5588   default:
5589     llvm_unreachable("Unhandled fixed point intrinsic");
5590   }
5591 }
5592 
5593 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5594                                            const char *FunctionName) {
5595   assert(FunctionName && "FunctionName must not be nullptr");
5596   SDValue Callee = DAG.getExternalSymbol(
5597       FunctionName,
5598       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5599   LowerCallTo(I, Callee, I.isTailCall());
5600 }
5601 
5602 /// Lower the call to the specified intrinsic function.
5603 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5604                                              unsigned Intrinsic) {
5605   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5606   SDLoc sdl = getCurSDLoc();
5607   DebugLoc dl = getCurDebugLoc();
5608   SDValue Res;
5609 
5610   switch (Intrinsic) {
5611   default:
5612     // By default, turn this into a target intrinsic node.
5613     visitTargetIntrinsic(I, Intrinsic);
5614     return;
5615   case Intrinsic::vscale: {
5616     match(&I, m_VScale(DAG.getDataLayout()));
5617     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5618     setValue(&I,
5619              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5620     return;
5621   }
5622   case Intrinsic::vastart:  visitVAStart(I); return;
5623   case Intrinsic::vaend:    visitVAEnd(I); return;
5624   case Intrinsic::vacopy:   visitVACopy(I); return;
5625   case Intrinsic::returnaddress:
5626     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5627                              TLI.getPointerTy(DAG.getDataLayout()),
5628                              getValue(I.getArgOperand(0))));
5629     return;
5630   case Intrinsic::addressofreturnaddress:
5631     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5632                              TLI.getPointerTy(DAG.getDataLayout())));
5633     return;
5634   case Intrinsic::sponentry:
5635     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5636                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5637     return;
5638   case Intrinsic::frameaddress:
5639     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5640                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5641                              getValue(I.getArgOperand(0))));
5642     return;
5643   case Intrinsic::read_register: {
5644     Value *Reg = I.getArgOperand(0);
5645     SDValue Chain = getRoot();
5646     SDValue RegName =
5647         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5648     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5649     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5650       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5651     setValue(&I, Res);
5652     DAG.setRoot(Res.getValue(1));
5653     return;
5654   }
5655   case Intrinsic::write_register: {
5656     Value *Reg = I.getArgOperand(0);
5657     Value *RegValue = I.getArgOperand(1);
5658     SDValue Chain = getRoot();
5659     SDValue RegName =
5660         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5661     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5662                             RegName, getValue(RegValue)));
5663     return;
5664   }
5665   case Intrinsic::memcpy: {
5666     const auto &MCI = cast<MemCpyInst>(I);
5667     SDValue Op1 = getValue(I.getArgOperand(0));
5668     SDValue Op2 = getValue(I.getArgOperand(1));
5669     SDValue Op3 = getValue(I.getArgOperand(2));
5670     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5671     Align DstAlign = MCI.getDestAlign().valueOrOne();
5672     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5673     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5674     bool isVol = MCI.isVolatile();
5675     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5676     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5677     // node.
5678     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5679     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5680                                /* AlwaysInline */ false, isTC,
5681                                MachinePointerInfo(I.getArgOperand(0)),
5682                                MachinePointerInfo(I.getArgOperand(1)));
5683     updateDAGForMaybeTailCall(MC);
5684     return;
5685   }
5686   case Intrinsic::memcpy_inline: {
5687     const auto &MCI = cast<MemCpyInlineInst>(I);
5688     SDValue Dst = getValue(I.getArgOperand(0));
5689     SDValue Src = getValue(I.getArgOperand(1));
5690     SDValue Size = getValue(I.getArgOperand(2));
5691     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5692     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5693     Align DstAlign = MCI.getDestAlign().valueOrOne();
5694     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5695     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5696     bool isVol = MCI.isVolatile();
5697     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5698     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5699     // node.
5700     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5701                                /* AlwaysInline */ true, isTC,
5702                                MachinePointerInfo(I.getArgOperand(0)),
5703                                MachinePointerInfo(I.getArgOperand(1)));
5704     updateDAGForMaybeTailCall(MC);
5705     return;
5706   }
5707   case Intrinsic::memset: {
5708     const auto &MSI = cast<MemSetInst>(I);
5709     SDValue Op1 = getValue(I.getArgOperand(0));
5710     SDValue Op2 = getValue(I.getArgOperand(1));
5711     SDValue Op3 = getValue(I.getArgOperand(2));
5712     // @llvm.memset defines 0 and 1 to both mean no alignment.
5713     Align Alignment = MSI.getDestAlign().valueOrOne();
5714     bool isVol = MSI.isVolatile();
5715     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5716     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5717     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5718                                MachinePointerInfo(I.getArgOperand(0)));
5719     updateDAGForMaybeTailCall(MS);
5720     return;
5721   }
5722   case Intrinsic::memmove: {
5723     const auto &MMI = cast<MemMoveInst>(I);
5724     SDValue Op1 = getValue(I.getArgOperand(0));
5725     SDValue Op2 = getValue(I.getArgOperand(1));
5726     SDValue Op3 = getValue(I.getArgOperand(2));
5727     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5728     Align DstAlign = MMI.getDestAlign().valueOrOne();
5729     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5730     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5731     bool isVol = MMI.isVolatile();
5732     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5733     // FIXME: Support passing different dest/src alignments to the memmove DAG
5734     // node.
5735     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5736     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5737                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5738                                 MachinePointerInfo(I.getArgOperand(1)));
5739     updateDAGForMaybeTailCall(MM);
5740     return;
5741   }
5742   case Intrinsic::memcpy_element_unordered_atomic: {
5743     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5744     SDValue Dst = getValue(MI.getRawDest());
5745     SDValue Src = getValue(MI.getRawSource());
5746     SDValue Length = getValue(MI.getLength());
5747 
5748     unsigned DstAlign = MI.getDestAlignment();
5749     unsigned SrcAlign = MI.getSourceAlignment();
5750     Type *LengthTy = MI.getLength()->getType();
5751     unsigned ElemSz = MI.getElementSizeInBytes();
5752     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5753     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5754                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5755                                      MachinePointerInfo(MI.getRawDest()),
5756                                      MachinePointerInfo(MI.getRawSource()));
5757     updateDAGForMaybeTailCall(MC);
5758     return;
5759   }
5760   case Intrinsic::memmove_element_unordered_atomic: {
5761     auto &MI = cast<AtomicMemMoveInst>(I);
5762     SDValue Dst = getValue(MI.getRawDest());
5763     SDValue Src = getValue(MI.getRawSource());
5764     SDValue Length = getValue(MI.getLength());
5765 
5766     unsigned DstAlign = MI.getDestAlignment();
5767     unsigned SrcAlign = MI.getSourceAlignment();
5768     Type *LengthTy = MI.getLength()->getType();
5769     unsigned ElemSz = MI.getElementSizeInBytes();
5770     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5771     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5772                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5773                                       MachinePointerInfo(MI.getRawDest()),
5774                                       MachinePointerInfo(MI.getRawSource()));
5775     updateDAGForMaybeTailCall(MC);
5776     return;
5777   }
5778   case Intrinsic::memset_element_unordered_atomic: {
5779     auto &MI = cast<AtomicMemSetInst>(I);
5780     SDValue Dst = getValue(MI.getRawDest());
5781     SDValue Val = getValue(MI.getValue());
5782     SDValue Length = getValue(MI.getLength());
5783 
5784     unsigned DstAlign = MI.getDestAlignment();
5785     Type *LengthTy = MI.getLength()->getType();
5786     unsigned ElemSz = MI.getElementSizeInBytes();
5787     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5788     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5789                                      LengthTy, ElemSz, isTC,
5790                                      MachinePointerInfo(MI.getRawDest()));
5791     updateDAGForMaybeTailCall(MC);
5792     return;
5793   }
5794   case Intrinsic::dbg_addr:
5795   case Intrinsic::dbg_declare: {
5796     const auto &DI = cast<DbgVariableIntrinsic>(I);
5797     DILocalVariable *Variable = DI.getVariable();
5798     DIExpression *Expression = DI.getExpression();
5799     dropDanglingDebugInfo(Variable, Expression);
5800     assert(Variable && "Missing variable");
5801     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5802                       << "\n");
5803     // Check if address has undef value.
5804     const Value *Address = DI.getVariableLocation();
5805     if (!Address || isa<UndefValue>(Address) ||
5806         (Address->use_empty() && !isa<Argument>(Address))) {
5807       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5808                         << " (bad/undef/unused-arg address)\n");
5809       return;
5810     }
5811 
5812     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5813 
5814     // Check if this variable can be described by a frame index, typically
5815     // either as a static alloca or a byval parameter.
5816     int FI = std::numeric_limits<int>::max();
5817     if (const auto *AI =
5818             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5819       if (AI->isStaticAlloca()) {
5820         auto I = FuncInfo.StaticAllocaMap.find(AI);
5821         if (I != FuncInfo.StaticAllocaMap.end())
5822           FI = I->second;
5823       }
5824     } else if (const auto *Arg = dyn_cast<Argument>(
5825                    Address->stripInBoundsConstantOffsets())) {
5826       FI = FuncInfo.getArgumentFrameIndex(Arg);
5827     }
5828 
5829     // llvm.dbg.addr is control dependent and always generates indirect
5830     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5831     // the MachineFunction variable table.
5832     if (FI != std::numeric_limits<int>::max()) {
5833       if (Intrinsic == Intrinsic::dbg_addr) {
5834         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5835             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5836         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5837       } else {
5838         LLVM_DEBUG(dbgs() << "Skipping " << DI
5839                           << " (variable info stashed in MF side table)\n");
5840       }
5841       return;
5842     }
5843 
5844     SDValue &N = NodeMap[Address];
5845     if (!N.getNode() && isa<Argument>(Address))
5846       // Check unused arguments map.
5847       N = UnusedArgNodeMap[Address];
5848     SDDbgValue *SDV;
5849     if (N.getNode()) {
5850       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5851         Address = BCI->getOperand(0);
5852       // Parameters are handled specially.
5853       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5854       if (isParameter && FINode) {
5855         // Byval parameter. We have a frame index at this point.
5856         SDV =
5857             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5858                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5859       } else if (isa<Argument>(Address)) {
5860         // Address is an argument, so try to emit its dbg value using
5861         // virtual register info from the FuncInfo.ValueMap.
5862         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5863         return;
5864       } else {
5865         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5866                               true, dl, SDNodeOrder);
5867       }
5868       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5869     } else {
5870       // If Address is an argument then try to emit its dbg value using
5871       // virtual register info from the FuncInfo.ValueMap.
5872       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5873                                     N)) {
5874         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5875                           << " (could not emit func-arg dbg_value)\n");
5876       }
5877     }
5878     return;
5879   }
5880   case Intrinsic::dbg_label: {
5881     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5882     DILabel *Label = DI.getLabel();
5883     assert(Label && "Missing label");
5884 
5885     SDDbgLabel *SDV;
5886     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5887     DAG.AddDbgLabel(SDV);
5888     return;
5889   }
5890   case Intrinsic::dbg_value: {
5891     const DbgValueInst &DI = cast<DbgValueInst>(I);
5892     assert(DI.getVariable() && "Missing variable");
5893 
5894     DILocalVariable *Variable = DI.getVariable();
5895     DIExpression *Expression = DI.getExpression();
5896     dropDanglingDebugInfo(Variable, Expression);
5897     const Value *V = DI.getValue();
5898     if (!V)
5899       return;
5900 
5901     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5902         SDNodeOrder))
5903       return;
5904 
5905     // TODO: Dangling debug info will eventually either be resolved or produce
5906     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5907     // between the original dbg.value location and its resolved DBG_VALUE, which
5908     // we should ideally fill with an extra Undef DBG_VALUE.
5909 
5910     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5911     return;
5912   }
5913 
5914   case Intrinsic::eh_typeid_for: {
5915     // Find the type id for the given typeinfo.
5916     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5917     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5918     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5919     setValue(&I, Res);
5920     return;
5921   }
5922 
5923   case Intrinsic::eh_return_i32:
5924   case Intrinsic::eh_return_i64:
5925     DAG.getMachineFunction().setCallsEHReturn(true);
5926     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5927                             MVT::Other,
5928                             getControlRoot(),
5929                             getValue(I.getArgOperand(0)),
5930                             getValue(I.getArgOperand(1))));
5931     return;
5932   case Intrinsic::eh_unwind_init:
5933     DAG.getMachineFunction().setCallsUnwindInit(true);
5934     return;
5935   case Intrinsic::eh_dwarf_cfa:
5936     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5937                              TLI.getPointerTy(DAG.getDataLayout()),
5938                              getValue(I.getArgOperand(0))));
5939     return;
5940   case Intrinsic::eh_sjlj_callsite: {
5941     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5942     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5943     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5944     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5945 
5946     MMI.setCurrentCallSite(CI->getZExtValue());
5947     return;
5948   }
5949   case Intrinsic::eh_sjlj_functioncontext: {
5950     // Get and store the index of the function context.
5951     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5952     AllocaInst *FnCtx =
5953       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5954     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5955     MFI.setFunctionContextIndex(FI);
5956     return;
5957   }
5958   case Intrinsic::eh_sjlj_setjmp: {
5959     SDValue Ops[2];
5960     Ops[0] = getRoot();
5961     Ops[1] = getValue(I.getArgOperand(0));
5962     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5963                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5964     setValue(&I, Op.getValue(0));
5965     DAG.setRoot(Op.getValue(1));
5966     return;
5967   }
5968   case Intrinsic::eh_sjlj_longjmp:
5969     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5970                             getRoot(), getValue(I.getArgOperand(0))));
5971     return;
5972   case Intrinsic::eh_sjlj_setup_dispatch:
5973     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5974                             getRoot()));
5975     return;
5976   case Intrinsic::masked_gather:
5977     visitMaskedGather(I);
5978     return;
5979   case Intrinsic::masked_load:
5980     visitMaskedLoad(I);
5981     return;
5982   case Intrinsic::masked_scatter:
5983     visitMaskedScatter(I);
5984     return;
5985   case Intrinsic::masked_store:
5986     visitMaskedStore(I);
5987     return;
5988   case Intrinsic::masked_expandload:
5989     visitMaskedLoad(I, true /* IsExpanding */);
5990     return;
5991   case Intrinsic::masked_compressstore:
5992     visitMaskedStore(I, true /* IsCompressing */);
5993     return;
5994   case Intrinsic::powi:
5995     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5996                             getValue(I.getArgOperand(1)), DAG));
5997     return;
5998   case Intrinsic::log:
5999     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6000     return;
6001   case Intrinsic::log2:
6002     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6003     return;
6004   case Intrinsic::log10:
6005     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6006     return;
6007   case Intrinsic::exp:
6008     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6009     return;
6010   case Intrinsic::exp2:
6011     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6012     return;
6013   case Intrinsic::pow:
6014     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6015                            getValue(I.getArgOperand(1)), DAG, TLI));
6016     return;
6017   case Intrinsic::sqrt:
6018   case Intrinsic::fabs:
6019   case Intrinsic::sin:
6020   case Intrinsic::cos:
6021   case Intrinsic::floor:
6022   case Intrinsic::ceil:
6023   case Intrinsic::trunc:
6024   case Intrinsic::rint:
6025   case Intrinsic::nearbyint:
6026   case Intrinsic::round:
6027   case Intrinsic::canonicalize: {
6028     unsigned Opcode;
6029     switch (Intrinsic) {
6030     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6031     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6032     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6033     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6034     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6035     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6036     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6037     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6038     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6039     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6040     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6041     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6042     }
6043 
6044     setValue(&I, DAG.getNode(Opcode, sdl,
6045                              getValue(I.getArgOperand(0)).getValueType(),
6046                              getValue(I.getArgOperand(0))));
6047     return;
6048   }
6049   case Intrinsic::lround:
6050   case Intrinsic::llround:
6051   case Intrinsic::lrint:
6052   case Intrinsic::llrint: {
6053     unsigned Opcode;
6054     switch (Intrinsic) {
6055     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6056     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6057     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6058     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6059     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6060     }
6061 
6062     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6063     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6064                              getValue(I.getArgOperand(0))));
6065     return;
6066   }
6067   case Intrinsic::minnum:
6068     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6069                              getValue(I.getArgOperand(0)).getValueType(),
6070                              getValue(I.getArgOperand(0)),
6071                              getValue(I.getArgOperand(1))));
6072     return;
6073   case Intrinsic::maxnum:
6074     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6075                              getValue(I.getArgOperand(0)).getValueType(),
6076                              getValue(I.getArgOperand(0)),
6077                              getValue(I.getArgOperand(1))));
6078     return;
6079   case Intrinsic::minimum:
6080     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6081                              getValue(I.getArgOperand(0)).getValueType(),
6082                              getValue(I.getArgOperand(0)),
6083                              getValue(I.getArgOperand(1))));
6084     return;
6085   case Intrinsic::maximum:
6086     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6087                              getValue(I.getArgOperand(0)).getValueType(),
6088                              getValue(I.getArgOperand(0)),
6089                              getValue(I.getArgOperand(1))));
6090     return;
6091   case Intrinsic::copysign:
6092     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6093                              getValue(I.getArgOperand(0)).getValueType(),
6094                              getValue(I.getArgOperand(0)),
6095                              getValue(I.getArgOperand(1))));
6096     return;
6097   case Intrinsic::fma:
6098     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6099                              getValue(I.getArgOperand(0)).getValueType(),
6100                              getValue(I.getArgOperand(0)),
6101                              getValue(I.getArgOperand(1)),
6102                              getValue(I.getArgOperand(2))));
6103     return;
6104 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6105   case Intrinsic::INTRINSIC:
6106 #include "llvm/IR/ConstrainedOps.def"
6107     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6108     return;
6109   case Intrinsic::fmuladd: {
6110     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6111     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6112         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6113       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6114                                getValue(I.getArgOperand(0)).getValueType(),
6115                                getValue(I.getArgOperand(0)),
6116                                getValue(I.getArgOperand(1)),
6117                                getValue(I.getArgOperand(2))));
6118     } else {
6119       // TODO: Intrinsic calls should have fast-math-flags.
6120       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6121                                 getValue(I.getArgOperand(0)).getValueType(),
6122                                 getValue(I.getArgOperand(0)),
6123                                 getValue(I.getArgOperand(1)));
6124       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6125                                 getValue(I.getArgOperand(0)).getValueType(),
6126                                 Mul,
6127                                 getValue(I.getArgOperand(2)));
6128       setValue(&I, Add);
6129     }
6130     return;
6131   }
6132   case Intrinsic::convert_to_fp16:
6133     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6134                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6135                                          getValue(I.getArgOperand(0)),
6136                                          DAG.getTargetConstant(0, sdl,
6137                                                                MVT::i32))));
6138     return;
6139   case Intrinsic::convert_from_fp16:
6140     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6141                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6142                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6143                                          getValue(I.getArgOperand(0)))));
6144     return;
6145   case Intrinsic::pcmarker: {
6146     SDValue Tmp = getValue(I.getArgOperand(0));
6147     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6148     return;
6149   }
6150   case Intrinsic::readcyclecounter: {
6151     SDValue Op = getRoot();
6152     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6153                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6154     setValue(&I, Res);
6155     DAG.setRoot(Res.getValue(1));
6156     return;
6157   }
6158   case Intrinsic::bitreverse:
6159     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6160                              getValue(I.getArgOperand(0)).getValueType(),
6161                              getValue(I.getArgOperand(0))));
6162     return;
6163   case Intrinsic::bswap:
6164     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6165                              getValue(I.getArgOperand(0)).getValueType(),
6166                              getValue(I.getArgOperand(0))));
6167     return;
6168   case Intrinsic::cttz: {
6169     SDValue Arg = getValue(I.getArgOperand(0));
6170     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6171     EVT Ty = Arg.getValueType();
6172     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6173                              sdl, Ty, Arg));
6174     return;
6175   }
6176   case Intrinsic::ctlz: {
6177     SDValue Arg = getValue(I.getArgOperand(0));
6178     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6179     EVT Ty = Arg.getValueType();
6180     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6181                              sdl, Ty, Arg));
6182     return;
6183   }
6184   case Intrinsic::ctpop: {
6185     SDValue Arg = getValue(I.getArgOperand(0));
6186     EVT Ty = Arg.getValueType();
6187     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6188     return;
6189   }
6190   case Intrinsic::fshl:
6191   case Intrinsic::fshr: {
6192     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6193     SDValue X = getValue(I.getArgOperand(0));
6194     SDValue Y = getValue(I.getArgOperand(1));
6195     SDValue Z = getValue(I.getArgOperand(2));
6196     EVT VT = X.getValueType();
6197     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6198     SDValue Zero = DAG.getConstant(0, sdl, VT);
6199     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6200 
6201     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6202     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6203       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6204       return;
6205     }
6206 
6207     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6208     // avoid the select that is necessary in the general case to filter out
6209     // the 0-shift possibility that leads to UB.
6210     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6211       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6212       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6213         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6214         return;
6215       }
6216 
6217       // Some targets only rotate one way. Try the opposite direction.
6218       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6219       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6220         // Negate the shift amount because it is safe to ignore the high bits.
6221         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6222         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6223         return;
6224       }
6225 
6226       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6227       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6228       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6229       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6230       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6231       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6232       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6233       return;
6234     }
6235 
6236     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6237     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6238     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6239     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6240     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6241     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6242 
6243     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6244     // and that is undefined. We must compare and select to avoid UB.
6245     EVT CCVT = MVT::i1;
6246     if (VT.isVector())
6247       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6248 
6249     // For fshl, 0-shift returns the 1st arg (X).
6250     // For fshr, 0-shift returns the 2nd arg (Y).
6251     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6252     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6253     return;
6254   }
6255   case Intrinsic::sadd_sat: {
6256     SDValue Op1 = getValue(I.getArgOperand(0));
6257     SDValue Op2 = getValue(I.getArgOperand(1));
6258     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6259     return;
6260   }
6261   case Intrinsic::uadd_sat: {
6262     SDValue Op1 = getValue(I.getArgOperand(0));
6263     SDValue Op2 = getValue(I.getArgOperand(1));
6264     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6265     return;
6266   }
6267   case Intrinsic::ssub_sat: {
6268     SDValue Op1 = getValue(I.getArgOperand(0));
6269     SDValue Op2 = getValue(I.getArgOperand(1));
6270     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6271     return;
6272   }
6273   case Intrinsic::usub_sat: {
6274     SDValue Op1 = getValue(I.getArgOperand(0));
6275     SDValue Op2 = getValue(I.getArgOperand(1));
6276     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6277     return;
6278   }
6279   case Intrinsic::smul_fix:
6280   case Intrinsic::umul_fix:
6281   case Intrinsic::smul_fix_sat:
6282   case Intrinsic::umul_fix_sat: {
6283     SDValue Op1 = getValue(I.getArgOperand(0));
6284     SDValue Op2 = getValue(I.getArgOperand(1));
6285     SDValue Op3 = getValue(I.getArgOperand(2));
6286     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6287                              Op1.getValueType(), Op1, Op2, Op3));
6288     return;
6289   }
6290   case Intrinsic::sdiv_fix:
6291   case Intrinsic::udiv_fix:
6292   case Intrinsic::sdiv_fix_sat:
6293   case Intrinsic::udiv_fix_sat: {
6294     SDValue Op1 = getValue(I.getArgOperand(0));
6295     SDValue Op2 = getValue(I.getArgOperand(1));
6296     SDValue Op3 = getValue(I.getArgOperand(2));
6297     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6298                               Op1, Op2, Op3, DAG, TLI));
6299     return;
6300   }
6301   case Intrinsic::stacksave: {
6302     SDValue Op = getRoot();
6303     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6304     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6305     setValue(&I, Res);
6306     DAG.setRoot(Res.getValue(1));
6307     return;
6308   }
6309   case Intrinsic::stackrestore:
6310     Res = getValue(I.getArgOperand(0));
6311     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6312     return;
6313   case Intrinsic::get_dynamic_area_offset: {
6314     SDValue Op = getRoot();
6315     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6316     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6317     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6318     // target.
6319     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6320       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6321                          " intrinsic!");
6322     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6323                       Op);
6324     DAG.setRoot(Op);
6325     setValue(&I, Res);
6326     return;
6327   }
6328   case Intrinsic::stackguard: {
6329     MachineFunction &MF = DAG.getMachineFunction();
6330     const Module &M = *MF.getFunction().getParent();
6331     SDValue Chain = getRoot();
6332     if (TLI.useLoadStackGuardNode()) {
6333       Res = getLoadStackGuard(DAG, sdl, Chain);
6334     } else {
6335       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6336       const Value *Global = TLI.getSDagStackGuard(M);
6337       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6338       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6339                         MachinePointerInfo(Global, 0), Align,
6340                         MachineMemOperand::MOVolatile);
6341     }
6342     if (TLI.useStackGuardXorFP())
6343       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6344     DAG.setRoot(Chain);
6345     setValue(&I, Res);
6346     return;
6347   }
6348   case Intrinsic::stackprotector: {
6349     // Emit code into the DAG to store the stack guard onto the stack.
6350     MachineFunction &MF = DAG.getMachineFunction();
6351     MachineFrameInfo &MFI = MF.getFrameInfo();
6352     SDValue Src, Chain = getRoot();
6353 
6354     if (TLI.useLoadStackGuardNode())
6355       Src = getLoadStackGuard(DAG, sdl, Chain);
6356     else
6357       Src = getValue(I.getArgOperand(0));   // The guard's value.
6358 
6359     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6360 
6361     int FI = FuncInfo.StaticAllocaMap[Slot];
6362     MFI.setStackProtectorIndex(FI);
6363     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6364 
6365     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6366 
6367     // Store the stack protector onto the stack.
6368     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6369                                                  DAG.getMachineFunction(), FI),
6370                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6371     setValue(&I, Res);
6372     DAG.setRoot(Res);
6373     return;
6374   }
6375   case Intrinsic::objectsize:
6376     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6377 
6378   case Intrinsic::is_constant:
6379     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6380 
6381   case Intrinsic::annotation:
6382   case Intrinsic::ptr_annotation:
6383   case Intrinsic::launder_invariant_group:
6384   case Intrinsic::strip_invariant_group:
6385     // Drop the intrinsic, but forward the value
6386     setValue(&I, getValue(I.getOperand(0)));
6387     return;
6388   case Intrinsic::assume:
6389   case Intrinsic::var_annotation:
6390   case Intrinsic::sideeffect:
6391     // Discard annotate attributes, assumptions, and artificial side-effects.
6392     return;
6393 
6394   case Intrinsic::codeview_annotation: {
6395     // Emit a label associated with this metadata.
6396     MachineFunction &MF = DAG.getMachineFunction();
6397     MCSymbol *Label =
6398         MF.getMMI().getContext().createTempSymbol("annotation", true);
6399     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6400     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6401     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6402     DAG.setRoot(Res);
6403     return;
6404   }
6405 
6406   case Intrinsic::init_trampoline: {
6407     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6408 
6409     SDValue Ops[6];
6410     Ops[0] = getRoot();
6411     Ops[1] = getValue(I.getArgOperand(0));
6412     Ops[2] = getValue(I.getArgOperand(1));
6413     Ops[3] = getValue(I.getArgOperand(2));
6414     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6415     Ops[5] = DAG.getSrcValue(F);
6416 
6417     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6418 
6419     DAG.setRoot(Res);
6420     return;
6421   }
6422   case Intrinsic::adjust_trampoline:
6423     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6424                              TLI.getPointerTy(DAG.getDataLayout()),
6425                              getValue(I.getArgOperand(0))));
6426     return;
6427   case Intrinsic::gcroot: {
6428     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6429            "only valid in functions with gc specified, enforced by Verifier");
6430     assert(GFI && "implied by previous");
6431     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6432     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6433 
6434     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6435     GFI->addStackRoot(FI->getIndex(), TypeMap);
6436     return;
6437   }
6438   case Intrinsic::gcread:
6439   case Intrinsic::gcwrite:
6440     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6441   case Intrinsic::flt_rounds:
6442     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6443     setValue(&I, Res);
6444     DAG.setRoot(Res.getValue(1));
6445     return;
6446 
6447   case Intrinsic::expect:
6448     // Just replace __builtin_expect(exp, c) with EXP.
6449     setValue(&I, getValue(I.getArgOperand(0)));
6450     return;
6451 
6452   case Intrinsic::debugtrap:
6453   case Intrinsic::trap: {
6454     StringRef TrapFuncName =
6455         I.getAttributes()
6456             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6457             .getValueAsString();
6458     if (TrapFuncName.empty()) {
6459       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6460         ISD::TRAP : ISD::DEBUGTRAP;
6461       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6462       return;
6463     }
6464     TargetLowering::ArgListTy Args;
6465 
6466     TargetLowering::CallLoweringInfo CLI(DAG);
6467     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6468         CallingConv::C, I.getType(),
6469         DAG.getExternalSymbol(TrapFuncName.data(),
6470                               TLI.getPointerTy(DAG.getDataLayout())),
6471         std::move(Args));
6472 
6473     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6474     DAG.setRoot(Result.second);
6475     return;
6476   }
6477 
6478   case Intrinsic::uadd_with_overflow:
6479   case Intrinsic::sadd_with_overflow:
6480   case Intrinsic::usub_with_overflow:
6481   case Intrinsic::ssub_with_overflow:
6482   case Intrinsic::umul_with_overflow:
6483   case Intrinsic::smul_with_overflow: {
6484     ISD::NodeType Op;
6485     switch (Intrinsic) {
6486     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6487     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6488     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6489     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6490     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6491     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6492     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6493     }
6494     SDValue Op1 = getValue(I.getArgOperand(0));
6495     SDValue Op2 = getValue(I.getArgOperand(1));
6496 
6497     EVT ResultVT = Op1.getValueType();
6498     EVT OverflowVT = MVT::i1;
6499     if (ResultVT.isVector())
6500       OverflowVT = EVT::getVectorVT(
6501           *Context, OverflowVT, ResultVT.getVectorNumElements());
6502 
6503     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6504     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6505     return;
6506   }
6507   case Intrinsic::prefetch: {
6508     SDValue Ops[5];
6509     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6510     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6511     Ops[0] = DAG.getRoot();
6512     Ops[1] = getValue(I.getArgOperand(0));
6513     Ops[2] = getValue(I.getArgOperand(1));
6514     Ops[3] = getValue(I.getArgOperand(2));
6515     Ops[4] = getValue(I.getArgOperand(3));
6516     SDValue Result = DAG.getMemIntrinsicNode(
6517         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6518         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6519         /* align */ None, Flags);
6520 
6521     // Chain the prefetch in parallell with any pending loads, to stay out of
6522     // the way of later optimizations.
6523     PendingLoads.push_back(Result);
6524     Result = getRoot();
6525     DAG.setRoot(Result);
6526     return;
6527   }
6528   case Intrinsic::lifetime_start:
6529   case Intrinsic::lifetime_end: {
6530     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6531     // Stack coloring is not enabled in O0, discard region information.
6532     if (TM.getOptLevel() == CodeGenOpt::None)
6533       return;
6534 
6535     const int64_t ObjectSize =
6536         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6537     Value *const ObjectPtr = I.getArgOperand(1);
6538     SmallVector<const Value *, 4> Allocas;
6539     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6540 
6541     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6542            E = Allocas.end(); Object != E; ++Object) {
6543       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6544 
6545       // Could not find an Alloca.
6546       if (!LifetimeObject)
6547         continue;
6548 
6549       // First check that the Alloca is static, otherwise it won't have a
6550       // valid frame index.
6551       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6552       if (SI == FuncInfo.StaticAllocaMap.end())
6553         return;
6554 
6555       const int FrameIndex = SI->second;
6556       int64_t Offset;
6557       if (GetPointerBaseWithConstantOffset(
6558               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6559         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6560       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6561                                 Offset);
6562       DAG.setRoot(Res);
6563     }
6564     return;
6565   }
6566   case Intrinsic::invariant_start:
6567     // Discard region information.
6568     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6569     return;
6570   case Intrinsic::invariant_end:
6571     // Discard region information.
6572     return;
6573   case Intrinsic::clear_cache:
6574     /// FunctionName may be null.
6575     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6576       lowerCallToExternalSymbol(I, FunctionName);
6577     return;
6578   case Intrinsic::donothing:
6579     // ignore
6580     return;
6581   case Intrinsic::experimental_stackmap:
6582     visitStackmap(I);
6583     return;
6584   case Intrinsic::experimental_patchpoint_void:
6585   case Intrinsic::experimental_patchpoint_i64:
6586     visitPatchpoint(I);
6587     return;
6588   case Intrinsic::experimental_gc_statepoint:
6589     LowerStatepoint(ImmutableStatepoint(&I));
6590     return;
6591   case Intrinsic::experimental_gc_result:
6592     visitGCResult(cast<GCResultInst>(I));
6593     return;
6594   case Intrinsic::experimental_gc_relocate:
6595     visitGCRelocate(cast<GCRelocateInst>(I));
6596     return;
6597   case Intrinsic::instrprof_increment:
6598     llvm_unreachable("instrprof failed to lower an increment");
6599   case Intrinsic::instrprof_value_profile:
6600     llvm_unreachable("instrprof failed to lower a value profiling call");
6601   case Intrinsic::localescape: {
6602     MachineFunction &MF = DAG.getMachineFunction();
6603     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6604 
6605     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6606     // is the same on all targets.
6607     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6608       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6609       if (isa<ConstantPointerNull>(Arg))
6610         continue; // Skip null pointers. They represent a hole in index space.
6611       AllocaInst *Slot = cast<AllocaInst>(Arg);
6612       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6613              "can only escape static allocas");
6614       int FI = FuncInfo.StaticAllocaMap[Slot];
6615       MCSymbol *FrameAllocSym =
6616           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6617               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6618       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6619               TII->get(TargetOpcode::LOCAL_ESCAPE))
6620           .addSym(FrameAllocSym)
6621           .addFrameIndex(FI);
6622     }
6623 
6624     return;
6625   }
6626 
6627   case Intrinsic::localrecover: {
6628     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6629     MachineFunction &MF = DAG.getMachineFunction();
6630 
6631     // Get the symbol that defines the frame offset.
6632     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6633     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6634     unsigned IdxVal =
6635         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6636     MCSymbol *FrameAllocSym =
6637         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6638             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6639 
6640     Value *FP = I.getArgOperand(1);
6641     SDValue FPVal = getValue(FP);
6642     EVT PtrVT = FPVal.getValueType();
6643 
6644     // Create a MCSymbol for the label to avoid any target lowering
6645     // that would make this PC relative.
6646     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6647     SDValue OffsetVal =
6648         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6649 
6650     // Add the offset to the FP.
6651     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6652     setValue(&I, Add);
6653 
6654     return;
6655   }
6656 
6657   case Intrinsic::eh_exceptionpointer:
6658   case Intrinsic::eh_exceptioncode: {
6659     // Get the exception pointer vreg, copy from it, and resize it to fit.
6660     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6661     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6662     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6663     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6664     SDValue N =
6665         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6666     if (Intrinsic == Intrinsic::eh_exceptioncode)
6667       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6668     setValue(&I, N);
6669     return;
6670   }
6671   case Intrinsic::xray_customevent: {
6672     // Here we want to make sure that the intrinsic behaves as if it has a
6673     // specific calling convention, and only for x86_64.
6674     // FIXME: Support other platforms later.
6675     const auto &Triple = DAG.getTarget().getTargetTriple();
6676     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6677       return;
6678 
6679     SDLoc DL = getCurSDLoc();
6680     SmallVector<SDValue, 8> Ops;
6681 
6682     // We want to say that we always want the arguments in registers.
6683     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6684     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6685     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6686     SDValue Chain = getRoot();
6687     Ops.push_back(LogEntryVal);
6688     Ops.push_back(StrSizeVal);
6689     Ops.push_back(Chain);
6690 
6691     // We need to enforce the calling convention for the callsite, so that
6692     // argument ordering is enforced correctly, and that register allocation can
6693     // see that some registers may be assumed clobbered and have to preserve
6694     // them across calls to the intrinsic.
6695     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6696                                            DL, NodeTys, Ops);
6697     SDValue patchableNode = SDValue(MN, 0);
6698     DAG.setRoot(patchableNode);
6699     setValue(&I, patchableNode);
6700     return;
6701   }
6702   case Intrinsic::xray_typedevent: {
6703     // Here we want to make sure that the intrinsic behaves as if it has a
6704     // specific calling convention, and only for x86_64.
6705     // FIXME: Support other platforms later.
6706     const auto &Triple = DAG.getTarget().getTargetTriple();
6707     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6708       return;
6709 
6710     SDLoc DL = getCurSDLoc();
6711     SmallVector<SDValue, 8> Ops;
6712 
6713     // We want to say that we always want the arguments in registers.
6714     // It's unclear to me how manipulating the selection DAG here forces callers
6715     // to provide arguments in registers instead of on the stack.
6716     SDValue LogTypeId = getValue(I.getArgOperand(0));
6717     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6718     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6719     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6720     SDValue Chain = getRoot();
6721     Ops.push_back(LogTypeId);
6722     Ops.push_back(LogEntryVal);
6723     Ops.push_back(StrSizeVal);
6724     Ops.push_back(Chain);
6725 
6726     // We need to enforce the calling convention for the callsite, so that
6727     // argument ordering is enforced correctly, and that register allocation can
6728     // see that some registers may be assumed clobbered and have to preserve
6729     // them across calls to the intrinsic.
6730     MachineSDNode *MN = DAG.getMachineNode(
6731         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6732     SDValue patchableNode = SDValue(MN, 0);
6733     DAG.setRoot(patchableNode);
6734     setValue(&I, patchableNode);
6735     return;
6736   }
6737   case Intrinsic::experimental_deoptimize:
6738     LowerDeoptimizeCall(&I);
6739     return;
6740 
6741   case Intrinsic::experimental_vector_reduce_v2_fadd:
6742   case Intrinsic::experimental_vector_reduce_v2_fmul:
6743   case Intrinsic::experimental_vector_reduce_add:
6744   case Intrinsic::experimental_vector_reduce_mul:
6745   case Intrinsic::experimental_vector_reduce_and:
6746   case Intrinsic::experimental_vector_reduce_or:
6747   case Intrinsic::experimental_vector_reduce_xor:
6748   case Intrinsic::experimental_vector_reduce_smax:
6749   case Intrinsic::experimental_vector_reduce_smin:
6750   case Intrinsic::experimental_vector_reduce_umax:
6751   case Intrinsic::experimental_vector_reduce_umin:
6752   case Intrinsic::experimental_vector_reduce_fmax:
6753   case Intrinsic::experimental_vector_reduce_fmin:
6754     visitVectorReduce(I, Intrinsic);
6755     return;
6756 
6757   case Intrinsic::icall_branch_funnel: {
6758     SmallVector<SDValue, 16> Ops;
6759     Ops.push_back(getValue(I.getArgOperand(0)));
6760 
6761     int64_t Offset;
6762     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6763         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6764     if (!Base)
6765       report_fatal_error(
6766           "llvm.icall.branch.funnel operand must be a GlobalValue");
6767     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6768 
6769     struct BranchFunnelTarget {
6770       int64_t Offset;
6771       SDValue Target;
6772     };
6773     SmallVector<BranchFunnelTarget, 8> Targets;
6774 
6775     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6776       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6777           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6778       if (ElemBase != Base)
6779         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6780                            "to the same GlobalValue");
6781 
6782       SDValue Val = getValue(I.getArgOperand(Op + 1));
6783       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6784       if (!GA)
6785         report_fatal_error(
6786             "llvm.icall.branch.funnel operand must be a GlobalValue");
6787       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6788                                      GA->getGlobal(), getCurSDLoc(),
6789                                      Val.getValueType(), GA->getOffset())});
6790     }
6791     llvm::sort(Targets,
6792                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6793                  return T1.Offset < T2.Offset;
6794                });
6795 
6796     for (auto &T : Targets) {
6797       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6798       Ops.push_back(T.Target);
6799     }
6800 
6801     Ops.push_back(DAG.getRoot()); // Chain
6802     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6803                                  getCurSDLoc(), MVT::Other, Ops),
6804               0);
6805     DAG.setRoot(N);
6806     setValue(&I, N);
6807     HasTailCall = true;
6808     return;
6809   }
6810 
6811   case Intrinsic::wasm_landingpad_index:
6812     // Information this intrinsic contained has been transferred to
6813     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6814     // delete it now.
6815     return;
6816 
6817   case Intrinsic::aarch64_settag:
6818   case Intrinsic::aarch64_settag_zero: {
6819     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6820     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6821     SDValue Val = TSI.EmitTargetCodeForSetTag(
6822         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6823         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6824         ZeroMemory);
6825     DAG.setRoot(Val);
6826     setValue(&I, Val);
6827     return;
6828   }
6829   case Intrinsic::ptrmask: {
6830     SDValue Ptr = getValue(I.getOperand(0));
6831     SDValue Const = getValue(I.getOperand(1));
6832 
6833     EVT DestVT =
6834         EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6835 
6836     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6837                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6838     return;
6839   }
6840   }
6841 }
6842 
6843 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6844     const ConstrainedFPIntrinsic &FPI) {
6845   SDLoc sdl = getCurSDLoc();
6846 
6847   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6848   SmallVector<EVT, 4> ValueVTs;
6849   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6850   ValueVTs.push_back(MVT::Other); // Out chain
6851 
6852   // We do not need to serialize constrained FP intrinsics against
6853   // each other or against (nonvolatile) loads, so they can be
6854   // chained like loads.
6855   SDValue Chain = DAG.getRoot();
6856   SmallVector<SDValue, 4> Opers;
6857   Opers.push_back(Chain);
6858   if (FPI.isUnaryOp()) {
6859     Opers.push_back(getValue(FPI.getArgOperand(0)));
6860   } else if (FPI.isTernaryOp()) {
6861     Opers.push_back(getValue(FPI.getArgOperand(0)));
6862     Opers.push_back(getValue(FPI.getArgOperand(1)));
6863     Opers.push_back(getValue(FPI.getArgOperand(2)));
6864   } else {
6865     Opers.push_back(getValue(FPI.getArgOperand(0)));
6866     Opers.push_back(getValue(FPI.getArgOperand(1)));
6867   }
6868 
6869   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6870     assert(Result.getNode()->getNumValues() == 2);
6871 
6872     // Push node to the appropriate list so that future instructions can be
6873     // chained up correctly.
6874     SDValue OutChain = Result.getValue(1);
6875     switch (EB) {
6876     case fp::ExceptionBehavior::ebIgnore:
6877       // The only reason why ebIgnore nodes still need to be chained is that
6878       // they might depend on the current rounding mode, and therefore must
6879       // not be moved across instruction that may change that mode.
6880       LLVM_FALLTHROUGH;
6881     case fp::ExceptionBehavior::ebMayTrap:
6882       // These must not be moved across calls or instructions that may change
6883       // floating-point exception masks.
6884       PendingConstrainedFP.push_back(OutChain);
6885       break;
6886     case fp::ExceptionBehavior::ebStrict:
6887       // These must not be moved across calls or instructions that may change
6888       // floating-point exception masks or read floating-point exception flags.
6889       // In addition, they cannot be optimized out even if unused.
6890       PendingConstrainedFPStrict.push_back(OutChain);
6891       break;
6892     }
6893   };
6894 
6895   SDVTList VTs = DAG.getVTList(ValueVTs);
6896   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
6897 
6898   SDNodeFlags Flags;
6899   if (EB == fp::ExceptionBehavior::ebIgnore)
6900     Flags.setNoFPExcept(true);
6901 
6902   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
6903     Flags.copyFMF(*FPOp);
6904 
6905   unsigned Opcode;
6906   switch (FPI.getIntrinsicID()) {
6907   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6908 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
6909   case Intrinsic::INTRINSIC:                                                   \
6910     Opcode = ISD::STRICT_##DAGN;                                               \
6911     break;
6912 #include "llvm/IR/ConstrainedOps.def"
6913   case Intrinsic::experimental_constrained_fmuladd: {
6914     Opcode = ISD::STRICT_FMA;
6915     // Break fmuladd into fmul and fadd.
6916     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
6917         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
6918                                         ValueVTs[0])) {
6919       Opers.pop_back();
6920       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
6921       pushOutChain(Mul, EB);
6922       Opcode = ISD::STRICT_FADD;
6923       Opers.clear();
6924       Opers.push_back(Mul.getValue(1));
6925       Opers.push_back(Mul.getValue(0));
6926       Opers.push_back(getValue(FPI.getArgOperand(2)));
6927     }
6928     break;
6929   }
6930   }
6931 
6932   // A few strict DAG nodes carry additional operands that are not
6933   // set up by the default code above.
6934   switch (Opcode) {
6935   default: break;
6936   case ISD::STRICT_FP_ROUND:
6937     Opers.push_back(
6938         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
6939     break;
6940   case ISD::STRICT_FSETCC:
6941   case ISD::STRICT_FSETCCS: {
6942     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
6943     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
6944     break;
6945   }
6946   }
6947 
6948   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
6949   pushOutChain(Result, EB);
6950 
6951   SDValue FPResult = Result.getValue(0);
6952   setValue(&FPI, FPResult);
6953 }
6954 
6955 std::pair<SDValue, SDValue>
6956 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6957                                     const BasicBlock *EHPadBB) {
6958   MachineFunction &MF = DAG.getMachineFunction();
6959   MachineModuleInfo &MMI = MF.getMMI();
6960   MCSymbol *BeginLabel = nullptr;
6961 
6962   if (EHPadBB) {
6963     // Insert a label before the invoke call to mark the try range.  This can be
6964     // used to detect deletion of the invoke via the MachineModuleInfo.
6965     BeginLabel = MMI.getContext().createTempSymbol();
6966 
6967     // For SjLj, keep track of which landing pads go with which invokes
6968     // so as to maintain the ordering of pads in the LSDA.
6969     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6970     if (CallSiteIndex) {
6971       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6972       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6973 
6974       // Now that the call site is handled, stop tracking it.
6975       MMI.setCurrentCallSite(0);
6976     }
6977 
6978     // Both PendingLoads and PendingExports must be flushed here;
6979     // this call might not return.
6980     (void)getRoot();
6981     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6982 
6983     CLI.setChain(getRoot());
6984   }
6985   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6986   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6987 
6988   assert((CLI.IsTailCall || Result.second.getNode()) &&
6989          "Non-null chain expected with non-tail call!");
6990   assert((Result.second.getNode() || !Result.first.getNode()) &&
6991          "Null value expected with tail call!");
6992 
6993   if (!Result.second.getNode()) {
6994     // As a special case, a null chain means that a tail call has been emitted
6995     // and the DAG root is already updated.
6996     HasTailCall = true;
6997 
6998     // Since there's no actual continuation from this block, nothing can be
6999     // relying on us setting vregs for them.
7000     PendingExports.clear();
7001   } else {
7002     DAG.setRoot(Result.second);
7003   }
7004 
7005   if (EHPadBB) {
7006     // Insert a label at the end of the invoke call to mark the try range.  This
7007     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7008     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7009     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7010 
7011     // Inform MachineModuleInfo of range.
7012     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7013     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7014     // actually use outlined funclets and their LSDA info style.
7015     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7016       assert(CLI.CB);
7017       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7018       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7019     } else if (!isScopedEHPersonality(Pers)) {
7020       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7021     }
7022   }
7023 
7024   return Result;
7025 }
7026 
7027 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7028                                       bool isTailCall,
7029                                       const BasicBlock *EHPadBB) {
7030   auto &DL = DAG.getDataLayout();
7031   FunctionType *FTy = CB.getFunctionType();
7032   Type *RetTy = CB.getType();
7033 
7034   TargetLowering::ArgListTy Args;
7035   Args.reserve(CB.arg_size());
7036 
7037   const Value *SwiftErrorVal = nullptr;
7038   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7039 
7040   if (isTailCall) {
7041     // Avoid emitting tail calls in functions with the disable-tail-calls
7042     // attribute.
7043     auto *Caller = CB.getParent()->getParent();
7044     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7045         "true")
7046       isTailCall = false;
7047 
7048     // We can't tail call inside a function with a swifterror argument. Lowering
7049     // does not support this yet. It would have to move into the swifterror
7050     // register before the call.
7051     if (TLI.supportSwiftError() &&
7052         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7053       isTailCall = false;
7054   }
7055 
7056   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7057     TargetLowering::ArgListEntry Entry;
7058     const Value *V = *I;
7059 
7060     // Skip empty types
7061     if (V->getType()->isEmptyTy())
7062       continue;
7063 
7064     SDValue ArgNode = getValue(V);
7065     Entry.Node = ArgNode; Entry.Ty = V->getType();
7066 
7067     Entry.setAttributes(&CB, I - CB.arg_begin());
7068 
7069     // Use swifterror virtual register as input to the call.
7070     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7071       SwiftErrorVal = V;
7072       // We find the virtual register for the actual swifterror argument.
7073       // Instead of using the Value, we use the virtual register instead.
7074       Entry.Node =
7075           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7076                           EVT(TLI.getPointerTy(DL)));
7077     }
7078 
7079     Args.push_back(Entry);
7080 
7081     // If we have an explicit sret argument that is an Instruction, (i.e., it
7082     // might point to function-local memory), we can't meaningfully tail-call.
7083     if (Entry.IsSRet && isa<Instruction>(V))
7084       isTailCall = false;
7085   }
7086 
7087   // If call site has a cfguardtarget operand bundle, create and add an
7088   // additional ArgListEntry.
7089   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7090     TargetLowering::ArgListEntry Entry;
7091     Value *V = Bundle->Inputs[0];
7092     SDValue ArgNode = getValue(V);
7093     Entry.Node = ArgNode;
7094     Entry.Ty = V->getType();
7095     Entry.IsCFGuardTarget = true;
7096     Args.push_back(Entry);
7097   }
7098 
7099   // Check if target-independent constraints permit a tail call here.
7100   // Target-dependent constraints are checked within TLI->LowerCallTo.
7101   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7102     isTailCall = false;
7103 
7104   // Disable tail calls if there is an swifterror argument. Targets have not
7105   // been updated to support tail calls.
7106   if (TLI.supportSwiftError() && SwiftErrorVal)
7107     isTailCall = false;
7108 
7109   TargetLowering::CallLoweringInfo CLI(DAG);
7110   CLI.setDebugLoc(getCurSDLoc())
7111       .setChain(getRoot())
7112       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7113       .setTailCall(isTailCall)
7114       .setConvergent(CB.isConvergent());
7115   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7116 
7117   if (Result.first.getNode()) {
7118     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7119     setValue(&CB, Result.first);
7120   }
7121 
7122   // The last element of CLI.InVals has the SDValue for swifterror return.
7123   // Here we copy it to a virtual register and update SwiftErrorMap for
7124   // book-keeping.
7125   if (SwiftErrorVal && TLI.supportSwiftError()) {
7126     // Get the last element of InVals.
7127     SDValue Src = CLI.InVals.back();
7128     Register VReg =
7129         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7130     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7131     DAG.setRoot(CopyNode);
7132   }
7133 }
7134 
7135 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7136                              SelectionDAGBuilder &Builder) {
7137   // Check to see if this load can be trivially constant folded, e.g. if the
7138   // input is from a string literal.
7139   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7140     // Cast pointer to the type we really want to load.
7141     Type *LoadTy =
7142         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7143     if (LoadVT.isVector())
7144       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7145 
7146     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7147                                          PointerType::getUnqual(LoadTy));
7148 
7149     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7150             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7151       return Builder.getValue(LoadCst);
7152   }
7153 
7154   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7155   // still constant memory, the input chain can be the entry node.
7156   SDValue Root;
7157   bool ConstantMemory = false;
7158 
7159   // Do not serialize (non-volatile) loads of constant memory with anything.
7160   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7161     Root = Builder.DAG.getEntryNode();
7162     ConstantMemory = true;
7163   } else {
7164     // Do not serialize non-volatile loads against each other.
7165     Root = Builder.DAG.getRoot();
7166   }
7167 
7168   SDValue Ptr = Builder.getValue(PtrVal);
7169   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7170                                         Ptr, MachinePointerInfo(PtrVal),
7171                                         /* Alignment = */ 1);
7172 
7173   if (!ConstantMemory)
7174     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7175   return LoadVal;
7176 }
7177 
7178 /// Record the value for an instruction that produces an integer result,
7179 /// converting the type where necessary.
7180 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7181                                                   SDValue Value,
7182                                                   bool IsSigned) {
7183   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7184                                                     I.getType(), true);
7185   if (IsSigned)
7186     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7187   else
7188     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7189   setValue(&I, Value);
7190 }
7191 
7192 /// See if we can lower a memcmp call into an optimized form. If so, return
7193 /// true and lower it. Otherwise return false, and it will be lowered like a
7194 /// normal call.
7195 /// The caller already checked that \p I calls the appropriate LibFunc with a
7196 /// correct prototype.
7197 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7198   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7199   const Value *Size = I.getArgOperand(2);
7200   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7201   if (CSize && CSize->getZExtValue() == 0) {
7202     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7203                                                           I.getType(), true);
7204     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7205     return true;
7206   }
7207 
7208   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7209   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7210       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7211       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7212   if (Res.first.getNode()) {
7213     processIntegerCallValue(I, Res.first, true);
7214     PendingLoads.push_back(Res.second);
7215     return true;
7216   }
7217 
7218   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7219   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7220   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7221     return false;
7222 
7223   // If the target has a fast compare for the given size, it will return a
7224   // preferred load type for that size. Require that the load VT is legal and
7225   // that the target supports unaligned loads of that type. Otherwise, return
7226   // INVALID.
7227   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7228     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7229     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7230     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7231       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7232       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7233       // TODO: Check alignment of src and dest ptrs.
7234       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7235       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7236       if (!TLI.isTypeLegal(LVT) ||
7237           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7238           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7239         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7240     }
7241 
7242     return LVT;
7243   };
7244 
7245   // This turns into unaligned loads. We only do this if the target natively
7246   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7247   // we'll only produce a small number of byte loads.
7248   MVT LoadVT;
7249   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7250   switch (NumBitsToCompare) {
7251   default:
7252     return false;
7253   case 16:
7254     LoadVT = MVT::i16;
7255     break;
7256   case 32:
7257     LoadVT = MVT::i32;
7258     break;
7259   case 64:
7260   case 128:
7261   case 256:
7262     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7263     break;
7264   }
7265 
7266   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7267     return false;
7268 
7269   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7270   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7271 
7272   // Bitcast to a wide integer type if the loads are vectors.
7273   if (LoadVT.isVector()) {
7274     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7275     LoadL = DAG.getBitcast(CmpVT, LoadL);
7276     LoadR = DAG.getBitcast(CmpVT, LoadR);
7277   }
7278 
7279   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7280   processIntegerCallValue(I, Cmp, false);
7281   return true;
7282 }
7283 
7284 /// See if we can lower a memchr call into an optimized form. If so, return
7285 /// true and lower it. Otherwise return false, and it will be lowered like a
7286 /// normal call.
7287 /// The caller already checked that \p I calls the appropriate LibFunc with a
7288 /// correct prototype.
7289 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7290   const Value *Src = I.getArgOperand(0);
7291   const Value *Char = I.getArgOperand(1);
7292   const Value *Length = I.getArgOperand(2);
7293 
7294   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7295   std::pair<SDValue, SDValue> Res =
7296     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7297                                 getValue(Src), getValue(Char), getValue(Length),
7298                                 MachinePointerInfo(Src));
7299   if (Res.first.getNode()) {
7300     setValue(&I, Res.first);
7301     PendingLoads.push_back(Res.second);
7302     return true;
7303   }
7304 
7305   return false;
7306 }
7307 
7308 /// See if we can lower a mempcpy call into an optimized form. If so, return
7309 /// true and lower it. Otherwise return false, and it will be lowered like a
7310 /// normal call.
7311 /// The caller already checked that \p I calls the appropriate LibFunc with a
7312 /// correct prototype.
7313 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7314   SDValue Dst = getValue(I.getArgOperand(0));
7315   SDValue Src = getValue(I.getArgOperand(1));
7316   SDValue Size = getValue(I.getArgOperand(2));
7317 
7318   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7319   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7320   // DAG::getMemcpy needs Alignment to be defined.
7321   Align Alignment = std::min(DstAlign, SrcAlign);
7322 
7323   bool isVol = false;
7324   SDLoc sdl = getCurSDLoc();
7325 
7326   // In the mempcpy context we need to pass in a false value for isTailCall
7327   // because the return pointer needs to be adjusted by the size of
7328   // the copied memory.
7329   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7330   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7331                              /*isTailCall=*/false,
7332                              MachinePointerInfo(I.getArgOperand(0)),
7333                              MachinePointerInfo(I.getArgOperand(1)));
7334   assert(MC.getNode() != nullptr &&
7335          "** memcpy should not be lowered as TailCall in mempcpy context **");
7336   DAG.setRoot(MC);
7337 
7338   // Check if Size needs to be truncated or extended.
7339   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7340 
7341   // Adjust return pointer to point just past the last dst byte.
7342   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7343                                     Dst, Size);
7344   setValue(&I, DstPlusSize);
7345   return true;
7346 }
7347 
7348 /// See if we can lower a strcpy call into an optimized form.  If so, return
7349 /// true and lower it, otherwise return false and it will be lowered like a
7350 /// normal call.
7351 /// The caller already checked that \p I calls the appropriate LibFunc with a
7352 /// correct prototype.
7353 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7354   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7355 
7356   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7357   std::pair<SDValue, SDValue> Res =
7358     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7359                                 getValue(Arg0), getValue(Arg1),
7360                                 MachinePointerInfo(Arg0),
7361                                 MachinePointerInfo(Arg1), isStpcpy);
7362   if (Res.first.getNode()) {
7363     setValue(&I, Res.first);
7364     DAG.setRoot(Res.second);
7365     return true;
7366   }
7367 
7368   return false;
7369 }
7370 
7371 /// See if we can lower a strcmp call into an optimized form.  If so, return
7372 /// true and lower it, otherwise return false and it will be lowered like a
7373 /// normal call.
7374 /// The caller already checked that \p I calls the appropriate LibFunc with a
7375 /// correct prototype.
7376 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7377   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7378 
7379   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7380   std::pair<SDValue, SDValue> Res =
7381     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7382                                 getValue(Arg0), getValue(Arg1),
7383                                 MachinePointerInfo(Arg0),
7384                                 MachinePointerInfo(Arg1));
7385   if (Res.first.getNode()) {
7386     processIntegerCallValue(I, Res.first, true);
7387     PendingLoads.push_back(Res.second);
7388     return true;
7389   }
7390 
7391   return false;
7392 }
7393 
7394 /// See if we can lower a strlen call into an optimized form.  If so, return
7395 /// true and lower it, otherwise return false and it will be lowered like a
7396 /// normal call.
7397 /// The caller already checked that \p I calls the appropriate LibFunc with a
7398 /// correct prototype.
7399 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7400   const Value *Arg0 = I.getArgOperand(0);
7401 
7402   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7403   std::pair<SDValue, SDValue> Res =
7404     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7405                                 getValue(Arg0), MachinePointerInfo(Arg0));
7406   if (Res.first.getNode()) {
7407     processIntegerCallValue(I, Res.first, false);
7408     PendingLoads.push_back(Res.second);
7409     return true;
7410   }
7411 
7412   return false;
7413 }
7414 
7415 /// See if we can lower a strnlen call into an optimized form.  If so, return
7416 /// true and lower it, otherwise return false and it will be lowered like a
7417 /// normal call.
7418 /// The caller already checked that \p I calls the appropriate LibFunc with a
7419 /// correct prototype.
7420 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7421   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7422 
7423   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7424   std::pair<SDValue, SDValue> Res =
7425     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7426                                  getValue(Arg0), getValue(Arg1),
7427                                  MachinePointerInfo(Arg0));
7428   if (Res.first.getNode()) {
7429     processIntegerCallValue(I, Res.first, false);
7430     PendingLoads.push_back(Res.second);
7431     return true;
7432   }
7433 
7434   return false;
7435 }
7436 
7437 /// See if we can lower a unary floating-point operation into an SDNode with
7438 /// the specified Opcode.  If so, return true and lower it, otherwise return
7439 /// false and it will be lowered like a normal call.
7440 /// The caller already checked that \p I calls the appropriate LibFunc with a
7441 /// correct prototype.
7442 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7443                                               unsigned Opcode) {
7444   // We already checked this call's prototype; verify it doesn't modify errno.
7445   if (!I.onlyReadsMemory())
7446     return false;
7447 
7448   SDValue Tmp = getValue(I.getArgOperand(0));
7449   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7450   return true;
7451 }
7452 
7453 /// See if we can lower a binary floating-point operation into an SDNode with
7454 /// the specified Opcode. If so, return true and lower it. Otherwise return
7455 /// false, and it will be lowered like a normal call.
7456 /// The caller already checked that \p I calls the appropriate LibFunc with a
7457 /// correct prototype.
7458 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7459                                                unsigned Opcode) {
7460   // We already checked this call's prototype; verify it doesn't modify errno.
7461   if (!I.onlyReadsMemory())
7462     return false;
7463 
7464   SDValue Tmp0 = getValue(I.getArgOperand(0));
7465   SDValue Tmp1 = getValue(I.getArgOperand(1));
7466   EVT VT = Tmp0.getValueType();
7467   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7468   return true;
7469 }
7470 
7471 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7472   // Handle inline assembly differently.
7473   if (isa<InlineAsm>(I.getCalledValue())) {
7474     visitInlineAsm(I);
7475     return;
7476   }
7477 
7478   if (Function *F = I.getCalledFunction()) {
7479     if (F->isDeclaration()) {
7480       // Is this an LLVM intrinsic or a target-specific intrinsic?
7481       unsigned IID = F->getIntrinsicID();
7482       if (!IID)
7483         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7484           IID = II->getIntrinsicID(F);
7485 
7486       if (IID) {
7487         visitIntrinsicCall(I, IID);
7488         return;
7489       }
7490     }
7491 
7492     // Check for well-known libc/libm calls.  If the function is internal, it
7493     // can't be a library call.  Don't do the check if marked as nobuiltin for
7494     // some reason or the call site requires strict floating point semantics.
7495     LibFunc Func;
7496     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7497         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7498         LibInfo->hasOptimizedCodeGen(Func)) {
7499       switch (Func) {
7500       default: break;
7501       case LibFunc_copysign:
7502       case LibFunc_copysignf:
7503       case LibFunc_copysignl:
7504         // We already checked this call's prototype; verify it doesn't modify
7505         // errno.
7506         if (I.onlyReadsMemory()) {
7507           SDValue LHS = getValue(I.getArgOperand(0));
7508           SDValue RHS = getValue(I.getArgOperand(1));
7509           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7510                                    LHS.getValueType(), LHS, RHS));
7511           return;
7512         }
7513         break;
7514       case LibFunc_fabs:
7515       case LibFunc_fabsf:
7516       case LibFunc_fabsl:
7517         if (visitUnaryFloatCall(I, ISD::FABS))
7518           return;
7519         break;
7520       case LibFunc_fmin:
7521       case LibFunc_fminf:
7522       case LibFunc_fminl:
7523         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7524           return;
7525         break;
7526       case LibFunc_fmax:
7527       case LibFunc_fmaxf:
7528       case LibFunc_fmaxl:
7529         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7530           return;
7531         break;
7532       case LibFunc_sin:
7533       case LibFunc_sinf:
7534       case LibFunc_sinl:
7535         if (visitUnaryFloatCall(I, ISD::FSIN))
7536           return;
7537         break;
7538       case LibFunc_cos:
7539       case LibFunc_cosf:
7540       case LibFunc_cosl:
7541         if (visitUnaryFloatCall(I, ISD::FCOS))
7542           return;
7543         break;
7544       case LibFunc_sqrt:
7545       case LibFunc_sqrtf:
7546       case LibFunc_sqrtl:
7547       case LibFunc_sqrt_finite:
7548       case LibFunc_sqrtf_finite:
7549       case LibFunc_sqrtl_finite:
7550         if (visitUnaryFloatCall(I, ISD::FSQRT))
7551           return;
7552         break;
7553       case LibFunc_floor:
7554       case LibFunc_floorf:
7555       case LibFunc_floorl:
7556         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7557           return;
7558         break;
7559       case LibFunc_nearbyint:
7560       case LibFunc_nearbyintf:
7561       case LibFunc_nearbyintl:
7562         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7563           return;
7564         break;
7565       case LibFunc_ceil:
7566       case LibFunc_ceilf:
7567       case LibFunc_ceill:
7568         if (visitUnaryFloatCall(I, ISD::FCEIL))
7569           return;
7570         break;
7571       case LibFunc_rint:
7572       case LibFunc_rintf:
7573       case LibFunc_rintl:
7574         if (visitUnaryFloatCall(I, ISD::FRINT))
7575           return;
7576         break;
7577       case LibFunc_round:
7578       case LibFunc_roundf:
7579       case LibFunc_roundl:
7580         if (visitUnaryFloatCall(I, ISD::FROUND))
7581           return;
7582         break;
7583       case LibFunc_trunc:
7584       case LibFunc_truncf:
7585       case LibFunc_truncl:
7586         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7587           return;
7588         break;
7589       case LibFunc_log2:
7590       case LibFunc_log2f:
7591       case LibFunc_log2l:
7592         if (visitUnaryFloatCall(I, ISD::FLOG2))
7593           return;
7594         break;
7595       case LibFunc_exp2:
7596       case LibFunc_exp2f:
7597       case LibFunc_exp2l:
7598         if (visitUnaryFloatCall(I, ISD::FEXP2))
7599           return;
7600         break;
7601       case LibFunc_memcmp:
7602         if (visitMemCmpCall(I))
7603           return;
7604         break;
7605       case LibFunc_mempcpy:
7606         if (visitMemPCpyCall(I))
7607           return;
7608         break;
7609       case LibFunc_memchr:
7610         if (visitMemChrCall(I))
7611           return;
7612         break;
7613       case LibFunc_strcpy:
7614         if (visitStrCpyCall(I, false))
7615           return;
7616         break;
7617       case LibFunc_stpcpy:
7618         if (visitStrCpyCall(I, true))
7619           return;
7620         break;
7621       case LibFunc_strcmp:
7622         if (visitStrCmpCall(I))
7623           return;
7624         break;
7625       case LibFunc_strlen:
7626         if (visitStrLenCall(I))
7627           return;
7628         break;
7629       case LibFunc_strnlen:
7630         if (visitStrNLenCall(I))
7631           return;
7632         break;
7633       }
7634     }
7635   }
7636 
7637   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7638   // have to do anything here to lower funclet bundles.
7639   // CFGuardTarget bundles are lowered in LowerCallTo.
7640   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
7641                                         LLVMContext::OB_funclet,
7642                                         LLVMContext::OB_cfguardtarget}) &&
7643          "Cannot lower calls with arbitrary operand bundles!");
7644 
7645   SDValue Callee = getValue(I.getCalledValue());
7646 
7647   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7648     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7649   else
7650     // Check if we can potentially perform a tail call. More detailed checking
7651     // is be done within LowerCallTo, after more information about the call is
7652     // known.
7653     LowerCallTo(I, Callee, I.isTailCall());
7654 }
7655 
7656 namespace {
7657 
7658 /// AsmOperandInfo - This contains information for each constraint that we are
7659 /// lowering.
7660 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7661 public:
7662   /// CallOperand - If this is the result output operand or a clobber
7663   /// this is null, otherwise it is the incoming operand to the CallInst.
7664   /// This gets modified as the asm is processed.
7665   SDValue CallOperand;
7666 
7667   /// AssignedRegs - If this is a register or register class operand, this
7668   /// contains the set of register corresponding to the operand.
7669   RegsForValue AssignedRegs;
7670 
7671   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7672     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7673   }
7674 
7675   /// Whether or not this operand accesses memory
7676   bool hasMemory(const TargetLowering &TLI) const {
7677     // Indirect operand accesses access memory.
7678     if (isIndirect)
7679       return true;
7680 
7681     for (const auto &Code : Codes)
7682       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7683         return true;
7684 
7685     return false;
7686   }
7687 
7688   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7689   /// corresponds to.  If there is no Value* for this operand, it returns
7690   /// MVT::Other.
7691   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7692                            const DataLayout &DL) const {
7693     if (!CallOperandVal) return MVT::Other;
7694 
7695     if (isa<BasicBlock>(CallOperandVal))
7696       return TLI.getProgramPointerTy(DL);
7697 
7698     llvm::Type *OpTy = CallOperandVal->getType();
7699 
7700     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7701     // If this is an indirect operand, the operand is a pointer to the
7702     // accessed type.
7703     if (isIndirect) {
7704       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7705       if (!PtrTy)
7706         report_fatal_error("Indirect operand for inline asm not a pointer!");
7707       OpTy = PtrTy->getElementType();
7708     }
7709 
7710     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7711     if (StructType *STy = dyn_cast<StructType>(OpTy))
7712       if (STy->getNumElements() == 1)
7713         OpTy = STy->getElementType(0);
7714 
7715     // If OpTy is not a single value, it may be a struct/union that we
7716     // can tile with integers.
7717     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7718       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7719       switch (BitSize) {
7720       default: break;
7721       case 1:
7722       case 8:
7723       case 16:
7724       case 32:
7725       case 64:
7726       case 128:
7727         OpTy = IntegerType::get(Context, BitSize);
7728         break;
7729       }
7730     }
7731 
7732     return TLI.getValueType(DL, OpTy, true);
7733   }
7734 };
7735 
7736 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7737 
7738 } // end anonymous namespace
7739 
7740 /// Make sure that the output operand \p OpInfo and its corresponding input
7741 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7742 /// out).
7743 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7744                                SDISelAsmOperandInfo &MatchingOpInfo,
7745                                SelectionDAG &DAG) {
7746   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7747     return;
7748 
7749   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7750   const auto &TLI = DAG.getTargetLoweringInfo();
7751 
7752   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7753       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7754                                        OpInfo.ConstraintVT);
7755   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7756       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7757                                        MatchingOpInfo.ConstraintVT);
7758   if ((OpInfo.ConstraintVT.isInteger() !=
7759        MatchingOpInfo.ConstraintVT.isInteger()) ||
7760       (MatchRC.second != InputRC.second)) {
7761     // FIXME: error out in a more elegant fashion
7762     report_fatal_error("Unsupported asm: input constraint"
7763                        " with a matching output constraint of"
7764                        " incompatible type!");
7765   }
7766   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7767 }
7768 
7769 /// Get a direct memory input to behave well as an indirect operand.
7770 /// This may introduce stores, hence the need for a \p Chain.
7771 /// \return The (possibly updated) chain.
7772 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7773                                         SDISelAsmOperandInfo &OpInfo,
7774                                         SelectionDAG &DAG) {
7775   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7776 
7777   // If we don't have an indirect input, put it in the constpool if we can,
7778   // otherwise spill it to a stack slot.
7779   // TODO: This isn't quite right. We need to handle these according to
7780   // the addressing mode that the constraint wants. Also, this may take
7781   // an additional register for the computation and we don't want that
7782   // either.
7783 
7784   // If the operand is a float, integer, or vector constant, spill to a
7785   // constant pool entry to get its address.
7786   const Value *OpVal = OpInfo.CallOperandVal;
7787   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7788       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7789     OpInfo.CallOperand = DAG.getConstantPool(
7790         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7791     return Chain;
7792   }
7793 
7794   // Otherwise, create a stack slot and emit a store to it before the asm.
7795   Type *Ty = OpVal->getType();
7796   auto &DL = DAG.getDataLayout();
7797   uint64_t TySize = DL.getTypeAllocSize(Ty);
7798   unsigned Align = DL.getPrefTypeAlignment(Ty);
7799   MachineFunction &MF = DAG.getMachineFunction();
7800   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7801   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7802   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7803                             MachinePointerInfo::getFixedStack(MF, SSFI),
7804                             TLI.getMemValueType(DL, Ty));
7805   OpInfo.CallOperand = StackSlot;
7806 
7807   return Chain;
7808 }
7809 
7810 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7811 /// specified operand.  We prefer to assign virtual registers, to allow the
7812 /// register allocator to handle the assignment process.  However, if the asm
7813 /// uses features that we can't model on machineinstrs, we have SDISel do the
7814 /// allocation.  This produces generally horrible, but correct, code.
7815 ///
7816 ///   OpInfo describes the operand
7817 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7818 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7819                                  SDISelAsmOperandInfo &OpInfo,
7820                                  SDISelAsmOperandInfo &RefOpInfo) {
7821   LLVMContext &Context = *DAG.getContext();
7822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7823 
7824   MachineFunction &MF = DAG.getMachineFunction();
7825   SmallVector<unsigned, 4> Regs;
7826   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7827 
7828   // No work to do for memory operations.
7829   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7830     return;
7831 
7832   // If this is a constraint for a single physreg, or a constraint for a
7833   // register class, find it.
7834   unsigned AssignedReg;
7835   const TargetRegisterClass *RC;
7836   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7837       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7838   // RC is unset only on failure. Return immediately.
7839   if (!RC)
7840     return;
7841 
7842   // Get the actual register value type.  This is important, because the user
7843   // may have asked for (e.g.) the AX register in i32 type.  We need to
7844   // remember that AX is actually i16 to get the right extension.
7845   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7846 
7847   if (OpInfo.ConstraintVT != MVT::Other) {
7848     // If this is an FP operand in an integer register (or visa versa), or more
7849     // generally if the operand value disagrees with the register class we plan
7850     // to stick it in, fix the operand type.
7851     //
7852     // If this is an input value, the bitcast to the new type is done now.
7853     // Bitcast for output value is done at the end of visitInlineAsm().
7854     if ((OpInfo.Type == InlineAsm::isOutput ||
7855          OpInfo.Type == InlineAsm::isInput) &&
7856         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7857       // Try to convert to the first EVT that the reg class contains.  If the
7858       // types are identical size, use a bitcast to convert (e.g. two differing
7859       // vector types).  Note: output bitcast is done at the end of
7860       // visitInlineAsm().
7861       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7862         // Exclude indirect inputs while they are unsupported because the code
7863         // to perform the load is missing and thus OpInfo.CallOperand still
7864         // refers to the input address rather than the pointed-to value.
7865         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7866           OpInfo.CallOperand =
7867               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7868         OpInfo.ConstraintVT = RegVT;
7869         // If the operand is an FP value and we want it in integer registers,
7870         // use the corresponding integer type. This turns an f64 value into
7871         // i64, which can be passed with two i32 values on a 32-bit machine.
7872       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7873         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7874         if (OpInfo.Type == InlineAsm::isInput)
7875           OpInfo.CallOperand =
7876               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7877         OpInfo.ConstraintVT = VT;
7878       }
7879     }
7880   }
7881 
7882   // No need to allocate a matching input constraint since the constraint it's
7883   // matching to has already been allocated.
7884   if (OpInfo.isMatchingInputConstraint())
7885     return;
7886 
7887   EVT ValueVT = OpInfo.ConstraintVT;
7888   if (OpInfo.ConstraintVT == MVT::Other)
7889     ValueVT = RegVT;
7890 
7891   // Initialize NumRegs.
7892   unsigned NumRegs = 1;
7893   if (OpInfo.ConstraintVT != MVT::Other)
7894     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7895 
7896   // If this is a constraint for a specific physical register, like {r17},
7897   // assign it now.
7898 
7899   // If this associated to a specific register, initialize iterator to correct
7900   // place. If virtual, make sure we have enough registers
7901 
7902   // Initialize iterator if necessary
7903   TargetRegisterClass::iterator I = RC->begin();
7904   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7905 
7906   // Do not check for single registers.
7907   if (AssignedReg) {
7908       for (; *I != AssignedReg; ++I)
7909         assert(I != RC->end() && "AssignedReg should be member of RC");
7910   }
7911 
7912   for (; NumRegs; --NumRegs, ++I) {
7913     assert(I != RC->end() && "Ran out of registers to allocate!");
7914     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7915     Regs.push_back(R);
7916   }
7917 
7918   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7919 }
7920 
7921 static unsigned
7922 findMatchingInlineAsmOperand(unsigned OperandNo,
7923                              const std::vector<SDValue> &AsmNodeOperands) {
7924   // Scan until we find the definition we already emitted of this operand.
7925   unsigned CurOp = InlineAsm::Op_FirstOperand;
7926   for (; OperandNo; --OperandNo) {
7927     // Advance to the next operand.
7928     unsigned OpFlag =
7929         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7930     assert((InlineAsm::isRegDefKind(OpFlag) ||
7931             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7932             InlineAsm::isMemKind(OpFlag)) &&
7933            "Skipped past definitions?");
7934     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7935   }
7936   return CurOp;
7937 }
7938 
7939 namespace {
7940 
7941 class ExtraFlags {
7942   unsigned Flags = 0;
7943 
7944 public:
7945   explicit ExtraFlags(const CallBase &Call) {
7946     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledValue());
7947     if (IA->hasSideEffects())
7948       Flags |= InlineAsm::Extra_HasSideEffects;
7949     if (IA->isAlignStack())
7950       Flags |= InlineAsm::Extra_IsAlignStack;
7951     if (Call.isConvergent())
7952       Flags |= InlineAsm::Extra_IsConvergent;
7953     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7954   }
7955 
7956   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7957     // Ideally, we would only check against memory constraints.  However, the
7958     // meaning of an Other constraint can be target-specific and we can't easily
7959     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7960     // for Other constraints as well.
7961     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7962         OpInfo.ConstraintType == TargetLowering::C_Other) {
7963       if (OpInfo.Type == InlineAsm::isInput)
7964         Flags |= InlineAsm::Extra_MayLoad;
7965       else if (OpInfo.Type == InlineAsm::isOutput)
7966         Flags |= InlineAsm::Extra_MayStore;
7967       else if (OpInfo.Type == InlineAsm::isClobber)
7968         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7969     }
7970   }
7971 
7972   unsigned get() const { return Flags; }
7973 };
7974 
7975 } // end anonymous namespace
7976 
7977 /// visitInlineAsm - Handle a call to an InlineAsm object.
7978 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
7979   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledValue());
7980 
7981   /// ConstraintOperands - Information about all of the constraints.
7982   SDISelAsmOperandInfoVector ConstraintOperands;
7983 
7984   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7985   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7986       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
7987 
7988   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7989   // AsmDialect, MayLoad, MayStore).
7990   bool HasSideEffect = IA->hasSideEffects();
7991   ExtraFlags ExtraInfo(Call);
7992 
7993   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7994   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7995   unsigned NumMatchingOps = 0;
7996   for (auto &T : TargetConstraints) {
7997     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7998     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7999 
8000     // Compute the value type for each operand.
8001     if (OpInfo.Type == InlineAsm::isInput ||
8002         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8003       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8004 
8005       // Process the call argument. BasicBlocks are labels, currently appearing
8006       // only in asm's.
8007       if (isa<CallBrInst>(Call) &&
8008           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8009                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8010                         NumMatchingOps) &&
8011           (NumMatchingOps == 0 ||
8012            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8013                         NumMatchingOps))) {
8014         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8015         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8016         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8017       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8018         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8019       } else {
8020         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8021       }
8022 
8023       OpInfo.ConstraintVT =
8024           OpInfo
8025               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8026               .getSimpleVT();
8027     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8028       // The return value of the call is this value.  As such, there is no
8029       // corresponding argument.
8030       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8031       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8032         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8033             DAG.getDataLayout(), STy->getElementType(ResNo));
8034       } else {
8035         assert(ResNo == 0 && "Asm only has one result!");
8036         OpInfo.ConstraintVT =
8037             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8038       }
8039       ++ResNo;
8040     } else {
8041       OpInfo.ConstraintVT = MVT::Other;
8042     }
8043 
8044     if (OpInfo.hasMatchingInput())
8045       ++NumMatchingOps;
8046 
8047     if (!HasSideEffect)
8048       HasSideEffect = OpInfo.hasMemory(TLI);
8049 
8050     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8051     // FIXME: Could we compute this on OpInfo rather than T?
8052 
8053     // Compute the constraint code and ConstraintType to use.
8054     TLI.ComputeConstraintToUse(T, SDValue());
8055 
8056     if (T.ConstraintType == TargetLowering::C_Immediate &&
8057         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8058       // We've delayed emitting a diagnostic like the "n" constraint because
8059       // inlining could cause an integer showing up.
8060       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8061                                           "' expects an integer constant "
8062                                           "expression");
8063 
8064     ExtraInfo.update(T);
8065   }
8066 
8067 
8068   // We won't need to flush pending loads if this asm doesn't touch
8069   // memory and is nonvolatile.
8070   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8071 
8072   bool IsCallBr = isa<CallBrInst>(Call);
8073   if (IsCallBr) {
8074     // If this is a callbr we need to flush pending exports since inlineasm_br
8075     // is a terminator. We need to do this before nodes are glued to
8076     // the inlineasm_br node.
8077     Chain = getControlRoot();
8078   }
8079 
8080   // Second pass over the constraints: compute which constraint option to use.
8081   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8082     // If this is an output operand with a matching input operand, look up the
8083     // matching input. If their types mismatch, e.g. one is an integer, the
8084     // other is floating point, or their sizes are different, flag it as an
8085     // error.
8086     if (OpInfo.hasMatchingInput()) {
8087       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8088       patchMatchingInput(OpInfo, Input, DAG);
8089     }
8090 
8091     // Compute the constraint code and ConstraintType to use.
8092     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8093 
8094     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8095         OpInfo.Type == InlineAsm::isClobber)
8096       continue;
8097 
8098     // If this is a memory input, and if the operand is not indirect, do what we
8099     // need to provide an address for the memory input.
8100     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8101         !OpInfo.isIndirect) {
8102       assert((OpInfo.isMultipleAlternative ||
8103               (OpInfo.Type == InlineAsm::isInput)) &&
8104              "Can only indirectify direct input operands!");
8105 
8106       // Memory operands really want the address of the value.
8107       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8108 
8109       // There is no longer a Value* corresponding to this operand.
8110       OpInfo.CallOperandVal = nullptr;
8111 
8112       // It is now an indirect operand.
8113       OpInfo.isIndirect = true;
8114     }
8115 
8116   }
8117 
8118   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8119   std::vector<SDValue> AsmNodeOperands;
8120   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8121   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8122       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8123 
8124   // If we have a !srcloc metadata node associated with it, we want to attach
8125   // this to the ultimately generated inline asm machineinstr.  To do this, we
8126   // pass in the third operand as this (potentially null) inline asm MDNode.
8127   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8128   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8129 
8130   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8131   // bits as operand 3.
8132   AsmNodeOperands.push_back(DAG.getTargetConstant(
8133       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8134 
8135   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8136   // this, assign virtual and physical registers for inputs and otput.
8137   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8138     // Assign Registers.
8139     SDISelAsmOperandInfo &RefOpInfo =
8140         OpInfo.isMatchingInputConstraint()
8141             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8142             : OpInfo;
8143     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8144 
8145     auto DetectWriteToReservedRegister = [&]() {
8146       const MachineFunction &MF = DAG.getMachineFunction();
8147       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8148       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8149         if (Register::isPhysicalRegister(Reg) &&
8150             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8151           const char *RegName = TRI.getName(Reg);
8152           emitInlineAsmError(Call, "write to reserved register '" +
8153                                        Twine(RegName) + "'");
8154           return true;
8155         }
8156       }
8157       return false;
8158     };
8159 
8160     switch (OpInfo.Type) {
8161     case InlineAsm::isOutput:
8162       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8163         unsigned ConstraintID =
8164             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8165         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8166                "Failed to convert memory constraint code to constraint id.");
8167 
8168         // Add information to the INLINEASM node to know about this output.
8169         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8170         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8171         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8172                                                         MVT::i32));
8173         AsmNodeOperands.push_back(OpInfo.CallOperand);
8174       } else {
8175         // Otherwise, this outputs to a register (directly for C_Register /
8176         // C_RegisterClass, and a target-defined fashion for
8177         // C_Immediate/C_Other). Find a register that we can use.
8178         if (OpInfo.AssignedRegs.Regs.empty()) {
8179           emitInlineAsmError(
8180               Call, "couldn't allocate output register for constraint '" +
8181                         Twine(OpInfo.ConstraintCode) + "'");
8182           return;
8183         }
8184 
8185         if (DetectWriteToReservedRegister())
8186           return;
8187 
8188         // Add information to the INLINEASM node to know that this register is
8189         // set.
8190         OpInfo.AssignedRegs.AddInlineAsmOperands(
8191             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8192                                   : InlineAsm::Kind_RegDef,
8193             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8194       }
8195       break;
8196 
8197     case InlineAsm::isInput: {
8198       SDValue InOperandVal = OpInfo.CallOperand;
8199 
8200       if (OpInfo.isMatchingInputConstraint()) {
8201         // If this is required to match an output register we have already set,
8202         // just use its register.
8203         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8204                                                   AsmNodeOperands);
8205         unsigned OpFlag =
8206           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8207         if (InlineAsm::isRegDefKind(OpFlag) ||
8208             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8209           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8210           if (OpInfo.isIndirect) {
8211             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8212             emitInlineAsmError(Call, "inline asm not supported yet: "
8213                                      "don't know how to handle tied "
8214                                      "indirect register inputs");
8215             return;
8216           }
8217 
8218           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8219           SmallVector<unsigned, 4> Regs;
8220 
8221           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8222             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8223             MachineRegisterInfo &RegInfo =
8224                 DAG.getMachineFunction().getRegInfo();
8225             for (unsigned i = 0; i != NumRegs; ++i)
8226               Regs.push_back(RegInfo.createVirtualRegister(RC));
8227           } else {
8228             emitInlineAsmError(Call,
8229                                "inline asm error: This value type register "
8230                                "class is not natively supported!");
8231             return;
8232           }
8233 
8234           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8235 
8236           SDLoc dl = getCurSDLoc();
8237           // Use the produced MatchedRegs object to
8238           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8239           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8240                                            true, OpInfo.getMatchedOperand(), dl,
8241                                            DAG, AsmNodeOperands);
8242           break;
8243         }
8244 
8245         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8246         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8247                "Unexpected number of operands");
8248         // Add information to the INLINEASM node to know about this input.
8249         // See InlineAsm.h isUseOperandTiedToDef.
8250         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8251         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8252                                                     OpInfo.getMatchedOperand());
8253         AsmNodeOperands.push_back(DAG.getTargetConstant(
8254             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8255         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8256         break;
8257       }
8258 
8259       // Treat indirect 'X' constraint as memory.
8260       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8261           OpInfo.isIndirect)
8262         OpInfo.ConstraintType = TargetLowering::C_Memory;
8263 
8264       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8265           OpInfo.ConstraintType == TargetLowering::C_Other) {
8266         std::vector<SDValue> Ops;
8267         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8268                                           Ops, DAG);
8269         if (Ops.empty()) {
8270           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8271             if (isa<ConstantSDNode>(InOperandVal)) {
8272               emitInlineAsmError(Call, "value out of range for constraint '" +
8273                                            Twine(OpInfo.ConstraintCode) + "'");
8274               return;
8275             }
8276 
8277           emitInlineAsmError(Call,
8278                              "invalid operand for inline asm constraint '" +
8279                                  Twine(OpInfo.ConstraintCode) + "'");
8280           return;
8281         }
8282 
8283         // Add information to the INLINEASM node to know about this input.
8284         unsigned ResOpType =
8285           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8286         AsmNodeOperands.push_back(DAG.getTargetConstant(
8287             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8288         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8289         break;
8290       }
8291 
8292       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8293         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8294         assert(InOperandVal.getValueType() ==
8295                    TLI.getPointerTy(DAG.getDataLayout()) &&
8296                "Memory operands expect pointer values");
8297 
8298         unsigned ConstraintID =
8299             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8300         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8301                "Failed to convert memory constraint code to constraint id.");
8302 
8303         // Add information to the INLINEASM node to know about this input.
8304         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8305         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8306         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8307                                                         getCurSDLoc(),
8308                                                         MVT::i32));
8309         AsmNodeOperands.push_back(InOperandVal);
8310         break;
8311       }
8312 
8313       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8314               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8315              "Unknown constraint type!");
8316 
8317       // TODO: Support this.
8318       if (OpInfo.isIndirect) {
8319         emitInlineAsmError(
8320             Call, "Don't know how to handle indirect register inputs yet "
8321                   "for constraint '" +
8322                       Twine(OpInfo.ConstraintCode) + "'");
8323         return;
8324       }
8325 
8326       // Copy the input into the appropriate registers.
8327       if (OpInfo.AssignedRegs.Regs.empty()) {
8328         emitInlineAsmError(Call,
8329                            "couldn't allocate input reg for constraint '" +
8330                                Twine(OpInfo.ConstraintCode) + "'");
8331         return;
8332       }
8333 
8334       if (DetectWriteToReservedRegister())
8335         return;
8336 
8337       SDLoc dl = getCurSDLoc();
8338 
8339       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8340                                         &Call);
8341 
8342       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8343                                                dl, DAG, AsmNodeOperands);
8344       break;
8345     }
8346     case InlineAsm::isClobber:
8347       // Add the clobbered value to the operand list, so that the register
8348       // allocator is aware that the physreg got clobbered.
8349       if (!OpInfo.AssignedRegs.Regs.empty())
8350         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8351                                                  false, 0, getCurSDLoc(), DAG,
8352                                                  AsmNodeOperands);
8353       break;
8354     }
8355   }
8356 
8357   // Finish up input operands.  Set the input chain and add the flag last.
8358   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8359   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8360 
8361   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8362   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8363                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8364   Flag = Chain.getValue(1);
8365 
8366   // Do additional work to generate outputs.
8367 
8368   SmallVector<EVT, 1> ResultVTs;
8369   SmallVector<SDValue, 1> ResultValues;
8370   SmallVector<SDValue, 8> OutChains;
8371 
8372   llvm::Type *CallResultType = Call.getType();
8373   ArrayRef<Type *> ResultTypes;
8374   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8375     ResultTypes = StructResult->elements();
8376   else if (!CallResultType->isVoidTy())
8377     ResultTypes = makeArrayRef(CallResultType);
8378 
8379   auto CurResultType = ResultTypes.begin();
8380   auto handleRegAssign = [&](SDValue V) {
8381     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8382     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8383     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8384     ++CurResultType;
8385     // If the type of the inline asm call site return value is different but has
8386     // same size as the type of the asm output bitcast it.  One example of this
8387     // is for vectors with different width / number of elements.  This can
8388     // happen for register classes that can contain multiple different value
8389     // types.  The preg or vreg allocated may not have the same VT as was
8390     // expected.
8391     //
8392     // This can also happen for a return value that disagrees with the register
8393     // class it is put in, eg. a double in a general-purpose register on a
8394     // 32-bit machine.
8395     if (ResultVT != V.getValueType() &&
8396         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8397       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8398     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8399              V.getValueType().isInteger()) {
8400       // If a result value was tied to an input value, the computed result
8401       // may have a wider width than the expected result.  Extract the
8402       // relevant portion.
8403       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8404     }
8405     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8406     ResultVTs.push_back(ResultVT);
8407     ResultValues.push_back(V);
8408   };
8409 
8410   // Deal with output operands.
8411   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8412     if (OpInfo.Type == InlineAsm::isOutput) {
8413       SDValue Val;
8414       // Skip trivial output operands.
8415       if (OpInfo.AssignedRegs.Regs.empty())
8416         continue;
8417 
8418       switch (OpInfo.ConstraintType) {
8419       case TargetLowering::C_Register:
8420       case TargetLowering::C_RegisterClass:
8421         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8422                                                   Chain, &Flag, &Call);
8423         break;
8424       case TargetLowering::C_Immediate:
8425       case TargetLowering::C_Other:
8426         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8427                                               OpInfo, DAG);
8428         break;
8429       case TargetLowering::C_Memory:
8430         break; // Already handled.
8431       case TargetLowering::C_Unknown:
8432         assert(false && "Unexpected unknown constraint");
8433       }
8434 
8435       // Indirect output manifest as stores. Record output chains.
8436       if (OpInfo.isIndirect) {
8437         const Value *Ptr = OpInfo.CallOperandVal;
8438         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8439         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8440                                      MachinePointerInfo(Ptr));
8441         OutChains.push_back(Store);
8442       } else {
8443         // generate CopyFromRegs to associated registers.
8444         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8445         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8446           for (const SDValue &V : Val->op_values())
8447             handleRegAssign(V);
8448         } else
8449           handleRegAssign(Val);
8450       }
8451     }
8452   }
8453 
8454   // Set results.
8455   if (!ResultValues.empty()) {
8456     assert(CurResultType == ResultTypes.end() &&
8457            "Mismatch in number of ResultTypes");
8458     assert(ResultValues.size() == ResultTypes.size() &&
8459            "Mismatch in number of output operands in asm result");
8460 
8461     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8462                             DAG.getVTList(ResultVTs), ResultValues);
8463     setValue(&Call, V);
8464   }
8465 
8466   // Collect store chains.
8467   if (!OutChains.empty())
8468     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8469 
8470   // Only Update Root if inline assembly has a memory effect.
8471   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8472     DAG.setRoot(Chain);
8473 }
8474 
8475 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8476                                              const Twine &Message) {
8477   LLVMContext &Ctx = *DAG.getContext();
8478   Ctx.emitError(&Call, Message);
8479 
8480   // Make sure we leave the DAG in a valid state
8481   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8482   SmallVector<EVT, 1> ValueVTs;
8483   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8484 
8485   if (ValueVTs.empty())
8486     return;
8487 
8488   SmallVector<SDValue, 1> Ops;
8489   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8490     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8491 
8492   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8493 }
8494 
8495 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8496   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8497                           MVT::Other, getRoot(),
8498                           getValue(I.getArgOperand(0)),
8499                           DAG.getSrcValue(I.getArgOperand(0))));
8500 }
8501 
8502 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8503   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8504   const DataLayout &DL = DAG.getDataLayout();
8505   SDValue V = DAG.getVAArg(
8506       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8507       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8508       DL.getABITypeAlignment(I.getType()));
8509   DAG.setRoot(V.getValue(1));
8510 
8511   if (I.getType()->isPointerTy())
8512     V = DAG.getPtrExtOrTrunc(
8513         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8514   setValue(&I, V);
8515 }
8516 
8517 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8518   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8519                           MVT::Other, getRoot(),
8520                           getValue(I.getArgOperand(0)),
8521                           DAG.getSrcValue(I.getArgOperand(0))));
8522 }
8523 
8524 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8525   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8526                           MVT::Other, getRoot(),
8527                           getValue(I.getArgOperand(0)),
8528                           getValue(I.getArgOperand(1)),
8529                           DAG.getSrcValue(I.getArgOperand(0)),
8530                           DAG.getSrcValue(I.getArgOperand(1))));
8531 }
8532 
8533 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8534                                                     const Instruction &I,
8535                                                     SDValue Op) {
8536   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8537   if (!Range)
8538     return Op;
8539 
8540   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8541   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8542     return Op;
8543 
8544   APInt Lo = CR.getUnsignedMin();
8545   if (!Lo.isMinValue())
8546     return Op;
8547 
8548   APInt Hi = CR.getUnsignedMax();
8549   unsigned Bits = std::max(Hi.getActiveBits(),
8550                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8551 
8552   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8553 
8554   SDLoc SL = getCurSDLoc();
8555 
8556   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8557                              DAG.getValueType(SmallVT));
8558   unsigned NumVals = Op.getNode()->getNumValues();
8559   if (NumVals == 1)
8560     return ZExt;
8561 
8562   SmallVector<SDValue, 4> Ops;
8563 
8564   Ops.push_back(ZExt);
8565   for (unsigned I = 1; I != NumVals; ++I)
8566     Ops.push_back(Op.getValue(I));
8567 
8568   return DAG.getMergeValues(Ops, SL);
8569 }
8570 
8571 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8572 /// the call being lowered.
8573 ///
8574 /// This is a helper for lowering intrinsics that follow a target calling
8575 /// convention or require stack pointer adjustment. Only a subset of the
8576 /// intrinsic's operands need to participate in the calling convention.
8577 void SelectionDAGBuilder::populateCallLoweringInfo(
8578     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8579     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8580     bool IsPatchPoint) {
8581   TargetLowering::ArgListTy Args;
8582   Args.reserve(NumArgs);
8583 
8584   // Populate the argument list.
8585   // Attributes for args start at offset 1, after the return attribute.
8586   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8587        ArgI != ArgE; ++ArgI) {
8588     const Value *V = Call->getOperand(ArgI);
8589 
8590     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8591 
8592     TargetLowering::ArgListEntry Entry;
8593     Entry.Node = getValue(V);
8594     Entry.Ty = V->getType();
8595     Entry.setAttributes(Call, ArgI);
8596     Args.push_back(Entry);
8597   }
8598 
8599   CLI.setDebugLoc(getCurSDLoc())
8600       .setChain(getRoot())
8601       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8602       .setDiscardResult(Call->use_empty())
8603       .setIsPatchPoint(IsPatchPoint);
8604 }
8605 
8606 /// Add a stack map intrinsic call's live variable operands to a stackmap
8607 /// or patchpoint target node's operand list.
8608 ///
8609 /// Constants are converted to TargetConstants purely as an optimization to
8610 /// avoid constant materialization and register allocation.
8611 ///
8612 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8613 /// generate addess computation nodes, and so FinalizeISel can convert the
8614 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8615 /// address materialization and register allocation, but may also be required
8616 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8617 /// alloca in the entry block, then the runtime may assume that the alloca's
8618 /// StackMap location can be read immediately after compilation and that the
8619 /// location is valid at any point during execution (this is similar to the
8620 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8621 /// only available in a register, then the runtime would need to trap when
8622 /// execution reaches the StackMap in order to read the alloca's location.
8623 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8624                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8625                                 SelectionDAGBuilder &Builder) {
8626   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8627     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8628     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8629       Ops.push_back(
8630         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8631       Ops.push_back(
8632         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8633     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8634       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8635       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8636           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8637     } else
8638       Ops.push_back(OpVal);
8639   }
8640 }
8641 
8642 /// Lower llvm.experimental.stackmap directly to its target opcode.
8643 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8644   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8645   //                                  [live variables...])
8646 
8647   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8648 
8649   SDValue Chain, InFlag, Callee, NullPtr;
8650   SmallVector<SDValue, 32> Ops;
8651 
8652   SDLoc DL = getCurSDLoc();
8653   Callee = getValue(CI.getCalledValue());
8654   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8655 
8656   // The stackmap intrinsic only records the live variables (the arguments
8657   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8658   // intrinsic, this won't be lowered to a function call. This means we don't
8659   // have to worry about calling conventions and target specific lowering code.
8660   // Instead we perform the call lowering right here.
8661   //
8662   // chain, flag = CALLSEQ_START(chain, 0, 0)
8663   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8664   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8665   //
8666   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8667   InFlag = Chain.getValue(1);
8668 
8669   // Add the <id> and <numBytes> constants.
8670   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8671   Ops.push_back(DAG.getTargetConstant(
8672                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8673   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8674   Ops.push_back(DAG.getTargetConstant(
8675                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8676                   MVT::i32));
8677 
8678   // Push live variables for the stack map.
8679   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8680 
8681   // We are not pushing any register mask info here on the operands list,
8682   // because the stackmap doesn't clobber anything.
8683 
8684   // Push the chain and the glue flag.
8685   Ops.push_back(Chain);
8686   Ops.push_back(InFlag);
8687 
8688   // Create the STACKMAP node.
8689   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8690   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8691   Chain = SDValue(SM, 0);
8692   InFlag = Chain.getValue(1);
8693 
8694   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8695 
8696   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8697 
8698   // Set the root to the target-lowered call chain.
8699   DAG.setRoot(Chain);
8700 
8701   // Inform the Frame Information that we have a stackmap in this function.
8702   FuncInfo.MF->getFrameInfo().setHasStackMap();
8703 }
8704 
8705 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8706 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8707                                           const BasicBlock *EHPadBB) {
8708   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8709   //                                                 i32 <numBytes>,
8710   //                                                 i8* <target>,
8711   //                                                 i32 <numArgs>,
8712   //                                                 [Args...],
8713   //                                                 [live variables...])
8714 
8715   CallingConv::ID CC = CB.getCallingConv();
8716   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8717   bool HasDef = !CB.getType()->isVoidTy();
8718   SDLoc dl = getCurSDLoc();
8719   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8720 
8721   // Handle immediate and symbolic callees.
8722   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8723     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8724                                    /*isTarget=*/true);
8725   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8726     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8727                                          SDLoc(SymbolicCallee),
8728                                          SymbolicCallee->getValueType(0));
8729 
8730   // Get the real number of arguments participating in the call <numArgs>
8731   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8732   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8733 
8734   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8735   // Intrinsics include all meta-operands up to but not including CC.
8736   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8737   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8738          "Not enough arguments provided to the patchpoint intrinsic");
8739 
8740   // For AnyRegCC the arguments are lowered later on manually.
8741   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8742   Type *ReturnTy =
8743       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8744 
8745   TargetLowering::CallLoweringInfo CLI(DAG);
8746   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8747                            ReturnTy, true);
8748   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8749 
8750   SDNode *CallEnd = Result.second.getNode();
8751   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8752     CallEnd = CallEnd->getOperand(0).getNode();
8753 
8754   /// Get a call instruction from the call sequence chain.
8755   /// Tail calls are not allowed.
8756   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8757          "Expected a callseq node.");
8758   SDNode *Call = CallEnd->getOperand(0).getNode();
8759   bool HasGlue = Call->getGluedNode();
8760 
8761   // Replace the target specific call node with the patchable intrinsic.
8762   SmallVector<SDValue, 8> Ops;
8763 
8764   // Add the <id> and <numBytes> constants.
8765   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8766   Ops.push_back(DAG.getTargetConstant(
8767                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8768   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
8769   Ops.push_back(DAG.getTargetConstant(
8770                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8771                   MVT::i32));
8772 
8773   // Add the callee.
8774   Ops.push_back(Callee);
8775 
8776   // Adjust <numArgs> to account for any arguments that have been passed on the
8777   // stack instead.
8778   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8779   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8780   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8781   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8782 
8783   // Add the calling convention
8784   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8785 
8786   // Add the arguments we omitted previously. The register allocator should
8787   // place these in any free register.
8788   if (IsAnyRegCC)
8789     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8790       Ops.push_back(getValue(CB.getArgOperand(i)));
8791 
8792   // Push the arguments from the call instruction up to the register mask.
8793   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8794   Ops.append(Call->op_begin() + 2, e);
8795 
8796   // Push live variables for the stack map.
8797   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
8798 
8799   // Push the register mask info.
8800   if (HasGlue)
8801     Ops.push_back(*(Call->op_end()-2));
8802   else
8803     Ops.push_back(*(Call->op_end()-1));
8804 
8805   // Push the chain (this is originally the first operand of the call, but
8806   // becomes now the last or second to last operand).
8807   Ops.push_back(*(Call->op_begin()));
8808 
8809   // Push the glue flag (last operand).
8810   if (HasGlue)
8811     Ops.push_back(*(Call->op_end()-1));
8812 
8813   SDVTList NodeTys;
8814   if (IsAnyRegCC && HasDef) {
8815     // Create the return types based on the intrinsic definition
8816     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8817     SmallVector<EVT, 3> ValueVTs;
8818     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
8819     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8820 
8821     // There is always a chain and a glue type at the end
8822     ValueVTs.push_back(MVT::Other);
8823     ValueVTs.push_back(MVT::Glue);
8824     NodeTys = DAG.getVTList(ValueVTs);
8825   } else
8826     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8827 
8828   // Replace the target specific call node with a PATCHPOINT node.
8829   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8830                                          dl, NodeTys, Ops);
8831 
8832   // Update the NodeMap.
8833   if (HasDef) {
8834     if (IsAnyRegCC)
8835       setValue(&CB, SDValue(MN, 0));
8836     else
8837       setValue(&CB, Result.first);
8838   }
8839 
8840   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8841   // call sequence. Furthermore the location of the chain and glue can change
8842   // when the AnyReg calling convention is used and the intrinsic returns a
8843   // value.
8844   if (IsAnyRegCC && HasDef) {
8845     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8846     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8847     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8848   } else
8849     DAG.ReplaceAllUsesWith(Call, MN);
8850   DAG.DeleteNode(Call);
8851 
8852   // Inform the Frame Information that we have a patchpoint in this function.
8853   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8854 }
8855 
8856 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8857                                             unsigned Intrinsic) {
8858   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8859   SDValue Op1 = getValue(I.getArgOperand(0));
8860   SDValue Op2;
8861   if (I.getNumArgOperands() > 1)
8862     Op2 = getValue(I.getArgOperand(1));
8863   SDLoc dl = getCurSDLoc();
8864   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8865   SDValue Res;
8866   FastMathFlags FMF;
8867   if (isa<FPMathOperator>(I))
8868     FMF = I.getFastMathFlags();
8869 
8870   switch (Intrinsic) {
8871   case Intrinsic::experimental_vector_reduce_v2_fadd:
8872     if (FMF.allowReassoc())
8873       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8874                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8875     else
8876       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8877     break;
8878   case Intrinsic::experimental_vector_reduce_v2_fmul:
8879     if (FMF.allowReassoc())
8880       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8881                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8882     else
8883       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8884     break;
8885   case Intrinsic::experimental_vector_reduce_add:
8886     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8887     break;
8888   case Intrinsic::experimental_vector_reduce_mul:
8889     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8890     break;
8891   case Intrinsic::experimental_vector_reduce_and:
8892     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8893     break;
8894   case Intrinsic::experimental_vector_reduce_or:
8895     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8896     break;
8897   case Intrinsic::experimental_vector_reduce_xor:
8898     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8899     break;
8900   case Intrinsic::experimental_vector_reduce_smax:
8901     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8902     break;
8903   case Intrinsic::experimental_vector_reduce_smin:
8904     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8905     break;
8906   case Intrinsic::experimental_vector_reduce_umax:
8907     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8908     break;
8909   case Intrinsic::experimental_vector_reduce_umin:
8910     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8911     break;
8912   case Intrinsic::experimental_vector_reduce_fmax:
8913     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8914     break;
8915   case Intrinsic::experimental_vector_reduce_fmin:
8916     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8917     break;
8918   default:
8919     llvm_unreachable("Unhandled vector reduce intrinsic");
8920   }
8921   setValue(&I, Res);
8922 }
8923 
8924 /// Returns an AttributeList representing the attributes applied to the return
8925 /// value of the given call.
8926 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8927   SmallVector<Attribute::AttrKind, 2> Attrs;
8928   if (CLI.RetSExt)
8929     Attrs.push_back(Attribute::SExt);
8930   if (CLI.RetZExt)
8931     Attrs.push_back(Attribute::ZExt);
8932   if (CLI.IsInReg)
8933     Attrs.push_back(Attribute::InReg);
8934 
8935   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8936                             Attrs);
8937 }
8938 
8939 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8940 /// implementation, which just calls LowerCall.
8941 /// FIXME: When all targets are
8942 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8943 std::pair<SDValue, SDValue>
8944 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8945   // Handle the incoming return values from the call.
8946   CLI.Ins.clear();
8947   Type *OrigRetTy = CLI.RetTy;
8948   SmallVector<EVT, 4> RetTys;
8949   SmallVector<uint64_t, 4> Offsets;
8950   auto &DL = CLI.DAG.getDataLayout();
8951   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8952 
8953   if (CLI.IsPostTypeLegalization) {
8954     // If we are lowering a libcall after legalization, split the return type.
8955     SmallVector<EVT, 4> OldRetTys;
8956     SmallVector<uint64_t, 4> OldOffsets;
8957     RetTys.swap(OldRetTys);
8958     Offsets.swap(OldOffsets);
8959 
8960     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8961       EVT RetVT = OldRetTys[i];
8962       uint64_t Offset = OldOffsets[i];
8963       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8964       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8965       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8966       RetTys.append(NumRegs, RegisterVT);
8967       for (unsigned j = 0; j != NumRegs; ++j)
8968         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8969     }
8970   }
8971 
8972   SmallVector<ISD::OutputArg, 4> Outs;
8973   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8974 
8975   bool CanLowerReturn =
8976       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8977                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8978 
8979   SDValue DemoteStackSlot;
8980   int DemoteStackIdx = -100;
8981   if (!CanLowerReturn) {
8982     // FIXME: equivalent assert?
8983     // assert(!CS.hasInAllocaArgument() &&
8984     //        "sret demotion is incompatible with inalloca");
8985     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8986     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
8987     MachineFunction &MF = CLI.DAG.getMachineFunction();
8988     DemoteStackIdx =
8989         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
8990     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8991                                               DL.getAllocaAddrSpace());
8992 
8993     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8994     ArgListEntry Entry;
8995     Entry.Node = DemoteStackSlot;
8996     Entry.Ty = StackSlotPtrType;
8997     Entry.IsSExt = false;
8998     Entry.IsZExt = false;
8999     Entry.IsInReg = false;
9000     Entry.IsSRet = true;
9001     Entry.IsNest = false;
9002     Entry.IsByVal = false;
9003     Entry.IsReturned = false;
9004     Entry.IsSwiftSelf = false;
9005     Entry.IsSwiftError = false;
9006     Entry.IsCFGuardTarget = false;
9007     Entry.Alignment = Alignment;
9008     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9009     CLI.NumFixedArgs += 1;
9010     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9011 
9012     // sret demotion isn't compatible with tail-calls, since the sret argument
9013     // points into the callers stack frame.
9014     CLI.IsTailCall = false;
9015   } else {
9016     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9017         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9018     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9019       ISD::ArgFlagsTy Flags;
9020       if (NeedsRegBlock) {
9021         Flags.setInConsecutiveRegs();
9022         if (I == RetTys.size() - 1)
9023           Flags.setInConsecutiveRegsLast();
9024       }
9025       EVT VT = RetTys[I];
9026       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9027                                                      CLI.CallConv, VT);
9028       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9029                                                        CLI.CallConv, VT);
9030       for (unsigned i = 0; i != NumRegs; ++i) {
9031         ISD::InputArg MyFlags;
9032         MyFlags.Flags = Flags;
9033         MyFlags.VT = RegisterVT;
9034         MyFlags.ArgVT = VT;
9035         MyFlags.Used = CLI.IsReturnValueUsed;
9036         if (CLI.RetTy->isPointerTy()) {
9037           MyFlags.Flags.setPointer();
9038           MyFlags.Flags.setPointerAddrSpace(
9039               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9040         }
9041         if (CLI.RetSExt)
9042           MyFlags.Flags.setSExt();
9043         if (CLI.RetZExt)
9044           MyFlags.Flags.setZExt();
9045         if (CLI.IsInReg)
9046           MyFlags.Flags.setInReg();
9047         CLI.Ins.push_back(MyFlags);
9048       }
9049     }
9050   }
9051 
9052   // We push in swifterror return as the last element of CLI.Ins.
9053   ArgListTy &Args = CLI.getArgs();
9054   if (supportSwiftError()) {
9055     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9056       if (Args[i].IsSwiftError) {
9057         ISD::InputArg MyFlags;
9058         MyFlags.VT = getPointerTy(DL);
9059         MyFlags.ArgVT = EVT(getPointerTy(DL));
9060         MyFlags.Flags.setSwiftError();
9061         CLI.Ins.push_back(MyFlags);
9062       }
9063     }
9064   }
9065 
9066   // Handle all of the outgoing arguments.
9067   CLI.Outs.clear();
9068   CLI.OutVals.clear();
9069   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9070     SmallVector<EVT, 4> ValueVTs;
9071     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9072     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9073     Type *FinalType = Args[i].Ty;
9074     if (Args[i].IsByVal)
9075       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9076     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9077         FinalType, CLI.CallConv, CLI.IsVarArg);
9078     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9079          ++Value) {
9080       EVT VT = ValueVTs[Value];
9081       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9082       SDValue Op = SDValue(Args[i].Node.getNode(),
9083                            Args[i].Node.getResNo() + Value);
9084       ISD::ArgFlagsTy Flags;
9085 
9086       // Certain targets (such as MIPS), may have a different ABI alignment
9087       // for a type depending on the context. Give the target a chance to
9088       // specify the alignment it wants.
9089       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9090 
9091       if (Args[i].Ty->isPointerTy()) {
9092         Flags.setPointer();
9093         Flags.setPointerAddrSpace(
9094             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9095       }
9096       if (Args[i].IsZExt)
9097         Flags.setZExt();
9098       if (Args[i].IsSExt)
9099         Flags.setSExt();
9100       if (Args[i].IsInReg) {
9101         // If we are using vectorcall calling convention, a structure that is
9102         // passed InReg - is surely an HVA
9103         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9104             isa<StructType>(FinalType)) {
9105           // The first value of a structure is marked
9106           if (0 == Value)
9107             Flags.setHvaStart();
9108           Flags.setHva();
9109         }
9110         // Set InReg Flag
9111         Flags.setInReg();
9112       }
9113       if (Args[i].IsSRet)
9114         Flags.setSRet();
9115       if (Args[i].IsSwiftSelf)
9116         Flags.setSwiftSelf();
9117       if (Args[i].IsSwiftError)
9118         Flags.setSwiftError();
9119       if (Args[i].IsCFGuardTarget)
9120         Flags.setCFGuardTarget();
9121       if (Args[i].IsByVal)
9122         Flags.setByVal();
9123       if (Args[i].IsInAlloca) {
9124         Flags.setInAlloca();
9125         // Set the byval flag for CCAssignFn callbacks that don't know about
9126         // inalloca.  This way we can know how many bytes we should've allocated
9127         // and how many bytes a callee cleanup function will pop.  If we port
9128         // inalloca to more targets, we'll have to add custom inalloca handling
9129         // in the various CC lowering callbacks.
9130         Flags.setByVal();
9131       }
9132       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9133         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9134         Type *ElementTy = Ty->getElementType();
9135 
9136         unsigned FrameSize = DL.getTypeAllocSize(
9137             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9138         Flags.setByValSize(FrameSize);
9139 
9140         // info is not there but there are cases it cannot get right.
9141         Align FrameAlign;
9142         if (auto MA = Args[i].Alignment)
9143           FrameAlign = *MA;
9144         else
9145           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9146         Flags.setByValAlign(FrameAlign);
9147       }
9148       if (Args[i].IsNest)
9149         Flags.setNest();
9150       if (NeedsRegBlock)
9151         Flags.setInConsecutiveRegs();
9152       Flags.setOrigAlign(OriginalAlignment);
9153 
9154       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9155                                                  CLI.CallConv, VT);
9156       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9157                                                         CLI.CallConv, VT);
9158       SmallVector<SDValue, 4> Parts(NumParts);
9159       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9160 
9161       if (Args[i].IsSExt)
9162         ExtendKind = ISD::SIGN_EXTEND;
9163       else if (Args[i].IsZExt)
9164         ExtendKind = ISD::ZERO_EXTEND;
9165 
9166       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9167       // for now.
9168       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9169           CanLowerReturn) {
9170         assert((CLI.RetTy == Args[i].Ty ||
9171                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9172                  CLI.RetTy->getPointerAddressSpace() ==
9173                      Args[i].Ty->getPointerAddressSpace())) &&
9174                RetTys.size() == NumValues && "unexpected use of 'returned'");
9175         // Before passing 'returned' to the target lowering code, ensure that
9176         // either the register MVT and the actual EVT are the same size or that
9177         // the return value and argument are extended in the same way; in these
9178         // cases it's safe to pass the argument register value unchanged as the
9179         // return register value (although it's at the target's option whether
9180         // to do so)
9181         // TODO: allow code generation to take advantage of partially preserved
9182         // registers rather than clobbering the entire register when the
9183         // parameter extension method is not compatible with the return
9184         // extension method
9185         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9186             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9187              CLI.RetZExt == Args[i].IsZExt))
9188           Flags.setReturned();
9189       }
9190 
9191       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9192                      CLI.CallConv, ExtendKind);
9193 
9194       for (unsigned j = 0; j != NumParts; ++j) {
9195         // if it isn't first piece, alignment must be 1
9196         // For scalable vectors the scalable part is currently handled
9197         // by individual targets, so we just use the known minimum size here.
9198         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9199                     i < CLI.NumFixedArgs, i,
9200                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9201         if (NumParts > 1 && j == 0)
9202           MyFlags.Flags.setSplit();
9203         else if (j != 0) {
9204           MyFlags.Flags.setOrigAlign(Align(1));
9205           if (j == NumParts - 1)
9206             MyFlags.Flags.setSplitEnd();
9207         }
9208 
9209         CLI.Outs.push_back(MyFlags);
9210         CLI.OutVals.push_back(Parts[j]);
9211       }
9212 
9213       if (NeedsRegBlock && Value == NumValues - 1)
9214         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9215     }
9216   }
9217 
9218   SmallVector<SDValue, 4> InVals;
9219   CLI.Chain = LowerCall(CLI, InVals);
9220 
9221   // Update CLI.InVals to use outside of this function.
9222   CLI.InVals = InVals;
9223 
9224   // Verify that the target's LowerCall behaved as expected.
9225   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9226          "LowerCall didn't return a valid chain!");
9227   assert((!CLI.IsTailCall || InVals.empty()) &&
9228          "LowerCall emitted a return value for a tail call!");
9229   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9230          "LowerCall didn't emit the correct number of values!");
9231 
9232   // For a tail call, the return value is merely live-out and there aren't
9233   // any nodes in the DAG representing it. Return a special value to
9234   // indicate that a tail call has been emitted and no more Instructions
9235   // should be processed in the current block.
9236   if (CLI.IsTailCall) {
9237     CLI.DAG.setRoot(CLI.Chain);
9238     return std::make_pair(SDValue(), SDValue());
9239   }
9240 
9241 #ifndef NDEBUG
9242   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9243     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9244     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9245            "LowerCall emitted a value with the wrong type!");
9246   }
9247 #endif
9248 
9249   SmallVector<SDValue, 4> ReturnValues;
9250   if (!CanLowerReturn) {
9251     // The instruction result is the result of loading from the
9252     // hidden sret parameter.
9253     SmallVector<EVT, 1> PVTs;
9254     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9255 
9256     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9257     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9258     EVT PtrVT = PVTs[0];
9259 
9260     unsigned NumValues = RetTys.size();
9261     ReturnValues.resize(NumValues);
9262     SmallVector<SDValue, 4> Chains(NumValues);
9263 
9264     // An aggregate return value cannot wrap around the address space, so
9265     // offsets to its parts don't wrap either.
9266     SDNodeFlags Flags;
9267     Flags.setNoUnsignedWrap(true);
9268 
9269     for (unsigned i = 0; i < NumValues; ++i) {
9270       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9271                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9272                                                         PtrVT), Flags);
9273       SDValue L = CLI.DAG.getLoad(
9274           RetTys[i], CLI.DL, CLI.Chain, Add,
9275           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9276                                             DemoteStackIdx, Offsets[i]),
9277           /* Alignment = */ 1);
9278       ReturnValues[i] = L;
9279       Chains[i] = L.getValue(1);
9280     }
9281 
9282     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9283   } else {
9284     // Collect the legal value parts into potentially illegal values
9285     // that correspond to the original function's return values.
9286     Optional<ISD::NodeType> AssertOp;
9287     if (CLI.RetSExt)
9288       AssertOp = ISD::AssertSext;
9289     else if (CLI.RetZExt)
9290       AssertOp = ISD::AssertZext;
9291     unsigned CurReg = 0;
9292     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9293       EVT VT = RetTys[I];
9294       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9295                                                      CLI.CallConv, VT);
9296       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9297                                                        CLI.CallConv, VT);
9298 
9299       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9300                                               NumRegs, RegisterVT, VT, nullptr,
9301                                               CLI.CallConv, AssertOp));
9302       CurReg += NumRegs;
9303     }
9304 
9305     // For a function returning void, there is no return value. We can't create
9306     // such a node, so we just return a null return value in that case. In
9307     // that case, nothing will actually look at the value.
9308     if (ReturnValues.empty())
9309       return std::make_pair(SDValue(), CLI.Chain);
9310   }
9311 
9312   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9313                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9314   return std::make_pair(Res, CLI.Chain);
9315 }
9316 
9317 void TargetLowering::LowerOperationWrapper(SDNode *N,
9318                                            SmallVectorImpl<SDValue> &Results,
9319                                            SelectionDAG &DAG) const {
9320   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9321     Results.push_back(Res);
9322 }
9323 
9324 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9325   llvm_unreachable("LowerOperation not implemented for this target!");
9326 }
9327 
9328 void
9329 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9330   SDValue Op = getNonRegisterValue(V);
9331   assert((Op.getOpcode() != ISD::CopyFromReg ||
9332           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9333          "Copy from a reg to the same reg!");
9334   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9335 
9336   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9337   // If this is an InlineAsm we have to match the registers required, not the
9338   // notional registers required by the type.
9339 
9340   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9341                    None); // This is not an ABI copy.
9342   SDValue Chain = DAG.getEntryNode();
9343 
9344   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9345                               FuncInfo.PreferredExtendType.end())
9346                                  ? ISD::ANY_EXTEND
9347                                  : FuncInfo.PreferredExtendType[V];
9348   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9349   PendingExports.push_back(Chain);
9350 }
9351 
9352 #include "llvm/CodeGen/SelectionDAGISel.h"
9353 
9354 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9355 /// entry block, return true.  This includes arguments used by switches, since
9356 /// the switch may expand into multiple basic blocks.
9357 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9358   // With FastISel active, we may be splitting blocks, so force creation
9359   // of virtual registers for all non-dead arguments.
9360   if (FastISel)
9361     return A->use_empty();
9362 
9363   const BasicBlock &Entry = A->getParent()->front();
9364   for (const User *U : A->users())
9365     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9366       return false;  // Use not in entry block.
9367 
9368   return true;
9369 }
9370 
9371 using ArgCopyElisionMapTy =
9372     DenseMap<const Argument *,
9373              std::pair<const AllocaInst *, const StoreInst *>>;
9374 
9375 /// Scan the entry block of the function in FuncInfo for arguments that look
9376 /// like copies into a local alloca. Record any copied arguments in
9377 /// ArgCopyElisionCandidates.
9378 static void
9379 findArgumentCopyElisionCandidates(const DataLayout &DL,
9380                                   FunctionLoweringInfo *FuncInfo,
9381                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9382   // Record the state of every static alloca used in the entry block. Argument
9383   // allocas are all used in the entry block, so we need approximately as many
9384   // entries as we have arguments.
9385   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9386   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9387   unsigned NumArgs = FuncInfo->Fn->arg_size();
9388   StaticAllocas.reserve(NumArgs * 2);
9389 
9390   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9391     if (!V)
9392       return nullptr;
9393     V = V->stripPointerCasts();
9394     const auto *AI = dyn_cast<AllocaInst>(V);
9395     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9396       return nullptr;
9397     auto Iter = StaticAllocas.insert({AI, Unknown});
9398     return &Iter.first->second;
9399   };
9400 
9401   // Look for stores of arguments to static allocas. Look through bitcasts and
9402   // GEPs to handle type coercions, as long as the alloca is fully initialized
9403   // by the store. Any non-store use of an alloca escapes it and any subsequent
9404   // unanalyzed store might write it.
9405   // FIXME: Handle structs initialized with multiple stores.
9406   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9407     // Look for stores, and handle non-store uses conservatively.
9408     const auto *SI = dyn_cast<StoreInst>(&I);
9409     if (!SI) {
9410       // We will look through cast uses, so ignore them completely.
9411       if (I.isCast())
9412         continue;
9413       // Ignore debug info intrinsics, they don't escape or store to allocas.
9414       if (isa<DbgInfoIntrinsic>(I))
9415         continue;
9416       // This is an unknown instruction. Assume it escapes or writes to all
9417       // static alloca operands.
9418       for (const Use &U : I.operands()) {
9419         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9420           *Info = StaticAllocaInfo::Clobbered;
9421       }
9422       continue;
9423     }
9424 
9425     // If the stored value is a static alloca, mark it as escaped.
9426     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9427       *Info = StaticAllocaInfo::Clobbered;
9428 
9429     // Check if the destination is a static alloca.
9430     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9431     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9432     if (!Info)
9433       continue;
9434     const AllocaInst *AI = cast<AllocaInst>(Dst);
9435 
9436     // Skip allocas that have been initialized or clobbered.
9437     if (*Info != StaticAllocaInfo::Unknown)
9438       continue;
9439 
9440     // Check if the stored value is an argument, and that this store fully
9441     // initializes the alloca. Don't elide copies from the same argument twice.
9442     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9443     const auto *Arg = dyn_cast<Argument>(Val);
9444     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9445         Arg->getType()->isEmptyTy() ||
9446         DL.getTypeStoreSize(Arg->getType()) !=
9447             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9448         ArgCopyElisionCandidates.count(Arg)) {
9449       *Info = StaticAllocaInfo::Clobbered;
9450       continue;
9451     }
9452 
9453     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9454                       << '\n');
9455 
9456     // Mark this alloca and store for argument copy elision.
9457     *Info = StaticAllocaInfo::Elidable;
9458     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9459 
9460     // Stop scanning if we've seen all arguments. This will happen early in -O0
9461     // builds, which is useful, because -O0 builds have large entry blocks and
9462     // many allocas.
9463     if (ArgCopyElisionCandidates.size() == NumArgs)
9464       break;
9465   }
9466 }
9467 
9468 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9469 /// ArgVal is a load from a suitable fixed stack object.
9470 static void tryToElideArgumentCopy(
9471     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9472     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9473     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9474     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9475     SDValue ArgVal, bool &ArgHasUses) {
9476   // Check if this is a load from a fixed stack object.
9477   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9478   if (!LNode)
9479     return;
9480   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9481   if (!FINode)
9482     return;
9483 
9484   // Check that the fixed stack object is the right size and alignment.
9485   // Look at the alignment that the user wrote on the alloca instead of looking
9486   // at the stack object.
9487   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9488   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9489   const AllocaInst *AI = ArgCopyIter->second.first;
9490   int FixedIndex = FINode->getIndex();
9491   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9492   int OldIndex = AllocaIndex;
9493   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9494   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9495     LLVM_DEBUG(
9496         dbgs() << "  argument copy elision failed due to bad fixed stack "
9497                   "object size\n");
9498     return;
9499   }
9500   Align RequiredAlignment = AI->getAlign().getValueOr(
9501       FuncInfo.MF->getDataLayout().getABITypeAlign(AI->getAllocatedType()));
9502   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9503     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9504                          "greater than stack argument alignment ("
9505                       << DebugStr(RequiredAlignment) << " vs "
9506                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9507     return;
9508   }
9509 
9510   // Perform the elision. Delete the old stack object and replace its only use
9511   // in the variable info map. Mark the stack object as mutable.
9512   LLVM_DEBUG({
9513     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9514            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9515            << '\n';
9516   });
9517   MFI.RemoveStackObject(OldIndex);
9518   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9519   AllocaIndex = FixedIndex;
9520   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9521   Chains.push_back(ArgVal.getValue(1));
9522 
9523   // Avoid emitting code for the store implementing the copy.
9524   const StoreInst *SI = ArgCopyIter->second.second;
9525   ElidedArgCopyInstrs.insert(SI);
9526 
9527   // Check for uses of the argument again so that we can avoid exporting ArgVal
9528   // if it is't used by anything other than the store.
9529   for (const Value *U : Arg.users()) {
9530     if (U != SI) {
9531       ArgHasUses = true;
9532       break;
9533     }
9534   }
9535 }
9536 
9537 void SelectionDAGISel::LowerArguments(const Function &F) {
9538   SelectionDAG &DAG = SDB->DAG;
9539   SDLoc dl = SDB->getCurSDLoc();
9540   const DataLayout &DL = DAG.getDataLayout();
9541   SmallVector<ISD::InputArg, 16> Ins;
9542 
9543   if (!FuncInfo->CanLowerReturn) {
9544     // Put in an sret pointer parameter before all the other parameters.
9545     SmallVector<EVT, 1> ValueVTs;
9546     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9547                     F.getReturnType()->getPointerTo(
9548                         DAG.getDataLayout().getAllocaAddrSpace()),
9549                     ValueVTs);
9550 
9551     // NOTE: Assuming that a pointer will never break down to more than one VT
9552     // or one register.
9553     ISD::ArgFlagsTy Flags;
9554     Flags.setSRet();
9555     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9556     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9557                          ISD::InputArg::NoArgIndex, 0);
9558     Ins.push_back(RetArg);
9559   }
9560 
9561   // Look for stores of arguments to static allocas. Mark such arguments with a
9562   // flag to ask the target to give us the memory location of that argument if
9563   // available.
9564   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9565   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9566                                     ArgCopyElisionCandidates);
9567 
9568   // Set up the incoming argument description vector.
9569   for (const Argument &Arg : F.args()) {
9570     unsigned ArgNo = Arg.getArgNo();
9571     SmallVector<EVT, 4> ValueVTs;
9572     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9573     bool isArgValueUsed = !Arg.use_empty();
9574     unsigned PartBase = 0;
9575     Type *FinalType = Arg.getType();
9576     if (Arg.hasAttribute(Attribute::ByVal))
9577       FinalType = Arg.getParamByValType();
9578     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9579         FinalType, F.getCallingConv(), F.isVarArg());
9580     for (unsigned Value = 0, NumValues = ValueVTs.size();
9581          Value != NumValues; ++Value) {
9582       EVT VT = ValueVTs[Value];
9583       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9584       ISD::ArgFlagsTy Flags;
9585 
9586       // Certain targets (such as MIPS), may have a different ABI alignment
9587       // for a type depending on the context. Give the target a chance to
9588       // specify the alignment it wants.
9589       const Align OriginalAlignment(
9590           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9591 
9592       if (Arg.getType()->isPointerTy()) {
9593         Flags.setPointer();
9594         Flags.setPointerAddrSpace(
9595             cast<PointerType>(Arg.getType())->getAddressSpace());
9596       }
9597       if (Arg.hasAttribute(Attribute::ZExt))
9598         Flags.setZExt();
9599       if (Arg.hasAttribute(Attribute::SExt))
9600         Flags.setSExt();
9601       if (Arg.hasAttribute(Attribute::InReg)) {
9602         // If we are using vectorcall calling convention, a structure that is
9603         // passed InReg - is surely an HVA
9604         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9605             isa<StructType>(Arg.getType())) {
9606           // The first value of a structure is marked
9607           if (0 == Value)
9608             Flags.setHvaStart();
9609           Flags.setHva();
9610         }
9611         // Set InReg Flag
9612         Flags.setInReg();
9613       }
9614       if (Arg.hasAttribute(Attribute::StructRet))
9615         Flags.setSRet();
9616       if (Arg.hasAttribute(Attribute::SwiftSelf))
9617         Flags.setSwiftSelf();
9618       if (Arg.hasAttribute(Attribute::SwiftError))
9619         Flags.setSwiftError();
9620       if (Arg.hasAttribute(Attribute::ByVal))
9621         Flags.setByVal();
9622       if (Arg.hasAttribute(Attribute::InAlloca)) {
9623         Flags.setInAlloca();
9624         // Set the byval flag for CCAssignFn callbacks that don't know about
9625         // inalloca.  This way we can know how many bytes we should've allocated
9626         // and how many bytes a callee cleanup function will pop.  If we port
9627         // inalloca to more targets, we'll have to add custom inalloca handling
9628         // in the various CC lowering callbacks.
9629         Flags.setByVal();
9630       }
9631       if (F.getCallingConv() == CallingConv::X86_INTR) {
9632         // IA Interrupt passes frame (1st parameter) by value in the stack.
9633         if (ArgNo == 0)
9634           Flags.setByVal();
9635       }
9636       if (Flags.isByVal() || Flags.isInAlloca()) {
9637         Type *ElementTy = Arg.getParamByValType();
9638 
9639         // For ByVal, size and alignment should be passed from FE.  BE will
9640         // guess if this info is not there but there are cases it cannot get
9641         // right.
9642         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9643         Flags.setByValSize(FrameSize);
9644 
9645         unsigned FrameAlign;
9646         if (Arg.getParamAlignment())
9647           FrameAlign = Arg.getParamAlignment();
9648         else
9649           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9650         Flags.setByValAlign(Align(FrameAlign));
9651       }
9652       if (Arg.hasAttribute(Attribute::Nest))
9653         Flags.setNest();
9654       if (NeedsRegBlock)
9655         Flags.setInConsecutiveRegs();
9656       Flags.setOrigAlign(OriginalAlignment);
9657       if (ArgCopyElisionCandidates.count(&Arg))
9658         Flags.setCopyElisionCandidate();
9659       if (Arg.hasAttribute(Attribute::Returned))
9660         Flags.setReturned();
9661 
9662       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9663           *CurDAG->getContext(), F.getCallingConv(), VT);
9664       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9665           *CurDAG->getContext(), F.getCallingConv(), VT);
9666       for (unsigned i = 0; i != NumRegs; ++i) {
9667         // For scalable vectors, use the minimum size; individual targets
9668         // are responsible for handling scalable vector arguments and
9669         // return values.
9670         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9671                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9672         if (NumRegs > 1 && i == 0)
9673           MyFlags.Flags.setSplit();
9674         // if it isn't first piece, alignment must be 1
9675         else if (i > 0) {
9676           MyFlags.Flags.setOrigAlign(Align(1));
9677           if (i == NumRegs - 1)
9678             MyFlags.Flags.setSplitEnd();
9679         }
9680         Ins.push_back(MyFlags);
9681       }
9682       if (NeedsRegBlock && Value == NumValues - 1)
9683         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9684       PartBase += VT.getStoreSize().getKnownMinSize();
9685     }
9686   }
9687 
9688   // Call the target to set up the argument values.
9689   SmallVector<SDValue, 8> InVals;
9690   SDValue NewRoot = TLI->LowerFormalArguments(
9691       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9692 
9693   // Verify that the target's LowerFormalArguments behaved as expected.
9694   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9695          "LowerFormalArguments didn't return a valid chain!");
9696   assert(InVals.size() == Ins.size() &&
9697          "LowerFormalArguments didn't emit the correct number of values!");
9698   LLVM_DEBUG({
9699     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9700       assert(InVals[i].getNode() &&
9701              "LowerFormalArguments emitted a null value!");
9702       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9703              "LowerFormalArguments emitted a value with the wrong type!");
9704     }
9705   });
9706 
9707   // Update the DAG with the new chain value resulting from argument lowering.
9708   DAG.setRoot(NewRoot);
9709 
9710   // Set up the argument values.
9711   unsigned i = 0;
9712   if (!FuncInfo->CanLowerReturn) {
9713     // Create a virtual register for the sret pointer, and put in a copy
9714     // from the sret argument into it.
9715     SmallVector<EVT, 1> ValueVTs;
9716     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9717                     F.getReturnType()->getPointerTo(
9718                         DAG.getDataLayout().getAllocaAddrSpace()),
9719                     ValueVTs);
9720     MVT VT = ValueVTs[0].getSimpleVT();
9721     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9722     Optional<ISD::NodeType> AssertOp = None;
9723     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9724                                         nullptr, F.getCallingConv(), AssertOp);
9725 
9726     MachineFunction& MF = SDB->DAG.getMachineFunction();
9727     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9728     Register SRetReg =
9729         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9730     FuncInfo->DemoteRegister = SRetReg;
9731     NewRoot =
9732         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9733     DAG.setRoot(NewRoot);
9734 
9735     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9736     ++i;
9737   }
9738 
9739   SmallVector<SDValue, 4> Chains;
9740   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9741   for (const Argument &Arg : F.args()) {
9742     SmallVector<SDValue, 4> ArgValues;
9743     SmallVector<EVT, 4> ValueVTs;
9744     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9745     unsigned NumValues = ValueVTs.size();
9746     if (NumValues == 0)
9747       continue;
9748 
9749     bool ArgHasUses = !Arg.use_empty();
9750 
9751     // Elide the copying store if the target loaded this argument from a
9752     // suitable fixed stack object.
9753     if (Ins[i].Flags.isCopyElisionCandidate()) {
9754       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9755                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9756                              InVals[i], ArgHasUses);
9757     }
9758 
9759     // If this argument is unused then remember its value. It is used to generate
9760     // debugging information.
9761     bool isSwiftErrorArg =
9762         TLI->supportSwiftError() &&
9763         Arg.hasAttribute(Attribute::SwiftError);
9764     if (!ArgHasUses && !isSwiftErrorArg) {
9765       SDB->setUnusedArgValue(&Arg, InVals[i]);
9766 
9767       // Also remember any frame index for use in FastISel.
9768       if (FrameIndexSDNode *FI =
9769           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9770         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9771     }
9772 
9773     for (unsigned Val = 0; Val != NumValues; ++Val) {
9774       EVT VT = ValueVTs[Val];
9775       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9776                                                       F.getCallingConv(), VT);
9777       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9778           *CurDAG->getContext(), F.getCallingConv(), VT);
9779 
9780       // Even an apparent 'unused' swifterror argument needs to be returned. So
9781       // we do generate a copy for it that can be used on return from the
9782       // function.
9783       if (ArgHasUses || isSwiftErrorArg) {
9784         Optional<ISD::NodeType> AssertOp;
9785         if (Arg.hasAttribute(Attribute::SExt))
9786           AssertOp = ISD::AssertSext;
9787         else if (Arg.hasAttribute(Attribute::ZExt))
9788           AssertOp = ISD::AssertZext;
9789 
9790         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9791                                              PartVT, VT, nullptr,
9792                                              F.getCallingConv(), AssertOp));
9793       }
9794 
9795       i += NumParts;
9796     }
9797 
9798     // We don't need to do anything else for unused arguments.
9799     if (ArgValues.empty())
9800       continue;
9801 
9802     // Note down frame index.
9803     if (FrameIndexSDNode *FI =
9804         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9805       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9806 
9807     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9808                                      SDB->getCurSDLoc());
9809 
9810     SDB->setValue(&Arg, Res);
9811     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9812       // We want to associate the argument with the frame index, among
9813       // involved operands, that correspond to the lowest address. The
9814       // getCopyFromParts function, called earlier, is swapping the order of
9815       // the operands to BUILD_PAIR depending on endianness. The result of
9816       // that swapping is that the least significant bits of the argument will
9817       // be in the first operand of the BUILD_PAIR node, and the most
9818       // significant bits will be in the second operand.
9819       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9820       if (LoadSDNode *LNode =
9821           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9822         if (FrameIndexSDNode *FI =
9823             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9824           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9825     }
9826 
9827     // Analyses past this point are naive and don't expect an assertion.
9828     if (Res.getOpcode() == ISD::AssertZext)
9829       Res = Res.getOperand(0);
9830 
9831     // Update the SwiftErrorVRegDefMap.
9832     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9833       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9834       if (Register::isVirtualRegister(Reg))
9835         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9836                                    Reg);
9837     }
9838 
9839     // If this argument is live outside of the entry block, insert a copy from
9840     // wherever we got it to the vreg that other BB's will reference it as.
9841     if (Res.getOpcode() == ISD::CopyFromReg) {
9842       // If we can, though, try to skip creating an unnecessary vreg.
9843       // FIXME: This isn't very clean... it would be nice to make this more
9844       // general.
9845       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9846       if (Register::isVirtualRegister(Reg)) {
9847         FuncInfo->ValueMap[&Arg] = Reg;
9848         continue;
9849       }
9850     }
9851     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9852       FuncInfo->InitializeRegForValue(&Arg);
9853       SDB->CopyToExportRegsIfNeeded(&Arg);
9854     }
9855   }
9856 
9857   if (!Chains.empty()) {
9858     Chains.push_back(NewRoot);
9859     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9860   }
9861 
9862   DAG.setRoot(NewRoot);
9863 
9864   assert(i == InVals.size() && "Argument register count mismatch!");
9865 
9866   // If any argument copy elisions occurred and we have debug info, update the
9867   // stale frame indices used in the dbg.declare variable info table.
9868   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9869   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9870     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9871       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9872       if (I != ArgCopyElisionFrameIndexMap.end())
9873         VI.Slot = I->second;
9874     }
9875   }
9876 
9877   // Finally, if the target has anything special to do, allow it to do so.
9878   emitFunctionEntryCode();
9879 }
9880 
9881 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9882 /// ensure constants are generated when needed.  Remember the virtual registers
9883 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9884 /// directly add them, because expansion might result in multiple MBB's for one
9885 /// BB.  As such, the start of the BB might correspond to a different MBB than
9886 /// the end.
9887 void
9888 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9889   const Instruction *TI = LLVMBB->getTerminator();
9890 
9891   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9892 
9893   // Check PHI nodes in successors that expect a value to be available from this
9894   // block.
9895   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9896     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9897     if (!isa<PHINode>(SuccBB->begin())) continue;
9898     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9899 
9900     // If this terminator has multiple identical successors (common for
9901     // switches), only handle each succ once.
9902     if (!SuccsHandled.insert(SuccMBB).second)
9903       continue;
9904 
9905     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9906 
9907     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9908     // nodes and Machine PHI nodes, but the incoming operands have not been
9909     // emitted yet.
9910     for (const PHINode &PN : SuccBB->phis()) {
9911       // Ignore dead phi's.
9912       if (PN.use_empty())
9913         continue;
9914 
9915       // Skip empty types
9916       if (PN.getType()->isEmptyTy())
9917         continue;
9918 
9919       unsigned Reg;
9920       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9921 
9922       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9923         unsigned &RegOut = ConstantsOut[C];
9924         if (RegOut == 0) {
9925           RegOut = FuncInfo.CreateRegs(C);
9926           CopyValueToVirtualRegister(C, RegOut);
9927         }
9928         Reg = RegOut;
9929       } else {
9930         DenseMap<const Value *, Register>::iterator I =
9931           FuncInfo.ValueMap.find(PHIOp);
9932         if (I != FuncInfo.ValueMap.end())
9933           Reg = I->second;
9934         else {
9935           assert(isa<AllocaInst>(PHIOp) &&
9936                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9937                  "Didn't codegen value into a register!??");
9938           Reg = FuncInfo.CreateRegs(PHIOp);
9939           CopyValueToVirtualRegister(PHIOp, Reg);
9940         }
9941       }
9942 
9943       // Remember that this register needs to added to the machine PHI node as
9944       // the input for this MBB.
9945       SmallVector<EVT, 4> ValueVTs;
9946       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9947       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9948       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9949         EVT VT = ValueVTs[vti];
9950         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9951         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9952           FuncInfo.PHINodesToUpdate.push_back(
9953               std::make_pair(&*MBBI++, Reg + i));
9954         Reg += NumRegisters;
9955       }
9956     }
9957   }
9958 
9959   ConstantsOut.clear();
9960 }
9961 
9962 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9963 /// is 0.
9964 MachineBasicBlock *
9965 SelectionDAGBuilder::StackProtectorDescriptor::
9966 AddSuccessorMBB(const BasicBlock *BB,
9967                 MachineBasicBlock *ParentMBB,
9968                 bool IsLikely,
9969                 MachineBasicBlock *SuccMBB) {
9970   // If SuccBB has not been created yet, create it.
9971   if (!SuccMBB) {
9972     MachineFunction *MF = ParentMBB->getParent();
9973     MachineFunction::iterator BBI(ParentMBB);
9974     SuccMBB = MF->CreateMachineBasicBlock(BB);
9975     MF->insert(++BBI, SuccMBB);
9976   }
9977   // Add it as a successor of ParentMBB.
9978   ParentMBB->addSuccessor(
9979       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9980   return SuccMBB;
9981 }
9982 
9983 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9984   MachineFunction::iterator I(MBB);
9985   if (++I == FuncInfo.MF->end())
9986     return nullptr;
9987   return &*I;
9988 }
9989 
9990 /// During lowering new call nodes can be created (such as memset, etc.).
9991 /// Those will become new roots of the current DAG, but complications arise
9992 /// when they are tail calls. In such cases, the call lowering will update
9993 /// the root, but the builder still needs to know that a tail call has been
9994 /// lowered in order to avoid generating an additional return.
9995 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9996   // If the node is null, we do have a tail call.
9997   if (MaybeTC.getNode() != nullptr)
9998     DAG.setRoot(MaybeTC);
9999   else
10000     HasTailCall = true;
10001 }
10002 
10003 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10004                                         MachineBasicBlock *SwitchMBB,
10005                                         MachineBasicBlock *DefaultMBB) {
10006   MachineFunction *CurMF = FuncInfo.MF;
10007   MachineBasicBlock *NextMBB = nullptr;
10008   MachineFunction::iterator BBI(W.MBB);
10009   if (++BBI != FuncInfo.MF->end())
10010     NextMBB = &*BBI;
10011 
10012   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10013 
10014   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10015 
10016   if (Size == 2 && W.MBB == SwitchMBB) {
10017     // If any two of the cases has the same destination, and if one value
10018     // is the same as the other, but has one bit unset that the other has set,
10019     // use bit manipulation to do two compares at once.  For example:
10020     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10021     // TODO: This could be extended to merge any 2 cases in switches with 3
10022     // cases.
10023     // TODO: Handle cases where W.CaseBB != SwitchBB.
10024     CaseCluster &Small = *W.FirstCluster;
10025     CaseCluster &Big = *W.LastCluster;
10026 
10027     if (Small.Low == Small.High && Big.Low == Big.High &&
10028         Small.MBB == Big.MBB) {
10029       const APInt &SmallValue = Small.Low->getValue();
10030       const APInt &BigValue = Big.Low->getValue();
10031 
10032       // Check that there is only one bit different.
10033       APInt CommonBit = BigValue ^ SmallValue;
10034       if (CommonBit.isPowerOf2()) {
10035         SDValue CondLHS = getValue(Cond);
10036         EVT VT = CondLHS.getValueType();
10037         SDLoc DL = getCurSDLoc();
10038 
10039         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10040                                  DAG.getConstant(CommonBit, DL, VT));
10041         SDValue Cond = DAG.getSetCC(
10042             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10043             ISD::SETEQ);
10044 
10045         // Update successor info.
10046         // Both Small and Big will jump to Small.BB, so we sum up the
10047         // probabilities.
10048         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10049         if (BPI)
10050           addSuccessorWithProb(
10051               SwitchMBB, DefaultMBB,
10052               // The default destination is the first successor in IR.
10053               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10054         else
10055           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10056 
10057         // Insert the true branch.
10058         SDValue BrCond =
10059             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10060                         DAG.getBasicBlock(Small.MBB));
10061         // Insert the false branch.
10062         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10063                              DAG.getBasicBlock(DefaultMBB));
10064 
10065         DAG.setRoot(BrCond);
10066         return;
10067       }
10068     }
10069   }
10070 
10071   if (TM.getOptLevel() != CodeGenOpt::None) {
10072     // Here, we order cases by probability so the most likely case will be
10073     // checked first. However, two clusters can have the same probability in
10074     // which case their relative ordering is non-deterministic. So we use Low
10075     // as a tie-breaker as clusters are guaranteed to never overlap.
10076     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10077                [](const CaseCluster &a, const CaseCluster &b) {
10078       return a.Prob != b.Prob ?
10079              a.Prob > b.Prob :
10080              a.Low->getValue().slt(b.Low->getValue());
10081     });
10082 
10083     // Rearrange the case blocks so that the last one falls through if possible
10084     // without changing the order of probabilities.
10085     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10086       --I;
10087       if (I->Prob > W.LastCluster->Prob)
10088         break;
10089       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10090         std::swap(*I, *W.LastCluster);
10091         break;
10092       }
10093     }
10094   }
10095 
10096   // Compute total probability.
10097   BranchProbability DefaultProb = W.DefaultProb;
10098   BranchProbability UnhandledProbs = DefaultProb;
10099   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10100     UnhandledProbs += I->Prob;
10101 
10102   MachineBasicBlock *CurMBB = W.MBB;
10103   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10104     bool FallthroughUnreachable = false;
10105     MachineBasicBlock *Fallthrough;
10106     if (I == W.LastCluster) {
10107       // For the last cluster, fall through to the default destination.
10108       Fallthrough = DefaultMBB;
10109       FallthroughUnreachable = isa<UnreachableInst>(
10110           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10111     } else {
10112       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10113       CurMF->insert(BBI, Fallthrough);
10114       // Put Cond in a virtual register to make it available from the new blocks.
10115       ExportFromCurrentBlock(Cond);
10116     }
10117     UnhandledProbs -= I->Prob;
10118 
10119     switch (I->Kind) {
10120       case CC_JumpTable: {
10121         // FIXME: Optimize away range check based on pivot comparisons.
10122         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10123         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10124 
10125         // The jump block hasn't been inserted yet; insert it here.
10126         MachineBasicBlock *JumpMBB = JT->MBB;
10127         CurMF->insert(BBI, JumpMBB);
10128 
10129         auto JumpProb = I->Prob;
10130         auto FallthroughProb = UnhandledProbs;
10131 
10132         // If the default statement is a target of the jump table, we evenly
10133         // distribute the default probability to successors of CurMBB. Also
10134         // update the probability on the edge from JumpMBB to Fallthrough.
10135         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10136                                               SE = JumpMBB->succ_end();
10137              SI != SE; ++SI) {
10138           if (*SI == DefaultMBB) {
10139             JumpProb += DefaultProb / 2;
10140             FallthroughProb -= DefaultProb / 2;
10141             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10142             JumpMBB->normalizeSuccProbs();
10143             break;
10144           }
10145         }
10146 
10147         if (FallthroughUnreachable) {
10148           // Skip the range check if the fallthrough block is unreachable.
10149           JTH->OmitRangeCheck = true;
10150         }
10151 
10152         if (!JTH->OmitRangeCheck)
10153           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10154         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10155         CurMBB->normalizeSuccProbs();
10156 
10157         // The jump table header will be inserted in our current block, do the
10158         // range check, and fall through to our fallthrough block.
10159         JTH->HeaderBB = CurMBB;
10160         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10161 
10162         // If we're in the right place, emit the jump table header right now.
10163         if (CurMBB == SwitchMBB) {
10164           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10165           JTH->Emitted = true;
10166         }
10167         break;
10168       }
10169       case CC_BitTests: {
10170         // FIXME: Optimize away range check based on pivot comparisons.
10171         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10172 
10173         // The bit test blocks haven't been inserted yet; insert them here.
10174         for (BitTestCase &BTC : BTB->Cases)
10175           CurMF->insert(BBI, BTC.ThisBB);
10176 
10177         // Fill in fields of the BitTestBlock.
10178         BTB->Parent = CurMBB;
10179         BTB->Default = Fallthrough;
10180 
10181         BTB->DefaultProb = UnhandledProbs;
10182         // If the cases in bit test don't form a contiguous range, we evenly
10183         // distribute the probability on the edge to Fallthrough to two
10184         // successors of CurMBB.
10185         if (!BTB->ContiguousRange) {
10186           BTB->Prob += DefaultProb / 2;
10187           BTB->DefaultProb -= DefaultProb / 2;
10188         }
10189 
10190         if (FallthroughUnreachable) {
10191           // Skip the range check if the fallthrough block is unreachable.
10192           BTB->OmitRangeCheck = true;
10193         }
10194 
10195         // If we're in the right place, emit the bit test header right now.
10196         if (CurMBB == SwitchMBB) {
10197           visitBitTestHeader(*BTB, SwitchMBB);
10198           BTB->Emitted = true;
10199         }
10200         break;
10201       }
10202       case CC_Range: {
10203         const Value *RHS, *LHS, *MHS;
10204         ISD::CondCode CC;
10205         if (I->Low == I->High) {
10206           // Check Cond == I->Low.
10207           CC = ISD::SETEQ;
10208           LHS = Cond;
10209           RHS=I->Low;
10210           MHS = nullptr;
10211         } else {
10212           // Check I->Low <= Cond <= I->High.
10213           CC = ISD::SETLE;
10214           LHS = I->Low;
10215           MHS = Cond;
10216           RHS = I->High;
10217         }
10218 
10219         // If Fallthrough is unreachable, fold away the comparison.
10220         if (FallthroughUnreachable)
10221           CC = ISD::SETTRUE;
10222 
10223         // The false probability is the sum of all unhandled cases.
10224         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10225                      getCurSDLoc(), I->Prob, UnhandledProbs);
10226 
10227         if (CurMBB == SwitchMBB)
10228           visitSwitchCase(CB, SwitchMBB);
10229         else
10230           SL->SwitchCases.push_back(CB);
10231 
10232         break;
10233       }
10234     }
10235     CurMBB = Fallthrough;
10236   }
10237 }
10238 
10239 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10240                                               CaseClusterIt First,
10241                                               CaseClusterIt Last) {
10242   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10243     if (X.Prob != CC.Prob)
10244       return X.Prob > CC.Prob;
10245 
10246     // Ties are broken by comparing the case value.
10247     return X.Low->getValue().slt(CC.Low->getValue());
10248   });
10249 }
10250 
10251 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10252                                         const SwitchWorkListItem &W,
10253                                         Value *Cond,
10254                                         MachineBasicBlock *SwitchMBB) {
10255   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10256          "Clusters not sorted?");
10257 
10258   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10259 
10260   // Balance the tree based on branch probabilities to create a near-optimal (in
10261   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10262   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10263   CaseClusterIt LastLeft = W.FirstCluster;
10264   CaseClusterIt FirstRight = W.LastCluster;
10265   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10266   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10267 
10268   // Move LastLeft and FirstRight towards each other from opposite directions to
10269   // find a partitioning of the clusters which balances the probability on both
10270   // sides. If LeftProb and RightProb are equal, alternate which side is
10271   // taken to ensure 0-probability nodes are distributed evenly.
10272   unsigned I = 0;
10273   while (LastLeft + 1 < FirstRight) {
10274     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10275       LeftProb += (++LastLeft)->Prob;
10276     else
10277       RightProb += (--FirstRight)->Prob;
10278     I++;
10279   }
10280 
10281   while (true) {
10282     // Our binary search tree differs from a typical BST in that ours can have up
10283     // to three values in each leaf. The pivot selection above doesn't take that
10284     // into account, which means the tree might require more nodes and be less
10285     // efficient. We compensate for this here.
10286 
10287     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10288     unsigned NumRight = W.LastCluster - FirstRight + 1;
10289 
10290     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10291       // If one side has less than 3 clusters, and the other has more than 3,
10292       // consider taking a cluster from the other side.
10293 
10294       if (NumLeft < NumRight) {
10295         // Consider moving the first cluster on the right to the left side.
10296         CaseCluster &CC = *FirstRight;
10297         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10298         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10299         if (LeftSideRank <= RightSideRank) {
10300           // Moving the cluster to the left does not demote it.
10301           ++LastLeft;
10302           ++FirstRight;
10303           continue;
10304         }
10305       } else {
10306         assert(NumRight < NumLeft);
10307         // Consider moving the last element on the left to the right side.
10308         CaseCluster &CC = *LastLeft;
10309         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10310         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10311         if (RightSideRank <= LeftSideRank) {
10312           // Moving the cluster to the right does not demot it.
10313           --LastLeft;
10314           --FirstRight;
10315           continue;
10316         }
10317       }
10318     }
10319     break;
10320   }
10321 
10322   assert(LastLeft + 1 == FirstRight);
10323   assert(LastLeft >= W.FirstCluster);
10324   assert(FirstRight <= W.LastCluster);
10325 
10326   // Use the first element on the right as pivot since we will make less-than
10327   // comparisons against it.
10328   CaseClusterIt PivotCluster = FirstRight;
10329   assert(PivotCluster > W.FirstCluster);
10330   assert(PivotCluster <= W.LastCluster);
10331 
10332   CaseClusterIt FirstLeft = W.FirstCluster;
10333   CaseClusterIt LastRight = W.LastCluster;
10334 
10335   const ConstantInt *Pivot = PivotCluster->Low;
10336 
10337   // New blocks will be inserted immediately after the current one.
10338   MachineFunction::iterator BBI(W.MBB);
10339   ++BBI;
10340 
10341   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10342   // we can branch to its destination directly if it's squeezed exactly in
10343   // between the known lower bound and Pivot - 1.
10344   MachineBasicBlock *LeftMBB;
10345   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10346       FirstLeft->Low == W.GE &&
10347       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10348     LeftMBB = FirstLeft->MBB;
10349   } else {
10350     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10351     FuncInfo.MF->insert(BBI, LeftMBB);
10352     WorkList.push_back(
10353         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10354     // Put Cond in a virtual register to make it available from the new blocks.
10355     ExportFromCurrentBlock(Cond);
10356   }
10357 
10358   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10359   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10360   // directly if RHS.High equals the current upper bound.
10361   MachineBasicBlock *RightMBB;
10362   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10363       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10364     RightMBB = FirstRight->MBB;
10365   } else {
10366     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10367     FuncInfo.MF->insert(BBI, RightMBB);
10368     WorkList.push_back(
10369         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10370     // Put Cond in a virtual register to make it available from the new blocks.
10371     ExportFromCurrentBlock(Cond);
10372   }
10373 
10374   // Create the CaseBlock record that will be used to lower the branch.
10375   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10376                getCurSDLoc(), LeftProb, RightProb);
10377 
10378   if (W.MBB == SwitchMBB)
10379     visitSwitchCase(CB, SwitchMBB);
10380   else
10381     SL->SwitchCases.push_back(CB);
10382 }
10383 
10384 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10385 // from the swith statement.
10386 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10387                                             BranchProbability PeeledCaseProb) {
10388   if (PeeledCaseProb == BranchProbability::getOne())
10389     return BranchProbability::getZero();
10390   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10391 
10392   uint32_t Numerator = CaseProb.getNumerator();
10393   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10394   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10395 }
10396 
10397 // Try to peel the top probability case if it exceeds the threshold.
10398 // Return current MachineBasicBlock for the switch statement if the peeling
10399 // does not occur.
10400 // If the peeling is performed, return the newly created MachineBasicBlock
10401 // for the peeled switch statement. Also update Clusters to remove the peeled
10402 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10403 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10404     const SwitchInst &SI, CaseClusterVector &Clusters,
10405     BranchProbability &PeeledCaseProb) {
10406   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10407   // Don't perform if there is only one cluster or optimizing for size.
10408   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10409       TM.getOptLevel() == CodeGenOpt::None ||
10410       SwitchMBB->getParent()->getFunction().hasMinSize())
10411     return SwitchMBB;
10412 
10413   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10414   unsigned PeeledCaseIndex = 0;
10415   bool SwitchPeeled = false;
10416   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10417     CaseCluster &CC = Clusters[Index];
10418     if (CC.Prob < TopCaseProb)
10419       continue;
10420     TopCaseProb = CC.Prob;
10421     PeeledCaseIndex = Index;
10422     SwitchPeeled = true;
10423   }
10424   if (!SwitchPeeled)
10425     return SwitchMBB;
10426 
10427   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10428                     << TopCaseProb << "\n");
10429 
10430   // Record the MBB for the peeled switch statement.
10431   MachineFunction::iterator BBI(SwitchMBB);
10432   ++BBI;
10433   MachineBasicBlock *PeeledSwitchMBB =
10434       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10435   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10436 
10437   ExportFromCurrentBlock(SI.getCondition());
10438   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10439   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10440                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10441   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10442 
10443   Clusters.erase(PeeledCaseIt);
10444   for (CaseCluster &CC : Clusters) {
10445     LLVM_DEBUG(
10446         dbgs() << "Scale the probablity for one cluster, before scaling: "
10447                << CC.Prob << "\n");
10448     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10449     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10450   }
10451   PeeledCaseProb = TopCaseProb;
10452   return PeeledSwitchMBB;
10453 }
10454 
10455 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10456   // Extract cases from the switch.
10457   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10458   CaseClusterVector Clusters;
10459   Clusters.reserve(SI.getNumCases());
10460   for (auto I : SI.cases()) {
10461     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10462     const ConstantInt *CaseVal = I.getCaseValue();
10463     BranchProbability Prob =
10464         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10465             : BranchProbability(1, SI.getNumCases() + 1);
10466     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10467   }
10468 
10469   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10470 
10471   // Cluster adjacent cases with the same destination. We do this at all
10472   // optimization levels because it's cheap to do and will make codegen faster
10473   // if there are many clusters.
10474   sortAndRangeify(Clusters);
10475 
10476   // The branch probablity of the peeled case.
10477   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10478   MachineBasicBlock *PeeledSwitchMBB =
10479       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10480 
10481   // If there is only the default destination, jump there directly.
10482   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10483   if (Clusters.empty()) {
10484     assert(PeeledSwitchMBB == SwitchMBB);
10485     SwitchMBB->addSuccessor(DefaultMBB);
10486     if (DefaultMBB != NextBlock(SwitchMBB)) {
10487       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10488                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10489     }
10490     return;
10491   }
10492 
10493   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10494   SL->findBitTestClusters(Clusters, &SI);
10495 
10496   LLVM_DEBUG({
10497     dbgs() << "Case clusters: ";
10498     for (const CaseCluster &C : Clusters) {
10499       if (C.Kind == CC_JumpTable)
10500         dbgs() << "JT:";
10501       if (C.Kind == CC_BitTests)
10502         dbgs() << "BT:";
10503 
10504       C.Low->getValue().print(dbgs(), true);
10505       if (C.Low != C.High) {
10506         dbgs() << '-';
10507         C.High->getValue().print(dbgs(), true);
10508       }
10509       dbgs() << ' ';
10510     }
10511     dbgs() << '\n';
10512   });
10513 
10514   assert(!Clusters.empty());
10515   SwitchWorkList WorkList;
10516   CaseClusterIt First = Clusters.begin();
10517   CaseClusterIt Last = Clusters.end() - 1;
10518   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10519   // Scale the branchprobability for DefaultMBB if the peel occurs and
10520   // DefaultMBB is not replaced.
10521   if (PeeledCaseProb != BranchProbability::getZero() &&
10522       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10523     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10524   WorkList.push_back(
10525       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10526 
10527   while (!WorkList.empty()) {
10528     SwitchWorkListItem W = WorkList.back();
10529     WorkList.pop_back();
10530     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10531 
10532     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10533         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10534       // For optimized builds, lower large range as a balanced binary tree.
10535       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10536       continue;
10537     }
10538 
10539     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10540   }
10541 }
10542 
10543 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10544   SmallVector<EVT, 4> ValueVTs;
10545   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10546                   ValueVTs);
10547   unsigned NumValues = ValueVTs.size();
10548   if (NumValues == 0) return;
10549 
10550   SmallVector<SDValue, 4> Values(NumValues);
10551   SDValue Op = getValue(I.getOperand(0));
10552 
10553   for (unsigned i = 0; i != NumValues; ++i)
10554     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10555                             SDValue(Op.getNode(), Op.getResNo() + i));
10556 
10557   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10558                            DAG.getVTList(ValueVTs), Values));
10559 }
10560