xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision bb70b5d40652207c0bd3d385def10ef3ef1d45b4)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/CodeGenCommonISel.h"
36 #include "llvm/CodeGen/FunctionLoweringInfo.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcalls.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include <cstddef>
101 #include <iterator>
102 #include <limits>
103 #include <tuple>
104 
105 using namespace llvm;
106 using namespace PatternMatch;
107 using namespace SwitchCG;
108 
109 #define DEBUG_TYPE "isel"
110 
111 /// LimitFloatPrecision - Generate low-precision inline sequences for
112 /// some float libcalls (6, 8 or 12 bits).
113 static unsigned LimitFloatPrecision;
114 
115 static cl::opt<bool>
116     InsertAssertAlign("insert-assert-align", cl::init(true),
117                       cl::desc("Insert the experimental `assertalign` node."),
118                       cl::ReallyHidden);
119 
120 static cl::opt<unsigned, true>
121     LimitFPPrecision("limit-float-precision",
122                      cl::desc("Generate low-precision inline sequences "
123                               "for some float libcalls"),
124                      cl::location(LimitFloatPrecision), cl::Hidden,
125                      cl::init(0));
126 
127 static cl::opt<unsigned> SwitchPeelThreshold(
128     "switch-peel-threshold", cl::Hidden, cl::init(66),
129     cl::desc("Set the case probability threshold for peeling the case from a "
130              "switch statement. A value greater than 100 will void this "
131              "optimization"));
132 
133 // Limit the width of DAG chains. This is important in general to prevent
134 // DAG-based analysis from blowing up. For example, alias analysis and
135 // load clustering may not complete in reasonable time. It is difficult to
136 // recognize and avoid this situation within each individual analysis, and
137 // future analyses are likely to have the same behavior. Limiting DAG width is
138 // the safe approach and will be especially important with global DAGs.
139 //
140 // MaxParallelChains default is arbitrarily high to avoid affecting
141 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
142 // sequence over this should have been converted to llvm.memcpy by the
143 // frontend. It is easy to induce this behavior with .ll code such as:
144 // %buffer = alloca [4096 x i8]
145 // %data = load [4096 x i8]* %argPtr
146 // store [4096 x i8] %data, [4096 x i8]* %buffer
147 static const unsigned MaxParallelChains = 64;
148 
149 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
150                                       const SDValue *Parts, unsigned NumParts,
151                                       MVT PartVT, EVT ValueVT, const Value *V,
152                                       Optional<CallingConv::ID> CC);
153 
154 /// getCopyFromParts - Create a value that contains the specified legal parts
155 /// combined into the value they represent.  If the parts combine to a type
156 /// larger than ValueVT then AssertOp can be used to specify whether the extra
157 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
158 /// (ISD::AssertSext).
159 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
160                                 const SDValue *Parts, unsigned NumParts,
161                                 MVT PartVT, EVT ValueVT, const Value *V,
162                                 Optional<CallingConv::ID> CC = None,
163                                 Optional<ISD::NodeType> AssertOp = None) {
164   // Let the target assemble the parts if it wants to
165   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
166   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
167                                                    PartVT, ValueVT, CC))
168     return Val;
169 
170   if (ValueVT.isVector())
171     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
172                                   CC);
173 
174   assert(NumParts > 0 && "No parts to assemble!");
175   SDValue Val = Parts[0];
176 
177   if (NumParts > 1) {
178     // Assemble the value from multiple parts.
179     if (ValueVT.isInteger()) {
180       unsigned PartBits = PartVT.getSizeInBits();
181       unsigned ValueBits = ValueVT.getSizeInBits();
182 
183       // Assemble the power of 2 part.
184       unsigned RoundParts =
185           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
186       unsigned RoundBits = PartBits * RoundParts;
187       EVT RoundVT = RoundBits == ValueBits ?
188         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
189       SDValue Lo, Hi;
190 
191       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
192 
193       if (RoundParts > 2) {
194         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
195                               PartVT, HalfVT, V);
196         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
197                               RoundParts / 2, PartVT, HalfVT, V);
198       } else {
199         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
200         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
201       }
202 
203       if (DAG.getDataLayout().isBigEndian())
204         std::swap(Lo, Hi);
205 
206       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
207 
208       if (RoundParts < NumParts) {
209         // Assemble the trailing non-power-of-2 part.
210         unsigned OddParts = NumParts - RoundParts;
211         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
212         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
213                               OddVT, V, CC);
214 
215         // Combine the round and odd parts.
216         Lo = Val;
217         if (DAG.getDataLayout().isBigEndian())
218           std::swap(Lo, Hi);
219         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
220         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
221         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
222                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
223                                          TLI.getShiftAmountTy(
224                                              TotalVT, DAG.getDataLayout())));
225         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
226         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
227       }
228     } else if (PartVT.isFloatingPoint()) {
229       // FP split into multiple FP parts (for ppcf128)
230       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
231              "Unexpected split");
232       SDValue Lo, Hi;
233       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
234       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
235       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
236         std::swap(Lo, Hi);
237       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
238     } else {
239       // FP split into integer parts (soft fp)
240       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
241              !PartVT.isVector() && "Unexpected split");
242       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
243       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
244     }
245   }
246 
247   // There is now one part, held in Val.  Correct it to match ValueVT.
248   // PartEVT is the type of the register class that holds the value.
249   // ValueVT is the type of the inline asm operation.
250   EVT PartEVT = Val.getValueType();
251 
252   if (PartEVT == ValueVT)
253     return Val;
254 
255   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
256       ValueVT.bitsLT(PartEVT)) {
257     // For an FP value in an integer part, we need to truncate to the right
258     // width first.
259     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
260     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
261   }
262 
263   // Handle types that have the same size.
264   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
265     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
266 
267   // Handle types with different sizes.
268   if (PartEVT.isInteger() && ValueVT.isInteger()) {
269     if (ValueVT.bitsLT(PartEVT)) {
270       // For a truncate, see if we have any information to
271       // indicate whether the truncated bits will always be
272       // zero or sign-extension.
273       if (AssertOp)
274         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
275                           DAG.getValueType(ValueVT));
276       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
277     }
278     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
279   }
280 
281   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
282     // FP_ROUND's are always exact here.
283     if (ValueVT.bitsLT(Val.getValueType()))
284       return DAG.getNode(
285           ISD::FP_ROUND, DL, ValueVT, Val,
286           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
287 
288     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
289   }
290 
291   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
292   // then truncating.
293   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
294       ValueVT.bitsLT(PartEVT)) {
295     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
296     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
297   }
298 
299   report_fatal_error("Unknown mismatch in getCopyFromParts!");
300 }
301 
302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
303                                               const Twine &ErrMsg) {
304   const Instruction *I = dyn_cast_or_null<Instruction>(V);
305   if (!V)
306     return Ctx.emitError(ErrMsg);
307 
308   const char *AsmError = ", possible invalid constraint for vector type";
309   if (const CallInst *CI = dyn_cast<CallInst>(I))
310     if (CI->isInlineAsm())
311       return Ctx.emitError(I, ErrMsg + AsmError);
312 
313   return Ctx.emitError(I, ErrMsg);
314 }
315 
316 /// getCopyFromPartsVector - Create a value that contains the specified legal
317 /// parts combined into the value they represent.  If the parts combine to a
318 /// type larger than ValueVT then AssertOp can be used to specify whether the
319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
320 /// ValueVT (ISD::AssertSext).
321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
322                                       const SDValue *Parts, unsigned NumParts,
323                                       MVT PartVT, EVT ValueVT, const Value *V,
324                                       Optional<CallingConv::ID> CallConv) {
325   assert(ValueVT.isVector() && "Not a vector value");
326   assert(NumParts > 0 && "No parts to assemble!");
327   const bool IsABIRegCopy = CallConv.has_value();
328 
329   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
330   SDValue Val = Parts[0];
331 
332   // Handle a multi-element vector.
333   if (NumParts > 1) {
334     EVT IntermediateVT;
335     MVT RegisterVT;
336     unsigned NumIntermediates;
337     unsigned NumRegs;
338 
339     if (IsABIRegCopy) {
340       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
341           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
342           NumIntermediates, RegisterVT);
343     } else {
344       NumRegs =
345           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
346                                      NumIntermediates, RegisterVT);
347     }
348 
349     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
350     NumParts = NumRegs; // Silence a compiler warning.
351     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
352     assert(RegisterVT.getSizeInBits() ==
353            Parts[0].getSimpleValueType().getSizeInBits() &&
354            "Part type sizes don't match!");
355 
356     // Assemble the parts into intermediate operands.
357     SmallVector<SDValue, 8> Ops(NumIntermediates);
358     if (NumIntermediates == NumParts) {
359       // If the register was not expanded, truncate or copy the value,
360       // as appropriate.
361       for (unsigned i = 0; i != NumParts; ++i)
362         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
363                                   PartVT, IntermediateVT, V, CallConv);
364     } else if (NumParts > 0) {
365       // If the intermediate type was expanded, build the intermediate
366       // operands from the parts.
367       assert(NumParts % NumIntermediates == 0 &&
368              "Must expand into a divisible number of parts!");
369       unsigned Factor = NumParts / NumIntermediates;
370       for (unsigned i = 0; i != NumIntermediates; ++i)
371         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
372                                   PartVT, IntermediateVT, V, CallConv);
373     }
374 
375     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
376     // intermediate operands.
377     EVT BuiltVectorTy =
378         IntermediateVT.isVector()
379             ? EVT::getVectorVT(
380                   *DAG.getContext(), IntermediateVT.getScalarType(),
381                   IntermediateVT.getVectorElementCount() * NumParts)
382             : EVT::getVectorVT(*DAG.getContext(),
383                                IntermediateVT.getScalarType(),
384                                NumIntermediates);
385     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
386                                                 : ISD::BUILD_VECTOR,
387                       DL, BuiltVectorTy, Ops);
388   }
389 
390   // There is now one part, held in Val.  Correct it to match ValueVT.
391   EVT PartEVT = Val.getValueType();
392 
393   if (PartEVT == ValueVT)
394     return Val;
395 
396   if (PartEVT.isVector()) {
397     // Vector/Vector bitcast.
398     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
399       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
400 
401     // If the element type of the source/dest vectors are the same, but the
402     // parts vector has more elements than the value vector, then we have a
403     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
404     // elements we want.
405     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
406       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
407               ValueVT.getVectorElementCount().getKnownMinValue()) &&
408              (PartEVT.getVectorElementCount().isScalable() ==
409               ValueVT.getVectorElementCount().isScalable()) &&
410              "Cannot narrow, it would be a lossy transformation");
411       PartEVT =
412           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
413                            ValueVT.getVectorElementCount());
414       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
415                         DAG.getVectorIdxConstant(0, DL));
416       if (PartEVT == ValueVT)
417         return Val;
418     }
419 
420     // Promoted vector extract
421     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
422   }
423 
424   // Trivial bitcast if the types are the same size and the destination
425   // vector type is legal.
426   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
427       TLI.isTypeLegal(ValueVT))
428     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
429 
430   if (ValueVT.getVectorNumElements() != 1) {
431      // Certain ABIs require that vectors are passed as integers. For vectors
432      // are the same size, this is an obvious bitcast.
433      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
434        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435      } else if (ValueVT.bitsLT(PartEVT)) {
436        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
437        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
438        // Drop the extra bits.
439        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
440        return DAG.getBitcast(ValueVT, Val);
441      }
442 
443      diagnosePossiblyInvalidConstraint(
444          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
445      return DAG.getUNDEF(ValueVT);
446   }
447 
448   // Handle cases such as i8 -> <1 x i1>
449   EVT ValueSVT = ValueVT.getVectorElementType();
450   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
451     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
452       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
453     else
454       Val = ValueVT.isFloatingPoint()
455                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
456                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
457   }
458 
459   return DAG.getBuildVector(ValueVT, DL, Val);
460 }
461 
462 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
463                                  SDValue Val, SDValue *Parts, unsigned NumParts,
464                                  MVT PartVT, const Value *V,
465                                  Optional<CallingConv::ID> CallConv);
466 
467 /// getCopyToParts - Create a series of nodes that contain the specified value
468 /// split into legal parts.  If the parts contain more bits than Val, then, for
469 /// integers, ExtendKind can be used to specify how to generate the extra bits.
470 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
471                            SDValue *Parts, unsigned NumParts, MVT PartVT,
472                            const Value *V,
473                            Optional<CallingConv::ID> CallConv = None,
474                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
475   // Let the target split the parts if it wants to
476   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
477   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
478                                       CallConv))
479     return;
480   EVT ValueVT = Val.getValueType();
481 
482   // Handle the vector case separately.
483   if (ValueVT.isVector())
484     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
485                                 CallConv);
486 
487   unsigned PartBits = PartVT.getSizeInBits();
488   unsigned OrigNumParts = NumParts;
489   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
490          "Copying to an illegal type!");
491 
492   if (NumParts == 0)
493     return;
494 
495   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
496   EVT PartEVT = PartVT;
497   if (PartEVT == ValueVT) {
498     assert(NumParts == 1 && "No-op copy with multiple parts!");
499     Parts[0] = Val;
500     return;
501   }
502 
503   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
504     // If the parts cover more bits than the value has, promote the value.
505     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
506       assert(NumParts == 1 && "Do not know what to promote to!");
507       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
508     } else {
509       if (ValueVT.isFloatingPoint()) {
510         // FP values need to be bitcast, then extended if they are being put
511         // into a larger container.
512         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
513         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
514       }
515       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
516              ValueVT.isInteger() &&
517              "Unknown mismatch!");
518       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
519       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
520       if (PartVT == MVT::x86mmx)
521         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
522     }
523   } else if (PartBits == ValueVT.getSizeInBits()) {
524     // Different types of the same size.
525     assert(NumParts == 1 && PartEVT != ValueVT);
526     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
528     // If the parts cover less bits than value has, truncate the value.
529     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
530            ValueVT.isInteger() &&
531            "Unknown mismatch!");
532     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
533     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
534     if (PartVT == MVT::x86mmx)
535       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
536   }
537 
538   // The value may have changed - recompute ValueVT.
539   ValueVT = Val.getValueType();
540   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
541          "Failed to tile the value with PartVT!");
542 
543   if (NumParts == 1) {
544     if (PartEVT != ValueVT) {
545       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
546                                         "scalar-to-vector conversion failed");
547       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548     }
549 
550     Parts[0] = Val;
551     return;
552   }
553 
554   // Expand the value into multiple parts.
555   if (NumParts & (NumParts - 1)) {
556     // The number of parts is not a power of 2.  Split off and copy the tail.
557     assert(PartVT.isInteger() && ValueVT.isInteger() &&
558            "Do not know what to expand to!");
559     unsigned RoundParts = 1 << Log2_32(NumParts);
560     unsigned RoundBits = RoundParts * PartBits;
561     unsigned OddParts = NumParts - RoundParts;
562     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
563       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
564 
565     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
566                    CallConv);
567 
568     if (DAG.getDataLayout().isBigEndian())
569       // The odd parts were reversed by getCopyToParts - unreverse them.
570       std::reverse(Parts + RoundParts, Parts + NumParts);
571 
572     NumParts = RoundParts;
573     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
574     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
575   }
576 
577   // The number of parts is a power of 2.  Repeatedly bisect the value using
578   // EXTRACT_ELEMENT.
579   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
580                          EVT::getIntegerVT(*DAG.getContext(),
581                                            ValueVT.getSizeInBits()),
582                          Val);
583 
584   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
585     for (unsigned i = 0; i < NumParts; i += StepSize) {
586       unsigned ThisBits = StepSize * PartBits / 2;
587       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
588       SDValue &Part0 = Parts[i];
589       SDValue &Part1 = Parts[i+StepSize/2];
590 
591       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
592                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
593       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
594                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
595 
596       if (ThisBits == PartBits && ThisVT != PartVT) {
597         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
598         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
599       }
600     }
601   }
602 
603   if (DAG.getDataLayout().isBigEndian())
604     std::reverse(Parts, Parts + OrigNumParts);
605 }
606 
607 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
608                                      const SDLoc &DL, EVT PartVT) {
609   if (!PartVT.isVector())
610     return SDValue();
611 
612   EVT ValueVT = Val.getValueType();
613   ElementCount PartNumElts = PartVT.getVectorElementCount();
614   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
615 
616   // We only support widening vectors with equivalent element types and
617   // fixed/scalable properties. If a target needs to widen a fixed-length type
618   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
619   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
620       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
621       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
622     return SDValue();
623 
624   // Widening a scalable vector to another scalable vector is done by inserting
625   // the vector into a larger undef one.
626   if (PartNumElts.isScalable())
627     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
628                        Val, DAG.getVectorIdxConstant(0, DL));
629 
630   EVT ElementVT = PartVT.getVectorElementType();
631   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
632   // undef elements.
633   SmallVector<SDValue, 16> Ops;
634   DAG.ExtractVectorElements(Val, Ops);
635   SDValue EltUndef = DAG.getUNDEF(ElementVT);
636   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
637 
638   // FIXME: Use CONCAT for 2x -> 4x.
639   return DAG.getBuildVector(PartVT, DL, Ops);
640 }
641 
642 /// getCopyToPartsVector - Create a series of nodes that contain the specified
643 /// value split into legal parts.
644 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
645                                  SDValue Val, SDValue *Parts, unsigned NumParts,
646                                  MVT PartVT, const Value *V,
647                                  Optional<CallingConv::ID> CallConv) {
648   EVT ValueVT = Val.getValueType();
649   assert(ValueVT.isVector() && "Not a vector");
650   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
651   const bool IsABIRegCopy = CallConv.has_value();
652 
653   if (NumParts == 1) {
654     EVT PartEVT = PartVT;
655     if (PartEVT == ValueVT) {
656       // Nothing to do.
657     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
658       // Bitconvert vector->vector case.
659       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
660     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
661       Val = Widened;
662     } else if (PartVT.isVector() &&
663                PartEVT.getVectorElementType().bitsGE(
664                    ValueVT.getVectorElementType()) &&
665                PartEVT.getVectorElementCount() ==
666                    ValueVT.getVectorElementCount()) {
667 
668       // Promoted vector extract
669       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
670     } else if (PartEVT.isVector() &&
671                PartEVT.getVectorElementType() !=
672                    ValueVT.getVectorElementType() &&
673                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
674                    TargetLowering::TypeWidenVector) {
675       // Combination of widening and promotion.
676       EVT WidenVT =
677           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
678                            PartVT.getVectorElementCount());
679       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
680       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
681     } else {
682       if (ValueVT.getVectorElementCount().isScalar()) {
683         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
684                           DAG.getVectorIdxConstant(0, DL));
685       } else {
686         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
687         assert(PartVT.getFixedSizeInBits() > ValueSize &&
688                "lossy conversion of vector to scalar type");
689         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
690         Val = DAG.getBitcast(IntermediateType, Val);
691         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
692       }
693     }
694 
695     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
696     Parts[0] = Val;
697     return;
698   }
699 
700   // Handle a multi-element vector.
701   EVT IntermediateVT;
702   MVT RegisterVT;
703   unsigned NumIntermediates;
704   unsigned NumRegs;
705   if (IsABIRegCopy) {
706     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
707         *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT,
708         NumIntermediates, RegisterVT);
709   } else {
710     NumRegs =
711         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
712                                    NumIntermediates, RegisterVT);
713   }
714 
715   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
716   NumParts = NumRegs; // Silence a compiler warning.
717   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
718 
719   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
720          "Mixing scalable and fixed vectors when copying in parts");
721 
722   Optional<ElementCount> DestEltCnt;
723 
724   if (IntermediateVT.isVector())
725     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
726   else
727     DestEltCnt = ElementCount::getFixed(NumIntermediates);
728 
729   EVT BuiltVectorTy = EVT::getVectorVT(
730       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
731 
732   if (ValueVT == BuiltVectorTy) {
733     // Nothing to do.
734   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
735     // Bitconvert vector->vector case.
736     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
737   } else {
738     if (BuiltVectorTy.getVectorElementType().bitsGT(
739             ValueVT.getVectorElementType())) {
740       // Integer promotion.
741       ValueVT = EVT::getVectorVT(*DAG.getContext(),
742                                  BuiltVectorTy.getVectorElementType(),
743                                  ValueVT.getVectorElementCount());
744       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
745     }
746 
747     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
748       Val = Widened;
749     }
750   }
751 
752   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
753 
754   // Split the vector into intermediate operands.
755   SmallVector<SDValue, 8> Ops(NumIntermediates);
756   for (unsigned i = 0; i != NumIntermediates; ++i) {
757     if (IntermediateVT.isVector()) {
758       // This does something sensible for scalable vectors - see the
759       // definition of EXTRACT_SUBVECTOR for further details.
760       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
761       Ops[i] =
762           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
763                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
764     } else {
765       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
766                            DAG.getVectorIdxConstant(i, DL));
767     }
768   }
769 
770   // Split the intermediate operands into legal parts.
771   if (NumParts == NumIntermediates) {
772     // If the register was not expanded, promote or copy the value,
773     // as appropriate.
774     for (unsigned i = 0; i != NumParts; ++i)
775       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
776   } else if (NumParts > 0) {
777     // If the intermediate type was expanded, split each the value into
778     // legal parts.
779     assert(NumIntermediates != 0 && "division by zero");
780     assert(NumParts % NumIntermediates == 0 &&
781            "Must expand into a divisible number of parts!");
782     unsigned Factor = NumParts / NumIntermediates;
783     for (unsigned i = 0; i != NumIntermediates; ++i)
784       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
785                      CallConv);
786   }
787 }
788 
789 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
790                            EVT valuevt, Optional<CallingConv::ID> CC)
791     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
792       RegCount(1, regs.size()), CallConv(CC) {}
793 
794 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
795                            const DataLayout &DL, unsigned Reg, Type *Ty,
796                            Optional<CallingConv::ID> CC) {
797   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
798 
799   CallConv = CC;
800 
801   for (EVT ValueVT : ValueVTs) {
802     unsigned NumRegs =
803         isABIMangled()
804             ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT)
805             : TLI.getNumRegisters(Context, ValueVT);
806     MVT RegisterVT =
807         isABIMangled()
808             ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT)
809             : TLI.getRegisterType(Context, ValueVT);
810     for (unsigned i = 0; i != NumRegs; ++i)
811       Regs.push_back(Reg + i);
812     RegVTs.push_back(RegisterVT);
813     RegCount.push_back(NumRegs);
814     Reg += NumRegs;
815   }
816 }
817 
818 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
819                                       FunctionLoweringInfo &FuncInfo,
820                                       const SDLoc &dl, SDValue &Chain,
821                                       SDValue *Flag, const Value *V) const {
822   // A Value with type {} or [0 x %t] needs no registers.
823   if (ValueVTs.empty())
824     return SDValue();
825 
826   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
827 
828   // Assemble the legal parts into the final values.
829   SmallVector<SDValue, 4> Values(ValueVTs.size());
830   SmallVector<SDValue, 8> Parts;
831   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
832     // Copy the legal parts from the registers.
833     EVT ValueVT = ValueVTs[Value];
834     unsigned NumRegs = RegCount[Value];
835     MVT RegisterVT =
836         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
837                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
838                        : RegVTs[Value];
839 
840     Parts.resize(NumRegs);
841     for (unsigned i = 0; i != NumRegs; ++i) {
842       SDValue P;
843       if (!Flag) {
844         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
845       } else {
846         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
847         *Flag = P.getValue(2);
848       }
849 
850       Chain = P.getValue(1);
851       Parts[i] = P;
852 
853       // If the source register was virtual and if we know something about it,
854       // add an assert node.
855       if (!Register::isVirtualRegister(Regs[Part + i]) ||
856           !RegisterVT.isInteger())
857         continue;
858 
859       const FunctionLoweringInfo::LiveOutInfo *LOI =
860         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
861       if (!LOI)
862         continue;
863 
864       unsigned RegSize = RegisterVT.getScalarSizeInBits();
865       unsigned NumSignBits = LOI->NumSignBits;
866       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
867 
868       if (NumZeroBits == RegSize) {
869         // The current value is a zero.
870         // Explicitly express that as it would be easier for
871         // optimizations to kick in.
872         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
873         continue;
874       }
875 
876       // FIXME: We capture more information than the dag can represent.  For
877       // now, just use the tightest assertzext/assertsext possible.
878       bool isSExt;
879       EVT FromVT(MVT::Other);
880       if (NumZeroBits) {
881         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
882         isSExt = false;
883       } else if (NumSignBits > 1) {
884         FromVT =
885             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
886         isSExt = true;
887       } else {
888         continue;
889       }
890       // Add an assertion node.
891       assert(FromVT != MVT::Other);
892       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
893                              RegisterVT, P, DAG.getValueType(FromVT));
894     }
895 
896     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
897                                      RegisterVT, ValueVT, V, CallConv);
898     Part += NumRegs;
899     Parts.clear();
900   }
901 
902   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
903 }
904 
905 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
906                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
907                                  const Value *V,
908                                  ISD::NodeType PreferredExtendType) const {
909   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
910   ISD::NodeType ExtendKind = PreferredExtendType;
911 
912   // Get the list of the values's legal parts.
913   unsigned NumRegs = Regs.size();
914   SmallVector<SDValue, 8> Parts(NumRegs);
915   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
916     unsigned NumParts = RegCount[Value];
917 
918     MVT RegisterVT =
919         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
920                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
921                        : RegVTs[Value];
922 
923     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
924       ExtendKind = ISD::ZERO_EXTEND;
925 
926     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
927                    NumParts, RegisterVT, V, CallConv, ExtendKind);
928     Part += NumParts;
929   }
930 
931   // Copy the parts into the registers.
932   SmallVector<SDValue, 8> Chains(NumRegs);
933   for (unsigned i = 0; i != NumRegs; ++i) {
934     SDValue Part;
935     if (!Flag) {
936       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
937     } else {
938       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
939       *Flag = Part.getValue(1);
940     }
941 
942     Chains[i] = Part.getValue(0);
943   }
944 
945   if (NumRegs == 1 || Flag)
946     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
947     // flagged to it. That is the CopyToReg nodes and the user are considered
948     // a single scheduling unit. If we create a TokenFactor and return it as
949     // chain, then the TokenFactor is both a predecessor (operand) of the
950     // user as well as a successor (the TF operands are flagged to the user).
951     // c1, f1 = CopyToReg
952     // c2, f2 = CopyToReg
953     // c3     = TokenFactor c1, c2
954     // ...
955     //        = op c3, ..., f2
956     Chain = Chains[NumRegs-1];
957   else
958     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
959 }
960 
961 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
962                                         unsigned MatchingIdx, const SDLoc &dl,
963                                         SelectionDAG &DAG,
964                                         std::vector<SDValue> &Ops) const {
965   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
966 
967   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
968   if (HasMatching)
969     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
970   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
971     // Put the register class of the virtual registers in the flag word.  That
972     // way, later passes can recompute register class constraints for inline
973     // assembly as well as normal instructions.
974     // Don't do this for tied operands that can use the regclass information
975     // from the def.
976     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
977     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
978     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
979   }
980 
981   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
982   Ops.push_back(Res);
983 
984   if (Code == InlineAsm::Kind_Clobber) {
985     // Clobbers should always have a 1:1 mapping with registers, and may
986     // reference registers that have illegal (e.g. vector) types. Hence, we
987     // shouldn't try to apply any sort of splitting logic to them.
988     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
989            "No 1:1 mapping from clobbers to regs?");
990     Register SP = TLI.getStackPointerRegisterToSaveRestore();
991     (void)SP;
992     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
993       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
994       assert(
995           (Regs[I] != SP ||
996            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
997           "If we clobbered the stack pointer, MFI should know about it.");
998     }
999     return;
1000   }
1001 
1002   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1003     MVT RegisterVT = RegVTs[Value];
1004     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1005                                            RegisterVT);
1006     for (unsigned i = 0; i != NumRegs; ++i) {
1007       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1008       unsigned TheReg = Regs[Reg++];
1009       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1010     }
1011   }
1012 }
1013 
1014 SmallVector<std::pair<unsigned, TypeSize>, 4>
1015 RegsForValue::getRegsAndSizes() const {
1016   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1017   unsigned I = 0;
1018   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1019     unsigned RegCount = std::get<0>(CountAndVT);
1020     MVT RegisterVT = std::get<1>(CountAndVT);
1021     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1022     for (unsigned E = I + RegCount; I != E; ++I)
1023       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1024   }
1025   return OutVec;
1026 }
1027 
1028 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1029                                const TargetLibraryInfo *li) {
1030   AA = aa;
1031   GFI = gfi;
1032   LibInfo = li;
1033   Context = DAG.getContext();
1034   LPadToCallSiteMap.clear();
1035   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1036 }
1037 
1038 void SelectionDAGBuilder::clear() {
1039   NodeMap.clear();
1040   UnusedArgNodeMap.clear();
1041   PendingLoads.clear();
1042   PendingExports.clear();
1043   PendingConstrainedFP.clear();
1044   PendingConstrainedFPStrict.clear();
1045   CurInst = nullptr;
1046   HasTailCall = false;
1047   SDNodeOrder = LowestSDNodeOrder;
1048   StatepointLowering.clear();
1049 }
1050 
1051 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1052   DanglingDebugInfoMap.clear();
1053 }
1054 
1055 // Update DAG root to include dependencies on Pending chains.
1056 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1057   SDValue Root = DAG.getRoot();
1058 
1059   if (Pending.empty())
1060     return Root;
1061 
1062   // Add current root to PendingChains, unless we already indirectly
1063   // depend on it.
1064   if (Root.getOpcode() != ISD::EntryToken) {
1065     unsigned i = 0, e = Pending.size();
1066     for (; i != e; ++i) {
1067       assert(Pending[i].getNode()->getNumOperands() > 1);
1068       if (Pending[i].getNode()->getOperand(0) == Root)
1069         break;  // Don't add the root if we already indirectly depend on it.
1070     }
1071 
1072     if (i == e)
1073       Pending.push_back(Root);
1074   }
1075 
1076   if (Pending.size() == 1)
1077     Root = Pending[0];
1078   else
1079     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1080 
1081   DAG.setRoot(Root);
1082   Pending.clear();
1083   return Root;
1084 }
1085 
1086 SDValue SelectionDAGBuilder::getMemoryRoot() {
1087   return updateRoot(PendingLoads);
1088 }
1089 
1090 SDValue SelectionDAGBuilder::getRoot() {
1091   // Chain up all pending constrained intrinsics together with all
1092   // pending loads, by simply appending them to PendingLoads and
1093   // then calling getMemoryRoot().
1094   PendingLoads.reserve(PendingLoads.size() +
1095                        PendingConstrainedFP.size() +
1096                        PendingConstrainedFPStrict.size());
1097   PendingLoads.append(PendingConstrainedFP.begin(),
1098                       PendingConstrainedFP.end());
1099   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1100                       PendingConstrainedFPStrict.end());
1101   PendingConstrainedFP.clear();
1102   PendingConstrainedFPStrict.clear();
1103   return getMemoryRoot();
1104 }
1105 
1106 SDValue SelectionDAGBuilder::getControlRoot() {
1107   // We need to emit pending fpexcept.strict constrained intrinsics,
1108   // so append them to the PendingExports list.
1109   PendingExports.append(PendingConstrainedFPStrict.begin(),
1110                         PendingConstrainedFPStrict.end());
1111   PendingConstrainedFPStrict.clear();
1112   return updateRoot(PendingExports);
1113 }
1114 
1115 void SelectionDAGBuilder::visit(const Instruction &I) {
1116   // Set up outgoing PHI node register values before emitting the terminator.
1117   if (I.isTerminator()) {
1118     HandlePHINodesInSuccessorBlocks(I.getParent());
1119   }
1120 
1121   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1122   if (!isa<DbgInfoIntrinsic>(I))
1123     ++SDNodeOrder;
1124 
1125   CurInst = &I;
1126 
1127   // Set inserted listener only if required.
1128   bool NodeInserted = false;
1129   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1130   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1131   if (PCSectionsMD) {
1132     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1133         DAG, [&](SDNode *) { NodeInserted = true; });
1134   }
1135 
1136   visit(I.getOpcode(), I);
1137 
1138   if (!I.isTerminator() && !HasTailCall &&
1139       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1140     CopyToExportRegsIfNeeded(&I);
1141 
1142   // Handle metadata.
1143   if (PCSectionsMD) {
1144     auto It = NodeMap.find(&I);
1145     if (It != NodeMap.end()) {
1146       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1147     } else if (NodeInserted) {
1148       // This should not happen; if it does, don't let it go unnoticed so we can
1149       // fix it. Relevant visit*() function is probably missing a setValue().
1150       errs() << "warning: loosing !pcsections metadata ["
1151              << I.getModule()->getName() << "]\n";
1152       LLVM_DEBUG(I.dump());
1153       assert(false);
1154     }
1155   }
1156 
1157   CurInst = nullptr;
1158 }
1159 
1160 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1161   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1162 }
1163 
1164 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1165   // Note: this doesn't use InstVisitor, because it has to work with
1166   // ConstantExpr's in addition to instructions.
1167   switch (Opcode) {
1168   default: llvm_unreachable("Unknown instruction type encountered!");
1169     // Build the switch statement using the Instruction.def file.
1170 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1171     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1172 #include "llvm/IR/Instruction.def"
1173   }
1174 }
1175 
1176 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1177                                                DebugLoc DL, unsigned Order) {
1178   // We treat variadic dbg_values differently at this stage.
1179   if (DI->hasArgList()) {
1180     // For variadic dbg_values we will now insert an undef.
1181     // FIXME: We can potentially recover these!
1182     SmallVector<SDDbgOperand, 2> Locs;
1183     for (const Value *V : DI->getValues()) {
1184       auto Undef = UndefValue::get(V->getType());
1185       Locs.push_back(SDDbgOperand::fromConst(Undef));
1186     }
1187     SDDbgValue *SDV = DAG.getDbgValueList(
1188         DI->getVariable(), DI->getExpression(), Locs, {},
1189         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1190     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1191   } else {
1192     // TODO: Dangling debug info will eventually either be resolved or produce
1193     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1194     // between the original dbg.value location and its resolved DBG_VALUE,
1195     // which we should ideally fill with an extra Undef DBG_VALUE.
1196     assert(DI->getNumVariableLocationOps() == 1 &&
1197            "DbgValueInst without an ArgList should have a single location "
1198            "operand.");
1199     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1200   }
1201 }
1202 
1203 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1204                                                 const DIExpression *Expr) {
1205   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1206     const DbgValueInst *DI = DDI.getDI();
1207     DIVariable *DanglingVariable = DI->getVariable();
1208     DIExpression *DanglingExpr = DI->getExpression();
1209     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1210       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1211       return true;
1212     }
1213     return false;
1214   };
1215 
1216   for (auto &DDIMI : DanglingDebugInfoMap) {
1217     DanglingDebugInfoVector &DDIV = DDIMI.second;
1218 
1219     // If debug info is to be dropped, run it through final checks to see
1220     // whether it can be salvaged.
1221     for (auto &DDI : DDIV)
1222       if (isMatchingDbgValue(DDI))
1223         salvageUnresolvedDbgValue(DDI);
1224 
1225     erase_if(DDIV, isMatchingDbgValue);
1226   }
1227 }
1228 
1229 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1230 // generate the debug data structures now that we've seen its definition.
1231 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1232                                                    SDValue Val) {
1233   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1234   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1235     return;
1236 
1237   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1238   for (auto &DDI : DDIV) {
1239     const DbgValueInst *DI = DDI.getDI();
1240     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1241     assert(DI && "Ill-formed DanglingDebugInfo");
1242     DebugLoc dl = DDI.getdl();
1243     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1244     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1245     DILocalVariable *Variable = DI->getVariable();
1246     DIExpression *Expr = DI->getExpression();
1247     assert(Variable->isValidLocationForIntrinsic(dl) &&
1248            "Expected inlined-at fields to agree");
1249     SDDbgValue *SDV;
1250     if (Val.getNode()) {
1251       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1252       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1253       // we couldn't resolve it directly when examining the DbgValue intrinsic
1254       // in the first place we should not be more successful here). Unless we
1255       // have some test case that prove this to be correct we should avoid
1256       // calling EmitFuncArgumentDbgValue here.
1257       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl,
1258                                     FuncArgumentDbgValueKind::Value, Val)) {
1259         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1260                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1261         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1262         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1263         // inserted after the definition of Val when emitting the instructions
1264         // after ISel. An alternative could be to teach
1265         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1266         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1267                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1268                    << ValSDNodeOrder << "\n");
1269         SDV = getDbgValue(Val, Variable, Expr, dl,
1270                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1271         DAG.AddDbgValue(SDV, false);
1272       } else
1273         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1274                           << "in EmitFuncArgumentDbgValue\n");
1275     } else {
1276       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1277       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1278       auto SDV =
1279           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1280       DAG.AddDbgValue(SDV, false);
1281     }
1282   }
1283   DDIV.clear();
1284 }
1285 
1286 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1287   // TODO: For the variadic implementation, instead of only checking the fail
1288   // state of `handleDebugValue`, we need know specifically which values were
1289   // invalid, so that we attempt to salvage only those values when processing
1290   // a DIArgList.
1291   assert(!DDI.getDI()->hasArgList() &&
1292          "Not implemented for variadic dbg_values");
1293   Value *V = DDI.getDI()->getValue(0);
1294   DILocalVariable *Var = DDI.getDI()->getVariable();
1295   DIExpression *Expr = DDI.getDI()->getExpression();
1296   DebugLoc DL = DDI.getdl();
1297   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1298   unsigned SDOrder = DDI.getSDNodeOrder();
1299   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1300   // that DW_OP_stack_value is desired.
1301   assert(isa<DbgValueInst>(DDI.getDI()));
1302   bool StackValue = true;
1303 
1304   // Can this Value can be encoded without any further work?
1305   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1306     return;
1307 
1308   // Attempt to salvage back through as many instructions as possible. Bail if
1309   // a non-instruction is seen, such as a constant expression or global
1310   // variable. FIXME: Further work could recover those too.
1311   while (isa<Instruction>(V)) {
1312     Instruction &VAsInst = *cast<Instruction>(V);
1313     // Temporary "0", awaiting real implementation.
1314     SmallVector<uint64_t, 16> Ops;
1315     SmallVector<Value *, 4> AdditionalValues;
1316     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1317                              AdditionalValues);
1318     // If we cannot salvage any further, and haven't yet found a suitable debug
1319     // expression, bail out.
1320     if (!V)
1321       break;
1322 
1323     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1324     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1325     // here for variadic dbg_values, remove that condition.
1326     if (!AdditionalValues.empty())
1327       break;
1328 
1329     // New value and expr now represent this debuginfo.
1330     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1331 
1332     // Some kind of simplification occurred: check whether the operand of the
1333     // salvaged debug expression can be encoded in this DAG.
1334     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1335                          /*IsVariadic=*/false)) {
1336       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1337                         << *DDI.getDI() << "\nBy stripping back to:\n  " << *V);
1338       return;
1339     }
1340   }
1341 
1342   // This was the final opportunity to salvage this debug information, and it
1343   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1344   // any earlier variable location.
1345   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1346   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1347   DAG.AddDbgValue(SDV, false);
1348 
1349   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << *DDI.getDI()
1350                     << "\n");
1351   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1352                     << "\n");
1353 }
1354 
1355 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1356                                            DILocalVariable *Var,
1357                                            DIExpression *Expr, DebugLoc dl,
1358                                            DebugLoc InstDL, unsigned Order,
1359                                            bool IsVariadic) {
1360   if (Values.empty())
1361     return true;
1362   SmallVector<SDDbgOperand> LocationOps;
1363   SmallVector<SDNode *> Dependencies;
1364   for (const Value *V : Values) {
1365     // Constant value.
1366     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1367         isa<ConstantPointerNull>(V)) {
1368       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1369       continue;
1370     }
1371 
1372     // Look through IntToPtr constants.
1373     if (auto *CE = dyn_cast<ConstantExpr>(V))
1374       if (CE->getOpcode() == Instruction::IntToPtr) {
1375         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1376         continue;
1377       }
1378 
1379     // If the Value is a frame index, we can create a FrameIndex debug value
1380     // without relying on the DAG at all.
1381     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1382       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1383       if (SI != FuncInfo.StaticAllocaMap.end()) {
1384         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1385         continue;
1386       }
1387     }
1388 
1389     // Do not use getValue() in here; we don't want to generate code at
1390     // this point if it hasn't been done yet.
1391     SDValue N = NodeMap[V];
1392     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1393       N = UnusedArgNodeMap[V];
1394     if (N.getNode()) {
1395       // Only emit func arg dbg value for non-variadic dbg.values for now.
1396       if (!IsVariadic &&
1397           EmitFuncArgumentDbgValue(V, Var, Expr, dl,
1398                                    FuncArgumentDbgValueKind::Value, N))
1399         return true;
1400       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1401         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1402         // describe stack slot locations.
1403         //
1404         // Consider "int x = 0; int *px = &x;". There are two kinds of
1405         // interesting debug values here after optimization:
1406         //
1407         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1408         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1409         //
1410         // Both describe the direct values of their associated variables.
1411         Dependencies.push_back(N.getNode());
1412         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1413         continue;
1414       }
1415       LocationOps.emplace_back(
1416           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1417       continue;
1418     }
1419 
1420     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1421     // Special rules apply for the first dbg.values of parameter variables in a
1422     // function. Identify them by the fact they reference Argument Values, that
1423     // they're parameters, and they are parameters of the current function. We
1424     // need to let them dangle until they get an SDNode.
1425     bool IsParamOfFunc =
1426         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1427     if (IsParamOfFunc)
1428       return false;
1429 
1430     // The value is not used in this block yet (or it would have an SDNode).
1431     // We still want the value to appear for the user if possible -- if it has
1432     // an associated VReg, we can refer to that instead.
1433     auto VMI = FuncInfo.ValueMap.find(V);
1434     if (VMI != FuncInfo.ValueMap.end()) {
1435       unsigned Reg = VMI->second;
1436       // If this is a PHI node, it may be split up into several MI PHI nodes
1437       // (in FunctionLoweringInfo::set).
1438       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1439                        V->getType(), None);
1440       if (RFV.occupiesMultipleRegs()) {
1441         // FIXME: We could potentially support variadic dbg_values here.
1442         if (IsVariadic)
1443           return false;
1444         unsigned Offset = 0;
1445         unsigned BitsToDescribe = 0;
1446         if (auto VarSize = Var->getSizeInBits())
1447           BitsToDescribe = *VarSize;
1448         if (auto Fragment = Expr->getFragmentInfo())
1449           BitsToDescribe = Fragment->SizeInBits;
1450         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1451           // Bail out if all bits are described already.
1452           if (Offset >= BitsToDescribe)
1453             break;
1454           // TODO: handle scalable vectors.
1455           unsigned RegisterSize = RegAndSize.second;
1456           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1457                                       ? BitsToDescribe - Offset
1458                                       : RegisterSize;
1459           auto FragmentExpr = DIExpression::createFragmentExpression(
1460               Expr, Offset, FragmentSize);
1461           if (!FragmentExpr)
1462             continue;
1463           SDDbgValue *SDV = DAG.getVRegDbgValue(
1464               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1465           DAG.AddDbgValue(SDV, false);
1466           Offset += RegisterSize;
1467         }
1468         return true;
1469       }
1470       // We can use simple vreg locations for variadic dbg_values as well.
1471       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1472       continue;
1473     }
1474     // We failed to create a SDDbgOperand for V.
1475     return false;
1476   }
1477 
1478   // We have created a SDDbgOperand for each Value in Values.
1479   // Should use Order instead of SDNodeOrder?
1480   assert(!LocationOps.empty());
1481   SDDbgValue *SDV =
1482       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1483                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1484   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1485   return true;
1486 }
1487 
1488 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1489   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1490   for (auto &Pair : DanglingDebugInfoMap)
1491     for (auto &DDI : Pair.second)
1492       salvageUnresolvedDbgValue(DDI);
1493   clearDanglingDebugInfo();
1494 }
1495 
1496 /// getCopyFromRegs - If there was virtual register allocated for the value V
1497 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1498 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1499   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1500   SDValue Result;
1501 
1502   if (It != FuncInfo.ValueMap.end()) {
1503     Register InReg = It->second;
1504 
1505     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1506                      DAG.getDataLayout(), InReg, Ty,
1507                      None); // This is not an ABI copy.
1508     SDValue Chain = DAG.getEntryNode();
1509     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1510                                  V);
1511     resolveDanglingDebugInfo(V, Result);
1512   }
1513 
1514   return Result;
1515 }
1516 
1517 /// getValue - Return an SDValue for the given Value.
1518 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1519   // If we already have an SDValue for this value, use it. It's important
1520   // to do this first, so that we don't create a CopyFromReg if we already
1521   // have a regular SDValue.
1522   SDValue &N = NodeMap[V];
1523   if (N.getNode()) return N;
1524 
1525   // If there's a virtual register allocated and initialized for this
1526   // value, use it.
1527   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1528     return copyFromReg;
1529 
1530   // Otherwise create a new SDValue and remember it.
1531   SDValue Val = getValueImpl(V);
1532   NodeMap[V] = Val;
1533   resolveDanglingDebugInfo(V, Val);
1534   return Val;
1535 }
1536 
1537 /// getNonRegisterValue - Return an SDValue for the given Value, but
1538 /// don't look in FuncInfo.ValueMap for a virtual register.
1539 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1540   // If we already have an SDValue for this value, use it.
1541   SDValue &N = NodeMap[V];
1542   if (N.getNode()) {
1543     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1544       // Remove the debug location from the node as the node is about to be used
1545       // in a location which may differ from the original debug location.  This
1546       // is relevant to Constant and ConstantFP nodes because they can appear
1547       // as constant expressions inside PHI nodes.
1548       N->setDebugLoc(DebugLoc());
1549     }
1550     return N;
1551   }
1552 
1553   // Otherwise create a new SDValue and remember it.
1554   SDValue Val = getValueImpl(V);
1555   NodeMap[V] = Val;
1556   resolveDanglingDebugInfo(V, Val);
1557   return Val;
1558 }
1559 
1560 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1561 /// Create an SDValue for the given value.
1562 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1563   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1564 
1565   if (const Constant *C = dyn_cast<Constant>(V)) {
1566     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1567 
1568     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1569       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1570 
1571     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1572       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1573 
1574     if (isa<ConstantPointerNull>(C)) {
1575       unsigned AS = V->getType()->getPointerAddressSpace();
1576       return DAG.getConstant(0, getCurSDLoc(),
1577                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1578     }
1579 
1580     if (match(C, m_VScale(DAG.getDataLayout())))
1581       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1582 
1583     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1584       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1585 
1586     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1587       return DAG.getUNDEF(VT);
1588 
1589     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1590       visit(CE->getOpcode(), *CE);
1591       SDValue N1 = NodeMap[V];
1592       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1593       return N1;
1594     }
1595 
1596     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1597       SmallVector<SDValue, 4> Constants;
1598       for (const Use &U : C->operands()) {
1599         SDNode *Val = getValue(U).getNode();
1600         // If the operand is an empty aggregate, there are no values.
1601         if (!Val) continue;
1602         // Add each leaf value from the operand to the Constants list
1603         // to form a flattened list of all the values.
1604         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1605           Constants.push_back(SDValue(Val, i));
1606       }
1607 
1608       return DAG.getMergeValues(Constants, getCurSDLoc());
1609     }
1610 
1611     if (const ConstantDataSequential *CDS =
1612           dyn_cast<ConstantDataSequential>(C)) {
1613       SmallVector<SDValue, 4> Ops;
1614       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1615         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1616         // Add each leaf value from the operand to the Constants list
1617         // to form a flattened list of all the values.
1618         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1619           Ops.push_back(SDValue(Val, i));
1620       }
1621 
1622       if (isa<ArrayType>(CDS->getType()))
1623         return DAG.getMergeValues(Ops, getCurSDLoc());
1624       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1625     }
1626 
1627     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1628       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1629              "Unknown struct or array constant!");
1630 
1631       SmallVector<EVT, 4> ValueVTs;
1632       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1633       unsigned NumElts = ValueVTs.size();
1634       if (NumElts == 0)
1635         return SDValue(); // empty struct
1636       SmallVector<SDValue, 4> Constants(NumElts);
1637       for (unsigned i = 0; i != NumElts; ++i) {
1638         EVT EltVT = ValueVTs[i];
1639         if (isa<UndefValue>(C))
1640           Constants[i] = DAG.getUNDEF(EltVT);
1641         else if (EltVT.isFloatingPoint())
1642           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1643         else
1644           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1645       }
1646 
1647       return DAG.getMergeValues(Constants, getCurSDLoc());
1648     }
1649 
1650     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1651       return DAG.getBlockAddress(BA, VT);
1652 
1653     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1654       return getValue(Equiv->getGlobalValue());
1655 
1656     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1657       return getValue(NC->getGlobalValue());
1658 
1659     VectorType *VecTy = cast<VectorType>(V->getType());
1660 
1661     // Now that we know the number and type of the elements, get that number of
1662     // elements into the Ops array based on what kind of constant it is.
1663     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1664       SmallVector<SDValue, 16> Ops;
1665       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1666       for (unsigned i = 0; i != NumElements; ++i)
1667         Ops.push_back(getValue(CV->getOperand(i)));
1668 
1669       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1670     }
1671 
1672     if (isa<ConstantAggregateZero>(C)) {
1673       EVT EltVT =
1674           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1675 
1676       SDValue Op;
1677       if (EltVT.isFloatingPoint())
1678         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1679       else
1680         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1681 
1682       if (isa<ScalableVectorType>(VecTy))
1683         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1684 
1685       SmallVector<SDValue, 16> Ops;
1686       Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1687       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1688     }
1689 
1690     llvm_unreachable("Unknown vector constant");
1691   }
1692 
1693   // If this is a static alloca, generate it as the frameindex instead of
1694   // computation.
1695   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1696     DenseMap<const AllocaInst*, int>::iterator SI =
1697       FuncInfo.StaticAllocaMap.find(AI);
1698     if (SI != FuncInfo.StaticAllocaMap.end())
1699       return DAG.getFrameIndex(SI->second,
1700                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1701   }
1702 
1703   // If this is an instruction which fast-isel has deferred, select it now.
1704   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1705     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1706 
1707     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1708                      Inst->getType(), None);
1709     SDValue Chain = DAG.getEntryNode();
1710     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1711   }
1712 
1713   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1714     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1715 
1716   if (const auto *BB = dyn_cast<BasicBlock>(V))
1717     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1718 
1719   llvm_unreachable("Can't get register for value!");
1720 }
1721 
1722 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1723   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1724   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1725   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1726   bool IsSEH = isAsynchronousEHPersonality(Pers);
1727   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1728   if (!IsSEH)
1729     CatchPadMBB->setIsEHScopeEntry();
1730   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1731   if (IsMSVCCXX || IsCoreCLR)
1732     CatchPadMBB->setIsEHFuncletEntry();
1733 }
1734 
1735 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1736   // Update machine-CFG edge.
1737   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1738   FuncInfo.MBB->addSuccessor(TargetMBB);
1739   TargetMBB->setIsEHCatchretTarget(true);
1740   DAG.getMachineFunction().setHasEHCatchret(true);
1741 
1742   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1743   bool IsSEH = isAsynchronousEHPersonality(Pers);
1744   if (IsSEH) {
1745     // If this is not a fall-through branch or optimizations are switched off,
1746     // emit the branch.
1747     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1748         TM.getOptLevel() == CodeGenOpt::None)
1749       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1750                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1751     return;
1752   }
1753 
1754   // Figure out the funclet membership for the catchret's successor.
1755   // This will be used by the FuncletLayout pass to determine how to order the
1756   // BB's.
1757   // A 'catchret' returns to the outer scope's color.
1758   Value *ParentPad = I.getCatchSwitchParentPad();
1759   const BasicBlock *SuccessorColor;
1760   if (isa<ConstantTokenNone>(ParentPad))
1761     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1762   else
1763     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1764   assert(SuccessorColor && "No parent funclet for catchret!");
1765   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1766   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1767 
1768   // Create the terminator node.
1769   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1770                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1771                             DAG.getBasicBlock(SuccessorColorMBB));
1772   DAG.setRoot(Ret);
1773 }
1774 
1775 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1776   // Don't emit any special code for the cleanuppad instruction. It just marks
1777   // the start of an EH scope/funclet.
1778   FuncInfo.MBB->setIsEHScopeEntry();
1779   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1780   if (Pers != EHPersonality::Wasm_CXX) {
1781     FuncInfo.MBB->setIsEHFuncletEntry();
1782     FuncInfo.MBB->setIsCleanupFuncletEntry();
1783   }
1784 }
1785 
1786 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1787 // not match, it is OK to add only the first unwind destination catchpad to the
1788 // successors, because there will be at least one invoke instruction within the
1789 // catch scope that points to the next unwind destination, if one exists, so
1790 // CFGSort cannot mess up with BB sorting order.
1791 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1792 // call within them, and catchpads only consisting of 'catch (...)' have a
1793 // '__cxa_end_catch' call within them, both of which generate invokes in case
1794 // the next unwind destination exists, i.e., the next unwind destination is not
1795 // the caller.)
1796 //
1797 // Having at most one EH pad successor is also simpler and helps later
1798 // transformations.
1799 //
1800 // For example,
1801 // current:
1802 //   invoke void @foo to ... unwind label %catch.dispatch
1803 // catch.dispatch:
1804 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1805 // catch.start:
1806 //   ...
1807 //   ... in this BB or some other child BB dominated by this BB there will be an
1808 //   invoke that points to 'next' BB as an unwind destination
1809 //
1810 // next: ; We don't need to add this to 'current' BB's successor
1811 //   ...
1812 static void findWasmUnwindDestinations(
1813     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1814     BranchProbability Prob,
1815     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1816         &UnwindDests) {
1817   while (EHPadBB) {
1818     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1819     if (isa<CleanupPadInst>(Pad)) {
1820       // Stop on cleanup pads.
1821       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1822       UnwindDests.back().first->setIsEHScopeEntry();
1823       break;
1824     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1825       // Add the catchpad handlers to the possible destinations. We don't
1826       // continue to the unwind destination of the catchswitch for wasm.
1827       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1828         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1829         UnwindDests.back().first->setIsEHScopeEntry();
1830       }
1831       break;
1832     } else {
1833       continue;
1834     }
1835   }
1836 }
1837 
1838 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1839 /// many places it could ultimately go. In the IR, we have a single unwind
1840 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1841 /// This function skips over imaginary basic blocks that hold catchswitch
1842 /// instructions, and finds all the "real" machine
1843 /// basic block destinations. As those destinations may not be successors of
1844 /// EHPadBB, here we also calculate the edge probability to those destinations.
1845 /// The passed-in Prob is the edge probability to EHPadBB.
1846 static void findUnwindDestinations(
1847     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1848     BranchProbability Prob,
1849     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1850         &UnwindDests) {
1851   EHPersonality Personality =
1852     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1853   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1854   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1855   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1856   bool IsSEH = isAsynchronousEHPersonality(Personality);
1857 
1858   if (IsWasmCXX) {
1859     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1860     assert(UnwindDests.size() <= 1 &&
1861            "There should be at most one unwind destination for wasm");
1862     return;
1863   }
1864 
1865   while (EHPadBB) {
1866     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1867     BasicBlock *NewEHPadBB = nullptr;
1868     if (isa<LandingPadInst>(Pad)) {
1869       // Stop on landingpads. They are not funclets.
1870       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1871       break;
1872     } else if (isa<CleanupPadInst>(Pad)) {
1873       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1874       // personalities.
1875       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1876       UnwindDests.back().first->setIsEHScopeEntry();
1877       UnwindDests.back().first->setIsEHFuncletEntry();
1878       break;
1879     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1880       // Add the catchpad handlers to the possible destinations.
1881       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1882         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1883         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1884         if (IsMSVCCXX || IsCoreCLR)
1885           UnwindDests.back().first->setIsEHFuncletEntry();
1886         if (!IsSEH)
1887           UnwindDests.back().first->setIsEHScopeEntry();
1888       }
1889       NewEHPadBB = CatchSwitch->getUnwindDest();
1890     } else {
1891       continue;
1892     }
1893 
1894     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1895     if (BPI && NewEHPadBB)
1896       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1897     EHPadBB = NewEHPadBB;
1898   }
1899 }
1900 
1901 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1902   // Update successor info.
1903   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1904   auto UnwindDest = I.getUnwindDest();
1905   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1906   BranchProbability UnwindDestProb =
1907       (BPI && UnwindDest)
1908           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1909           : BranchProbability::getZero();
1910   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1911   for (auto &UnwindDest : UnwindDests) {
1912     UnwindDest.first->setIsEHPad();
1913     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1914   }
1915   FuncInfo.MBB->normalizeSuccProbs();
1916 
1917   // Create the terminator node.
1918   SDValue Ret =
1919       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1920   DAG.setRoot(Ret);
1921 }
1922 
1923 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1924   report_fatal_error("visitCatchSwitch not yet implemented!");
1925 }
1926 
1927 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1928   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1929   auto &DL = DAG.getDataLayout();
1930   SDValue Chain = getControlRoot();
1931   SmallVector<ISD::OutputArg, 8> Outs;
1932   SmallVector<SDValue, 8> OutVals;
1933 
1934   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1935   // lower
1936   //
1937   //   %val = call <ty> @llvm.experimental.deoptimize()
1938   //   ret <ty> %val
1939   //
1940   // differently.
1941   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1942     LowerDeoptimizingReturn();
1943     return;
1944   }
1945 
1946   if (!FuncInfo.CanLowerReturn) {
1947     unsigned DemoteReg = FuncInfo.DemoteRegister;
1948     const Function *F = I.getParent()->getParent();
1949 
1950     // Emit a store of the return value through the virtual register.
1951     // Leave Outs empty so that LowerReturn won't try to load return
1952     // registers the usual way.
1953     SmallVector<EVT, 1> PtrValueVTs;
1954     ComputeValueVTs(TLI, DL,
1955                     F->getReturnType()->getPointerTo(
1956                         DAG.getDataLayout().getAllocaAddrSpace()),
1957                     PtrValueVTs);
1958 
1959     SDValue RetPtr =
1960         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1961     SDValue RetOp = getValue(I.getOperand(0));
1962 
1963     SmallVector<EVT, 4> ValueVTs, MemVTs;
1964     SmallVector<uint64_t, 4> Offsets;
1965     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1966                     &Offsets);
1967     unsigned NumValues = ValueVTs.size();
1968 
1969     SmallVector<SDValue, 4> Chains(NumValues);
1970     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1971     for (unsigned i = 0; i != NumValues; ++i) {
1972       // An aggregate return value cannot wrap around the address space, so
1973       // offsets to its parts don't wrap either.
1974       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1975                                            TypeSize::Fixed(Offsets[i]));
1976 
1977       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1978       if (MemVTs[i] != ValueVTs[i])
1979         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1980       Chains[i] = DAG.getStore(
1981           Chain, getCurSDLoc(), Val,
1982           // FIXME: better loc info would be nice.
1983           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1984           commonAlignment(BaseAlign, Offsets[i]));
1985     }
1986 
1987     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1988                         MVT::Other, Chains);
1989   } else if (I.getNumOperands() != 0) {
1990     SmallVector<EVT, 4> ValueVTs;
1991     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1992     unsigned NumValues = ValueVTs.size();
1993     if (NumValues) {
1994       SDValue RetOp = getValue(I.getOperand(0));
1995 
1996       const Function *F = I.getParent()->getParent();
1997 
1998       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1999           I.getOperand(0)->getType(), F->getCallingConv(),
2000           /*IsVarArg*/ false, DL);
2001 
2002       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2003       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2004         ExtendKind = ISD::SIGN_EXTEND;
2005       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2006         ExtendKind = ISD::ZERO_EXTEND;
2007 
2008       LLVMContext &Context = F->getContext();
2009       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2010 
2011       for (unsigned j = 0; j != NumValues; ++j) {
2012         EVT VT = ValueVTs[j];
2013 
2014         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2015           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2016 
2017         CallingConv::ID CC = F->getCallingConv();
2018 
2019         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2020         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2021         SmallVector<SDValue, 4> Parts(NumParts);
2022         getCopyToParts(DAG, getCurSDLoc(),
2023                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2024                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2025 
2026         // 'inreg' on function refers to return value
2027         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2028         if (RetInReg)
2029           Flags.setInReg();
2030 
2031         if (I.getOperand(0)->getType()->isPointerTy()) {
2032           Flags.setPointer();
2033           Flags.setPointerAddrSpace(
2034               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2035         }
2036 
2037         if (NeedsRegBlock) {
2038           Flags.setInConsecutiveRegs();
2039           if (j == NumValues - 1)
2040             Flags.setInConsecutiveRegsLast();
2041         }
2042 
2043         // Propagate extension type if any
2044         if (ExtendKind == ISD::SIGN_EXTEND)
2045           Flags.setSExt();
2046         else if (ExtendKind == ISD::ZERO_EXTEND)
2047           Flags.setZExt();
2048 
2049         for (unsigned i = 0; i < NumParts; ++i) {
2050           Outs.push_back(ISD::OutputArg(Flags,
2051                                         Parts[i].getValueType().getSimpleVT(),
2052                                         VT, /*isfixed=*/true, 0, 0));
2053           OutVals.push_back(Parts[i]);
2054         }
2055       }
2056     }
2057   }
2058 
2059   // Push in swifterror virtual register as the last element of Outs. This makes
2060   // sure swifterror virtual register will be returned in the swifterror
2061   // physical register.
2062   const Function *F = I.getParent()->getParent();
2063   if (TLI.supportSwiftError() &&
2064       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2065     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2066     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2067     Flags.setSwiftError();
2068     Outs.push_back(ISD::OutputArg(
2069         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2070         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2071     // Create SDNode for the swifterror virtual register.
2072     OutVals.push_back(
2073         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2074                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2075                         EVT(TLI.getPointerTy(DL))));
2076   }
2077 
2078   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2079   CallingConv::ID CallConv =
2080     DAG.getMachineFunction().getFunction().getCallingConv();
2081   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2082       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2083 
2084   // Verify that the target's LowerReturn behaved as expected.
2085   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2086          "LowerReturn didn't return a valid chain!");
2087 
2088   // Update the DAG with the new chain value resulting from return lowering.
2089   DAG.setRoot(Chain);
2090 }
2091 
2092 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2093 /// created for it, emit nodes to copy the value into the virtual
2094 /// registers.
2095 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2096   // Skip empty types
2097   if (V->getType()->isEmptyTy())
2098     return;
2099 
2100   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2101   if (VMI != FuncInfo.ValueMap.end()) {
2102     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2103     CopyValueToVirtualRegister(V, VMI->second);
2104   }
2105 }
2106 
2107 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2108 /// the current basic block, add it to ValueMap now so that we'll get a
2109 /// CopyTo/FromReg.
2110 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2111   // No need to export constants.
2112   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2113 
2114   // Already exported?
2115   if (FuncInfo.isExportedInst(V)) return;
2116 
2117   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2118   CopyValueToVirtualRegister(V, Reg);
2119 }
2120 
2121 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2122                                                      const BasicBlock *FromBB) {
2123   // The operands of the setcc have to be in this block.  We don't know
2124   // how to export them from some other block.
2125   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2126     // Can export from current BB.
2127     if (VI->getParent() == FromBB)
2128       return true;
2129 
2130     // Is already exported, noop.
2131     return FuncInfo.isExportedInst(V);
2132   }
2133 
2134   // If this is an argument, we can export it if the BB is the entry block or
2135   // if it is already exported.
2136   if (isa<Argument>(V)) {
2137     if (FromBB->isEntryBlock())
2138       return true;
2139 
2140     // Otherwise, can only export this if it is already exported.
2141     return FuncInfo.isExportedInst(V);
2142   }
2143 
2144   // Otherwise, constants can always be exported.
2145   return true;
2146 }
2147 
2148 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2149 BranchProbability
2150 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2151                                         const MachineBasicBlock *Dst) const {
2152   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2153   const BasicBlock *SrcBB = Src->getBasicBlock();
2154   const BasicBlock *DstBB = Dst->getBasicBlock();
2155   if (!BPI) {
2156     // If BPI is not available, set the default probability as 1 / N, where N is
2157     // the number of successors.
2158     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2159     return BranchProbability(1, SuccSize);
2160   }
2161   return BPI->getEdgeProbability(SrcBB, DstBB);
2162 }
2163 
2164 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2165                                                MachineBasicBlock *Dst,
2166                                                BranchProbability Prob) {
2167   if (!FuncInfo.BPI)
2168     Src->addSuccessorWithoutProb(Dst);
2169   else {
2170     if (Prob.isUnknown())
2171       Prob = getEdgeProbability(Src, Dst);
2172     Src->addSuccessor(Dst, Prob);
2173   }
2174 }
2175 
2176 static bool InBlock(const Value *V, const BasicBlock *BB) {
2177   if (const Instruction *I = dyn_cast<Instruction>(V))
2178     return I->getParent() == BB;
2179   return true;
2180 }
2181 
2182 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2183 /// This function emits a branch and is used at the leaves of an OR or an
2184 /// AND operator tree.
2185 void
2186 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2187                                                   MachineBasicBlock *TBB,
2188                                                   MachineBasicBlock *FBB,
2189                                                   MachineBasicBlock *CurBB,
2190                                                   MachineBasicBlock *SwitchBB,
2191                                                   BranchProbability TProb,
2192                                                   BranchProbability FProb,
2193                                                   bool InvertCond) {
2194   const BasicBlock *BB = CurBB->getBasicBlock();
2195 
2196   // If the leaf of the tree is a comparison, merge the condition into
2197   // the caseblock.
2198   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2199     // The operands of the cmp have to be in this block.  We don't know
2200     // how to export them from some other block.  If this is the first block
2201     // of the sequence, no exporting is needed.
2202     if (CurBB == SwitchBB ||
2203         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2204          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2205       ISD::CondCode Condition;
2206       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2207         ICmpInst::Predicate Pred =
2208             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2209         Condition = getICmpCondCode(Pred);
2210       } else {
2211         const FCmpInst *FC = cast<FCmpInst>(Cond);
2212         FCmpInst::Predicate Pred =
2213             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2214         Condition = getFCmpCondCode(Pred);
2215         if (TM.Options.NoNaNsFPMath)
2216           Condition = getFCmpCodeWithoutNaN(Condition);
2217       }
2218 
2219       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2220                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2221       SL->SwitchCases.push_back(CB);
2222       return;
2223     }
2224   }
2225 
2226   // Create a CaseBlock record representing this branch.
2227   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2228   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2229                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2230   SL->SwitchCases.push_back(CB);
2231 }
2232 
2233 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2234                                                MachineBasicBlock *TBB,
2235                                                MachineBasicBlock *FBB,
2236                                                MachineBasicBlock *CurBB,
2237                                                MachineBasicBlock *SwitchBB,
2238                                                Instruction::BinaryOps Opc,
2239                                                BranchProbability TProb,
2240                                                BranchProbability FProb,
2241                                                bool InvertCond) {
2242   // Skip over not part of the tree and remember to invert op and operands at
2243   // next level.
2244   Value *NotCond;
2245   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2246       InBlock(NotCond, CurBB->getBasicBlock())) {
2247     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2248                          !InvertCond);
2249     return;
2250   }
2251 
2252   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2253   const Value *BOpOp0, *BOpOp1;
2254   // Compute the effective opcode for Cond, taking into account whether it needs
2255   // to be inverted, e.g.
2256   //   and (not (or A, B)), C
2257   // gets lowered as
2258   //   and (and (not A, not B), C)
2259   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2260   if (BOp) {
2261     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2262                ? Instruction::And
2263                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2264                       ? Instruction::Or
2265                       : (Instruction::BinaryOps)0);
2266     if (InvertCond) {
2267       if (BOpc == Instruction::And)
2268         BOpc = Instruction::Or;
2269       else if (BOpc == Instruction::Or)
2270         BOpc = Instruction::And;
2271     }
2272   }
2273 
2274   // If this node is not part of the or/and tree, emit it as a branch.
2275   // Note that all nodes in the tree should have same opcode.
2276   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2277   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2278       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2279       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2280     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2281                                  TProb, FProb, InvertCond);
2282     return;
2283   }
2284 
2285   //  Create TmpBB after CurBB.
2286   MachineFunction::iterator BBI(CurBB);
2287   MachineFunction &MF = DAG.getMachineFunction();
2288   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2289   CurBB->getParent()->insert(++BBI, TmpBB);
2290 
2291   if (Opc == Instruction::Or) {
2292     // Codegen X | Y as:
2293     // BB1:
2294     //   jmp_if_X TBB
2295     //   jmp TmpBB
2296     // TmpBB:
2297     //   jmp_if_Y TBB
2298     //   jmp FBB
2299     //
2300 
2301     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2302     // The requirement is that
2303     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2304     //     = TrueProb for original BB.
2305     // Assuming the original probabilities are A and B, one choice is to set
2306     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2307     // A/(1+B) and 2B/(1+B). This choice assumes that
2308     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2309     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2310     // TmpBB, but the math is more complicated.
2311 
2312     auto NewTrueProb = TProb / 2;
2313     auto NewFalseProb = TProb / 2 + FProb;
2314     // Emit the LHS condition.
2315     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2316                          NewFalseProb, InvertCond);
2317 
2318     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2319     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2320     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2321     // Emit the RHS condition into TmpBB.
2322     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2323                          Probs[1], InvertCond);
2324   } else {
2325     assert(Opc == Instruction::And && "Unknown merge op!");
2326     // Codegen X & Y as:
2327     // BB1:
2328     //   jmp_if_X TmpBB
2329     //   jmp FBB
2330     // TmpBB:
2331     //   jmp_if_Y TBB
2332     //   jmp FBB
2333     //
2334     //  This requires creation of TmpBB after CurBB.
2335 
2336     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2337     // The requirement is that
2338     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2339     //     = FalseProb for original BB.
2340     // Assuming the original probabilities are A and B, one choice is to set
2341     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2342     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2343     // TrueProb for BB1 * FalseProb for TmpBB.
2344 
2345     auto NewTrueProb = TProb + FProb / 2;
2346     auto NewFalseProb = FProb / 2;
2347     // Emit the LHS condition.
2348     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2349                          NewFalseProb, InvertCond);
2350 
2351     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2352     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2353     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2354     // Emit the RHS condition into TmpBB.
2355     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2356                          Probs[1], InvertCond);
2357   }
2358 }
2359 
2360 /// If the set of cases should be emitted as a series of branches, return true.
2361 /// If we should emit this as a bunch of and/or'd together conditions, return
2362 /// false.
2363 bool
2364 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2365   if (Cases.size() != 2) return true;
2366 
2367   // If this is two comparisons of the same values or'd or and'd together, they
2368   // will get folded into a single comparison, so don't emit two blocks.
2369   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2370        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2371       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2372        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2373     return false;
2374   }
2375 
2376   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2377   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2378   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2379       Cases[0].CC == Cases[1].CC &&
2380       isa<Constant>(Cases[0].CmpRHS) &&
2381       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2382     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2383       return false;
2384     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2385       return false;
2386   }
2387 
2388   return true;
2389 }
2390 
2391 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2392   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2393 
2394   // Update machine-CFG edges.
2395   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2396 
2397   if (I.isUnconditional()) {
2398     // Update machine-CFG edges.
2399     BrMBB->addSuccessor(Succ0MBB);
2400 
2401     // If this is not a fall-through branch or optimizations are switched off,
2402     // emit the branch.
2403     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2404       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2405                               MVT::Other, getControlRoot(),
2406                               DAG.getBasicBlock(Succ0MBB)));
2407 
2408     return;
2409   }
2410 
2411   // If this condition is one of the special cases we handle, do special stuff
2412   // now.
2413   const Value *CondVal = I.getCondition();
2414   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2415 
2416   // If this is a series of conditions that are or'd or and'd together, emit
2417   // this as a sequence of branches instead of setcc's with and/or operations.
2418   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2419   // unpredictable branches, and vector extracts because those jumps are likely
2420   // expensive for any target), this should improve performance.
2421   // For example, instead of something like:
2422   //     cmp A, B
2423   //     C = seteq
2424   //     cmp D, E
2425   //     F = setle
2426   //     or C, F
2427   //     jnz foo
2428   // Emit:
2429   //     cmp A, B
2430   //     je foo
2431   //     cmp D, E
2432   //     jle foo
2433   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2434   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2435       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2436     Value *Vec;
2437     const Value *BOp0, *BOp1;
2438     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2439     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2440       Opcode = Instruction::And;
2441     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2442       Opcode = Instruction::Or;
2443 
2444     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2445                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2446       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2447                            getEdgeProbability(BrMBB, Succ0MBB),
2448                            getEdgeProbability(BrMBB, Succ1MBB),
2449                            /*InvertCond=*/false);
2450       // If the compares in later blocks need to use values not currently
2451       // exported from this block, export them now.  This block should always
2452       // be the first entry.
2453       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2454 
2455       // Allow some cases to be rejected.
2456       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2457         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2458           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2459           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2460         }
2461 
2462         // Emit the branch for this block.
2463         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2464         SL->SwitchCases.erase(SL->SwitchCases.begin());
2465         return;
2466       }
2467 
2468       // Okay, we decided not to do this, remove any inserted MBB's and clear
2469       // SwitchCases.
2470       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2471         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2472 
2473       SL->SwitchCases.clear();
2474     }
2475   }
2476 
2477   // Create a CaseBlock record representing this branch.
2478   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2479                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2480 
2481   // Use visitSwitchCase to actually insert the fast branch sequence for this
2482   // cond branch.
2483   visitSwitchCase(CB, BrMBB);
2484 }
2485 
2486 /// visitSwitchCase - Emits the necessary code to represent a single node in
2487 /// the binary search tree resulting from lowering a switch instruction.
2488 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2489                                           MachineBasicBlock *SwitchBB) {
2490   SDValue Cond;
2491   SDValue CondLHS = getValue(CB.CmpLHS);
2492   SDLoc dl = CB.DL;
2493 
2494   if (CB.CC == ISD::SETTRUE) {
2495     // Branch or fall through to TrueBB.
2496     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2497     SwitchBB->normalizeSuccProbs();
2498     if (CB.TrueBB != NextBlock(SwitchBB)) {
2499       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2500                               DAG.getBasicBlock(CB.TrueBB)));
2501     }
2502     return;
2503   }
2504 
2505   auto &TLI = DAG.getTargetLoweringInfo();
2506   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2507 
2508   // Build the setcc now.
2509   if (!CB.CmpMHS) {
2510     // Fold "(X == true)" to X and "(X == false)" to !X to
2511     // handle common cases produced by branch lowering.
2512     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2513         CB.CC == ISD::SETEQ)
2514       Cond = CondLHS;
2515     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2516              CB.CC == ISD::SETEQ) {
2517       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2518       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2519     } else {
2520       SDValue CondRHS = getValue(CB.CmpRHS);
2521 
2522       // If a pointer's DAG type is larger than its memory type then the DAG
2523       // values are zero-extended. This breaks signed comparisons so truncate
2524       // back to the underlying type before doing the compare.
2525       if (CondLHS.getValueType() != MemVT) {
2526         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2527         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2528       }
2529       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2530     }
2531   } else {
2532     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2533 
2534     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2535     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2536 
2537     SDValue CmpOp = getValue(CB.CmpMHS);
2538     EVT VT = CmpOp.getValueType();
2539 
2540     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2541       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2542                           ISD::SETLE);
2543     } else {
2544       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2545                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2546       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2547                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2548     }
2549   }
2550 
2551   // Update successor info
2552   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2553   // TrueBB and FalseBB are always different unless the incoming IR is
2554   // degenerate. This only happens when running llc on weird IR.
2555   if (CB.TrueBB != CB.FalseBB)
2556     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2557   SwitchBB->normalizeSuccProbs();
2558 
2559   // If the lhs block is the next block, invert the condition so that we can
2560   // fall through to the lhs instead of the rhs block.
2561   if (CB.TrueBB == NextBlock(SwitchBB)) {
2562     std::swap(CB.TrueBB, CB.FalseBB);
2563     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2564     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2565   }
2566 
2567   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2568                                MVT::Other, getControlRoot(), Cond,
2569                                DAG.getBasicBlock(CB.TrueBB));
2570 
2571   setValue(CurInst, BrCond);
2572 
2573   // Insert the false branch. Do this even if it's a fall through branch,
2574   // this makes it easier to do DAG optimizations which require inverting
2575   // the branch condition.
2576   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2577                        DAG.getBasicBlock(CB.FalseBB));
2578 
2579   DAG.setRoot(BrCond);
2580 }
2581 
2582 /// visitJumpTable - Emit JumpTable node in the current MBB
2583 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2584   // Emit the code for the jump table
2585   assert(JT.Reg != -1U && "Should lower JT Header first!");
2586   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2587   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2588                                      JT.Reg, PTy);
2589   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2590   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2591                                     MVT::Other, Index.getValue(1),
2592                                     Table, Index);
2593   DAG.setRoot(BrJumpTable);
2594 }
2595 
2596 /// visitJumpTableHeader - This function emits necessary code to produce index
2597 /// in the JumpTable from switch case.
2598 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2599                                                JumpTableHeader &JTH,
2600                                                MachineBasicBlock *SwitchBB) {
2601   SDLoc dl = getCurSDLoc();
2602 
2603   // Subtract the lowest switch case value from the value being switched on.
2604   SDValue SwitchOp = getValue(JTH.SValue);
2605   EVT VT = SwitchOp.getValueType();
2606   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2607                             DAG.getConstant(JTH.First, dl, VT));
2608 
2609   // The SDNode we just created, which holds the value being switched on minus
2610   // the smallest case value, needs to be copied to a virtual register so it
2611   // can be used as an index into the jump table in a subsequent basic block.
2612   // This value may be smaller or larger than the target's pointer type, and
2613   // therefore require extension or truncating.
2614   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2615   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2616 
2617   unsigned JumpTableReg =
2618       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2619   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2620                                     JumpTableReg, SwitchOp);
2621   JT.Reg = JumpTableReg;
2622 
2623   if (!JTH.FallthroughUnreachable) {
2624     // Emit the range check for the jump table, and branch to the default block
2625     // for the switch statement if the value being switched on exceeds the
2626     // largest case in the switch.
2627     SDValue CMP = DAG.getSetCC(
2628         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2629                                    Sub.getValueType()),
2630         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2631 
2632     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2633                                  MVT::Other, CopyTo, CMP,
2634                                  DAG.getBasicBlock(JT.Default));
2635 
2636     // Avoid emitting unnecessary branches to the next block.
2637     if (JT.MBB != NextBlock(SwitchBB))
2638       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2639                            DAG.getBasicBlock(JT.MBB));
2640 
2641     DAG.setRoot(BrCond);
2642   } else {
2643     // Avoid emitting unnecessary branches to the next block.
2644     if (JT.MBB != NextBlock(SwitchBB))
2645       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2646                               DAG.getBasicBlock(JT.MBB)));
2647     else
2648       DAG.setRoot(CopyTo);
2649   }
2650 }
2651 
2652 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2653 /// variable if there exists one.
2654 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2655                                  SDValue &Chain) {
2656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2657   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2658   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2659   MachineFunction &MF = DAG.getMachineFunction();
2660   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2661   MachineSDNode *Node =
2662       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2663   if (Global) {
2664     MachinePointerInfo MPInfo(Global);
2665     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2666                  MachineMemOperand::MODereferenceable;
2667     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2668         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2669     DAG.setNodeMemRefs(Node, {MemRef});
2670   }
2671   if (PtrTy != PtrMemTy)
2672     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2673   return SDValue(Node, 0);
2674 }
2675 
2676 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2677 /// tail spliced into a stack protector check success bb.
2678 ///
2679 /// For a high level explanation of how this fits into the stack protector
2680 /// generation see the comment on the declaration of class
2681 /// StackProtectorDescriptor.
2682 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2683                                                   MachineBasicBlock *ParentBB) {
2684 
2685   // First create the loads to the guard/stack slot for the comparison.
2686   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2687   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2688   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2689 
2690   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2691   int FI = MFI.getStackProtectorIndex();
2692 
2693   SDValue Guard;
2694   SDLoc dl = getCurSDLoc();
2695   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2696   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2697   Align Align =
2698       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2699 
2700   // Generate code to load the content of the guard slot.
2701   SDValue GuardVal = DAG.getLoad(
2702       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2703       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2704       MachineMemOperand::MOVolatile);
2705 
2706   if (TLI.useStackGuardXorFP())
2707     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2708 
2709   // Retrieve guard check function, nullptr if instrumentation is inlined.
2710   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2711     // The target provides a guard check function to validate the guard value.
2712     // Generate a call to that function with the content of the guard slot as
2713     // argument.
2714     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2715     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2716 
2717     TargetLowering::ArgListTy Args;
2718     TargetLowering::ArgListEntry Entry;
2719     Entry.Node = GuardVal;
2720     Entry.Ty = FnTy->getParamType(0);
2721     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2722       Entry.IsInReg = true;
2723     Args.push_back(Entry);
2724 
2725     TargetLowering::CallLoweringInfo CLI(DAG);
2726     CLI.setDebugLoc(getCurSDLoc())
2727         .setChain(DAG.getEntryNode())
2728         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2729                    getValue(GuardCheckFn), std::move(Args));
2730 
2731     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2732     DAG.setRoot(Result.second);
2733     return;
2734   }
2735 
2736   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2737   // Otherwise, emit a volatile load to retrieve the stack guard value.
2738   SDValue Chain = DAG.getEntryNode();
2739   if (TLI.useLoadStackGuardNode()) {
2740     Guard = getLoadStackGuard(DAG, dl, Chain);
2741   } else {
2742     const Value *IRGuard = TLI.getSDagStackGuard(M);
2743     SDValue GuardPtr = getValue(IRGuard);
2744 
2745     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2746                         MachinePointerInfo(IRGuard, 0), Align,
2747                         MachineMemOperand::MOVolatile);
2748   }
2749 
2750   // Perform the comparison via a getsetcc.
2751   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2752                                                         *DAG.getContext(),
2753                                                         Guard.getValueType()),
2754                              Guard, GuardVal, ISD::SETNE);
2755 
2756   // If the guard/stackslot do not equal, branch to failure MBB.
2757   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2758                                MVT::Other, GuardVal.getOperand(0),
2759                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2760   // Otherwise branch to success MBB.
2761   SDValue Br = DAG.getNode(ISD::BR, dl,
2762                            MVT::Other, BrCond,
2763                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2764 
2765   DAG.setRoot(Br);
2766 }
2767 
2768 /// Codegen the failure basic block for a stack protector check.
2769 ///
2770 /// A failure stack protector machine basic block consists simply of a call to
2771 /// __stack_chk_fail().
2772 ///
2773 /// For a high level explanation of how this fits into the stack protector
2774 /// generation see the comment on the declaration of class
2775 /// StackProtectorDescriptor.
2776 void
2777 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2778   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2779   TargetLowering::MakeLibCallOptions CallOptions;
2780   CallOptions.setDiscardResult(true);
2781   SDValue Chain =
2782       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2783                       None, CallOptions, getCurSDLoc()).second;
2784   // On PS4/PS5, the "return address" must still be within the calling
2785   // function, even if it's at the very end, so emit an explicit TRAP here.
2786   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2787   if (TM.getTargetTriple().isPS())
2788     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2789   // WebAssembly needs an unreachable instruction after a non-returning call,
2790   // because the function return type can be different from __stack_chk_fail's
2791   // return type (void).
2792   if (TM.getTargetTriple().isWasm())
2793     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2794 
2795   DAG.setRoot(Chain);
2796 }
2797 
2798 /// visitBitTestHeader - This function emits necessary code to produce value
2799 /// suitable for "bit tests"
2800 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2801                                              MachineBasicBlock *SwitchBB) {
2802   SDLoc dl = getCurSDLoc();
2803 
2804   // Subtract the minimum value.
2805   SDValue SwitchOp = getValue(B.SValue);
2806   EVT VT = SwitchOp.getValueType();
2807   SDValue RangeSub =
2808       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2809 
2810   // Determine the type of the test operands.
2811   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2812   bool UsePtrType = false;
2813   if (!TLI.isTypeLegal(VT)) {
2814     UsePtrType = true;
2815   } else {
2816     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2817       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2818         // Switch table case range are encoded into series of masks.
2819         // Just use pointer type, it's guaranteed to fit.
2820         UsePtrType = true;
2821         break;
2822       }
2823   }
2824   SDValue Sub = RangeSub;
2825   if (UsePtrType) {
2826     VT = TLI.getPointerTy(DAG.getDataLayout());
2827     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2828   }
2829 
2830   B.RegVT = VT.getSimpleVT();
2831   B.Reg = FuncInfo.CreateReg(B.RegVT);
2832   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2833 
2834   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2835 
2836   if (!B.FallthroughUnreachable)
2837     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2838   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2839   SwitchBB->normalizeSuccProbs();
2840 
2841   SDValue Root = CopyTo;
2842   if (!B.FallthroughUnreachable) {
2843     // Conditional branch to the default block.
2844     SDValue RangeCmp = DAG.getSetCC(dl,
2845         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2846                                RangeSub.getValueType()),
2847         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2848         ISD::SETUGT);
2849 
2850     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2851                        DAG.getBasicBlock(B.Default));
2852   }
2853 
2854   // Avoid emitting unnecessary branches to the next block.
2855   if (MBB != NextBlock(SwitchBB))
2856     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2857 
2858   DAG.setRoot(Root);
2859 }
2860 
2861 /// visitBitTestCase - this function produces one "bit test"
2862 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2863                                            MachineBasicBlock* NextMBB,
2864                                            BranchProbability BranchProbToNext,
2865                                            unsigned Reg,
2866                                            BitTestCase &B,
2867                                            MachineBasicBlock *SwitchBB) {
2868   SDLoc dl = getCurSDLoc();
2869   MVT VT = BB.RegVT;
2870   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2871   SDValue Cmp;
2872   unsigned PopCount = countPopulation(B.Mask);
2873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2874   if (PopCount == 1) {
2875     // Testing for a single bit; just compare the shift count with what it
2876     // would need to be to shift a 1 bit in that position.
2877     Cmp = DAG.getSetCC(
2878         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2879         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2880         ISD::SETEQ);
2881   } else if (PopCount == BB.Range) {
2882     // There is only one zero bit in the range, test for it directly.
2883     Cmp = DAG.getSetCC(
2884         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2885         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2886         ISD::SETNE);
2887   } else {
2888     // Make desired shift
2889     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2890                                     DAG.getConstant(1, dl, VT), ShiftOp);
2891 
2892     // Emit bit tests and jumps
2893     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2894                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2895     Cmp = DAG.getSetCC(
2896         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2897         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2898   }
2899 
2900   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2901   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2902   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2903   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2904   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2905   // one as they are relative probabilities (and thus work more like weights),
2906   // and hence we need to normalize them to let the sum of them become one.
2907   SwitchBB->normalizeSuccProbs();
2908 
2909   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2910                               MVT::Other, getControlRoot(),
2911                               Cmp, DAG.getBasicBlock(B.TargetBB));
2912 
2913   // Avoid emitting unnecessary branches to the next block.
2914   if (NextMBB != NextBlock(SwitchBB))
2915     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2916                         DAG.getBasicBlock(NextMBB));
2917 
2918   DAG.setRoot(BrAnd);
2919 }
2920 
2921 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2922   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2923 
2924   // Retrieve successors. Look through artificial IR level blocks like
2925   // catchswitch for successors.
2926   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2927   const BasicBlock *EHPadBB = I.getSuccessor(1);
2928 
2929   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2930   // have to do anything here to lower funclet bundles.
2931   assert(!I.hasOperandBundlesOtherThan(
2932              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2933               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2934               LLVMContext::OB_cfguardtarget,
2935               LLVMContext::OB_clang_arc_attachedcall}) &&
2936          "Cannot lower invokes with arbitrary operand bundles yet!");
2937 
2938   const Value *Callee(I.getCalledOperand());
2939   const Function *Fn = dyn_cast<Function>(Callee);
2940   if (isa<InlineAsm>(Callee))
2941     visitInlineAsm(I, EHPadBB);
2942   else if (Fn && Fn->isIntrinsic()) {
2943     switch (Fn->getIntrinsicID()) {
2944     default:
2945       llvm_unreachable("Cannot invoke this intrinsic");
2946     case Intrinsic::donothing:
2947       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2948     case Intrinsic::seh_try_begin:
2949     case Intrinsic::seh_scope_begin:
2950     case Intrinsic::seh_try_end:
2951     case Intrinsic::seh_scope_end:
2952       break;
2953     case Intrinsic::experimental_patchpoint_void:
2954     case Intrinsic::experimental_patchpoint_i64:
2955       visitPatchpoint(I, EHPadBB);
2956       break;
2957     case Intrinsic::experimental_gc_statepoint:
2958       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2959       break;
2960     case Intrinsic::wasm_rethrow: {
2961       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2962       // special because it can be invoked, so we manually lower it to a DAG
2963       // node here.
2964       SmallVector<SDValue, 8> Ops;
2965       Ops.push_back(getRoot()); // inchain
2966       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2967       Ops.push_back(
2968           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2969                                 TLI.getPointerTy(DAG.getDataLayout())));
2970       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2971       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2972       break;
2973     }
2974     }
2975   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2976     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2977     // Eventually we will support lowering the @llvm.experimental.deoptimize
2978     // intrinsic, and right now there are no plans to support other intrinsics
2979     // with deopt state.
2980     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2981   } else {
2982     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2983   }
2984 
2985   // If the value of the invoke is used outside of its defining block, make it
2986   // available as a virtual register.
2987   // We already took care of the exported value for the statepoint instruction
2988   // during call to the LowerStatepoint.
2989   if (!isa<GCStatepointInst>(I)) {
2990     CopyToExportRegsIfNeeded(&I);
2991   }
2992 
2993   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2994   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2995   BranchProbability EHPadBBProb =
2996       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2997           : BranchProbability::getZero();
2998   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2999 
3000   // Update successor info.
3001   addSuccessorWithProb(InvokeMBB, Return);
3002   for (auto &UnwindDest : UnwindDests) {
3003     UnwindDest.first->setIsEHPad();
3004     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3005   }
3006   InvokeMBB->normalizeSuccProbs();
3007 
3008   // Drop into normal successor.
3009   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3010                           DAG.getBasicBlock(Return)));
3011 }
3012 
3013 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3014   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3015 
3016   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3017   // have to do anything here to lower funclet bundles.
3018   assert(!I.hasOperandBundlesOtherThan(
3019              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3020          "Cannot lower callbrs with arbitrary operand bundles yet!");
3021 
3022   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3023   visitInlineAsm(I);
3024   CopyToExportRegsIfNeeded(&I);
3025 
3026   // Retrieve successors.
3027   SmallPtrSet<BasicBlock *, 8> Dests;
3028   Dests.insert(I.getDefaultDest());
3029   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3030 
3031   // Update successor info.
3032   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3033   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3034     BasicBlock *Dest = I.getIndirectDest(i);
3035     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3036     Target->setIsInlineAsmBrIndirectTarget();
3037     Target->setMachineBlockAddressTaken();
3038     Target->setLabelMustBeEmitted();
3039     // Don't add duplicate machine successors.
3040     if (Dests.insert(Dest).second)
3041       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3042   }
3043   CallBrMBB->normalizeSuccProbs();
3044 
3045   // Drop into default successor.
3046   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3047                           MVT::Other, getControlRoot(),
3048                           DAG.getBasicBlock(Return)));
3049 }
3050 
3051 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3052   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3053 }
3054 
3055 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3056   assert(FuncInfo.MBB->isEHPad() &&
3057          "Call to landingpad not in landing pad!");
3058 
3059   // If there aren't registers to copy the values into (e.g., during SjLj
3060   // exceptions), then don't bother to create these DAG nodes.
3061   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3062   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3063   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3064       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3065     return;
3066 
3067   // If landingpad's return type is token type, we don't create DAG nodes
3068   // for its exception pointer and selector value. The extraction of exception
3069   // pointer or selector value from token type landingpads is not currently
3070   // supported.
3071   if (LP.getType()->isTokenTy())
3072     return;
3073 
3074   SmallVector<EVT, 2> ValueVTs;
3075   SDLoc dl = getCurSDLoc();
3076   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3077   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3078 
3079   // Get the two live-in registers as SDValues. The physregs have already been
3080   // copied into virtual registers.
3081   SDValue Ops[2];
3082   if (FuncInfo.ExceptionPointerVirtReg) {
3083     Ops[0] = DAG.getZExtOrTrunc(
3084         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3085                            FuncInfo.ExceptionPointerVirtReg,
3086                            TLI.getPointerTy(DAG.getDataLayout())),
3087         dl, ValueVTs[0]);
3088   } else {
3089     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3090   }
3091   Ops[1] = DAG.getZExtOrTrunc(
3092       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3093                          FuncInfo.ExceptionSelectorVirtReg,
3094                          TLI.getPointerTy(DAG.getDataLayout())),
3095       dl, ValueVTs[1]);
3096 
3097   // Merge into one.
3098   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3099                             DAG.getVTList(ValueVTs), Ops);
3100   setValue(&LP, Res);
3101 }
3102 
3103 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3104                                            MachineBasicBlock *Last) {
3105   // Update JTCases.
3106   for (JumpTableBlock &JTB : SL->JTCases)
3107     if (JTB.first.HeaderBB == First)
3108       JTB.first.HeaderBB = Last;
3109 
3110   // Update BitTestCases.
3111   for (BitTestBlock &BTB : SL->BitTestCases)
3112     if (BTB.Parent == First)
3113       BTB.Parent = Last;
3114 }
3115 
3116 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3117   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3118 
3119   // Update machine-CFG edges with unique successors.
3120   SmallSet<BasicBlock*, 32> Done;
3121   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3122     BasicBlock *BB = I.getSuccessor(i);
3123     bool Inserted = Done.insert(BB).second;
3124     if (!Inserted)
3125         continue;
3126 
3127     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3128     addSuccessorWithProb(IndirectBrMBB, Succ);
3129   }
3130   IndirectBrMBB->normalizeSuccProbs();
3131 
3132   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3133                           MVT::Other, getControlRoot(),
3134                           getValue(I.getAddress())));
3135 }
3136 
3137 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3138   if (!DAG.getTarget().Options.TrapUnreachable)
3139     return;
3140 
3141   // We may be able to ignore unreachable behind a noreturn call.
3142   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3143     const BasicBlock &BB = *I.getParent();
3144     if (&I != &BB.front()) {
3145       BasicBlock::const_iterator PredI =
3146         std::prev(BasicBlock::const_iterator(&I));
3147       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3148         if (Call->doesNotReturn())
3149           return;
3150       }
3151     }
3152   }
3153 
3154   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3155 }
3156 
3157 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3158   SDNodeFlags Flags;
3159   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3160     Flags.copyFMF(*FPOp);
3161 
3162   SDValue Op = getValue(I.getOperand(0));
3163   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3164                                     Op, Flags);
3165   setValue(&I, UnNodeValue);
3166 }
3167 
3168 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3169   SDNodeFlags Flags;
3170   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3171     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3172     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3173   }
3174   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3175     Flags.setExact(ExactOp->isExact());
3176   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3177     Flags.copyFMF(*FPOp);
3178 
3179   SDValue Op1 = getValue(I.getOperand(0));
3180   SDValue Op2 = getValue(I.getOperand(1));
3181   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3182                                      Op1, Op2, Flags);
3183   setValue(&I, BinNodeValue);
3184 }
3185 
3186 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3187   SDValue Op1 = getValue(I.getOperand(0));
3188   SDValue Op2 = getValue(I.getOperand(1));
3189 
3190   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3191       Op1.getValueType(), DAG.getDataLayout());
3192 
3193   // Coerce the shift amount to the right type if we can. This exposes the
3194   // truncate or zext to optimization early.
3195   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3196     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3197            "Unexpected shift type");
3198     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3199   }
3200 
3201   bool nuw = false;
3202   bool nsw = false;
3203   bool exact = false;
3204 
3205   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3206 
3207     if (const OverflowingBinaryOperator *OFBinOp =
3208             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3209       nuw = OFBinOp->hasNoUnsignedWrap();
3210       nsw = OFBinOp->hasNoSignedWrap();
3211     }
3212     if (const PossiblyExactOperator *ExactOp =
3213             dyn_cast<const PossiblyExactOperator>(&I))
3214       exact = ExactOp->isExact();
3215   }
3216   SDNodeFlags Flags;
3217   Flags.setExact(exact);
3218   Flags.setNoSignedWrap(nsw);
3219   Flags.setNoUnsignedWrap(nuw);
3220   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3221                             Flags);
3222   setValue(&I, Res);
3223 }
3224 
3225 void SelectionDAGBuilder::visitSDiv(const User &I) {
3226   SDValue Op1 = getValue(I.getOperand(0));
3227   SDValue Op2 = getValue(I.getOperand(1));
3228 
3229   SDNodeFlags Flags;
3230   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3231                  cast<PossiblyExactOperator>(&I)->isExact());
3232   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3233                            Op2, Flags));
3234 }
3235 
3236 void SelectionDAGBuilder::visitICmp(const User &I) {
3237   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3238   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3239     predicate = IC->getPredicate();
3240   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3241     predicate = ICmpInst::Predicate(IC->getPredicate());
3242   SDValue Op1 = getValue(I.getOperand(0));
3243   SDValue Op2 = getValue(I.getOperand(1));
3244   ISD::CondCode Opcode = getICmpCondCode(predicate);
3245 
3246   auto &TLI = DAG.getTargetLoweringInfo();
3247   EVT MemVT =
3248       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3249 
3250   // If a pointer's DAG type is larger than its memory type then the DAG values
3251   // are zero-extended. This breaks signed comparisons so truncate back to the
3252   // underlying type before doing the compare.
3253   if (Op1.getValueType() != MemVT) {
3254     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3255     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3256   }
3257 
3258   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3259                                                         I.getType());
3260   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3261 }
3262 
3263 void SelectionDAGBuilder::visitFCmp(const User &I) {
3264   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3265   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3266     predicate = FC->getPredicate();
3267   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3268     predicate = FCmpInst::Predicate(FC->getPredicate());
3269   SDValue Op1 = getValue(I.getOperand(0));
3270   SDValue Op2 = getValue(I.getOperand(1));
3271 
3272   ISD::CondCode Condition = getFCmpCondCode(predicate);
3273   auto *FPMO = cast<FPMathOperator>(&I);
3274   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3275     Condition = getFCmpCodeWithoutNaN(Condition);
3276 
3277   SDNodeFlags Flags;
3278   Flags.copyFMF(*FPMO);
3279   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3280 
3281   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3282                                                         I.getType());
3283   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3284 }
3285 
3286 // Check if the condition of the select has one use or two users that are both
3287 // selects with the same condition.
3288 static bool hasOnlySelectUsers(const Value *Cond) {
3289   return llvm::all_of(Cond->users(), [](const Value *V) {
3290     return isa<SelectInst>(V);
3291   });
3292 }
3293 
3294 void SelectionDAGBuilder::visitSelect(const User &I) {
3295   SmallVector<EVT, 4> ValueVTs;
3296   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3297                   ValueVTs);
3298   unsigned NumValues = ValueVTs.size();
3299   if (NumValues == 0) return;
3300 
3301   SmallVector<SDValue, 4> Values(NumValues);
3302   SDValue Cond     = getValue(I.getOperand(0));
3303   SDValue LHSVal   = getValue(I.getOperand(1));
3304   SDValue RHSVal   = getValue(I.getOperand(2));
3305   SmallVector<SDValue, 1> BaseOps(1, Cond);
3306   ISD::NodeType OpCode =
3307       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3308 
3309   bool IsUnaryAbs = false;
3310   bool Negate = false;
3311 
3312   SDNodeFlags Flags;
3313   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3314     Flags.copyFMF(*FPOp);
3315 
3316   // Min/max matching is only viable if all output VTs are the same.
3317   if (all_equal(ValueVTs)) {
3318     EVT VT = ValueVTs[0];
3319     LLVMContext &Ctx = *DAG.getContext();
3320     auto &TLI = DAG.getTargetLoweringInfo();
3321 
3322     // We care about the legality of the operation after it has been type
3323     // legalized.
3324     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3325       VT = TLI.getTypeToTransformTo(Ctx, VT);
3326 
3327     // If the vselect is legal, assume we want to leave this as a vector setcc +
3328     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3329     // min/max is legal on the scalar type.
3330     bool UseScalarMinMax = VT.isVector() &&
3331       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3332 
3333     Value *LHS, *RHS;
3334     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3335     ISD::NodeType Opc = ISD::DELETED_NODE;
3336     switch (SPR.Flavor) {
3337     case SPF_UMAX:    Opc = ISD::UMAX; break;
3338     case SPF_UMIN:    Opc = ISD::UMIN; break;
3339     case SPF_SMAX:    Opc = ISD::SMAX; break;
3340     case SPF_SMIN:    Opc = ISD::SMIN; break;
3341     case SPF_FMINNUM:
3342       switch (SPR.NaNBehavior) {
3343       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3344       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3345       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3346       case SPNB_RETURNS_ANY: {
3347         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3348           Opc = ISD::FMINNUM;
3349         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3350           Opc = ISD::FMINIMUM;
3351         else if (UseScalarMinMax)
3352           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3353             ISD::FMINNUM : ISD::FMINIMUM;
3354         break;
3355       }
3356       }
3357       break;
3358     case SPF_FMAXNUM:
3359       switch (SPR.NaNBehavior) {
3360       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3361       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3362       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3363       case SPNB_RETURNS_ANY:
3364 
3365         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3366           Opc = ISD::FMAXNUM;
3367         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3368           Opc = ISD::FMAXIMUM;
3369         else if (UseScalarMinMax)
3370           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3371             ISD::FMAXNUM : ISD::FMAXIMUM;
3372         break;
3373       }
3374       break;
3375     case SPF_NABS:
3376       Negate = true;
3377       [[fallthrough]];
3378     case SPF_ABS:
3379       IsUnaryAbs = true;
3380       Opc = ISD::ABS;
3381       break;
3382     default: break;
3383     }
3384 
3385     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3386         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3387          (UseScalarMinMax &&
3388           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3389         // If the underlying comparison instruction is used by any other
3390         // instruction, the consumed instructions won't be destroyed, so it is
3391         // not profitable to convert to a min/max.
3392         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3393       OpCode = Opc;
3394       LHSVal = getValue(LHS);
3395       RHSVal = getValue(RHS);
3396       BaseOps.clear();
3397     }
3398 
3399     if (IsUnaryAbs) {
3400       OpCode = Opc;
3401       LHSVal = getValue(LHS);
3402       BaseOps.clear();
3403     }
3404   }
3405 
3406   if (IsUnaryAbs) {
3407     for (unsigned i = 0; i != NumValues; ++i) {
3408       SDLoc dl = getCurSDLoc();
3409       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3410       Values[i] =
3411           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3412       if (Negate)
3413         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3414                                 Values[i]);
3415     }
3416   } else {
3417     for (unsigned i = 0; i != NumValues; ++i) {
3418       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3419       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3420       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3421       Values[i] = DAG.getNode(
3422           OpCode, getCurSDLoc(),
3423           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3424     }
3425   }
3426 
3427   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3428                            DAG.getVTList(ValueVTs), Values));
3429 }
3430 
3431 void SelectionDAGBuilder::visitTrunc(const User &I) {
3432   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3433   SDValue N = getValue(I.getOperand(0));
3434   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3435                                                         I.getType());
3436   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3437 }
3438 
3439 void SelectionDAGBuilder::visitZExt(const User &I) {
3440   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3441   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3442   SDValue N = getValue(I.getOperand(0));
3443   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3444                                                         I.getType());
3445   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3446 }
3447 
3448 void SelectionDAGBuilder::visitSExt(const User &I) {
3449   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3450   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3451   SDValue N = getValue(I.getOperand(0));
3452   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3453                                                         I.getType());
3454   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3455 }
3456 
3457 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3458   // FPTrunc is never a no-op cast, no need to check
3459   SDValue N = getValue(I.getOperand(0));
3460   SDLoc dl = getCurSDLoc();
3461   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3462   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3463   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3464                            DAG.getTargetConstant(
3465                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3466 }
3467 
3468 void SelectionDAGBuilder::visitFPExt(const User &I) {
3469   // FPExt is never a no-op cast, no need to check
3470   SDValue N = getValue(I.getOperand(0));
3471   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3472                                                         I.getType());
3473   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3474 }
3475 
3476 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3477   // FPToUI is never a no-op cast, no need to check
3478   SDValue N = getValue(I.getOperand(0));
3479   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3480                                                         I.getType());
3481   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3482 }
3483 
3484 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3485   // FPToSI is never a no-op cast, no need to check
3486   SDValue N = getValue(I.getOperand(0));
3487   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3488                                                         I.getType());
3489   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3490 }
3491 
3492 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3493   // UIToFP is never a no-op cast, no need to check
3494   SDValue N = getValue(I.getOperand(0));
3495   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3496                                                         I.getType());
3497   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3498 }
3499 
3500 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3501   // SIToFP is never a no-op cast, no need to check
3502   SDValue N = getValue(I.getOperand(0));
3503   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3504                                                         I.getType());
3505   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3506 }
3507 
3508 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3509   // What to do depends on the size of the integer and the size of the pointer.
3510   // We can either truncate, zero extend, or no-op, accordingly.
3511   SDValue N = getValue(I.getOperand(0));
3512   auto &TLI = DAG.getTargetLoweringInfo();
3513   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3514                                                         I.getType());
3515   EVT PtrMemVT =
3516       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3517   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3518   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3519   setValue(&I, N);
3520 }
3521 
3522 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3523   // What to do depends on the size of the integer and the size of the pointer.
3524   // We can either truncate, zero extend, or no-op, accordingly.
3525   SDValue N = getValue(I.getOperand(0));
3526   auto &TLI = DAG.getTargetLoweringInfo();
3527   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3528   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3529   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3530   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3531   setValue(&I, N);
3532 }
3533 
3534 void SelectionDAGBuilder::visitBitCast(const User &I) {
3535   SDValue N = getValue(I.getOperand(0));
3536   SDLoc dl = getCurSDLoc();
3537   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3538                                                         I.getType());
3539 
3540   // BitCast assures us that source and destination are the same size so this is
3541   // either a BITCAST or a no-op.
3542   if (DestVT != N.getValueType())
3543     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3544                              DestVT, N)); // convert types.
3545   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3546   // might fold any kind of constant expression to an integer constant and that
3547   // is not what we are looking for. Only recognize a bitcast of a genuine
3548   // constant integer as an opaque constant.
3549   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3550     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3551                                  /*isOpaque*/true));
3552   else
3553     setValue(&I, N);            // noop cast.
3554 }
3555 
3556 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3557   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3558   const Value *SV = I.getOperand(0);
3559   SDValue N = getValue(SV);
3560   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3561 
3562   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3563   unsigned DestAS = I.getType()->getPointerAddressSpace();
3564 
3565   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3566     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3567 
3568   setValue(&I, N);
3569 }
3570 
3571 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3572   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3573   SDValue InVec = getValue(I.getOperand(0));
3574   SDValue InVal = getValue(I.getOperand(1));
3575   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3576                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3577   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3578                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3579                            InVec, InVal, InIdx));
3580 }
3581 
3582 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3583   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3584   SDValue InVec = getValue(I.getOperand(0));
3585   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3586                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3587   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3588                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3589                            InVec, InIdx));
3590 }
3591 
3592 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3593   SDValue Src1 = getValue(I.getOperand(0));
3594   SDValue Src2 = getValue(I.getOperand(1));
3595   ArrayRef<int> Mask;
3596   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3597     Mask = SVI->getShuffleMask();
3598   else
3599     Mask = cast<ConstantExpr>(I).getShuffleMask();
3600   SDLoc DL = getCurSDLoc();
3601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3602   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3603   EVT SrcVT = Src1.getValueType();
3604 
3605   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3606       VT.isScalableVector()) {
3607     // Canonical splat form of first element of first input vector.
3608     SDValue FirstElt =
3609         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3610                     DAG.getVectorIdxConstant(0, DL));
3611     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3612     return;
3613   }
3614 
3615   // For now, we only handle splats for scalable vectors.
3616   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3617   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3618   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3619 
3620   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3621   unsigned MaskNumElts = Mask.size();
3622 
3623   if (SrcNumElts == MaskNumElts) {
3624     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3625     return;
3626   }
3627 
3628   // Normalize the shuffle vector since mask and vector length don't match.
3629   if (SrcNumElts < MaskNumElts) {
3630     // Mask is longer than the source vectors. We can use concatenate vector to
3631     // make the mask and vectors lengths match.
3632 
3633     if (MaskNumElts % SrcNumElts == 0) {
3634       // Mask length is a multiple of the source vector length.
3635       // Check if the shuffle is some kind of concatenation of the input
3636       // vectors.
3637       unsigned NumConcat = MaskNumElts / SrcNumElts;
3638       bool IsConcat = true;
3639       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3640       for (unsigned i = 0; i != MaskNumElts; ++i) {
3641         int Idx = Mask[i];
3642         if (Idx < 0)
3643           continue;
3644         // Ensure the indices in each SrcVT sized piece are sequential and that
3645         // the same source is used for the whole piece.
3646         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3647             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3648              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3649           IsConcat = false;
3650           break;
3651         }
3652         // Remember which source this index came from.
3653         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3654       }
3655 
3656       // The shuffle is concatenating multiple vectors together. Just emit
3657       // a CONCAT_VECTORS operation.
3658       if (IsConcat) {
3659         SmallVector<SDValue, 8> ConcatOps;
3660         for (auto Src : ConcatSrcs) {
3661           if (Src < 0)
3662             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3663           else if (Src == 0)
3664             ConcatOps.push_back(Src1);
3665           else
3666             ConcatOps.push_back(Src2);
3667         }
3668         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3669         return;
3670       }
3671     }
3672 
3673     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3674     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3675     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3676                                     PaddedMaskNumElts);
3677 
3678     // Pad both vectors with undefs to make them the same length as the mask.
3679     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3680 
3681     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3682     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3683     MOps1[0] = Src1;
3684     MOps2[0] = Src2;
3685 
3686     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3687     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3688 
3689     // Readjust mask for new input vector length.
3690     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3691     for (unsigned i = 0; i != MaskNumElts; ++i) {
3692       int Idx = Mask[i];
3693       if (Idx >= (int)SrcNumElts)
3694         Idx -= SrcNumElts - PaddedMaskNumElts;
3695       MappedOps[i] = Idx;
3696     }
3697 
3698     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3699 
3700     // If the concatenated vector was padded, extract a subvector with the
3701     // correct number of elements.
3702     if (MaskNumElts != PaddedMaskNumElts)
3703       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3704                            DAG.getVectorIdxConstant(0, DL));
3705 
3706     setValue(&I, Result);
3707     return;
3708   }
3709 
3710   if (SrcNumElts > MaskNumElts) {
3711     // Analyze the access pattern of the vector to see if we can extract
3712     // two subvectors and do the shuffle.
3713     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3714     bool CanExtract = true;
3715     for (int Idx : Mask) {
3716       unsigned Input = 0;
3717       if (Idx < 0)
3718         continue;
3719 
3720       if (Idx >= (int)SrcNumElts) {
3721         Input = 1;
3722         Idx -= SrcNumElts;
3723       }
3724 
3725       // If all the indices come from the same MaskNumElts sized portion of
3726       // the sources we can use extract. Also make sure the extract wouldn't
3727       // extract past the end of the source.
3728       int NewStartIdx = alignDown(Idx, MaskNumElts);
3729       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3730           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3731         CanExtract = false;
3732       // Make sure we always update StartIdx as we use it to track if all
3733       // elements are undef.
3734       StartIdx[Input] = NewStartIdx;
3735     }
3736 
3737     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3738       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3739       return;
3740     }
3741     if (CanExtract) {
3742       // Extract appropriate subvector and generate a vector shuffle
3743       for (unsigned Input = 0; Input < 2; ++Input) {
3744         SDValue &Src = Input == 0 ? Src1 : Src2;
3745         if (StartIdx[Input] < 0)
3746           Src = DAG.getUNDEF(VT);
3747         else {
3748           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3749                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3750         }
3751       }
3752 
3753       // Calculate new mask.
3754       SmallVector<int, 8> MappedOps(Mask);
3755       for (int &Idx : MappedOps) {
3756         if (Idx >= (int)SrcNumElts)
3757           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3758         else if (Idx >= 0)
3759           Idx -= StartIdx[0];
3760       }
3761 
3762       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3763       return;
3764     }
3765   }
3766 
3767   // We can't use either concat vectors or extract subvectors so fall back to
3768   // replacing the shuffle with extract and build vector.
3769   // to insert and build vector.
3770   EVT EltVT = VT.getVectorElementType();
3771   SmallVector<SDValue,8> Ops;
3772   for (int Idx : Mask) {
3773     SDValue Res;
3774 
3775     if (Idx < 0) {
3776       Res = DAG.getUNDEF(EltVT);
3777     } else {
3778       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3779       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3780 
3781       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3782                         DAG.getVectorIdxConstant(Idx, DL));
3783     }
3784 
3785     Ops.push_back(Res);
3786   }
3787 
3788   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3789 }
3790 
3791 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3792   ArrayRef<unsigned> Indices = I.getIndices();
3793   const Value *Op0 = I.getOperand(0);
3794   const Value *Op1 = I.getOperand(1);
3795   Type *AggTy = I.getType();
3796   Type *ValTy = Op1->getType();
3797   bool IntoUndef = isa<UndefValue>(Op0);
3798   bool FromUndef = isa<UndefValue>(Op1);
3799 
3800   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3801 
3802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3803   SmallVector<EVT, 4> AggValueVTs;
3804   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3805   SmallVector<EVT, 4> ValValueVTs;
3806   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3807 
3808   unsigned NumAggValues = AggValueVTs.size();
3809   unsigned NumValValues = ValValueVTs.size();
3810   SmallVector<SDValue, 4> Values(NumAggValues);
3811 
3812   // Ignore an insertvalue that produces an empty object
3813   if (!NumAggValues) {
3814     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3815     return;
3816   }
3817 
3818   SDValue Agg = getValue(Op0);
3819   unsigned i = 0;
3820   // Copy the beginning value(s) from the original aggregate.
3821   for (; i != LinearIndex; ++i)
3822     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3823                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3824   // Copy values from the inserted value(s).
3825   if (NumValValues) {
3826     SDValue Val = getValue(Op1);
3827     for (; i != LinearIndex + NumValValues; ++i)
3828       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3829                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3830   }
3831   // Copy remaining value(s) from the original aggregate.
3832   for (; i != NumAggValues; ++i)
3833     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3834                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3835 
3836   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3837                            DAG.getVTList(AggValueVTs), Values));
3838 }
3839 
3840 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3841   ArrayRef<unsigned> Indices = I.getIndices();
3842   const Value *Op0 = I.getOperand(0);
3843   Type *AggTy = Op0->getType();
3844   Type *ValTy = I.getType();
3845   bool OutOfUndef = isa<UndefValue>(Op0);
3846 
3847   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3848 
3849   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3850   SmallVector<EVT, 4> ValValueVTs;
3851   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3852 
3853   unsigned NumValValues = ValValueVTs.size();
3854 
3855   // Ignore a extractvalue that produces an empty object
3856   if (!NumValValues) {
3857     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3858     return;
3859   }
3860 
3861   SmallVector<SDValue, 4> Values(NumValValues);
3862 
3863   SDValue Agg = getValue(Op0);
3864   // Copy out the selected value(s).
3865   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3866     Values[i - LinearIndex] =
3867       OutOfUndef ?
3868         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3869         SDValue(Agg.getNode(), Agg.getResNo() + i);
3870 
3871   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3872                            DAG.getVTList(ValValueVTs), Values));
3873 }
3874 
3875 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3876   Value *Op0 = I.getOperand(0);
3877   // Note that the pointer operand may be a vector of pointers. Take the scalar
3878   // element which holds a pointer.
3879   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3880   SDValue N = getValue(Op0);
3881   SDLoc dl = getCurSDLoc();
3882   auto &TLI = DAG.getTargetLoweringInfo();
3883 
3884   // Normalize Vector GEP - all scalar operands should be converted to the
3885   // splat vector.
3886   bool IsVectorGEP = I.getType()->isVectorTy();
3887   ElementCount VectorElementCount =
3888       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3889                   : ElementCount::getFixed(0);
3890 
3891   if (IsVectorGEP && !N.getValueType().isVector()) {
3892     LLVMContext &Context = *DAG.getContext();
3893     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3894     if (VectorElementCount.isScalable())
3895       N = DAG.getSplatVector(VT, dl, N);
3896     else
3897       N = DAG.getSplatBuildVector(VT, dl, N);
3898   }
3899 
3900   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3901        GTI != E; ++GTI) {
3902     const Value *Idx = GTI.getOperand();
3903     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3904       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3905       if (Field) {
3906         // N = N + Offset
3907         uint64_t Offset =
3908             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3909 
3910         // In an inbounds GEP with an offset that is nonnegative even when
3911         // interpreted as signed, assume there is no unsigned overflow.
3912         SDNodeFlags Flags;
3913         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3914           Flags.setNoUnsignedWrap(true);
3915 
3916         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3917                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3918       }
3919     } else {
3920       // IdxSize is the width of the arithmetic according to IR semantics.
3921       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3922       // (and fix up the result later).
3923       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3924       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3925       TypeSize ElementSize =
3926           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3927       // We intentionally mask away the high bits here; ElementSize may not
3928       // fit in IdxTy.
3929       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3930       bool ElementScalable = ElementSize.isScalable();
3931 
3932       // If this is a scalar constant or a splat vector of constants,
3933       // handle it quickly.
3934       const auto *C = dyn_cast<Constant>(Idx);
3935       if (C && isa<VectorType>(C->getType()))
3936         C = C->getSplatValue();
3937 
3938       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3939       if (CI && CI->isZero())
3940         continue;
3941       if (CI && !ElementScalable) {
3942         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3943         LLVMContext &Context = *DAG.getContext();
3944         SDValue OffsVal;
3945         if (IsVectorGEP)
3946           OffsVal = DAG.getConstant(
3947               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3948         else
3949           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3950 
3951         // In an inbounds GEP with an offset that is nonnegative even when
3952         // interpreted as signed, assume there is no unsigned overflow.
3953         SDNodeFlags Flags;
3954         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3955           Flags.setNoUnsignedWrap(true);
3956 
3957         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3958 
3959         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3960         continue;
3961       }
3962 
3963       // N = N + Idx * ElementMul;
3964       SDValue IdxN = getValue(Idx);
3965 
3966       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3967         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3968                                   VectorElementCount);
3969         if (VectorElementCount.isScalable())
3970           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3971         else
3972           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3973       }
3974 
3975       // If the index is smaller or larger than intptr_t, truncate or extend
3976       // it.
3977       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3978 
3979       if (ElementScalable) {
3980         EVT VScaleTy = N.getValueType().getScalarType();
3981         SDValue VScale = DAG.getNode(
3982             ISD::VSCALE, dl, VScaleTy,
3983             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3984         if (IsVectorGEP)
3985           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3986         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3987       } else {
3988         // If this is a multiply by a power of two, turn it into a shl
3989         // immediately.  This is a very common case.
3990         if (ElementMul != 1) {
3991           if (ElementMul.isPowerOf2()) {
3992             unsigned Amt = ElementMul.logBase2();
3993             IdxN = DAG.getNode(ISD::SHL, dl,
3994                                N.getValueType(), IdxN,
3995                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3996           } else {
3997             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3998                                             IdxN.getValueType());
3999             IdxN = DAG.getNode(ISD::MUL, dl,
4000                                N.getValueType(), IdxN, Scale);
4001           }
4002         }
4003       }
4004 
4005       N = DAG.getNode(ISD::ADD, dl,
4006                       N.getValueType(), N, IdxN);
4007     }
4008   }
4009 
4010   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4011   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4012   if (IsVectorGEP) {
4013     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4014     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4015   }
4016 
4017   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4018     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4019 
4020   setValue(&I, N);
4021 }
4022 
4023 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4024   // If this is a fixed sized alloca in the entry block of the function,
4025   // allocate it statically on the stack.
4026   if (FuncInfo.StaticAllocaMap.count(&I))
4027     return;   // getValue will auto-populate this.
4028 
4029   SDLoc dl = getCurSDLoc();
4030   Type *Ty = I.getAllocatedType();
4031   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4032   auto &DL = DAG.getDataLayout();
4033   TypeSize TySize = DL.getTypeAllocSize(Ty);
4034   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4035 
4036   SDValue AllocSize = getValue(I.getArraySize());
4037 
4038   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4039   if (AllocSize.getValueType() != IntPtr)
4040     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4041 
4042   if (TySize.isScalable())
4043     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4044                             DAG.getVScale(dl, IntPtr,
4045                                           APInt(IntPtr.getScalarSizeInBits(),
4046                                                 TySize.getKnownMinValue())));
4047   else
4048     AllocSize =
4049         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4050                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4051 
4052   // Handle alignment.  If the requested alignment is less than or equal to
4053   // the stack alignment, ignore it.  If the size is greater than or equal to
4054   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4055   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4056   if (*Alignment <= StackAlign)
4057     Alignment = None;
4058 
4059   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4060   // Round the size of the allocation up to the stack alignment size
4061   // by add SA-1 to the size. This doesn't overflow because we're computing
4062   // an address inside an alloca.
4063   SDNodeFlags Flags;
4064   Flags.setNoUnsignedWrap(true);
4065   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4066                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4067 
4068   // Mask out the low bits for alignment purposes.
4069   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4070                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4071 
4072   SDValue Ops[] = {
4073       getRoot(), AllocSize,
4074       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4075   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4076   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4077   setValue(&I, DSA);
4078   DAG.setRoot(DSA.getValue(1));
4079 
4080   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4081 }
4082 
4083 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4084   if (I.isAtomic())
4085     return visitAtomicLoad(I);
4086 
4087   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4088   const Value *SV = I.getOperand(0);
4089   if (TLI.supportSwiftError()) {
4090     // Swifterror values can come from either a function parameter with
4091     // swifterror attribute or an alloca with swifterror attribute.
4092     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4093       if (Arg->hasSwiftErrorAttr())
4094         return visitLoadFromSwiftError(I);
4095     }
4096 
4097     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4098       if (Alloca->isSwiftError())
4099         return visitLoadFromSwiftError(I);
4100     }
4101   }
4102 
4103   SDValue Ptr = getValue(SV);
4104 
4105   Type *Ty = I.getType();
4106   Align Alignment = I.getAlign();
4107 
4108   AAMDNodes AAInfo = I.getAAMetadata();
4109   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4110 
4111   SmallVector<EVT, 4> ValueVTs, MemVTs;
4112   SmallVector<uint64_t, 4> Offsets;
4113   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4114   unsigned NumValues = ValueVTs.size();
4115   if (NumValues == 0)
4116     return;
4117 
4118   bool isVolatile = I.isVolatile();
4119   MachineMemOperand::Flags MMOFlags =
4120       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4121 
4122   SDValue Root;
4123   bool ConstantMemory = false;
4124   if (isVolatile)
4125     // Serialize volatile loads with other side effects.
4126     Root = getRoot();
4127   else if (NumValues > MaxParallelChains)
4128     Root = getMemoryRoot();
4129   else if (AA &&
4130            AA->pointsToConstantMemory(MemoryLocation(
4131                SV,
4132                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4133                AAInfo))) {
4134     // Do not serialize (non-volatile) loads of constant memory with anything.
4135     Root = DAG.getEntryNode();
4136     ConstantMemory = true;
4137     MMOFlags |= MachineMemOperand::MOInvariant;
4138   } else {
4139     // Do not serialize non-volatile loads against each other.
4140     Root = DAG.getRoot();
4141   }
4142 
4143   if (isDereferenceableAndAlignedPointer(SV, Ty, Alignment, DAG.getDataLayout(),
4144                                          &I, nullptr, LibInfo))
4145     MMOFlags |= MachineMemOperand::MODereferenceable;
4146 
4147   SDLoc dl = getCurSDLoc();
4148 
4149   if (isVolatile)
4150     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4151 
4152   // An aggregate load cannot wrap around the address space, so offsets to its
4153   // parts don't wrap either.
4154   SDNodeFlags Flags;
4155   Flags.setNoUnsignedWrap(true);
4156 
4157   SmallVector<SDValue, 4> Values(NumValues);
4158   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4159   EVT PtrVT = Ptr.getValueType();
4160 
4161   unsigned ChainI = 0;
4162   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4163     // Serializing loads here may result in excessive register pressure, and
4164     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4165     // could recover a bit by hoisting nodes upward in the chain by recognizing
4166     // they are side-effect free or do not alias. The optimizer should really
4167     // avoid this case by converting large object/array copies to llvm.memcpy
4168     // (MaxParallelChains should always remain as failsafe).
4169     if (ChainI == MaxParallelChains) {
4170       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4171       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4172                                   makeArrayRef(Chains.data(), ChainI));
4173       Root = Chain;
4174       ChainI = 0;
4175     }
4176     SDValue A = DAG.getNode(ISD::ADD, dl,
4177                             PtrVT, Ptr,
4178                             DAG.getConstant(Offsets[i], dl, PtrVT),
4179                             Flags);
4180 
4181     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4182                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4183                             MMOFlags, AAInfo, Ranges);
4184     Chains[ChainI] = L.getValue(1);
4185 
4186     if (MemVTs[i] != ValueVTs[i])
4187       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4188 
4189     Values[i] = L;
4190   }
4191 
4192   if (!ConstantMemory) {
4193     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4194                                 makeArrayRef(Chains.data(), ChainI));
4195     if (isVolatile)
4196       DAG.setRoot(Chain);
4197     else
4198       PendingLoads.push_back(Chain);
4199   }
4200 
4201   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4202                            DAG.getVTList(ValueVTs), Values));
4203 }
4204 
4205 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4206   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4207          "call visitStoreToSwiftError when backend supports swifterror");
4208 
4209   SmallVector<EVT, 4> ValueVTs;
4210   SmallVector<uint64_t, 4> Offsets;
4211   const Value *SrcV = I.getOperand(0);
4212   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4213                   SrcV->getType(), ValueVTs, &Offsets);
4214   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4215          "expect a single EVT for swifterror");
4216 
4217   SDValue Src = getValue(SrcV);
4218   // Create a virtual register, then update the virtual register.
4219   Register VReg =
4220       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4221   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4222   // Chain can be getRoot or getControlRoot.
4223   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4224                                       SDValue(Src.getNode(), Src.getResNo()));
4225   DAG.setRoot(CopyNode);
4226 }
4227 
4228 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4229   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4230          "call visitLoadFromSwiftError when backend supports swifterror");
4231 
4232   assert(!I.isVolatile() &&
4233          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4234          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4235          "Support volatile, non temporal, invariant for load_from_swift_error");
4236 
4237   const Value *SV = I.getOperand(0);
4238   Type *Ty = I.getType();
4239   assert(
4240       (!AA ||
4241        !AA->pointsToConstantMemory(MemoryLocation(
4242            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4243            I.getAAMetadata()))) &&
4244       "load_from_swift_error should not be constant memory");
4245 
4246   SmallVector<EVT, 4> ValueVTs;
4247   SmallVector<uint64_t, 4> Offsets;
4248   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4249                   ValueVTs, &Offsets);
4250   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4251          "expect a single EVT for swifterror");
4252 
4253   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4254   SDValue L = DAG.getCopyFromReg(
4255       getRoot(), getCurSDLoc(),
4256       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4257 
4258   setValue(&I, L);
4259 }
4260 
4261 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4262   if (I.isAtomic())
4263     return visitAtomicStore(I);
4264 
4265   const Value *SrcV = I.getOperand(0);
4266   const Value *PtrV = I.getOperand(1);
4267 
4268   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4269   if (TLI.supportSwiftError()) {
4270     // Swifterror values can come from either a function parameter with
4271     // swifterror attribute or an alloca with swifterror attribute.
4272     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4273       if (Arg->hasSwiftErrorAttr())
4274         return visitStoreToSwiftError(I);
4275     }
4276 
4277     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4278       if (Alloca->isSwiftError())
4279         return visitStoreToSwiftError(I);
4280     }
4281   }
4282 
4283   SmallVector<EVT, 4> ValueVTs, MemVTs;
4284   SmallVector<uint64_t, 4> Offsets;
4285   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4286                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4287   unsigned NumValues = ValueVTs.size();
4288   if (NumValues == 0)
4289     return;
4290 
4291   // Get the lowered operands. Note that we do this after
4292   // checking if NumResults is zero, because with zero results
4293   // the operands won't have values in the map.
4294   SDValue Src = getValue(SrcV);
4295   SDValue Ptr = getValue(PtrV);
4296 
4297   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4298   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4299   SDLoc dl = getCurSDLoc();
4300   Align Alignment = I.getAlign();
4301   AAMDNodes AAInfo = I.getAAMetadata();
4302 
4303   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4304 
4305   // An aggregate load cannot wrap around the address space, so offsets to its
4306   // parts don't wrap either.
4307   SDNodeFlags Flags;
4308   Flags.setNoUnsignedWrap(true);
4309 
4310   unsigned ChainI = 0;
4311   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4312     // See visitLoad comments.
4313     if (ChainI == MaxParallelChains) {
4314       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4315                                   makeArrayRef(Chains.data(), ChainI));
4316       Root = Chain;
4317       ChainI = 0;
4318     }
4319     SDValue Add =
4320         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4321     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4322     if (MemVTs[i] != ValueVTs[i])
4323       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4324     SDValue St =
4325         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4326                      Alignment, MMOFlags, AAInfo);
4327     Chains[ChainI] = St;
4328   }
4329 
4330   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4331                                   makeArrayRef(Chains.data(), ChainI));
4332   setValue(&I, StoreNode);
4333   DAG.setRoot(StoreNode);
4334 }
4335 
4336 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4337                                            bool IsCompressing) {
4338   SDLoc sdl = getCurSDLoc();
4339 
4340   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4341                                MaybeAlign &Alignment) {
4342     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4343     Src0 = I.getArgOperand(0);
4344     Ptr = I.getArgOperand(1);
4345     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4346     Mask = I.getArgOperand(3);
4347   };
4348   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4349                                     MaybeAlign &Alignment) {
4350     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4351     Src0 = I.getArgOperand(0);
4352     Ptr = I.getArgOperand(1);
4353     Mask = I.getArgOperand(2);
4354     Alignment = None;
4355   };
4356 
4357   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4358   MaybeAlign Alignment;
4359   if (IsCompressing)
4360     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4361   else
4362     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4363 
4364   SDValue Ptr = getValue(PtrOperand);
4365   SDValue Src0 = getValue(Src0Operand);
4366   SDValue Mask = getValue(MaskOperand);
4367   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4368 
4369   EVT VT = Src0.getValueType();
4370   if (!Alignment)
4371     Alignment = DAG.getEVTAlign(VT);
4372 
4373   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4374       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4375       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4376   SDValue StoreNode =
4377       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4378                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4379   DAG.setRoot(StoreNode);
4380   setValue(&I, StoreNode);
4381 }
4382 
4383 // Get a uniform base for the Gather/Scatter intrinsic.
4384 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4385 // We try to represent it as a base pointer + vector of indices.
4386 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4387 // The first operand of the GEP may be a single pointer or a vector of pointers
4388 // Example:
4389 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4390 //  or
4391 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4392 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4393 //
4394 // When the first GEP operand is a single pointer - it is the uniform base we
4395 // are looking for. If first operand of the GEP is a splat vector - we
4396 // extract the splat value and use it as a uniform base.
4397 // In all other cases the function returns 'false'.
4398 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4399                            ISD::MemIndexType &IndexType, SDValue &Scale,
4400                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4401                            uint64_t ElemSize) {
4402   SelectionDAG& DAG = SDB->DAG;
4403   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4404   const DataLayout &DL = DAG.getDataLayout();
4405 
4406   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4407 
4408   // Handle splat constant pointer.
4409   if (auto *C = dyn_cast<Constant>(Ptr)) {
4410     C = C->getSplatValue();
4411     if (!C)
4412       return false;
4413 
4414     Base = SDB->getValue(C);
4415 
4416     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4417     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4418     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4419     IndexType = ISD::SIGNED_SCALED;
4420     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4421     return true;
4422   }
4423 
4424   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4425   if (!GEP || GEP->getParent() != CurBB)
4426     return false;
4427 
4428   if (GEP->getNumOperands() != 2)
4429     return false;
4430 
4431   const Value *BasePtr = GEP->getPointerOperand();
4432   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4433 
4434   // Make sure the base is scalar and the index is a vector.
4435   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4436     return false;
4437 
4438   Base = SDB->getValue(BasePtr);
4439   Index = SDB->getValue(IndexVal);
4440   IndexType = ISD::SIGNED_SCALED;
4441 
4442   // MGATHER/MSCATTER are only required to support scaling by one or by the
4443   // element size. Other scales may be produced using target-specific DAG
4444   // combines.
4445   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4446   if (ScaleVal != ElemSize && ScaleVal != 1)
4447     return false;
4448 
4449   Scale =
4450       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4451   return true;
4452 }
4453 
4454 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4455   SDLoc sdl = getCurSDLoc();
4456 
4457   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4458   const Value *Ptr = I.getArgOperand(1);
4459   SDValue Src0 = getValue(I.getArgOperand(0));
4460   SDValue Mask = getValue(I.getArgOperand(3));
4461   EVT VT = Src0.getValueType();
4462   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4463                         ->getMaybeAlignValue()
4464                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4465   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4466 
4467   SDValue Base;
4468   SDValue Index;
4469   ISD::MemIndexType IndexType;
4470   SDValue Scale;
4471   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4472                                     I.getParent(), VT.getScalarStoreSize());
4473 
4474   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4475   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4476       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4477       // TODO: Make MachineMemOperands aware of scalable
4478       // vectors.
4479       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4480   if (!UniformBase) {
4481     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4482     Index = getValue(Ptr);
4483     IndexType = ISD::SIGNED_SCALED;
4484     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4485   }
4486 
4487   EVT IdxVT = Index.getValueType();
4488   EVT EltTy = IdxVT.getVectorElementType();
4489   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4490     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4491     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4492   }
4493 
4494   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4495   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4496                                          Ops, MMO, IndexType, false);
4497   DAG.setRoot(Scatter);
4498   setValue(&I, Scatter);
4499 }
4500 
4501 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4502   SDLoc sdl = getCurSDLoc();
4503 
4504   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4505                               MaybeAlign &Alignment) {
4506     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4507     Ptr = I.getArgOperand(0);
4508     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4509     Mask = I.getArgOperand(2);
4510     Src0 = I.getArgOperand(3);
4511   };
4512   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4513                                  MaybeAlign &Alignment) {
4514     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4515     Ptr = I.getArgOperand(0);
4516     Alignment = None;
4517     Mask = I.getArgOperand(1);
4518     Src0 = I.getArgOperand(2);
4519   };
4520 
4521   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4522   MaybeAlign Alignment;
4523   if (IsExpanding)
4524     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4525   else
4526     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4527 
4528   SDValue Ptr = getValue(PtrOperand);
4529   SDValue Src0 = getValue(Src0Operand);
4530   SDValue Mask = getValue(MaskOperand);
4531   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4532 
4533   EVT VT = Src0.getValueType();
4534   if (!Alignment)
4535     Alignment = DAG.getEVTAlign(VT);
4536 
4537   AAMDNodes AAInfo = I.getAAMetadata();
4538   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4539 
4540   // Do not serialize masked loads of constant memory with anything.
4541   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4542   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4543 
4544   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4545 
4546   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4547       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4548       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4549 
4550   SDValue Load =
4551       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4552                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4553   if (AddToChain)
4554     PendingLoads.push_back(Load.getValue(1));
4555   setValue(&I, Load);
4556 }
4557 
4558 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4559   SDLoc sdl = getCurSDLoc();
4560 
4561   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4562   const Value *Ptr = I.getArgOperand(0);
4563   SDValue Src0 = getValue(I.getArgOperand(3));
4564   SDValue Mask = getValue(I.getArgOperand(2));
4565 
4566   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4567   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4568   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4569                         ->getMaybeAlignValue()
4570                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4571 
4572   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4573 
4574   SDValue Root = DAG.getRoot();
4575   SDValue Base;
4576   SDValue Index;
4577   ISD::MemIndexType IndexType;
4578   SDValue Scale;
4579   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4580                                     I.getParent(), VT.getScalarStoreSize());
4581   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4582   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4583       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4584       // TODO: Make MachineMemOperands aware of scalable
4585       // vectors.
4586       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4587 
4588   if (!UniformBase) {
4589     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4590     Index = getValue(Ptr);
4591     IndexType = ISD::SIGNED_SCALED;
4592     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4593   }
4594 
4595   EVT IdxVT = Index.getValueType();
4596   EVT EltTy = IdxVT.getVectorElementType();
4597   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4598     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4599     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4600   }
4601 
4602   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4603   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4604                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4605 
4606   PendingLoads.push_back(Gather.getValue(1));
4607   setValue(&I, Gather);
4608 }
4609 
4610 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4611   SDLoc dl = getCurSDLoc();
4612   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4613   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4614   SyncScope::ID SSID = I.getSyncScopeID();
4615 
4616   SDValue InChain = getRoot();
4617 
4618   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4619   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4620 
4621   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4622   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4623 
4624   MachineFunction &MF = DAG.getMachineFunction();
4625   MachineMemOperand *MMO = MF.getMachineMemOperand(
4626       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4627       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4628       FailureOrdering);
4629 
4630   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4631                                    dl, MemVT, VTs, InChain,
4632                                    getValue(I.getPointerOperand()),
4633                                    getValue(I.getCompareOperand()),
4634                                    getValue(I.getNewValOperand()), MMO);
4635 
4636   SDValue OutChain = L.getValue(2);
4637 
4638   setValue(&I, L);
4639   DAG.setRoot(OutChain);
4640 }
4641 
4642 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4643   SDLoc dl = getCurSDLoc();
4644   ISD::NodeType NT;
4645   switch (I.getOperation()) {
4646   default: llvm_unreachable("Unknown atomicrmw operation");
4647   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4648   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4649   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4650   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4651   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4652   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4653   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4654   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4655   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4656   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4657   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4658   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4659   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4660   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4661   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4662   }
4663   AtomicOrdering Ordering = I.getOrdering();
4664   SyncScope::ID SSID = I.getSyncScopeID();
4665 
4666   SDValue InChain = getRoot();
4667 
4668   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4669   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4670   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4671 
4672   MachineFunction &MF = DAG.getMachineFunction();
4673   MachineMemOperand *MMO = MF.getMachineMemOperand(
4674       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4675       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4676 
4677   SDValue L =
4678     DAG.getAtomic(NT, dl, MemVT, InChain,
4679                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4680                   MMO);
4681 
4682   SDValue OutChain = L.getValue(1);
4683 
4684   setValue(&I, L);
4685   DAG.setRoot(OutChain);
4686 }
4687 
4688 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4689   SDLoc dl = getCurSDLoc();
4690   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4691   SDValue Ops[3];
4692   Ops[0] = getRoot();
4693   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4694                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4695   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4696                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4697   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4698   setValue(&I, N);
4699   DAG.setRoot(N);
4700 }
4701 
4702 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4703   SDLoc dl = getCurSDLoc();
4704   AtomicOrdering Order = I.getOrdering();
4705   SyncScope::ID SSID = I.getSyncScopeID();
4706 
4707   SDValue InChain = getRoot();
4708 
4709   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4710   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4711   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4712 
4713   if (!TLI.supportsUnalignedAtomics() &&
4714       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4715     report_fatal_error("Cannot generate unaligned atomic load");
4716 
4717   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4718 
4719   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4720       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4721       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4722 
4723   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4724 
4725   SDValue Ptr = getValue(I.getPointerOperand());
4726 
4727   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4728     // TODO: Once this is better exercised by tests, it should be merged with
4729     // the normal path for loads to prevent future divergence.
4730     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4731     if (MemVT != VT)
4732       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4733 
4734     setValue(&I, L);
4735     SDValue OutChain = L.getValue(1);
4736     if (!I.isUnordered())
4737       DAG.setRoot(OutChain);
4738     else
4739       PendingLoads.push_back(OutChain);
4740     return;
4741   }
4742 
4743   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4744                             Ptr, MMO);
4745 
4746   SDValue OutChain = L.getValue(1);
4747   if (MemVT != VT)
4748     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4749 
4750   setValue(&I, L);
4751   DAG.setRoot(OutChain);
4752 }
4753 
4754 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4755   SDLoc dl = getCurSDLoc();
4756 
4757   AtomicOrdering Ordering = I.getOrdering();
4758   SyncScope::ID SSID = I.getSyncScopeID();
4759 
4760   SDValue InChain = getRoot();
4761 
4762   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4763   EVT MemVT =
4764       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4765 
4766   if (!TLI.supportsUnalignedAtomics() &&
4767       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4768     report_fatal_error("Cannot generate unaligned atomic store");
4769 
4770   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4771 
4772   MachineFunction &MF = DAG.getMachineFunction();
4773   MachineMemOperand *MMO = MF.getMachineMemOperand(
4774       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4775       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4776 
4777   SDValue Val = getValue(I.getValueOperand());
4778   if (Val.getValueType() != MemVT)
4779     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4780   SDValue Ptr = getValue(I.getPointerOperand());
4781 
4782   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4783     // TODO: Once this is better exercised by tests, it should be merged with
4784     // the normal path for stores to prevent future divergence.
4785     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4786     setValue(&I, S);
4787     DAG.setRoot(S);
4788     return;
4789   }
4790   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4791                                    Ptr, Val, MMO);
4792 
4793   setValue(&I, OutChain);
4794   DAG.setRoot(OutChain);
4795 }
4796 
4797 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4798 /// node.
4799 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4800                                                unsigned Intrinsic) {
4801   // Ignore the callsite's attributes. A specific call site may be marked with
4802   // readnone, but the lowering code will expect the chain based on the
4803   // definition.
4804   const Function *F = I.getCalledFunction();
4805   bool HasChain = !F->doesNotAccessMemory();
4806   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4807 
4808   // Build the operand list.
4809   SmallVector<SDValue, 8> Ops;
4810   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4811     if (OnlyLoad) {
4812       // We don't need to serialize loads against other loads.
4813       Ops.push_back(DAG.getRoot());
4814     } else {
4815       Ops.push_back(getRoot());
4816     }
4817   }
4818 
4819   // Info is set by getTgtMemIntrinsic
4820   TargetLowering::IntrinsicInfo Info;
4821   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4822   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4823                                                DAG.getMachineFunction(),
4824                                                Intrinsic);
4825 
4826   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4827   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4828       Info.opc == ISD::INTRINSIC_W_CHAIN)
4829     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4830                                         TLI.getPointerTy(DAG.getDataLayout())));
4831 
4832   // Add all operands of the call to the operand list.
4833   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4834     const Value *Arg = I.getArgOperand(i);
4835     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4836       Ops.push_back(getValue(Arg));
4837       continue;
4838     }
4839 
4840     // Use TargetConstant instead of a regular constant for immarg.
4841     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4842     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4843       assert(CI->getBitWidth() <= 64 &&
4844              "large intrinsic immediates not handled");
4845       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4846     } else {
4847       Ops.push_back(
4848           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4849     }
4850   }
4851 
4852   SmallVector<EVT, 4> ValueVTs;
4853   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4854 
4855   if (HasChain)
4856     ValueVTs.push_back(MVT::Other);
4857 
4858   SDVTList VTs = DAG.getVTList(ValueVTs);
4859 
4860   // Propagate fast-math-flags from IR to node(s).
4861   SDNodeFlags Flags;
4862   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4863     Flags.copyFMF(*FPMO);
4864   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4865 
4866   // Create the node.
4867   SDValue Result;
4868   if (IsTgtIntrinsic) {
4869     // This is target intrinsic that touches memory
4870     Result =
4871         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4872                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4873                                 Info.align, Info.flags, Info.size,
4874                                 I.getAAMetadata());
4875   } else if (!HasChain) {
4876     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4877   } else if (!I.getType()->isVoidTy()) {
4878     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4879   } else {
4880     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4881   }
4882 
4883   if (HasChain) {
4884     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4885     if (OnlyLoad)
4886       PendingLoads.push_back(Chain);
4887     else
4888       DAG.setRoot(Chain);
4889   }
4890 
4891   if (!I.getType()->isVoidTy()) {
4892     if (!isa<VectorType>(I.getType()))
4893       Result = lowerRangeToAssertZExt(DAG, I, Result);
4894 
4895     MaybeAlign Alignment = I.getRetAlign();
4896     if (!Alignment)
4897       Alignment = F->getAttributes().getRetAlignment();
4898     // Insert `assertalign` node if there's an alignment.
4899     if (InsertAssertAlign && Alignment) {
4900       Result =
4901           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4902     }
4903 
4904     setValue(&I, Result);
4905   }
4906 }
4907 
4908 /// GetSignificand - Get the significand and build it into a floating-point
4909 /// number with exponent of 1:
4910 ///
4911 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4912 ///
4913 /// where Op is the hexadecimal representation of floating point value.
4914 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4915   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4916                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4917   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4918                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4919   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4920 }
4921 
4922 /// GetExponent - Get the exponent:
4923 ///
4924 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4925 ///
4926 /// where Op is the hexadecimal representation of floating point value.
4927 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4928                            const TargetLowering &TLI, const SDLoc &dl) {
4929   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4930                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4931   SDValue t1 = DAG.getNode(
4932       ISD::SRL, dl, MVT::i32, t0,
4933       DAG.getConstant(23, dl,
4934                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4935   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4936                            DAG.getConstant(127, dl, MVT::i32));
4937   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4938 }
4939 
4940 /// getF32Constant - Get 32-bit floating point constant.
4941 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4942                               const SDLoc &dl) {
4943   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4944                            MVT::f32);
4945 }
4946 
4947 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4948                                        SelectionDAG &DAG) {
4949   // TODO: What fast-math-flags should be set on the floating-point nodes?
4950 
4951   //   IntegerPartOfX = ((int32_t)(t0);
4952   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4953 
4954   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4955   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4956   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4957 
4958   //   IntegerPartOfX <<= 23;
4959   IntegerPartOfX =
4960       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4961                   DAG.getConstant(23, dl,
4962                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4963                                       MVT::i32, DAG.getDataLayout())));
4964 
4965   SDValue TwoToFractionalPartOfX;
4966   if (LimitFloatPrecision <= 6) {
4967     // For floating-point precision of 6:
4968     //
4969     //   TwoToFractionalPartOfX =
4970     //     0.997535578f +
4971     //       (0.735607626f + 0.252464424f * x) * x;
4972     //
4973     // error 0.0144103317, which is 6 bits
4974     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4975                              getF32Constant(DAG, 0x3e814304, dl));
4976     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4977                              getF32Constant(DAG, 0x3f3c50c8, dl));
4978     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4979     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4980                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4981   } else if (LimitFloatPrecision <= 12) {
4982     // For floating-point precision of 12:
4983     //
4984     //   TwoToFractionalPartOfX =
4985     //     0.999892986f +
4986     //       (0.696457318f +
4987     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4988     //
4989     // error 0.000107046256, which is 13 to 14 bits
4990     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4991                              getF32Constant(DAG, 0x3da235e3, dl));
4992     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4993                              getF32Constant(DAG, 0x3e65b8f3, dl));
4994     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4995     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4996                              getF32Constant(DAG, 0x3f324b07, dl));
4997     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4998     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4999                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5000   } else { // LimitFloatPrecision <= 18
5001     // For floating-point precision of 18:
5002     //
5003     //   TwoToFractionalPartOfX =
5004     //     0.999999982f +
5005     //       (0.693148872f +
5006     //         (0.240227044f +
5007     //           (0.554906021e-1f +
5008     //             (0.961591928e-2f +
5009     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5010     // error 2.47208000*10^(-7), which is better than 18 bits
5011     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5012                              getF32Constant(DAG, 0x3924b03e, dl));
5013     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5014                              getF32Constant(DAG, 0x3ab24b87, dl));
5015     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5016     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5017                              getF32Constant(DAG, 0x3c1d8c17, dl));
5018     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5019     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5020                              getF32Constant(DAG, 0x3d634a1d, dl));
5021     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5022     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5023                              getF32Constant(DAG, 0x3e75fe14, dl));
5024     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5025     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5026                               getF32Constant(DAG, 0x3f317234, dl));
5027     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5028     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5029                                          getF32Constant(DAG, 0x3f800000, dl));
5030   }
5031 
5032   // Add the exponent into the result in integer domain.
5033   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5034   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5035                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5036 }
5037 
5038 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5039 /// limited-precision mode.
5040 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5041                          const TargetLowering &TLI, SDNodeFlags Flags) {
5042   if (Op.getValueType() == MVT::f32 &&
5043       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5044 
5045     // Put the exponent in the right bit position for later addition to the
5046     // final result:
5047     //
5048     // t0 = Op * log2(e)
5049 
5050     // TODO: What fast-math-flags should be set here?
5051     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5052                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5053     return getLimitedPrecisionExp2(t0, dl, DAG);
5054   }
5055 
5056   // No special expansion.
5057   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5058 }
5059 
5060 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5061 /// limited-precision mode.
5062 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5063                          const TargetLowering &TLI, SDNodeFlags Flags) {
5064   // TODO: What fast-math-flags should be set on the floating-point nodes?
5065 
5066   if (Op.getValueType() == MVT::f32 &&
5067       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5068     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5069 
5070     // Scale the exponent by log(2).
5071     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5072     SDValue LogOfExponent =
5073         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5074                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5075 
5076     // Get the significand and build it into a floating-point number with
5077     // exponent of 1.
5078     SDValue X = GetSignificand(DAG, Op1, dl);
5079 
5080     SDValue LogOfMantissa;
5081     if (LimitFloatPrecision <= 6) {
5082       // For floating-point precision of 6:
5083       //
5084       //   LogofMantissa =
5085       //     -1.1609546f +
5086       //       (1.4034025f - 0.23903021f * x) * x;
5087       //
5088       // error 0.0034276066, which is better than 8 bits
5089       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5090                                getF32Constant(DAG, 0xbe74c456, dl));
5091       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5092                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5093       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5094       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5095                                   getF32Constant(DAG, 0x3f949a29, dl));
5096     } else if (LimitFloatPrecision <= 12) {
5097       // For floating-point precision of 12:
5098       //
5099       //   LogOfMantissa =
5100       //     -1.7417939f +
5101       //       (2.8212026f +
5102       //         (-1.4699568f +
5103       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5104       //
5105       // error 0.000061011436, which is 14 bits
5106       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5107                                getF32Constant(DAG, 0xbd67b6d6, dl));
5108       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5109                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5110       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5111       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5112                                getF32Constant(DAG, 0x3fbc278b, dl));
5113       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5114       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5115                                getF32Constant(DAG, 0x40348e95, dl));
5116       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5117       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5118                                   getF32Constant(DAG, 0x3fdef31a, dl));
5119     } else { // LimitFloatPrecision <= 18
5120       // For floating-point precision of 18:
5121       //
5122       //   LogOfMantissa =
5123       //     -2.1072184f +
5124       //       (4.2372794f +
5125       //         (-3.7029485f +
5126       //           (2.2781945f +
5127       //             (-0.87823314f +
5128       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5129       //
5130       // error 0.0000023660568, which is better than 18 bits
5131       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5132                                getF32Constant(DAG, 0xbc91e5ac, dl));
5133       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5134                                getF32Constant(DAG, 0x3e4350aa, dl));
5135       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5136       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5137                                getF32Constant(DAG, 0x3f60d3e3, dl));
5138       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5139       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5140                                getF32Constant(DAG, 0x4011cdf0, dl));
5141       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5142       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5143                                getF32Constant(DAG, 0x406cfd1c, dl));
5144       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5145       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5146                                getF32Constant(DAG, 0x408797cb, dl));
5147       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5148       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5149                                   getF32Constant(DAG, 0x4006dcab, dl));
5150     }
5151 
5152     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5153   }
5154 
5155   // No special expansion.
5156   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5157 }
5158 
5159 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5160 /// limited-precision mode.
5161 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5162                           const TargetLowering &TLI, SDNodeFlags Flags) {
5163   // TODO: What fast-math-flags should be set on the floating-point nodes?
5164 
5165   if (Op.getValueType() == MVT::f32 &&
5166       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5167     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5168 
5169     // Get the exponent.
5170     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5171 
5172     // Get the significand and build it into a floating-point number with
5173     // exponent of 1.
5174     SDValue X = GetSignificand(DAG, Op1, dl);
5175 
5176     // Different possible minimax approximations of significand in
5177     // floating-point for various degrees of accuracy over [1,2].
5178     SDValue Log2ofMantissa;
5179     if (LimitFloatPrecision <= 6) {
5180       // For floating-point precision of 6:
5181       //
5182       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5183       //
5184       // error 0.0049451742, which is more than 7 bits
5185       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5186                                getF32Constant(DAG, 0xbeb08fe0, dl));
5187       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5188                                getF32Constant(DAG, 0x40019463, dl));
5189       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5190       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5191                                    getF32Constant(DAG, 0x3fd6633d, dl));
5192     } else if (LimitFloatPrecision <= 12) {
5193       // For floating-point precision of 12:
5194       //
5195       //   Log2ofMantissa =
5196       //     -2.51285454f +
5197       //       (4.07009056f +
5198       //         (-2.12067489f +
5199       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5200       //
5201       // error 0.0000876136000, which is better than 13 bits
5202       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5203                                getF32Constant(DAG, 0xbda7262e, dl));
5204       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5205                                getF32Constant(DAG, 0x3f25280b, dl));
5206       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5207       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5208                                getF32Constant(DAG, 0x4007b923, dl));
5209       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5210       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5211                                getF32Constant(DAG, 0x40823e2f, dl));
5212       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5213       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5214                                    getF32Constant(DAG, 0x4020d29c, dl));
5215     } else { // LimitFloatPrecision <= 18
5216       // For floating-point precision of 18:
5217       //
5218       //   Log2ofMantissa =
5219       //     -3.0400495f +
5220       //       (6.1129976f +
5221       //         (-5.3420409f +
5222       //           (3.2865683f +
5223       //             (-1.2669343f +
5224       //               (0.27515199f -
5225       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5226       //
5227       // error 0.0000018516, which is better than 18 bits
5228       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5229                                getF32Constant(DAG, 0xbcd2769e, dl));
5230       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5231                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5232       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5233       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5234                                getF32Constant(DAG, 0x3fa22ae7, dl));
5235       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5236       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5237                                getF32Constant(DAG, 0x40525723, dl));
5238       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5239       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5240                                getF32Constant(DAG, 0x40aaf200, dl));
5241       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5242       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5243                                getF32Constant(DAG, 0x40c39dad, dl));
5244       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5245       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5246                                    getF32Constant(DAG, 0x4042902c, dl));
5247     }
5248 
5249     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5250   }
5251 
5252   // No special expansion.
5253   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5254 }
5255 
5256 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5257 /// limited-precision mode.
5258 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5259                            const TargetLowering &TLI, SDNodeFlags Flags) {
5260   // TODO: What fast-math-flags should be set on the floating-point nodes?
5261 
5262   if (Op.getValueType() == MVT::f32 &&
5263       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5264     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5265 
5266     // Scale the exponent by log10(2) [0.30102999f].
5267     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5268     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5269                                         getF32Constant(DAG, 0x3e9a209a, dl));
5270 
5271     // Get the significand and build it into a floating-point number with
5272     // exponent of 1.
5273     SDValue X = GetSignificand(DAG, Op1, dl);
5274 
5275     SDValue Log10ofMantissa;
5276     if (LimitFloatPrecision <= 6) {
5277       // For floating-point precision of 6:
5278       //
5279       //   Log10ofMantissa =
5280       //     -0.50419619f +
5281       //       (0.60948995f - 0.10380950f * x) * x;
5282       //
5283       // error 0.0014886165, which is 6 bits
5284       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5285                                getF32Constant(DAG, 0xbdd49a13, dl));
5286       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5287                                getF32Constant(DAG, 0x3f1c0789, dl));
5288       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5289       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5290                                     getF32Constant(DAG, 0x3f011300, dl));
5291     } else if (LimitFloatPrecision <= 12) {
5292       // For floating-point precision of 12:
5293       //
5294       //   Log10ofMantissa =
5295       //     -0.64831180f +
5296       //       (0.91751397f +
5297       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5298       //
5299       // error 0.00019228036, which is better than 12 bits
5300       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5301                                getF32Constant(DAG, 0x3d431f31, dl));
5302       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5303                                getF32Constant(DAG, 0x3ea21fb2, dl));
5304       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5305       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5306                                getF32Constant(DAG, 0x3f6ae232, dl));
5307       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5308       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5309                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5310     } else { // LimitFloatPrecision <= 18
5311       // For floating-point precision of 18:
5312       //
5313       //   Log10ofMantissa =
5314       //     -0.84299375f +
5315       //       (1.5327582f +
5316       //         (-1.0688956f +
5317       //           (0.49102474f +
5318       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5319       //
5320       // error 0.0000037995730, which is better than 18 bits
5321       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5322                                getF32Constant(DAG, 0x3c5d51ce, dl));
5323       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5324                                getF32Constant(DAG, 0x3e00685a, dl));
5325       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5326       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5327                                getF32Constant(DAG, 0x3efb6798, dl));
5328       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5329       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5330                                getF32Constant(DAG, 0x3f88d192, dl));
5331       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5332       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5333                                getF32Constant(DAG, 0x3fc4316c, dl));
5334       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5335       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5336                                     getF32Constant(DAG, 0x3f57ce70, dl));
5337     }
5338 
5339     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5340   }
5341 
5342   // No special expansion.
5343   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5344 }
5345 
5346 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5347 /// limited-precision mode.
5348 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5349                           const TargetLowering &TLI, SDNodeFlags Flags) {
5350   if (Op.getValueType() == MVT::f32 &&
5351       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5352     return getLimitedPrecisionExp2(Op, dl, DAG);
5353 
5354   // No special expansion.
5355   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5356 }
5357 
5358 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5359 /// limited-precision mode with x == 10.0f.
5360 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5361                          SelectionDAG &DAG, const TargetLowering &TLI,
5362                          SDNodeFlags Flags) {
5363   bool IsExp10 = false;
5364   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5365       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5366     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5367       APFloat Ten(10.0f);
5368       IsExp10 = LHSC->isExactlyValue(Ten);
5369     }
5370   }
5371 
5372   // TODO: What fast-math-flags should be set on the FMUL node?
5373   if (IsExp10) {
5374     // Put the exponent in the right bit position for later addition to the
5375     // final result:
5376     //
5377     //   #define LOG2OF10 3.3219281f
5378     //   t0 = Op * LOG2OF10;
5379     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5380                              getF32Constant(DAG, 0x40549a78, dl));
5381     return getLimitedPrecisionExp2(t0, dl, DAG);
5382   }
5383 
5384   // No special expansion.
5385   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5386 }
5387 
5388 /// ExpandPowI - Expand a llvm.powi intrinsic.
5389 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5390                           SelectionDAG &DAG) {
5391   // If RHS is a constant, we can expand this out to a multiplication tree if
5392   // it's beneficial on the target, otherwise we end up lowering to a call to
5393   // __powidf2 (for example).
5394   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5395     unsigned Val = RHSC->getSExtValue();
5396 
5397     // powi(x, 0) -> 1.0
5398     if (Val == 0)
5399       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5400 
5401     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5402             Val, DAG.shouldOptForSize())) {
5403       // Get the exponent as a positive value.
5404       if ((int)Val < 0)
5405         Val = -Val;
5406       // We use the simple binary decomposition method to generate the multiply
5407       // sequence.  There are more optimal ways to do this (for example,
5408       // powi(x,15) generates one more multiply than it should), but this has
5409       // the benefit of being both really simple and much better than a libcall.
5410       SDValue Res; // Logically starts equal to 1.0
5411       SDValue CurSquare = LHS;
5412       // TODO: Intrinsics should have fast-math-flags that propagate to these
5413       // nodes.
5414       while (Val) {
5415         if (Val & 1) {
5416           if (Res.getNode())
5417             Res =
5418                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5419           else
5420             Res = CurSquare; // 1.0*CurSquare.
5421         }
5422 
5423         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5424                                 CurSquare, CurSquare);
5425         Val >>= 1;
5426       }
5427 
5428       // If the original was negative, invert the result, producing 1/(x*x*x).
5429       if (RHSC->getSExtValue() < 0)
5430         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5431                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5432       return Res;
5433     }
5434   }
5435 
5436   // Otherwise, expand to a libcall.
5437   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5438 }
5439 
5440 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5441                             SDValue LHS, SDValue RHS, SDValue Scale,
5442                             SelectionDAG &DAG, const TargetLowering &TLI) {
5443   EVT VT = LHS.getValueType();
5444   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5445   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5446   LLVMContext &Ctx = *DAG.getContext();
5447 
5448   // If the type is legal but the operation isn't, this node might survive all
5449   // the way to operation legalization. If we end up there and we do not have
5450   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5451   // node.
5452 
5453   // Coax the legalizer into expanding the node during type legalization instead
5454   // by bumping the size by one bit. This will force it to Promote, enabling the
5455   // early expansion and avoiding the need to expand later.
5456 
5457   // We don't have to do this if Scale is 0; that can always be expanded, unless
5458   // it's a saturating signed operation. Those can experience true integer
5459   // division overflow, a case which we must avoid.
5460 
5461   // FIXME: We wouldn't have to do this (or any of the early
5462   // expansion/promotion) if it was possible to expand a libcall of an
5463   // illegal type during operation legalization. But it's not, so things
5464   // get a bit hacky.
5465   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5466   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5467       (TLI.isTypeLegal(VT) ||
5468        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5469     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5470         Opcode, VT, ScaleInt);
5471     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5472       EVT PromVT;
5473       if (VT.isScalarInteger())
5474         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5475       else if (VT.isVector()) {
5476         PromVT = VT.getVectorElementType();
5477         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5478         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5479       } else
5480         llvm_unreachable("Wrong VT for DIVFIX?");
5481       if (Signed) {
5482         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5483         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5484       } else {
5485         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5486         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5487       }
5488       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5489       // For saturating operations, we need to shift up the LHS to get the
5490       // proper saturation width, and then shift down again afterwards.
5491       if (Saturating)
5492         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5493                           DAG.getConstant(1, DL, ShiftTy));
5494       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5495       if (Saturating)
5496         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5497                           DAG.getConstant(1, DL, ShiftTy));
5498       return DAG.getZExtOrTrunc(Res, DL, VT);
5499     }
5500   }
5501 
5502   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5503 }
5504 
5505 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5506 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5507 static void
5508 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5509                      const SDValue &N) {
5510   switch (N.getOpcode()) {
5511   case ISD::CopyFromReg: {
5512     SDValue Op = N.getOperand(1);
5513     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5514                       Op.getValueType().getSizeInBits());
5515     return;
5516   }
5517   case ISD::BITCAST:
5518   case ISD::AssertZext:
5519   case ISD::AssertSext:
5520   case ISD::TRUNCATE:
5521     getUnderlyingArgRegs(Regs, N.getOperand(0));
5522     return;
5523   case ISD::BUILD_PAIR:
5524   case ISD::BUILD_VECTOR:
5525   case ISD::CONCAT_VECTORS:
5526     for (SDValue Op : N->op_values())
5527       getUnderlyingArgRegs(Regs, Op);
5528     return;
5529   default:
5530     return;
5531   }
5532 }
5533 
5534 /// If the DbgValueInst is a dbg_value of a function argument, create the
5535 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5536 /// instruction selection, they will be inserted to the entry BB.
5537 /// We don't currently support this for variadic dbg_values, as they shouldn't
5538 /// appear for function arguments or in the prologue.
5539 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5540     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5541     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5542   const Argument *Arg = dyn_cast<Argument>(V);
5543   if (!Arg)
5544     return false;
5545 
5546   MachineFunction &MF = DAG.getMachineFunction();
5547   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5548 
5549   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5550   // we've been asked to pursue.
5551   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5552                               bool Indirect) {
5553     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5554       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5555       // pointing at the VReg, which will be patched up later.
5556       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5557       auto MIB = BuildMI(MF, DL, Inst);
5558       MIB.addReg(Reg);
5559       MIB.addImm(0);
5560       MIB.addMetadata(Variable);
5561       auto *NewDIExpr = FragExpr;
5562       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5563       // the DIExpression.
5564       if (Indirect)
5565         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5566       MIB.addMetadata(NewDIExpr);
5567       return MIB;
5568     } else {
5569       // Create a completely standard DBG_VALUE.
5570       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5571       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5572     }
5573   };
5574 
5575   if (Kind == FuncArgumentDbgValueKind::Value) {
5576     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5577     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5578     // the entry block.
5579     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5580     if (!IsInEntryBlock)
5581       return false;
5582 
5583     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5584     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5585     // variable that also is a param.
5586     //
5587     // Although, if we are at the top of the entry block already, we can still
5588     // emit using ArgDbgValue. This might catch some situations when the
5589     // dbg.value refers to an argument that isn't used in the entry block, so
5590     // any CopyToReg node would be optimized out and the only way to express
5591     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5592     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5593     // we should only emit as ArgDbgValue if the Variable is an argument to the
5594     // current function, and the dbg.value intrinsic is found in the entry
5595     // block.
5596     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5597         !DL->getInlinedAt();
5598     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5599     if (!IsInPrologue && !VariableIsFunctionInputArg)
5600       return false;
5601 
5602     // Here we assume that a function argument on IR level only can be used to
5603     // describe one input parameter on source level. If we for example have
5604     // source code like this
5605     //
5606     //    struct A { long x, y; };
5607     //    void foo(struct A a, long b) {
5608     //      ...
5609     //      b = a.x;
5610     //      ...
5611     //    }
5612     //
5613     // and IR like this
5614     //
5615     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5616     //  entry:
5617     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5618     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5619     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5620     //    ...
5621     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5622     //    ...
5623     //
5624     // then the last dbg.value is describing a parameter "b" using a value that
5625     // is an argument. But since we already has used %a1 to describe a parameter
5626     // we should not handle that last dbg.value here (that would result in an
5627     // incorrect hoisting of the DBG_VALUE to the function entry).
5628     // Notice that we allow one dbg.value per IR level argument, to accommodate
5629     // for the situation with fragments above.
5630     if (VariableIsFunctionInputArg) {
5631       unsigned ArgNo = Arg->getArgNo();
5632       if (ArgNo >= FuncInfo.DescribedArgs.size())
5633         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5634       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5635         return false;
5636       FuncInfo.DescribedArgs.set(ArgNo);
5637     }
5638   }
5639 
5640   bool IsIndirect = false;
5641   Optional<MachineOperand> Op;
5642   // Some arguments' frame index is recorded during argument lowering.
5643   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5644   if (FI != std::numeric_limits<int>::max())
5645     Op = MachineOperand::CreateFI(FI);
5646 
5647   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5648   if (!Op && N.getNode()) {
5649     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5650     Register Reg;
5651     if (ArgRegsAndSizes.size() == 1)
5652       Reg = ArgRegsAndSizes.front().first;
5653 
5654     if (Reg && Reg.isVirtual()) {
5655       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5656       Register PR = RegInfo.getLiveInPhysReg(Reg);
5657       if (PR)
5658         Reg = PR;
5659     }
5660     if (Reg) {
5661       Op = MachineOperand::CreateReg(Reg, false);
5662       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5663     }
5664   }
5665 
5666   if (!Op && N.getNode()) {
5667     // Check if frame index is available.
5668     SDValue LCandidate = peekThroughBitcasts(N);
5669     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5670       if (FrameIndexSDNode *FINode =
5671           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5672         Op = MachineOperand::CreateFI(FINode->getIndex());
5673   }
5674 
5675   if (!Op) {
5676     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5677     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5678                                          SplitRegs) {
5679       unsigned Offset = 0;
5680       for (const auto &RegAndSize : SplitRegs) {
5681         // If the expression is already a fragment, the current register
5682         // offset+size might extend beyond the fragment. In this case, only
5683         // the register bits that are inside the fragment are relevant.
5684         int RegFragmentSizeInBits = RegAndSize.second;
5685         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5686           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5687           // The register is entirely outside the expression fragment,
5688           // so is irrelevant for debug info.
5689           if (Offset >= ExprFragmentSizeInBits)
5690             break;
5691           // The register is partially outside the expression fragment, only
5692           // the low bits within the fragment are relevant for debug info.
5693           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5694             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5695           }
5696         }
5697 
5698         auto FragmentExpr = DIExpression::createFragmentExpression(
5699             Expr, Offset, RegFragmentSizeInBits);
5700         Offset += RegAndSize.second;
5701         // If a valid fragment expression cannot be created, the variable's
5702         // correct value cannot be determined and so it is set as Undef.
5703         if (!FragmentExpr) {
5704           SDDbgValue *SDV = DAG.getConstantDbgValue(
5705               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5706           DAG.AddDbgValue(SDV, false);
5707           continue;
5708         }
5709         MachineInstr *NewMI =
5710             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5711                              Kind != FuncArgumentDbgValueKind::Value);
5712         FuncInfo.ArgDbgValues.push_back(NewMI);
5713       }
5714     };
5715 
5716     // Check if ValueMap has reg number.
5717     DenseMap<const Value *, Register>::const_iterator
5718       VMI = FuncInfo.ValueMap.find(V);
5719     if (VMI != FuncInfo.ValueMap.end()) {
5720       const auto &TLI = DAG.getTargetLoweringInfo();
5721       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5722                        V->getType(), None);
5723       if (RFV.occupiesMultipleRegs()) {
5724         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5725         return true;
5726       }
5727 
5728       Op = MachineOperand::CreateReg(VMI->second, false);
5729       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5730     } else if (ArgRegsAndSizes.size() > 1) {
5731       // This was split due to the calling convention, and no virtual register
5732       // mapping exists for the value.
5733       splitMultiRegDbgValue(ArgRegsAndSizes);
5734       return true;
5735     }
5736   }
5737 
5738   if (!Op)
5739     return false;
5740 
5741   assert(Variable->isValidLocationForIntrinsic(DL) &&
5742          "Expected inlined-at fields to agree");
5743   MachineInstr *NewMI = nullptr;
5744 
5745   if (Op->isReg())
5746     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5747   else
5748     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5749                     Variable, Expr);
5750 
5751   // Otherwise, use ArgDbgValues.
5752   FuncInfo.ArgDbgValues.push_back(NewMI);
5753   return true;
5754 }
5755 
5756 /// Return the appropriate SDDbgValue based on N.
5757 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5758                                              DILocalVariable *Variable,
5759                                              DIExpression *Expr,
5760                                              const DebugLoc &dl,
5761                                              unsigned DbgSDNodeOrder) {
5762   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5763     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5764     // stack slot locations.
5765     //
5766     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5767     // debug values here after optimization:
5768     //
5769     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5770     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5771     //
5772     // Both describe the direct values of their associated variables.
5773     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5774                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5775   }
5776   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5777                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5778 }
5779 
5780 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5781   switch (Intrinsic) {
5782   case Intrinsic::smul_fix:
5783     return ISD::SMULFIX;
5784   case Intrinsic::umul_fix:
5785     return ISD::UMULFIX;
5786   case Intrinsic::smul_fix_sat:
5787     return ISD::SMULFIXSAT;
5788   case Intrinsic::umul_fix_sat:
5789     return ISD::UMULFIXSAT;
5790   case Intrinsic::sdiv_fix:
5791     return ISD::SDIVFIX;
5792   case Intrinsic::udiv_fix:
5793     return ISD::UDIVFIX;
5794   case Intrinsic::sdiv_fix_sat:
5795     return ISD::SDIVFIXSAT;
5796   case Intrinsic::udiv_fix_sat:
5797     return ISD::UDIVFIXSAT;
5798   default:
5799     llvm_unreachable("Unhandled fixed point intrinsic");
5800   }
5801 }
5802 
5803 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5804                                            const char *FunctionName) {
5805   assert(FunctionName && "FunctionName must not be nullptr");
5806   SDValue Callee = DAG.getExternalSymbol(
5807       FunctionName,
5808       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5809   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5810 }
5811 
5812 /// Given a @llvm.call.preallocated.setup, return the corresponding
5813 /// preallocated call.
5814 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5815   assert(cast<CallBase>(PreallocatedSetup)
5816                  ->getCalledFunction()
5817                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5818          "expected call_preallocated_setup Value");
5819   for (const auto *U : PreallocatedSetup->users()) {
5820     auto *UseCall = cast<CallBase>(U);
5821     const Function *Fn = UseCall->getCalledFunction();
5822     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5823       return UseCall;
5824     }
5825   }
5826   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5827 }
5828 
5829 /// Lower the call to the specified intrinsic function.
5830 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5831                                              unsigned Intrinsic) {
5832   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5833   SDLoc sdl = getCurSDLoc();
5834   DebugLoc dl = getCurDebugLoc();
5835   SDValue Res;
5836 
5837   SDNodeFlags Flags;
5838   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5839     Flags.copyFMF(*FPOp);
5840 
5841   switch (Intrinsic) {
5842   default:
5843     // By default, turn this into a target intrinsic node.
5844     visitTargetIntrinsic(I, Intrinsic);
5845     return;
5846   case Intrinsic::vscale: {
5847     match(&I, m_VScale(DAG.getDataLayout()));
5848     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5849     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5850     return;
5851   }
5852   case Intrinsic::vastart:  visitVAStart(I); return;
5853   case Intrinsic::vaend:    visitVAEnd(I); return;
5854   case Intrinsic::vacopy:   visitVACopy(I); return;
5855   case Intrinsic::returnaddress:
5856     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5857                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5858                              getValue(I.getArgOperand(0))));
5859     return;
5860   case Intrinsic::addressofreturnaddress:
5861     setValue(&I,
5862              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5863                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5864     return;
5865   case Intrinsic::sponentry:
5866     setValue(&I,
5867              DAG.getNode(ISD::SPONENTRY, sdl,
5868                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5869     return;
5870   case Intrinsic::frameaddress:
5871     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5872                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5873                              getValue(I.getArgOperand(0))));
5874     return;
5875   case Intrinsic::read_volatile_register:
5876   case Intrinsic::read_register: {
5877     Value *Reg = I.getArgOperand(0);
5878     SDValue Chain = getRoot();
5879     SDValue RegName =
5880         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5881     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5882     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5883       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5884     setValue(&I, Res);
5885     DAG.setRoot(Res.getValue(1));
5886     return;
5887   }
5888   case Intrinsic::write_register: {
5889     Value *Reg = I.getArgOperand(0);
5890     Value *RegValue = I.getArgOperand(1);
5891     SDValue Chain = getRoot();
5892     SDValue RegName =
5893         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5894     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5895                             RegName, getValue(RegValue)));
5896     return;
5897   }
5898   case Intrinsic::memcpy: {
5899     const auto &MCI = cast<MemCpyInst>(I);
5900     SDValue Op1 = getValue(I.getArgOperand(0));
5901     SDValue Op2 = getValue(I.getArgOperand(1));
5902     SDValue Op3 = getValue(I.getArgOperand(2));
5903     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5904     Align DstAlign = MCI.getDestAlign().valueOrOne();
5905     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5906     Align Alignment = std::min(DstAlign, SrcAlign);
5907     bool isVol = MCI.isVolatile();
5908     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5909     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5910     // node.
5911     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5912     SDValue MC = DAG.getMemcpy(
5913         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5914         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5915         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5916     updateDAGForMaybeTailCall(MC);
5917     return;
5918   }
5919   case Intrinsic::memcpy_inline: {
5920     const auto &MCI = cast<MemCpyInlineInst>(I);
5921     SDValue Dst = getValue(I.getArgOperand(0));
5922     SDValue Src = getValue(I.getArgOperand(1));
5923     SDValue Size = getValue(I.getArgOperand(2));
5924     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5925     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5926     Align DstAlign = MCI.getDestAlign().valueOrOne();
5927     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5928     Align Alignment = std::min(DstAlign, SrcAlign);
5929     bool isVol = MCI.isVolatile();
5930     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5931     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5932     // node.
5933     SDValue MC = DAG.getMemcpy(
5934         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5935         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5936         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5937     updateDAGForMaybeTailCall(MC);
5938     return;
5939   }
5940   case Intrinsic::memset: {
5941     const auto &MSI = cast<MemSetInst>(I);
5942     SDValue Op1 = getValue(I.getArgOperand(0));
5943     SDValue Op2 = getValue(I.getArgOperand(1));
5944     SDValue Op3 = getValue(I.getArgOperand(2));
5945     // @llvm.memset defines 0 and 1 to both mean no alignment.
5946     Align Alignment = MSI.getDestAlign().valueOrOne();
5947     bool isVol = MSI.isVolatile();
5948     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5949     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5950     SDValue MS = DAG.getMemset(
5951         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5952         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5953     updateDAGForMaybeTailCall(MS);
5954     return;
5955   }
5956   case Intrinsic::memset_inline: {
5957     const auto &MSII = cast<MemSetInlineInst>(I);
5958     SDValue Dst = getValue(I.getArgOperand(0));
5959     SDValue Value = getValue(I.getArgOperand(1));
5960     SDValue Size = getValue(I.getArgOperand(2));
5961     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5962     // @llvm.memset defines 0 and 1 to both mean no alignment.
5963     Align DstAlign = MSII.getDestAlign().valueOrOne();
5964     bool isVol = MSII.isVolatile();
5965     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5966     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5967     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5968                                /* AlwaysInline */ true, isTC,
5969                                MachinePointerInfo(I.getArgOperand(0)),
5970                                I.getAAMetadata());
5971     updateDAGForMaybeTailCall(MC);
5972     return;
5973   }
5974   case Intrinsic::memmove: {
5975     const auto &MMI = cast<MemMoveInst>(I);
5976     SDValue Op1 = getValue(I.getArgOperand(0));
5977     SDValue Op2 = getValue(I.getArgOperand(1));
5978     SDValue Op3 = getValue(I.getArgOperand(2));
5979     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5980     Align DstAlign = MMI.getDestAlign().valueOrOne();
5981     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5982     Align Alignment = std::min(DstAlign, SrcAlign);
5983     bool isVol = MMI.isVolatile();
5984     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5985     // FIXME: Support passing different dest/src alignments to the memmove DAG
5986     // node.
5987     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5988     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5989                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5990                                 MachinePointerInfo(I.getArgOperand(1)),
5991                                 I.getAAMetadata(), AA);
5992     updateDAGForMaybeTailCall(MM);
5993     return;
5994   }
5995   case Intrinsic::memcpy_element_unordered_atomic: {
5996     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5997     SDValue Dst = getValue(MI.getRawDest());
5998     SDValue Src = getValue(MI.getRawSource());
5999     SDValue Length = getValue(MI.getLength());
6000 
6001     Type *LengthTy = MI.getLength()->getType();
6002     unsigned ElemSz = MI.getElementSizeInBytes();
6003     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6004     SDValue MC =
6005         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6006                             isTC, MachinePointerInfo(MI.getRawDest()),
6007                             MachinePointerInfo(MI.getRawSource()));
6008     updateDAGForMaybeTailCall(MC);
6009     return;
6010   }
6011   case Intrinsic::memmove_element_unordered_atomic: {
6012     auto &MI = cast<AtomicMemMoveInst>(I);
6013     SDValue Dst = getValue(MI.getRawDest());
6014     SDValue Src = getValue(MI.getRawSource());
6015     SDValue Length = getValue(MI.getLength());
6016 
6017     Type *LengthTy = MI.getLength()->getType();
6018     unsigned ElemSz = MI.getElementSizeInBytes();
6019     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6020     SDValue MC =
6021         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6022                              isTC, MachinePointerInfo(MI.getRawDest()),
6023                              MachinePointerInfo(MI.getRawSource()));
6024     updateDAGForMaybeTailCall(MC);
6025     return;
6026   }
6027   case Intrinsic::memset_element_unordered_atomic: {
6028     auto &MI = cast<AtomicMemSetInst>(I);
6029     SDValue Dst = getValue(MI.getRawDest());
6030     SDValue Val = getValue(MI.getValue());
6031     SDValue Length = getValue(MI.getLength());
6032 
6033     Type *LengthTy = MI.getLength()->getType();
6034     unsigned ElemSz = MI.getElementSizeInBytes();
6035     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6036     SDValue MC =
6037         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6038                             isTC, MachinePointerInfo(MI.getRawDest()));
6039     updateDAGForMaybeTailCall(MC);
6040     return;
6041   }
6042   case Intrinsic::call_preallocated_setup: {
6043     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6044     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6045     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6046                               getRoot(), SrcValue);
6047     setValue(&I, Res);
6048     DAG.setRoot(Res);
6049     return;
6050   }
6051   case Intrinsic::call_preallocated_arg: {
6052     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6053     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6054     SDValue Ops[3];
6055     Ops[0] = getRoot();
6056     Ops[1] = SrcValue;
6057     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6058                                    MVT::i32); // arg index
6059     SDValue Res = DAG.getNode(
6060         ISD::PREALLOCATED_ARG, sdl,
6061         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6062     setValue(&I, Res);
6063     DAG.setRoot(Res.getValue(1));
6064     return;
6065   }
6066   case Intrinsic::dbg_addr:
6067   case Intrinsic::dbg_declare: {
6068     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6069     // they are non-variadic.
6070     const auto &DI = cast<DbgVariableIntrinsic>(I);
6071     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6072     DILocalVariable *Variable = DI.getVariable();
6073     DIExpression *Expression = DI.getExpression();
6074     dropDanglingDebugInfo(Variable, Expression);
6075     assert(Variable && "Missing variable");
6076     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6077                       << "\n");
6078     // Check if address has undef value.
6079     const Value *Address = DI.getVariableLocationOp(0);
6080     if (!Address || isa<UndefValue>(Address) ||
6081         (Address->use_empty() && !isa<Argument>(Address))) {
6082       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6083                         << " (bad/undef/unused-arg address)\n");
6084       return;
6085     }
6086 
6087     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6088 
6089     // Check if this variable can be described by a frame index, typically
6090     // either as a static alloca or a byval parameter.
6091     int FI = std::numeric_limits<int>::max();
6092     if (const auto *AI =
6093             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6094       if (AI->isStaticAlloca()) {
6095         auto I = FuncInfo.StaticAllocaMap.find(AI);
6096         if (I != FuncInfo.StaticAllocaMap.end())
6097           FI = I->second;
6098       }
6099     } else if (const auto *Arg = dyn_cast<Argument>(
6100                    Address->stripInBoundsConstantOffsets())) {
6101       FI = FuncInfo.getArgumentFrameIndex(Arg);
6102     }
6103 
6104     // llvm.dbg.addr is control dependent and always generates indirect
6105     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6106     // the MachineFunction variable table.
6107     if (FI != std::numeric_limits<int>::max()) {
6108       if (Intrinsic == Intrinsic::dbg_addr) {
6109         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6110             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6111             dl, SDNodeOrder);
6112         DAG.AddDbgValue(SDV, isParameter);
6113       } else {
6114         LLVM_DEBUG(dbgs() << "Skipping " << DI
6115                           << " (variable info stashed in MF side table)\n");
6116       }
6117       return;
6118     }
6119 
6120     SDValue &N = NodeMap[Address];
6121     if (!N.getNode() && isa<Argument>(Address))
6122       // Check unused arguments map.
6123       N = UnusedArgNodeMap[Address];
6124     SDDbgValue *SDV;
6125     if (N.getNode()) {
6126       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6127         Address = BCI->getOperand(0);
6128       // Parameters are handled specially.
6129       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6130       if (isParameter && FINode) {
6131         // Byval parameter. We have a frame index at this point.
6132         SDV =
6133             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6134                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6135       } else if (isa<Argument>(Address)) {
6136         // Address is an argument, so try to emit its dbg value using
6137         // virtual register info from the FuncInfo.ValueMap.
6138         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6139                                  FuncArgumentDbgValueKind::Declare, N);
6140         return;
6141       } else {
6142         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6143                               true, dl, SDNodeOrder);
6144       }
6145       DAG.AddDbgValue(SDV, isParameter);
6146     } else {
6147       // If Address is an argument then try to emit its dbg value using
6148       // virtual register info from the FuncInfo.ValueMap.
6149       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6150                                     FuncArgumentDbgValueKind::Declare, N)) {
6151         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6152                           << " (could not emit func-arg dbg_value)\n");
6153       }
6154     }
6155     return;
6156   }
6157   case Intrinsic::dbg_label: {
6158     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6159     DILabel *Label = DI.getLabel();
6160     assert(Label && "Missing label");
6161 
6162     SDDbgLabel *SDV;
6163     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6164     DAG.AddDbgLabel(SDV);
6165     return;
6166   }
6167   case Intrinsic::dbg_value: {
6168     const DbgValueInst &DI = cast<DbgValueInst>(I);
6169     assert(DI.getVariable() && "Missing variable");
6170 
6171     DILocalVariable *Variable = DI.getVariable();
6172     DIExpression *Expression = DI.getExpression();
6173     dropDanglingDebugInfo(Variable, Expression);
6174     SmallVector<Value *, 4> Values(DI.getValues());
6175     if (Values.empty())
6176       return;
6177 
6178     if (llvm::is_contained(Values, nullptr))
6179       return;
6180 
6181     bool IsVariadic = DI.hasArgList();
6182     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6183                           SDNodeOrder, IsVariadic))
6184       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6185     return;
6186   }
6187 
6188   case Intrinsic::eh_typeid_for: {
6189     // Find the type id for the given typeinfo.
6190     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6191     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6192     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6193     setValue(&I, Res);
6194     return;
6195   }
6196 
6197   case Intrinsic::eh_return_i32:
6198   case Intrinsic::eh_return_i64:
6199     DAG.getMachineFunction().setCallsEHReturn(true);
6200     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6201                             MVT::Other,
6202                             getControlRoot(),
6203                             getValue(I.getArgOperand(0)),
6204                             getValue(I.getArgOperand(1))));
6205     return;
6206   case Intrinsic::eh_unwind_init:
6207     DAG.getMachineFunction().setCallsUnwindInit(true);
6208     return;
6209   case Intrinsic::eh_dwarf_cfa:
6210     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6211                              TLI.getPointerTy(DAG.getDataLayout()),
6212                              getValue(I.getArgOperand(0))));
6213     return;
6214   case Intrinsic::eh_sjlj_callsite: {
6215     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6216     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6217     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6218 
6219     MMI.setCurrentCallSite(CI->getZExtValue());
6220     return;
6221   }
6222   case Intrinsic::eh_sjlj_functioncontext: {
6223     // Get and store the index of the function context.
6224     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6225     AllocaInst *FnCtx =
6226       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6227     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6228     MFI.setFunctionContextIndex(FI);
6229     return;
6230   }
6231   case Intrinsic::eh_sjlj_setjmp: {
6232     SDValue Ops[2];
6233     Ops[0] = getRoot();
6234     Ops[1] = getValue(I.getArgOperand(0));
6235     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6236                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6237     setValue(&I, Op.getValue(0));
6238     DAG.setRoot(Op.getValue(1));
6239     return;
6240   }
6241   case Intrinsic::eh_sjlj_longjmp:
6242     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6243                             getRoot(), getValue(I.getArgOperand(0))));
6244     return;
6245   case Intrinsic::eh_sjlj_setup_dispatch:
6246     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6247                             getRoot()));
6248     return;
6249   case Intrinsic::masked_gather:
6250     visitMaskedGather(I);
6251     return;
6252   case Intrinsic::masked_load:
6253     visitMaskedLoad(I);
6254     return;
6255   case Intrinsic::masked_scatter:
6256     visitMaskedScatter(I);
6257     return;
6258   case Intrinsic::masked_store:
6259     visitMaskedStore(I);
6260     return;
6261   case Intrinsic::masked_expandload:
6262     visitMaskedLoad(I, true /* IsExpanding */);
6263     return;
6264   case Intrinsic::masked_compressstore:
6265     visitMaskedStore(I, true /* IsCompressing */);
6266     return;
6267   case Intrinsic::powi:
6268     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6269                             getValue(I.getArgOperand(1)), DAG));
6270     return;
6271   case Intrinsic::log:
6272     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6273     return;
6274   case Intrinsic::log2:
6275     setValue(&I,
6276              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6277     return;
6278   case Intrinsic::log10:
6279     setValue(&I,
6280              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6281     return;
6282   case Intrinsic::exp:
6283     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6284     return;
6285   case Intrinsic::exp2:
6286     setValue(&I,
6287              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6288     return;
6289   case Intrinsic::pow:
6290     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6291                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6292     return;
6293   case Intrinsic::sqrt:
6294   case Intrinsic::fabs:
6295   case Intrinsic::sin:
6296   case Intrinsic::cos:
6297   case Intrinsic::floor:
6298   case Intrinsic::ceil:
6299   case Intrinsic::trunc:
6300   case Intrinsic::rint:
6301   case Intrinsic::nearbyint:
6302   case Intrinsic::round:
6303   case Intrinsic::roundeven:
6304   case Intrinsic::canonicalize: {
6305     unsigned Opcode;
6306     switch (Intrinsic) {
6307     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6308     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6309     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6310     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6311     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6312     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6313     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6314     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6315     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6316     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6317     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6318     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6319     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6320     }
6321 
6322     setValue(&I, DAG.getNode(Opcode, sdl,
6323                              getValue(I.getArgOperand(0)).getValueType(),
6324                              getValue(I.getArgOperand(0)), Flags));
6325     return;
6326   }
6327   case Intrinsic::lround:
6328   case Intrinsic::llround:
6329   case Intrinsic::lrint:
6330   case Intrinsic::llrint: {
6331     unsigned Opcode;
6332     switch (Intrinsic) {
6333     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6334     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6335     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6336     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6337     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6338     }
6339 
6340     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6341     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6342                              getValue(I.getArgOperand(0))));
6343     return;
6344   }
6345   case Intrinsic::minnum:
6346     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6347                              getValue(I.getArgOperand(0)).getValueType(),
6348                              getValue(I.getArgOperand(0)),
6349                              getValue(I.getArgOperand(1)), Flags));
6350     return;
6351   case Intrinsic::maxnum:
6352     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6353                              getValue(I.getArgOperand(0)).getValueType(),
6354                              getValue(I.getArgOperand(0)),
6355                              getValue(I.getArgOperand(1)), Flags));
6356     return;
6357   case Intrinsic::minimum:
6358     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6359                              getValue(I.getArgOperand(0)).getValueType(),
6360                              getValue(I.getArgOperand(0)),
6361                              getValue(I.getArgOperand(1)), Flags));
6362     return;
6363   case Intrinsic::maximum:
6364     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6365                              getValue(I.getArgOperand(0)).getValueType(),
6366                              getValue(I.getArgOperand(0)),
6367                              getValue(I.getArgOperand(1)), Flags));
6368     return;
6369   case Intrinsic::copysign:
6370     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6371                              getValue(I.getArgOperand(0)).getValueType(),
6372                              getValue(I.getArgOperand(0)),
6373                              getValue(I.getArgOperand(1)), Flags));
6374     return;
6375   case Intrinsic::arithmetic_fence: {
6376     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6377                              getValue(I.getArgOperand(0)).getValueType(),
6378                              getValue(I.getArgOperand(0)), Flags));
6379     return;
6380   }
6381   case Intrinsic::fma:
6382     setValue(&I, DAG.getNode(
6383                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6384                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6385                      getValue(I.getArgOperand(2)), Flags));
6386     return;
6387 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6388   case Intrinsic::INTRINSIC:
6389 #include "llvm/IR/ConstrainedOps.def"
6390     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6391     return;
6392 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6393 #include "llvm/IR/VPIntrinsics.def"
6394     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6395     return;
6396   case Intrinsic::fptrunc_round: {
6397     // Get the last argument, the metadata and convert it to an integer in the
6398     // call
6399     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6400     Optional<RoundingMode> RoundMode =
6401         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6402 
6403     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6404 
6405     // Propagate fast-math-flags from IR to node(s).
6406     SDNodeFlags Flags;
6407     Flags.copyFMF(*cast<FPMathOperator>(&I));
6408     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6409 
6410     SDValue Result;
6411     Result = DAG.getNode(
6412         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6413         DAG.getTargetConstant((int)*RoundMode, sdl,
6414                               TLI.getPointerTy(DAG.getDataLayout())));
6415     setValue(&I, Result);
6416 
6417     return;
6418   }
6419   case Intrinsic::fmuladd: {
6420     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6421     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6422         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6423       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6424                                getValue(I.getArgOperand(0)).getValueType(),
6425                                getValue(I.getArgOperand(0)),
6426                                getValue(I.getArgOperand(1)),
6427                                getValue(I.getArgOperand(2)), Flags));
6428     } else {
6429       // TODO: Intrinsic calls should have fast-math-flags.
6430       SDValue Mul = DAG.getNode(
6431           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6432           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6433       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6434                                 getValue(I.getArgOperand(0)).getValueType(),
6435                                 Mul, getValue(I.getArgOperand(2)), Flags);
6436       setValue(&I, Add);
6437     }
6438     return;
6439   }
6440   case Intrinsic::convert_to_fp16:
6441     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6442                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6443                                          getValue(I.getArgOperand(0)),
6444                                          DAG.getTargetConstant(0, sdl,
6445                                                                MVT::i32))));
6446     return;
6447   case Intrinsic::convert_from_fp16:
6448     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6449                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6450                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6451                                          getValue(I.getArgOperand(0)))));
6452     return;
6453   case Intrinsic::fptosi_sat: {
6454     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6455     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6456                              getValue(I.getArgOperand(0)),
6457                              DAG.getValueType(VT.getScalarType())));
6458     return;
6459   }
6460   case Intrinsic::fptoui_sat: {
6461     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6462     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6463                              getValue(I.getArgOperand(0)),
6464                              DAG.getValueType(VT.getScalarType())));
6465     return;
6466   }
6467   case Intrinsic::set_rounding:
6468     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6469                       {getRoot(), getValue(I.getArgOperand(0))});
6470     setValue(&I, Res);
6471     DAG.setRoot(Res.getValue(0));
6472     return;
6473   case Intrinsic::is_fpclass: {
6474     const DataLayout DLayout = DAG.getDataLayout();
6475     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6476     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6477     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6478     MachineFunction &MF = DAG.getMachineFunction();
6479     const Function &F = MF.getFunction();
6480     SDValue Op = getValue(I.getArgOperand(0));
6481     SDNodeFlags Flags;
6482     Flags.setNoFPExcept(
6483         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6484     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6485     // expansion can use illegal types. Making expansion early allows
6486     // legalizing these types prior to selection.
6487     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6488       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6489       setValue(&I, Result);
6490       return;
6491     }
6492 
6493     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6494     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6495     setValue(&I, V);
6496     return;
6497   }
6498   case Intrinsic::pcmarker: {
6499     SDValue Tmp = getValue(I.getArgOperand(0));
6500     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6501     return;
6502   }
6503   case Intrinsic::readcyclecounter: {
6504     SDValue Op = getRoot();
6505     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6506                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6507     setValue(&I, Res);
6508     DAG.setRoot(Res.getValue(1));
6509     return;
6510   }
6511   case Intrinsic::bitreverse:
6512     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6513                              getValue(I.getArgOperand(0)).getValueType(),
6514                              getValue(I.getArgOperand(0))));
6515     return;
6516   case Intrinsic::bswap:
6517     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6518                              getValue(I.getArgOperand(0)).getValueType(),
6519                              getValue(I.getArgOperand(0))));
6520     return;
6521   case Intrinsic::cttz: {
6522     SDValue Arg = getValue(I.getArgOperand(0));
6523     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6524     EVT Ty = Arg.getValueType();
6525     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6526                              sdl, Ty, Arg));
6527     return;
6528   }
6529   case Intrinsic::ctlz: {
6530     SDValue Arg = getValue(I.getArgOperand(0));
6531     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6532     EVT Ty = Arg.getValueType();
6533     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6534                              sdl, Ty, Arg));
6535     return;
6536   }
6537   case Intrinsic::ctpop: {
6538     SDValue Arg = getValue(I.getArgOperand(0));
6539     EVT Ty = Arg.getValueType();
6540     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6541     return;
6542   }
6543   case Intrinsic::fshl:
6544   case Intrinsic::fshr: {
6545     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6546     SDValue X = getValue(I.getArgOperand(0));
6547     SDValue Y = getValue(I.getArgOperand(1));
6548     SDValue Z = getValue(I.getArgOperand(2));
6549     EVT VT = X.getValueType();
6550 
6551     if (X == Y) {
6552       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6553       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6554     } else {
6555       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6556       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6557     }
6558     return;
6559   }
6560   case Intrinsic::sadd_sat: {
6561     SDValue Op1 = getValue(I.getArgOperand(0));
6562     SDValue Op2 = getValue(I.getArgOperand(1));
6563     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6564     return;
6565   }
6566   case Intrinsic::uadd_sat: {
6567     SDValue Op1 = getValue(I.getArgOperand(0));
6568     SDValue Op2 = getValue(I.getArgOperand(1));
6569     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6570     return;
6571   }
6572   case Intrinsic::ssub_sat: {
6573     SDValue Op1 = getValue(I.getArgOperand(0));
6574     SDValue Op2 = getValue(I.getArgOperand(1));
6575     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6576     return;
6577   }
6578   case Intrinsic::usub_sat: {
6579     SDValue Op1 = getValue(I.getArgOperand(0));
6580     SDValue Op2 = getValue(I.getArgOperand(1));
6581     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6582     return;
6583   }
6584   case Intrinsic::sshl_sat: {
6585     SDValue Op1 = getValue(I.getArgOperand(0));
6586     SDValue Op2 = getValue(I.getArgOperand(1));
6587     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6588     return;
6589   }
6590   case Intrinsic::ushl_sat: {
6591     SDValue Op1 = getValue(I.getArgOperand(0));
6592     SDValue Op2 = getValue(I.getArgOperand(1));
6593     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6594     return;
6595   }
6596   case Intrinsic::smul_fix:
6597   case Intrinsic::umul_fix:
6598   case Intrinsic::smul_fix_sat:
6599   case Intrinsic::umul_fix_sat: {
6600     SDValue Op1 = getValue(I.getArgOperand(0));
6601     SDValue Op2 = getValue(I.getArgOperand(1));
6602     SDValue Op3 = getValue(I.getArgOperand(2));
6603     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6604                              Op1.getValueType(), Op1, Op2, Op3));
6605     return;
6606   }
6607   case Intrinsic::sdiv_fix:
6608   case Intrinsic::udiv_fix:
6609   case Intrinsic::sdiv_fix_sat:
6610   case Intrinsic::udiv_fix_sat: {
6611     SDValue Op1 = getValue(I.getArgOperand(0));
6612     SDValue Op2 = getValue(I.getArgOperand(1));
6613     SDValue Op3 = getValue(I.getArgOperand(2));
6614     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6615                               Op1, Op2, Op3, DAG, TLI));
6616     return;
6617   }
6618   case Intrinsic::smax: {
6619     SDValue Op1 = getValue(I.getArgOperand(0));
6620     SDValue Op2 = getValue(I.getArgOperand(1));
6621     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6622     return;
6623   }
6624   case Intrinsic::smin: {
6625     SDValue Op1 = getValue(I.getArgOperand(0));
6626     SDValue Op2 = getValue(I.getArgOperand(1));
6627     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6628     return;
6629   }
6630   case Intrinsic::umax: {
6631     SDValue Op1 = getValue(I.getArgOperand(0));
6632     SDValue Op2 = getValue(I.getArgOperand(1));
6633     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6634     return;
6635   }
6636   case Intrinsic::umin: {
6637     SDValue Op1 = getValue(I.getArgOperand(0));
6638     SDValue Op2 = getValue(I.getArgOperand(1));
6639     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6640     return;
6641   }
6642   case Intrinsic::abs: {
6643     // TODO: Preserve "int min is poison" arg in SDAG?
6644     SDValue Op1 = getValue(I.getArgOperand(0));
6645     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6646     return;
6647   }
6648   case Intrinsic::stacksave: {
6649     SDValue Op = getRoot();
6650     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6651     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6652     setValue(&I, Res);
6653     DAG.setRoot(Res.getValue(1));
6654     return;
6655   }
6656   case Intrinsic::stackrestore:
6657     Res = getValue(I.getArgOperand(0));
6658     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6659     return;
6660   case Intrinsic::get_dynamic_area_offset: {
6661     SDValue Op = getRoot();
6662     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6663     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6664     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6665     // target.
6666     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6667       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6668                          " intrinsic!");
6669     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6670                       Op);
6671     DAG.setRoot(Op);
6672     setValue(&I, Res);
6673     return;
6674   }
6675   case Intrinsic::stackguard: {
6676     MachineFunction &MF = DAG.getMachineFunction();
6677     const Module &M = *MF.getFunction().getParent();
6678     SDValue Chain = getRoot();
6679     if (TLI.useLoadStackGuardNode()) {
6680       Res = getLoadStackGuard(DAG, sdl, Chain);
6681     } else {
6682       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6683       const Value *Global = TLI.getSDagStackGuard(M);
6684       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6685       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6686                         MachinePointerInfo(Global, 0), Align,
6687                         MachineMemOperand::MOVolatile);
6688     }
6689     if (TLI.useStackGuardXorFP())
6690       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6691     DAG.setRoot(Chain);
6692     setValue(&I, Res);
6693     return;
6694   }
6695   case Intrinsic::stackprotector: {
6696     // Emit code into the DAG to store the stack guard onto the stack.
6697     MachineFunction &MF = DAG.getMachineFunction();
6698     MachineFrameInfo &MFI = MF.getFrameInfo();
6699     SDValue Src, Chain = getRoot();
6700 
6701     if (TLI.useLoadStackGuardNode())
6702       Src = getLoadStackGuard(DAG, sdl, Chain);
6703     else
6704       Src = getValue(I.getArgOperand(0));   // The guard's value.
6705 
6706     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6707 
6708     int FI = FuncInfo.StaticAllocaMap[Slot];
6709     MFI.setStackProtectorIndex(FI);
6710     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6711 
6712     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6713 
6714     // Store the stack protector onto the stack.
6715     Res = DAG.getStore(
6716         Chain, sdl, Src, FIN,
6717         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6718         MaybeAlign(), MachineMemOperand::MOVolatile);
6719     setValue(&I, Res);
6720     DAG.setRoot(Res);
6721     return;
6722   }
6723   case Intrinsic::objectsize:
6724     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6725 
6726   case Intrinsic::is_constant:
6727     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6728 
6729   case Intrinsic::annotation:
6730   case Intrinsic::ptr_annotation:
6731   case Intrinsic::launder_invariant_group:
6732   case Intrinsic::strip_invariant_group:
6733     // Drop the intrinsic, but forward the value
6734     setValue(&I, getValue(I.getOperand(0)));
6735     return;
6736 
6737   case Intrinsic::assume:
6738   case Intrinsic::experimental_noalias_scope_decl:
6739   case Intrinsic::var_annotation:
6740   case Intrinsic::sideeffect:
6741     // Discard annotate attributes, noalias scope declarations, assumptions, and
6742     // artificial side-effects.
6743     return;
6744 
6745   case Intrinsic::codeview_annotation: {
6746     // Emit a label associated with this metadata.
6747     MachineFunction &MF = DAG.getMachineFunction();
6748     MCSymbol *Label =
6749         MF.getMMI().getContext().createTempSymbol("annotation", true);
6750     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6751     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6752     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6753     DAG.setRoot(Res);
6754     return;
6755   }
6756 
6757   case Intrinsic::init_trampoline: {
6758     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6759 
6760     SDValue Ops[6];
6761     Ops[0] = getRoot();
6762     Ops[1] = getValue(I.getArgOperand(0));
6763     Ops[2] = getValue(I.getArgOperand(1));
6764     Ops[3] = getValue(I.getArgOperand(2));
6765     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6766     Ops[5] = DAG.getSrcValue(F);
6767 
6768     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6769 
6770     DAG.setRoot(Res);
6771     return;
6772   }
6773   case Intrinsic::adjust_trampoline:
6774     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6775                              TLI.getPointerTy(DAG.getDataLayout()),
6776                              getValue(I.getArgOperand(0))));
6777     return;
6778   case Intrinsic::gcroot: {
6779     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6780            "only valid in functions with gc specified, enforced by Verifier");
6781     assert(GFI && "implied by previous");
6782     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6783     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6784 
6785     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6786     GFI->addStackRoot(FI->getIndex(), TypeMap);
6787     return;
6788   }
6789   case Intrinsic::gcread:
6790   case Intrinsic::gcwrite:
6791     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6792   case Intrinsic::flt_rounds:
6793     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6794     setValue(&I, Res);
6795     DAG.setRoot(Res.getValue(1));
6796     return;
6797 
6798   case Intrinsic::expect:
6799     // Just replace __builtin_expect(exp, c) with EXP.
6800     setValue(&I, getValue(I.getArgOperand(0)));
6801     return;
6802 
6803   case Intrinsic::ubsantrap:
6804   case Intrinsic::debugtrap:
6805   case Intrinsic::trap: {
6806     StringRef TrapFuncName =
6807         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6808     if (TrapFuncName.empty()) {
6809       switch (Intrinsic) {
6810       case Intrinsic::trap:
6811         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6812         break;
6813       case Intrinsic::debugtrap:
6814         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6815         break;
6816       case Intrinsic::ubsantrap:
6817         DAG.setRoot(DAG.getNode(
6818             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6819             DAG.getTargetConstant(
6820                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6821                 MVT::i32)));
6822         break;
6823       default: llvm_unreachable("unknown trap intrinsic");
6824       }
6825       return;
6826     }
6827     TargetLowering::ArgListTy Args;
6828     if (Intrinsic == Intrinsic::ubsantrap) {
6829       Args.push_back(TargetLoweringBase::ArgListEntry());
6830       Args[0].Val = I.getArgOperand(0);
6831       Args[0].Node = getValue(Args[0].Val);
6832       Args[0].Ty = Args[0].Val->getType();
6833     }
6834 
6835     TargetLowering::CallLoweringInfo CLI(DAG);
6836     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6837         CallingConv::C, I.getType(),
6838         DAG.getExternalSymbol(TrapFuncName.data(),
6839                               TLI.getPointerTy(DAG.getDataLayout())),
6840         std::move(Args));
6841 
6842     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6843     DAG.setRoot(Result.second);
6844     return;
6845   }
6846 
6847   case Intrinsic::uadd_with_overflow:
6848   case Intrinsic::sadd_with_overflow:
6849   case Intrinsic::usub_with_overflow:
6850   case Intrinsic::ssub_with_overflow:
6851   case Intrinsic::umul_with_overflow:
6852   case Intrinsic::smul_with_overflow: {
6853     ISD::NodeType Op;
6854     switch (Intrinsic) {
6855     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6856     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6857     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6858     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6859     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6860     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6861     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6862     }
6863     SDValue Op1 = getValue(I.getArgOperand(0));
6864     SDValue Op2 = getValue(I.getArgOperand(1));
6865 
6866     EVT ResultVT = Op1.getValueType();
6867     EVT OverflowVT = MVT::i1;
6868     if (ResultVT.isVector())
6869       OverflowVT = EVT::getVectorVT(
6870           *Context, OverflowVT, ResultVT.getVectorElementCount());
6871 
6872     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6873     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6874     return;
6875   }
6876   case Intrinsic::prefetch: {
6877     SDValue Ops[5];
6878     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6879     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6880     Ops[0] = DAG.getRoot();
6881     Ops[1] = getValue(I.getArgOperand(0));
6882     Ops[2] = getValue(I.getArgOperand(1));
6883     Ops[3] = getValue(I.getArgOperand(2));
6884     Ops[4] = getValue(I.getArgOperand(3));
6885     SDValue Result = DAG.getMemIntrinsicNode(
6886         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6887         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6888         /* align */ None, Flags);
6889 
6890     // Chain the prefetch in parallell with any pending loads, to stay out of
6891     // the way of later optimizations.
6892     PendingLoads.push_back(Result);
6893     Result = getRoot();
6894     DAG.setRoot(Result);
6895     return;
6896   }
6897   case Intrinsic::lifetime_start:
6898   case Intrinsic::lifetime_end: {
6899     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6900     // Stack coloring is not enabled in O0, discard region information.
6901     if (TM.getOptLevel() == CodeGenOpt::None)
6902       return;
6903 
6904     const int64_t ObjectSize =
6905         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6906     Value *const ObjectPtr = I.getArgOperand(1);
6907     SmallVector<const Value *, 4> Allocas;
6908     getUnderlyingObjects(ObjectPtr, Allocas);
6909 
6910     for (const Value *Alloca : Allocas) {
6911       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6912 
6913       // Could not find an Alloca.
6914       if (!LifetimeObject)
6915         continue;
6916 
6917       // First check that the Alloca is static, otherwise it won't have a
6918       // valid frame index.
6919       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6920       if (SI == FuncInfo.StaticAllocaMap.end())
6921         return;
6922 
6923       const int FrameIndex = SI->second;
6924       int64_t Offset;
6925       if (GetPointerBaseWithConstantOffset(
6926               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6927         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6928       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6929                                 Offset);
6930       DAG.setRoot(Res);
6931     }
6932     return;
6933   }
6934   case Intrinsic::pseudoprobe: {
6935     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6936     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6937     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6938     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6939     DAG.setRoot(Res);
6940     return;
6941   }
6942   case Intrinsic::invariant_start:
6943     // Discard region information.
6944     setValue(&I,
6945              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6946     return;
6947   case Intrinsic::invariant_end:
6948     // Discard region information.
6949     return;
6950   case Intrinsic::clear_cache:
6951     /// FunctionName may be null.
6952     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6953       lowerCallToExternalSymbol(I, FunctionName);
6954     return;
6955   case Intrinsic::donothing:
6956   case Intrinsic::seh_try_begin:
6957   case Intrinsic::seh_scope_begin:
6958   case Intrinsic::seh_try_end:
6959   case Intrinsic::seh_scope_end:
6960     // ignore
6961     return;
6962   case Intrinsic::experimental_stackmap:
6963     visitStackmap(I);
6964     return;
6965   case Intrinsic::experimental_patchpoint_void:
6966   case Intrinsic::experimental_patchpoint_i64:
6967     visitPatchpoint(I);
6968     return;
6969   case Intrinsic::experimental_gc_statepoint:
6970     LowerStatepoint(cast<GCStatepointInst>(I));
6971     return;
6972   case Intrinsic::experimental_gc_result:
6973     visitGCResult(cast<GCResultInst>(I));
6974     return;
6975   case Intrinsic::experimental_gc_relocate:
6976     visitGCRelocate(cast<GCRelocateInst>(I));
6977     return;
6978   case Intrinsic::instrprof_cover:
6979     llvm_unreachable("instrprof failed to lower a cover");
6980   case Intrinsic::instrprof_increment:
6981     llvm_unreachable("instrprof failed to lower an increment");
6982   case Intrinsic::instrprof_value_profile:
6983     llvm_unreachable("instrprof failed to lower a value profiling call");
6984   case Intrinsic::localescape: {
6985     MachineFunction &MF = DAG.getMachineFunction();
6986     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6987 
6988     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6989     // is the same on all targets.
6990     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6991       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6992       if (isa<ConstantPointerNull>(Arg))
6993         continue; // Skip null pointers. They represent a hole in index space.
6994       AllocaInst *Slot = cast<AllocaInst>(Arg);
6995       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6996              "can only escape static allocas");
6997       int FI = FuncInfo.StaticAllocaMap[Slot];
6998       MCSymbol *FrameAllocSym =
6999           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7000               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7001       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7002               TII->get(TargetOpcode::LOCAL_ESCAPE))
7003           .addSym(FrameAllocSym)
7004           .addFrameIndex(FI);
7005     }
7006 
7007     return;
7008   }
7009 
7010   case Intrinsic::localrecover: {
7011     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7012     MachineFunction &MF = DAG.getMachineFunction();
7013 
7014     // Get the symbol that defines the frame offset.
7015     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7016     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7017     unsigned IdxVal =
7018         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7019     MCSymbol *FrameAllocSym =
7020         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7021             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7022 
7023     Value *FP = I.getArgOperand(1);
7024     SDValue FPVal = getValue(FP);
7025     EVT PtrVT = FPVal.getValueType();
7026 
7027     // Create a MCSymbol for the label to avoid any target lowering
7028     // that would make this PC relative.
7029     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7030     SDValue OffsetVal =
7031         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7032 
7033     // Add the offset to the FP.
7034     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7035     setValue(&I, Add);
7036 
7037     return;
7038   }
7039 
7040   case Intrinsic::eh_exceptionpointer:
7041   case Intrinsic::eh_exceptioncode: {
7042     // Get the exception pointer vreg, copy from it, and resize it to fit.
7043     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7044     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7045     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7046     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7047     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7048     if (Intrinsic == Intrinsic::eh_exceptioncode)
7049       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7050     setValue(&I, N);
7051     return;
7052   }
7053   case Intrinsic::xray_customevent: {
7054     // Here we want to make sure that the intrinsic behaves as if it has a
7055     // specific calling convention, and only for x86_64.
7056     // FIXME: Support other platforms later.
7057     const auto &Triple = DAG.getTarget().getTargetTriple();
7058     if (Triple.getArch() != Triple::x86_64)
7059       return;
7060 
7061     SmallVector<SDValue, 8> Ops;
7062 
7063     // We want to say that we always want the arguments in registers.
7064     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7065     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7066     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7067     SDValue Chain = getRoot();
7068     Ops.push_back(LogEntryVal);
7069     Ops.push_back(StrSizeVal);
7070     Ops.push_back(Chain);
7071 
7072     // We need to enforce the calling convention for the callsite, so that
7073     // argument ordering is enforced correctly, and that register allocation can
7074     // see that some registers may be assumed clobbered and have to preserve
7075     // them across calls to the intrinsic.
7076     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7077                                            sdl, NodeTys, Ops);
7078     SDValue patchableNode = SDValue(MN, 0);
7079     DAG.setRoot(patchableNode);
7080     setValue(&I, patchableNode);
7081     return;
7082   }
7083   case Intrinsic::xray_typedevent: {
7084     // Here we want to make sure that the intrinsic behaves as if it has a
7085     // specific calling convention, and only for x86_64.
7086     // FIXME: Support other platforms later.
7087     const auto &Triple = DAG.getTarget().getTargetTriple();
7088     if (Triple.getArch() != Triple::x86_64)
7089       return;
7090 
7091     SmallVector<SDValue, 8> Ops;
7092 
7093     // We want to say that we always want the arguments in registers.
7094     // It's unclear to me how manipulating the selection DAG here forces callers
7095     // to provide arguments in registers instead of on the stack.
7096     SDValue LogTypeId = getValue(I.getArgOperand(0));
7097     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7098     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7099     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7100     SDValue Chain = getRoot();
7101     Ops.push_back(LogTypeId);
7102     Ops.push_back(LogEntryVal);
7103     Ops.push_back(StrSizeVal);
7104     Ops.push_back(Chain);
7105 
7106     // We need to enforce the calling convention for the callsite, so that
7107     // argument ordering is enforced correctly, and that register allocation can
7108     // see that some registers may be assumed clobbered and have to preserve
7109     // them across calls to the intrinsic.
7110     MachineSDNode *MN = DAG.getMachineNode(
7111         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7112     SDValue patchableNode = SDValue(MN, 0);
7113     DAG.setRoot(patchableNode);
7114     setValue(&I, patchableNode);
7115     return;
7116   }
7117   case Intrinsic::experimental_deoptimize:
7118     LowerDeoptimizeCall(&I);
7119     return;
7120   case Intrinsic::experimental_stepvector:
7121     visitStepVector(I);
7122     return;
7123   case Intrinsic::vector_reduce_fadd:
7124   case Intrinsic::vector_reduce_fmul:
7125   case Intrinsic::vector_reduce_add:
7126   case Intrinsic::vector_reduce_mul:
7127   case Intrinsic::vector_reduce_and:
7128   case Intrinsic::vector_reduce_or:
7129   case Intrinsic::vector_reduce_xor:
7130   case Intrinsic::vector_reduce_smax:
7131   case Intrinsic::vector_reduce_smin:
7132   case Intrinsic::vector_reduce_umax:
7133   case Intrinsic::vector_reduce_umin:
7134   case Intrinsic::vector_reduce_fmax:
7135   case Intrinsic::vector_reduce_fmin:
7136     visitVectorReduce(I, Intrinsic);
7137     return;
7138 
7139   case Intrinsic::icall_branch_funnel: {
7140     SmallVector<SDValue, 16> Ops;
7141     Ops.push_back(getValue(I.getArgOperand(0)));
7142 
7143     int64_t Offset;
7144     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7145         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7146     if (!Base)
7147       report_fatal_error(
7148           "llvm.icall.branch.funnel operand must be a GlobalValue");
7149     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7150 
7151     struct BranchFunnelTarget {
7152       int64_t Offset;
7153       SDValue Target;
7154     };
7155     SmallVector<BranchFunnelTarget, 8> Targets;
7156 
7157     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7158       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7159           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7160       if (ElemBase != Base)
7161         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7162                            "to the same GlobalValue");
7163 
7164       SDValue Val = getValue(I.getArgOperand(Op + 1));
7165       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7166       if (!GA)
7167         report_fatal_error(
7168             "llvm.icall.branch.funnel operand must be a GlobalValue");
7169       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7170                                      GA->getGlobal(), sdl, Val.getValueType(),
7171                                      GA->getOffset())});
7172     }
7173     llvm::sort(Targets,
7174                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7175                  return T1.Offset < T2.Offset;
7176                });
7177 
7178     for (auto &T : Targets) {
7179       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7180       Ops.push_back(T.Target);
7181     }
7182 
7183     Ops.push_back(DAG.getRoot()); // Chain
7184     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7185                                  MVT::Other, Ops),
7186               0);
7187     DAG.setRoot(N);
7188     setValue(&I, N);
7189     HasTailCall = true;
7190     return;
7191   }
7192 
7193   case Intrinsic::wasm_landingpad_index:
7194     // Information this intrinsic contained has been transferred to
7195     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7196     // delete it now.
7197     return;
7198 
7199   case Intrinsic::aarch64_settag:
7200   case Intrinsic::aarch64_settag_zero: {
7201     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7202     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7203     SDValue Val = TSI.EmitTargetCodeForSetTag(
7204         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7205         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7206         ZeroMemory);
7207     DAG.setRoot(Val);
7208     setValue(&I, Val);
7209     return;
7210   }
7211   case Intrinsic::ptrmask: {
7212     SDValue Ptr = getValue(I.getOperand(0));
7213     SDValue Const = getValue(I.getOperand(1));
7214 
7215     EVT PtrVT = Ptr.getValueType();
7216     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7217                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7218     return;
7219   }
7220   case Intrinsic::threadlocal_address: {
7221     setValue(&I, getValue(I.getOperand(0)));
7222     return;
7223   }
7224   case Intrinsic::get_active_lane_mask: {
7225     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7226     SDValue Index = getValue(I.getOperand(0));
7227     EVT ElementVT = Index.getValueType();
7228 
7229     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7230       visitTargetIntrinsic(I, Intrinsic);
7231       return;
7232     }
7233 
7234     SDValue TripCount = getValue(I.getOperand(1));
7235     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7236 
7237     SDValue VectorIndex, VectorTripCount;
7238     if (VecTy.isScalableVector()) {
7239       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7240       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7241     } else {
7242       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7243       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7244     }
7245     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7246     SDValue VectorInduction = DAG.getNode(
7247         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7248     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7249                                  VectorTripCount, ISD::CondCode::SETULT);
7250     setValue(&I, SetCC);
7251     return;
7252   }
7253   case Intrinsic::vector_insert: {
7254     SDValue Vec = getValue(I.getOperand(0));
7255     SDValue SubVec = getValue(I.getOperand(1));
7256     SDValue Index = getValue(I.getOperand(2));
7257 
7258     // The intrinsic's index type is i64, but the SDNode requires an index type
7259     // suitable for the target. Convert the index as required.
7260     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7261     if (Index.getValueType() != VectorIdxTy)
7262       Index = DAG.getVectorIdxConstant(
7263           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7264 
7265     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7266     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7267                              Index));
7268     return;
7269   }
7270   case Intrinsic::vector_extract: {
7271     SDValue Vec = getValue(I.getOperand(0));
7272     SDValue Index = getValue(I.getOperand(1));
7273     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7274 
7275     // The intrinsic's index type is i64, but the SDNode requires an index type
7276     // suitable for the target. Convert the index as required.
7277     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7278     if (Index.getValueType() != VectorIdxTy)
7279       Index = DAG.getVectorIdxConstant(
7280           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7281 
7282     setValue(&I,
7283              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7284     return;
7285   }
7286   case Intrinsic::experimental_vector_reverse:
7287     visitVectorReverse(I);
7288     return;
7289   case Intrinsic::experimental_vector_splice:
7290     visitVectorSplice(I);
7291     return;
7292   }
7293 }
7294 
7295 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7296     const ConstrainedFPIntrinsic &FPI) {
7297   SDLoc sdl = getCurSDLoc();
7298 
7299   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7300   SmallVector<EVT, 4> ValueVTs;
7301   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7302   ValueVTs.push_back(MVT::Other); // Out chain
7303 
7304   // We do not need to serialize constrained FP intrinsics against
7305   // each other or against (nonvolatile) loads, so they can be
7306   // chained like loads.
7307   SDValue Chain = DAG.getRoot();
7308   SmallVector<SDValue, 4> Opers;
7309   Opers.push_back(Chain);
7310   if (FPI.isUnaryOp()) {
7311     Opers.push_back(getValue(FPI.getArgOperand(0)));
7312   } else if (FPI.isTernaryOp()) {
7313     Opers.push_back(getValue(FPI.getArgOperand(0)));
7314     Opers.push_back(getValue(FPI.getArgOperand(1)));
7315     Opers.push_back(getValue(FPI.getArgOperand(2)));
7316   } else {
7317     Opers.push_back(getValue(FPI.getArgOperand(0)));
7318     Opers.push_back(getValue(FPI.getArgOperand(1)));
7319   }
7320 
7321   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7322     assert(Result.getNode()->getNumValues() == 2);
7323 
7324     // Push node to the appropriate list so that future instructions can be
7325     // chained up correctly.
7326     SDValue OutChain = Result.getValue(1);
7327     switch (EB) {
7328     case fp::ExceptionBehavior::ebIgnore:
7329       // The only reason why ebIgnore nodes still need to be chained is that
7330       // they might depend on the current rounding mode, and therefore must
7331       // not be moved across instruction that may change that mode.
7332       [[fallthrough]];
7333     case fp::ExceptionBehavior::ebMayTrap:
7334       // These must not be moved across calls or instructions that may change
7335       // floating-point exception masks.
7336       PendingConstrainedFP.push_back(OutChain);
7337       break;
7338     case fp::ExceptionBehavior::ebStrict:
7339       // These must not be moved across calls or instructions that may change
7340       // floating-point exception masks or read floating-point exception flags.
7341       // In addition, they cannot be optimized out even if unused.
7342       PendingConstrainedFPStrict.push_back(OutChain);
7343       break;
7344     }
7345   };
7346 
7347   SDVTList VTs = DAG.getVTList(ValueVTs);
7348   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7349 
7350   SDNodeFlags Flags;
7351   if (EB == fp::ExceptionBehavior::ebIgnore)
7352     Flags.setNoFPExcept(true);
7353 
7354   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7355     Flags.copyFMF(*FPOp);
7356 
7357   unsigned Opcode;
7358   switch (FPI.getIntrinsicID()) {
7359   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7360 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7361   case Intrinsic::INTRINSIC:                                                   \
7362     Opcode = ISD::STRICT_##DAGN;                                               \
7363     break;
7364 #include "llvm/IR/ConstrainedOps.def"
7365   case Intrinsic::experimental_constrained_fmuladd: {
7366     Opcode = ISD::STRICT_FMA;
7367     // Break fmuladd into fmul and fadd.
7368     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7369         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7370                                         ValueVTs[0])) {
7371       Opers.pop_back();
7372       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7373       pushOutChain(Mul, EB);
7374       Opcode = ISD::STRICT_FADD;
7375       Opers.clear();
7376       Opers.push_back(Mul.getValue(1));
7377       Opers.push_back(Mul.getValue(0));
7378       Opers.push_back(getValue(FPI.getArgOperand(2)));
7379     }
7380     break;
7381   }
7382   }
7383 
7384   // A few strict DAG nodes carry additional operands that are not
7385   // set up by the default code above.
7386   switch (Opcode) {
7387   default: break;
7388   case ISD::STRICT_FP_ROUND:
7389     Opers.push_back(
7390         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7391     break;
7392   case ISD::STRICT_FSETCC:
7393   case ISD::STRICT_FSETCCS: {
7394     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7395     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7396     if (TM.Options.NoNaNsFPMath)
7397       Condition = getFCmpCodeWithoutNaN(Condition);
7398     Opers.push_back(DAG.getCondCode(Condition));
7399     break;
7400   }
7401   }
7402 
7403   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7404   pushOutChain(Result, EB);
7405 
7406   SDValue FPResult = Result.getValue(0);
7407   setValue(&FPI, FPResult);
7408 }
7409 
7410 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7411   Optional<unsigned> ResOPC;
7412   switch (VPIntrin.getIntrinsicID()) {
7413 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7414   case Intrinsic::VPID:                                                        \
7415     ResOPC = ISD::VPSD;                                                        \
7416     break;
7417 #include "llvm/IR/VPIntrinsics.def"
7418   }
7419 
7420   if (!ResOPC)
7421     llvm_unreachable(
7422         "Inconsistency: no SDNode available for this VPIntrinsic!");
7423 
7424   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7425       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7426     if (VPIntrin.getFastMathFlags().allowReassoc())
7427       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7428                                                 : ISD::VP_REDUCE_FMUL;
7429   }
7430 
7431   return *ResOPC;
7432 }
7433 
7434 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT,
7435                                             SmallVector<SDValue, 7> &OpValues,
7436                                             bool IsGather) {
7437   SDLoc DL = getCurSDLoc();
7438   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7439   Value *PtrOperand = VPIntrin.getArgOperand(0);
7440   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7441   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7442   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7443   SDValue LD;
7444   bool AddToChain = true;
7445   if (!IsGather) {
7446     // Do not serialize variable-length loads of constant memory with
7447     // anything.
7448     if (!Alignment)
7449       Alignment = DAG.getEVTAlign(VT);
7450     MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7451     AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7452     SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7453     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7454         MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7455         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7456     LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7457                        MMO, false /*IsExpanding */);
7458   } else {
7459     if (!Alignment)
7460       Alignment = DAG.getEVTAlign(VT.getScalarType());
7461     unsigned AS =
7462         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7463     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7464         MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7465         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7466     SDValue Base, Index, Scale;
7467     ISD::MemIndexType IndexType;
7468     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7469                                       this, VPIntrin.getParent(),
7470                                       VT.getScalarStoreSize());
7471     if (!UniformBase) {
7472       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7473       Index = getValue(PtrOperand);
7474       IndexType = ISD::SIGNED_SCALED;
7475       Scale =
7476           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7477     }
7478     EVT IdxVT = Index.getValueType();
7479     EVT EltTy = IdxVT.getVectorElementType();
7480     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7481       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7482       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7483     }
7484     LD = DAG.getGatherVP(
7485         DAG.getVTList(VT, MVT::Other), VT, DL,
7486         {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7487         IndexType);
7488   }
7489   if (AddToChain)
7490     PendingLoads.push_back(LD.getValue(1));
7491   setValue(&VPIntrin, LD);
7492 }
7493 
7494 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin,
7495                                               SmallVector<SDValue, 7> &OpValues,
7496                                               bool IsScatter) {
7497   SDLoc DL = getCurSDLoc();
7498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7499   Value *PtrOperand = VPIntrin.getArgOperand(1);
7500   EVT VT = OpValues[0].getValueType();
7501   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7502   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7503   SDValue ST;
7504   if (!IsScatter) {
7505     if (!Alignment)
7506       Alignment = DAG.getEVTAlign(VT);
7507     SDValue Ptr = OpValues[1];
7508     SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7509     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7510         MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7511         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7512     ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7513                         OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7514                         /* IsTruncating */ false, /*IsCompressing*/ false);
7515   } else {
7516     if (!Alignment)
7517       Alignment = DAG.getEVTAlign(VT.getScalarType());
7518     unsigned AS =
7519         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7520     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7521         MachinePointerInfo(AS), MachineMemOperand::MOStore,
7522         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7523     SDValue Base, Index, Scale;
7524     ISD::MemIndexType IndexType;
7525     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7526                                       this, VPIntrin.getParent(),
7527                                       VT.getScalarStoreSize());
7528     if (!UniformBase) {
7529       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7530       Index = getValue(PtrOperand);
7531       IndexType = ISD::SIGNED_SCALED;
7532       Scale =
7533           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7534     }
7535     EVT IdxVT = Index.getValueType();
7536     EVT EltTy = IdxVT.getVectorElementType();
7537     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7538       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7539       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7540     }
7541     ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7542                           {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7543                            OpValues[2], OpValues[3]},
7544                           MMO, IndexType);
7545   }
7546   DAG.setRoot(ST);
7547   setValue(&VPIntrin, ST);
7548 }
7549 
7550 void SelectionDAGBuilder::visitVPStridedLoad(
7551     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7552   SDLoc DL = getCurSDLoc();
7553   Value *PtrOperand = VPIntrin.getArgOperand(0);
7554   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7555   if (!Alignment)
7556     Alignment = DAG.getEVTAlign(VT.getScalarType());
7557   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7558   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7559   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7560   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7561   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7562   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7563       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7564       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7565 
7566   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7567                                     OpValues[2], OpValues[3], MMO,
7568                                     false /*IsExpanding*/);
7569 
7570   if (AddToChain)
7571     PendingLoads.push_back(LD.getValue(1));
7572   setValue(&VPIntrin, LD);
7573 }
7574 
7575 void SelectionDAGBuilder::visitVPStridedStore(
7576     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7577   SDLoc DL = getCurSDLoc();
7578   Value *PtrOperand = VPIntrin.getArgOperand(1);
7579   EVT VT = OpValues[0].getValueType();
7580   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7581   if (!Alignment)
7582     Alignment = DAG.getEVTAlign(VT.getScalarType());
7583   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7584   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7585       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7586       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7587 
7588   SDValue ST = DAG.getStridedStoreVP(
7589       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7590       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7591       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7592       /*IsCompressing*/ false);
7593 
7594   DAG.setRoot(ST);
7595   setValue(&VPIntrin, ST);
7596 }
7597 
7598 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7600   SDLoc DL = getCurSDLoc();
7601 
7602   ISD::CondCode Condition;
7603   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7604   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7605   if (IsFP) {
7606     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7607     // flags, but calls that don't return floating-point types can't be
7608     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7609     Condition = getFCmpCondCode(CondCode);
7610     if (TM.Options.NoNaNsFPMath)
7611       Condition = getFCmpCodeWithoutNaN(Condition);
7612   } else {
7613     Condition = getICmpCondCode(CondCode);
7614   }
7615 
7616   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7617   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7618   // #2 is the condition code
7619   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7620   SDValue EVL = getValue(VPIntrin.getOperand(4));
7621   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7622   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7623          "Unexpected target EVL type");
7624   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7625 
7626   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7627                                                         VPIntrin.getType());
7628   setValue(&VPIntrin,
7629            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7630 }
7631 
7632 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7633     const VPIntrinsic &VPIntrin) {
7634   SDLoc DL = getCurSDLoc();
7635   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7636 
7637   auto IID = VPIntrin.getIntrinsicID();
7638 
7639   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7640     return visitVPCmp(*CmpI);
7641 
7642   SmallVector<EVT, 4> ValueVTs;
7643   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7644   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7645   SDVTList VTs = DAG.getVTList(ValueVTs);
7646 
7647   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7648 
7649   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7650   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7651          "Unexpected target EVL type");
7652 
7653   // Request operands.
7654   SmallVector<SDValue, 7> OpValues;
7655   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7656     auto Op = getValue(VPIntrin.getArgOperand(I));
7657     if (I == EVLParamPos)
7658       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7659     OpValues.push_back(Op);
7660   }
7661 
7662   switch (Opcode) {
7663   default: {
7664     SDNodeFlags SDFlags;
7665     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7666       SDFlags.copyFMF(*FPMO);
7667     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7668     setValue(&VPIntrin, Result);
7669     break;
7670   }
7671   case ISD::VP_LOAD:
7672   case ISD::VP_GATHER:
7673     visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues,
7674                       Opcode == ISD::VP_GATHER);
7675     break;
7676   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7677     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7678     break;
7679   case ISD::VP_STORE:
7680   case ISD::VP_SCATTER:
7681     visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER);
7682     break;
7683   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7684     visitVPStridedStore(VPIntrin, OpValues);
7685     break;
7686   }
7687 }
7688 
7689 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7690                                           const BasicBlock *EHPadBB,
7691                                           MCSymbol *&BeginLabel) {
7692   MachineFunction &MF = DAG.getMachineFunction();
7693   MachineModuleInfo &MMI = MF.getMMI();
7694 
7695   // Insert a label before the invoke call to mark the try range.  This can be
7696   // used to detect deletion of the invoke via the MachineModuleInfo.
7697   BeginLabel = MMI.getContext().createTempSymbol();
7698 
7699   // For SjLj, keep track of which landing pads go with which invokes
7700   // so as to maintain the ordering of pads in the LSDA.
7701   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7702   if (CallSiteIndex) {
7703     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7704     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7705 
7706     // Now that the call site is handled, stop tracking it.
7707     MMI.setCurrentCallSite(0);
7708   }
7709 
7710   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7711 }
7712 
7713 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7714                                         const BasicBlock *EHPadBB,
7715                                         MCSymbol *BeginLabel) {
7716   assert(BeginLabel && "BeginLabel should've been set");
7717 
7718   MachineFunction &MF = DAG.getMachineFunction();
7719   MachineModuleInfo &MMI = MF.getMMI();
7720 
7721   // Insert a label at the end of the invoke call to mark the try range.  This
7722   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7723   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7724   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7725 
7726   // Inform MachineModuleInfo of range.
7727   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7728   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7729   // actually use outlined funclets and their LSDA info style.
7730   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7731     assert(II && "II should've been set");
7732     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7733     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7734   } else if (!isScopedEHPersonality(Pers)) {
7735     assert(EHPadBB);
7736     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7737   }
7738 
7739   return Chain;
7740 }
7741 
7742 std::pair<SDValue, SDValue>
7743 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7744                                     const BasicBlock *EHPadBB) {
7745   MCSymbol *BeginLabel = nullptr;
7746 
7747   if (EHPadBB) {
7748     // Both PendingLoads and PendingExports must be flushed here;
7749     // this call might not return.
7750     (void)getRoot();
7751     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7752     CLI.setChain(getRoot());
7753   }
7754 
7755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7756   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7757 
7758   assert((CLI.IsTailCall || Result.second.getNode()) &&
7759          "Non-null chain expected with non-tail call!");
7760   assert((Result.second.getNode() || !Result.first.getNode()) &&
7761          "Null value expected with tail call!");
7762 
7763   if (!Result.second.getNode()) {
7764     // As a special case, a null chain means that a tail call has been emitted
7765     // and the DAG root is already updated.
7766     HasTailCall = true;
7767 
7768     // Since there's no actual continuation from this block, nothing can be
7769     // relying on us setting vregs for them.
7770     PendingExports.clear();
7771   } else {
7772     DAG.setRoot(Result.second);
7773   }
7774 
7775   if (EHPadBB) {
7776     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7777                            BeginLabel));
7778   }
7779 
7780   return Result;
7781 }
7782 
7783 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7784                                       bool isTailCall,
7785                                       bool isMustTailCall,
7786                                       const BasicBlock *EHPadBB) {
7787   auto &DL = DAG.getDataLayout();
7788   FunctionType *FTy = CB.getFunctionType();
7789   Type *RetTy = CB.getType();
7790 
7791   TargetLowering::ArgListTy Args;
7792   Args.reserve(CB.arg_size());
7793 
7794   const Value *SwiftErrorVal = nullptr;
7795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7796 
7797   if (isTailCall) {
7798     // Avoid emitting tail calls in functions with the disable-tail-calls
7799     // attribute.
7800     auto *Caller = CB.getParent()->getParent();
7801     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7802         "true" && !isMustTailCall)
7803       isTailCall = false;
7804 
7805     // We can't tail call inside a function with a swifterror argument. Lowering
7806     // does not support this yet. It would have to move into the swifterror
7807     // register before the call.
7808     if (TLI.supportSwiftError() &&
7809         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7810       isTailCall = false;
7811   }
7812 
7813   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7814     TargetLowering::ArgListEntry Entry;
7815     const Value *V = *I;
7816 
7817     // Skip empty types
7818     if (V->getType()->isEmptyTy())
7819       continue;
7820 
7821     SDValue ArgNode = getValue(V);
7822     Entry.Node = ArgNode; Entry.Ty = V->getType();
7823 
7824     Entry.setAttributes(&CB, I - CB.arg_begin());
7825 
7826     // Use swifterror virtual register as input to the call.
7827     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7828       SwiftErrorVal = V;
7829       // We find the virtual register for the actual swifterror argument.
7830       // Instead of using the Value, we use the virtual register instead.
7831       Entry.Node =
7832           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7833                           EVT(TLI.getPointerTy(DL)));
7834     }
7835 
7836     Args.push_back(Entry);
7837 
7838     // If we have an explicit sret argument that is an Instruction, (i.e., it
7839     // might point to function-local memory), we can't meaningfully tail-call.
7840     if (Entry.IsSRet && isa<Instruction>(V))
7841       isTailCall = false;
7842   }
7843 
7844   // If call site has a cfguardtarget operand bundle, create and add an
7845   // additional ArgListEntry.
7846   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7847     TargetLowering::ArgListEntry Entry;
7848     Value *V = Bundle->Inputs[0];
7849     SDValue ArgNode = getValue(V);
7850     Entry.Node = ArgNode;
7851     Entry.Ty = V->getType();
7852     Entry.IsCFGuardTarget = true;
7853     Args.push_back(Entry);
7854   }
7855 
7856   // Check if target-independent constraints permit a tail call here.
7857   // Target-dependent constraints are checked within TLI->LowerCallTo.
7858   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7859     isTailCall = false;
7860 
7861   // Disable tail calls if there is an swifterror argument. Targets have not
7862   // been updated to support tail calls.
7863   if (TLI.supportSwiftError() && SwiftErrorVal)
7864     isTailCall = false;
7865 
7866   ConstantInt *CFIType = nullptr;
7867   if (CB.isIndirectCall()) {
7868     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
7869       if (!TLI.supportKCFIBundles())
7870         report_fatal_error(
7871             "Target doesn't support calls with kcfi operand bundles.");
7872       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
7873       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
7874     }
7875   }
7876 
7877   TargetLowering::CallLoweringInfo CLI(DAG);
7878   CLI.setDebugLoc(getCurSDLoc())
7879       .setChain(getRoot())
7880       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7881       .setTailCall(isTailCall)
7882       .setConvergent(CB.isConvergent())
7883       .setIsPreallocated(
7884           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
7885       .setCFIType(CFIType);
7886   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7887 
7888   if (Result.first.getNode()) {
7889     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7890     setValue(&CB, Result.first);
7891   }
7892 
7893   // The last element of CLI.InVals has the SDValue for swifterror return.
7894   // Here we copy it to a virtual register and update SwiftErrorMap for
7895   // book-keeping.
7896   if (SwiftErrorVal && TLI.supportSwiftError()) {
7897     // Get the last element of InVals.
7898     SDValue Src = CLI.InVals.back();
7899     Register VReg =
7900         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7901     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7902     DAG.setRoot(CopyNode);
7903   }
7904 }
7905 
7906 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7907                              SelectionDAGBuilder &Builder) {
7908   // Check to see if this load can be trivially constant folded, e.g. if the
7909   // input is from a string literal.
7910   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7911     // Cast pointer to the type we really want to load.
7912     Type *LoadTy =
7913         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7914     if (LoadVT.isVector())
7915       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7916 
7917     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7918                                          PointerType::getUnqual(LoadTy));
7919 
7920     if (const Constant *LoadCst =
7921             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7922                                          LoadTy, Builder.DAG.getDataLayout()))
7923       return Builder.getValue(LoadCst);
7924   }
7925 
7926   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7927   // still constant memory, the input chain can be the entry node.
7928   SDValue Root;
7929   bool ConstantMemory = false;
7930 
7931   // Do not serialize (non-volatile) loads of constant memory with anything.
7932   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7933     Root = Builder.DAG.getEntryNode();
7934     ConstantMemory = true;
7935   } else {
7936     // Do not serialize non-volatile loads against each other.
7937     Root = Builder.DAG.getRoot();
7938   }
7939 
7940   SDValue Ptr = Builder.getValue(PtrVal);
7941   SDValue LoadVal =
7942       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7943                           MachinePointerInfo(PtrVal), Align(1));
7944 
7945   if (!ConstantMemory)
7946     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7947   return LoadVal;
7948 }
7949 
7950 /// Record the value for an instruction that produces an integer result,
7951 /// converting the type where necessary.
7952 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7953                                                   SDValue Value,
7954                                                   bool IsSigned) {
7955   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7956                                                     I.getType(), true);
7957   if (IsSigned)
7958     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7959   else
7960     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7961   setValue(&I, Value);
7962 }
7963 
7964 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7965 /// true and lower it. Otherwise return false, and it will be lowered like a
7966 /// normal call.
7967 /// The caller already checked that \p I calls the appropriate LibFunc with a
7968 /// correct prototype.
7969 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7970   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7971   const Value *Size = I.getArgOperand(2);
7972   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
7973   if (CSize && CSize->getZExtValue() == 0) {
7974     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7975                                                           I.getType(), true);
7976     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7977     return true;
7978   }
7979 
7980   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7981   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7982       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7983       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7984   if (Res.first.getNode()) {
7985     processIntegerCallValue(I, Res.first, true);
7986     PendingLoads.push_back(Res.second);
7987     return true;
7988   }
7989 
7990   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7991   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7992   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7993     return false;
7994 
7995   // If the target has a fast compare for the given size, it will return a
7996   // preferred load type for that size. Require that the load VT is legal and
7997   // that the target supports unaligned loads of that type. Otherwise, return
7998   // INVALID.
7999   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8000     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8001     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8002     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8003       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8004       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8005       // TODO: Check alignment of src and dest ptrs.
8006       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8007       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8008       if (!TLI.isTypeLegal(LVT) ||
8009           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8010           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8011         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8012     }
8013 
8014     return LVT;
8015   };
8016 
8017   // This turns into unaligned loads. We only do this if the target natively
8018   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8019   // we'll only produce a small number of byte loads.
8020   MVT LoadVT;
8021   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8022   switch (NumBitsToCompare) {
8023   default:
8024     return false;
8025   case 16:
8026     LoadVT = MVT::i16;
8027     break;
8028   case 32:
8029     LoadVT = MVT::i32;
8030     break;
8031   case 64:
8032   case 128:
8033   case 256:
8034     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8035     break;
8036   }
8037 
8038   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8039     return false;
8040 
8041   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8042   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8043 
8044   // Bitcast to a wide integer type if the loads are vectors.
8045   if (LoadVT.isVector()) {
8046     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8047     LoadL = DAG.getBitcast(CmpVT, LoadL);
8048     LoadR = DAG.getBitcast(CmpVT, LoadR);
8049   }
8050 
8051   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8052   processIntegerCallValue(I, Cmp, false);
8053   return true;
8054 }
8055 
8056 /// See if we can lower a memchr call into an optimized form. If so, return
8057 /// true and lower it. Otherwise return false, and it will be lowered like a
8058 /// normal call.
8059 /// The caller already checked that \p I calls the appropriate LibFunc with a
8060 /// correct prototype.
8061 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8062   const Value *Src = I.getArgOperand(0);
8063   const Value *Char = I.getArgOperand(1);
8064   const Value *Length = I.getArgOperand(2);
8065 
8066   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8067   std::pair<SDValue, SDValue> Res =
8068     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8069                                 getValue(Src), getValue(Char), getValue(Length),
8070                                 MachinePointerInfo(Src));
8071   if (Res.first.getNode()) {
8072     setValue(&I, Res.first);
8073     PendingLoads.push_back(Res.second);
8074     return true;
8075   }
8076 
8077   return false;
8078 }
8079 
8080 /// See if we can lower a mempcpy call into an optimized form. If so, return
8081 /// true and lower it. Otherwise return false, and it will be lowered like a
8082 /// normal call.
8083 /// The caller already checked that \p I calls the appropriate LibFunc with a
8084 /// correct prototype.
8085 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8086   SDValue Dst = getValue(I.getArgOperand(0));
8087   SDValue Src = getValue(I.getArgOperand(1));
8088   SDValue Size = getValue(I.getArgOperand(2));
8089 
8090   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8091   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8092   // DAG::getMemcpy needs Alignment to be defined.
8093   Align Alignment = std::min(DstAlign, SrcAlign);
8094 
8095   bool isVol = false;
8096   SDLoc sdl = getCurSDLoc();
8097 
8098   // In the mempcpy context we need to pass in a false value for isTailCall
8099   // because the return pointer needs to be adjusted by the size of
8100   // the copied memory.
8101   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8102   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8103                              /*isTailCall=*/false,
8104                              MachinePointerInfo(I.getArgOperand(0)),
8105                              MachinePointerInfo(I.getArgOperand(1)),
8106                              I.getAAMetadata());
8107   assert(MC.getNode() != nullptr &&
8108          "** memcpy should not be lowered as TailCall in mempcpy context **");
8109   DAG.setRoot(MC);
8110 
8111   // Check if Size needs to be truncated or extended.
8112   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8113 
8114   // Adjust return pointer to point just past the last dst byte.
8115   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8116                                     Dst, Size);
8117   setValue(&I, DstPlusSize);
8118   return true;
8119 }
8120 
8121 /// See if we can lower a strcpy call into an optimized form.  If so, return
8122 /// true and lower it, otherwise return false and it will be lowered like a
8123 /// normal call.
8124 /// The caller already checked that \p I calls the appropriate LibFunc with a
8125 /// correct prototype.
8126 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8127   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8128 
8129   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8130   std::pair<SDValue, SDValue> Res =
8131     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8132                                 getValue(Arg0), getValue(Arg1),
8133                                 MachinePointerInfo(Arg0),
8134                                 MachinePointerInfo(Arg1), isStpcpy);
8135   if (Res.first.getNode()) {
8136     setValue(&I, Res.first);
8137     DAG.setRoot(Res.second);
8138     return true;
8139   }
8140 
8141   return false;
8142 }
8143 
8144 /// See if we can lower a strcmp call into an optimized form.  If so, return
8145 /// true and lower it, otherwise return false and it will be lowered like a
8146 /// normal call.
8147 /// The caller already checked that \p I calls the appropriate LibFunc with a
8148 /// correct prototype.
8149 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8150   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8151 
8152   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8153   std::pair<SDValue, SDValue> Res =
8154     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8155                                 getValue(Arg0), getValue(Arg1),
8156                                 MachinePointerInfo(Arg0),
8157                                 MachinePointerInfo(Arg1));
8158   if (Res.first.getNode()) {
8159     processIntegerCallValue(I, Res.first, true);
8160     PendingLoads.push_back(Res.second);
8161     return true;
8162   }
8163 
8164   return false;
8165 }
8166 
8167 /// See if we can lower a strlen call into an optimized form.  If so, return
8168 /// true and lower it, otherwise return false and it will be lowered like a
8169 /// normal call.
8170 /// The caller already checked that \p I calls the appropriate LibFunc with a
8171 /// correct prototype.
8172 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8173   const Value *Arg0 = I.getArgOperand(0);
8174 
8175   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8176   std::pair<SDValue, SDValue> Res =
8177     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8178                                 getValue(Arg0), MachinePointerInfo(Arg0));
8179   if (Res.first.getNode()) {
8180     processIntegerCallValue(I, Res.first, false);
8181     PendingLoads.push_back(Res.second);
8182     return true;
8183   }
8184 
8185   return false;
8186 }
8187 
8188 /// See if we can lower a strnlen call into an optimized form.  If so, return
8189 /// true and lower it, otherwise return false and it will be lowered like a
8190 /// normal call.
8191 /// The caller already checked that \p I calls the appropriate LibFunc with a
8192 /// correct prototype.
8193 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8194   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8195 
8196   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8197   std::pair<SDValue, SDValue> Res =
8198     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8199                                  getValue(Arg0), getValue(Arg1),
8200                                  MachinePointerInfo(Arg0));
8201   if (Res.first.getNode()) {
8202     processIntegerCallValue(I, Res.first, false);
8203     PendingLoads.push_back(Res.second);
8204     return true;
8205   }
8206 
8207   return false;
8208 }
8209 
8210 /// See if we can lower a unary floating-point operation into an SDNode with
8211 /// the specified Opcode.  If so, return true and lower it, otherwise return
8212 /// false and it will be lowered like a normal call.
8213 /// The caller already checked that \p I calls the appropriate LibFunc with a
8214 /// correct prototype.
8215 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8216                                               unsigned Opcode) {
8217   // We already checked this call's prototype; verify it doesn't modify errno.
8218   if (!I.onlyReadsMemory())
8219     return false;
8220 
8221   SDNodeFlags Flags;
8222   Flags.copyFMF(cast<FPMathOperator>(I));
8223 
8224   SDValue Tmp = getValue(I.getArgOperand(0));
8225   setValue(&I,
8226            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8227   return true;
8228 }
8229 
8230 /// See if we can lower a binary floating-point operation into an SDNode with
8231 /// the specified Opcode. If so, return true and lower it. Otherwise return
8232 /// false, and it will be lowered like a normal call.
8233 /// The caller already checked that \p I calls the appropriate LibFunc with a
8234 /// correct prototype.
8235 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8236                                                unsigned Opcode) {
8237   // We already checked this call's prototype; verify it doesn't modify errno.
8238   if (!I.onlyReadsMemory())
8239     return false;
8240 
8241   SDNodeFlags Flags;
8242   Flags.copyFMF(cast<FPMathOperator>(I));
8243 
8244   SDValue Tmp0 = getValue(I.getArgOperand(0));
8245   SDValue Tmp1 = getValue(I.getArgOperand(1));
8246   EVT VT = Tmp0.getValueType();
8247   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8248   return true;
8249 }
8250 
8251 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8252   // Handle inline assembly differently.
8253   if (I.isInlineAsm()) {
8254     visitInlineAsm(I);
8255     return;
8256   }
8257 
8258   if (Function *F = I.getCalledFunction()) {
8259     diagnoseDontCall(I);
8260 
8261     if (F->isDeclaration()) {
8262       // Is this an LLVM intrinsic or a target-specific intrinsic?
8263       unsigned IID = F->getIntrinsicID();
8264       if (!IID)
8265         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8266           IID = II->getIntrinsicID(F);
8267 
8268       if (IID) {
8269         visitIntrinsicCall(I, IID);
8270         return;
8271       }
8272     }
8273 
8274     // Check for well-known libc/libm calls.  If the function is internal, it
8275     // can't be a library call.  Don't do the check if marked as nobuiltin for
8276     // some reason or the call site requires strict floating point semantics.
8277     LibFunc Func;
8278     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8279         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8280         LibInfo->hasOptimizedCodeGen(Func)) {
8281       switch (Func) {
8282       default: break;
8283       case LibFunc_bcmp:
8284         if (visitMemCmpBCmpCall(I))
8285           return;
8286         break;
8287       case LibFunc_copysign:
8288       case LibFunc_copysignf:
8289       case LibFunc_copysignl:
8290         // We already checked this call's prototype; verify it doesn't modify
8291         // errno.
8292         if (I.onlyReadsMemory()) {
8293           SDValue LHS = getValue(I.getArgOperand(0));
8294           SDValue RHS = getValue(I.getArgOperand(1));
8295           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8296                                    LHS.getValueType(), LHS, RHS));
8297           return;
8298         }
8299         break;
8300       case LibFunc_fabs:
8301       case LibFunc_fabsf:
8302       case LibFunc_fabsl:
8303         if (visitUnaryFloatCall(I, ISD::FABS))
8304           return;
8305         break;
8306       case LibFunc_fmin:
8307       case LibFunc_fminf:
8308       case LibFunc_fminl:
8309         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8310           return;
8311         break;
8312       case LibFunc_fmax:
8313       case LibFunc_fmaxf:
8314       case LibFunc_fmaxl:
8315         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8316           return;
8317         break;
8318       case LibFunc_sin:
8319       case LibFunc_sinf:
8320       case LibFunc_sinl:
8321         if (visitUnaryFloatCall(I, ISD::FSIN))
8322           return;
8323         break;
8324       case LibFunc_cos:
8325       case LibFunc_cosf:
8326       case LibFunc_cosl:
8327         if (visitUnaryFloatCall(I, ISD::FCOS))
8328           return;
8329         break;
8330       case LibFunc_sqrt:
8331       case LibFunc_sqrtf:
8332       case LibFunc_sqrtl:
8333       case LibFunc_sqrt_finite:
8334       case LibFunc_sqrtf_finite:
8335       case LibFunc_sqrtl_finite:
8336         if (visitUnaryFloatCall(I, ISD::FSQRT))
8337           return;
8338         break;
8339       case LibFunc_floor:
8340       case LibFunc_floorf:
8341       case LibFunc_floorl:
8342         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8343           return;
8344         break;
8345       case LibFunc_nearbyint:
8346       case LibFunc_nearbyintf:
8347       case LibFunc_nearbyintl:
8348         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8349           return;
8350         break;
8351       case LibFunc_ceil:
8352       case LibFunc_ceilf:
8353       case LibFunc_ceill:
8354         if (visitUnaryFloatCall(I, ISD::FCEIL))
8355           return;
8356         break;
8357       case LibFunc_rint:
8358       case LibFunc_rintf:
8359       case LibFunc_rintl:
8360         if (visitUnaryFloatCall(I, ISD::FRINT))
8361           return;
8362         break;
8363       case LibFunc_round:
8364       case LibFunc_roundf:
8365       case LibFunc_roundl:
8366         if (visitUnaryFloatCall(I, ISD::FROUND))
8367           return;
8368         break;
8369       case LibFunc_trunc:
8370       case LibFunc_truncf:
8371       case LibFunc_truncl:
8372         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8373           return;
8374         break;
8375       case LibFunc_log2:
8376       case LibFunc_log2f:
8377       case LibFunc_log2l:
8378         if (visitUnaryFloatCall(I, ISD::FLOG2))
8379           return;
8380         break;
8381       case LibFunc_exp2:
8382       case LibFunc_exp2f:
8383       case LibFunc_exp2l:
8384         if (visitUnaryFloatCall(I, ISD::FEXP2))
8385           return;
8386         break;
8387       case LibFunc_memcmp:
8388         if (visitMemCmpBCmpCall(I))
8389           return;
8390         break;
8391       case LibFunc_mempcpy:
8392         if (visitMemPCpyCall(I))
8393           return;
8394         break;
8395       case LibFunc_memchr:
8396         if (visitMemChrCall(I))
8397           return;
8398         break;
8399       case LibFunc_strcpy:
8400         if (visitStrCpyCall(I, false))
8401           return;
8402         break;
8403       case LibFunc_stpcpy:
8404         if (visitStrCpyCall(I, true))
8405           return;
8406         break;
8407       case LibFunc_strcmp:
8408         if (visitStrCmpCall(I))
8409           return;
8410         break;
8411       case LibFunc_strlen:
8412         if (visitStrLenCall(I))
8413           return;
8414         break;
8415       case LibFunc_strnlen:
8416         if (visitStrNLenCall(I))
8417           return;
8418         break;
8419       }
8420     }
8421   }
8422 
8423   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8424   // have to do anything here to lower funclet bundles.
8425   // CFGuardTarget bundles are lowered in LowerCallTo.
8426   assert(!I.hasOperandBundlesOtherThan(
8427              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8428               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8429               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8430          "Cannot lower calls with arbitrary operand bundles!");
8431 
8432   SDValue Callee = getValue(I.getCalledOperand());
8433 
8434   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8435     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8436   else
8437     // Check if we can potentially perform a tail call. More detailed checking
8438     // is be done within LowerCallTo, after more information about the call is
8439     // known.
8440     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8441 }
8442 
8443 namespace {
8444 
8445 /// AsmOperandInfo - This contains information for each constraint that we are
8446 /// lowering.
8447 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8448 public:
8449   /// CallOperand - If this is the result output operand or a clobber
8450   /// this is null, otherwise it is the incoming operand to the CallInst.
8451   /// This gets modified as the asm is processed.
8452   SDValue CallOperand;
8453 
8454   /// AssignedRegs - If this is a register or register class operand, this
8455   /// contains the set of register corresponding to the operand.
8456   RegsForValue AssignedRegs;
8457 
8458   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8459     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8460   }
8461 
8462   /// Whether or not this operand accesses memory
8463   bool hasMemory(const TargetLowering &TLI) const {
8464     // Indirect operand accesses access memory.
8465     if (isIndirect)
8466       return true;
8467 
8468     for (const auto &Code : Codes)
8469       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8470         return true;
8471 
8472     return false;
8473   }
8474 };
8475 
8476 
8477 } // end anonymous namespace
8478 
8479 /// Make sure that the output operand \p OpInfo and its corresponding input
8480 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8481 /// out).
8482 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8483                                SDISelAsmOperandInfo &MatchingOpInfo,
8484                                SelectionDAG &DAG) {
8485   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8486     return;
8487 
8488   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8489   const auto &TLI = DAG.getTargetLoweringInfo();
8490 
8491   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8492       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8493                                        OpInfo.ConstraintVT);
8494   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8495       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8496                                        MatchingOpInfo.ConstraintVT);
8497   if ((OpInfo.ConstraintVT.isInteger() !=
8498        MatchingOpInfo.ConstraintVT.isInteger()) ||
8499       (MatchRC.second != InputRC.second)) {
8500     // FIXME: error out in a more elegant fashion
8501     report_fatal_error("Unsupported asm: input constraint"
8502                        " with a matching output constraint of"
8503                        " incompatible type!");
8504   }
8505   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8506 }
8507 
8508 /// Get a direct memory input to behave well as an indirect operand.
8509 /// This may introduce stores, hence the need for a \p Chain.
8510 /// \return The (possibly updated) chain.
8511 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8512                                         SDISelAsmOperandInfo &OpInfo,
8513                                         SelectionDAG &DAG) {
8514   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8515 
8516   // If we don't have an indirect input, put it in the constpool if we can,
8517   // otherwise spill it to a stack slot.
8518   // TODO: This isn't quite right. We need to handle these according to
8519   // the addressing mode that the constraint wants. Also, this may take
8520   // an additional register for the computation and we don't want that
8521   // either.
8522 
8523   // If the operand is a float, integer, or vector constant, spill to a
8524   // constant pool entry to get its address.
8525   const Value *OpVal = OpInfo.CallOperandVal;
8526   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8527       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8528     OpInfo.CallOperand = DAG.getConstantPool(
8529         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8530     return Chain;
8531   }
8532 
8533   // Otherwise, create a stack slot and emit a store to it before the asm.
8534   Type *Ty = OpVal->getType();
8535   auto &DL = DAG.getDataLayout();
8536   uint64_t TySize = DL.getTypeAllocSize(Ty);
8537   MachineFunction &MF = DAG.getMachineFunction();
8538   int SSFI = MF.getFrameInfo().CreateStackObject(
8539       TySize, DL.getPrefTypeAlign(Ty), false);
8540   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8541   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8542                             MachinePointerInfo::getFixedStack(MF, SSFI),
8543                             TLI.getMemValueType(DL, Ty));
8544   OpInfo.CallOperand = StackSlot;
8545 
8546   return Chain;
8547 }
8548 
8549 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8550 /// specified operand.  We prefer to assign virtual registers, to allow the
8551 /// register allocator to handle the assignment process.  However, if the asm
8552 /// uses features that we can't model on machineinstrs, we have SDISel do the
8553 /// allocation.  This produces generally horrible, but correct, code.
8554 ///
8555 ///   OpInfo describes the operand
8556 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8557 static llvm::Optional<unsigned>
8558 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8559                      SDISelAsmOperandInfo &OpInfo,
8560                      SDISelAsmOperandInfo &RefOpInfo) {
8561   LLVMContext &Context = *DAG.getContext();
8562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8563 
8564   MachineFunction &MF = DAG.getMachineFunction();
8565   SmallVector<unsigned, 4> Regs;
8566   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8567 
8568   // No work to do for memory/address operands.
8569   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8570       OpInfo.ConstraintType == TargetLowering::C_Address)
8571     return None;
8572 
8573   // If this is a constraint for a single physreg, or a constraint for a
8574   // register class, find it.
8575   unsigned AssignedReg;
8576   const TargetRegisterClass *RC;
8577   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8578       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8579   // RC is unset only on failure. Return immediately.
8580   if (!RC)
8581     return None;
8582 
8583   // Get the actual register value type.  This is important, because the user
8584   // may have asked for (e.g.) the AX register in i32 type.  We need to
8585   // remember that AX is actually i16 to get the right extension.
8586   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8587 
8588   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8589     // If this is an FP operand in an integer register (or visa versa), or more
8590     // generally if the operand value disagrees with the register class we plan
8591     // to stick it in, fix the operand type.
8592     //
8593     // If this is an input value, the bitcast to the new type is done now.
8594     // Bitcast for output value is done at the end of visitInlineAsm().
8595     if ((OpInfo.Type == InlineAsm::isOutput ||
8596          OpInfo.Type == InlineAsm::isInput) &&
8597         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8598       // Try to convert to the first EVT that the reg class contains.  If the
8599       // types are identical size, use a bitcast to convert (e.g. two differing
8600       // vector types).  Note: output bitcast is done at the end of
8601       // visitInlineAsm().
8602       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8603         // Exclude indirect inputs while they are unsupported because the code
8604         // to perform the load is missing and thus OpInfo.CallOperand still
8605         // refers to the input address rather than the pointed-to value.
8606         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8607           OpInfo.CallOperand =
8608               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8609         OpInfo.ConstraintVT = RegVT;
8610         // If the operand is an FP value and we want it in integer registers,
8611         // use the corresponding integer type. This turns an f64 value into
8612         // i64, which can be passed with two i32 values on a 32-bit machine.
8613       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8614         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8615         if (OpInfo.Type == InlineAsm::isInput)
8616           OpInfo.CallOperand =
8617               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8618         OpInfo.ConstraintVT = VT;
8619       }
8620     }
8621   }
8622 
8623   // No need to allocate a matching input constraint since the constraint it's
8624   // matching to has already been allocated.
8625   if (OpInfo.isMatchingInputConstraint())
8626     return None;
8627 
8628   EVT ValueVT = OpInfo.ConstraintVT;
8629   if (OpInfo.ConstraintVT == MVT::Other)
8630     ValueVT = RegVT;
8631 
8632   // Initialize NumRegs.
8633   unsigned NumRegs = 1;
8634   if (OpInfo.ConstraintVT != MVT::Other)
8635     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8636 
8637   // If this is a constraint for a specific physical register, like {r17},
8638   // assign it now.
8639 
8640   // If this associated to a specific register, initialize iterator to correct
8641   // place. If virtual, make sure we have enough registers
8642 
8643   // Initialize iterator if necessary
8644   TargetRegisterClass::iterator I = RC->begin();
8645   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8646 
8647   // Do not check for single registers.
8648   if (AssignedReg) {
8649     I = std::find(I, RC->end(), AssignedReg);
8650     if (I == RC->end()) {
8651       // RC does not contain the selected register, which indicates a
8652       // mismatch between the register and the required type/bitwidth.
8653       return {AssignedReg};
8654     }
8655   }
8656 
8657   for (; NumRegs; --NumRegs, ++I) {
8658     assert(I != RC->end() && "Ran out of registers to allocate!");
8659     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8660     Regs.push_back(R);
8661   }
8662 
8663   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8664   return None;
8665 }
8666 
8667 static unsigned
8668 findMatchingInlineAsmOperand(unsigned OperandNo,
8669                              const std::vector<SDValue> &AsmNodeOperands) {
8670   // Scan until we find the definition we already emitted of this operand.
8671   unsigned CurOp = InlineAsm::Op_FirstOperand;
8672   for (; OperandNo; --OperandNo) {
8673     // Advance to the next operand.
8674     unsigned OpFlag =
8675         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8676     assert((InlineAsm::isRegDefKind(OpFlag) ||
8677             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8678             InlineAsm::isMemKind(OpFlag)) &&
8679            "Skipped past definitions?");
8680     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8681   }
8682   return CurOp;
8683 }
8684 
8685 namespace {
8686 
8687 class ExtraFlags {
8688   unsigned Flags = 0;
8689 
8690 public:
8691   explicit ExtraFlags(const CallBase &Call) {
8692     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8693     if (IA->hasSideEffects())
8694       Flags |= InlineAsm::Extra_HasSideEffects;
8695     if (IA->isAlignStack())
8696       Flags |= InlineAsm::Extra_IsAlignStack;
8697     if (Call.isConvergent())
8698       Flags |= InlineAsm::Extra_IsConvergent;
8699     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8700   }
8701 
8702   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8703     // Ideally, we would only check against memory constraints.  However, the
8704     // meaning of an Other constraint can be target-specific and we can't easily
8705     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8706     // for Other constraints as well.
8707     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8708         OpInfo.ConstraintType == TargetLowering::C_Other) {
8709       if (OpInfo.Type == InlineAsm::isInput)
8710         Flags |= InlineAsm::Extra_MayLoad;
8711       else if (OpInfo.Type == InlineAsm::isOutput)
8712         Flags |= InlineAsm::Extra_MayStore;
8713       else if (OpInfo.Type == InlineAsm::isClobber)
8714         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8715     }
8716   }
8717 
8718   unsigned get() const { return Flags; }
8719 };
8720 
8721 } // end anonymous namespace
8722 
8723 /// visitInlineAsm - Handle a call to an InlineAsm object.
8724 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8725                                          const BasicBlock *EHPadBB) {
8726   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8727 
8728   /// ConstraintOperands - Information about all of the constraints.
8729   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8730 
8731   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8732   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8733       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8734 
8735   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8736   // AsmDialect, MayLoad, MayStore).
8737   bool HasSideEffect = IA->hasSideEffects();
8738   ExtraFlags ExtraInfo(Call);
8739 
8740   for (auto &T : TargetConstraints) {
8741     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8742     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8743 
8744     if (OpInfo.CallOperandVal)
8745       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8746 
8747     if (!HasSideEffect)
8748       HasSideEffect = OpInfo.hasMemory(TLI);
8749 
8750     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8751     // FIXME: Could we compute this on OpInfo rather than T?
8752 
8753     // Compute the constraint code and ConstraintType to use.
8754     TLI.ComputeConstraintToUse(T, SDValue());
8755 
8756     if (T.ConstraintType == TargetLowering::C_Immediate &&
8757         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8758       // We've delayed emitting a diagnostic like the "n" constraint because
8759       // inlining could cause an integer showing up.
8760       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8761                                           "' expects an integer constant "
8762                                           "expression");
8763 
8764     ExtraInfo.update(T);
8765   }
8766 
8767   // We won't need to flush pending loads if this asm doesn't touch
8768   // memory and is nonvolatile.
8769   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8770 
8771   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8772   if (EmitEHLabels) {
8773     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8774   }
8775   bool IsCallBr = isa<CallBrInst>(Call);
8776 
8777   if (IsCallBr || EmitEHLabels) {
8778     // If this is a callbr or invoke we need to flush pending exports since
8779     // inlineasm_br and invoke are terminators.
8780     // We need to do this before nodes are glued to the inlineasm_br node.
8781     Chain = getControlRoot();
8782   }
8783 
8784   MCSymbol *BeginLabel = nullptr;
8785   if (EmitEHLabels) {
8786     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8787   }
8788 
8789   // Second pass over the constraints: compute which constraint option to use.
8790   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8791     // If this is an output operand with a matching input operand, look up the
8792     // matching input. If their types mismatch, e.g. one is an integer, the
8793     // other is floating point, or their sizes are different, flag it as an
8794     // error.
8795     if (OpInfo.hasMatchingInput()) {
8796       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8797       patchMatchingInput(OpInfo, Input, DAG);
8798     }
8799 
8800     // Compute the constraint code and ConstraintType to use.
8801     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8802 
8803     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8804          OpInfo.Type == InlineAsm::isClobber) ||
8805         OpInfo.ConstraintType == TargetLowering::C_Address)
8806       continue;
8807 
8808     // If this is a memory input, and if the operand is not indirect, do what we
8809     // need to provide an address for the memory input.
8810     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8811         !OpInfo.isIndirect) {
8812       assert((OpInfo.isMultipleAlternative ||
8813               (OpInfo.Type == InlineAsm::isInput)) &&
8814              "Can only indirectify direct input operands!");
8815 
8816       // Memory operands really want the address of the value.
8817       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8818 
8819       // There is no longer a Value* corresponding to this operand.
8820       OpInfo.CallOperandVal = nullptr;
8821 
8822       // It is now an indirect operand.
8823       OpInfo.isIndirect = true;
8824     }
8825 
8826   }
8827 
8828   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8829   std::vector<SDValue> AsmNodeOperands;
8830   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8831   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8832       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8833 
8834   // If we have a !srcloc metadata node associated with it, we want to attach
8835   // this to the ultimately generated inline asm machineinstr.  To do this, we
8836   // pass in the third operand as this (potentially null) inline asm MDNode.
8837   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8838   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8839 
8840   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8841   // bits as operand 3.
8842   AsmNodeOperands.push_back(DAG.getTargetConstant(
8843       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8844 
8845   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8846   // this, assign virtual and physical registers for inputs and otput.
8847   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8848     // Assign Registers.
8849     SDISelAsmOperandInfo &RefOpInfo =
8850         OpInfo.isMatchingInputConstraint()
8851             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8852             : OpInfo;
8853     const auto RegError =
8854         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8855     if (RegError) {
8856       const MachineFunction &MF = DAG.getMachineFunction();
8857       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8858       const char *RegName = TRI.getName(RegError.value());
8859       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8860                                    "' allocated for constraint '" +
8861                                    Twine(OpInfo.ConstraintCode) +
8862                                    "' does not match required type");
8863       return;
8864     }
8865 
8866     auto DetectWriteToReservedRegister = [&]() {
8867       const MachineFunction &MF = DAG.getMachineFunction();
8868       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8869       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8870         if (Register::isPhysicalRegister(Reg) &&
8871             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8872           const char *RegName = TRI.getName(Reg);
8873           emitInlineAsmError(Call, "write to reserved register '" +
8874                                        Twine(RegName) + "'");
8875           return true;
8876         }
8877       }
8878       return false;
8879     };
8880     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
8881             (OpInfo.Type == InlineAsm::isInput &&
8882              !OpInfo.isMatchingInputConstraint())) &&
8883            "Only address as input operand is allowed.");
8884 
8885     switch (OpInfo.Type) {
8886     case InlineAsm::isOutput:
8887       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8888         unsigned ConstraintID =
8889             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8890         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8891                "Failed to convert memory constraint code to constraint id.");
8892 
8893         // Add information to the INLINEASM node to know about this output.
8894         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8895         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8896         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8897                                                         MVT::i32));
8898         AsmNodeOperands.push_back(OpInfo.CallOperand);
8899       } else {
8900         // Otherwise, this outputs to a register (directly for C_Register /
8901         // C_RegisterClass, and a target-defined fashion for
8902         // C_Immediate/C_Other). Find a register that we can use.
8903         if (OpInfo.AssignedRegs.Regs.empty()) {
8904           emitInlineAsmError(
8905               Call, "couldn't allocate output register for constraint '" +
8906                         Twine(OpInfo.ConstraintCode) + "'");
8907           return;
8908         }
8909 
8910         if (DetectWriteToReservedRegister())
8911           return;
8912 
8913         // Add information to the INLINEASM node to know that this register is
8914         // set.
8915         OpInfo.AssignedRegs.AddInlineAsmOperands(
8916             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8917                                   : InlineAsm::Kind_RegDef,
8918             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8919       }
8920       break;
8921 
8922     case InlineAsm::isInput:
8923     case InlineAsm::isLabel: {
8924       SDValue InOperandVal = OpInfo.CallOperand;
8925 
8926       if (OpInfo.isMatchingInputConstraint()) {
8927         // If this is required to match an output register we have already set,
8928         // just use its register.
8929         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8930                                                   AsmNodeOperands);
8931         unsigned OpFlag =
8932           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8933         if (InlineAsm::isRegDefKind(OpFlag) ||
8934             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8935           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8936           if (OpInfo.isIndirect) {
8937             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8938             emitInlineAsmError(Call, "inline asm not supported yet: "
8939                                      "don't know how to handle tied "
8940                                      "indirect register inputs");
8941             return;
8942           }
8943 
8944           SmallVector<unsigned, 4> Regs;
8945           MachineFunction &MF = DAG.getMachineFunction();
8946           MachineRegisterInfo &MRI = MF.getRegInfo();
8947           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8948           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8949           Register TiedReg = R->getReg();
8950           MVT RegVT = R->getSimpleValueType(0);
8951           const TargetRegisterClass *RC =
8952               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8953               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8954                                       : TRI.getMinimalPhysRegClass(TiedReg);
8955           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8956           for (unsigned i = 0; i != NumRegs; ++i)
8957             Regs.push_back(MRI.createVirtualRegister(RC));
8958 
8959           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8960 
8961           SDLoc dl = getCurSDLoc();
8962           // Use the produced MatchedRegs object to
8963           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8964           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8965                                            true, OpInfo.getMatchedOperand(), dl,
8966                                            DAG, AsmNodeOperands);
8967           break;
8968         }
8969 
8970         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8971         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8972                "Unexpected number of operands");
8973         // Add information to the INLINEASM node to know about this input.
8974         // See InlineAsm.h isUseOperandTiedToDef.
8975         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8976         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8977                                                     OpInfo.getMatchedOperand());
8978         AsmNodeOperands.push_back(DAG.getTargetConstant(
8979             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8980         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8981         break;
8982       }
8983 
8984       // Treat indirect 'X' constraint as memory.
8985       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8986           OpInfo.isIndirect)
8987         OpInfo.ConstraintType = TargetLowering::C_Memory;
8988 
8989       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8990           OpInfo.ConstraintType == TargetLowering::C_Other) {
8991         std::vector<SDValue> Ops;
8992         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8993                                           Ops, DAG);
8994         if (Ops.empty()) {
8995           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8996             if (isa<ConstantSDNode>(InOperandVal)) {
8997               emitInlineAsmError(Call, "value out of range for constraint '" +
8998                                            Twine(OpInfo.ConstraintCode) + "'");
8999               return;
9000             }
9001 
9002           emitInlineAsmError(Call,
9003                              "invalid operand for inline asm constraint '" +
9004                                  Twine(OpInfo.ConstraintCode) + "'");
9005           return;
9006         }
9007 
9008         // Add information to the INLINEASM node to know about this input.
9009         unsigned ResOpType =
9010           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9011         AsmNodeOperands.push_back(DAG.getTargetConstant(
9012             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9013         llvm::append_range(AsmNodeOperands, Ops);
9014         break;
9015       }
9016 
9017       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9018           OpInfo.ConstraintType == TargetLowering::C_Address) {
9019         assert((OpInfo.isIndirect ||
9020                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9021                "Operand must be indirect to be a mem!");
9022         assert(InOperandVal.getValueType() ==
9023                    TLI.getPointerTy(DAG.getDataLayout()) &&
9024                "Memory operands expect pointer values");
9025 
9026         unsigned ConstraintID =
9027             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9028         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9029                "Failed to convert memory constraint code to constraint id.");
9030 
9031         // Add information to the INLINEASM node to know about this input.
9032         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9033         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9034         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9035                                                         getCurSDLoc(),
9036                                                         MVT::i32));
9037         AsmNodeOperands.push_back(InOperandVal);
9038         break;
9039       }
9040 
9041       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9042               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9043              "Unknown constraint type!");
9044 
9045       // TODO: Support this.
9046       if (OpInfo.isIndirect) {
9047         emitInlineAsmError(
9048             Call, "Don't know how to handle indirect register inputs yet "
9049                   "for constraint '" +
9050                       Twine(OpInfo.ConstraintCode) + "'");
9051         return;
9052       }
9053 
9054       // Copy the input into the appropriate registers.
9055       if (OpInfo.AssignedRegs.Regs.empty()) {
9056         emitInlineAsmError(Call,
9057                            "couldn't allocate input reg for constraint '" +
9058                                Twine(OpInfo.ConstraintCode) + "'");
9059         return;
9060       }
9061 
9062       if (DetectWriteToReservedRegister())
9063         return;
9064 
9065       SDLoc dl = getCurSDLoc();
9066 
9067       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9068                                         &Call);
9069 
9070       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9071                                                dl, DAG, AsmNodeOperands);
9072       break;
9073     }
9074     case InlineAsm::isClobber:
9075       // Add the clobbered value to the operand list, so that the register
9076       // allocator is aware that the physreg got clobbered.
9077       if (!OpInfo.AssignedRegs.Regs.empty())
9078         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9079                                                  false, 0, getCurSDLoc(), DAG,
9080                                                  AsmNodeOperands);
9081       break;
9082     }
9083   }
9084 
9085   // Finish up input operands.  Set the input chain and add the flag last.
9086   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9087   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9088 
9089   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9090   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9091                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9092   Flag = Chain.getValue(1);
9093 
9094   // Do additional work to generate outputs.
9095 
9096   SmallVector<EVT, 1> ResultVTs;
9097   SmallVector<SDValue, 1> ResultValues;
9098   SmallVector<SDValue, 8> OutChains;
9099 
9100   llvm::Type *CallResultType = Call.getType();
9101   ArrayRef<Type *> ResultTypes;
9102   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9103     ResultTypes = StructResult->elements();
9104   else if (!CallResultType->isVoidTy())
9105     ResultTypes = makeArrayRef(CallResultType);
9106 
9107   auto CurResultType = ResultTypes.begin();
9108   auto handleRegAssign = [&](SDValue V) {
9109     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9110     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9111     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9112     ++CurResultType;
9113     // If the type of the inline asm call site return value is different but has
9114     // same size as the type of the asm output bitcast it.  One example of this
9115     // is for vectors with different width / number of elements.  This can
9116     // happen for register classes that can contain multiple different value
9117     // types.  The preg or vreg allocated may not have the same VT as was
9118     // expected.
9119     //
9120     // This can also happen for a return value that disagrees with the register
9121     // class it is put in, eg. a double in a general-purpose register on a
9122     // 32-bit machine.
9123     if (ResultVT != V.getValueType() &&
9124         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9125       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9126     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9127              V.getValueType().isInteger()) {
9128       // If a result value was tied to an input value, the computed result
9129       // may have a wider width than the expected result.  Extract the
9130       // relevant portion.
9131       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9132     }
9133     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9134     ResultVTs.push_back(ResultVT);
9135     ResultValues.push_back(V);
9136   };
9137 
9138   // Deal with output operands.
9139   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9140     if (OpInfo.Type == InlineAsm::isOutput) {
9141       SDValue Val;
9142       // Skip trivial output operands.
9143       if (OpInfo.AssignedRegs.Regs.empty())
9144         continue;
9145 
9146       switch (OpInfo.ConstraintType) {
9147       case TargetLowering::C_Register:
9148       case TargetLowering::C_RegisterClass:
9149         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9150                                                   Chain, &Flag, &Call);
9151         break;
9152       case TargetLowering::C_Immediate:
9153       case TargetLowering::C_Other:
9154         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9155                                               OpInfo, DAG);
9156         break;
9157       case TargetLowering::C_Memory:
9158         break; // Already handled.
9159       case TargetLowering::C_Address:
9160         break; // Silence warning.
9161       case TargetLowering::C_Unknown:
9162         assert(false && "Unexpected unknown constraint");
9163       }
9164 
9165       // Indirect output manifest as stores. Record output chains.
9166       if (OpInfo.isIndirect) {
9167         const Value *Ptr = OpInfo.CallOperandVal;
9168         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9169         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9170                                      MachinePointerInfo(Ptr));
9171         OutChains.push_back(Store);
9172       } else {
9173         // generate CopyFromRegs to associated registers.
9174         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9175         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9176           for (const SDValue &V : Val->op_values())
9177             handleRegAssign(V);
9178         } else
9179           handleRegAssign(Val);
9180       }
9181     }
9182   }
9183 
9184   // Set results.
9185   if (!ResultValues.empty()) {
9186     assert(CurResultType == ResultTypes.end() &&
9187            "Mismatch in number of ResultTypes");
9188     assert(ResultValues.size() == ResultTypes.size() &&
9189            "Mismatch in number of output operands in asm result");
9190 
9191     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9192                             DAG.getVTList(ResultVTs), ResultValues);
9193     setValue(&Call, V);
9194   }
9195 
9196   // Collect store chains.
9197   if (!OutChains.empty())
9198     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9199 
9200   if (EmitEHLabels) {
9201     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9202   }
9203 
9204   // Only Update Root if inline assembly has a memory effect.
9205   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9206       EmitEHLabels)
9207     DAG.setRoot(Chain);
9208 }
9209 
9210 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9211                                              const Twine &Message) {
9212   LLVMContext &Ctx = *DAG.getContext();
9213   Ctx.emitError(&Call, Message);
9214 
9215   // Make sure we leave the DAG in a valid state
9216   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9217   SmallVector<EVT, 1> ValueVTs;
9218   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9219 
9220   if (ValueVTs.empty())
9221     return;
9222 
9223   SmallVector<SDValue, 1> Ops;
9224   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9225     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9226 
9227   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9228 }
9229 
9230 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9231   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9232                           MVT::Other, getRoot(),
9233                           getValue(I.getArgOperand(0)),
9234                           DAG.getSrcValue(I.getArgOperand(0))));
9235 }
9236 
9237 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9238   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9239   const DataLayout &DL = DAG.getDataLayout();
9240   SDValue V = DAG.getVAArg(
9241       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9242       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9243       DL.getABITypeAlign(I.getType()).value());
9244   DAG.setRoot(V.getValue(1));
9245 
9246   if (I.getType()->isPointerTy())
9247     V = DAG.getPtrExtOrTrunc(
9248         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9249   setValue(&I, V);
9250 }
9251 
9252 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9253   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9254                           MVT::Other, getRoot(),
9255                           getValue(I.getArgOperand(0)),
9256                           DAG.getSrcValue(I.getArgOperand(0))));
9257 }
9258 
9259 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9260   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9261                           MVT::Other, getRoot(),
9262                           getValue(I.getArgOperand(0)),
9263                           getValue(I.getArgOperand(1)),
9264                           DAG.getSrcValue(I.getArgOperand(0)),
9265                           DAG.getSrcValue(I.getArgOperand(1))));
9266 }
9267 
9268 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9269                                                     const Instruction &I,
9270                                                     SDValue Op) {
9271   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9272   if (!Range)
9273     return Op;
9274 
9275   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9276   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9277     return Op;
9278 
9279   APInt Lo = CR.getUnsignedMin();
9280   if (!Lo.isMinValue())
9281     return Op;
9282 
9283   APInt Hi = CR.getUnsignedMax();
9284   unsigned Bits = std::max(Hi.getActiveBits(),
9285                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9286 
9287   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9288 
9289   SDLoc SL = getCurSDLoc();
9290 
9291   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9292                              DAG.getValueType(SmallVT));
9293   unsigned NumVals = Op.getNode()->getNumValues();
9294   if (NumVals == 1)
9295     return ZExt;
9296 
9297   SmallVector<SDValue, 4> Ops;
9298 
9299   Ops.push_back(ZExt);
9300   for (unsigned I = 1; I != NumVals; ++I)
9301     Ops.push_back(Op.getValue(I));
9302 
9303   return DAG.getMergeValues(Ops, SL);
9304 }
9305 
9306 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9307 /// the call being lowered.
9308 ///
9309 /// This is a helper for lowering intrinsics that follow a target calling
9310 /// convention or require stack pointer adjustment. Only a subset of the
9311 /// intrinsic's operands need to participate in the calling convention.
9312 void SelectionDAGBuilder::populateCallLoweringInfo(
9313     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9314     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9315     bool IsPatchPoint) {
9316   TargetLowering::ArgListTy Args;
9317   Args.reserve(NumArgs);
9318 
9319   // Populate the argument list.
9320   // Attributes for args start at offset 1, after the return attribute.
9321   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9322        ArgI != ArgE; ++ArgI) {
9323     const Value *V = Call->getOperand(ArgI);
9324 
9325     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9326 
9327     TargetLowering::ArgListEntry Entry;
9328     Entry.Node = getValue(V);
9329     Entry.Ty = V->getType();
9330     Entry.setAttributes(Call, ArgI);
9331     Args.push_back(Entry);
9332   }
9333 
9334   CLI.setDebugLoc(getCurSDLoc())
9335       .setChain(getRoot())
9336       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9337       .setDiscardResult(Call->use_empty())
9338       .setIsPatchPoint(IsPatchPoint)
9339       .setIsPreallocated(
9340           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9341 }
9342 
9343 /// Add a stack map intrinsic call's live variable operands to a stackmap
9344 /// or patchpoint target node's operand list.
9345 ///
9346 /// Constants are converted to TargetConstants purely as an optimization to
9347 /// avoid constant materialization and register allocation.
9348 ///
9349 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9350 /// generate addess computation nodes, and so FinalizeISel can convert the
9351 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9352 /// address materialization and register allocation, but may also be required
9353 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9354 /// alloca in the entry block, then the runtime may assume that the alloca's
9355 /// StackMap location can be read immediately after compilation and that the
9356 /// location is valid at any point during execution (this is similar to the
9357 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9358 /// only available in a register, then the runtime would need to trap when
9359 /// execution reaches the StackMap in order to read the alloca's location.
9360 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9361                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9362                                 SelectionDAGBuilder &Builder) {
9363   SelectionDAG &DAG = Builder.DAG;
9364   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9365     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9366 
9367     // Things on the stack are pointer-typed, meaning that they are already
9368     // legal and can be emitted directly to target nodes.
9369     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9370       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9371     } else {
9372       // Otherwise emit a target independent node to be legalised.
9373       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9374     }
9375   }
9376 }
9377 
9378 /// Lower llvm.experimental.stackmap.
9379 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9380   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9381   //                                  [live variables...])
9382 
9383   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9384 
9385   SDValue Chain, InFlag, Callee, NullPtr;
9386   SmallVector<SDValue, 32> Ops;
9387 
9388   SDLoc DL = getCurSDLoc();
9389   Callee = getValue(CI.getCalledOperand());
9390   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9391 
9392   // The stackmap intrinsic only records the live variables (the arguments
9393   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9394   // intrinsic, this won't be lowered to a function call. This means we don't
9395   // have to worry about calling conventions and target specific lowering code.
9396   // Instead we perform the call lowering right here.
9397   //
9398   // chain, flag = CALLSEQ_START(chain, 0, 0)
9399   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9400   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9401   //
9402   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9403   InFlag = Chain.getValue(1);
9404 
9405   // Add the STACKMAP operands, starting with DAG house-keeping.
9406   Ops.push_back(Chain);
9407   Ops.push_back(InFlag);
9408 
9409   // Add the <id>, <numShadowBytes> operands.
9410   //
9411   // These do not require legalisation, and can be emitted directly to target
9412   // constant nodes.
9413   SDValue ID = getValue(CI.getArgOperand(0));
9414   assert(ID.getValueType() == MVT::i64);
9415   SDValue IDConst = DAG.getTargetConstant(
9416       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9417   Ops.push_back(IDConst);
9418 
9419   SDValue Shad = getValue(CI.getArgOperand(1));
9420   assert(Shad.getValueType() == MVT::i32);
9421   SDValue ShadConst = DAG.getTargetConstant(
9422       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9423   Ops.push_back(ShadConst);
9424 
9425   // Add the live variables.
9426   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9427 
9428   // Create the STACKMAP node.
9429   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9430   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9431   InFlag = Chain.getValue(1);
9432 
9433   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9434 
9435   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9436 
9437   // Set the root to the target-lowered call chain.
9438   DAG.setRoot(Chain);
9439 
9440   // Inform the Frame Information that we have a stackmap in this function.
9441   FuncInfo.MF->getFrameInfo().setHasStackMap();
9442 }
9443 
9444 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9445 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9446                                           const BasicBlock *EHPadBB) {
9447   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9448   //                                                 i32 <numBytes>,
9449   //                                                 i8* <target>,
9450   //                                                 i32 <numArgs>,
9451   //                                                 [Args...],
9452   //                                                 [live variables...])
9453 
9454   CallingConv::ID CC = CB.getCallingConv();
9455   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9456   bool HasDef = !CB.getType()->isVoidTy();
9457   SDLoc dl = getCurSDLoc();
9458   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9459 
9460   // Handle immediate and symbolic callees.
9461   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9462     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9463                                    /*isTarget=*/true);
9464   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9465     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9466                                          SDLoc(SymbolicCallee),
9467                                          SymbolicCallee->getValueType(0));
9468 
9469   // Get the real number of arguments participating in the call <numArgs>
9470   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9471   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9472 
9473   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9474   // Intrinsics include all meta-operands up to but not including CC.
9475   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9476   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9477          "Not enough arguments provided to the patchpoint intrinsic");
9478 
9479   // For AnyRegCC the arguments are lowered later on manually.
9480   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9481   Type *ReturnTy =
9482       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9483 
9484   TargetLowering::CallLoweringInfo CLI(DAG);
9485   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9486                            ReturnTy, true);
9487   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9488 
9489   SDNode *CallEnd = Result.second.getNode();
9490   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9491     CallEnd = CallEnd->getOperand(0).getNode();
9492 
9493   /// Get a call instruction from the call sequence chain.
9494   /// Tail calls are not allowed.
9495   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9496          "Expected a callseq node.");
9497   SDNode *Call = CallEnd->getOperand(0).getNode();
9498   bool HasGlue = Call->getGluedNode();
9499 
9500   // Replace the target specific call node with the patchable intrinsic.
9501   SmallVector<SDValue, 8> Ops;
9502 
9503   // Push the chain.
9504   Ops.push_back(*(Call->op_begin()));
9505 
9506   // Optionally, push the glue (if any).
9507   if (HasGlue)
9508     Ops.push_back(*(Call->op_end() - 1));
9509 
9510   // Push the register mask info.
9511   if (HasGlue)
9512     Ops.push_back(*(Call->op_end() - 2));
9513   else
9514     Ops.push_back(*(Call->op_end() - 1));
9515 
9516   // Add the <id> and <numBytes> constants.
9517   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9518   Ops.push_back(DAG.getTargetConstant(
9519                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9520   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9521   Ops.push_back(DAG.getTargetConstant(
9522                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9523                   MVT::i32));
9524 
9525   // Add the callee.
9526   Ops.push_back(Callee);
9527 
9528   // Adjust <numArgs> to account for any arguments that have been passed on the
9529   // stack instead.
9530   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9531   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9532   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9533   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9534 
9535   // Add the calling convention
9536   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9537 
9538   // Add the arguments we omitted previously. The register allocator should
9539   // place these in any free register.
9540   if (IsAnyRegCC)
9541     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9542       Ops.push_back(getValue(CB.getArgOperand(i)));
9543 
9544   // Push the arguments from the call instruction.
9545   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9546   Ops.append(Call->op_begin() + 2, e);
9547 
9548   // Push live variables for the stack map.
9549   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9550 
9551   SDVTList NodeTys;
9552   if (IsAnyRegCC && HasDef) {
9553     // Create the return types based on the intrinsic definition
9554     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9555     SmallVector<EVT, 3> ValueVTs;
9556     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9557     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9558 
9559     // There is always a chain and a glue type at the end
9560     ValueVTs.push_back(MVT::Other);
9561     ValueVTs.push_back(MVT::Glue);
9562     NodeTys = DAG.getVTList(ValueVTs);
9563   } else
9564     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9565 
9566   // Replace the target specific call node with a PATCHPOINT node.
9567   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9568 
9569   // Update the NodeMap.
9570   if (HasDef) {
9571     if (IsAnyRegCC)
9572       setValue(&CB, SDValue(PPV.getNode(), 0));
9573     else
9574       setValue(&CB, Result.first);
9575   }
9576 
9577   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9578   // call sequence. Furthermore the location of the chain and glue can change
9579   // when the AnyReg calling convention is used and the intrinsic returns a
9580   // value.
9581   if (IsAnyRegCC && HasDef) {
9582     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9583     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9584     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9585   } else
9586     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9587   DAG.DeleteNode(Call);
9588 
9589   // Inform the Frame Information that we have a patchpoint in this function.
9590   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9591 }
9592 
9593 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9594                                             unsigned Intrinsic) {
9595   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9596   SDValue Op1 = getValue(I.getArgOperand(0));
9597   SDValue Op2;
9598   if (I.arg_size() > 1)
9599     Op2 = getValue(I.getArgOperand(1));
9600   SDLoc dl = getCurSDLoc();
9601   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9602   SDValue Res;
9603   SDNodeFlags SDFlags;
9604   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9605     SDFlags.copyFMF(*FPMO);
9606 
9607   switch (Intrinsic) {
9608   case Intrinsic::vector_reduce_fadd:
9609     if (SDFlags.hasAllowReassociation())
9610       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9611                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9612                         SDFlags);
9613     else
9614       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9615     break;
9616   case Intrinsic::vector_reduce_fmul:
9617     if (SDFlags.hasAllowReassociation())
9618       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9619                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9620                         SDFlags);
9621     else
9622       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9623     break;
9624   case Intrinsic::vector_reduce_add:
9625     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9626     break;
9627   case Intrinsic::vector_reduce_mul:
9628     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9629     break;
9630   case Intrinsic::vector_reduce_and:
9631     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9632     break;
9633   case Intrinsic::vector_reduce_or:
9634     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9635     break;
9636   case Intrinsic::vector_reduce_xor:
9637     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9638     break;
9639   case Intrinsic::vector_reduce_smax:
9640     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9641     break;
9642   case Intrinsic::vector_reduce_smin:
9643     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9644     break;
9645   case Intrinsic::vector_reduce_umax:
9646     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9647     break;
9648   case Intrinsic::vector_reduce_umin:
9649     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9650     break;
9651   case Intrinsic::vector_reduce_fmax:
9652     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9653     break;
9654   case Intrinsic::vector_reduce_fmin:
9655     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9656     break;
9657   default:
9658     llvm_unreachable("Unhandled vector reduce intrinsic");
9659   }
9660   setValue(&I, Res);
9661 }
9662 
9663 /// Returns an AttributeList representing the attributes applied to the return
9664 /// value of the given call.
9665 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9666   SmallVector<Attribute::AttrKind, 2> Attrs;
9667   if (CLI.RetSExt)
9668     Attrs.push_back(Attribute::SExt);
9669   if (CLI.RetZExt)
9670     Attrs.push_back(Attribute::ZExt);
9671   if (CLI.IsInReg)
9672     Attrs.push_back(Attribute::InReg);
9673 
9674   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9675                             Attrs);
9676 }
9677 
9678 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9679 /// implementation, which just calls LowerCall.
9680 /// FIXME: When all targets are
9681 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9682 std::pair<SDValue, SDValue>
9683 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9684   // Handle the incoming return values from the call.
9685   CLI.Ins.clear();
9686   Type *OrigRetTy = CLI.RetTy;
9687   SmallVector<EVT, 4> RetTys;
9688   SmallVector<uint64_t, 4> Offsets;
9689   auto &DL = CLI.DAG.getDataLayout();
9690   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9691 
9692   if (CLI.IsPostTypeLegalization) {
9693     // If we are lowering a libcall after legalization, split the return type.
9694     SmallVector<EVT, 4> OldRetTys;
9695     SmallVector<uint64_t, 4> OldOffsets;
9696     RetTys.swap(OldRetTys);
9697     Offsets.swap(OldOffsets);
9698 
9699     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9700       EVT RetVT = OldRetTys[i];
9701       uint64_t Offset = OldOffsets[i];
9702       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9703       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9704       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9705       RetTys.append(NumRegs, RegisterVT);
9706       for (unsigned j = 0; j != NumRegs; ++j)
9707         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9708     }
9709   }
9710 
9711   SmallVector<ISD::OutputArg, 4> Outs;
9712   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9713 
9714   bool CanLowerReturn =
9715       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9716                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9717 
9718   SDValue DemoteStackSlot;
9719   int DemoteStackIdx = -100;
9720   if (!CanLowerReturn) {
9721     // FIXME: equivalent assert?
9722     // assert(!CS.hasInAllocaArgument() &&
9723     //        "sret demotion is incompatible with inalloca");
9724     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9725     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9726     MachineFunction &MF = CLI.DAG.getMachineFunction();
9727     DemoteStackIdx =
9728         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9729     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9730                                               DL.getAllocaAddrSpace());
9731 
9732     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9733     ArgListEntry Entry;
9734     Entry.Node = DemoteStackSlot;
9735     Entry.Ty = StackSlotPtrType;
9736     Entry.IsSExt = false;
9737     Entry.IsZExt = false;
9738     Entry.IsInReg = false;
9739     Entry.IsSRet = true;
9740     Entry.IsNest = false;
9741     Entry.IsByVal = false;
9742     Entry.IsByRef = false;
9743     Entry.IsReturned = false;
9744     Entry.IsSwiftSelf = false;
9745     Entry.IsSwiftAsync = false;
9746     Entry.IsSwiftError = false;
9747     Entry.IsCFGuardTarget = false;
9748     Entry.Alignment = Alignment;
9749     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9750     CLI.NumFixedArgs += 1;
9751     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9752 
9753     // sret demotion isn't compatible with tail-calls, since the sret argument
9754     // points into the callers stack frame.
9755     CLI.IsTailCall = false;
9756   } else {
9757     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9758         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9759     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9760       ISD::ArgFlagsTy Flags;
9761       if (NeedsRegBlock) {
9762         Flags.setInConsecutiveRegs();
9763         if (I == RetTys.size() - 1)
9764           Flags.setInConsecutiveRegsLast();
9765       }
9766       EVT VT = RetTys[I];
9767       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9768                                                      CLI.CallConv, VT);
9769       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9770                                                        CLI.CallConv, VT);
9771       for (unsigned i = 0; i != NumRegs; ++i) {
9772         ISD::InputArg MyFlags;
9773         MyFlags.Flags = Flags;
9774         MyFlags.VT = RegisterVT;
9775         MyFlags.ArgVT = VT;
9776         MyFlags.Used = CLI.IsReturnValueUsed;
9777         if (CLI.RetTy->isPointerTy()) {
9778           MyFlags.Flags.setPointer();
9779           MyFlags.Flags.setPointerAddrSpace(
9780               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9781         }
9782         if (CLI.RetSExt)
9783           MyFlags.Flags.setSExt();
9784         if (CLI.RetZExt)
9785           MyFlags.Flags.setZExt();
9786         if (CLI.IsInReg)
9787           MyFlags.Flags.setInReg();
9788         CLI.Ins.push_back(MyFlags);
9789       }
9790     }
9791   }
9792 
9793   // We push in swifterror return as the last element of CLI.Ins.
9794   ArgListTy &Args = CLI.getArgs();
9795   if (supportSwiftError()) {
9796     for (const ArgListEntry &Arg : Args) {
9797       if (Arg.IsSwiftError) {
9798         ISD::InputArg MyFlags;
9799         MyFlags.VT = getPointerTy(DL);
9800         MyFlags.ArgVT = EVT(getPointerTy(DL));
9801         MyFlags.Flags.setSwiftError();
9802         CLI.Ins.push_back(MyFlags);
9803       }
9804     }
9805   }
9806 
9807   // Handle all of the outgoing arguments.
9808   CLI.Outs.clear();
9809   CLI.OutVals.clear();
9810   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9811     SmallVector<EVT, 4> ValueVTs;
9812     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9813     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9814     Type *FinalType = Args[i].Ty;
9815     if (Args[i].IsByVal)
9816       FinalType = Args[i].IndirectType;
9817     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9818         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9819     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9820          ++Value) {
9821       EVT VT = ValueVTs[Value];
9822       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9823       SDValue Op = SDValue(Args[i].Node.getNode(),
9824                            Args[i].Node.getResNo() + Value);
9825       ISD::ArgFlagsTy Flags;
9826 
9827       // Certain targets (such as MIPS), may have a different ABI alignment
9828       // for a type depending on the context. Give the target a chance to
9829       // specify the alignment it wants.
9830       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9831       Flags.setOrigAlign(OriginalAlignment);
9832 
9833       if (Args[i].Ty->isPointerTy()) {
9834         Flags.setPointer();
9835         Flags.setPointerAddrSpace(
9836             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9837       }
9838       if (Args[i].IsZExt)
9839         Flags.setZExt();
9840       if (Args[i].IsSExt)
9841         Flags.setSExt();
9842       if (Args[i].IsInReg) {
9843         // If we are using vectorcall calling convention, a structure that is
9844         // passed InReg - is surely an HVA
9845         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9846             isa<StructType>(FinalType)) {
9847           // The first value of a structure is marked
9848           if (0 == Value)
9849             Flags.setHvaStart();
9850           Flags.setHva();
9851         }
9852         // Set InReg Flag
9853         Flags.setInReg();
9854       }
9855       if (Args[i].IsSRet)
9856         Flags.setSRet();
9857       if (Args[i].IsSwiftSelf)
9858         Flags.setSwiftSelf();
9859       if (Args[i].IsSwiftAsync)
9860         Flags.setSwiftAsync();
9861       if (Args[i].IsSwiftError)
9862         Flags.setSwiftError();
9863       if (Args[i].IsCFGuardTarget)
9864         Flags.setCFGuardTarget();
9865       if (Args[i].IsByVal)
9866         Flags.setByVal();
9867       if (Args[i].IsByRef)
9868         Flags.setByRef();
9869       if (Args[i].IsPreallocated) {
9870         Flags.setPreallocated();
9871         // Set the byval flag for CCAssignFn callbacks that don't know about
9872         // preallocated.  This way we can know how many bytes we should've
9873         // allocated and how many bytes a callee cleanup function will pop.  If
9874         // we port preallocated to more targets, we'll have to add custom
9875         // preallocated handling in the various CC lowering callbacks.
9876         Flags.setByVal();
9877       }
9878       if (Args[i].IsInAlloca) {
9879         Flags.setInAlloca();
9880         // Set the byval flag for CCAssignFn callbacks that don't know about
9881         // inalloca.  This way we can know how many bytes we should've allocated
9882         // and how many bytes a callee cleanup function will pop.  If we port
9883         // inalloca to more targets, we'll have to add custom inalloca handling
9884         // in the various CC lowering callbacks.
9885         Flags.setByVal();
9886       }
9887       Align MemAlign;
9888       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9889         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9890         Flags.setByValSize(FrameSize);
9891 
9892         // info is not there but there are cases it cannot get right.
9893         if (auto MA = Args[i].Alignment)
9894           MemAlign = *MA;
9895         else
9896           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9897       } else if (auto MA = Args[i].Alignment) {
9898         MemAlign = *MA;
9899       } else {
9900         MemAlign = OriginalAlignment;
9901       }
9902       Flags.setMemAlign(MemAlign);
9903       if (Args[i].IsNest)
9904         Flags.setNest();
9905       if (NeedsRegBlock)
9906         Flags.setInConsecutiveRegs();
9907 
9908       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9909                                                  CLI.CallConv, VT);
9910       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9911                                                         CLI.CallConv, VT);
9912       SmallVector<SDValue, 4> Parts(NumParts);
9913       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9914 
9915       if (Args[i].IsSExt)
9916         ExtendKind = ISD::SIGN_EXTEND;
9917       else if (Args[i].IsZExt)
9918         ExtendKind = ISD::ZERO_EXTEND;
9919 
9920       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9921       // for now.
9922       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9923           CanLowerReturn) {
9924         assert((CLI.RetTy == Args[i].Ty ||
9925                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9926                  CLI.RetTy->getPointerAddressSpace() ==
9927                      Args[i].Ty->getPointerAddressSpace())) &&
9928                RetTys.size() == NumValues && "unexpected use of 'returned'");
9929         // Before passing 'returned' to the target lowering code, ensure that
9930         // either the register MVT and the actual EVT are the same size or that
9931         // the return value and argument are extended in the same way; in these
9932         // cases it's safe to pass the argument register value unchanged as the
9933         // return register value (although it's at the target's option whether
9934         // to do so)
9935         // TODO: allow code generation to take advantage of partially preserved
9936         // registers rather than clobbering the entire register when the
9937         // parameter extension method is not compatible with the return
9938         // extension method
9939         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9940             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9941              CLI.RetZExt == Args[i].IsZExt))
9942           Flags.setReturned();
9943       }
9944 
9945       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9946                      CLI.CallConv, ExtendKind);
9947 
9948       for (unsigned j = 0; j != NumParts; ++j) {
9949         // if it isn't first piece, alignment must be 1
9950         // For scalable vectors the scalable part is currently handled
9951         // by individual targets, so we just use the known minimum size here.
9952         ISD::OutputArg MyFlags(
9953             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9954             i < CLI.NumFixedArgs, i,
9955             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9956         if (NumParts > 1 && j == 0)
9957           MyFlags.Flags.setSplit();
9958         else if (j != 0) {
9959           MyFlags.Flags.setOrigAlign(Align(1));
9960           if (j == NumParts - 1)
9961             MyFlags.Flags.setSplitEnd();
9962         }
9963 
9964         CLI.Outs.push_back(MyFlags);
9965         CLI.OutVals.push_back(Parts[j]);
9966       }
9967 
9968       if (NeedsRegBlock && Value == NumValues - 1)
9969         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9970     }
9971   }
9972 
9973   SmallVector<SDValue, 4> InVals;
9974   CLI.Chain = LowerCall(CLI, InVals);
9975 
9976   // Update CLI.InVals to use outside of this function.
9977   CLI.InVals = InVals;
9978 
9979   // Verify that the target's LowerCall behaved as expected.
9980   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9981          "LowerCall didn't return a valid chain!");
9982   assert((!CLI.IsTailCall || InVals.empty()) &&
9983          "LowerCall emitted a return value for a tail call!");
9984   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9985          "LowerCall didn't emit the correct number of values!");
9986 
9987   // For a tail call, the return value is merely live-out and there aren't
9988   // any nodes in the DAG representing it. Return a special value to
9989   // indicate that a tail call has been emitted and no more Instructions
9990   // should be processed in the current block.
9991   if (CLI.IsTailCall) {
9992     CLI.DAG.setRoot(CLI.Chain);
9993     return std::make_pair(SDValue(), SDValue());
9994   }
9995 
9996 #ifndef NDEBUG
9997   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9998     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9999     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10000            "LowerCall emitted a value with the wrong type!");
10001   }
10002 #endif
10003 
10004   SmallVector<SDValue, 4> ReturnValues;
10005   if (!CanLowerReturn) {
10006     // The instruction result is the result of loading from the
10007     // hidden sret parameter.
10008     SmallVector<EVT, 1> PVTs;
10009     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10010 
10011     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10012     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10013     EVT PtrVT = PVTs[0];
10014 
10015     unsigned NumValues = RetTys.size();
10016     ReturnValues.resize(NumValues);
10017     SmallVector<SDValue, 4> Chains(NumValues);
10018 
10019     // An aggregate return value cannot wrap around the address space, so
10020     // offsets to its parts don't wrap either.
10021     SDNodeFlags Flags;
10022     Flags.setNoUnsignedWrap(true);
10023 
10024     MachineFunction &MF = CLI.DAG.getMachineFunction();
10025     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10026     for (unsigned i = 0; i < NumValues; ++i) {
10027       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10028                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10029                                                         PtrVT), Flags);
10030       SDValue L = CLI.DAG.getLoad(
10031           RetTys[i], CLI.DL, CLI.Chain, Add,
10032           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10033                                             DemoteStackIdx, Offsets[i]),
10034           HiddenSRetAlign);
10035       ReturnValues[i] = L;
10036       Chains[i] = L.getValue(1);
10037     }
10038 
10039     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10040   } else {
10041     // Collect the legal value parts into potentially illegal values
10042     // that correspond to the original function's return values.
10043     Optional<ISD::NodeType> AssertOp;
10044     if (CLI.RetSExt)
10045       AssertOp = ISD::AssertSext;
10046     else if (CLI.RetZExt)
10047       AssertOp = ISD::AssertZext;
10048     unsigned CurReg = 0;
10049     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10050       EVT VT = RetTys[I];
10051       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10052                                                      CLI.CallConv, VT);
10053       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10054                                                        CLI.CallConv, VT);
10055 
10056       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10057                                               NumRegs, RegisterVT, VT, nullptr,
10058                                               CLI.CallConv, AssertOp));
10059       CurReg += NumRegs;
10060     }
10061 
10062     // For a function returning void, there is no return value. We can't create
10063     // such a node, so we just return a null return value in that case. In
10064     // that case, nothing will actually look at the value.
10065     if (ReturnValues.empty())
10066       return std::make_pair(SDValue(), CLI.Chain);
10067   }
10068 
10069   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10070                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10071   return std::make_pair(Res, CLI.Chain);
10072 }
10073 
10074 /// Places new result values for the node in Results (their number
10075 /// and types must exactly match those of the original return values of
10076 /// the node), or leaves Results empty, which indicates that the node is not
10077 /// to be custom lowered after all.
10078 void TargetLowering::LowerOperationWrapper(SDNode *N,
10079                                            SmallVectorImpl<SDValue> &Results,
10080                                            SelectionDAG &DAG) const {
10081   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10082 
10083   if (!Res.getNode())
10084     return;
10085 
10086   // If the original node has one result, take the return value from
10087   // LowerOperation as is. It might not be result number 0.
10088   if (N->getNumValues() == 1) {
10089     Results.push_back(Res);
10090     return;
10091   }
10092 
10093   // If the original node has multiple results, then the return node should
10094   // have the same number of results.
10095   assert((N->getNumValues() == Res->getNumValues()) &&
10096       "Lowering returned the wrong number of results!");
10097 
10098   // Places new result values base on N result number.
10099   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10100     Results.push_back(Res.getValue(I));
10101 }
10102 
10103 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10104   llvm_unreachable("LowerOperation not implemented for this target!");
10105 }
10106 
10107 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10108                                                      unsigned Reg,
10109                                                      ISD::NodeType ExtendType) {
10110   SDValue Op = getNonRegisterValue(V);
10111   assert((Op.getOpcode() != ISD::CopyFromReg ||
10112           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10113          "Copy from a reg to the same reg!");
10114   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10115 
10116   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10117   // If this is an InlineAsm we have to match the registers required, not the
10118   // notional registers required by the type.
10119 
10120   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10121                    None); // This is not an ABI copy.
10122   SDValue Chain = DAG.getEntryNode();
10123 
10124   if (ExtendType == ISD::ANY_EXTEND) {
10125     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10126     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10127       ExtendType = PreferredExtendIt->second;
10128   }
10129   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10130   PendingExports.push_back(Chain);
10131 }
10132 
10133 #include "llvm/CodeGen/SelectionDAGISel.h"
10134 
10135 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10136 /// entry block, return true.  This includes arguments used by switches, since
10137 /// the switch may expand into multiple basic blocks.
10138 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10139   // With FastISel active, we may be splitting blocks, so force creation
10140   // of virtual registers for all non-dead arguments.
10141   if (FastISel)
10142     return A->use_empty();
10143 
10144   const BasicBlock &Entry = A->getParent()->front();
10145   for (const User *U : A->users())
10146     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10147       return false;  // Use not in entry block.
10148 
10149   return true;
10150 }
10151 
10152 using ArgCopyElisionMapTy =
10153     DenseMap<const Argument *,
10154              std::pair<const AllocaInst *, const StoreInst *>>;
10155 
10156 /// Scan the entry block of the function in FuncInfo for arguments that look
10157 /// like copies into a local alloca. Record any copied arguments in
10158 /// ArgCopyElisionCandidates.
10159 static void
10160 findArgumentCopyElisionCandidates(const DataLayout &DL,
10161                                   FunctionLoweringInfo *FuncInfo,
10162                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10163   // Record the state of every static alloca used in the entry block. Argument
10164   // allocas are all used in the entry block, so we need approximately as many
10165   // entries as we have arguments.
10166   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10167   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10168   unsigned NumArgs = FuncInfo->Fn->arg_size();
10169   StaticAllocas.reserve(NumArgs * 2);
10170 
10171   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10172     if (!V)
10173       return nullptr;
10174     V = V->stripPointerCasts();
10175     const auto *AI = dyn_cast<AllocaInst>(V);
10176     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10177       return nullptr;
10178     auto Iter = StaticAllocas.insert({AI, Unknown});
10179     return &Iter.first->second;
10180   };
10181 
10182   // Look for stores of arguments to static allocas. Look through bitcasts and
10183   // GEPs to handle type coercions, as long as the alloca is fully initialized
10184   // by the store. Any non-store use of an alloca escapes it and any subsequent
10185   // unanalyzed store might write it.
10186   // FIXME: Handle structs initialized with multiple stores.
10187   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10188     // Look for stores, and handle non-store uses conservatively.
10189     const auto *SI = dyn_cast<StoreInst>(&I);
10190     if (!SI) {
10191       // We will look through cast uses, so ignore them completely.
10192       if (I.isCast())
10193         continue;
10194       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10195       // to allocas.
10196       if (I.isDebugOrPseudoInst())
10197         continue;
10198       // This is an unknown instruction. Assume it escapes or writes to all
10199       // static alloca operands.
10200       for (const Use &U : I.operands()) {
10201         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10202           *Info = StaticAllocaInfo::Clobbered;
10203       }
10204       continue;
10205     }
10206 
10207     // If the stored value is a static alloca, mark it as escaped.
10208     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10209       *Info = StaticAllocaInfo::Clobbered;
10210 
10211     // Check if the destination is a static alloca.
10212     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10213     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10214     if (!Info)
10215       continue;
10216     const AllocaInst *AI = cast<AllocaInst>(Dst);
10217 
10218     // Skip allocas that have been initialized or clobbered.
10219     if (*Info != StaticAllocaInfo::Unknown)
10220       continue;
10221 
10222     // Check if the stored value is an argument, and that this store fully
10223     // initializes the alloca.
10224     // If the argument type has padding bits we can't directly forward a pointer
10225     // as the upper bits may contain garbage.
10226     // Don't elide copies from the same argument twice.
10227     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10228     const auto *Arg = dyn_cast<Argument>(Val);
10229     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10230         Arg->getType()->isEmptyTy() ||
10231         DL.getTypeStoreSize(Arg->getType()) !=
10232             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10233         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10234         ArgCopyElisionCandidates.count(Arg)) {
10235       *Info = StaticAllocaInfo::Clobbered;
10236       continue;
10237     }
10238 
10239     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10240                       << '\n');
10241 
10242     // Mark this alloca and store for argument copy elision.
10243     *Info = StaticAllocaInfo::Elidable;
10244     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10245 
10246     // Stop scanning if we've seen all arguments. This will happen early in -O0
10247     // builds, which is useful, because -O0 builds have large entry blocks and
10248     // many allocas.
10249     if (ArgCopyElisionCandidates.size() == NumArgs)
10250       break;
10251   }
10252 }
10253 
10254 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10255 /// ArgVal is a load from a suitable fixed stack object.
10256 static void tryToElideArgumentCopy(
10257     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10258     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10259     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10260     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10261     SDValue ArgVal, bool &ArgHasUses) {
10262   // Check if this is a load from a fixed stack object.
10263   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10264   if (!LNode)
10265     return;
10266   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10267   if (!FINode)
10268     return;
10269 
10270   // Check that the fixed stack object is the right size and alignment.
10271   // Look at the alignment that the user wrote on the alloca instead of looking
10272   // at the stack object.
10273   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10274   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10275   const AllocaInst *AI = ArgCopyIter->second.first;
10276   int FixedIndex = FINode->getIndex();
10277   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10278   int OldIndex = AllocaIndex;
10279   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10280   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10281     LLVM_DEBUG(
10282         dbgs() << "  argument copy elision failed due to bad fixed stack "
10283                   "object size\n");
10284     return;
10285   }
10286   Align RequiredAlignment = AI->getAlign();
10287   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10288     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10289                          "greater than stack argument alignment ("
10290                       << DebugStr(RequiredAlignment) << " vs "
10291                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10292     return;
10293   }
10294 
10295   // Perform the elision. Delete the old stack object and replace its only use
10296   // in the variable info map. Mark the stack object as mutable.
10297   LLVM_DEBUG({
10298     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10299            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10300            << '\n';
10301   });
10302   MFI.RemoveStackObject(OldIndex);
10303   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10304   AllocaIndex = FixedIndex;
10305   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10306   Chains.push_back(ArgVal.getValue(1));
10307 
10308   // Avoid emitting code for the store implementing the copy.
10309   const StoreInst *SI = ArgCopyIter->second.second;
10310   ElidedArgCopyInstrs.insert(SI);
10311 
10312   // Check for uses of the argument again so that we can avoid exporting ArgVal
10313   // if it is't used by anything other than the store.
10314   for (const Value *U : Arg.users()) {
10315     if (U != SI) {
10316       ArgHasUses = true;
10317       break;
10318     }
10319   }
10320 }
10321 
10322 void SelectionDAGISel::LowerArguments(const Function &F) {
10323   SelectionDAG &DAG = SDB->DAG;
10324   SDLoc dl = SDB->getCurSDLoc();
10325   const DataLayout &DL = DAG.getDataLayout();
10326   SmallVector<ISD::InputArg, 16> Ins;
10327 
10328   // In Naked functions we aren't going to save any registers.
10329   if (F.hasFnAttribute(Attribute::Naked))
10330     return;
10331 
10332   if (!FuncInfo->CanLowerReturn) {
10333     // Put in an sret pointer parameter before all the other parameters.
10334     SmallVector<EVT, 1> ValueVTs;
10335     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10336                     F.getReturnType()->getPointerTo(
10337                         DAG.getDataLayout().getAllocaAddrSpace()),
10338                     ValueVTs);
10339 
10340     // NOTE: Assuming that a pointer will never break down to more than one VT
10341     // or one register.
10342     ISD::ArgFlagsTy Flags;
10343     Flags.setSRet();
10344     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10345     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10346                          ISD::InputArg::NoArgIndex, 0);
10347     Ins.push_back(RetArg);
10348   }
10349 
10350   // Look for stores of arguments to static allocas. Mark such arguments with a
10351   // flag to ask the target to give us the memory location of that argument if
10352   // available.
10353   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10354   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10355                                     ArgCopyElisionCandidates);
10356 
10357   // Set up the incoming argument description vector.
10358   for (const Argument &Arg : F.args()) {
10359     unsigned ArgNo = Arg.getArgNo();
10360     SmallVector<EVT, 4> ValueVTs;
10361     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10362     bool isArgValueUsed = !Arg.use_empty();
10363     unsigned PartBase = 0;
10364     Type *FinalType = Arg.getType();
10365     if (Arg.hasAttribute(Attribute::ByVal))
10366       FinalType = Arg.getParamByValType();
10367     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10368         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10369     for (unsigned Value = 0, NumValues = ValueVTs.size();
10370          Value != NumValues; ++Value) {
10371       EVT VT = ValueVTs[Value];
10372       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10373       ISD::ArgFlagsTy Flags;
10374 
10375 
10376       if (Arg.getType()->isPointerTy()) {
10377         Flags.setPointer();
10378         Flags.setPointerAddrSpace(
10379             cast<PointerType>(Arg.getType())->getAddressSpace());
10380       }
10381       if (Arg.hasAttribute(Attribute::ZExt))
10382         Flags.setZExt();
10383       if (Arg.hasAttribute(Attribute::SExt))
10384         Flags.setSExt();
10385       if (Arg.hasAttribute(Attribute::InReg)) {
10386         // If we are using vectorcall calling convention, a structure that is
10387         // passed InReg - is surely an HVA
10388         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10389             isa<StructType>(Arg.getType())) {
10390           // The first value of a structure is marked
10391           if (0 == Value)
10392             Flags.setHvaStart();
10393           Flags.setHva();
10394         }
10395         // Set InReg Flag
10396         Flags.setInReg();
10397       }
10398       if (Arg.hasAttribute(Attribute::StructRet))
10399         Flags.setSRet();
10400       if (Arg.hasAttribute(Attribute::SwiftSelf))
10401         Flags.setSwiftSelf();
10402       if (Arg.hasAttribute(Attribute::SwiftAsync))
10403         Flags.setSwiftAsync();
10404       if (Arg.hasAttribute(Attribute::SwiftError))
10405         Flags.setSwiftError();
10406       if (Arg.hasAttribute(Attribute::ByVal))
10407         Flags.setByVal();
10408       if (Arg.hasAttribute(Attribute::ByRef))
10409         Flags.setByRef();
10410       if (Arg.hasAttribute(Attribute::InAlloca)) {
10411         Flags.setInAlloca();
10412         // Set the byval flag for CCAssignFn callbacks that don't know about
10413         // inalloca.  This way we can know how many bytes we should've allocated
10414         // and how many bytes a callee cleanup function will pop.  If we port
10415         // inalloca to more targets, we'll have to add custom inalloca handling
10416         // in the various CC lowering callbacks.
10417         Flags.setByVal();
10418       }
10419       if (Arg.hasAttribute(Attribute::Preallocated)) {
10420         Flags.setPreallocated();
10421         // Set the byval flag for CCAssignFn callbacks that don't know about
10422         // preallocated.  This way we can know how many bytes we should've
10423         // allocated and how many bytes a callee cleanup function will pop.  If
10424         // we port preallocated to more targets, we'll have to add custom
10425         // preallocated handling in the various CC lowering callbacks.
10426         Flags.setByVal();
10427       }
10428 
10429       // Certain targets (such as MIPS), may have a different ABI alignment
10430       // for a type depending on the context. Give the target a chance to
10431       // specify the alignment it wants.
10432       const Align OriginalAlignment(
10433           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10434       Flags.setOrigAlign(OriginalAlignment);
10435 
10436       Align MemAlign;
10437       Type *ArgMemTy = nullptr;
10438       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10439           Flags.isByRef()) {
10440         if (!ArgMemTy)
10441           ArgMemTy = Arg.getPointeeInMemoryValueType();
10442 
10443         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10444 
10445         // For in-memory arguments, size and alignment should be passed from FE.
10446         // BE will guess if this info is not there but there are cases it cannot
10447         // get right.
10448         if (auto ParamAlign = Arg.getParamStackAlign())
10449           MemAlign = *ParamAlign;
10450         else if ((ParamAlign = Arg.getParamAlign()))
10451           MemAlign = *ParamAlign;
10452         else
10453           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10454         if (Flags.isByRef())
10455           Flags.setByRefSize(MemSize);
10456         else
10457           Flags.setByValSize(MemSize);
10458       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10459         MemAlign = *ParamAlign;
10460       } else {
10461         MemAlign = OriginalAlignment;
10462       }
10463       Flags.setMemAlign(MemAlign);
10464 
10465       if (Arg.hasAttribute(Attribute::Nest))
10466         Flags.setNest();
10467       if (NeedsRegBlock)
10468         Flags.setInConsecutiveRegs();
10469       if (ArgCopyElisionCandidates.count(&Arg))
10470         Flags.setCopyElisionCandidate();
10471       if (Arg.hasAttribute(Attribute::Returned))
10472         Flags.setReturned();
10473 
10474       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10475           *CurDAG->getContext(), F.getCallingConv(), VT);
10476       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10477           *CurDAG->getContext(), F.getCallingConv(), VT);
10478       for (unsigned i = 0; i != NumRegs; ++i) {
10479         // For scalable vectors, use the minimum size; individual targets
10480         // are responsible for handling scalable vector arguments and
10481         // return values.
10482         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10483                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10484         if (NumRegs > 1 && i == 0)
10485           MyFlags.Flags.setSplit();
10486         // if it isn't first piece, alignment must be 1
10487         else if (i > 0) {
10488           MyFlags.Flags.setOrigAlign(Align(1));
10489           if (i == NumRegs - 1)
10490             MyFlags.Flags.setSplitEnd();
10491         }
10492         Ins.push_back(MyFlags);
10493       }
10494       if (NeedsRegBlock && Value == NumValues - 1)
10495         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10496       PartBase += VT.getStoreSize().getKnownMinSize();
10497     }
10498   }
10499 
10500   // Call the target to set up the argument values.
10501   SmallVector<SDValue, 8> InVals;
10502   SDValue NewRoot = TLI->LowerFormalArguments(
10503       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10504 
10505   // Verify that the target's LowerFormalArguments behaved as expected.
10506   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10507          "LowerFormalArguments didn't return a valid chain!");
10508   assert(InVals.size() == Ins.size() &&
10509          "LowerFormalArguments didn't emit the correct number of values!");
10510   LLVM_DEBUG({
10511     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10512       assert(InVals[i].getNode() &&
10513              "LowerFormalArguments emitted a null value!");
10514       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10515              "LowerFormalArguments emitted a value with the wrong type!");
10516     }
10517   });
10518 
10519   // Update the DAG with the new chain value resulting from argument lowering.
10520   DAG.setRoot(NewRoot);
10521 
10522   // Set up the argument values.
10523   unsigned i = 0;
10524   if (!FuncInfo->CanLowerReturn) {
10525     // Create a virtual register for the sret pointer, and put in a copy
10526     // from the sret argument into it.
10527     SmallVector<EVT, 1> ValueVTs;
10528     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10529                     F.getReturnType()->getPointerTo(
10530                         DAG.getDataLayout().getAllocaAddrSpace()),
10531                     ValueVTs);
10532     MVT VT = ValueVTs[0].getSimpleVT();
10533     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10534     Optional<ISD::NodeType> AssertOp;
10535     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10536                                         nullptr, F.getCallingConv(), AssertOp);
10537 
10538     MachineFunction& MF = SDB->DAG.getMachineFunction();
10539     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10540     Register SRetReg =
10541         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10542     FuncInfo->DemoteRegister = SRetReg;
10543     NewRoot =
10544         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10545     DAG.setRoot(NewRoot);
10546 
10547     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10548     ++i;
10549   }
10550 
10551   SmallVector<SDValue, 4> Chains;
10552   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10553   for (const Argument &Arg : F.args()) {
10554     SmallVector<SDValue, 4> ArgValues;
10555     SmallVector<EVT, 4> ValueVTs;
10556     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10557     unsigned NumValues = ValueVTs.size();
10558     if (NumValues == 0)
10559       continue;
10560 
10561     bool ArgHasUses = !Arg.use_empty();
10562 
10563     // Elide the copying store if the target loaded this argument from a
10564     // suitable fixed stack object.
10565     if (Ins[i].Flags.isCopyElisionCandidate()) {
10566       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10567                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10568                              InVals[i], ArgHasUses);
10569     }
10570 
10571     // If this argument is unused then remember its value. It is used to generate
10572     // debugging information.
10573     bool isSwiftErrorArg =
10574         TLI->supportSwiftError() &&
10575         Arg.hasAttribute(Attribute::SwiftError);
10576     if (!ArgHasUses && !isSwiftErrorArg) {
10577       SDB->setUnusedArgValue(&Arg, InVals[i]);
10578 
10579       // Also remember any frame index for use in FastISel.
10580       if (FrameIndexSDNode *FI =
10581           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10582         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10583     }
10584 
10585     for (unsigned Val = 0; Val != NumValues; ++Val) {
10586       EVT VT = ValueVTs[Val];
10587       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10588                                                       F.getCallingConv(), VT);
10589       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10590           *CurDAG->getContext(), F.getCallingConv(), VT);
10591 
10592       // Even an apparent 'unused' swifterror argument needs to be returned. So
10593       // we do generate a copy for it that can be used on return from the
10594       // function.
10595       if (ArgHasUses || isSwiftErrorArg) {
10596         Optional<ISD::NodeType> AssertOp;
10597         if (Arg.hasAttribute(Attribute::SExt))
10598           AssertOp = ISD::AssertSext;
10599         else if (Arg.hasAttribute(Attribute::ZExt))
10600           AssertOp = ISD::AssertZext;
10601 
10602         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10603                                              PartVT, VT, nullptr,
10604                                              F.getCallingConv(), AssertOp));
10605       }
10606 
10607       i += NumParts;
10608     }
10609 
10610     // We don't need to do anything else for unused arguments.
10611     if (ArgValues.empty())
10612       continue;
10613 
10614     // Note down frame index.
10615     if (FrameIndexSDNode *FI =
10616         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10617       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10618 
10619     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10620                                      SDB->getCurSDLoc());
10621 
10622     SDB->setValue(&Arg, Res);
10623     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10624       // We want to associate the argument with the frame index, among
10625       // involved operands, that correspond to the lowest address. The
10626       // getCopyFromParts function, called earlier, is swapping the order of
10627       // the operands to BUILD_PAIR depending on endianness. The result of
10628       // that swapping is that the least significant bits of the argument will
10629       // be in the first operand of the BUILD_PAIR node, and the most
10630       // significant bits will be in the second operand.
10631       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10632       if (LoadSDNode *LNode =
10633           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10634         if (FrameIndexSDNode *FI =
10635             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10636           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10637     }
10638 
10639     // Analyses past this point are naive and don't expect an assertion.
10640     if (Res.getOpcode() == ISD::AssertZext)
10641       Res = Res.getOperand(0);
10642 
10643     // Update the SwiftErrorVRegDefMap.
10644     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10645       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10646       if (Register::isVirtualRegister(Reg))
10647         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10648                                    Reg);
10649     }
10650 
10651     // If this argument is live outside of the entry block, insert a copy from
10652     // wherever we got it to the vreg that other BB's will reference it as.
10653     if (Res.getOpcode() == ISD::CopyFromReg) {
10654       // If we can, though, try to skip creating an unnecessary vreg.
10655       // FIXME: This isn't very clean... it would be nice to make this more
10656       // general.
10657       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10658       if (Register::isVirtualRegister(Reg)) {
10659         FuncInfo->ValueMap[&Arg] = Reg;
10660         continue;
10661       }
10662     }
10663     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10664       FuncInfo->InitializeRegForValue(&Arg);
10665       SDB->CopyToExportRegsIfNeeded(&Arg);
10666     }
10667   }
10668 
10669   if (!Chains.empty()) {
10670     Chains.push_back(NewRoot);
10671     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10672   }
10673 
10674   DAG.setRoot(NewRoot);
10675 
10676   assert(i == InVals.size() && "Argument register count mismatch!");
10677 
10678   // If any argument copy elisions occurred and we have debug info, update the
10679   // stale frame indices used in the dbg.declare variable info table.
10680   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10681   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10682     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10683       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10684       if (I != ArgCopyElisionFrameIndexMap.end())
10685         VI.Slot = I->second;
10686     }
10687   }
10688 
10689   // Finally, if the target has anything special to do, allow it to do so.
10690   emitFunctionEntryCode();
10691 }
10692 
10693 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10694 /// ensure constants are generated when needed.  Remember the virtual registers
10695 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10696 /// directly add them, because expansion might result in multiple MBB's for one
10697 /// BB.  As such, the start of the BB might correspond to a different MBB than
10698 /// the end.
10699 void
10700 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10701   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10702   const Instruction *TI = LLVMBB->getTerminator();
10703 
10704   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10705 
10706   // Check PHI nodes in successors that expect a value to be available from this
10707   // block.
10708   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10709     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10710     if (!isa<PHINode>(SuccBB->begin())) continue;
10711     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10712 
10713     // If this terminator has multiple identical successors (common for
10714     // switches), only handle each succ once.
10715     if (!SuccsHandled.insert(SuccMBB).second)
10716       continue;
10717 
10718     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10719 
10720     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10721     // nodes and Machine PHI nodes, but the incoming operands have not been
10722     // emitted yet.
10723     for (const PHINode &PN : SuccBB->phis()) {
10724       // Ignore dead phi's.
10725       if (PN.use_empty())
10726         continue;
10727 
10728       // Skip empty types
10729       if (PN.getType()->isEmptyTy())
10730         continue;
10731 
10732       unsigned Reg;
10733       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10734 
10735       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10736         unsigned &RegOut = ConstantsOut[C];
10737         if (RegOut == 0) {
10738           RegOut = FuncInfo.CreateRegs(C);
10739           // We need to zero/sign extend ConstantInt phi operands to match
10740           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10741           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10742           if (auto *CI = dyn_cast<ConstantInt>(C))
10743             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10744                                                     : ISD::ZERO_EXTEND;
10745           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10746         }
10747         Reg = RegOut;
10748       } else {
10749         DenseMap<const Value *, Register>::iterator I =
10750           FuncInfo.ValueMap.find(PHIOp);
10751         if (I != FuncInfo.ValueMap.end())
10752           Reg = I->second;
10753         else {
10754           assert(isa<AllocaInst>(PHIOp) &&
10755                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10756                  "Didn't codegen value into a register!??");
10757           Reg = FuncInfo.CreateRegs(PHIOp);
10758           CopyValueToVirtualRegister(PHIOp, Reg);
10759         }
10760       }
10761 
10762       // Remember that this register needs to added to the machine PHI node as
10763       // the input for this MBB.
10764       SmallVector<EVT, 4> ValueVTs;
10765       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10766       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10767         EVT VT = ValueVTs[vti];
10768         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10769         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10770           FuncInfo.PHINodesToUpdate.push_back(
10771               std::make_pair(&*MBBI++, Reg + i));
10772         Reg += NumRegisters;
10773       }
10774     }
10775   }
10776 
10777   ConstantsOut.clear();
10778 }
10779 
10780 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10781   MachineFunction::iterator I(MBB);
10782   if (++I == FuncInfo.MF->end())
10783     return nullptr;
10784   return &*I;
10785 }
10786 
10787 /// During lowering new call nodes can be created (such as memset, etc.).
10788 /// Those will become new roots of the current DAG, but complications arise
10789 /// when they are tail calls. In such cases, the call lowering will update
10790 /// the root, but the builder still needs to know that a tail call has been
10791 /// lowered in order to avoid generating an additional return.
10792 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10793   // If the node is null, we do have a tail call.
10794   if (MaybeTC.getNode() != nullptr)
10795     DAG.setRoot(MaybeTC);
10796   else
10797     HasTailCall = true;
10798 }
10799 
10800 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10801                                         MachineBasicBlock *SwitchMBB,
10802                                         MachineBasicBlock *DefaultMBB) {
10803   MachineFunction *CurMF = FuncInfo.MF;
10804   MachineBasicBlock *NextMBB = nullptr;
10805   MachineFunction::iterator BBI(W.MBB);
10806   if (++BBI != FuncInfo.MF->end())
10807     NextMBB = &*BBI;
10808 
10809   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10810 
10811   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10812 
10813   if (Size == 2 && W.MBB == SwitchMBB) {
10814     // If any two of the cases has the same destination, and if one value
10815     // is the same as the other, but has one bit unset that the other has set,
10816     // use bit manipulation to do two compares at once.  For example:
10817     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10818     // TODO: This could be extended to merge any 2 cases in switches with 3
10819     // cases.
10820     // TODO: Handle cases where W.CaseBB != SwitchBB.
10821     CaseCluster &Small = *W.FirstCluster;
10822     CaseCluster &Big = *W.LastCluster;
10823 
10824     if (Small.Low == Small.High && Big.Low == Big.High &&
10825         Small.MBB == Big.MBB) {
10826       const APInt &SmallValue = Small.Low->getValue();
10827       const APInt &BigValue = Big.Low->getValue();
10828 
10829       // Check that there is only one bit different.
10830       APInt CommonBit = BigValue ^ SmallValue;
10831       if (CommonBit.isPowerOf2()) {
10832         SDValue CondLHS = getValue(Cond);
10833         EVT VT = CondLHS.getValueType();
10834         SDLoc DL = getCurSDLoc();
10835 
10836         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10837                                  DAG.getConstant(CommonBit, DL, VT));
10838         SDValue Cond = DAG.getSetCC(
10839             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10840             ISD::SETEQ);
10841 
10842         // Update successor info.
10843         // Both Small and Big will jump to Small.BB, so we sum up the
10844         // probabilities.
10845         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10846         if (BPI)
10847           addSuccessorWithProb(
10848               SwitchMBB, DefaultMBB,
10849               // The default destination is the first successor in IR.
10850               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10851         else
10852           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10853 
10854         // Insert the true branch.
10855         SDValue BrCond =
10856             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10857                         DAG.getBasicBlock(Small.MBB));
10858         // Insert the false branch.
10859         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10860                              DAG.getBasicBlock(DefaultMBB));
10861 
10862         DAG.setRoot(BrCond);
10863         return;
10864       }
10865     }
10866   }
10867 
10868   if (TM.getOptLevel() != CodeGenOpt::None) {
10869     // Here, we order cases by probability so the most likely case will be
10870     // checked first. However, two clusters can have the same probability in
10871     // which case their relative ordering is non-deterministic. So we use Low
10872     // as a tie-breaker as clusters are guaranteed to never overlap.
10873     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10874                [](const CaseCluster &a, const CaseCluster &b) {
10875       return a.Prob != b.Prob ?
10876              a.Prob > b.Prob :
10877              a.Low->getValue().slt(b.Low->getValue());
10878     });
10879 
10880     // Rearrange the case blocks so that the last one falls through if possible
10881     // without changing the order of probabilities.
10882     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10883       --I;
10884       if (I->Prob > W.LastCluster->Prob)
10885         break;
10886       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10887         std::swap(*I, *W.LastCluster);
10888         break;
10889       }
10890     }
10891   }
10892 
10893   // Compute total probability.
10894   BranchProbability DefaultProb = W.DefaultProb;
10895   BranchProbability UnhandledProbs = DefaultProb;
10896   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10897     UnhandledProbs += I->Prob;
10898 
10899   MachineBasicBlock *CurMBB = W.MBB;
10900   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10901     bool FallthroughUnreachable = false;
10902     MachineBasicBlock *Fallthrough;
10903     if (I == W.LastCluster) {
10904       // For the last cluster, fall through to the default destination.
10905       Fallthrough = DefaultMBB;
10906       FallthroughUnreachable = isa<UnreachableInst>(
10907           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10908     } else {
10909       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10910       CurMF->insert(BBI, Fallthrough);
10911       // Put Cond in a virtual register to make it available from the new blocks.
10912       ExportFromCurrentBlock(Cond);
10913     }
10914     UnhandledProbs -= I->Prob;
10915 
10916     switch (I->Kind) {
10917       case CC_JumpTable: {
10918         // FIXME: Optimize away range check based on pivot comparisons.
10919         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10920         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10921 
10922         // The jump block hasn't been inserted yet; insert it here.
10923         MachineBasicBlock *JumpMBB = JT->MBB;
10924         CurMF->insert(BBI, JumpMBB);
10925 
10926         auto JumpProb = I->Prob;
10927         auto FallthroughProb = UnhandledProbs;
10928 
10929         // If the default statement is a target of the jump table, we evenly
10930         // distribute the default probability to successors of CurMBB. Also
10931         // update the probability on the edge from JumpMBB to Fallthrough.
10932         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10933                                               SE = JumpMBB->succ_end();
10934              SI != SE; ++SI) {
10935           if (*SI == DefaultMBB) {
10936             JumpProb += DefaultProb / 2;
10937             FallthroughProb -= DefaultProb / 2;
10938             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10939             JumpMBB->normalizeSuccProbs();
10940             break;
10941           }
10942         }
10943 
10944         if (FallthroughUnreachable)
10945           JTH->FallthroughUnreachable = true;
10946 
10947         if (!JTH->FallthroughUnreachable)
10948           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10949         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10950         CurMBB->normalizeSuccProbs();
10951 
10952         // The jump table header will be inserted in our current block, do the
10953         // range check, and fall through to our fallthrough block.
10954         JTH->HeaderBB = CurMBB;
10955         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10956 
10957         // If we're in the right place, emit the jump table header right now.
10958         if (CurMBB == SwitchMBB) {
10959           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10960           JTH->Emitted = true;
10961         }
10962         break;
10963       }
10964       case CC_BitTests: {
10965         // FIXME: Optimize away range check based on pivot comparisons.
10966         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10967 
10968         // The bit test blocks haven't been inserted yet; insert them here.
10969         for (BitTestCase &BTC : BTB->Cases)
10970           CurMF->insert(BBI, BTC.ThisBB);
10971 
10972         // Fill in fields of the BitTestBlock.
10973         BTB->Parent = CurMBB;
10974         BTB->Default = Fallthrough;
10975 
10976         BTB->DefaultProb = UnhandledProbs;
10977         // If the cases in bit test don't form a contiguous range, we evenly
10978         // distribute the probability on the edge to Fallthrough to two
10979         // successors of CurMBB.
10980         if (!BTB->ContiguousRange) {
10981           BTB->Prob += DefaultProb / 2;
10982           BTB->DefaultProb -= DefaultProb / 2;
10983         }
10984 
10985         if (FallthroughUnreachable)
10986           BTB->FallthroughUnreachable = true;
10987 
10988         // If we're in the right place, emit the bit test header right now.
10989         if (CurMBB == SwitchMBB) {
10990           visitBitTestHeader(*BTB, SwitchMBB);
10991           BTB->Emitted = true;
10992         }
10993         break;
10994       }
10995       case CC_Range: {
10996         const Value *RHS, *LHS, *MHS;
10997         ISD::CondCode CC;
10998         if (I->Low == I->High) {
10999           // Check Cond == I->Low.
11000           CC = ISD::SETEQ;
11001           LHS = Cond;
11002           RHS=I->Low;
11003           MHS = nullptr;
11004         } else {
11005           // Check I->Low <= Cond <= I->High.
11006           CC = ISD::SETLE;
11007           LHS = I->Low;
11008           MHS = Cond;
11009           RHS = I->High;
11010         }
11011 
11012         // If Fallthrough is unreachable, fold away the comparison.
11013         if (FallthroughUnreachable)
11014           CC = ISD::SETTRUE;
11015 
11016         // The false probability is the sum of all unhandled cases.
11017         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11018                      getCurSDLoc(), I->Prob, UnhandledProbs);
11019 
11020         if (CurMBB == SwitchMBB)
11021           visitSwitchCase(CB, SwitchMBB);
11022         else
11023           SL->SwitchCases.push_back(CB);
11024 
11025         break;
11026       }
11027     }
11028     CurMBB = Fallthrough;
11029   }
11030 }
11031 
11032 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11033                                               CaseClusterIt First,
11034                                               CaseClusterIt Last) {
11035   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11036     if (X.Prob != CC.Prob)
11037       return X.Prob > CC.Prob;
11038 
11039     // Ties are broken by comparing the case value.
11040     return X.Low->getValue().slt(CC.Low->getValue());
11041   });
11042 }
11043 
11044 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11045                                         const SwitchWorkListItem &W,
11046                                         Value *Cond,
11047                                         MachineBasicBlock *SwitchMBB) {
11048   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11049          "Clusters not sorted?");
11050 
11051   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11052 
11053   // Balance the tree based on branch probabilities to create a near-optimal (in
11054   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11055   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11056   CaseClusterIt LastLeft = W.FirstCluster;
11057   CaseClusterIt FirstRight = W.LastCluster;
11058   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11059   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11060 
11061   // Move LastLeft and FirstRight towards each other from opposite directions to
11062   // find a partitioning of the clusters which balances the probability on both
11063   // sides. If LeftProb and RightProb are equal, alternate which side is
11064   // taken to ensure 0-probability nodes are distributed evenly.
11065   unsigned I = 0;
11066   while (LastLeft + 1 < FirstRight) {
11067     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11068       LeftProb += (++LastLeft)->Prob;
11069     else
11070       RightProb += (--FirstRight)->Prob;
11071     I++;
11072   }
11073 
11074   while (true) {
11075     // Our binary search tree differs from a typical BST in that ours can have up
11076     // to three values in each leaf. The pivot selection above doesn't take that
11077     // into account, which means the tree might require more nodes and be less
11078     // efficient. We compensate for this here.
11079 
11080     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11081     unsigned NumRight = W.LastCluster - FirstRight + 1;
11082 
11083     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11084       // If one side has less than 3 clusters, and the other has more than 3,
11085       // consider taking a cluster from the other side.
11086 
11087       if (NumLeft < NumRight) {
11088         // Consider moving the first cluster on the right to the left side.
11089         CaseCluster &CC = *FirstRight;
11090         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11091         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11092         if (LeftSideRank <= RightSideRank) {
11093           // Moving the cluster to the left does not demote it.
11094           ++LastLeft;
11095           ++FirstRight;
11096           continue;
11097         }
11098       } else {
11099         assert(NumRight < NumLeft);
11100         // Consider moving the last element on the left to the right side.
11101         CaseCluster &CC = *LastLeft;
11102         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11103         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11104         if (RightSideRank <= LeftSideRank) {
11105           // Moving the cluster to the right does not demot it.
11106           --LastLeft;
11107           --FirstRight;
11108           continue;
11109         }
11110       }
11111     }
11112     break;
11113   }
11114 
11115   assert(LastLeft + 1 == FirstRight);
11116   assert(LastLeft >= W.FirstCluster);
11117   assert(FirstRight <= W.LastCluster);
11118 
11119   // Use the first element on the right as pivot since we will make less-than
11120   // comparisons against it.
11121   CaseClusterIt PivotCluster = FirstRight;
11122   assert(PivotCluster > W.FirstCluster);
11123   assert(PivotCluster <= W.LastCluster);
11124 
11125   CaseClusterIt FirstLeft = W.FirstCluster;
11126   CaseClusterIt LastRight = W.LastCluster;
11127 
11128   const ConstantInt *Pivot = PivotCluster->Low;
11129 
11130   // New blocks will be inserted immediately after the current one.
11131   MachineFunction::iterator BBI(W.MBB);
11132   ++BBI;
11133 
11134   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11135   // we can branch to its destination directly if it's squeezed exactly in
11136   // between the known lower bound and Pivot - 1.
11137   MachineBasicBlock *LeftMBB;
11138   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11139       FirstLeft->Low == W.GE &&
11140       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11141     LeftMBB = FirstLeft->MBB;
11142   } else {
11143     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11144     FuncInfo.MF->insert(BBI, LeftMBB);
11145     WorkList.push_back(
11146         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11147     // Put Cond in a virtual register to make it available from the new blocks.
11148     ExportFromCurrentBlock(Cond);
11149   }
11150 
11151   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11152   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11153   // directly if RHS.High equals the current upper bound.
11154   MachineBasicBlock *RightMBB;
11155   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11156       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11157     RightMBB = FirstRight->MBB;
11158   } else {
11159     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11160     FuncInfo.MF->insert(BBI, RightMBB);
11161     WorkList.push_back(
11162         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11163     // Put Cond in a virtual register to make it available from the new blocks.
11164     ExportFromCurrentBlock(Cond);
11165   }
11166 
11167   // Create the CaseBlock record that will be used to lower the branch.
11168   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11169                getCurSDLoc(), LeftProb, RightProb);
11170 
11171   if (W.MBB == SwitchMBB)
11172     visitSwitchCase(CB, SwitchMBB);
11173   else
11174     SL->SwitchCases.push_back(CB);
11175 }
11176 
11177 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11178 // from the swith statement.
11179 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11180                                             BranchProbability PeeledCaseProb) {
11181   if (PeeledCaseProb == BranchProbability::getOne())
11182     return BranchProbability::getZero();
11183   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11184 
11185   uint32_t Numerator = CaseProb.getNumerator();
11186   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11187   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11188 }
11189 
11190 // Try to peel the top probability case if it exceeds the threshold.
11191 // Return current MachineBasicBlock for the switch statement if the peeling
11192 // does not occur.
11193 // If the peeling is performed, return the newly created MachineBasicBlock
11194 // for the peeled switch statement. Also update Clusters to remove the peeled
11195 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11196 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11197     const SwitchInst &SI, CaseClusterVector &Clusters,
11198     BranchProbability &PeeledCaseProb) {
11199   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11200   // Don't perform if there is only one cluster or optimizing for size.
11201   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11202       TM.getOptLevel() == CodeGenOpt::None ||
11203       SwitchMBB->getParent()->getFunction().hasMinSize())
11204     return SwitchMBB;
11205 
11206   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11207   unsigned PeeledCaseIndex = 0;
11208   bool SwitchPeeled = false;
11209   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11210     CaseCluster &CC = Clusters[Index];
11211     if (CC.Prob < TopCaseProb)
11212       continue;
11213     TopCaseProb = CC.Prob;
11214     PeeledCaseIndex = Index;
11215     SwitchPeeled = true;
11216   }
11217   if (!SwitchPeeled)
11218     return SwitchMBB;
11219 
11220   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11221                     << TopCaseProb << "\n");
11222 
11223   // Record the MBB for the peeled switch statement.
11224   MachineFunction::iterator BBI(SwitchMBB);
11225   ++BBI;
11226   MachineBasicBlock *PeeledSwitchMBB =
11227       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11228   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11229 
11230   ExportFromCurrentBlock(SI.getCondition());
11231   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11232   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11233                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11234   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11235 
11236   Clusters.erase(PeeledCaseIt);
11237   for (CaseCluster &CC : Clusters) {
11238     LLVM_DEBUG(
11239         dbgs() << "Scale the probablity for one cluster, before scaling: "
11240                << CC.Prob << "\n");
11241     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11242     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11243   }
11244   PeeledCaseProb = TopCaseProb;
11245   return PeeledSwitchMBB;
11246 }
11247 
11248 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11249   // Extract cases from the switch.
11250   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11251   CaseClusterVector Clusters;
11252   Clusters.reserve(SI.getNumCases());
11253   for (auto I : SI.cases()) {
11254     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11255     const ConstantInt *CaseVal = I.getCaseValue();
11256     BranchProbability Prob =
11257         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11258             : BranchProbability(1, SI.getNumCases() + 1);
11259     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11260   }
11261 
11262   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11263 
11264   // Cluster adjacent cases with the same destination. We do this at all
11265   // optimization levels because it's cheap to do and will make codegen faster
11266   // if there are many clusters.
11267   sortAndRangeify(Clusters);
11268 
11269   // The branch probablity of the peeled case.
11270   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11271   MachineBasicBlock *PeeledSwitchMBB =
11272       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11273 
11274   // If there is only the default destination, jump there directly.
11275   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11276   if (Clusters.empty()) {
11277     assert(PeeledSwitchMBB == SwitchMBB);
11278     SwitchMBB->addSuccessor(DefaultMBB);
11279     if (DefaultMBB != NextBlock(SwitchMBB)) {
11280       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11281                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11282     }
11283     return;
11284   }
11285 
11286   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11287   SL->findBitTestClusters(Clusters, &SI);
11288 
11289   LLVM_DEBUG({
11290     dbgs() << "Case clusters: ";
11291     for (const CaseCluster &C : Clusters) {
11292       if (C.Kind == CC_JumpTable)
11293         dbgs() << "JT:";
11294       if (C.Kind == CC_BitTests)
11295         dbgs() << "BT:";
11296 
11297       C.Low->getValue().print(dbgs(), true);
11298       if (C.Low != C.High) {
11299         dbgs() << '-';
11300         C.High->getValue().print(dbgs(), true);
11301       }
11302       dbgs() << ' ';
11303     }
11304     dbgs() << '\n';
11305   });
11306 
11307   assert(!Clusters.empty());
11308   SwitchWorkList WorkList;
11309   CaseClusterIt First = Clusters.begin();
11310   CaseClusterIt Last = Clusters.end() - 1;
11311   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11312   // Scale the branchprobability for DefaultMBB if the peel occurs and
11313   // DefaultMBB is not replaced.
11314   if (PeeledCaseProb != BranchProbability::getZero() &&
11315       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11316     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11317   WorkList.push_back(
11318       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11319 
11320   while (!WorkList.empty()) {
11321     SwitchWorkListItem W = WorkList.pop_back_val();
11322     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11323 
11324     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11325         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11326       // For optimized builds, lower large range as a balanced binary tree.
11327       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11328       continue;
11329     }
11330 
11331     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11332   }
11333 }
11334 
11335 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11336   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11337   auto DL = getCurSDLoc();
11338   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11339   setValue(&I, DAG.getStepVector(DL, ResultVT));
11340 }
11341 
11342 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11343   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11344   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11345 
11346   SDLoc DL = getCurSDLoc();
11347   SDValue V = getValue(I.getOperand(0));
11348   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11349 
11350   if (VT.isScalableVector()) {
11351     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11352     return;
11353   }
11354 
11355   // Use VECTOR_SHUFFLE for the fixed-length vector
11356   // to maintain existing behavior.
11357   SmallVector<int, 8> Mask;
11358   unsigned NumElts = VT.getVectorMinNumElements();
11359   for (unsigned i = 0; i != NumElts; ++i)
11360     Mask.push_back(NumElts - 1 - i);
11361 
11362   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11363 }
11364 
11365 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11366   SmallVector<EVT, 4> ValueVTs;
11367   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11368                   ValueVTs);
11369   unsigned NumValues = ValueVTs.size();
11370   if (NumValues == 0) return;
11371 
11372   SmallVector<SDValue, 4> Values(NumValues);
11373   SDValue Op = getValue(I.getOperand(0));
11374 
11375   for (unsigned i = 0; i != NumValues; ++i)
11376     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11377                             SDValue(Op.getNode(), Op.getResNo() + i));
11378 
11379   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11380                            DAG.getVTList(ValueVTs), Values));
11381 }
11382 
11383 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11384   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11385   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11386 
11387   SDLoc DL = getCurSDLoc();
11388   SDValue V1 = getValue(I.getOperand(0));
11389   SDValue V2 = getValue(I.getOperand(1));
11390   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11391 
11392   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11393   if (VT.isScalableVector()) {
11394     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11395     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11396                              DAG.getConstant(Imm, DL, IdxVT)));
11397     return;
11398   }
11399 
11400   unsigned NumElts = VT.getVectorNumElements();
11401 
11402   uint64_t Idx = (NumElts + Imm) % NumElts;
11403 
11404   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11405   SmallVector<int, 8> Mask;
11406   for (unsigned i = 0; i < NumElts; ++i)
11407     Mask.push_back(Idx + i);
11408   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11409 }
11410