xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision bad0290ce3744d4f62dbe82380e6f648c1aa39c5)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // If the element type of the source/dest vectors are the same, but the
403     // parts vector has more elements than the value vector, then we have a
404     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
405     // elements we want.
406     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413                          DAG.getVectorIdxConstant(0, DL));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.bitsLT(PartEVT)) {
439        // Bitcast Val back the original type and extract the corresponding
440        // vector we want.
441        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
442        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
443                                            ValueVT.getVectorElementType(), Elts);
444        Val = DAG.getBitcast(WiderVecType, Val);
445        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
446                           DAG.getVectorIdxConstant(0, DL));
447      }
448 
449      diagnosePossiblyInvalidConstraint(
450          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
451      return DAG.getUNDEF(ValueVT);
452   }
453 
454   // Handle cases such as i8 -> <1 x i1>
455   EVT ValueSVT = ValueVT.getVectorElementType();
456   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
457     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
458       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
459     else
460       Val = ValueVT.isFloatingPoint()
461                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
462                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
463   }
464 
465   return DAG.getBuildVector(ValueVT, DL, Val);
466 }
467 
468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
469                                  SDValue Val, SDValue *Parts, unsigned NumParts,
470                                  MVT PartVT, const Value *V,
471                                  Optional<CallingConv::ID> CallConv);
472 
473 /// getCopyToParts - Create a series of nodes that contain the specified value
474 /// split into legal parts.  If the parts contain more bits than Val, then, for
475 /// integers, ExtendKind can be used to specify how to generate the extra bits.
476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
477                            SDValue *Parts, unsigned NumParts, MVT PartVT,
478                            const Value *V,
479                            Optional<CallingConv::ID> CallConv = None,
480                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
481   // Let the target split the parts if it wants to
482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
483   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
484                                       CallConv))
485     return;
486   EVT ValueVT = Val.getValueType();
487 
488   // Handle the vector case separately.
489   if (ValueVT.isVector())
490     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
491                                 CallConv);
492 
493   unsigned PartBits = PartVT.getSizeInBits();
494   unsigned OrigNumParts = NumParts;
495   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
496          "Copying to an illegal type!");
497 
498   if (NumParts == 0)
499     return;
500 
501   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
502   EVT PartEVT = PartVT;
503   if (PartEVT == ValueVT) {
504     assert(NumParts == 1 && "No-op copy with multiple parts!");
505     Parts[0] = Val;
506     return;
507   }
508 
509   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
510     // If the parts cover more bits than the value has, promote the value.
511     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
512       assert(NumParts == 1 && "Do not know what to promote to!");
513       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
514     } else {
515       if (ValueVT.isFloatingPoint()) {
516         // FP values need to be bitcast, then extended if they are being put
517         // into a larger container.
518         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
519         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
520       }
521       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
522              ValueVT.isInteger() &&
523              "Unknown mismatch!");
524       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
525       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
526       if (PartVT == MVT::x86mmx)
527         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
528     }
529   } else if (PartBits == ValueVT.getSizeInBits()) {
530     // Different types of the same size.
531     assert(NumParts == 1 && PartEVT != ValueVT);
532     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
534     // If the parts cover less bits than value has, truncate the value.
535     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
536            ValueVT.isInteger() &&
537            "Unknown mismatch!");
538     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
539     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
540     if (PartVT == MVT::x86mmx)
541       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
542   }
543 
544   // The value may have changed - recompute ValueVT.
545   ValueVT = Val.getValueType();
546   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
547          "Failed to tile the value with PartVT!");
548 
549   if (NumParts == 1) {
550     if (PartEVT != ValueVT) {
551       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
552                                         "scalar-to-vector conversion failed");
553       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555 
556     Parts[0] = Val;
557     return;
558   }
559 
560   // Expand the value into multiple parts.
561   if (NumParts & (NumParts - 1)) {
562     // The number of parts is not a power of 2.  Split off and copy the tail.
563     assert(PartVT.isInteger() && ValueVT.isInteger() &&
564            "Do not know what to expand to!");
565     unsigned RoundParts = 1 << Log2_32(NumParts);
566     unsigned RoundBits = RoundParts * PartBits;
567     unsigned OddParts = NumParts - RoundParts;
568     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
569       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
570 
571     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
572                    CallConv);
573 
574     if (DAG.getDataLayout().isBigEndian())
575       // The odd parts were reversed by getCopyToParts - unreverse them.
576       std::reverse(Parts + RoundParts, Parts + NumParts);
577 
578     NumParts = RoundParts;
579     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
580     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
581   }
582 
583   // The number of parts is a power of 2.  Repeatedly bisect the value using
584   // EXTRACT_ELEMENT.
585   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
586                          EVT::getIntegerVT(*DAG.getContext(),
587                                            ValueVT.getSizeInBits()),
588                          Val);
589 
590   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
591     for (unsigned i = 0; i < NumParts; i += StepSize) {
592       unsigned ThisBits = StepSize * PartBits / 2;
593       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
594       SDValue &Part0 = Parts[i];
595       SDValue &Part1 = Parts[i+StepSize/2];
596 
597       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
598                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
599       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
600                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
601 
602       if (ThisBits == PartBits && ThisVT != PartVT) {
603         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
604         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
605       }
606     }
607   }
608 
609   if (DAG.getDataLayout().isBigEndian())
610     std::reverse(Parts, Parts + OrigNumParts);
611 }
612 
613 static SDValue widenVectorToPartType(SelectionDAG &DAG,
614                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
615   if (!PartVT.isFixedLengthVector())
616     return SDValue();
617 
618   EVT ValueVT = Val.getValueType();
619   unsigned PartNumElts = PartVT.getVectorNumElements();
620   unsigned ValueNumElts = ValueVT.getVectorNumElements();
621   if (PartNumElts > ValueNumElts &&
622       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
623     EVT ElementVT = PartVT.getVectorElementType();
624     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
625     // undef elements.
626     SmallVector<SDValue, 16> Ops;
627     DAG.ExtractVectorElements(Val, Ops);
628     SDValue EltUndef = DAG.getUNDEF(ElementVT);
629     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
630       Ops.push_back(EltUndef);
631 
632     // FIXME: Use CONCAT for 2x -> 4x.
633     return DAG.getBuildVector(PartVT, DL, Ops);
634   }
635 
636   return SDValue();
637 }
638 
639 /// getCopyToPartsVector - Create a series of nodes that contain the specified
640 /// value split into legal parts.
641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
642                                  SDValue Val, SDValue *Parts, unsigned NumParts,
643                                  MVT PartVT, const Value *V,
644                                  Optional<CallingConv::ID> CallConv) {
645   EVT ValueVT = Val.getValueType();
646   assert(ValueVT.isVector() && "Not a vector");
647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
648   const bool IsABIRegCopy = CallConv.hasValue();
649 
650   if (NumParts == 1) {
651     EVT PartEVT = PartVT;
652     if (PartEVT == ValueVT) {
653       // Nothing to do.
654     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
655       // Bitconvert vector->vector case.
656       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
657     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
658       Val = Widened;
659     } else if (PartVT.isVector() &&
660                PartEVT.getVectorElementType().bitsGE(
661                    ValueVT.getVectorElementType()) &&
662                PartEVT.getVectorElementCount() ==
663                    ValueVT.getVectorElementCount()) {
664 
665       // Promoted vector extract
666       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667     } else {
668       if (ValueVT.getVectorElementCount().isScalar()) {
669         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
670                           DAG.getVectorIdxConstant(0, DL));
671       } else {
672         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
673         assert(PartVT.getFixedSizeInBits() > ValueSize &&
674                "lossy conversion of vector to scalar type");
675         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
676         Val = DAG.getBitcast(IntermediateType, Val);
677         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
678       }
679     }
680 
681     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
682     Parts[0] = Val;
683     return;
684   }
685 
686   // Handle a multi-element vector.
687   EVT IntermediateVT;
688   MVT RegisterVT;
689   unsigned NumIntermediates;
690   unsigned NumRegs;
691   if (IsABIRegCopy) {
692     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
693         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
694         NumIntermediates, RegisterVT);
695   } else {
696     NumRegs =
697         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
698                                    NumIntermediates, RegisterVT);
699   }
700 
701   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
702   NumParts = NumRegs; // Silence a compiler warning.
703   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
704 
705   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
706          "Mixing scalable and fixed vectors when copying in parts");
707 
708   Optional<ElementCount> DestEltCnt;
709 
710   if (IntermediateVT.isVector())
711     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
712   else
713     DestEltCnt = ElementCount::getFixed(NumIntermediates);
714 
715   EVT BuiltVectorTy = EVT::getVectorVT(
716       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
717   if (ValueVT != BuiltVectorTy) {
718     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
719       Val = Widened;
720 
721     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
722   }
723 
724   // Split the vector into intermediate operands.
725   SmallVector<SDValue, 8> Ops(NumIntermediates);
726   for (unsigned i = 0; i != NumIntermediates; ++i) {
727     if (IntermediateVT.isVector()) {
728       // This does something sensible for scalable vectors - see the
729       // definition of EXTRACT_SUBVECTOR for further details.
730       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
731       Ops[i] =
732           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
734     } else {
735       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
736                            DAG.getVectorIdxConstant(i, DL));
737     }
738   }
739 
740   // Split the intermediate operands into legal parts.
741   if (NumParts == NumIntermediates) {
742     // If the register was not expanded, promote or copy the value,
743     // as appropriate.
744     for (unsigned i = 0; i != NumParts; ++i)
745       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
746   } else if (NumParts > 0) {
747     // If the intermediate type was expanded, split each the value into
748     // legal parts.
749     assert(NumIntermediates != 0 && "division by zero");
750     assert(NumParts % NumIntermediates == 0 &&
751            "Must expand into a divisible number of parts!");
752     unsigned Factor = NumParts / NumIntermediates;
753     for (unsigned i = 0; i != NumIntermediates; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
755                      CallConv);
756   }
757 }
758 
759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
760                            EVT valuevt, Optional<CallingConv::ID> CC)
761     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
762       RegCount(1, regs.size()), CallConv(CC) {}
763 
764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
765                            const DataLayout &DL, unsigned Reg, Type *Ty,
766                            Optional<CallingConv::ID> CC) {
767   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
768 
769   CallConv = CC;
770 
771   for (EVT ValueVT : ValueVTs) {
772     unsigned NumRegs =
773         isABIMangled()
774             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
775             : TLI.getNumRegisters(Context, ValueVT);
776     MVT RegisterVT =
777         isABIMangled()
778             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
779             : TLI.getRegisterType(Context, ValueVT);
780     for (unsigned i = 0; i != NumRegs; ++i)
781       Regs.push_back(Reg + i);
782     RegVTs.push_back(RegisterVT);
783     RegCount.push_back(NumRegs);
784     Reg += NumRegs;
785   }
786 }
787 
788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
789                                       FunctionLoweringInfo &FuncInfo,
790                                       const SDLoc &dl, SDValue &Chain,
791                                       SDValue *Flag, const Value *V) const {
792   // A Value with type {} or [0 x %t] needs no registers.
793   if (ValueVTs.empty())
794     return SDValue();
795 
796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
797 
798   // Assemble the legal parts into the final values.
799   SmallVector<SDValue, 4> Values(ValueVTs.size());
800   SmallVector<SDValue, 8> Parts;
801   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802     // Copy the legal parts from the registers.
803     EVT ValueVT = ValueVTs[Value];
804     unsigned NumRegs = RegCount[Value];
805     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
806                                           *DAG.getContext(),
807                                           CallConv.getValue(), RegVTs[Value])
808                                     : RegVTs[Value];
809 
810     Parts.resize(NumRegs);
811     for (unsigned i = 0; i != NumRegs; ++i) {
812       SDValue P;
813       if (!Flag) {
814         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
815       } else {
816         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
817         *Flag = P.getValue(2);
818       }
819 
820       Chain = P.getValue(1);
821       Parts[i] = P;
822 
823       // If the source register was virtual and if we know something about it,
824       // add an assert node.
825       if (!Register::isVirtualRegister(Regs[Part + i]) ||
826           !RegisterVT.isInteger())
827         continue;
828 
829       const FunctionLoweringInfo::LiveOutInfo *LOI =
830         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
831       if (!LOI)
832         continue;
833 
834       unsigned RegSize = RegisterVT.getScalarSizeInBits();
835       unsigned NumSignBits = LOI->NumSignBits;
836       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
837 
838       if (NumZeroBits == RegSize) {
839         // The current value is a zero.
840         // Explicitly express that as it would be easier for
841         // optimizations to kick in.
842         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
843         continue;
844       }
845 
846       // FIXME: We capture more information than the dag can represent.  For
847       // now, just use the tightest assertzext/assertsext possible.
848       bool isSExt;
849       EVT FromVT(MVT::Other);
850       if (NumZeroBits) {
851         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
852         isSExt = false;
853       } else if (NumSignBits > 1) {
854         FromVT =
855             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
856         isSExt = true;
857       } else {
858         continue;
859       }
860       // Add an assertion node.
861       assert(FromVT != MVT::Other);
862       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
863                              RegisterVT, P, DAG.getValueType(FromVT));
864     }
865 
866     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
867                                      RegisterVT, ValueVT, V, CallConv);
868     Part += NumRegs;
869     Parts.clear();
870   }
871 
872   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
873 }
874 
875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
876                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
877                                  const Value *V,
878                                  ISD::NodeType PreferredExtendType) const {
879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880   ISD::NodeType ExtendKind = PreferredExtendType;
881 
882   // Get the list of the values's legal parts.
883   unsigned NumRegs = Regs.size();
884   SmallVector<SDValue, 8> Parts(NumRegs);
885   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
886     unsigned NumParts = RegCount[Value];
887 
888     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
889                                           *DAG.getContext(),
890                                           CallConv.getValue(), RegVTs[Value])
891                                     : RegVTs[Value];
892 
893     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
894       ExtendKind = ISD::ZERO_EXTEND;
895 
896     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
897                    NumParts, RegisterVT, V, CallConv, ExtendKind);
898     Part += NumParts;
899   }
900 
901   // Copy the parts into the registers.
902   SmallVector<SDValue, 8> Chains(NumRegs);
903   for (unsigned i = 0; i != NumRegs; ++i) {
904     SDValue Part;
905     if (!Flag) {
906       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
907     } else {
908       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
909       *Flag = Part.getValue(1);
910     }
911 
912     Chains[i] = Part.getValue(0);
913   }
914 
915   if (NumRegs == 1 || Flag)
916     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917     // flagged to it. That is the CopyToReg nodes and the user are considered
918     // a single scheduling unit. If we create a TokenFactor and return it as
919     // chain, then the TokenFactor is both a predecessor (operand) of the
920     // user as well as a successor (the TF operands are flagged to the user).
921     // c1, f1 = CopyToReg
922     // c2, f2 = CopyToReg
923     // c3     = TokenFactor c1, c2
924     // ...
925     //        = op c3, ..., f2
926     Chain = Chains[NumRegs-1];
927   else
928     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
929 }
930 
931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
932                                         unsigned MatchingIdx, const SDLoc &dl,
933                                         SelectionDAG &DAG,
934                                         std::vector<SDValue> &Ops) const {
935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
936 
937   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
938   if (HasMatching)
939     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
940   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
941     // Put the register class of the virtual registers in the flag word.  That
942     // way, later passes can recompute register class constraints for inline
943     // assembly as well as normal instructions.
944     // Don't do this for tied operands that can use the regclass information
945     // from the def.
946     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
947     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
948     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
949   }
950 
951   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
952   Ops.push_back(Res);
953 
954   if (Code == InlineAsm::Kind_Clobber) {
955     // Clobbers should always have a 1:1 mapping with registers, and may
956     // reference registers that have illegal (e.g. vector) types. Hence, we
957     // shouldn't try to apply any sort of splitting logic to them.
958     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
959            "No 1:1 mapping from clobbers to regs?");
960     Register SP = TLI.getStackPointerRegisterToSaveRestore();
961     (void)SP;
962     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
963       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
964       assert(
965           (Regs[I] != SP ||
966            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
967           "If we clobbered the stack pointer, MFI should know about it.");
968     }
969     return;
970   }
971 
972   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
973     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
974     MVT RegisterVT = RegVTs[Value];
975     for (unsigned i = 0; i != NumRegs; ++i) {
976       assert(Reg < Regs.size() && "Mismatch in # registers expected");
977       unsigned TheReg = Regs[Reg++];
978       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
979     }
980   }
981 }
982 
983 SmallVector<std::pair<unsigned, TypeSize>, 4>
984 RegsForValue::getRegsAndSizes() const {
985   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
986   unsigned I = 0;
987   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
988     unsigned RegCount = std::get<0>(CountAndVT);
989     MVT RegisterVT = std::get<1>(CountAndVT);
990     TypeSize RegisterSize = RegisterVT.getSizeInBits();
991     for (unsigned E = I + RegCount; I != E; ++I)
992       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
993   }
994   return OutVec;
995 }
996 
997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
998                                const TargetLibraryInfo *li) {
999   AA = aa;
1000   GFI = gfi;
1001   LibInfo = li;
1002   DL = &DAG.getDataLayout();
1003   Context = DAG.getContext();
1004   LPadToCallSiteMap.clear();
1005   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1006 }
1007 
1008 void SelectionDAGBuilder::clear() {
1009   NodeMap.clear();
1010   UnusedArgNodeMap.clear();
1011   PendingLoads.clear();
1012   PendingExports.clear();
1013   PendingConstrainedFP.clear();
1014   PendingConstrainedFPStrict.clear();
1015   CurInst = nullptr;
1016   HasTailCall = false;
1017   SDNodeOrder = LowestSDNodeOrder;
1018   StatepointLowering.clear();
1019 }
1020 
1021 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1022   DanglingDebugInfoMap.clear();
1023 }
1024 
1025 // Update DAG root to include dependencies on Pending chains.
1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1027   SDValue Root = DAG.getRoot();
1028 
1029   if (Pending.empty())
1030     return Root;
1031 
1032   // Add current root to PendingChains, unless we already indirectly
1033   // depend on it.
1034   if (Root.getOpcode() != ISD::EntryToken) {
1035     unsigned i = 0, e = Pending.size();
1036     for (; i != e; ++i) {
1037       assert(Pending[i].getNode()->getNumOperands() > 1);
1038       if (Pending[i].getNode()->getOperand(0) == Root)
1039         break;  // Don't add the root if we already indirectly depend on it.
1040     }
1041 
1042     if (i == e)
1043       Pending.push_back(Root);
1044   }
1045 
1046   if (Pending.size() == 1)
1047     Root = Pending[0];
1048   else
1049     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1050 
1051   DAG.setRoot(Root);
1052   Pending.clear();
1053   return Root;
1054 }
1055 
1056 SDValue SelectionDAGBuilder::getMemoryRoot() {
1057   return updateRoot(PendingLoads);
1058 }
1059 
1060 SDValue SelectionDAGBuilder::getRoot() {
1061   // Chain up all pending constrained intrinsics together with all
1062   // pending loads, by simply appending them to PendingLoads and
1063   // then calling getMemoryRoot().
1064   PendingLoads.reserve(PendingLoads.size() +
1065                        PendingConstrainedFP.size() +
1066                        PendingConstrainedFPStrict.size());
1067   PendingLoads.append(PendingConstrainedFP.begin(),
1068                       PendingConstrainedFP.end());
1069   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1070                       PendingConstrainedFPStrict.end());
1071   PendingConstrainedFP.clear();
1072   PendingConstrainedFPStrict.clear();
1073   return getMemoryRoot();
1074 }
1075 
1076 SDValue SelectionDAGBuilder::getControlRoot() {
1077   // We need to emit pending fpexcept.strict constrained intrinsics,
1078   // so append them to the PendingExports list.
1079   PendingExports.append(PendingConstrainedFPStrict.begin(),
1080                         PendingConstrainedFPStrict.end());
1081   PendingConstrainedFPStrict.clear();
1082   return updateRoot(PendingExports);
1083 }
1084 
1085 void SelectionDAGBuilder::visit(const Instruction &I) {
1086   // Set up outgoing PHI node register values before emitting the terminator.
1087   if (I.isTerminator()) {
1088     HandlePHINodesInSuccessorBlocks(I.getParent());
1089   }
1090 
1091   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1092   if (!isa<DbgInfoIntrinsic>(I))
1093     ++SDNodeOrder;
1094 
1095   CurInst = &I;
1096 
1097   visit(I.getOpcode(), I);
1098 
1099   if (!I.isTerminator() && !HasTailCall &&
1100       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1101     CopyToExportRegsIfNeeded(&I);
1102 
1103   CurInst = nullptr;
1104 }
1105 
1106 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1107   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1108 }
1109 
1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1111   // Note: this doesn't use InstVisitor, because it has to work with
1112   // ConstantExpr's in addition to instructions.
1113   switch (Opcode) {
1114   default: llvm_unreachable("Unknown instruction type encountered!");
1115     // Build the switch statement using the Instruction.def file.
1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1117     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1118 #include "llvm/IR/Instruction.def"
1119   }
1120 }
1121 
1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1123                                                 const DIExpression *Expr) {
1124   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1125     const DbgValueInst *DI = DDI.getDI();
1126     DIVariable *DanglingVariable = DI->getVariable();
1127     DIExpression *DanglingExpr = DI->getExpression();
1128     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1129       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1130       return true;
1131     }
1132     return false;
1133   };
1134 
1135   for (auto &DDIMI : DanglingDebugInfoMap) {
1136     DanglingDebugInfoVector &DDIV = DDIMI.second;
1137 
1138     // If debug info is to be dropped, run it through final checks to see
1139     // whether it can be salvaged.
1140     for (auto &DDI : DDIV)
1141       if (isMatchingDbgValue(DDI))
1142         salvageUnresolvedDbgValue(DDI);
1143 
1144     erase_if(DDIV, isMatchingDbgValue);
1145   }
1146 }
1147 
1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1149 // generate the debug data structures now that we've seen its definition.
1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1151                                                    SDValue Val) {
1152   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1153   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1154     return;
1155 
1156   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1157   for (auto &DDI : DDIV) {
1158     const DbgValueInst *DI = DDI.getDI();
1159     assert(DI && "Ill-formed DanglingDebugInfo");
1160     DebugLoc dl = DDI.getdl();
1161     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1162     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1163     DILocalVariable *Variable = DI->getVariable();
1164     DIExpression *Expr = DI->getExpression();
1165     assert(Variable->isValidLocationForIntrinsic(dl) &&
1166            "Expected inlined-at fields to agree");
1167     SDDbgValue *SDV;
1168     if (Val.getNode()) {
1169       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1170       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1171       // we couldn't resolve it directly when examining the DbgValue intrinsic
1172       // in the first place we should not be more successful here). Unless we
1173       // have some test case that prove this to be correct we should avoid
1174       // calling EmitFuncArgumentDbgValue here.
1175       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1176         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1177                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1178         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1179         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1180         // inserted after the definition of Val when emitting the instructions
1181         // after ISel. An alternative could be to teach
1182         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1183         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1184                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1185                    << ValSDNodeOrder << "\n");
1186         SDV = getDbgValue(Val, Variable, Expr, dl,
1187                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1188         DAG.AddDbgValue(SDV, Val.getNode(), false);
1189       } else
1190         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1191                           << "in EmitFuncArgumentDbgValue\n");
1192     } else {
1193       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1194       auto Undef =
1195           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1196       auto SDV =
1197           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1198       DAG.AddDbgValue(SDV, nullptr, false);
1199     }
1200   }
1201   DDIV.clear();
1202 }
1203 
1204 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1205   Value *V = DDI.getDI()->getValue();
1206   DILocalVariable *Var = DDI.getDI()->getVariable();
1207   DIExpression *Expr = DDI.getDI()->getExpression();
1208   DebugLoc DL = DDI.getdl();
1209   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1210   unsigned SDOrder = DDI.getSDNodeOrder();
1211 
1212   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1213   // that DW_OP_stack_value is desired.
1214   assert(isa<DbgValueInst>(DDI.getDI()));
1215   bool StackValue = true;
1216 
1217   // Can this Value can be encoded without any further work?
1218   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1219     return;
1220 
1221   // Attempt to salvage back through as many instructions as possible. Bail if
1222   // a non-instruction is seen, such as a constant expression or global
1223   // variable. FIXME: Further work could recover those too.
1224   while (isa<Instruction>(V)) {
1225     Instruction &VAsInst = *cast<Instruction>(V);
1226     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1227 
1228     // If we cannot salvage any further, and haven't yet found a suitable debug
1229     // expression, bail out.
1230     if (!NewExpr)
1231       break;
1232 
1233     // New value and expr now represent this debuginfo.
1234     V = VAsInst.getOperand(0);
1235     Expr = NewExpr;
1236 
1237     // Some kind of simplification occurred: check whether the operand of the
1238     // salvaged debug expression can be encoded in this DAG.
1239     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1240       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1241                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1242       return;
1243     }
1244   }
1245 
1246   // This was the final opportunity to salvage this debug information, and it
1247   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1248   // any earlier variable location.
1249   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1250   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1251   DAG.AddDbgValue(SDV, nullptr, false);
1252 
1253   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1254                     << "\n");
1255   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1256                     << "\n");
1257 }
1258 
1259 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1260                                            DIExpression *Expr, DebugLoc dl,
1261                                            DebugLoc InstDL, unsigned Order) {
1262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1263   SDDbgValue *SDV;
1264   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1265       isa<ConstantPointerNull>(V)) {
1266     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1267     DAG.AddDbgValue(SDV, nullptr, false);
1268     return true;
1269   }
1270 
1271   // If the Value is a frame index, we can create a FrameIndex debug value
1272   // without relying on the DAG at all.
1273   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1274     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1275     if (SI != FuncInfo.StaticAllocaMap.end()) {
1276       auto SDV =
1277           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1278                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1279       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1280       // is still available even if the SDNode gets optimized out.
1281       DAG.AddDbgValue(SDV, nullptr, false);
1282       return true;
1283     }
1284   }
1285 
1286   // Do not use getValue() in here; we don't want to generate code at
1287   // this point if it hasn't been done yet.
1288   SDValue N = NodeMap[V];
1289   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1290     N = UnusedArgNodeMap[V];
1291   if (N.getNode()) {
1292     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1293       return true;
1294     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1295     DAG.AddDbgValue(SDV, N.getNode(), false);
1296     return true;
1297   }
1298 
1299   // Special rules apply for the first dbg.values of parameter variables in a
1300   // function. Identify them by the fact they reference Argument Values, that
1301   // they're parameters, and they are parameters of the current function. We
1302   // need to let them dangle until they get an SDNode.
1303   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1304                        !InstDL.getInlinedAt();
1305   if (!IsParamOfFunc) {
1306     // The value is not used in this block yet (or it would have an SDNode).
1307     // We still want the value to appear for the user if possible -- if it has
1308     // an associated VReg, we can refer to that instead.
1309     auto VMI = FuncInfo.ValueMap.find(V);
1310     if (VMI != FuncInfo.ValueMap.end()) {
1311       unsigned Reg = VMI->second;
1312       // If this is a PHI node, it may be split up into several MI PHI nodes
1313       // (in FunctionLoweringInfo::set).
1314       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1315                        V->getType(), None);
1316       if (RFV.occupiesMultipleRegs()) {
1317         unsigned Offset = 0;
1318         unsigned BitsToDescribe = 0;
1319         if (auto VarSize = Var->getSizeInBits())
1320           BitsToDescribe = *VarSize;
1321         if (auto Fragment = Expr->getFragmentInfo())
1322           BitsToDescribe = Fragment->SizeInBits;
1323         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1324           // Bail out if all bits are described already.
1325           if (Offset >= BitsToDescribe)
1326             break;
1327           // TODO: handle scalable vectors.
1328           unsigned RegisterSize = RegAndSize.second;
1329           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1330               ? BitsToDescribe - Offset
1331               : RegisterSize;
1332           auto FragmentExpr = DIExpression::createFragmentExpression(
1333               Expr, Offset, FragmentSize);
1334           if (!FragmentExpr)
1335               continue;
1336           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1337                                     false, dl, SDNodeOrder);
1338           DAG.AddDbgValue(SDV, nullptr, false);
1339           Offset += RegisterSize;
1340         }
1341       } else {
1342         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1343         DAG.AddDbgValue(SDV, nullptr, false);
1344       }
1345       return true;
1346     }
1347   }
1348 
1349   return false;
1350 }
1351 
1352 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1353   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1354   for (auto &Pair : DanglingDebugInfoMap)
1355     for (auto &DDI : Pair.second)
1356       salvageUnresolvedDbgValue(DDI);
1357   clearDanglingDebugInfo();
1358 }
1359 
1360 /// getCopyFromRegs - If there was virtual register allocated for the value V
1361 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1362 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1363   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1364   SDValue Result;
1365 
1366   if (It != FuncInfo.ValueMap.end()) {
1367     Register InReg = It->second;
1368 
1369     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1370                      DAG.getDataLayout(), InReg, Ty,
1371                      None); // This is not an ABI copy.
1372     SDValue Chain = DAG.getEntryNode();
1373     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1374                                  V);
1375     resolveDanglingDebugInfo(V, Result);
1376   }
1377 
1378   return Result;
1379 }
1380 
1381 /// getValue - Return an SDValue for the given Value.
1382 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1383   // If we already have an SDValue for this value, use it. It's important
1384   // to do this first, so that we don't create a CopyFromReg if we already
1385   // have a regular SDValue.
1386   SDValue &N = NodeMap[V];
1387   if (N.getNode()) return N;
1388 
1389   // If there's a virtual register allocated and initialized for this
1390   // value, use it.
1391   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1392     return copyFromReg;
1393 
1394   // Otherwise create a new SDValue and remember it.
1395   SDValue Val = getValueImpl(V);
1396   NodeMap[V] = Val;
1397   resolveDanglingDebugInfo(V, Val);
1398   return Val;
1399 }
1400 
1401 /// getNonRegisterValue - Return an SDValue for the given Value, but
1402 /// don't look in FuncInfo.ValueMap for a virtual register.
1403 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1404   // If we already have an SDValue for this value, use it.
1405   SDValue &N = NodeMap[V];
1406   if (N.getNode()) {
1407     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1408       // Remove the debug location from the node as the node is about to be used
1409       // in a location which may differ from the original debug location.  This
1410       // is relevant to Constant and ConstantFP nodes because they can appear
1411       // as constant expressions inside PHI nodes.
1412       N->setDebugLoc(DebugLoc());
1413     }
1414     return N;
1415   }
1416 
1417   // Otherwise create a new SDValue and remember it.
1418   SDValue Val = getValueImpl(V);
1419   NodeMap[V] = Val;
1420   resolveDanglingDebugInfo(V, Val);
1421   return Val;
1422 }
1423 
1424 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1425 /// Create an SDValue for the given value.
1426 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1427   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1428 
1429   if (const Constant *C = dyn_cast<Constant>(V)) {
1430     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1431 
1432     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1433       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1434 
1435     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1436       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1437 
1438     if (isa<ConstantPointerNull>(C)) {
1439       unsigned AS = V->getType()->getPointerAddressSpace();
1440       return DAG.getConstant(0, getCurSDLoc(),
1441                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1442     }
1443 
1444     if (match(C, m_VScale(DAG.getDataLayout())))
1445       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1446 
1447     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1448       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1449 
1450     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1451       return DAG.getUNDEF(VT);
1452 
1453     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1454       visit(CE->getOpcode(), *CE);
1455       SDValue N1 = NodeMap[V];
1456       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1457       return N1;
1458     }
1459 
1460     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1461       SmallVector<SDValue, 4> Constants;
1462       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1463            OI != OE; ++OI) {
1464         SDNode *Val = getValue(*OI).getNode();
1465         // If the operand is an empty aggregate, there are no values.
1466         if (!Val) continue;
1467         // Add each leaf value from the operand to the Constants list
1468         // to form a flattened list of all the values.
1469         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1470           Constants.push_back(SDValue(Val, i));
1471       }
1472 
1473       return DAG.getMergeValues(Constants, getCurSDLoc());
1474     }
1475 
1476     if (const ConstantDataSequential *CDS =
1477           dyn_cast<ConstantDataSequential>(C)) {
1478       SmallVector<SDValue, 4> Ops;
1479       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1480         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1481         // Add each leaf value from the operand to the Constants list
1482         // to form a flattened list of all the values.
1483         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1484           Ops.push_back(SDValue(Val, i));
1485       }
1486 
1487       if (isa<ArrayType>(CDS->getType()))
1488         return DAG.getMergeValues(Ops, getCurSDLoc());
1489       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1490     }
1491 
1492     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1493       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1494              "Unknown struct or array constant!");
1495 
1496       SmallVector<EVT, 4> ValueVTs;
1497       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1498       unsigned NumElts = ValueVTs.size();
1499       if (NumElts == 0)
1500         return SDValue(); // empty struct
1501       SmallVector<SDValue, 4> Constants(NumElts);
1502       for (unsigned i = 0; i != NumElts; ++i) {
1503         EVT EltVT = ValueVTs[i];
1504         if (isa<UndefValue>(C))
1505           Constants[i] = DAG.getUNDEF(EltVT);
1506         else if (EltVT.isFloatingPoint())
1507           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1508         else
1509           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1510       }
1511 
1512       return DAG.getMergeValues(Constants, getCurSDLoc());
1513     }
1514 
1515     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1516       return DAG.getBlockAddress(BA, VT);
1517 
1518     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1519       return getValue(Equiv->getGlobalValue());
1520 
1521     VectorType *VecTy = cast<VectorType>(V->getType());
1522 
1523     // Now that we know the number and type of the elements, get that number of
1524     // elements into the Ops array based on what kind of constant it is.
1525     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1526       SmallVector<SDValue, 16> Ops;
1527       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1528       for (unsigned i = 0; i != NumElements; ++i)
1529         Ops.push_back(getValue(CV->getOperand(i)));
1530 
1531       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1532     } else if (isa<ConstantAggregateZero>(C)) {
1533       EVT EltVT =
1534           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1535 
1536       SDValue Op;
1537       if (EltVT.isFloatingPoint())
1538         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1539       else
1540         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1541 
1542       if (isa<ScalableVectorType>(VecTy))
1543         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1544       else {
1545         SmallVector<SDValue, 16> Ops;
1546         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1547         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1548       }
1549     }
1550     llvm_unreachable("Unknown vector constant");
1551   }
1552 
1553   // If this is a static alloca, generate it as the frameindex instead of
1554   // computation.
1555   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1556     DenseMap<const AllocaInst*, int>::iterator SI =
1557       FuncInfo.StaticAllocaMap.find(AI);
1558     if (SI != FuncInfo.StaticAllocaMap.end())
1559       return DAG.getFrameIndex(SI->second,
1560                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1561   }
1562 
1563   // If this is an instruction which fast-isel has deferred, select it now.
1564   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1565     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1566 
1567     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1568                      Inst->getType(), None);
1569     SDValue Chain = DAG.getEntryNode();
1570     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1571   }
1572 
1573   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1574     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1575   }
1576   llvm_unreachable("Can't get register for value!");
1577 }
1578 
1579 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1580   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1581   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1582   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1583   bool IsSEH = isAsynchronousEHPersonality(Pers);
1584   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1585   if (!IsSEH)
1586     CatchPadMBB->setIsEHScopeEntry();
1587   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1588   if (IsMSVCCXX || IsCoreCLR)
1589     CatchPadMBB->setIsEHFuncletEntry();
1590 }
1591 
1592 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1593   // Update machine-CFG edge.
1594   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1595   FuncInfo.MBB->addSuccessor(TargetMBB);
1596 
1597   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1598   bool IsSEH = isAsynchronousEHPersonality(Pers);
1599   if (IsSEH) {
1600     // If this is not a fall-through branch or optimizations are switched off,
1601     // emit the branch.
1602     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1603         TM.getOptLevel() == CodeGenOpt::None)
1604       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1605                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1606     return;
1607   }
1608 
1609   // Figure out the funclet membership for the catchret's successor.
1610   // This will be used by the FuncletLayout pass to determine how to order the
1611   // BB's.
1612   // A 'catchret' returns to the outer scope's color.
1613   Value *ParentPad = I.getCatchSwitchParentPad();
1614   const BasicBlock *SuccessorColor;
1615   if (isa<ConstantTokenNone>(ParentPad))
1616     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1617   else
1618     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1619   assert(SuccessorColor && "No parent funclet for catchret!");
1620   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1621   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1622 
1623   // Create the terminator node.
1624   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1625                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1626                             DAG.getBasicBlock(SuccessorColorMBB));
1627   DAG.setRoot(Ret);
1628 }
1629 
1630 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1631   // Don't emit any special code for the cleanuppad instruction. It just marks
1632   // the start of an EH scope/funclet.
1633   FuncInfo.MBB->setIsEHScopeEntry();
1634   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1635   if (Pers != EHPersonality::Wasm_CXX) {
1636     FuncInfo.MBB->setIsEHFuncletEntry();
1637     FuncInfo.MBB->setIsCleanupFuncletEntry();
1638   }
1639 }
1640 
1641 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1642 // not match, it is OK to add only the first unwind destination catchpad to the
1643 // successors, because there will be at least one invoke instruction within the
1644 // catch scope that points to the next unwind destination, if one exists, so
1645 // CFGSort cannot mess up with BB sorting order.
1646 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1647 // call within them, and catchpads only consisting of 'catch (...)' have a
1648 // '__cxa_end_catch' call within them, both of which generate invokes in case
1649 // the next unwind destination exists, i.e., the next unwind destination is not
1650 // the caller.)
1651 //
1652 // Having at most one EH pad successor is also simpler and helps later
1653 // transformations.
1654 //
1655 // For example,
1656 // current:
1657 //   invoke void @foo to ... unwind label %catch.dispatch
1658 // catch.dispatch:
1659 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1660 // catch.start:
1661 //   ...
1662 //   ... in this BB or some other child BB dominated by this BB there will be an
1663 //   invoke that points to 'next' BB as an unwind destination
1664 //
1665 // next: ; We don't need to add this to 'current' BB's successor
1666 //   ...
1667 static void findWasmUnwindDestinations(
1668     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1669     BranchProbability Prob,
1670     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1671         &UnwindDests) {
1672   while (EHPadBB) {
1673     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1674     if (isa<CleanupPadInst>(Pad)) {
1675       // Stop on cleanup pads.
1676       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1677       UnwindDests.back().first->setIsEHScopeEntry();
1678       break;
1679     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1680       // Add the catchpad handlers to the possible destinations. We don't
1681       // continue to the unwind destination of the catchswitch for wasm.
1682       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1683         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1684         UnwindDests.back().first->setIsEHScopeEntry();
1685       }
1686       break;
1687     } else {
1688       continue;
1689     }
1690   }
1691 }
1692 
1693 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1694 /// many places it could ultimately go. In the IR, we have a single unwind
1695 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1696 /// This function skips over imaginary basic blocks that hold catchswitch
1697 /// instructions, and finds all the "real" machine
1698 /// basic block destinations. As those destinations may not be successors of
1699 /// EHPadBB, here we also calculate the edge probability to those destinations.
1700 /// The passed-in Prob is the edge probability to EHPadBB.
1701 static void findUnwindDestinations(
1702     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1703     BranchProbability Prob,
1704     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1705         &UnwindDests) {
1706   EHPersonality Personality =
1707     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1708   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1709   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1710   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1711   bool IsSEH = isAsynchronousEHPersonality(Personality);
1712 
1713   if (IsWasmCXX) {
1714     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1715     assert(UnwindDests.size() <= 1 &&
1716            "There should be at most one unwind destination for wasm");
1717     return;
1718   }
1719 
1720   while (EHPadBB) {
1721     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1722     BasicBlock *NewEHPadBB = nullptr;
1723     if (isa<LandingPadInst>(Pad)) {
1724       // Stop on landingpads. They are not funclets.
1725       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1726       break;
1727     } else if (isa<CleanupPadInst>(Pad)) {
1728       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1729       // personalities.
1730       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1731       UnwindDests.back().first->setIsEHScopeEntry();
1732       UnwindDests.back().first->setIsEHFuncletEntry();
1733       break;
1734     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1735       // Add the catchpad handlers to the possible destinations.
1736       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1737         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1738         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1739         if (IsMSVCCXX || IsCoreCLR)
1740           UnwindDests.back().first->setIsEHFuncletEntry();
1741         if (!IsSEH)
1742           UnwindDests.back().first->setIsEHScopeEntry();
1743       }
1744       NewEHPadBB = CatchSwitch->getUnwindDest();
1745     } else {
1746       continue;
1747     }
1748 
1749     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1750     if (BPI && NewEHPadBB)
1751       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1752     EHPadBB = NewEHPadBB;
1753   }
1754 }
1755 
1756 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1757   // Update successor info.
1758   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1759   auto UnwindDest = I.getUnwindDest();
1760   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1761   BranchProbability UnwindDestProb =
1762       (BPI && UnwindDest)
1763           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1764           : BranchProbability::getZero();
1765   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1766   for (auto &UnwindDest : UnwindDests) {
1767     UnwindDest.first->setIsEHPad();
1768     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1769   }
1770   FuncInfo.MBB->normalizeSuccProbs();
1771 
1772   // Create the terminator node.
1773   SDValue Ret =
1774       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1775   DAG.setRoot(Ret);
1776 }
1777 
1778 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1779   report_fatal_error("visitCatchSwitch not yet implemented!");
1780 }
1781 
1782 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1784   auto &DL = DAG.getDataLayout();
1785   SDValue Chain = getControlRoot();
1786   SmallVector<ISD::OutputArg, 8> Outs;
1787   SmallVector<SDValue, 8> OutVals;
1788 
1789   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1790   // lower
1791   //
1792   //   %val = call <ty> @llvm.experimental.deoptimize()
1793   //   ret <ty> %val
1794   //
1795   // differently.
1796   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1797     LowerDeoptimizingReturn();
1798     return;
1799   }
1800 
1801   if (!FuncInfo.CanLowerReturn) {
1802     unsigned DemoteReg = FuncInfo.DemoteRegister;
1803     const Function *F = I.getParent()->getParent();
1804 
1805     // Emit a store of the return value through the virtual register.
1806     // Leave Outs empty so that LowerReturn won't try to load return
1807     // registers the usual way.
1808     SmallVector<EVT, 1> PtrValueVTs;
1809     ComputeValueVTs(TLI, DL,
1810                     F->getReturnType()->getPointerTo(
1811                         DAG.getDataLayout().getAllocaAddrSpace()),
1812                     PtrValueVTs);
1813 
1814     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1815                                         DemoteReg, PtrValueVTs[0]);
1816     SDValue RetOp = getValue(I.getOperand(0));
1817 
1818     SmallVector<EVT, 4> ValueVTs, MemVTs;
1819     SmallVector<uint64_t, 4> Offsets;
1820     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1821                     &Offsets);
1822     unsigned NumValues = ValueVTs.size();
1823 
1824     SmallVector<SDValue, 4> Chains(NumValues);
1825     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1826     for (unsigned i = 0; i != NumValues; ++i) {
1827       // An aggregate return value cannot wrap around the address space, so
1828       // offsets to its parts don't wrap either.
1829       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1830                                            TypeSize::Fixed(Offsets[i]));
1831 
1832       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1833       if (MemVTs[i] != ValueVTs[i])
1834         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1835       Chains[i] = DAG.getStore(
1836           Chain, getCurSDLoc(), Val,
1837           // FIXME: better loc info would be nice.
1838           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1839           commonAlignment(BaseAlign, Offsets[i]));
1840     }
1841 
1842     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1843                         MVT::Other, Chains);
1844   } else if (I.getNumOperands() != 0) {
1845     SmallVector<EVT, 4> ValueVTs;
1846     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1847     unsigned NumValues = ValueVTs.size();
1848     if (NumValues) {
1849       SDValue RetOp = getValue(I.getOperand(0));
1850 
1851       const Function *F = I.getParent()->getParent();
1852 
1853       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1854           I.getOperand(0)->getType(), F->getCallingConv(),
1855           /*IsVarArg*/ false);
1856 
1857       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1858       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1859                                           Attribute::SExt))
1860         ExtendKind = ISD::SIGN_EXTEND;
1861       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1862                                                Attribute::ZExt))
1863         ExtendKind = ISD::ZERO_EXTEND;
1864 
1865       LLVMContext &Context = F->getContext();
1866       bool RetInReg = F->getAttributes().hasAttribute(
1867           AttributeList::ReturnIndex, Attribute::InReg);
1868 
1869       for (unsigned j = 0; j != NumValues; ++j) {
1870         EVT VT = ValueVTs[j];
1871 
1872         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1873           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1874 
1875         CallingConv::ID CC = F->getCallingConv();
1876 
1877         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1878         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1879         SmallVector<SDValue, 4> Parts(NumParts);
1880         getCopyToParts(DAG, getCurSDLoc(),
1881                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1882                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1883 
1884         // 'inreg' on function refers to return value
1885         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1886         if (RetInReg)
1887           Flags.setInReg();
1888 
1889         if (I.getOperand(0)->getType()->isPointerTy()) {
1890           Flags.setPointer();
1891           Flags.setPointerAddrSpace(
1892               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1893         }
1894 
1895         if (NeedsRegBlock) {
1896           Flags.setInConsecutiveRegs();
1897           if (j == NumValues - 1)
1898             Flags.setInConsecutiveRegsLast();
1899         }
1900 
1901         // Propagate extension type if any
1902         if (ExtendKind == ISD::SIGN_EXTEND)
1903           Flags.setSExt();
1904         else if (ExtendKind == ISD::ZERO_EXTEND)
1905           Flags.setZExt();
1906 
1907         for (unsigned i = 0; i < NumParts; ++i) {
1908           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1909                                         VT, /*isfixed=*/true, 0, 0));
1910           OutVals.push_back(Parts[i]);
1911         }
1912       }
1913     }
1914   }
1915 
1916   // Push in swifterror virtual register as the last element of Outs. This makes
1917   // sure swifterror virtual register will be returned in the swifterror
1918   // physical register.
1919   const Function *F = I.getParent()->getParent();
1920   if (TLI.supportSwiftError() &&
1921       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1922     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1923     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1924     Flags.setSwiftError();
1925     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1926                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1927                                   true /*isfixed*/, 1 /*origidx*/,
1928                                   0 /*partOffs*/));
1929     // Create SDNode for the swifterror virtual register.
1930     OutVals.push_back(
1931         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1932                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1933                         EVT(TLI.getPointerTy(DL))));
1934   }
1935 
1936   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1937   CallingConv::ID CallConv =
1938     DAG.getMachineFunction().getFunction().getCallingConv();
1939   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1940       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1941 
1942   // Verify that the target's LowerReturn behaved as expected.
1943   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1944          "LowerReturn didn't return a valid chain!");
1945 
1946   // Update the DAG with the new chain value resulting from return lowering.
1947   DAG.setRoot(Chain);
1948 }
1949 
1950 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1951 /// created for it, emit nodes to copy the value into the virtual
1952 /// registers.
1953 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1954   // Skip empty types
1955   if (V->getType()->isEmptyTy())
1956     return;
1957 
1958   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1959   if (VMI != FuncInfo.ValueMap.end()) {
1960     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1961     CopyValueToVirtualRegister(V, VMI->second);
1962   }
1963 }
1964 
1965 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1966 /// the current basic block, add it to ValueMap now so that we'll get a
1967 /// CopyTo/FromReg.
1968 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1969   // No need to export constants.
1970   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1971 
1972   // Already exported?
1973   if (FuncInfo.isExportedInst(V)) return;
1974 
1975   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1976   CopyValueToVirtualRegister(V, Reg);
1977 }
1978 
1979 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1980                                                      const BasicBlock *FromBB) {
1981   // The operands of the setcc have to be in this block.  We don't know
1982   // how to export them from some other block.
1983   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1984     // Can export from current BB.
1985     if (VI->getParent() == FromBB)
1986       return true;
1987 
1988     // Is already exported, noop.
1989     return FuncInfo.isExportedInst(V);
1990   }
1991 
1992   // If this is an argument, we can export it if the BB is the entry block or
1993   // if it is already exported.
1994   if (isa<Argument>(V)) {
1995     if (FromBB == &FromBB->getParent()->getEntryBlock())
1996       return true;
1997 
1998     // Otherwise, can only export this if it is already exported.
1999     return FuncInfo.isExportedInst(V);
2000   }
2001 
2002   // Otherwise, constants can always be exported.
2003   return true;
2004 }
2005 
2006 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2007 BranchProbability
2008 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2009                                         const MachineBasicBlock *Dst) const {
2010   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2011   const BasicBlock *SrcBB = Src->getBasicBlock();
2012   const BasicBlock *DstBB = Dst->getBasicBlock();
2013   if (!BPI) {
2014     // If BPI is not available, set the default probability as 1 / N, where N is
2015     // the number of successors.
2016     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2017     return BranchProbability(1, SuccSize);
2018   }
2019   return BPI->getEdgeProbability(SrcBB, DstBB);
2020 }
2021 
2022 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2023                                                MachineBasicBlock *Dst,
2024                                                BranchProbability Prob) {
2025   if (!FuncInfo.BPI)
2026     Src->addSuccessorWithoutProb(Dst);
2027   else {
2028     if (Prob.isUnknown())
2029       Prob = getEdgeProbability(Src, Dst);
2030     Src->addSuccessor(Dst, Prob);
2031   }
2032 }
2033 
2034 static bool InBlock(const Value *V, const BasicBlock *BB) {
2035   if (const Instruction *I = dyn_cast<Instruction>(V))
2036     return I->getParent() == BB;
2037   return true;
2038 }
2039 
2040 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2041 /// This function emits a branch and is used at the leaves of an OR or an
2042 /// AND operator tree.
2043 void
2044 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2045                                                   MachineBasicBlock *TBB,
2046                                                   MachineBasicBlock *FBB,
2047                                                   MachineBasicBlock *CurBB,
2048                                                   MachineBasicBlock *SwitchBB,
2049                                                   BranchProbability TProb,
2050                                                   BranchProbability FProb,
2051                                                   bool InvertCond) {
2052   const BasicBlock *BB = CurBB->getBasicBlock();
2053 
2054   // If the leaf of the tree is a comparison, merge the condition into
2055   // the caseblock.
2056   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2057     // The operands of the cmp have to be in this block.  We don't know
2058     // how to export them from some other block.  If this is the first block
2059     // of the sequence, no exporting is needed.
2060     if (CurBB == SwitchBB ||
2061         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2062          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2063       ISD::CondCode Condition;
2064       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2065         ICmpInst::Predicate Pred =
2066             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2067         Condition = getICmpCondCode(Pred);
2068       } else {
2069         const FCmpInst *FC = cast<FCmpInst>(Cond);
2070         FCmpInst::Predicate Pred =
2071             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2072         Condition = getFCmpCondCode(Pred);
2073         if (TM.Options.NoNaNsFPMath)
2074           Condition = getFCmpCodeWithoutNaN(Condition);
2075       }
2076 
2077       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2078                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2079       SL->SwitchCases.push_back(CB);
2080       return;
2081     }
2082   }
2083 
2084   // Create a CaseBlock record representing this branch.
2085   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2086   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2087                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2088   SL->SwitchCases.push_back(CB);
2089 }
2090 
2091 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2092                                                MachineBasicBlock *TBB,
2093                                                MachineBasicBlock *FBB,
2094                                                MachineBasicBlock *CurBB,
2095                                                MachineBasicBlock *SwitchBB,
2096                                                Instruction::BinaryOps Opc,
2097                                                BranchProbability TProb,
2098                                                BranchProbability FProb,
2099                                                bool InvertCond) {
2100   // Skip over not part of the tree and remember to invert op and operands at
2101   // next level.
2102   Value *NotCond;
2103   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2104       InBlock(NotCond, CurBB->getBasicBlock())) {
2105     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2106                          !InvertCond);
2107     return;
2108   }
2109 
2110   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2111   const Value *BOpOp0, *BOpOp1;
2112   // Compute the effective opcode for Cond, taking into account whether it needs
2113   // to be inverted, e.g.
2114   //   and (not (or A, B)), C
2115   // gets lowered as
2116   //   and (and (not A, not B), C)
2117   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2118   if (BOp) {
2119     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2120                ? Instruction::And
2121                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2122                       ? Instruction::Or
2123                       : (Instruction::BinaryOps)0);
2124     if (InvertCond) {
2125       if (BOpc == Instruction::And)
2126         BOpc = Instruction::Or;
2127       else if (BOpc == Instruction::Or)
2128         BOpc = Instruction::And;
2129     }
2130   }
2131 
2132   // If this node is not part of the or/and tree, emit it as a branch.
2133   // Note that all nodes in the tree should have same opcode.
2134   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2135   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2136       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2137       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2138     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2139                                  TProb, FProb, InvertCond);
2140     return;
2141   }
2142 
2143   //  Create TmpBB after CurBB.
2144   MachineFunction::iterator BBI(CurBB);
2145   MachineFunction &MF = DAG.getMachineFunction();
2146   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2147   CurBB->getParent()->insert(++BBI, TmpBB);
2148 
2149   if (Opc == Instruction::Or) {
2150     // Codegen X | Y as:
2151     // BB1:
2152     //   jmp_if_X TBB
2153     //   jmp TmpBB
2154     // TmpBB:
2155     //   jmp_if_Y TBB
2156     //   jmp FBB
2157     //
2158 
2159     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2160     // The requirement is that
2161     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2162     //     = TrueProb for original BB.
2163     // Assuming the original probabilities are A and B, one choice is to set
2164     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2165     // A/(1+B) and 2B/(1+B). This choice assumes that
2166     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2167     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2168     // TmpBB, but the math is more complicated.
2169 
2170     auto NewTrueProb = TProb / 2;
2171     auto NewFalseProb = TProb / 2 + FProb;
2172     // Emit the LHS condition.
2173     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2174                          NewFalseProb, InvertCond);
2175 
2176     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2177     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2178     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2179     // Emit the RHS condition into TmpBB.
2180     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2181                          Probs[1], InvertCond);
2182   } else {
2183     assert(Opc == Instruction::And && "Unknown merge op!");
2184     // Codegen X & Y as:
2185     // BB1:
2186     //   jmp_if_X TmpBB
2187     //   jmp FBB
2188     // TmpBB:
2189     //   jmp_if_Y TBB
2190     //   jmp FBB
2191     //
2192     //  This requires creation of TmpBB after CurBB.
2193 
2194     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2195     // The requirement is that
2196     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2197     //     = FalseProb for original BB.
2198     // Assuming the original probabilities are A and B, one choice is to set
2199     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2200     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2201     // TrueProb for BB1 * FalseProb for TmpBB.
2202 
2203     auto NewTrueProb = TProb + FProb / 2;
2204     auto NewFalseProb = FProb / 2;
2205     // Emit the LHS condition.
2206     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2207                          NewFalseProb, InvertCond);
2208 
2209     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2210     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2211     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2212     // Emit the RHS condition into TmpBB.
2213     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2214                          Probs[1], InvertCond);
2215   }
2216 }
2217 
2218 /// If the set of cases should be emitted as a series of branches, return true.
2219 /// If we should emit this as a bunch of and/or'd together conditions, return
2220 /// false.
2221 bool
2222 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2223   if (Cases.size() != 2) return true;
2224 
2225   // If this is two comparisons of the same values or'd or and'd together, they
2226   // will get folded into a single comparison, so don't emit two blocks.
2227   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2228        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2229       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2230        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2231     return false;
2232   }
2233 
2234   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2235   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2236   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2237       Cases[0].CC == Cases[1].CC &&
2238       isa<Constant>(Cases[0].CmpRHS) &&
2239       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2240     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2241       return false;
2242     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2243       return false;
2244   }
2245 
2246   return true;
2247 }
2248 
2249 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2250   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2251 
2252   // Update machine-CFG edges.
2253   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2254 
2255   if (I.isUnconditional()) {
2256     // Update machine-CFG edges.
2257     BrMBB->addSuccessor(Succ0MBB);
2258 
2259     // If this is not a fall-through branch or optimizations are switched off,
2260     // emit the branch.
2261     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2262       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2263                               MVT::Other, getControlRoot(),
2264                               DAG.getBasicBlock(Succ0MBB)));
2265 
2266     return;
2267   }
2268 
2269   // If this condition is one of the special cases we handle, do special stuff
2270   // now.
2271   const Value *CondVal = I.getCondition();
2272   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2273 
2274   // If this is a series of conditions that are or'd or and'd together, emit
2275   // this as a sequence of branches instead of setcc's with and/or operations.
2276   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2277   // unpredictable branches, and vector extracts because those jumps are likely
2278   // expensive for any target), this should improve performance.
2279   // For example, instead of something like:
2280   //     cmp A, B
2281   //     C = seteq
2282   //     cmp D, E
2283   //     F = setle
2284   //     or C, F
2285   //     jnz foo
2286   // Emit:
2287   //     cmp A, B
2288   //     je foo
2289   //     cmp D, E
2290   //     jle foo
2291   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2292   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2293       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2294     Value *Vec;
2295     const Value *BOp0, *BOp1;
2296     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2297     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2298       Opcode = Instruction::And;
2299     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2300       Opcode = Instruction::Or;
2301 
2302     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2303                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2304       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2305                            getEdgeProbability(BrMBB, Succ0MBB),
2306                            getEdgeProbability(BrMBB, Succ1MBB),
2307                            /*InvertCond=*/false);
2308       // If the compares in later blocks need to use values not currently
2309       // exported from this block, export them now.  This block should always
2310       // be the first entry.
2311       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2312 
2313       // Allow some cases to be rejected.
2314       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2315         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2316           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2317           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2318         }
2319 
2320         // Emit the branch for this block.
2321         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2322         SL->SwitchCases.erase(SL->SwitchCases.begin());
2323         return;
2324       }
2325 
2326       // Okay, we decided not to do this, remove any inserted MBB's and clear
2327       // SwitchCases.
2328       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2329         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2330 
2331       SL->SwitchCases.clear();
2332     }
2333   }
2334 
2335   // Create a CaseBlock record representing this branch.
2336   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2337                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2338 
2339   // Use visitSwitchCase to actually insert the fast branch sequence for this
2340   // cond branch.
2341   visitSwitchCase(CB, BrMBB);
2342 }
2343 
2344 /// visitSwitchCase - Emits the necessary code to represent a single node in
2345 /// the binary search tree resulting from lowering a switch instruction.
2346 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2347                                           MachineBasicBlock *SwitchBB) {
2348   SDValue Cond;
2349   SDValue CondLHS = getValue(CB.CmpLHS);
2350   SDLoc dl = CB.DL;
2351 
2352   if (CB.CC == ISD::SETTRUE) {
2353     // Branch or fall through to TrueBB.
2354     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2355     SwitchBB->normalizeSuccProbs();
2356     if (CB.TrueBB != NextBlock(SwitchBB)) {
2357       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2358                               DAG.getBasicBlock(CB.TrueBB)));
2359     }
2360     return;
2361   }
2362 
2363   auto &TLI = DAG.getTargetLoweringInfo();
2364   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2365 
2366   // Build the setcc now.
2367   if (!CB.CmpMHS) {
2368     // Fold "(X == true)" to X and "(X == false)" to !X to
2369     // handle common cases produced by branch lowering.
2370     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2371         CB.CC == ISD::SETEQ)
2372       Cond = CondLHS;
2373     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2374              CB.CC == ISD::SETEQ) {
2375       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2376       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2377     } else {
2378       SDValue CondRHS = getValue(CB.CmpRHS);
2379 
2380       // If a pointer's DAG type is larger than its memory type then the DAG
2381       // values are zero-extended. This breaks signed comparisons so truncate
2382       // back to the underlying type before doing the compare.
2383       if (CondLHS.getValueType() != MemVT) {
2384         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2385         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2386       }
2387       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2388     }
2389   } else {
2390     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2391 
2392     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2393     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2394 
2395     SDValue CmpOp = getValue(CB.CmpMHS);
2396     EVT VT = CmpOp.getValueType();
2397 
2398     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2399       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2400                           ISD::SETLE);
2401     } else {
2402       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2403                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2404       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2405                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2406     }
2407   }
2408 
2409   // Update successor info
2410   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2411   // TrueBB and FalseBB are always different unless the incoming IR is
2412   // degenerate. This only happens when running llc on weird IR.
2413   if (CB.TrueBB != CB.FalseBB)
2414     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2415   SwitchBB->normalizeSuccProbs();
2416 
2417   // If the lhs block is the next block, invert the condition so that we can
2418   // fall through to the lhs instead of the rhs block.
2419   if (CB.TrueBB == NextBlock(SwitchBB)) {
2420     std::swap(CB.TrueBB, CB.FalseBB);
2421     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2422     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2423   }
2424 
2425   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2426                                MVT::Other, getControlRoot(), Cond,
2427                                DAG.getBasicBlock(CB.TrueBB));
2428 
2429   // Insert the false branch. Do this even if it's a fall through branch,
2430   // this makes it easier to do DAG optimizations which require inverting
2431   // the branch condition.
2432   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2433                        DAG.getBasicBlock(CB.FalseBB));
2434 
2435   DAG.setRoot(BrCond);
2436 }
2437 
2438 /// visitJumpTable - Emit JumpTable node in the current MBB
2439 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2440   // Emit the code for the jump table
2441   assert(JT.Reg != -1U && "Should lower JT Header first!");
2442   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2443   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2444                                      JT.Reg, PTy);
2445   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2446   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2447                                     MVT::Other, Index.getValue(1),
2448                                     Table, Index);
2449   DAG.setRoot(BrJumpTable);
2450 }
2451 
2452 /// visitJumpTableHeader - This function emits necessary code to produce index
2453 /// in the JumpTable from switch case.
2454 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2455                                                JumpTableHeader &JTH,
2456                                                MachineBasicBlock *SwitchBB) {
2457   SDLoc dl = getCurSDLoc();
2458 
2459   // Subtract the lowest switch case value from the value being switched on.
2460   SDValue SwitchOp = getValue(JTH.SValue);
2461   EVT VT = SwitchOp.getValueType();
2462   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2463                             DAG.getConstant(JTH.First, dl, VT));
2464 
2465   // The SDNode we just created, which holds the value being switched on minus
2466   // the smallest case value, needs to be copied to a virtual register so it
2467   // can be used as an index into the jump table in a subsequent basic block.
2468   // This value may be smaller or larger than the target's pointer type, and
2469   // therefore require extension or truncating.
2470   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2471   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2472 
2473   unsigned JumpTableReg =
2474       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2475   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2476                                     JumpTableReg, SwitchOp);
2477   JT.Reg = JumpTableReg;
2478 
2479   if (!JTH.OmitRangeCheck) {
2480     // Emit the range check for the jump table, and branch to the default block
2481     // for the switch statement if the value being switched on exceeds the
2482     // largest case in the switch.
2483     SDValue CMP = DAG.getSetCC(
2484         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2485                                    Sub.getValueType()),
2486         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2487 
2488     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2489                                  MVT::Other, CopyTo, CMP,
2490                                  DAG.getBasicBlock(JT.Default));
2491 
2492     // Avoid emitting unnecessary branches to the next block.
2493     if (JT.MBB != NextBlock(SwitchBB))
2494       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2495                            DAG.getBasicBlock(JT.MBB));
2496 
2497     DAG.setRoot(BrCond);
2498   } else {
2499     // Avoid emitting unnecessary branches to the next block.
2500     if (JT.MBB != NextBlock(SwitchBB))
2501       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2502                               DAG.getBasicBlock(JT.MBB)));
2503     else
2504       DAG.setRoot(CopyTo);
2505   }
2506 }
2507 
2508 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2509 /// variable if there exists one.
2510 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2511                                  SDValue &Chain) {
2512   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2513   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2514   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2515   MachineFunction &MF = DAG.getMachineFunction();
2516   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2517   MachineSDNode *Node =
2518       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2519   if (Global) {
2520     MachinePointerInfo MPInfo(Global);
2521     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2522                  MachineMemOperand::MODereferenceable;
2523     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2524         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2525     DAG.setNodeMemRefs(Node, {MemRef});
2526   }
2527   if (PtrTy != PtrMemTy)
2528     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2529   return SDValue(Node, 0);
2530 }
2531 
2532 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2533 /// tail spliced into a stack protector check success bb.
2534 ///
2535 /// For a high level explanation of how this fits into the stack protector
2536 /// generation see the comment on the declaration of class
2537 /// StackProtectorDescriptor.
2538 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2539                                                   MachineBasicBlock *ParentBB) {
2540 
2541   // First create the loads to the guard/stack slot for the comparison.
2542   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2543   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2544   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2545 
2546   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2547   int FI = MFI.getStackProtectorIndex();
2548 
2549   SDValue Guard;
2550   SDLoc dl = getCurSDLoc();
2551   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2552   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2553   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2554 
2555   // Generate code to load the content of the guard slot.
2556   SDValue GuardVal = DAG.getLoad(
2557       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2558       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2559       MachineMemOperand::MOVolatile);
2560 
2561   if (TLI.useStackGuardXorFP())
2562     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2563 
2564   // Retrieve guard check function, nullptr if instrumentation is inlined.
2565   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2566     // The target provides a guard check function to validate the guard value.
2567     // Generate a call to that function with the content of the guard slot as
2568     // argument.
2569     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2570     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2571 
2572     TargetLowering::ArgListTy Args;
2573     TargetLowering::ArgListEntry Entry;
2574     Entry.Node = GuardVal;
2575     Entry.Ty = FnTy->getParamType(0);
2576     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2577       Entry.IsInReg = true;
2578     Args.push_back(Entry);
2579 
2580     TargetLowering::CallLoweringInfo CLI(DAG);
2581     CLI.setDebugLoc(getCurSDLoc())
2582         .setChain(DAG.getEntryNode())
2583         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2584                    getValue(GuardCheckFn), std::move(Args));
2585 
2586     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2587     DAG.setRoot(Result.second);
2588     return;
2589   }
2590 
2591   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2592   // Otherwise, emit a volatile load to retrieve the stack guard value.
2593   SDValue Chain = DAG.getEntryNode();
2594   if (TLI.useLoadStackGuardNode()) {
2595     Guard = getLoadStackGuard(DAG, dl, Chain);
2596   } else {
2597     const Value *IRGuard = TLI.getSDagStackGuard(M);
2598     SDValue GuardPtr = getValue(IRGuard);
2599 
2600     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2601                         MachinePointerInfo(IRGuard, 0), Align,
2602                         MachineMemOperand::MOVolatile);
2603   }
2604 
2605   // Perform the comparison via a getsetcc.
2606   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2607                                                         *DAG.getContext(),
2608                                                         Guard.getValueType()),
2609                              Guard, GuardVal, ISD::SETNE);
2610 
2611   // If the guard/stackslot do not equal, branch to failure MBB.
2612   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2613                                MVT::Other, GuardVal.getOperand(0),
2614                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2615   // Otherwise branch to success MBB.
2616   SDValue Br = DAG.getNode(ISD::BR, dl,
2617                            MVT::Other, BrCond,
2618                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2619 
2620   DAG.setRoot(Br);
2621 }
2622 
2623 /// Codegen the failure basic block for a stack protector check.
2624 ///
2625 /// A failure stack protector machine basic block consists simply of a call to
2626 /// __stack_chk_fail().
2627 ///
2628 /// For a high level explanation of how this fits into the stack protector
2629 /// generation see the comment on the declaration of class
2630 /// StackProtectorDescriptor.
2631 void
2632 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2633   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2634   TargetLowering::MakeLibCallOptions CallOptions;
2635   CallOptions.setDiscardResult(true);
2636   SDValue Chain =
2637       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2638                       None, CallOptions, getCurSDLoc()).second;
2639   // On PS4, the "return address" must still be within the calling function,
2640   // even if it's at the very end, so emit an explicit TRAP here.
2641   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2642   if (TM.getTargetTriple().isPS4CPU())
2643     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2644   // WebAssembly needs an unreachable instruction after a non-returning call,
2645   // because the function return type can be different from __stack_chk_fail's
2646   // return type (void).
2647   if (TM.getTargetTriple().isWasm())
2648     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2649 
2650   DAG.setRoot(Chain);
2651 }
2652 
2653 /// visitBitTestHeader - This function emits necessary code to produce value
2654 /// suitable for "bit tests"
2655 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2656                                              MachineBasicBlock *SwitchBB) {
2657   SDLoc dl = getCurSDLoc();
2658 
2659   // Subtract the minimum value.
2660   SDValue SwitchOp = getValue(B.SValue);
2661   EVT VT = SwitchOp.getValueType();
2662   SDValue RangeSub =
2663       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2664 
2665   // Determine the type of the test operands.
2666   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2667   bool UsePtrType = false;
2668   if (!TLI.isTypeLegal(VT)) {
2669     UsePtrType = true;
2670   } else {
2671     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2672       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2673         // Switch table case range are encoded into series of masks.
2674         // Just use pointer type, it's guaranteed to fit.
2675         UsePtrType = true;
2676         break;
2677       }
2678   }
2679   SDValue Sub = RangeSub;
2680   if (UsePtrType) {
2681     VT = TLI.getPointerTy(DAG.getDataLayout());
2682     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2683   }
2684 
2685   B.RegVT = VT.getSimpleVT();
2686   B.Reg = FuncInfo.CreateReg(B.RegVT);
2687   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2688 
2689   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2690 
2691   if (!B.OmitRangeCheck)
2692     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2693   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2694   SwitchBB->normalizeSuccProbs();
2695 
2696   SDValue Root = CopyTo;
2697   if (!B.OmitRangeCheck) {
2698     // Conditional branch to the default block.
2699     SDValue RangeCmp = DAG.getSetCC(dl,
2700         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2701                                RangeSub.getValueType()),
2702         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2703         ISD::SETUGT);
2704 
2705     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2706                        DAG.getBasicBlock(B.Default));
2707   }
2708 
2709   // Avoid emitting unnecessary branches to the next block.
2710   if (MBB != NextBlock(SwitchBB))
2711     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2712 
2713   DAG.setRoot(Root);
2714 }
2715 
2716 /// visitBitTestCase - this function produces one "bit test"
2717 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2718                                            MachineBasicBlock* NextMBB,
2719                                            BranchProbability BranchProbToNext,
2720                                            unsigned Reg,
2721                                            BitTestCase &B,
2722                                            MachineBasicBlock *SwitchBB) {
2723   SDLoc dl = getCurSDLoc();
2724   MVT VT = BB.RegVT;
2725   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2726   SDValue Cmp;
2727   unsigned PopCount = countPopulation(B.Mask);
2728   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2729   if (PopCount == 1) {
2730     // Testing for a single bit; just compare the shift count with what it
2731     // would need to be to shift a 1 bit in that position.
2732     Cmp = DAG.getSetCC(
2733         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2734         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2735         ISD::SETEQ);
2736   } else if (PopCount == BB.Range) {
2737     // There is only one zero bit in the range, test for it directly.
2738     Cmp = DAG.getSetCC(
2739         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2740         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2741         ISD::SETNE);
2742   } else {
2743     // Make desired shift
2744     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2745                                     DAG.getConstant(1, dl, VT), ShiftOp);
2746 
2747     // Emit bit tests and jumps
2748     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2749                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2750     Cmp = DAG.getSetCC(
2751         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2752         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2753   }
2754 
2755   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2756   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2757   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2758   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2759   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2760   // one as they are relative probabilities (and thus work more like weights),
2761   // and hence we need to normalize them to let the sum of them become one.
2762   SwitchBB->normalizeSuccProbs();
2763 
2764   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2765                               MVT::Other, getControlRoot(),
2766                               Cmp, DAG.getBasicBlock(B.TargetBB));
2767 
2768   // Avoid emitting unnecessary branches to the next block.
2769   if (NextMBB != NextBlock(SwitchBB))
2770     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2771                         DAG.getBasicBlock(NextMBB));
2772 
2773   DAG.setRoot(BrAnd);
2774 }
2775 
2776 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2777   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2778 
2779   // Retrieve successors. Look through artificial IR level blocks like
2780   // catchswitch for successors.
2781   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2782   const BasicBlock *EHPadBB = I.getSuccessor(1);
2783 
2784   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2785   // have to do anything here to lower funclet bundles.
2786   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2787                                         LLVMContext::OB_gc_transition,
2788                                         LLVMContext::OB_gc_live,
2789                                         LLVMContext::OB_funclet,
2790                                         LLVMContext::OB_cfguardtarget}) &&
2791          "Cannot lower invokes with arbitrary operand bundles yet!");
2792 
2793   const Value *Callee(I.getCalledOperand());
2794   const Function *Fn = dyn_cast<Function>(Callee);
2795   if (isa<InlineAsm>(Callee))
2796     visitInlineAsm(I);
2797   else if (Fn && Fn->isIntrinsic()) {
2798     switch (Fn->getIntrinsicID()) {
2799     default:
2800       llvm_unreachable("Cannot invoke this intrinsic");
2801     case Intrinsic::donothing:
2802       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2803       break;
2804     case Intrinsic::experimental_patchpoint_void:
2805     case Intrinsic::experimental_patchpoint_i64:
2806       visitPatchpoint(I, EHPadBB);
2807       break;
2808     case Intrinsic::experimental_gc_statepoint:
2809       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2810       break;
2811     case Intrinsic::wasm_rethrow: {
2812       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2813       // special because it can be invoked, so we manually lower it to a DAG
2814       // node here.
2815       SmallVector<SDValue, 8> Ops;
2816       Ops.push_back(getRoot()); // inchain
2817       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2818       Ops.push_back(
2819           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2820                                 TLI.getPointerTy(DAG.getDataLayout())));
2821       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2822       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2823       break;
2824     }
2825     }
2826   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2827     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2828     // Eventually we will support lowering the @llvm.experimental.deoptimize
2829     // intrinsic, and right now there are no plans to support other intrinsics
2830     // with deopt state.
2831     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2832   } else {
2833     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2834   }
2835 
2836   // If the value of the invoke is used outside of its defining block, make it
2837   // available as a virtual register.
2838   // We already took care of the exported value for the statepoint instruction
2839   // during call to the LowerStatepoint.
2840   if (!isa<GCStatepointInst>(I)) {
2841     CopyToExportRegsIfNeeded(&I);
2842   }
2843 
2844   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2845   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2846   BranchProbability EHPadBBProb =
2847       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2848           : BranchProbability::getZero();
2849   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2850 
2851   // Update successor info.
2852   addSuccessorWithProb(InvokeMBB, Return);
2853   for (auto &UnwindDest : UnwindDests) {
2854     UnwindDest.first->setIsEHPad();
2855     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2856   }
2857   InvokeMBB->normalizeSuccProbs();
2858 
2859   // Drop into normal successor.
2860   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2861                           DAG.getBasicBlock(Return)));
2862 }
2863 
2864 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2865   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2866 
2867   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2868   // have to do anything here to lower funclet bundles.
2869   assert(!I.hasOperandBundlesOtherThan(
2870              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2871          "Cannot lower callbrs with arbitrary operand bundles yet!");
2872 
2873   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2874   visitInlineAsm(I);
2875   CopyToExportRegsIfNeeded(&I);
2876 
2877   // Retrieve successors.
2878   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2879 
2880   // Update successor info.
2881   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2882   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2883     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2884     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2885     Target->setIsInlineAsmBrIndirectTarget();
2886   }
2887   CallBrMBB->normalizeSuccProbs();
2888 
2889   // Drop into default successor.
2890   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2891                           MVT::Other, getControlRoot(),
2892                           DAG.getBasicBlock(Return)));
2893 }
2894 
2895 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2896   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2897 }
2898 
2899 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2900   assert(FuncInfo.MBB->isEHPad() &&
2901          "Call to landingpad not in landing pad!");
2902 
2903   // If there aren't registers to copy the values into (e.g., during SjLj
2904   // exceptions), then don't bother to create these DAG nodes.
2905   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2906   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2907   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2908       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2909     return;
2910 
2911   // If landingpad's return type is token type, we don't create DAG nodes
2912   // for its exception pointer and selector value. The extraction of exception
2913   // pointer or selector value from token type landingpads is not currently
2914   // supported.
2915   if (LP.getType()->isTokenTy())
2916     return;
2917 
2918   SmallVector<EVT, 2> ValueVTs;
2919   SDLoc dl = getCurSDLoc();
2920   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2921   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2922 
2923   // Get the two live-in registers as SDValues. The physregs have already been
2924   // copied into virtual registers.
2925   SDValue Ops[2];
2926   if (FuncInfo.ExceptionPointerVirtReg) {
2927     Ops[0] = DAG.getZExtOrTrunc(
2928         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2929                            FuncInfo.ExceptionPointerVirtReg,
2930                            TLI.getPointerTy(DAG.getDataLayout())),
2931         dl, ValueVTs[0]);
2932   } else {
2933     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2934   }
2935   Ops[1] = DAG.getZExtOrTrunc(
2936       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2937                          FuncInfo.ExceptionSelectorVirtReg,
2938                          TLI.getPointerTy(DAG.getDataLayout())),
2939       dl, ValueVTs[1]);
2940 
2941   // Merge into one.
2942   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2943                             DAG.getVTList(ValueVTs), Ops);
2944   setValue(&LP, Res);
2945 }
2946 
2947 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2948                                            MachineBasicBlock *Last) {
2949   // Update JTCases.
2950   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2951     if (SL->JTCases[i].first.HeaderBB == First)
2952       SL->JTCases[i].first.HeaderBB = Last;
2953 
2954   // Update BitTestCases.
2955   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2956     if (SL->BitTestCases[i].Parent == First)
2957       SL->BitTestCases[i].Parent = Last;
2958 }
2959 
2960 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2961   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2962 
2963   // Update machine-CFG edges with unique successors.
2964   SmallSet<BasicBlock*, 32> Done;
2965   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2966     BasicBlock *BB = I.getSuccessor(i);
2967     bool Inserted = Done.insert(BB).second;
2968     if (!Inserted)
2969         continue;
2970 
2971     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2972     addSuccessorWithProb(IndirectBrMBB, Succ);
2973   }
2974   IndirectBrMBB->normalizeSuccProbs();
2975 
2976   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2977                           MVT::Other, getControlRoot(),
2978                           getValue(I.getAddress())));
2979 }
2980 
2981 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2982   if (!DAG.getTarget().Options.TrapUnreachable)
2983     return;
2984 
2985   // We may be able to ignore unreachable behind a noreturn call.
2986   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2987     const BasicBlock &BB = *I.getParent();
2988     if (&I != &BB.front()) {
2989       BasicBlock::const_iterator PredI =
2990         std::prev(BasicBlock::const_iterator(&I));
2991       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2992         if (Call->doesNotReturn())
2993           return;
2994       }
2995     }
2996   }
2997 
2998   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2999 }
3000 
3001 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3002   SDNodeFlags Flags;
3003 
3004   SDValue Op = getValue(I.getOperand(0));
3005   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3006                                     Op, Flags);
3007   setValue(&I, UnNodeValue);
3008 }
3009 
3010 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3011   SDNodeFlags Flags;
3012   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3013     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3014     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3015   }
3016   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3017     Flags.setExact(ExactOp->isExact());
3018   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3019     Flags.copyFMF(*FPOp);
3020 
3021   SDValue Op1 = getValue(I.getOperand(0));
3022   SDValue Op2 = getValue(I.getOperand(1));
3023   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3024                                      Op1, Op2, Flags);
3025   setValue(&I, BinNodeValue);
3026 }
3027 
3028 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3029   SDValue Op1 = getValue(I.getOperand(0));
3030   SDValue Op2 = getValue(I.getOperand(1));
3031 
3032   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3033       Op1.getValueType(), DAG.getDataLayout());
3034 
3035   // Coerce the shift amount to the right type if we can.
3036   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3037     unsigned ShiftSize = ShiftTy.getSizeInBits();
3038     unsigned Op2Size = Op2.getValueSizeInBits();
3039     SDLoc DL = getCurSDLoc();
3040 
3041     // If the operand is smaller than the shift count type, promote it.
3042     if (ShiftSize > Op2Size)
3043       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3044 
3045     // If the operand is larger than the shift count type but the shift
3046     // count type has enough bits to represent any shift value, truncate
3047     // it now. This is a common case and it exposes the truncate to
3048     // optimization early.
3049     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3050       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3051     // Otherwise we'll need to temporarily settle for some other convenient
3052     // type.  Type legalization will make adjustments once the shiftee is split.
3053     else
3054       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3055   }
3056 
3057   bool nuw = false;
3058   bool nsw = false;
3059   bool exact = false;
3060 
3061   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3062 
3063     if (const OverflowingBinaryOperator *OFBinOp =
3064             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3065       nuw = OFBinOp->hasNoUnsignedWrap();
3066       nsw = OFBinOp->hasNoSignedWrap();
3067     }
3068     if (const PossiblyExactOperator *ExactOp =
3069             dyn_cast<const PossiblyExactOperator>(&I))
3070       exact = ExactOp->isExact();
3071   }
3072   SDNodeFlags Flags;
3073   Flags.setExact(exact);
3074   Flags.setNoSignedWrap(nsw);
3075   Flags.setNoUnsignedWrap(nuw);
3076   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3077                             Flags);
3078   setValue(&I, Res);
3079 }
3080 
3081 void SelectionDAGBuilder::visitSDiv(const User &I) {
3082   SDValue Op1 = getValue(I.getOperand(0));
3083   SDValue Op2 = getValue(I.getOperand(1));
3084 
3085   SDNodeFlags Flags;
3086   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3087                  cast<PossiblyExactOperator>(&I)->isExact());
3088   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3089                            Op2, Flags));
3090 }
3091 
3092 void SelectionDAGBuilder::visitICmp(const User &I) {
3093   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3094   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3095     predicate = IC->getPredicate();
3096   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3097     predicate = ICmpInst::Predicate(IC->getPredicate());
3098   SDValue Op1 = getValue(I.getOperand(0));
3099   SDValue Op2 = getValue(I.getOperand(1));
3100   ISD::CondCode Opcode = getICmpCondCode(predicate);
3101 
3102   auto &TLI = DAG.getTargetLoweringInfo();
3103   EVT MemVT =
3104       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3105 
3106   // If a pointer's DAG type is larger than its memory type then the DAG values
3107   // are zero-extended. This breaks signed comparisons so truncate back to the
3108   // underlying type before doing the compare.
3109   if (Op1.getValueType() != MemVT) {
3110     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3111     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3112   }
3113 
3114   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3115                                                         I.getType());
3116   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3117 }
3118 
3119 void SelectionDAGBuilder::visitFCmp(const User &I) {
3120   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3121   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3122     predicate = FC->getPredicate();
3123   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3124     predicate = FCmpInst::Predicate(FC->getPredicate());
3125   SDValue Op1 = getValue(I.getOperand(0));
3126   SDValue Op2 = getValue(I.getOperand(1));
3127 
3128   ISD::CondCode Condition = getFCmpCondCode(predicate);
3129   auto *FPMO = cast<FPMathOperator>(&I);
3130   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3131     Condition = getFCmpCodeWithoutNaN(Condition);
3132 
3133   SDNodeFlags Flags;
3134   Flags.copyFMF(*FPMO);
3135   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3136 
3137   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3138                                                         I.getType());
3139   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3140 }
3141 
3142 // Check if the condition of the select has one use or two users that are both
3143 // selects with the same condition.
3144 static bool hasOnlySelectUsers(const Value *Cond) {
3145   return llvm::all_of(Cond->users(), [](const Value *V) {
3146     return isa<SelectInst>(V);
3147   });
3148 }
3149 
3150 void SelectionDAGBuilder::visitSelect(const User &I) {
3151   SmallVector<EVT, 4> ValueVTs;
3152   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3153                   ValueVTs);
3154   unsigned NumValues = ValueVTs.size();
3155   if (NumValues == 0) return;
3156 
3157   SmallVector<SDValue, 4> Values(NumValues);
3158   SDValue Cond     = getValue(I.getOperand(0));
3159   SDValue LHSVal   = getValue(I.getOperand(1));
3160   SDValue RHSVal   = getValue(I.getOperand(2));
3161   SmallVector<SDValue, 1> BaseOps(1, Cond);
3162   ISD::NodeType OpCode =
3163       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3164 
3165   bool IsUnaryAbs = false;
3166   bool Negate = false;
3167 
3168   SDNodeFlags Flags;
3169   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3170     Flags.copyFMF(*FPOp);
3171 
3172   // Min/max matching is only viable if all output VTs are the same.
3173   if (is_splat(ValueVTs)) {
3174     EVT VT = ValueVTs[0];
3175     LLVMContext &Ctx = *DAG.getContext();
3176     auto &TLI = DAG.getTargetLoweringInfo();
3177 
3178     // We care about the legality of the operation after it has been type
3179     // legalized.
3180     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3181       VT = TLI.getTypeToTransformTo(Ctx, VT);
3182 
3183     // If the vselect is legal, assume we want to leave this as a vector setcc +
3184     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3185     // min/max is legal on the scalar type.
3186     bool UseScalarMinMax = VT.isVector() &&
3187       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3188 
3189     Value *LHS, *RHS;
3190     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3191     ISD::NodeType Opc = ISD::DELETED_NODE;
3192     switch (SPR.Flavor) {
3193     case SPF_UMAX:    Opc = ISD::UMAX; break;
3194     case SPF_UMIN:    Opc = ISD::UMIN; break;
3195     case SPF_SMAX:    Opc = ISD::SMAX; break;
3196     case SPF_SMIN:    Opc = ISD::SMIN; break;
3197     case SPF_FMINNUM:
3198       switch (SPR.NaNBehavior) {
3199       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3200       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3201       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3202       case SPNB_RETURNS_ANY: {
3203         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3204           Opc = ISD::FMINNUM;
3205         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3206           Opc = ISD::FMINIMUM;
3207         else if (UseScalarMinMax)
3208           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3209             ISD::FMINNUM : ISD::FMINIMUM;
3210         break;
3211       }
3212       }
3213       break;
3214     case SPF_FMAXNUM:
3215       switch (SPR.NaNBehavior) {
3216       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3217       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3218       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3219       case SPNB_RETURNS_ANY:
3220 
3221         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3222           Opc = ISD::FMAXNUM;
3223         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3224           Opc = ISD::FMAXIMUM;
3225         else if (UseScalarMinMax)
3226           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3227             ISD::FMAXNUM : ISD::FMAXIMUM;
3228         break;
3229       }
3230       break;
3231     case SPF_NABS:
3232       Negate = true;
3233       LLVM_FALLTHROUGH;
3234     case SPF_ABS:
3235       IsUnaryAbs = true;
3236       Opc = ISD::ABS;
3237       break;
3238     default: break;
3239     }
3240 
3241     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3242         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3243          (UseScalarMinMax &&
3244           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3245         // If the underlying comparison instruction is used by any other
3246         // instruction, the consumed instructions won't be destroyed, so it is
3247         // not profitable to convert to a min/max.
3248         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3249       OpCode = Opc;
3250       LHSVal = getValue(LHS);
3251       RHSVal = getValue(RHS);
3252       BaseOps.clear();
3253     }
3254 
3255     if (IsUnaryAbs) {
3256       OpCode = Opc;
3257       LHSVal = getValue(LHS);
3258       BaseOps.clear();
3259     }
3260   }
3261 
3262   if (IsUnaryAbs) {
3263     for (unsigned i = 0; i != NumValues; ++i) {
3264       SDLoc dl = getCurSDLoc();
3265       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3266       Values[i] =
3267           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3268       if (Negate)
3269         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3270                                 Values[i]);
3271     }
3272   } else {
3273     for (unsigned i = 0; i != NumValues; ++i) {
3274       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3275       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3276       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3277       Values[i] = DAG.getNode(
3278           OpCode, getCurSDLoc(),
3279           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3280     }
3281   }
3282 
3283   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3284                            DAG.getVTList(ValueVTs), Values));
3285 }
3286 
3287 void SelectionDAGBuilder::visitTrunc(const User &I) {
3288   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3289   SDValue N = getValue(I.getOperand(0));
3290   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3291                                                         I.getType());
3292   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3293 }
3294 
3295 void SelectionDAGBuilder::visitZExt(const User &I) {
3296   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3297   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3298   SDValue N = getValue(I.getOperand(0));
3299   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3300                                                         I.getType());
3301   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3302 }
3303 
3304 void SelectionDAGBuilder::visitSExt(const User &I) {
3305   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3306   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3307   SDValue N = getValue(I.getOperand(0));
3308   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3309                                                         I.getType());
3310   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3311 }
3312 
3313 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3314   // FPTrunc is never a no-op cast, no need to check
3315   SDValue N = getValue(I.getOperand(0));
3316   SDLoc dl = getCurSDLoc();
3317   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3318   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3319   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3320                            DAG.getTargetConstant(
3321                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3322 }
3323 
3324 void SelectionDAGBuilder::visitFPExt(const User &I) {
3325   // FPExt is never a no-op cast, no need to check
3326   SDValue N = getValue(I.getOperand(0));
3327   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3328                                                         I.getType());
3329   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3330 }
3331 
3332 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3333   // FPToUI is never a no-op cast, no need to check
3334   SDValue N = getValue(I.getOperand(0));
3335   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3336                                                         I.getType());
3337   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3338 }
3339 
3340 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3341   // FPToSI is never a no-op cast, no need to check
3342   SDValue N = getValue(I.getOperand(0));
3343   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3344                                                         I.getType());
3345   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3346 }
3347 
3348 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3349   // UIToFP is never a no-op cast, no need to check
3350   SDValue N = getValue(I.getOperand(0));
3351   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3352                                                         I.getType());
3353   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3354 }
3355 
3356 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3357   // SIToFP is never a no-op cast, no need to check
3358   SDValue N = getValue(I.getOperand(0));
3359   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3360                                                         I.getType());
3361   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3362 }
3363 
3364 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3365   // What to do depends on the size of the integer and the size of the pointer.
3366   // We can either truncate, zero extend, or no-op, accordingly.
3367   SDValue N = getValue(I.getOperand(0));
3368   auto &TLI = DAG.getTargetLoweringInfo();
3369   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3370                                                         I.getType());
3371   EVT PtrMemVT =
3372       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3373   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3374   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3375   setValue(&I, N);
3376 }
3377 
3378 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3379   // What to do depends on the size of the integer and the size of the pointer.
3380   // We can either truncate, zero extend, or no-op, accordingly.
3381   SDValue N = getValue(I.getOperand(0));
3382   auto &TLI = DAG.getTargetLoweringInfo();
3383   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3384   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3385   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3386   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3387   setValue(&I, N);
3388 }
3389 
3390 void SelectionDAGBuilder::visitBitCast(const User &I) {
3391   SDValue N = getValue(I.getOperand(0));
3392   SDLoc dl = getCurSDLoc();
3393   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3394                                                         I.getType());
3395 
3396   // BitCast assures us that source and destination are the same size so this is
3397   // either a BITCAST or a no-op.
3398   if (DestVT != N.getValueType())
3399     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3400                              DestVT, N)); // convert types.
3401   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3402   // might fold any kind of constant expression to an integer constant and that
3403   // is not what we are looking for. Only recognize a bitcast of a genuine
3404   // constant integer as an opaque constant.
3405   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3406     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3407                                  /*isOpaque*/true));
3408   else
3409     setValue(&I, N);            // noop cast.
3410 }
3411 
3412 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3413   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3414   const Value *SV = I.getOperand(0);
3415   SDValue N = getValue(SV);
3416   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3417 
3418   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3419   unsigned DestAS = I.getType()->getPointerAddressSpace();
3420 
3421   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3422     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3423 
3424   setValue(&I, N);
3425 }
3426 
3427 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3428   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3429   SDValue InVec = getValue(I.getOperand(0));
3430   SDValue InVal = getValue(I.getOperand(1));
3431   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3432                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3433   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3434                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3435                            InVec, InVal, InIdx));
3436 }
3437 
3438 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3439   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3440   SDValue InVec = getValue(I.getOperand(0));
3441   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3442                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3443   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3444                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3445                            InVec, InIdx));
3446 }
3447 
3448 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3449   SDValue Src1 = getValue(I.getOperand(0));
3450   SDValue Src2 = getValue(I.getOperand(1));
3451   ArrayRef<int> Mask;
3452   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3453     Mask = SVI->getShuffleMask();
3454   else
3455     Mask = cast<ConstantExpr>(I).getShuffleMask();
3456   SDLoc DL = getCurSDLoc();
3457   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3458   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3459   EVT SrcVT = Src1.getValueType();
3460 
3461   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3462       VT.isScalableVector()) {
3463     // Canonical splat form of first element of first input vector.
3464     SDValue FirstElt =
3465         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3466                     DAG.getVectorIdxConstant(0, DL));
3467     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3468     return;
3469   }
3470 
3471   // For now, we only handle splats for scalable vectors.
3472   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3473   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3474   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3475 
3476   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3477   unsigned MaskNumElts = Mask.size();
3478 
3479   if (SrcNumElts == MaskNumElts) {
3480     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3481     return;
3482   }
3483 
3484   // Normalize the shuffle vector since mask and vector length don't match.
3485   if (SrcNumElts < MaskNumElts) {
3486     // Mask is longer than the source vectors. We can use concatenate vector to
3487     // make the mask and vectors lengths match.
3488 
3489     if (MaskNumElts % SrcNumElts == 0) {
3490       // Mask length is a multiple of the source vector length.
3491       // Check if the shuffle is some kind of concatenation of the input
3492       // vectors.
3493       unsigned NumConcat = MaskNumElts / SrcNumElts;
3494       bool IsConcat = true;
3495       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3496       for (unsigned i = 0; i != MaskNumElts; ++i) {
3497         int Idx = Mask[i];
3498         if (Idx < 0)
3499           continue;
3500         // Ensure the indices in each SrcVT sized piece are sequential and that
3501         // the same source is used for the whole piece.
3502         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3503             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3504              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3505           IsConcat = false;
3506           break;
3507         }
3508         // Remember which source this index came from.
3509         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3510       }
3511 
3512       // The shuffle is concatenating multiple vectors together. Just emit
3513       // a CONCAT_VECTORS operation.
3514       if (IsConcat) {
3515         SmallVector<SDValue, 8> ConcatOps;
3516         for (auto Src : ConcatSrcs) {
3517           if (Src < 0)
3518             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3519           else if (Src == 0)
3520             ConcatOps.push_back(Src1);
3521           else
3522             ConcatOps.push_back(Src2);
3523         }
3524         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3525         return;
3526       }
3527     }
3528 
3529     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3530     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3531     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3532                                     PaddedMaskNumElts);
3533 
3534     // Pad both vectors with undefs to make them the same length as the mask.
3535     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3536 
3537     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3538     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3539     MOps1[0] = Src1;
3540     MOps2[0] = Src2;
3541 
3542     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3543     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3544 
3545     // Readjust mask for new input vector length.
3546     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3547     for (unsigned i = 0; i != MaskNumElts; ++i) {
3548       int Idx = Mask[i];
3549       if (Idx >= (int)SrcNumElts)
3550         Idx -= SrcNumElts - PaddedMaskNumElts;
3551       MappedOps[i] = Idx;
3552     }
3553 
3554     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3555 
3556     // If the concatenated vector was padded, extract a subvector with the
3557     // correct number of elements.
3558     if (MaskNumElts != PaddedMaskNumElts)
3559       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3560                            DAG.getVectorIdxConstant(0, DL));
3561 
3562     setValue(&I, Result);
3563     return;
3564   }
3565 
3566   if (SrcNumElts > MaskNumElts) {
3567     // Analyze the access pattern of the vector to see if we can extract
3568     // two subvectors and do the shuffle.
3569     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3570     bool CanExtract = true;
3571     for (int Idx : Mask) {
3572       unsigned Input = 0;
3573       if (Idx < 0)
3574         continue;
3575 
3576       if (Idx >= (int)SrcNumElts) {
3577         Input = 1;
3578         Idx -= SrcNumElts;
3579       }
3580 
3581       // If all the indices come from the same MaskNumElts sized portion of
3582       // the sources we can use extract. Also make sure the extract wouldn't
3583       // extract past the end of the source.
3584       int NewStartIdx = alignDown(Idx, MaskNumElts);
3585       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3586           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3587         CanExtract = false;
3588       // Make sure we always update StartIdx as we use it to track if all
3589       // elements are undef.
3590       StartIdx[Input] = NewStartIdx;
3591     }
3592 
3593     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3594       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3595       return;
3596     }
3597     if (CanExtract) {
3598       // Extract appropriate subvector and generate a vector shuffle
3599       for (unsigned Input = 0; Input < 2; ++Input) {
3600         SDValue &Src = Input == 0 ? Src1 : Src2;
3601         if (StartIdx[Input] < 0)
3602           Src = DAG.getUNDEF(VT);
3603         else {
3604           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3605                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3606         }
3607       }
3608 
3609       // Calculate new mask.
3610       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3611       for (int &Idx : MappedOps) {
3612         if (Idx >= (int)SrcNumElts)
3613           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3614         else if (Idx >= 0)
3615           Idx -= StartIdx[0];
3616       }
3617 
3618       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3619       return;
3620     }
3621   }
3622 
3623   // We can't use either concat vectors or extract subvectors so fall back to
3624   // replacing the shuffle with extract and build vector.
3625   // to insert and build vector.
3626   EVT EltVT = VT.getVectorElementType();
3627   SmallVector<SDValue,8> Ops;
3628   for (int Idx : Mask) {
3629     SDValue Res;
3630 
3631     if (Idx < 0) {
3632       Res = DAG.getUNDEF(EltVT);
3633     } else {
3634       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3635       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3636 
3637       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3638                         DAG.getVectorIdxConstant(Idx, DL));
3639     }
3640 
3641     Ops.push_back(Res);
3642   }
3643 
3644   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3645 }
3646 
3647 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3648   ArrayRef<unsigned> Indices;
3649   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3650     Indices = IV->getIndices();
3651   else
3652     Indices = cast<ConstantExpr>(&I)->getIndices();
3653 
3654   const Value *Op0 = I.getOperand(0);
3655   const Value *Op1 = I.getOperand(1);
3656   Type *AggTy = I.getType();
3657   Type *ValTy = Op1->getType();
3658   bool IntoUndef = isa<UndefValue>(Op0);
3659   bool FromUndef = isa<UndefValue>(Op1);
3660 
3661   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3662 
3663   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3664   SmallVector<EVT, 4> AggValueVTs;
3665   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3666   SmallVector<EVT, 4> ValValueVTs;
3667   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3668 
3669   unsigned NumAggValues = AggValueVTs.size();
3670   unsigned NumValValues = ValValueVTs.size();
3671   SmallVector<SDValue, 4> Values(NumAggValues);
3672 
3673   // Ignore an insertvalue that produces an empty object
3674   if (!NumAggValues) {
3675     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3676     return;
3677   }
3678 
3679   SDValue Agg = getValue(Op0);
3680   unsigned i = 0;
3681   // Copy the beginning value(s) from the original aggregate.
3682   for (; i != LinearIndex; ++i)
3683     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3684                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3685   // Copy values from the inserted value(s).
3686   if (NumValValues) {
3687     SDValue Val = getValue(Op1);
3688     for (; i != LinearIndex + NumValValues; ++i)
3689       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3690                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3691   }
3692   // Copy remaining value(s) from the original aggregate.
3693   for (; i != NumAggValues; ++i)
3694     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3695                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3696 
3697   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3698                            DAG.getVTList(AggValueVTs), Values));
3699 }
3700 
3701 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3702   ArrayRef<unsigned> Indices;
3703   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3704     Indices = EV->getIndices();
3705   else
3706     Indices = cast<ConstantExpr>(&I)->getIndices();
3707 
3708   const Value *Op0 = I.getOperand(0);
3709   Type *AggTy = Op0->getType();
3710   Type *ValTy = I.getType();
3711   bool OutOfUndef = isa<UndefValue>(Op0);
3712 
3713   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3714 
3715   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3716   SmallVector<EVT, 4> ValValueVTs;
3717   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3718 
3719   unsigned NumValValues = ValValueVTs.size();
3720 
3721   // Ignore a extractvalue that produces an empty object
3722   if (!NumValValues) {
3723     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3724     return;
3725   }
3726 
3727   SmallVector<SDValue, 4> Values(NumValValues);
3728 
3729   SDValue Agg = getValue(Op0);
3730   // Copy out the selected value(s).
3731   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3732     Values[i - LinearIndex] =
3733       OutOfUndef ?
3734         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3735         SDValue(Agg.getNode(), Agg.getResNo() + i);
3736 
3737   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3738                            DAG.getVTList(ValValueVTs), Values));
3739 }
3740 
3741 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3742   Value *Op0 = I.getOperand(0);
3743   // Note that the pointer operand may be a vector of pointers. Take the scalar
3744   // element which holds a pointer.
3745   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3746   SDValue N = getValue(Op0);
3747   SDLoc dl = getCurSDLoc();
3748   auto &TLI = DAG.getTargetLoweringInfo();
3749 
3750   // Normalize Vector GEP - all scalar operands should be converted to the
3751   // splat vector.
3752   bool IsVectorGEP = I.getType()->isVectorTy();
3753   ElementCount VectorElementCount =
3754       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3755                   : ElementCount::getFixed(0);
3756 
3757   if (IsVectorGEP && !N.getValueType().isVector()) {
3758     LLVMContext &Context = *DAG.getContext();
3759     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3760     if (VectorElementCount.isScalable())
3761       N = DAG.getSplatVector(VT, dl, N);
3762     else
3763       N = DAG.getSplatBuildVector(VT, dl, N);
3764   }
3765 
3766   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3767        GTI != E; ++GTI) {
3768     const Value *Idx = GTI.getOperand();
3769     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3770       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3771       if (Field) {
3772         // N = N + Offset
3773         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3774 
3775         // In an inbounds GEP with an offset that is nonnegative even when
3776         // interpreted as signed, assume there is no unsigned overflow.
3777         SDNodeFlags Flags;
3778         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3779           Flags.setNoUnsignedWrap(true);
3780 
3781         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3782                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3783       }
3784     } else {
3785       // IdxSize is the width of the arithmetic according to IR semantics.
3786       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3787       // (and fix up the result later).
3788       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3789       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3790       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3791       // We intentionally mask away the high bits here; ElementSize may not
3792       // fit in IdxTy.
3793       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3794       bool ElementScalable = ElementSize.isScalable();
3795 
3796       // If this is a scalar constant or a splat vector of constants,
3797       // handle it quickly.
3798       const auto *C = dyn_cast<Constant>(Idx);
3799       if (C && isa<VectorType>(C->getType()))
3800         C = C->getSplatValue();
3801 
3802       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3803       if (CI && CI->isZero())
3804         continue;
3805       if (CI && !ElementScalable) {
3806         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3807         LLVMContext &Context = *DAG.getContext();
3808         SDValue OffsVal;
3809         if (IsVectorGEP)
3810           OffsVal = DAG.getConstant(
3811               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3812         else
3813           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3814 
3815         // In an inbounds GEP with an offset that is nonnegative even when
3816         // interpreted as signed, assume there is no unsigned overflow.
3817         SDNodeFlags Flags;
3818         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3819           Flags.setNoUnsignedWrap(true);
3820 
3821         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3822 
3823         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3824         continue;
3825       }
3826 
3827       // N = N + Idx * ElementMul;
3828       SDValue IdxN = getValue(Idx);
3829 
3830       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3831         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3832                                   VectorElementCount);
3833         if (VectorElementCount.isScalable())
3834           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3835         else
3836           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3837       }
3838 
3839       // If the index is smaller or larger than intptr_t, truncate or extend
3840       // it.
3841       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3842 
3843       if (ElementScalable) {
3844         EVT VScaleTy = N.getValueType().getScalarType();
3845         SDValue VScale = DAG.getNode(
3846             ISD::VSCALE, dl, VScaleTy,
3847             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3848         if (IsVectorGEP)
3849           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3850         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3851       } else {
3852         // If this is a multiply by a power of two, turn it into a shl
3853         // immediately.  This is a very common case.
3854         if (ElementMul != 1) {
3855           if (ElementMul.isPowerOf2()) {
3856             unsigned Amt = ElementMul.logBase2();
3857             IdxN = DAG.getNode(ISD::SHL, dl,
3858                                N.getValueType(), IdxN,
3859                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3860           } else {
3861             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3862                                             IdxN.getValueType());
3863             IdxN = DAG.getNode(ISD::MUL, dl,
3864                                N.getValueType(), IdxN, Scale);
3865           }
3866         }
3867       }
3868 
3869       N = DAG.getNode(ISD::ADD, dl,
3870                       N.getValueType(), N, IdxN);
3871     }
3872   }
3873 
3874   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3875   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3876   if (IsVectorGEP) {
3877     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3878     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3879   }
3880 
3881   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3882     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3883 
3884   setValue(&I, N);
3885 }
3886 
3887 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3888   // If this is a fixed sized alloca in the entry block of the function,
3889   // allocate it statically on the stack.
3890   if (FuncInfo.StaticAllocaMap.count(&I))
3891     return;   // getValue will auto-populate this.
3892 
3893   SDLoc dl = getCurSDLoc();
3894   Type *Ty = I.getAllocatedType();
3895   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3896   auto &DL = DAG.getDataLayout();
3897   uint64_t TySize = DL.getTypeAllocSize(Ty);
3898   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3899 
3900   SDValue AllocSize = getValue(I.getArraySize());
3901 
3902   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3903   if (AllocSize.getValueType() != IntPtr)
3904     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3905 
3906   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3907                           AllocSize,
3908                           DAG.getConstant(TySize, dl, IntPtr));
3909 
3910   // Handle alignment.  If the requested alignment is less than or equal to
3911   // the stack alignment, ignore it.  If the size is greater than or equal to
3912   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3913   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3914   if (*Alignment <= StackAlign)
3915     Alignment = None;
3916 
3917   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3918   // Round the size of the allocation up to the stack alignment size
3919   // by add SA-1 to the size. This doesn't overflow because we're computing
3920   // an address inside an alloca.
3921   SDNodeFlags Flags;
3922   Flags.setNoUnsignedWrap(true);
3923   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3924                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3925 
3926   // Mask out the low bits for alignment purposes.
3927   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3928                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3929 
3930   SDValue Ops[] = {
3931       getRoot(), AllocSize,
3932       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3933   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3934   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3935   setValue(&I, DSA);
3936   DAG.setRoot(DSA.getValue(1));
3937 
3938   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3939 }
3940 
3941 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3942   if (I.isAtomic())
3943     return visitAtomicLoad(I);
3944 
3945   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3946   const Value *SV = I.getOperand(0);
3947   if (TLI.supportSwiftError()) {
3948     // Swifterror values can come from either a function parameter with
3949     // swifterror attribute or an alloca with swifterror attribute.
3950     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3951       if (Arg->hasSwiftErrorAttr())
3952         return visitLoadFromSwiftError(I);
3953     }
3954 
3955     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3956       if (Alloca->isSwiftError())
3957         return visitLoadFromSwiftError(I);
3958     }
3959   }
3960 
3961   SDValue Ptr = getValue(SV);
3962 
3963   Type *Ty = I.getType();
3964   Align Alignment = I.getAlign();
3965 
3966   AAMDNodes AAInfo;
3967   I.getAAMetadata(AAInfo);
3968   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3969 
3970   SmallVector<EVT, 4> ValueVTs, MemVTs;
3971   SmallVector<uint64_t, 4> Offsets;
3972   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3973   unsigned NumValues = ValueVTs.size();
3974   if (NumValues == 0)
3975     return;
3976 
3977   bool isVolatile = I.isVolatile();
3978 
3979   SDValue Root;
3980   bool ConstantMemory = false;
3981   if (isVolatile)
3982     // Serialize volatile loads with other side effects.
3983     Root = getRoot();
3984   else if (NumValues > MaxParallelChains)
3985     Root = getMemoryRoot();
3986   else if (AA &&
3987            AA->pointsToConstantMemory(MemoryLocation(
3988                SV,
3989                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3990                AAInfo))) {
3991     // Do not serialize (non-volatile) loads of constant memory with anything.
3992     Root = DAG.getEntryNode();
3993     ConstantMemory = true;
3994   } else {
3995     // Do not serialize non-volatile loads against each other.
3996     Root = DAG.getRoot();
3997   }
3998 
3999   SDLoc dl = getCurSDLoc();
4000 
4001   if (isVolatile)
4002     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4003 
4004   // An aggregate load cannot wrap around the address space, so offsets to its
4005   // parts don't wrap either.
4006   SDNodeFlags Flags;
4007   Flags.setNoUnsignedWrap(true);
4008 
4009   SmallVector<SDValue, 4> Values(NumValues);
4010   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4011   EVT PtrVT = Ptr.getValueType();
4012 
4013   MachineMemOperand::Flags MMOFlags
4014     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4015 
4016   unsigned ChainI = 0;
4017   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4018     // Serializing loads here may result in excessive register pressure, and
4019     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4020     // could recover a bit by hoisting nodes upward in the chain by recognizing
4021     // they are side-effect free or do not alias. The optimizer should really
4022     // avoid this case by converting large object/array copies to llvm.memcpy
4023     // (MaxParallelChains should always remain as failsafe).
4024     if (ChainI == MaxParallelChains) {
4025       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4026       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4027                                   makeArrayRef(Chains.data(), ChainI));
4028       Root = Chain;
4029       ChainI = 0;
4030     }
4031     SDValue A = DAG.getNode(ISD::ADD, dl,
4032                             PtrVT, Ptr,
4033                             DAG.getConstant(Offsets[i], dl, PtrVT),
4034                             Flags);
4035 
4036     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4037                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4038                             MMOFlags, AAInfo, Ranges);
4039     Chains[ChainI] = L.getValue(1);
4040 
4041     if (MemVTs[i] != ValueVTs[i])
4042       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4043 
4044     Values[i] = L;
4045   }
4046 
4047   if (!ConstantMemory) {
4048     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4049                                 makeArrayRef(Chains.data(), ChainI));
4050     if (isVolatile)
4051       DAG.setRoot(Chain);
4052     else
4053       PendingLoads.push_back(Chain);
4054   }
4055 
4056   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4057                            DAG.getVTList(ValueVTs), Values));
4058 }
4059 
4060 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4061   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4062          "call visitStoreToSwiftError when backend supports swifterror");
4063 
4064   SmallVector<EVT, 4> ValueVTs;
4065   SmallVector<uint64_t, 4> Offsets;
4066   const Value *SrcV = I.getOperand(0);
4067   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4068                   SrcV->getType(), ValueVTs, &Offsets);
4069   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4070          "expect a single EVT for swifterror");
4071 
4072   SDValue Src = getValue(SrcV);
4073   // Create a virtual register, then update the virtual register.
4074   Register VReg =
4075       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4076   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4077   // Chain can be getRoot or getControlRoot.
4078   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4079                                       SDValue(Src.getNode(), Src.getResNo()));
4080   DAG.setRoot(CopyNode);
4081 }
4082 
4083 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4084   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4085          "call visitLoadFromSwiftError when backend supports swifterror");
4086 
4087   assert(!I.isVolatile() &&
4088          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4089          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4090          "Support volatile, non temporal, invariant for load_from_swift_error");
4091 
4092   const Value *SV = I.getOperand(0);
4093   Type *Ty = I.getType();
4094   AAMDNodes AAInfo;
4095   I.getAAMetadata(AAInfo);
4096   assert(
4097       (!AA ||
4098        !AA->pointsToConstantMemory(MemoryLocation(
4099            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4100            AAInfo))) &&
4101       "load_from_swift_error should not be constant memory");
4102 
4103   SmallVector<EVT, 4> ValueVTs;
4104   SmallVector<uint64_t, 4> Offsets;
4105   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4106                   ValueVTs, &Offsets);
4107   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4108          "expect a single EVT for swifterror");
4109 
4110   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4111   SDValue L = DAG.getCopyFromReg(
4112       getRoot(), getCurSDLoc(),
4113       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4114 
4115   setValue(&I, L);
4116 }
4117 
4118 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4119   if (I.isAtomic())
4120     return visitAtomicStore(I);
4121 
4122   const Value *SrcV = I.getOperand(0);
4123   const Value *PtrV = I.getOperand(1);
4124 
4125   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4126   if (TLI.supportSwiftError()) {
4127     // Swifterror values can come from either a function parameter with
4128     // swifterror attribute or an alloca with swifterror attribute.
4129     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4130       if (Arg->hasSwiftErrorAttr())
4131         return visitStoreToSwiftError(I);
4132     }
4133 
4134     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4135       if (Alloca->isSwiftError())
4136         return visitStoreToSwiftError(I);
4137     }
4138   }
4139 
4140   SmallVector<EVT, 4> ValueVTs, MemVTs;
4141   SmallVector<uint64_t, 4> Offsets;
4142   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4143                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4144   unsigned NumValues = ValueVTs.size();
4145   if (NumValues == 0)
4146     return;
4147 
4148   // Get the lowered operands. Note that we do this after
4149   // checking if NumResults is zero, because with zero results
4150   // the operands won't have values in the map.
4151   SDValue Src = getValue(SrcV);
4152   SDValue Ptr = getValue(PtrV);
4153 
4154   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4155   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4156   SDLoc dl = getCurSDLoc();
4157   Align Alignment = I.getAlign();
4158   AAMDNodes AAInfo;
4159   I.getAAMetadata(AAInfo);
4160 
4161   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4162 
4163   // An aggregate load cannot wrap around the address space, so offsets to its
4164   // parts don't wrap either.
4165   SDNodeFlags Flags;
4166   Flags.setNoUnsignedWrap(true);
4167 
4168   unsigned ChainI = 0;
4169   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4170     // See visitLoad comments.
4171     if (ChainI == MaxParallelChains) {
4172       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4173                                   makeArrayRef(Chains.data(), ChainI));
4174       Root = Chain;
4175       ChainI = 0;
4176     }
4177     SDValue Add =
4178         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4179     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4180     if (MemVTs[i] != ValueVTs[i])
4181       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4182     SDValue St =
4183         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4184                      Alignment, MMOFlags, AAInfo);
4185     Chains[ChainI] = St;
4186   }
4187 
4188   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4189                                   makeArrayRef(Chains.data(), ChainI));
4190   DAG.setRoot(StoreNode);
4191 }
4192 
4193 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4194                                            bool IsCompressing) {
4195   SDLoc sdl = getCurSDLoc();
4196 
4197   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4198                                MaybeAlign &Alignment) {
4199     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4200     Src0 = I.getArgOperand(0);
4201     Ptr = I.getArgOperand(1);
4202     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4203     Mask = I.getArgOperand(3);
4204   };
4205   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4206                                     MaybeAlign &Alignment) {
4207     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4208     Src0 = I.getArgOperand(0);
4209     Ptr = I.getArgOperand(1);
4210     Mask = I.getArgOperand(2);
4211     Alignment = None;
4212   };
4213 
4214   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4215   MaybeAlign Alignment;
4216   if (IsCompressing)
4217     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4218   else
4219     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4220 
4221   SDValue Ptr = getValue(PtrOperand);
4222   SDValue Src0 = getValue(Src0Operand);
4223   SDValue Mask = getValue(MaskOperand);
4224   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4225 
4226   EVT VT = Src0.getValueType();
4227   if (!Alignment)
4228     Alignment = DAG.getEVTAlign(VT);
4229 
4230   AAMDNodes AAInfo;
4231   I.getAAMetadata(AAInfo);
4232 
4233   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4234       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4235       // TODO: Make MachineMemOperands aware of scalable
4236       // vectors.
4237       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4238   SDValue StoreNode =
4239       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4240                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4241   DAG.setRoot(StoreNode);
4242   setValue(&I, StoreNode);
4243 }
4244 
4245 // Get a uniform base for the Gather/Scatter intrinsic.
4246 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4247 // We try to represent it as a base pointer + vector of indices.
4248 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4249 // The first operand of the GEP may be a single pointer or a vector of pointers
4250 // Example:
4251 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4252 //  or
4253 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4254 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4255 //
4256 // When the first GEP operand is a single pointer - it is the uniform base we
4257 // are looking for. If first operand of the GEP is a splat vector - we
4258 // extract the splat value and use it as a uniform base.
4259 // In all other cases the function returns 'false'.
4260 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4261                            ISD::MemIndexType &IndexType, SDValue &Scale,
4262                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4263   SelectionDAG& DAG = SDB->DAG;
4264   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4265   const DataLayout &DL = DAG.getDataLayout();
4266 
4267   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4268 
4269   // Handle splat constant pointer.
4270   if (auto *C = dyn_cast<Constant>(Ptr)) {
4271     C = C->getSplatValue();
4272     if (!C)
4273       return false;
4274 
4275     Base = SDB->getValue(C);
4276 
4277     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4278     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4279     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4280     IndexType = ISD::SIGNED_SCALED;
4281     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4282     return true;
4283   }
4284 
4285   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4286   if (!GEP || GEP->getParent() != CurBB)
4287     return false;
4288 
4289   if (GEP->getNumOperands() != 2)
4290     return false;
4291 
4292   const Value *BasePtr = GEP->getPointerOperand();
4293   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4294 
4295   // Make sure the base is scalar and the index is a vector.
4296   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4297     return false;
4298 
4299   Base = SDB->getValue(BasePtr);
4300   Index = SDB->getValue(IndexVal);
4301   IndexType = ISD::SIGNED_SCALED;
4302   Scale = DAG.getTargetConstant(
4303               DL.getTypeAllocSize(GEP->getResultElementType()),
4304               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4305   return true;
4306 }
4307 
4308 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4309   SDLoc sdl = getCurSDLoc();
4310 
4311   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4312   const Value *Ptr = I.getArgOperand(1);
4313   SDValue Src0 = getValue(I.getArgOperand(0));
4314   SDValue Mask = getValue(I.getArgOperand(3));
4315   EVT VT = Src0.getValueType();
4316   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4317                         ->getMaybeAlignValue()
4318                         .getValueOr(DAG.getEVTAlign(VT));
4319   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4320 
4321   AAMDNodes AAInfo;
4322   I.getAAMetadata(AAInfo);
4323 
4324   SDValue Base;
4325   SDValue Index;
4326   ISD::MemIndexType IndexType;
4327   SDValue Scale;
4328   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4329                                     I.getParent());
4330 
4331   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4332   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4333       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4334       // TODO: Make MachineMemOperands aware of scalable
4335       // vectors.
4336       MemoryLocation::UnknownSize, Alignment, AAInfo);
4337   if (!UniformBase) {
4338     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4339     Index = getValue(Ptr);
4340     IndexType = ISD::SIGNED_UNSCALED;
4341     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4342   }
4343 
4344   EVT IdxVT = Index.getValueType();
4345   EVT EltTy = IdxVT.getVectorElementType();
4346   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4347     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4348     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4349   }
4350 
4351   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4352   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4353                                          Ops, MMO, IndexType, false);
4354   DAG.setRoot(Scatter);
4355   setValue(&I, Scatter);
4356 }
4357 
4358 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4359   SDLoc sdl = getCurSDLoc();
4360 
4361   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4362                               MaybeAlign &Alignment) {
4363     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4364     Ptr = I.getArgOperand(0);
4365     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4366     Mask = I.getArgOperand(2);
4367     Src0 = I.getArgOperand(3);
4368   };
4369   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4370                                  MaybeAlign &Alignment) {
4371     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4372     Ptr = I.getArgOperand(0);
4373     Alignment = None;
4374     Mask = I.getArgOperand(1);
4375     Src0 = I.getArgOperand(2);
4376   };
4377 
4378   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4379   MaybeAlign Alignment;
4380   if (IsExpanding)
4381     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4382   else
4383     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4384 
4385   SDValue Ptr = getValue(PtrOperand);
4386   SDValue Src0 = getValue(Src0Operand);
4387   SDValue Mask = getValue(MaskOperand);
4388   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4389 
4390   EVT VT = Src0.getValueType();
4391   if (!Alignment)
4392     Alignment = DAG.getEVTAlign(VT);
4393 
4394   AAMDNodes AAInfo;
4395   I.getAAMetadata(AAInfo);
4396   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4397 
4398   // Do not serialize masked loads of constant memory with anything.
4399   MemoryLocation ML;
4400   if (VT.isScalableVector())
4401     ML = MemoryLocation::getAfter(PtrOperand);
4402   else
4403     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4404                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4405                            AAInfo);
4406   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4407 
4408   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4409 
4410   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4411       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4412       // TODO: Make MachineMemOperands aware of scalable
4413       // vectors.
4414       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4415 
4416   SDValue Load =
4417       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4418                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4419   if (AddToChain)
4420     PendingLoads.push_back(Load.getValue(1));
4421   setValue(&I, Load);
4422 }
4423 
4424 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4425   SDLoc sdl = getCurSDLoc();
4426 
4427   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4428   const Value *Ptr = I.getArgOperand(0);
4429   SDValue Src0 = getValue(I.getArgOperand(3));
4430   SDValue Mask = getValue(I.getArgOperand(2));
4431 
4432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4433   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4434   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4435                         ->getMaybeAlignValue()
4436                         .getValueOr(DAG.getEVTAlign(VT));
4437 
4438   AAMDNodes AAInfo;
4439   I.getAAMetadata(AAInfo);
4440   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4441 
4442   SDValue Root = DAG.getRoot();
4443   SDValue Base;
4444   SDValue Index;
4445   ISD::MemIndexType IndexType;
4446   SDValue Scale;
4447   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4448                                     I.getParent());
4449   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4450   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4451       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4452       // TODO: Make MachineMemOperands aware of scalable
4453       // vectors.
4454       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4455 
4456   if (!UniformBase) {
4457     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4458     Index = getValue(Ptr);
4459     IndexType = ISD::SIGNED_UNSCALED;
4460     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4461   }
4462 
4463   EVT IdxVT = Index.getValueType();
4464   EVT EltTy = IdxVT.getVectorElementType();
4465   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4466     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4467     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4468   }
4469 
4470   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4471   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4472                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4473 
4474   PendingLoads.push_back(Gather.getValue(1));
4475   setValue(&I, Gather);
4476 }
4477 
4478 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4479   SDLoc dl = getCurSDLoc();
4480   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4481   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4482   SyncScope::ID SSID = I.getSyncScopeID();
4483 
4484   SDValue InChain = getRoot();
4485 
4486   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4487   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4488 
4489   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4490   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4491 
4492   MachineFunction &MF = DAG.getMachineFunction();
4493   MachineMemOperand *MMO = MF.getMachineMemOperand(
4494       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4495       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4496       FailureOrdering);
4497 
4498   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4499                                    dl, MemVT, VTs, InChain,
4500                                    getValue(I.getPointerOperand()),
4501                                    getValue(I.getCompareOperand()),
4502                                    getValue(I.getNewValOperand()), MMO);
4503 
4504   SDValue OutChain = L.getValue(2);
4505 
4506   setValue(&I, L);
4507   DAG.setRoot(OutChain);
4508 }
4509 
4510 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4511   SDLoc dl = getCurSDLoc();
4512   ISD::NodeType NT;
4513   switch (I.getOperation()) {
4514   default: llvm_unreachable("Unknown atomicrmw operation");
4515   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4516   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4517   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4518   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4519   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4520   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4521   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4522   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4523   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4524   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4525   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4526   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4527   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4528   }
4529   AtomicOrdering Ordering = I.getOrdering();
4530   SyncScope::ID SSID = I.getSyncScopeID();
4531 
4532   SDValue InChain = getRoot();
4533 
4534   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4536   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4537 
4538   MachineFunction &MF = DAG.getMachineFunction();
4539   MachineMemOperand *MMO = MF.getMachineMemOperand(
4540       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4541       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4542 
4543   SDValue L =
4544     DAG.getAtomic(NT, dl, MemVT, InChain,
4545                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4546                   MMO);
4547 
4548   SDValue OutChain = L.getValue(1);
4549 
4550   setValue(&I, L);
4551   DAG.setRoot(OutChain);
4552 }
4553 
4554 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4555   SDLoc dl = getCurSDLoc();
4556   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4557   SDValue Ops[3];
4558   Ops[0] = getRoot();
4559   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4560                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4561   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4562                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4563   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4564 }
4565 
4566 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4567   SDLoc dl = getCurSDLoc();
4568   AtomicOrdering Order = I.getOrdering();
4569   SyncScope::ID SSID = I.getSyncScopeID();
4570 
4571   SDValue InChain = getRoot();
4572 
4573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4574   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4575   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4576 
4577   if (!TLI.supportsUnalignedAtomics() &&
4578       I.getAlignment() < MemVT.getSizeInBits() / 8)
4579     report_fatal_error("Cannot generate unaligned atomic load");
4580 
4581   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4582 
4583   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4584       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4585       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4586 
4587   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4588 
4589   SDValue Ptr = getValue(I.getPointerOperand());
4590 
4591   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4592     // TODO: Once this is better exercised by tests, it should be merged with
4593     // the normal path for loads to prevent future divergence.
4594     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4595     if (MemVT != VT)
4596       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4597 
4598     setValue(&I, L);
4599     SDValue OutChain = L.getValue(1);
4600     if (!I.isUnordered())
4601       DAG.setRoot(OutChain);
4602     else
4603       PendingLoads.push_back(OutChain);
4604     return;
4605   }
4606 
4607   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4608                             Ptr, MMO);
4609 
4610   SDValue OutChain = L.getValue(1);
4611   if (MemVT != VT)
4612     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4613 
4614   setValue(&I, L);
4615   DAG.setRoot(OutChain);
4616 }
4617 
4618 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4619   SDLoc dl = getCurSDLoc();
4620 
4621   AtomicOrdering Ordering = I.getOrdering();
4622   SyncScope::ID SSID = I.getSyncScopeID();
4623 
4624   SDValue InChain = getRoot();
4625 
4626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4627   EVT MemVT =
4628       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4629 
4630   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4631     report_fatal_error("Cannot generate unaligned atomic store");
4632 
4633   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4634 
4635   MachineFunction &MF = DAG.getMachineFunction();
4636   MachineMemOperand *MMO = MF.getMachineMemOperand(
4637       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4638       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4639 
4640   SDValue Val = getValue(I.getValueOperand());
4641   if (Val.getValueType() != MemVT)
4642     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4643   SDValue Ptr = getValue(I.getPointerOperand());
4644 
4645   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4646     // TODO: Once this is better exercised by tests, it should be merged with
4647     // the normal path for stores to prevent future divergence.
4648     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4649     DAG.setRoot(S);
4650     return;
4651   }
4652   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4653                                    Ptr, Val, MMO);
4654 
4655 
4656   DAG.setRoot(OutChain);
4657 }
4658 
4659 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4660 /// node.
4661 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4662                                                unsigned Intrinsic) {
4663   // Ignore the callsite's attributes. A specific call site may be marked with
4664   // readnone, but the lowering code will expect the chain based on the
4665   // definition.
4666   const Function *F = I.getCalledFunction();
4667   bool HasChain = !F->doesNotAccessMemory();
4668   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4669 
4670   // Build the operand list.
4671   SmallVector<SDValue, 8> Ops;
4672   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4673     if (OnlyLoad) {
4674       // We don't need to serialize loads against other loads.
4675       Ops.push_back(DAG.getRoot());
4676     } else {
4677       Ops.push_back(getRoot());
4678     }
4679   }
4680 
4681   // Info is set by getTgtMemInstrinsic
4682   TargetLowering::IntrinsicInfo Info;
4683   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4684   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4685                                                DAG.getMachineFunction(),
4686                                                Intrinsic);
4687 
4688   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4689   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4690       Info.opc == ISD::INTRINSIC_W_CHAIN)
4691     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4692                                         TLI.getPointerTy(DAG.getDataLayout())));
4693 
4694   // Add all operands of the call to the operand list.
4695   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4696     const Value *Arg = I.getArgOperand(i);
4697     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4698       Ops.push_back(getValue(Arg));
4699       continue;
4700     }
4701 
4702     // Use TargetConstant instead of a regular constant for immarg.
4703     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4704     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4705       assert(CI->getBitWidth() <= 64 &&
4706              "large intrinsic immediates not handled");
4707       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4708     } else {
4709       Ops.push_back(
4710           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4711     }
4712   }
4713 
4714   SmallVector<EVT, 4> ValueVTs;
4715   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4716 
4717   if (HasChain)
4718     ValueVTs.push_back(MVT::Other);
4719 
4720   SDVTList VTs = DAG.getVTList(ValueVTs);
4721 
4722   // Create the node.
4723   SDValue Result;
4724   if (IsTgtIntrinsic) {
4725     // This is target intrinsic that touches memory
4726     AAMDNodes AAInfo;
4727     I.getAAMetadata(AAInfo);
4728     Result =
4729         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4730                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4731                                 Info.align, Info.flags, Info.size, AAInfo);
4732   } else if (!HasChain) {
4733     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4734   } else if (!I.getType()->isVoidTy()) {
4735     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4736   } else {
4737     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4738   }
4739 
4740   if (HasChain) {
4741     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4742     if (OnlyLoad)
4743       PendingLoads.push_back(Chain);
4744     else
4745       DAG.setRoot(Chain);
4746   }
4747 
4748   if (!I.getType()->isVoidTy()) {
4749     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4750       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4751       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4752     } else
4753       Result = lowerRangeToAssertZExt(DAG, I, Result);
4754 
4755     MaybeAlign Alignment = I.getRetAlign();
4756     if (!Alignment)
4757       Alignment = F->getAttributes().getRetAlignment();
4758     // Insert `assertalign` node if there's an alignment.
4759     if (InsertAssertAlign && Alignment) {
4760       Result =
4761           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4762     }
4763 
4764     setValue(&I, Result);
4765   }
4766 }
4767 
4768 /// GetSignificand - Get the significand and build it into a floating-point
4769 /// number with exponent of 1:
4770 ///
4771 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4772 ///
4773 /// where Op is the hexadecimal representation of floating point value.
4774 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4775   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4776                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4777   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4778                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4779   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4780 }
4781 
4782 /// GetExponent - Get the exponent:
4783 ///
4784 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4785 ///
4786 /// where Op is the hexadecimal representation of floating point value.
4787 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4788                            const TargetLowering &TLI, const SDLoc &dl) {
4789   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4790                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4791   SDValue t1 = DAG.getNode(
4792       ISD::SRL, dl, MVT::i32, t0,
4793       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4794   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4795                            DAG.getConstant(127, dl, MVT::i32));
4796   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4797 }
4798 
4799 /// getF32Constant - Get 32-bit floating point constant.
4800 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4801                               const SDLoc &dl) {
4802   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4803                            MVT::f32);
4804 }
4805 
4806 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4807                                        SelectionDAG &DAG) {
4808   // TODO: What fast-math-flags should be set on the floating-point nodes?
4809 
4810   //   IntegerPartOfX = ((int32_t)(t0);
4811   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4812 
4813   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4814   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4815   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4816 
4817   //   IntegerPartOfX <<= 23;
4818   IntegerPartOfX = DAG.getNode(
4819       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4820       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4821                                   DAG.getDataLayout())));
4822 
4823   SDValue TwoToFractionalPartOfX;
4824   if (LimitFloatPrecision <= 6) {
4825     // For floating-point precision of 6:
4826     //
4827     //   TwoToFractionalPartOfX =
4828     //     0.997535578f +
4829     //       (0.735607626f + 0.252464424f * x) * x;
4830     //
4831     // error 0.0144103317, which is 6 bits
4832     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4833                              getF32Constant(DAG, 0x3e814304, dl));
4834     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4835                              getF32Constant(DAG, 0x3f3c50c8, dl));
4836     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4837     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4838                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4839   } else if (LimitFloatPrecision <= 12) {
4840     // For floating-point precision of 12:
4841     //
4842     //   TwoToFractionalPartOfX =
4843     //     0.999892986f +
4844     //       (0.696457318f +
4845     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4846     //
4847     // error 0.000107046256, which is 13 to 14 bits
4848     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4849                              getF32Constant(DAG, 0x3da235e3, dl));
4850     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4851                              getF32Constant(DAG, 0x3e65b8f3, dl));
4852     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4853     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4854                              getF32Constant(DAG, 0x3f324b07, dl));
4855     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4856     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4857                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4858   } else { // LimitFloatPrecision <= 18
4859     // For floating-point precision of 18:
4860     //
4861     //   TwoToFractionalPartOfX =
4862     //     0.999999982f +
4863     //       (0.693148872f +
4864     //         (0.240227044f +
4865     //           (0.554906021e-1f +
4866     //             (0.961591928e-2f +
4867     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4868     // error 2.47208000*10^(-7), which is better than 18 bits
4869     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4870                              getF32Constant(DAG, 0x3924b03e, dl));
4871     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4872                              getF32Constant(DAG, 0x3ab24b87, dl));
4873     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4874     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4875                              getF32Constant(DAG, 0x3c1d8c17, dl));
4876     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4877     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4878                              getF32Constant(DAG, 0x3d634a1d, dl));
4879     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4880     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4881                              getF32Constant(DAG, 0x3e75fe14, dl));
4882     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4883     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4884                               getF32Constant(DAG, 0x3f317234, dl));
4885     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4886     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4887                                          getF32Constant(DAG, 0x3f800000, dl));
4888   }
4889 
4890   // Add the exponent into the result in integer domain.
4891   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4892   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4893                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4894 }
4895 
4896 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4897 /// limited-precision mode.
4898 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4899                          const TargetLowering &TLI, SDNodeFlags Flags) {
4900   if (Op.getValueType() == MVT::f32 &&
4901       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4902 
4903     // Put the exponent in the right bit position for later addition to the
4904     // final result:
4905     //
4906     // t0 = Op * log2(e)
4907 
4908     // TODO: What fast-math-flags should be set here?
4909     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4910                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4911     return getLimitedPrecisionExp2(t0, dl, DAG);
4912   }
4913 
4914   // No special expansion.
4915   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
4916 }
4917 
4918 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4919 /// limited-precision mode.
4920 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4921                          const TargetLowering &TLI, SDNodeFlags Flags) {
4922   // TODO: What fast-math-flags should be set on the floating-point nodes?
4923 
4924   if (Op.getValueType() == MVT::f32 &&
4925       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4926     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4927 
4928     // Scale the exponent by log(2).
4929     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4930     SDValue LogOfExponent =
4931         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4932                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4933 
4934     // Get the significand and build it into a floating-point number with
4935     // exponent of 1.
4936     SDValue X = GetSignificand(DAG, Op1, dl);
4937 
4938     SDValue LogOfMantissa;
4939     if (LimitFloatPrecision <= 6) {
4940       // For floating-point precision of 6:
4941       //
4942       //   LogofMantissa =
4943       //     -1.1609546f +
4944       //       (1.4034025f - 0.23903021f * x) * x;
4945       //
4946       // error 0.0034276066, which is better than 8 bits
4947       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4948                                getF32Constant(DAG, 0xbe74c456, dl));
4949       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4950                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4951       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4952       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4953                                   getF32Constant(DAG, 0x3f949a29, dl));
4954     } else if (LimitFloatPrecision <= 12) {
4955       // For floating-point precision of 12:
4956       //
4957       //   LogOfMantissa =
4958       //     -1.7417939f +
4959       //       (2.8212026f +
4960       //         (-1.4699568f +
4961       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4962       //
4963       // error 0.000061011436, which is 14 bits
4964       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4965                                getF32Constant(DAG, 0xbd67b6d6, dl));
4966       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4967                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4968       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4969       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4970                                getF32Constant(DAG, 0x3fbc278b, dl));
4971       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4972       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4973                                getF32Constant(DAG, 0x40348e95, dl));
4974       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4975       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4976                                   getF32Constant(DAG, 0x3fdef31a, dl));
4977     } else { // LimitFloatPrecision <= 18
4978       // For floating-point precision of 18:
4979       //
4980       //   LogOfMantissa =
4981       //     -2.1072184f +
4982       //       (4.2372794f +
4983       //         (-3.7029485f +
4984       //           (2.2781945f +
4985       //             (-0.87823314f +
4986       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4987       //
4988       // error 0.0000023660568, which is better than 18 bits
4989       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4990                                getF32Constant(DAG, 0xbc91e5ac, dl));
4991       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4992                                getF32Constant(DAG, 0x3e4350aa, dl));
4993       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4994       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4995                                getF32Constant(DAG, 0x3f60d3e3, dl));
4996       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4997       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4998                                getF32Constant(DAG, 0x4011cdf0, dl));
4999       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5000       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5001                                getF32Constant(DAG, 0x406cfd1c, dl));
5002       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5003       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5004                                getF32Constant(DAG, 0x408797cb, dl));
5005       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5006       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5007                                   getF32Constant(DAG, 0x4006dcab, dl));
5008     }
5009 
5010     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5011   }
5012 
5013   // No special expansion.
5014   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5015 }
5016 
5017 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5018 /// limited-precision mode.
5019 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5020                           const TargetLowering &TLI, SDNodeFlags Flags) {
5021   // TODO: What fast-math-flags should be set on the floating-point nodes?
5022 
5023   if (Op.getValueType() == MVT::f32 &&
5024       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5025     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5026 
5027     // Get the exponent.
5028     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5029 
5030     // Get the significand and build it into a floating-point number with
5031     // exponent of 1.
5032     SDValue X = GetSignificand(DAG, Op1, dl);
5033 
5034     // Different possible minimax approximations of significand in
5035     // floating-point for various degrees of accuracy over [1,2].
5036     SDValue Log2ofMantissa;
5037     if (LimitFloatPrecision <= 6) {
5038       // For floating-point precision of 6:
5039       //
5040       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5041       //
5042       // error 0.0049451742, which is more than 7 bits
5043       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5044                                getF32Constant(DAG, 0xbeb08fe0, dl));
5045       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5046                                getF32Constant(DAG, 0x40019463, dl));
5047       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5048       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5049                                    getF32Constant(DAG, 0x3fd6633d, dl));
5050     } else if (LimitFloatPrecision <= 12) {
5051       // For floating-point precision of 12:
5052       //
5053       //   Log2ofMantissa =
5054       //     -2.51285454f +
5055       //       (4.07009056f +
5056       //         (-2.12067489f +
5057       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5058       //
5059       // error 0.0000876136000, which is better than 13 bits
5060       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5061                                getF32Constant(DAG, 0xbda7262e, dl));
5062       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5063                                getF32Constant(DAG, 0x3f25280b, dl));
5064       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5065       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5066                                getF32Constant(DAG, 0x4007b923, dl));
5067       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5068       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5069                                getF32Constant(DAG, 0x40823e2f, dl));
5070       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5071       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5072                                    getF32Constant(DAG, 0x4020d29c, dl));
5073     } else { // LimitFloatPrecision <= 18
5074       // For floating-point precision of 18:
5075       //
5076       //   Log2ofMantissa =
5077       //     -3.0400495f +
5078       //       (6.1129976f +
5079       //         (-5.3420409f +
5080       //           (3.2865683f +
5081       //             (-1.2669343f +
5082       //               (0.27515199f -
5083       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5084       //
5085       // error 0.0000018516, which is better than 18 bits
5086       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5087                                getF32Constant(DAG, 0xbcd2769e, dl));
5088       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5089                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5090       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5091       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5092                                getF32Constant(DAG, 0x3fa22ae7, dl));
5093       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5094       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5095                                getF32Constant(DAG, 0x40525723, dl));
5096       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5097       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5098                                getF32Constant(DAG, 0x40aaf200, dl));
5099       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5100       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5101                                getF32Constant(DAG, 0x40c39dad, dl));
5102       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5103       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5104                                    getF32Constant(DAG, 0x4042902c, dl));
5105     }
5106 
5107     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5108   }
5109 
5110   // No special expansion.
5111   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5112 }
5113 
5114 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5115 /// limited-precision mode.
5116 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5117                            const TargetLowering &TLI, SDNodeFlags Flags) {
5118   // TODO: What fast-math-flags should be set on the floating-point nodes?
5119 
5120   if (Op.getValueType() == MVT::f32 &&
5121       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5122     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5123 
5124     // Scale the exponent by log10(2) [0.30102999f].
5125     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5126     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5127                                         getF32Constant(DAG, 0x3e9a209a, dl));
5128 
5129     // Get the significand and build it into a floating-point number with
5130     // exponent of 1.
5131     SDValue X = GetSignificand(DAG, Op1, dl);
5132 
5133     SDValue Log10ofMantissa;
5134     if (LimitFloatPrecision <= 6) {
5135       // For floating-point precision of 6:
5136       //
5137       //   Log10ofMantissa =
5138       //     -0.50419619f +
5139       //       (0.60948995f - 0.10380950f * x) * x;
5140       //
5141       // error 0.0014886165, which is 6 bits
5142       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5143                                getF32Constant(DAG, 0xbdd49a13, dl));
5144       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5145                                getF32Constant(DAG, 0x3f1c0789, dl));
5146       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5147       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5148                                     getF32Constant(DAG, 0x3f011300, dl));
5149     } else if (LimitFloatPrecision <= 12) {
5150       // For floating-point precision of 12:
5151       //
5152       //   Log10ofMantissa =
5153       //     -0.64831180f +
5154       //       (0.91751397f +
5155       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5156       //
5157       // error 0.00019228036, which is better than 12 bits
5158       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5159                                getF32Constant(DAG, 0x3d431f31, dl));
5160       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5161                                getF32Constant(DAG, 0x3ea21fb2, dl));
5162       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5163       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5164                                getF32Constant(DAG, 0x3f6ae232, dl));
5165       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5166       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5167                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5168     } else { // LimitFloatPrecision <= 18
5169       // For floating-point precision of 18:
5170       //
5171       //   Log10ofMantissa =
5172       //     -0.84299375f +
5173       //       (1.5327582f +
5174       //         (-1.0688956f +
5175       //           (0.49102474f +
5176       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5177       //
5178       // error 0.0000037995730, which is better than 18 bits
5179       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5180                                getF32Constant(DAG, 0x3c5d51ce, dl));
5181       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5182                                getF32Constant(DAG, 0x3e00685a, dl));
5183       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5184       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5185                                getF32Constant(DAG, 0x3efb6798, dl));
5186       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5187       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5188                                getF32Constant(DAG, 0x3f88d192, dl));
5189       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5190       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5191                                getF32Constant(DAG, 0x3fc4316c, dl));
5192       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5193       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5194                                     getF32Constant(DAG, 0x3f57ce70, dl));
5195     }
5196 
5197     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5198   }
5199 
5200   // No special expansion.
5201   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5202 }
5203 
5204 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5205 /// limited-precision mode.
5206 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5207                           const TargetLowering &TLI, SDNodeFlags Flags) {
5208   if (Op.getValueType() == MVT::f32 &&
5209       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5210     return getLimitedPrecisionExp2(Op, dl, DAG);
5211 
5212   // No special expansion.
5213   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5214 }
5215 
5216 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5217 /// limited-precision mode with x == 10.0f.
5218 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5219                          SelectionDAG &DAG, const TargetLowering &TLI,
5220                          SDNodeFlags Flags) {
5221   bool IsExp10 = false;
5222   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5223       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5224     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5225       APFloat Ten(10.0f);
5226       IsExp10 = LHSC->isExactlyValue(Ten);
5227     }
5228   }
5229 
5230   // TODO: What fast-math-flags should be set on the FMUL node?
5231   if (IsExp10) {
5232     // Put the exponent in the right bit position for later addition to the
5233     // final result:
5234     //
5235     //   #define LOG2OF10 3.3219281f
5236     //   t0 = Op * LOG2OF10;
5237     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5238                              getF32Constant(DAG, 0x40549a78, dl));
5239     return getLimitedPrecisionExp2(t0, dl, DAG);
5240   }
5241 
5242   // No special expansion.
5243   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5244 }
5245 
5246 /// ExpandPowI - Expand a llvm.powi intrinsic.
5247 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5248                           SelectionDAG &DAG) {
5249   // If RHS is a constant, we can expand this out to a multiplication tree,
5250   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5251   // optimizing for size, we only want to do this if the expansion would produce
5252   // a small number of multiplies, otherwise we do the full expansion.
5253   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5254     // Get the exponent as a positive value.
5255     unsigned Val = RHSC->getSExtValue();
5256     if ((int)Val < 0) Val = -Val;
5257 
5258     // powi(x, 0) -> 1.0
5259     if (Val == 0)
5260       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5261 
5262     bool OptForSize = DAG.shouldOptForSize();
5263     if (!OptForSize ||
5264         // If optimizing for size, don't insert too many multiplies.
5265         // This inserts up to 5 multiplies.
5266         countPopulation(Val) + Log2_32(Val) < 7) {
5267       // We use the simple binary decomposition method to generate the multiply
5268       // sequence.  There are more optimal ways to do this (for example,
5269       // powi(x,15) generates one more multiply than it should), but this has
5270       // the benefit of being both really simple and much better than a libcall.
5271       SDValue Res;  // Logically starts equal to 1.0
5272       SDValue CurSquare = LHS;
5273       // TODO: Intrinsics should have fast-math-flags that propagate to these
5274       // nodes.
5275       while (Val) {
5276         if (Val & 1) {
5277           if (Res.getNode())
5278             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5279           else
5280             Res = CurSquare;  // 1.0*CurSquare.
5281         }
5282 
5283         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5284                                 CurSquare, CurSquare);
5285         Val >>= 1;
5286       }
5287 
5288       // If the original was negative, invert the result, producing 1/(x*x*x).
5289       if (RHSC->getSExtValue() < 0)
5290         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5291                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5292       return Res;
5293     }
5294   }
5295 
5296   // Otherwise, expand to a libcall.
5297   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5298 }
5299 
5300 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5301                             SDValue LHS, SDValue RHS, SDValue Scale,
5302                             SelectionDAG &DAG, const TargetLowering &TLI) {
5303   EVT VT = LHS.getValueType();
5304   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5305   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5306   LLVMContext &Ctx = *DAG.getContext();
5307 
5308   // If the type is legal but the operation isn't, this node might survive all
5309   // the way to operation legalization. If we end up there and we do not have
5310   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5311   // node.
5312 
5313   // Coax the legalizer into expanding the node during type legalization instead
5314   // by bumping the size by one bit. This will force it to Promote, enabling the
5315   // early expansion and avoiding the need to expand later.
5316 
5317   // We don't have to do this if Scale is 0; that can always be expanded, unless
5318   // it's a saturating signed operation. Those can experience true integer
5319   // division overflow, a case which we must avoid.
5320 
5321   // FIXME: We wouldn't have to do this (or any of the early
5322   // expansion/promotion) if it was possible to expand a libcall of an
5323   // illegal type during operation legalization. But it's not, so things
5324   // get a bit hacky.
5325   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5326   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5327       (TLI.isTypeLegal(VT) ||
5328        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5329     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5330         Opcode, VT, ScaleInt);
5331     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5332       EVT PromVT;
5333       if (VT.isScalarInteger())
5334         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5335       else if (VT.isVector()) {
5336         PromVT = VT.getVectorElementType();
5337         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5338         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5339       } else
5340         llvm_unreachable("Wrong VT for DIVFIX?");
5341       if (Signed) {
5342         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5343         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5344       } else {
5345         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5346         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5347       }
5348       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5349       // For saturating operations, we need to shift up the LHS to get the
5350       // proper saturation width, and then shift down again afterwards.
5351       if (Saturating)
5352         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5353                           DAG.getConstant(1, DL, ShiftTy));
5354       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5355       if (Saturating)
5356         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5357                           DAG.getConstant(1, DL, ShiftTy));
5358       return DAG.getZExtOrTrunc(Res, DL, VT);
5359     }
5360   }
5361 
5362   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5363 }
5364 
5365 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5366 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5367 static void
5368 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5369                      const SDValue &N) {
5370   switch (N.getOpcode()) {
5371   case ISD::CopyFromReg: {
5372     SDValue Op = N.getOperand(1);
5373     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5374                       Op.getValueType().getSizeInBits());
5375     return;
5376   }
5377   case ISD::BITCAST:
5378   case ISD::AssertZext:
5379   case ISD::AssertSext:
5380   case ISD::TRUNCATE:
5381     getUnderlyingArgRegs(Regs, N.getOperand(0));
5382     return;
5383   case ISD::BUILD_PAIR:
5384   case ISD::BUILD_VECTOR:
5385   case ISD::CONCAT_VECTORS:
5386     for (SDValue Op : N->op_values())
5387       getUnderlyingArgRegs(Regs, Op);
5388     return;
5389   default:
5390     return;
5391   }
5392 }
5393 
5394 /// If the DbgValueInst is a dbg_value of a function argument, create the
5395 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5396 /// instruction selection, they will be inserted to the entry BB.
5397 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5398     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5399     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5400   const Argument *Arg = dyn_cast<Argument>(V);
5401   if (!Arg)
5402     return false;
5403 
5404   if (!IsDbgDeclare) {
5405     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5406     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5407     // the entry block.
5408     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5409     if (!IsInEntryBlock)
5410       return false;
5411 
5412     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5413     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5414     // variable that also is a param.
5415     //
5416     // Although, if we are at the top of the entry block already, we can still
5417     // emit using ArgDbgValue. This might catch some situations when the
5418     // dbg.value refers to an argument that isn't used in the entry block, so
5419     // any CopyToReg node would be optimized out and the only way to express
5420     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5421     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5422     // we should only emit as ArgDbgValue if the Variable is an argument to the
5423     // current function, and the dbg.value intrinsic is found in the entry
5424     // block.
5425     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5426         !DL->getInlinedAt();
5427     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5428     if (!IsInPrologue && !VariableIsFunctionInputArg)
5429       return false;
5430 
5431     // Here we assume that a function argument on IR level only can be used to
5432     // describe one input parameter on source level. If we for example have
5433     // source code like this
5434     //
5435     //    struct A { long x, y; };
5436     //    void foo(struct A a, long b) {
5437     //      ...
5438     //      b = a.x;
5439     //      ...
5440     //    }
5441     //
5442     // and IR like this
5443     //
5444     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5445     //  entry:
5446     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5447     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5448     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5449     //    ...
5450     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5451     //    ...
5452     //
5453     // then the last dbg.value is describing a parameter "b" using a value that
5454     // is an argument. But since we already has used %a1 to describe a parameter
5455     // we should not handle that last dbg.value here (that would result in an
5456     // incorrect hoisting of the DBG_VALUE to the function entry).
5457     // Notice that we allow one dbg.value per IR level argument, to accommodate
5458     // for the situation with fragments above.
5459     if (VariableIsFunctionInputArg) {
5460       unsigned ArgNo = Arg->getArgNo();
5461       if (ArgNo >= FuncInfo.DescribedArgs.size())
5462         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5463       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5464         return false;
5465       FuncInfo.DescribedArgs.set(ArgNo);
5466     }
5467   }
5468 
5469   MachineFunction &MF = DAG.getMachineFunction();
5470   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5471 
5472   bool IsIndirect = false;
5473   Optional<MachineOperand> Op;
5474   // Some arguments' frame index is recorded during argument lowering.
5475   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5476   if (FI != std::numeric_limits<int>::max())
5477     Op = MachineOperand::CreateFI(FI);
5478 
5479   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5480   if (!Op && N.getNode()) {
5481     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5482     Register Reg;
5483     if (ArgRegsAndSizes.size() == 1)
5484       Reg = ArgRegsAndSizes.front().first;
5485 
5486     if (Reg && Reg.isVirtual()) {
5487       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5488       Register PR = RegInfo.getLiveInPhysReg(Reg);
5489       if (PR)
5490         Reg = PR;
5491     }
5492     if (Reg) {
5493       Op = MachineOperand::CreateReg(Reg, false);
5494       IsIndirect = IsDbgDeclare;
5495     }
5496   }
5497 
5498   if (!Op && N.getNode()) {
5499     // Check if frame index is available.
5500     SDValue LCandidate = peekThroughBitcasts(N);
5501     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5502       if (FrameIndexSDNode *FINode =
5503           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5504         Op = MachineOperand::CreateFI(FINode->getIndex());
5505   }
5506 
5507   if (!Op) {
5508     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5509     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5510                                          SplitRegs) {
5511       unsigned Offset = 0;
5512       for (auto RegAndSize : SplitRegs) {
5513         // If the expression is already a fragment, the current register
5514         // offset+size might extend beyond the fragment. In this case, only
5515         // the register bits that are inside the fragment are relevant.
5516         int RegFragmentSizeInBits = RegAndSize.second;
5517         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5518           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5519           // The register is entirely outside the expression fragment,
5520           // so is irrelevant for debug info.
5521           if (Offset >= ExprFragmentSizeInBits)
5522             break;
5523           // The register is partially outside the expression fragment, only
5524           // the low bits within the fragment are relevant for debug info.
5525           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5526             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5527           }
5528         }
5529 
5530         auto FragmentExpr = DIExpression::createFragmentExpression(
5531             Expr, Offset, RegFragmentSizeInBits);
5532         Offset += RegAndSize.second;
5533         // If a valid fragment expression cannot be created, the variable's
5534         // correct value cannot be determined and so it is set as Undef.
5535         if (!FragmentExpr) {
5536           SDDbgValue *SDV = DAG.getConstantDbgValue(
5537               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5538           DAG.AddDbgValue(SDV, nullptr, false);
5539           continue;
5540         }
5541         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5542         FuncInfo.ArgDbgValues.push_back(
5543           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5544                   RegAndSize.first, Variable, *FragmentExpr));
5545       }
5546     };
5547 
5548     // Check if ValueMap has reg number.
5549     DenseMap<const Value *, Register>::const_iterator
5550       VMI = FuncInfo.ValueMap.find(V);
5551     if (VMI != FuncInfo.ValueMap.end()) {
5552       const auto &TLI = DAG.getTargetLoweringInfo();
5553       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5554                        V->getType(), None);
5555       if (RFV.occupiesMultipleRegs()) {
5556         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5557         return true;
5558       }
5559 
5560       Op = MachineOperand::CreateReg(VMI->second, false);
5561       IsIndirect = IsDbgDeclare;
5562     } else if (ArgRegsAndSizes.size() > 1) {
5563       // This was split due to the calling convention, and no virtual register
5564       // mapping exists for the value.
5565       splitMultiRegDbgValue(ArgRegsAndSizes);
5566       return true;
5567     }
5568   }
5569 
5570   if (!Op)
5571     return false;
5572 
5573   assert(Variable->isValidLocationForIntrinsic(DL) &&
5574          "Expected inlined-at fields to agree");
5575   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5576   FuncInfo.ArgDbgValues.push_back(
5577       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5578               *Op, Variable, Expr));
5579 
5580   return true;
5581 }
5582 
5583 /// Return the appropriate SDDbgValue based on N.
5584 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5585                                              DILocalVariable *Variable,
5586                                              DIExpression *Expr,
5587                                              const DebugLoc &dl,
5588                                              unsigned DbgSDNodeOrder) {
5589   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5590     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5591     // stack slot locations.
5592     //
5593     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5594     // debug values here after optimization:
5595     //
5596     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5597     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5598     //
5599     // Both describe the direct values of their associated variables.
5600     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5601                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5602   }
5603   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5604                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5605 }
5606 
5607 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5608   switch (Intrinsic) {
5609   case Intrinsic::smul_fix:
5610     return ISD::SMULFIX;
5611   case Intrinsic::umul_fix:
5612     return ISD::UMULFIX;
5613   case Intrinsic::smul_fix_sat:
5614     return ISD::SMULFIXSAT;
5615   case Intrinsic::umul_fix_sat:
5616     return ISD::UMULFIXSAT;
5617   case Intrinsic::sdiv_fix:
5618     return ISD::SDIVFIX;
5619   case Intrinsic::udiv_fix:
5620     return ISD::UDIVFIX;
5621   case Intrinsic::sdiv_fix_sat:
5622     return ISD::SDIVFIXSAT;
5623   case Intrinsic::udiv_fix_sat:
5624     return ISD::UDIVFIXSAT;
5625   default:
5626     llvm_unreachable("Unhandled fixed point intrinsic");
5627   }
5628 }
5629 
5630 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5631                                            const char *FunctionName) {
5632   assert(FunctionName && "FunctionName must not be nullptr");
5633   SDValue Callee = DAG.getExternalSymbol(
5634       FunctionName,
5635       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5636   LowerCallTo(I, Callee, I.isTailCall());
5637 }
5638 
5639 /// Given a @llvm.call.preallocated.setup, return the corresponding
5640 /// preallocated call.
5641 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5642   assert(cast<CallBase>(PreallocatedSetup)
5643                  ->getCalledFunction()
5644                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5645          "expected call_preallocated_setup Value");
5646   for (auto *U : PreallocatedSetup->users()) {
5647     auto *UseCall = cast<CallBase>(U);
5648     const Function *Fn = UseCall->getCalledFunction();
5649     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5650       return UseCall;
5651     }
5652   }
5653   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5654 }
5655 
5656 /// Lower the call to the specified intrinsic function.
5657 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5658                                              unsigned Intrinsic) {
5659   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5660   SDLoc sdl = getCurSDLoc();
5661   DebugLoc dl = getCurDebugLoc();
5662   SDValue Res;
5663 
5664   SDNodeFlags Flags;
5665   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5666     Flags.copyFMF(*FPOp);
5667 
5668   switch (Intrinsic) {
5669   default:
5670     // By default, turn this into a target intrinsic node.
5671     visitTargetIntrinsic(I, Intrinsic);
5672     return;
5673   case Intrinsic::vscale: {
5674     match(&I, m_VScale(DAG.getDataLayout()));
5675     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5676     setValue(&I,
5677              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5678     return;
5679   }
5680   case Intrinsic::vastart:  visitVAStart(I); return;
5681   case Intrinsic::vaend:    visitVAEnd(I); return;
5682   case Intrinsic::vacopy:   visitVACopy(I); return;
5683   case Intrinsic::returnaddress:
5684     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5685                              TLI.getPointerTy(DAG.getDataLayout()),
5686                              getValue(I.getArgOperand(0))));
5687     return;
5688   case Intrinsic::addressofreturnaddress:
5689     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5690                              TLI.getPointerTy(DAG.getDataLayout())));
5691     return;
5692   case Intrinsic::sponentry:
5693     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5694                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5695     return;
5696   case Intrinsic::frameaddress:
5697     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5698                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5699                              getValue(I.getArgOperand(0))));
5700     return;
5701   case Intrinsic::read_volatile_register:
5702   case Intrinsic::read_register: {
5703     Value *Reg = I.getArgOperand(0);
5704     SDValue Chain = getRoot();
5705     SDValue RegName =
5706         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5707     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5708     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5709       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5710     setValue(&I, Res);
5711     DAG.setRoot(Res.getValue(1));
5712     return;
5713   }
5714   case Intrinsic::write_register: {
5715     Value *Reg = I.getArgOperand(0);
5716     Value *RegValue = I.getArgOperand(1);
5717     SDValue Chain = getRoot();
5718     SDValue RegName =
5719         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5720     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5721                             RegName, getValue(RegValue)));
5722     return;
5723   }
5724   case Intrinsic::memcpy: {
5725     const auto &MCI = cast<MemCpyInst>(I);
5726     SDValue Op1 = getValue(I.getArgOperand(0));
5727     SDValue Op2 = getValue(I.getArgOperand(1));
5728     SDValue Op3 = getValue(I.getArgOperand(2));
5729     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5730     Align DstAlign = MCI.getDestAlign().valueOrOne();
5731     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5732     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5733     bool isVol = MCI.isVolatile();
5734     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5735     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5736     // node.
5737     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5738     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5739                                /* AlwaysInline */ false, isTC,
5740                                MachinePointerInfo(I.getArgOperand(0)),
5741                                MachinePointerInfo(I.getArgOperand(1)));
5742     updateDAGForMaybeTailCall(MC);
5743     return;
5744   }
5745   case Intrinsic::memcpy_inline: {
5746     const auto &MCI = cast<MemCpyInlineInst>(I);
5747     SDValue Dst = getValue(I.getArgOperand(0));
5748     SDValue Src = getValue(I.getArgOperand(1));
5749     SDValue Size = getValue(I.getArgOperand(2));
5750     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5751     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5752     Align DstAlign = MCI.getDestAlign().valueOrOne();
5753     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5754     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5755     bool isVol = MCI.isVolatile();
5756     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5757     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5758     // node.
5759     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5760                                /* AlwaysInline */ true, isTC,
5761                                MachinePointerInfo(I.getArgOperand(0)),
5762                                MachinePointerInfo(I.getArgOperand(1)));
5763     updateDAGForMaybeTailCall(MC);
5764     return;
5765   }
5766   case Intrinsic::memset: {
5767     const auto &MSI = cast<MemSetInst>(I);
5768     SDValue Op1 = getValue(I.getArgOperand(0));
5769     SDValue Op2 = getValue(I.getArgOperand(1));
5770     SDValue Op3 = getValue(I.getArgOperand(2));
5771     // @llvm.memset defines 0 and 1 to both mean no alignment.
5772     Align Alignment = MSI.getDestAlign().valueOrOne();
5773     bool isVol = MSI.isVolatile();
5774     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5775     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5776     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5777                                MachinePointerInfo(I.getArgOperand(0)));
5778     updateDAGForMaybeTailCall(MS);
5779     return;
5780   }
5781   case Intrinsic::memmove: {
5782     const auto &MMI = cast<MemMoveInst>(I);
5783     SDValue Op1 = getValue(I.getArgOperand(0));
5784     SDValue Op2 = getValue(I.getArgOperand(1));
5785     SDValue Op3 = getValue(I.getArgOperand(2));
5786     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5787     Align DstAlign = MMI.getDestAlign().valueOrOne();
5788     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5789     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5790     bool isVol = MMI.isVolatile();
5791     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5792     // FIXME: Support passing different dest/src alignments to the memmove DAG
5793     // node.
5794     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5795     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5796                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5797                                 MachinePointerInfo(I.getArgOperand(1)));
5798     updateDAGForMaybeTailCall(MM);
5799     return;
5800   }
5801   case Intrinsic::memcpy_element_unordered_atomic: {
5802     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5803     SDValue Dst = getValue(MI.getRawDest());
5804     SDValue Src = getValue(MI.getRawSource());
5805     SDValue Length = getValue(MI.getLength());
5806 
5807     unsigned DstAlign = MI.getDestAlignment();
5808     unsigned SrcAlign = MI.getSourceAlignment();
5809     Type *LengthTy = MI.getLength()->getType();
5810     unsigned ElemSz = MI.getElementSizeInBytes();
5811     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5812     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5813                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5814                                      MachinePointerInfo(MI.getRawDest()),
5815                                      MachinePointerInfo(MI.getRawSource()));
5816     updateDAGForMaybeTailCall(MC);
5817     return;
5818   }
5819   case Intrinsic::memmove_element_unordered_atomic: {
5820     auto &MI = cast<AtomicMemMoveInst>(I);
5821     SDValue Dst = getValue(MI.getRawDest());
5822     SDValue Src = getValue(MI.getRawSource());
5823     SDValue Length = getValue(MI.getLength());
5824 
5825     unsigned DstAlign = MI.getDestAlignment();
5826     unsigned SrcAlign = MI.getSourceAlignment();
5827     Type *LengthTy = MI.getLength()->getType();
5828     unsigned ElemSz = MI.getElementSizeInBytes();
5829     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5830     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5831                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5832                                       MachinePointerInfo(MI.getRawDest()),
5833                                       MachinePointerInfo(MI.getRawSource()));
5834     updateDAGForMaybeTailCall(MC);
5835     return;
5836   }
5837   case Intrinsic::memset_element_unordered_atomic: {
5838     auto &MI = cast<AtomicMemSetInst>(I);
5839     SDValue Dst = getValue(MI.getRawDest());
5840     SDValue Val = getValue(MI.getValue());
5841     SDValue Length = getValue(MI.getLength());
5842 
5843     unsigned DstAlign = MI.getDestAlignment();
5844     Type *LengthTy = MI.getLength()->getType();
5845     unsigned ElemSz = MI.getElementSizeInBytes();
5846     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5847     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5848                                      LengthTy, ElemSz, isTC,
5849                                      MachinePointerInfo(MI.getRawDest()));
5850     updateDAGForMaybeTailCall(MC);
5851     return;
5852   }
5853   case Intrinsic::call_preallocated_setup: {
5854     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5855     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5856     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5857                               getRoot(), SrcValue);
5858     setValue(&I, Res);
5859     DAG.setRoot(Res);
5860     return;
5861   }
5862   case Intrinsic::call_preallocated_arg: {
5863     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5864     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5865     SDValue Ops[3];
5866     Ops[0] = getRoot();
5867     Ops[1] = SrcValue;
5868     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5869                                    MVT::i32); // arg index
5870     SDValue Res = DAG.getNode(
5871         ISD::PREALLOCATED_ARG, sdl,
5872         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5873     setValue(&I, Res);
5874     DAG.setRoot(Res.getValue(1));
5875     return;
5876   }
5877   case Intrinsic::dbg_addr:
5878   case Intrinsic::dbg_declare: {
5879     const auto &DI = cast<DbgVariableIntrinsic>(I);
5880     DILocalVariable *Variable = DI.getVariable();
5881     DIExpression *Expression = DI.getExpression();
5882     dropDanglingDebugInfo(Variable, Expression);
5883     assert(Variable && "Missing variable");
5884     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5885                       << "\n");
5886     // Check if address has undef value.
5887     const Value *Address = DI.getVariableLocation();
5888     if (!Address || isa<UndefValue>(Address) ||
5889         (Address->use_empty() && !isa<Argument>(Address))) {
5890       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5891                         << " (bad/undef/unused-arg address)\n");
5892       return;
5893     }
5894 
5895     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5896 
5897     // Check if this variable can be described by a frame index, typically
5898     // either as a static alloca or a byval parameter.
5899     int FI = std::numeric_limits<int>::max();
5900     if (const auto *AI =
5901             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5902       if (AI->isStaticAlloca()) {
5903         auto I = FuncInfo.StaticAllocaMap.find(AI);
5904         if (I != FuncInfo.StaticAllocaMap.end())
5905           FI = I->second;
5906       }
5907     } else if (const auto *Arg = dyn_cast<Argument>(
5908                    Address->stripInBoundsConstantOffsets())) {
5909       FI = FuncInfo.getArgumentFrameIndex(Arg);
5910     }
5911 
5912     // llvm.dbg.addr is control dependent and always generates indirect
5913     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5914     // the MachineFunction variable table.
5915     if (FI != std::numeric_limits<int>::max()) {
5916       if (Intrinsic == Intrinsic::dbg_addr) {
5917         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5918             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5919         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5920       } else {
5921         LLVM_DEBUG(dbgs() << "Skipping " << DI
5922                           << " (variable info stashed in MF side table)\n");
5923       }
5924       return;
5925     }
5926 
5927     SDValue &N = NodeMap[Address];
5928     if (!N.getNode() && isa<Argument>(Address))
5929       // Check unused arguments map.
5930       N = UnusedArgNodeMap[Address];
5931     SDDbgValue *SDV;
5932     if (N.getNode()) {
5933       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5934         Address = BCI->getOperand(0);
5935       // Parameters are handled specially.
5936       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5937       if (isParameter && FINode) {
5938         // Byval parameter. We have a frame index at this point.
5939         SDV =
5940             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5941                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5942       } else if (isa<Argument>(Address)) {
5943         // Address is an argument, so try to emit its dbg value using
5944         // virtual register info from the FuncInfo.ValueMap.
5945         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5946         return;
5947       } else {
5948         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5949                               true, dl, SDNodeOrder);
5950       }
5951       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5952     } else {
5953       // If Address is an argument then try to emit its dbg value using
5954       // virtual register info from the FuncInfo.ValueMap.
5955       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5956                                     N)) {
5957         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5958                           << " (could not emit func-arg dbg_value)\n");
5959       }
5960     }
5961     return;
5962   }
5963   case Intrinsic::dbg_label: {
5964     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5965     DILabel *Label = DI.getLabel();
5966     assert(Label && "Missing label");
5967 
5968     SDDbgLabel *SDV;
5969     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5970     DAG.AddDbgLabel(SDV);
5971     return;
5972   }
5973   case Intrinsic::dbg_value: {
5974     const DbgValueInst &DI = cast<DbgValueInst>(I);
5975     assert(DI.getVariable() && "Missing variable");
5976 
5977     DILocalVariable *Variable = DI.getVariable();
5978     DIExpression *Expression = DI.getExpression();
5979     dropDanglingDebugInfo(Variable, Expression);
5980     const Value *V = DI.getValue();
5981     if (!V)
5982       return;
5983 
5984     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5985         SDNodeOrder))
5986       return;
5987 
5988     // TODO: Dangling debug info will eventually either be resolved or produce
5989     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5990     // between the original dbg.value location and its resolved DBG_VALUE, which
5991     // we should ideally fill with an extra Undef DBG_VALUE.
5992 
5993     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5994     return;
5995   }
5996 
5997   case Intrinsic::eh_typeid_for: {
5998     // Find the type id for the given typeinfo.
5999     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6000     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6001     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6002     setValue(&I, Res);
6003     return;
6004   }
6005 
6006   case Intrinsic::eh_return_i32:
6007   case Intrinsic::eh_return_i64:
6008     DAG.getMachineFunction().setCallsEHReturn(true);
6009     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6010                             MVT::Other,
6011                             getControlRoot(),
6012                             getValue(I.getArgOperand(0)),
6013                             getValue(I.getArgOperand(1))));
6014     return;
6015   case Intrinsic::eh_unwind_init:
6016     DAG.getMachineFunction().setCallsUnwindInit(true);
6017     return;
6018   case Intrinsic::eh_dwarf_cfa:
6019     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6020                              TLI.getPointerTy(DAG.getDataLayout()),
6021                              getValue(I.getArgOperand(0))));
6022     return;
6023   case Intrinsic::eh_sjlj_callsite: {
6024     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6025     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6026     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6027     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6028 
6029     MMI.setCurrentCallSite(CI->getZExtValue());
6030     return;
6031   }
6032   case Intrinsic::eh_sjlj_functioncontext: {
6033     // Get and store the index of the function context.
6034     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6035     AllocaInst *FnCtx =
6036       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6037     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6038     MFI.setFunctionContextIndex(FI);
6039     return;
6040   }
6041   case Intrinsic::eh_sjlj_setjmp: {
6042     SDValue Ops[2];
6043     Ops[0] = getRoot();
6044     Ops[1] = getValue(I.getArgOperand(0));
6045     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6046                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6047     setValue(&I, Op.getValue(0));
6048     DAG.setRoot(Op.getValue(1));
6049     return;
6050   }
6051   case Intrinsic::eh_sjlj_longjmp:
6052     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6053                             getRoot(), getValue(I.getArgOperand(0))));
6054     return;
6055   case Intrinsic::eh_sjlj_setup_dispatch:
6056     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6057                             getRoot()));
6058     return;
6059   case Intrinsic::masked_gather:
6060     visitMaskedGather(I);
6061     return;
6062   case Intrinsic::masked_load:
6063     visitMaskedLoad(I);
6064     return;
6065   case Intrinsic::masked_scatter:
6066     visitMaskedScatter(I);
6067     return;
6068   case Intrinsic::masked_store:
6069     visitMaskedStore(I);
6070     return;
6071   case Intrinsic::masked_expandload:
6072     visitMaskedLoad(I, true /* IsExpanding */);
6073     return;
6074   case Intrinsic::masked_compressstore:
6075     visitMaskedStore(I, true /* IsCompressing */);
6076     return;
6077   case Intrinsic::powi:
6078     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6079                             getValue(I.getArgOperand(1)), DAG));
6080     return;
6081   case Intrinsic::log:
6082     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6083     return;
6084   case Intrinsic::log2:
6085     setValue(&I,
6086              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6087     return;
6088   case Intrinsic::log10:
6089     setValue(&I,
6090              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6091     return;
6092   case Intrinsic::exp:
6093     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6094     return;
6095   case Intrinsic::exp2:
6096     setValue(&I,
6097              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6098     return;
6099   case Intrinsic::pow:
6100     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6101                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6102     return;
6103   case Intrinsic::sqrt:
6104   case Intrinsic::fabs:
6105   case Intrinsic::sin:
6106   case Intrinsic::cos:
6107   case Intrinsic::floor:
6108   case Intrinsic::ceil:
6109   case Intrinsic::trunc:
6110   case Intrinsic::rint:
6111   case Intrinsic::nearbyint:
6112   case Intrinsic::round:
6113   case Intrinsic::roundeven:
6114   case Intrinsic::canonicalize: {
6115     unsigned Opcode;
6116     switch (Intrinsic) {
6117     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6118     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6119     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6120     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6121     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6122     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6123     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6124     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6125     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6126     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6127     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6128     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6129     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6130     }
6131 
6132     setValue(&I, DAG.getNode(Opcode, sdl,
6133                              getValue(I.getArgOperand(0)).getValueType(),
6134                              getValue(I.getArgOperand(0)), Flags));
6135     return;
6136   }
6137   case Intrinsic::lround:
6138   case Intrinsic::llround:
6139   case Intrinsic::lrint:
6140   case Intrinsic::llrint: {
6141     unsigned Opcode;
6142     switch (Intrinsic) {
6143     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6144     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6145     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6146     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6147     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6148     }
6149 
6150     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6151     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6152                              getValue(I.getArgOperand(0))));
6153     return;
6154   }
6155   case Intrinsic::minnum:
6156     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6157                              getValue(I.getArgOperand(0)).getValueType(),
6158                              getValue(I.getArgOperand(0)),
6159                              getValue(I.getArgOperand(1)), Flags));
6160     return;
6161   case Intrinsic::maxnum:
6162     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6163                              getValue(I.getArgOperand(0)).getValueType(),
6164                              getValue(I.getArgOperand(0)),
6165                              getValue(I.getArgOperand(1)), Flags));
6166     return;
6167   case Intrinsic::minimum:
6168     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6169                              getValue(I.getArgOperand(0)).getValueType(),
6170                              getValue(I.getArgOperand(0)),
6171                              getValue(I.getArgOperand(1)), Flags));
6172     return;
6173   case Intrinsic::maximum:
6174     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6175                              getValue(I.getArgOperand(0)).getValueType(),
6176                              getValue(I.getArgOperand(0)),
6177                              getValue(I.getArgOperand(1)), Flags));
6178     return;
6179   case Intrinsic::copysign:
6180     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6181                              getValue(I.getArgOperand(0)).getValueType(),
6182                              getValue(I.getArgOperand(0)),
6183                              getValue(I.getArgOperand(1)), Flags));
6184     return;
6185   case Intrinsic::fma:
6186     setValue(&I, DAG.getNode(
6187                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6188                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6189                      getValue(I.getArgOperand(2)), Flags));
6190     return;
6191 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6192   case Intrinsic::INTRINSIC:
6193 #include "llvm/IR/ConstrainedOps.def"
6194     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6195     return;
6196 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6197 #include "llvm/IR/VPIntrinsics.def"
6198     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6199     return;
6200   case Intrinsic::fmuladd: {
6201     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6202     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6203         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6204       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6205                                getValue(I.getArgOperand(0)).getValueType(),
6206                                getValue(I.getArgOperand(0)),
6207                                getValue(I.getArgOperand(1)),
6208                                getValue(I.getArgOperand(2)), Flags));
6209     } else {
6210       // TODO: Intrinsic calls should have fast-math-flags.
6211       SDValue Mul = DAG.getNode(
6212           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6213           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6214       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6215                                 getValue(I.getArgOperand(0)).getValueType(),
6216                                 Mul, getValue(I.getArgOperand(2)), Flags);
6217       setValue(&I, Add);
6218     }
6219     return;
6220   }
6221   case Intrinsic::convert_to_fp16:
6222     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6223                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6224                                          getValue(I.getArgOperand(0)),
6225                                          DAG.getTargetConstant(0, sdl,
6226                                                                MVT::i32))));
6227     return;
6228   case Intrinsic::convert_from_fp16:
6229     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6230                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6231                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6232                                          getValue(I.getArgOperand(0)))));
6233     return;
6234   case Intrinsic::fptosi_sat: {
6235     EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType());
6236     SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32);
6237     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, Type,
6238                              getValue(I.getArgOperand(0)), SatW));
6239     return;
6240   }
6241   case Intrinsic::fptoui_sat: {
6242     EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType());
6243     SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32);
6244     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, Type,
6245                              getValue(I.getArgOperand(0)), SatW));
6246     return;
6247   }
6248   case Intrinsic::set_rounding:
6249     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6250                       {getRoot(), getValue(I.getArgOperand(0))});
6251     setValue(&I, Res);
6252     DAG.setRoot(Res.getValue(0));
6253     return;
6254   case Intrinsic::pcmarker: {
6255     SDValue Tmp = getValue(I.getArgOperand(0));
6256     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6257     return;
6258   }
6259   case Intrinsic::readcyclecounter: {
6260     SDValue Op = getRoot();
6261     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6262                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6263     setValue(&I, Res);
6264     DAG.setRoot(Res.getValue(1));
6265     return;
6266   }
6267   case Intrinsic::bitreverse:
6268     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6269                              getValue(I.getArgOperand(0)).getValueType(),
6270                              getValue(I.getArgOperand(0))));
6271     return;
6272   case Intrinsic::bswap:
6273     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6274                              getValue(I.getArgOperand(0)).getValueType(),
6275                              getValue(I.getArgOperand(0))));
6276     return;
6277   case Intrinsic::cttz: {
6278     SDValue Arg = getValue(I.getArgOperand(0));
6279     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6280     EVT Ty = Arg.getValueType();
6281     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6282                              sdl, Ty, Arg));
6283     return;
6284   }
6285   case Intrinsic::ctlz: {
6286     SDValue Arg = getValue(I.getArgOperand(0));
6287     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6288     EVT Ty = Arg.getValueType();
6289     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6290                              sdl, Ty, Arg));
6291     return;
6292   }
6293   case Intrinsic::ctpop: {
6294     SDValue Arg = getValue(I.getArgOperand(0));
6295     EVT Ty = Arg.getValueType();
6296     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6297     return;
6298   }
6299   case Intrinsic::fshl:
6300   case Intrinsic::fshr: {
6301     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6302     SDValue X = getValue(I.getArgOperand(0));
6303     SDValue Y = getValue(I.getArgOperand(1));
6304     SDValue Z = getValue(I.getArgOperand(2));
6305     EVT VT = X.getValueType();
6306 
6307     if (X == Y) {
6308       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6309       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6310     } else {
6311       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6312       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6313     }
6314     return;
6315   }
6316   case Intrinsic::sadd_sat: {
6317     SDValue Op1 = getValue(I.getArgOperand(0));
6318     SDValue Op2 = getValue(I.getArgOperand(1));
6319     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6320     return;
6321   }
6322   case Intrinsic::uadd_sat: {
6323     SDValue Op1 = getValue(I.getArgOperand(0));
6324     SDValue Op2 = getValue(I.getArgOperand(1));
6325     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6326     return;
6327   }
6328   case Intrinsic::ssub_sat: {
6329     SDValue Op1 = getValue(I.getArgOperand(0));
6330     SDValue Op2 = getValue(I.getArgOperand(1));
6331     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6332     return;
6333   }
6334   case Intrinsic::usub_sat: {
6335     SDValue Op1 = getValue(I.getArgOperand(0));
6336     SDValue Op2 = getValue(I.getArgOperand(1));
6337     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6338     return;
6339   }
6340   case Intrinsic::sshl_sat: {
6341     SDValue Op1 = getValue(I.getArgOperand(0));
6342     SDValue Op2 = getValue(I.getArgOperand(1));
6343     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6344     return;
6345   }
6346   case Intrinsic::ushl_sat: {
6347     SDValue Op1 = getValue(I.getArgOperand(0));
6348     SDValue Op2 = getValue(I.getArgOperand(1));
6349     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6350     return;
6351   }
6352   case Intrinsic::smul_fix:
6353   case Intrinsic::umul_fix:
6354   case Intrinsic::smul_fix_sat:
6355   case Intrinsic::umul_fix_sat: {
6356     SDValue Op1 = getValue(I.getArgOperand(0));
6357     SDValue Op2 = getValue(I.getArgOperand(1));
6358     SDValue Op3 = getValue(I.getArgOperand(2));
6359     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6360                              Op1.getValueType(), Op1, Op2, Op3));
6361     return;
6362   }
6363   case Intrinsic::sdiv_fix:
6364   case Intrinsic::udiv_fix:
6365   case Intrinsic::sdiv_fix_sat:
6366   case Intrinsic::udiv_fix_sat: {
6367     SDValue Op1 = getValue(I.getArgOperand(0));
6368     SDValue Op2 = getValue(I.getArgOperand(1));
6369     SDValue Op3 = getValue(I.getArgOperand(2));
6370     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6371                               Op1, Op2, Op3, DAG, TLI));
6372     return;
6373   }
6374   case Intrinsic::smax: {
6375     SDValue Op1 = getValue(I.getArgOperand(0));
6376     SDValue Op2 = getValue(I.getArgOperand(1));
6377     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6378     return;
6379   }
6380   case Intrinsic::smin: {
6381     SDValue Op1 = getValue(I.getArgOperand(0));
6382     SDValue Op2 = getValue(I.getArgOperand(1));
6383     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6384     return;
6385   }
6386   case Intrinsic::umax: {
6387     SDValue Op1 = getValue(I.getArgOperand(0));
6388     SDValue Op2 = getValue(I.getArgOperand(1));
6389     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6390     return;
6391   }
6392   case Intrinsic::umin: {
6393     SDValue Op1 = getValue(I.getArgOperand(0));
6394     SDValue Op2 = getValue(I.getArgOperand(1));
6395     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6396     return;
6397   }
6398   case Intrinsic::abs: {
6399     // TODO: Preserve "int min is poison" arg in SDAG?
6400     SDValue Op1 = getValue(I.getArgOperand(0));
6401     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6402     return;
6403   }
6404   case Intrinsic::stacksave: {
6405     SDValue Op = getRoot();
6406     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6407     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6408     setValue(&I, Res);
6409     DAG.setRoot(Res.getValue(1));
6410     return;
6411   }
6412   case Intrinsic::stackrestore:
6413     Res = getValue(I.getArgOperand(0));
6414     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6415     return;
6416   case Intrinsic::get_dynamic_area_offset: {
6417     SDValue Op = getRoot();
6418     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6419     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6420     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6421     // target.
6422     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6423       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6424                          " intrinsic!");
6425     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6426                       Op);
6427     DAG.setRoot(Op);
6428     setValue(&I, Res);
6429     return;
6430   }
6431   case Intrinsic::stackguard: {
6432     MachineFunction &MF = DAG.getMachineFunction();
6433     const Module &M = *MF.getFunction().getParent();
6434     SDValue Chain = getRoot();
6435     if (TLI.useLoadStackGuardNode()) {
6436       Res = getLoadStackGuard(DAG, sdl, Chain);
6437     } else {
6438       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6439       const Value *Global = TLI.getSDagStackGuard(M);
6440       Align Align = DL->getPrefTypeAlign(Global->getType());
6441       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6442                         MachinePointerInfo(Global, 0), Align,
6443                         MachineMemOperand::MOVolatile);
6444     }
6445     if (TLI.useStackGuardXorFP())
6446       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6447     DAG.setRoot(Chain);
6448     setValue(&I, Res);
6449     return;
6450   }
6451   case Intrinsic::stackprotector: {
6452     // Emit code into the DAG to store the stack guard onto the stack.
6453     MachineFunction &MF = DAG.getMachineFunction();
6454     MachineFrameInfo &MFI = MF.getFrameInfo();
6455     SDValue Src, Chain = getRoot();
6456 
6457     if (TLI.useLoadStackGuardNode())
6458       Src = getLoadStackGuard(DAG, sdl, Chain);
6459     else
6460       Src = getValue(I.getArgOperand(0));   // The guard's value.
6461 
6462     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6463 
6464     int FI = FuncInfo.StaticAllocaMap[Slot];
6465     MFI.setStackProtectorIndex(FI);
6466     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6467 
6468     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6469 
6470     // Store the stack protector onto the stack.
6471     Res = DAG.getStore(
6472         Chain, sdl, Src, FIN,
6473         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6474         MaybeAlign(), MachineMemOperand::MOVolatile);
6475     setValue(&I, Res);
6476     DAG.setRoot(Res);
6477     return;
6478   }
6479   case Intrinsic::objectsize:
6480     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6481 
6482   case Intrinsic::is_constant:
6483     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6484 
6485   case Intrinsic::annotation:
6486   case Intrinsic::ptr_annotation:
6487   case Intrinsic::launder_invariant_group:
6488   case Intrinsic::strip_invariant_group:
6489     // Drop the intrinsic, but forward the value
6490     setValue(&I, getValue(I.getOperand(0)));
6491     return;
6492 
6493   case Intrinsic::assume:
6494   case Intrinsic::experimental_noalias_scope_decl:
6495   case Intrinsic::var_annotation:
6496   case Intrinsic::sideeffect:
6497     // Discard annotate attributes, noalias scope declarations, assumptions, and
6498     // artificial side-effects.
6499     return;
6500 
6501   case Intrinsic::codeview_annotation: {
6502     // Emit a label associated with this metadata.
6503     MachineFunction &MF = DAG.getMachineFunction();
6504     MCSymbol *Label =
6505         MF.getMMI().getContext().createTempSymbol("annotation", true);
6506     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6507     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6508     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6509     DAG.setRoot(Res);
6510     return;
6511   }
6512 
6513   case Intrinsic::init_trampoline: {
6514     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6515 
6516     SDValue Ops[6];
6517     Ops[0] = getRoot();
6518     Ops[1] = getValue(I.getArgOperand(0));
6519     Ops[2] = getValue(I.getArgOperand(1));
6520     Ops[3] = getValue(I.getArgOperand(2));
6521     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6522     Ops[5] = DAG.getSrcValue(F);
6523 
6524     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6525 
6526     DAG.setRoot(Res);
6527     return;
6528   }
6529   case Intrinsic::adjust_trampoline:
6530     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6531                              TLI.getPointerTy(DAG.getDataLayout()),
6532                              getValue(I.getArgOperand(0))));
6533     return;
6534   case Intrinsic::gcroot: {
6535     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6536            "only valid in functions with gc specified, enforced by Verifier");
6537     assert(GFI && "implied by previous");
6538     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6539     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6540 
6541     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6542     GFI->addStackRoot(FI->getIndex(), TypeMap);
6543     return;
6544   }
6545   case Intrinsic::gcread:
6546   case Intrinsic::gcwrite:
6547     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6548   case Intrinsic::flt_rounds:
6549     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6550     setValue(&I, Res);
6551     DAG.setRoot(Res.getValue(1));
6552     return;
6553 
6554   case Intrinsic::expect:
6555     // Just replace __builtin_expect(exp, c) with EXP.
6556     setValue(&I, getValue(I.getArgOperand(0)));
6557     return;
6558 
6559   case Intrinsic::ubsantrap:
6560   case Intrinsic::debugtrap:
6561   case Intrinsic::trap: {
6562     StringRef TrapFuncName =
6563         I.getAttributes()
6564             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6565             .getValueAsString();
6566     if (TrapFuncName.empty()) {
6567       switch (Intrinsic) {
6568       case Intrinsic::trap:
6569         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6570         break;
6571       case Intrinsic::debugtrap:
6572         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6573         break;
6574       case Intrinsic::ubsantrap:
6575         DAG.setRoot(DAG.getNode(
6576             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6577             DAG.getTargetConstant(
6578                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6579                 MVT::i32)));
6580         break;
6581       default: llvm_unreachable("unknown trap intrinsic");
6582       }
6583       return;
6584     }
6585     TargetLowering::ArgListTy Args;
6586     if (Intrinsic == Intrinsic::ubsantrap) {
6587       Args.push_back(TargetLoweringBase::ArgListEntry());
6588       Args[0].Val = I.getArgOperand(0);
6589       Args[0].Node = getValue(Args[0].Val);
6590       Args[0].Ty = Args[0].Val->getType();
6591     }
6592 
6593     TargetLowering::CallLoweringInfo CLI(DAG);
6594     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6595         CallingConv::C, I.getType(),
6596         DAG.getExternalSymbol(TrapFuncName.data(),
6597                               TLI.getPointerTy(DAG.getDataLayout())),
6598         std::move(Args));
6599 
6600     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6601     DAG.setRoot(Result.second);
6602     return;
6603   }
6604 
6605   case Intrinsic::uadd_with_overflow:
6606   case Intrinsic::sadd_with_overflow:
6607   case Intrinsic::usub_with_overflow:
6608   case Intrinsic::ssub_with_overflow:
6609   case Intrinsic::umul_with_overflow:
6610   case Intrinsic::smul_with_overflow: {
6611     ISD::NodeType Op;
6612     switch (Intrinsic) {
6613     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6614     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6615     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6616     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6617     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6618     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6619     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6620     }
6621     SDValue Op1 = getValue(I.getArgOperand(0));
6622     SDValue Op2 = getValue(I.getArgOperand(1));
6623 
6624     EVT ResultVT = Op1.getValueType();
6625     EVT OverflowVT = MVT::i1;
6626     if (ResultVT.isVector())
6627       OverflowVT = EVT::getVectorVT(
6628           *Context, OverflowVT, ResultVT.getVectorElementCount());
6629 
6630     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6631     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6632     return;
6633   }
6634   case Intrinsic::prefetch: {
6635     SDValue Ops[5];
6636     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6637     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6638     Ops[0] = DAG.getRoot();
6639     Ops[1] = getValue(I.getArgOperand(0));
6640     Ops[2] = getValue(I.getArgOperand(1));
6641     Ops[3] = getValue(I.getArgOperand(2));
6642     Ops[4] = getValue(I.getArgOperand(3));
6643     SDValue Result = DAG.getMemIntrinsicNode(
6644         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6645         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6646         /* align */ None, Flags);
6647 
6648     // Chain the prefetch in parallell with any pending loads, to stay out of
6649     // the way of later optimizations.
6650     PendingLoads.push_back(Result);
6651     Result = getRoot();
6652     DAG.setRoot(Result);
6653     return;
6654   }
6655   case Intrinsic::lifetime_start:
6656   case Intrinsic::lifetime_end: {
6657     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6658     // Stack coloring is not enabled in O0, discard region information.
6659     if (TM.getOptLevel() == CodeGenOpt::None)
6660       return;
6661 
6662     const int64_t ObjectSize =
6663         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6664     Value *const ObjectPtr = I.getArgOperand(1);
6665     SmallVector<const Value *, 4> Allocas;
6666     getUnderlyingObjects(ObjectPtr, Allocas);
6667 
6668     for (const Value *Alloca : Allocas) {
6669       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6670 
6671       // Could not find an Alloca.
6672       if (!LifetimeObject)
6673         continue;
6674 
6675       // First check that the Alloca is static, otherwise it won't have a
6676       // valid frame index.
6677       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6678       if (SI == FuncInfo.StaticAllocaMap.end())
6679         return;
6680 
6681       const int FrameIndex = SI->second;
6682       int64_t Offset;
6683       if (GetPointerBaseWithConstantOffset(
6684               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6685         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6686       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6687                                 Offset);
6688       DAG.setRoot(Res);
6689     }
6690     return;
6691   }
6692   case Intrinsic::pseudoprobe: {
6693     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6694     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6695     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6696     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6697     DAG.setRoot(Res);
6698     return;
6699   }
6700   case Intrinsic::invariant_start:
6701     // Discard region information.
6702     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6703     return;
6704   case Intrinsic::invariant_end:
6705     // Discard region information.
6706     return;
6707   case Intrinsic::clear_cache:
6708     /// FunctionName may be null.
6709     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6710       lowerCallToExternalSymbol(I, FunctionName);
6711     return;
6712   case Intrinsic::donothing:
6713     // ignore
6714     return;
6715   case Intrinsic::experimental_stackmap:
6716     visitStackmap(I);
6717     return;
6718   case Intrinsic::experimental_patchpoint_void:
6719   case Intrinsic::experimental_patchpoint_i64:
6720     visitPatchpoint(I);
6721     return;
6722   case Intrinsic::experimental_gc_statepoint:
6723     LowerStatepoint(cast<GCStatepointInst>(I));
6724     return;
6725   case Intrinsic::experimental_gc_result:
6726     visitGCResult(cast<GCResultInst>(I));
6727     return;
6728   case Intrinsic::experimental_gc_relocate:
6729     visitGCRelocate(cast<GCRelocateInst>(I));
6730     return;
6731   case Intrinsic::instrprof_increment:
6732     llvm_unreachable("instrprof failed to lower an increment");
6733   case Intrinsic::instrprof_value_profile:
6734     llvm_unreachable("instrprof failed to lower a value profiling call");
6735   case Intrinsic::localescape: {
6736     MachineFunction &MF = DAG.getMachineFunction();
6737     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6738 
6739     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6740     // is the same on all targets.
6741     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6742       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6743       if (isa<ConstantPointerNull>(Arg))
6744         continue; // Skip null pointers. They represent a hole in index space.
6745       AllocaInst *Slot = cast<AllocaInst>(Arg);
6746       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6747              "can only escape static allocas");
6748       int FI = FuncInfo.StaticAllocaMap[Slot];
6749       MCSymbol *FrameAllocSym =
6750           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6751               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6752       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6753               TII->get(TargetOpcode::LOCAL_ESCAPE))
6754           .addSym(FrameAllocSym)
6755           .addFrameIndex(FI);
6756     }
6757 
6758     return;
6759   }
6760 
6761   case Intrinsic::localrecover: {
6762     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6763     MachineFunction &MF = DAG.getMachineFunction();
6764 
6765     // Get the symbol that defines the frame offset.
6766     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6767     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6768     unsigned IdxVal =
6769         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6770     MCSymbol *FrameAllocSym =
6771         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6772             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6773 
6774     Value *FP = I.getArgOperand(1);
6775     SDValue FPVal = getValue(FP);
6776     EVT PtrVT = FPVal.getValueType();
6777 
6778     // Create a MCSymbol for the label to avoid any target lowering
6779     // that would make this PC relative.
6780     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6781     SDValue OffsetVal =
6782         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6783 
6784     // Add the offset to the FP.
6785     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6786     setValue(&I, Add);
6787 
6788     return;
6789   }
6790 
6791   case Intrinsic::eh_exceptionpointer:
6792   case Intrinsic::eh_exceptioncode: {
6793     // Get the exception pointer vreg, copy from it, and resize it to fit.
6794     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6795     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6796     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6797     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6798     SDValue N =
6799         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6800     if (Intrinsic == Intrinsic::eh_exceptioncode)
6801       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6802     setValue(&I, N);
6803     return;
6804   }
6805   case Intrinsic::xray_customevent: {
6806     // Here we want to make sure that the intrinsic behaves as if it has a
6807     // specific calling convention, and only for x86_64.
6808     // FIXME: Support other platforms later.
6809     const auto &Triple = DAG.getTarget().getTargetTriple();
6810     if (Triple.getArch() != Triple::x86_64)
6811       return;
6812 
6813     SDLoc DL = getCurSDLoc();
6814     SmallVector<SDValue, 8> Ops;
6815 
6816     // We want to say that we always want the arguments in registers.
6817     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6818     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6819     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6820     SDValue Chain = getRoot();
6821     Ops.push_back(LogEntryVal);
6822     Ops.push_back(StrSizeVal);
6823     Ops.push_back(Chain);
6824 
6825     // We need to enforce the calling convention for the callsite, so that
6826     // argument ordering is enforced correctly, and that register allocation can
6827     // see that some registers may be assumed clobbered and have to preserve
6828     // them across calls to the intrinsic.
6829     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6830                                            DL, NodeTys, Ops);
6831     SDValue patchableNode = SDValue(MN, 0);
6832     DAG.setRoot(patchableNode);
6833     setValue(&I, patchableNode);
6834     return;
6835   }
6836   case Intrinsic::xray_typedevent: {
6837     // Here we want to make sure that the intrinsic behaves as if it has a
6838     // specific calling convention, and only for x86_64.
6839     // FIXME: Support other platforms later.
6840     const auto &Triple = DAG.getTarget().getTargetTriple();
6841     if (Triple.getArch() != Triple::x86_64)
6842       return;
6843 
6844     SDLoc DL = getCurSDLoc();
6845     SmallVector<SDValue, 8> Ops;
6846 
6847     // We want to say that we always want the arguments in registers.
6848     // It's unclear to me how manipulating the selection DAG here forces callers
6849     // to provide arguments in registers instead of on the stack.
6850     SDValue LogTypeId = getValue(I.getArgOperand(0));
6851     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6852     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6853     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6854     SDValue Chain = getRoot();
6855     Ops.push_back(LogTypeId);
6856     Ops.push_back(LogEntryVal);
6857     Ops.push_back(StrSizeVal);
6858     Ops.push_back(Chain);
6859 
6860     // We need to enforce the calling convention for the callsite, so that
6861     // argument ordering is enforced correctly, and that register allocation can
6862     // see that some registers may be assumed clobbered and have to preserve
6863     // them across calls to the intrinsic.
6864     MachineSDNode *MN = DAG.getMachineNode(
6865         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6866     SDValue patchableNode = SDValue(MN, 0);
6867     DAG.setRoot(patchableNode);
6868     setValue(&I, patchableNode);
6869     return;
6870   }
6871   case Intrinsic::experimental_deoptimize:
6872     LowerDeoptimizeCall(&I);
6873     return;
6874 
6875   case Intrinsic::vector_reduce_fadd:
6876   case Intrinsic::vector_reduce_fmul:
6877   case Intrinsic::vector_reduce_add:
6878   case Intrinsic::vector_reduce_mul:
6879   case Intrinsic::vector_reduce_and:
6880   case Intrinsic::vector_reduce_or:
6881   case Intrinsic::vector_reduce_xor:
6882   case Intrinsic::vector_reduce_smax:
6883   case Intrinsic::vector_reduce_smin:
6884   case Intrinsic::vector_reduce_umax:
6885   case Intrinsic::vector_reduce_umin:
6886   case Intrinsic::vector_reduce_fmax:
6887   case Intrinsic::vector_reduce_fmin:
6888     visitVectorReduce(I, Intrinsic);
6889     return;
6890 
6891   case Intrinsic::icall_branch_funnel: {
6892     SmallVector<SDValue, 16> Ops;
6893     Ops.push_back(getValue(I.getArgOperand(0)));
6894 
6895     int64_t Offset;
6896     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6897         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6898     if (!Base)
6899       report_fatal_error(
6900           "llvm.icall.branch.funnel operand must be a GlobalValue");
6901     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6902 
6903     struct BranchFunnelTarget {
6904       int64_t Offset;
6905       SDValue Target;
6906     };
6907     SmallVector<BranchFunnelTarget, 8> Targets;
6908 
6909     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6910       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6911           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6912       if (ElemBase != Base)
6913         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6914                            "to the same GlobalValue");
6915 
6916       SDValue Val = getValue(I.getArgOperand(Op + 1));
6917       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6918       if (!GA)
6919         report_fatal_error(
6920             "llvm.icall.branch.funnel operand must be a GlobalValue");
6921       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6922                                      GA->getGlobal(), getCurSDLoc(),
6923                                      Val.getValueType(), GA->getOffset())});
6924     }
6925     llvm::sort(Targets,
6926                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6927                  return T1.Offset < T2.Offset;
6928                });
6929 
6930     for (auto &T : Targets) {
6931       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6932       Ops.push_back(T.Target);
6933     }
6934 
6935     Ops.push_back(DAG.getRoot()); // Chain
6936     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6937                                  getCurSDLoc(), MVT::Other, Ops),
6938               0);
6939     DAG.setRoot(N);
6940     setValue(&I, N);
6941     HasTailCall = true;
6942     return;
6943   }
6944 
6945   case Intrinsic::wasm_landingpad_index:
6946     // Information this intrinsic contained has been transferred to
6947     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6948     // delete it now.
6949     return;
6950 
6951   case Intrinsic::aarch64_settag:
6952   case Intrinsic::aarch64_settag_zero: {
6953     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6954     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6955     SDValue Val = TSI.EmitTargetCodeForSetTag(
6956         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6957         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6958         ZeroMemory);
6959     DAG.setRoot(Val);
6960     setValue(&I, Val);
6961     return;
6962   }
6963   case Intrinsic::ptrmask: {
6964     SDValue Ptr = getValue(I.getOperand(0));
6965     SDValue Const = getValue(I.getOperand(1));
6966 
6967     EVT PtrVT = Ptr.getValueType();
6968     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6969                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6970     return;
6971   }
6972   case Intrinsic::get_active_lane_mask: {
6973     auto DL = getCurSDLoc();
6974     SDValue Index = getValue(I.getOperand(0));
6975     SDValue TripCount = getValue(I.getOperand(1));
6976     Type *ElementTy = I.getOperand(0)->getType();
6977     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6978     unsigned VecWidth = VT.getVectorNumElements();
6979 
6980     SmallVector<SDValue, 16> OpsTripCount;
6981     SmallVector<SDValue, 16> OpsIndex;
6982     SmallVector<SDValue, 16> OpsStepConstants;
6983     for (unsigned i = 0; i < VecWidth; i++) {
6984       OpsTripCount.push_back(TripCount);
6985       OpsIndex.push_back(Index);
6986       OpsStepConstants.push_back(
6987           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
6988     }
6989 
6990     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
6991 
6992     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
6993     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6994     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6995     SDValue VectorInduction = DAG.getNode(
6996        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
6997     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
6998     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
6999                                  VectorTripCount, ISD::CondCode::SETULT);
7000     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
7001                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
7002                              SetCC));
7003     return;
7004   }
7005   case Intrinsic::experimental_vector_insert: {
7006     auto DL = getCurSDLoc();
7007 
7008     SDValue Vec = getValue(I.getOperand(0));
7009     SDValue SubVec = getValue(I.getOperand(1));
7010     SDValue Index = getValue(I.getOperand(2));
7011     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7012     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec,
7013                              Index));
7014     return;
7015   }
7016   case Intrinsic::experimental_vector_extract: {
7017     auto DL = getCurSDLoc();
7018 
7019     SDValue Vec = getValue(I.getOperand(0));
7020     SDValue Index = getValue(I.getOperand(1));
7021     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7022 
7023     setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index));
7024     return;
7025   }
7026   }
7027 }
7028 
7029 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7030     const ConstrainedFPIntrinsic &FPI) {
7031   SDLoc sdl = getCurSDLoc();
7032 
7033   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7034   SmallVector<EVT, 4> ValueVTs;
7035   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7036   ValueVTs.push_back(MVT::Other); // Out chain
7037 
7038   // We do not need to serialize constrained FP intrinsics against
7039   // each other or against (nonvolatile) loads, so they can be
7040   // chained like loads.
7041   SDValue Chain = DAG.getRoot();
7042   SmallVector<SDValue, 4> Opers;
7043   Opers.push_back(Chain);
7044   if (FPI.isUnaryOp()) {
7045     Opers.push_back(getValue(FPI.getArgOperand(0)));
7046   } else if (FPI.isTernaryOp()) {
7047     Opers.push_back(getValue(FPI.getArgOperand(0)));
7048     Opers.push_back(getValue(FPI.getArgOperand(1)));
7049     Opers.push_back(getValue(FPI.getArgOperand(2)));
7050   } else {
7051     Opers.push_back(getValue(FPI.getArgOperand(0)));
7052     Opers.push_back(getValue(FPI.getArgOperand(1)));
7053   }
7054 
7055   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7056     assert(Result.getNode()->getNumValues() == 2);
7057 
7058     // Push node to the appropriate list so that future instructions can be
7059     // chained up correctly.
7060     SDValue OutChain = Result.getValue(1);
7061     switch (EB) {
7062     case fp::ExceptionBehavior::ebIgnore:
7063       // The only reason why ebIgnore nodes still need to be chained is that
7064       // they might depend on the current rounding mode, and therefore must
7065       // not be moved across instruction that may change that mode.
7066       LLVM_FALLTHROUGH;
7067     case fp::ExceptionBehavior::ebMayTrap:
7068       // These must not be moved across calls or instructions that may change
7069       // floating-point exception masks.
7070       PendingConstrainedFP.push_back(OutChain);
7071       break;
7072     case fp::ExceptionBehavior::ebStrict:
7073       // These must not be moved across calls or instructions that may change
7074       // floating-point exception masks or read floating-point exception flags.
7075       // In addition, they cannot be optimized out even if unused.
7076       PendingConstrainedFPStrict.push_back(OutChain);
7077       break;
7078     }
7079   };
7080 
7081   SDVTList VTs = DAG.getVTList(ValueVTs);
7082   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7083 
7084   SDNodeFlags Flags;
7085   if (EB == fp::ExceptionBehavior::ebIgnore)
7086     Flags.setNoFPExcept(true);
7087 
7088   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7089     Flags.copyFMF(*FPOp);
7090 
7091   unsigned Opcode;
7092   switch (FPI.getIntrinsicID()) {
7093   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7094 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7095   case Intrinsic::INTRINSIC:                                                   \
7096     Opcode = ISD::STRICT_##DAGN;                                               \
7097     break;
7098 #include "llvm/IR/ConstrainedOps.def"
7099   case Intrinsic::experimental_constrained_fmuladd: {
7100     Opcode = ISD::STRICT_FMA;
7101     // Break fmuladd into fmul and fadd.
7102     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7103         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7104                                         ValueVTs[0])) {
7105       Opers.pop_back();
7106       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7107       pushOutChain(Mul, EB);
7108       Opcode = ISD::STRICT_FADD;
7109       Opers.clear();
7110       Opers.push_back(Mul.getValue(1));
7111       Opers.push_back(Mul.getValue(0));
7112       Opers.push_back(getValue(FPI.getArgOperand(2)));
7113     }
7114     break;
7115   }
7116   }
7117 
7118   // A few strict DAG nodes carry additional operands that are not
7119   // set up by the default code above.
7120   switch (Opcode) {
7121   default: break;
7122   case ISD::STRICT_FP_ROUND:
7123     Opers.push_back(
7124         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7125     break;
7126   case ISD::STRICT_FSETCC:
7127   case ISD::STRICT_FSETCCS: {
7128     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7129     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7130     if (TM.Options.NoNaNsFPMath)
7131       Condition = getFCmpCodeWithoutNaN(Condition);
7132     Opers.push_back(DAG.getCondCode(Condition));
7133     break;
7134   }
7135   }
7136 
7137   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7138   pushOutChain(Result, EB);
7139 
7140   SDValue FPResult = Result.getValue(0);
7141   setValue(&FPI, FPResult);
7142 }
7143 
7144 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7145   Optional<unsigned> ResOPC;
7146   switch (VPIntrin.getIntrinsicID()) {
7147 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7148 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7149 #define END_REGISTER_VP_INTRINSIC(...) break;
7150 #include "llvm/IR/VPIntrinsics.def"
7151   }
7152 
7153   if (!ResOPC.hasValue())
7154     llvm_unreachable(
7155         "Inconsistency: no SDNode available for this VPIntrinsic!");
7156 
7157   return ResOPC.getValue();
7158 }
7159 
7160 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7161     const VPIntrinsic &VPIntrin) {
7162   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7163 
7164   SmallVector<EVT, 4> ValueVTs;
7165   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7166   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7167   SDVTList VTs = DAG.getVTList(ValueVTs);
7168 
7169   // Request operands.
7170   SmallVector<SDValue, 7> OpValues;
7171   for (int i = 0; i < (int)VPIntrin.getNumArgOperands(); ++i)
7172     OpValues.push_back(getValue(VPIntrin.getArgOperand(i)));
7173 
7174   SDLoc DL = getCurSDLoc();
7175   SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7176   setValue(&VPIntrin, Result);
7177 }
7178 
7179 std::pair<SDValue, SDValue>
7180 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7181                                     const BasicBlock *EHPadBB) {
7182   MachineFunction &MF = DAG.getMachineFunction();
7183   MachineModuleInfo &MMI = MF.getMMI();
7184   MCSymbol *BeginLabel = nullptr;
7185 
7186   if (EHPadBB) {
7187     // Insert a label before the invoke call to mark the try range.  This can be
7188     // used to detect deletion of the invoke via the MachineModuleInfo.
7189     BeginLabel = MMI.getContext().createTempSymbol();
7190 
7191     // For SjLj, keep track of which landing pads go with which invokes
7192     // so as to maintain the ordering of pads in the LSDA.
7193     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7194     if (CallSiteIndex) {
7195       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7196       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7197 
7198       // Now that the call site is handled, stop tracking it.
7199       MMI.setCurrentCallSite(0);
7200     }
7201 
7202     // Both PendingLoads and PendingExports must be flushed here;
7203     // this call might not return.
7204     (void)getRoot();
7205     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7206 
7207     CLI.setChain(getRoot());
7208   }
7209   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7210   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7211 
7212   assert((CLI.IsTailCall || Result.second.getNode()) &&
7213          "Non-null chain expected with non-tail call!");
7214   assert((Result.second.getNode() || !Result.first.getNode()) &&
7215          "Null value expected with tail call!");
7216 
7217   if (!Result.second.getNode()) {
7218     // As a special case, a null chain means that a tail call has been emitted
7219     // and the DAG root is already updated.
7220     HasTailCall = true;
7221 
7222     // Since there's no actual continuation from this block, nothing can be
7223     // relying on us setting vregs for them.
7224     PendingExports.clear();
7225   } else {
7226     DAG.setRoot(Result.second);
7227   }
7228 
7229   if (EHPadBB) {
7230     // Insert a label at the end of the invoke call to mark the try range.  This
7231     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7232     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7233     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7234 
7235     // Inform MachineModuleInfo of range.
7236     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7237     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7238     // actually use outlined funclets and their LSDA info style.
7239     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7240       assert(CLI.CB);
7241       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7242       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7243     } else if (!isScopedEHPersonality(Pers)) {
7244       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7245     }
7246   }
7247 
7248   return Result;
7249 }
7250 
7251 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7252                                       bool isTailCall,
7253                                       const BasicBlock *EHPadBB) {
7254   auto &DL = DAG.getDataLayout();
7255   FunctionType *FTy = CB.getFunctionType();
7256   Type *RetTy = CB.getType();
7257 
7258   TargetLowering::ArgListTy Args;
7259   Args.reserve(CB.arg_size());
7260 
7261   const Value *SwiftErrorVal = nullptr;
7262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7263 
7264   if (isTailCall) {
7265     // Avoid emitting tail calls in functions with the disable-tail-calls
7266     // attribute.
7267     auto *Caller = CB.getParent()->getParent();
7268     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7269         "true")
7270       isTailCall = false;
7271 
7272     // We can't tail call inside a function with a swifterror argument. Lowering
7273     // does not support this yet. It would have to move into the swifterror
7274     // register before the call.
7275     if (TLI.supportSwiftError() &&
7276         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7277       isTailCall = false;
7278   }
7279 
7280   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7281     TargetLowering::ArgListEntry Entry;
7282     const Value *V = *I;
7283 
7284     // Skip empty types
7285     if (V->getType()->isEmptyTy())
7286       continue;
7287 
7288     SDValue ArgNode = getValue(V);
7289     Entry.Node = ArgNode; Entry.Ty = V->getType();
7290 
7291     Entry.setAttributes(&CB, I - CB.arg_begin());
7292 
7293     // Use swifterror virtual register as input to the call.
7294     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7295       SwiftErrorVal = V;
7296       // We find the virtual register for the actual swifterror argument.
7297       // Instead of using the Value, we use the virtual register instead.
7298       Entry.Node =
7299           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7300                           EVT(TLI.getPointerTy(DL)));
7301     }
7302 
7303     Args.push_back(Entry);
7304 
7305     // If we have an explicit sret argument that is an Instruction, (i.e., it
7306     // might point to function-local memory), we can't meaningfully tail-call.
7307     if (Entry.IsSRet && isa<Instruction>(V))
7308       isTailCall = false;
7309   }
7310 
7311   // If call site has a cfguardtarget operand bundle, create and add an
7312   // additional ArgListEntry.
7313   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7314     TargetLowering::ArgListEntry Entry;
7315     Value *V = Bundle->Inputs[0];
7316     SDValue ArgNode = getValue(V);
7317     Entry.Node = ArgNode;
7318     Entry.Ty = V->getType();
7319     Entry.IsCFGuardTarget = true;
7320     Args.push_back(Entry);
7321   }
7322 
7323   // Check if target-independent constraints permit a tail call here.
7324   // Target-dependent constraints are checked within TLI->LowerCallTo.
7325   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7326     isTailCall = false;
7327 
7328   // Disable tail calls if there is an swifterror argument. Targets have not
7329   // been updated to support tail calls.
7330   if (TLI.supportSwiftError() && SwiftErrorVal)
7331     isTailCall = false;
7332 
7333   TargetLowering::CallLoweringInfo CLI(DAG);
7334   CLI.setDebugLoc(getCurSDLoc())
7335       .setChain(getRoot())
7336       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7337       .setTailCall(isTailCall)
7338       .setConvergent(CB.isConvergent())
7339       .setIsPreallocated(
7340           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7341   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7342 
7343   if (Result.first.getNode()) {
7344     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7345     setValue(&CB, Result.first);
7346   }
7347 
7348   // The last element of CLI.InVals has the SDValue for swifterror return.
7349   // Here we copy it to a virtual register and update SwiftErrorMap for
7350   // book-keeping.
7351   if (SwiftErrorVal && TLI.supportSwiftError()) {
7352     // Get the last element of InVals.
7353     SDValue Src = CLI.InVals.back();
7354     Register VReg =
7355         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7356     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7357     DAG.setRoot(CopyNode);
7358   }
7359 }
7360 
7361 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7362                              SelectionDAGBuilder &Builder) {
7363   // Check to see if this load can be trivially constant folded, e.g. if the
7364   // input is from a string literal.
7365   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7366     // Cast pointer to the type we really want to load.
7367     Type *LoadTy =
7368         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7369     if (LoadVT.isVector())
7370       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7371 
7372     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7373                                          PointerType::getUnqual(LoadTy));
7374 
7375     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7376             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7377       return Builder.getValue(LoadCst);
7378   }
7379 
7380   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7381   // still constant memory, the input chain can be the entry node.
7382   SDValue Root;
7383   bool ConstantMemory = false;
7384 
7385   // Do not serialize (non-volatile) loads of constant memory with anything.
7386   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7387     Root = Builder.DAG.getEntryNode();
7388     ConstantMemory = true;
7389   } else {
7390     // Do not serialize non-volatile loads against each other.
7391     Root = Builder.DAG.getRoot();
7392   }
7393 
7394   SDValue Ptr = Builder.getValue(PtrVal);
7395   SDValue LoadVal =
7396       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7397                           MachinePointerInfo(PtrVal), Align(1));
7398 
7399   if (!ConstantMemory)
7400     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7401   return LoadVal;
7402 }
7403 
7404 /// Record the value for an instruction that produces an integer result,
7405 /// converting the type where necessary.
7406 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7407                                                   SDValue Value,
7408                                                   bool IsSigned) {
7409   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7410                                                     I.getType(), true);
7411   if (IsSigned)
7412     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7413   else
7414     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7415   setValue(&I, Value);
7416 }
7417 
7418 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7419 /// true and lower it. Otherwise return false, and it will be lowered like a
7420 /// normal call.
7421 /// The caller already checked that \p I calls the appropriate LibFunc with a
7422 /// correct prototype.
7423 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7424   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7425   const Value *Size = I.getArgOperand(2);
7426   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7427   if (CSize && CSize->getZExtValue() == 0) {
7428     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7429                                                           I.getType(), true);
7430     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7431     return true;
7432   }
7433 
7434   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7435   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7436       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7437       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7438   if (Res.first.getNode()) {
7439     processIntegerCallValue(I, Res.first, true);
7440     PendingLoads.push_back(Res.second);
7441     return true;
7442   }
7443 
7444   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7445   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7446   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7447     return false;
7448 
7449   // If the target has a fast compare for the given size, it will return a
7450   // preferred load type for that size. Require that the load VT is legal and
7451   // that the target supports unaligned loads of that type. Otherwise, return
7452   // INVALID.
7453   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7454     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7455     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7456     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7457       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7458       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7459       // TODO: Check alignment of src and dest ptrs.
7460       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7461       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7462       if (!TLI.isTypeLegal(LVT) ||
7463           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7464           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7465         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7466     }
7467 
7468     return LVT;
7469   };
7470 
7471   // This turns into unaligned loads. We only do this if the target natively
7472   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7473   // we'll only produce a small number of byte loads.
7474   MVT LoadVT;
7475   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7476   switch (NumBitsToCompare) {
7477   default:
7478     return false;
7479   case 16:
7480     LoadVT = MVT::i16;
7481     break;
7482   case 32:
7483     LoadVT = MVT::i32;
7484     break;
7485   case 64:
7486   case 128:
7487   case 256:
7488     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7489     break;
7490   }
7491 
7492   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7493     return false;
7494 
7495   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7496   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7497 
7498   // Bitcast to a wide integer type if the loads are vectors.
7499   if (LoadVT.isVector()) {
7500     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7501     LoadL = DAG.getBitcast(CmpVT, LoadL);
7502     LoadR = DAG.getBitcast(CmpVT, LoadR);
7503   }
7504 
7505   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7506   processIntegerCallValue(I, Cmp, false);
7507   return true;
7508 }
7509 
7510 /// See if we can lower a memchr call into an optimized form. If so, return
7511 /// true and lower it. Otherwise return false, and it will be lowered like a
7512 /// normal call.
7513 /// The caller already checked that \p I calls the appropriate LibFunc with a
7514 /// correct prototype.
7515 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7516   const Value *Src = I.getArgOperand(0);
7517   const Value *Char = I.getArgOperand(1);
7518   const Value *Length = I.getArgOperand(2);
7519 
7520   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7521   std::pair<SDValue, SDValue> Res =
7522     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7523                                 getValue(Src), getValue(Char), getValue(Length),
7524                                 MachinePointerInfo(Src));
7525   if (Res.first.getNode()) {
7526     setValue(&I, Res.first);
7527     PendingLoads.push_back(Res.second);
7528     return true;
7529   }
7530 
7531   return false;
7532 }
7533 
7534 /// See if we can lower a mempcpy call into an optimized form. If so, return
7535 /// true and lower it. Otherwise return false, and it will be lowered like a
7536 /// normal call.
7537 /// The caller already checked that \p I calls the appropriate LibFunc with a
7538 /// correct prototype.
7539 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7540   SDValue Dst = getValue(I.getArgOperand(0));
7541   SDValue Src = getValue(I.getArgOperand(1));
7542   SDValue Size = getValue(I.getArgOperand(2));
7543 
7544   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7545   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7546   // DAG::getMemcpy needs Alignment to be defined.
7547   Align Alignment = std::min(DstAlign, SrcAlign);
7548 
7549   bool isVol = false;
7550   SDLoc sdl = getCurSDLoc();
7551 
7552   // In the mempcpy context we need to pass in a false value for isTailCall
7553   // because the return pointer needs to be adjusted by the size of
7554   // the copied memory.
7555   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7556   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7557                              /*isTailCall=*/false,
7558                              MachinePointerInfo(I.getArgOperand(0)),
7559                              MachinePointerInfo(I.getArgOperand(1)));
7560   assert(MC.getNode() != nullptr &&
7561          "** memcpy should not be lowered as TailCall in mempcpy context **");
7562   DAG.setRoot(MC);
7563 
7564   // Check if Size needs to be truncated or extended.
7565   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7566 
7567   // Adjust return pointer to point just past the last dst byte.
7568   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7569                                     Dst, Size);
7570   setValue(&I, DstPlusSize);
7571   return true;
7572 }
7573 
7574 /// See if we can lower a strcpy call into an optimized form.  If so, return
7575 /// true and lower it, otherwise return false and it will be lowered like a
7576 /// normal call.
7577 /// The caller already checked that \p I calls the appropriate LibFunc with a
7578 /// correct prototype.
7579 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7580   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7581 
7582   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7583   std::pair<SDValue, SDValue> Res =
7584     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7585                                 getValue(Arg0), getValue(Arg1),
7586                                 MachinePointerInfo(Arg0),
7587                                 MachinePointerInfo(Arg1), isStpcpy);
7588   if (Res.first.getNode()) {
7589     setValue(&I, Res.first);
7590     DAG.setRoot(Res.second);
7591     return true;
7592   }
7593 
7594   return false;
7595 }
7596 
7597 /// See if we can lower a strcmp call into an optimized form.  If so, return
7598 /// true and lower it, otherwise return false and it will be lowered like a
7599 /// normal call.
7600 /// The caller already checked that \p I calls the appropriate LibFunc with a
7601 /// correct prototype.
7602 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7603   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7604 
7605   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7606   std::pair<SDValue, SDValue> Res =
7607     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7608                                 getValue(Arg0), getValue(Arg1),
7609                                 MachinePointerInfo(Arg0),
7610                                 MachinePointerInfo(Arg1));
7611   if (Res.first.getNode()) {
7612     processIntegerCallValue(I, Res.first, true);
7613     PendingLoads.push_back(Res.second);
7614     return true;
7615   }
7616 
7617   return false;
7618 }
7619 
7620 /// See if we can lower a strlen call into an optimized form.  If so, return
7621 /// true and lower it, otherwise return false and it will be lowered like a
7622 /// normal call.
7623 /// The caller already checked that \p I calls the appropriate LibFunc with a
7624 /// correct prototype.
7625 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7626   const Value *Arg0 = I.getArgOperand(0);
7627 
7628   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7629   std::pair<SDValue, SDValue> Res =
7630     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7631                                 getValue(Arg0), MachinePointerInfo(Arg0));
7632   if (Res.first.getNode()) {
7633     processIntegerCallValue(I, Res.first, false);
7634     PendingLoads.push_back(Res.second);
7635     return true;
7636   }
7637 
7638   return false;
7639 }
7640 
7641 /// See if we can lower a strnlen call into an optimized form.  If so, return
7642 /// true and lower it, otherwise return false and it will be lowered like a
7643 /// normal call.
7644 /// The caller already checked that \p I calls the appropriate LibFunc with a
7645 /// correct prototype.
7646 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7647   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7648 
7649   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7650   std::pair<SDValue, SDValue> Res =
7651     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7652                                  getValue(Arg0), getValue(Arg1),
7653                                  MachinePointerInfo(Arg0));
7654   if (Res.first.getNode()) {
7655     processIntegerCallValue(I, Res.first, false);
7656     PendingLoads.push_back(Res.second);
7657     return true;
7658   }
7659 
7660   return false;
7661 }
7662 
7663 /// See if we can lower a unary floating-point operation into an SDNode with
7664 /// the specified Opcode.  If so, return true and lower it, otherwise return
7665 /// false and it will be lowered like a normal call.
7666 /// The caller already checked that \p I calls the appropriate LibFunc with a
7667 /// correct prototype.
7668 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7669                                               unsigned Opcode) {
7670   // We already checked this call's prototype; verify it doesn't modify errno.
7671   if (!I.onlyReadsMemory())
7672     return false;
7673 
7674   SDNodeFlags Flags;
7675   Flags.copyFMF(cast<FPMathOperator>(I));
7676 
7677   SDValue Tmp = getValue(I.getArgOperand(0));
7678   setValue(&I,
7679            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7680   return true;
7681 }
7682 
7683 /// See if we can lower a binary floating-point operation into an SDNode with
7684 /// the specified Opcode. If so, return true and lower it. Otherwise return
7685 /// false, and it will be lowered like a normal call.
7686 /// The caller already checked that \p I calls the appropriate LibFunc with a
7687 /// correct prototype.
7688 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7689                                                unsigned Opcode) {
7690   // We already checked this call's prototype; verify it doesn't modify errno.
7691   if (!I.onlyReadsMemory())
7692     return false;
7693 
7694   SDNodeFlags Flags;
7695   Flags.copyFMF(cast<FPMathOperator>(I));
7696 
7697   SDValue Tmp0 = getValue(I.getArgOperand(0));
7698   SDValue Tmp1 = getValue(I.getArgOperand(1));
7699   EVT VT = Tmp0.getValueType();
7700   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7701   return true;
7702 }
7703 
7704 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7705   // Handle inline assembly differently.
7706   if (I.isInlineAsm()) {
7707     visitInlineAsm(I);
7708     return;
7709   }
7710 
7711   if (Function *F = I.getCalledFunction()) {
7712     if (F->isDeclaration()) {
7713       // Is this an LLVM intrinsic or a target-specific intrinsic?
7714       unsigned IID = F->getIntrinsicID();
7715       if (!IID)
7716         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7717           IID = II->getIntrinsicID(F);
7718 
7719       if (IID) {
7720         visitIntrinsicCall(I, IID);
7721         return;
7722       }
7723     }
7724 
7725     // Check for well-known libc/libm calls.  If the function is internal, it
7726     // can't be a library call.  Don't do the check if marked as nobuiltin for
7727     // some reason or the call site requires strict floating point semantics.
7728     LibFunc Func;
7729     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7730         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7731         LibInfo->hasOptimizedCodeGen(Func)) {
7732       switch (Func) {
7733       default: break;
7734       case LibFunc_bcmp:
7735         if (visitMemCmpBCmpCall(I))
7736           return;
7737         break;
7738       case LibFunc_copysign:
7739       case LibFunc_copysignf:
7740       case LibFunc_copysignl:
7741         // We already checked this call's prototype; verify it doesn't modify
7742         // errno.
7743         if (I.onlyReadsMemory()) {
7744           SDValue LHS = getValue(I.getArgOperand(0));
7745           SDValue RHS = getValue(I.getArgOperand(1));
7746           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7747                                    LHS.getValueType(), LHS, RHS));
7748           return;
7749         }
7750         break;
7751       case LibFunc_fabs:
7752       case LibFunc_fabsf:
7753       case LibFunc_fabsl:
7754         if (visitUnaryFloatCall(I, ISD::FABS))
7755           return;
7756         break;
7757       case LibFunc_fmin:
7758       case LibFunc_fminf:
7759       case LibFunc_fminl:
7760         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7761           return;
7762         break;
7763       case LibFunc_fmax:
7764       case LibFunc_fmaxf:
7765       case LibFunc_fmaxl:
7766         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7767           return;
7768         break;
7769       case LibFunc_sin:
7770       case LibFunc_sinf:
7771       case LibFunc_sinl:
7772         if (visitUnaryFloatCall(I, ISD::FSIN))
7773           return;
7774         break;
7775       case LibFunc_cos:
7776       case LibFunc_cosf:
7777       case LibFunc_cosl:
7778         if (visitUnaryFloatCall(I, ISD::FCOS))
7779           return;
7780         break;
7781       case LibFunc_sqrt:
7782       case LibFunc_sqrtf:
7783       case LibFunc_sqrtl:
7784       case LibFunc_sqrt_finite:
7785       case LibFunc_sqrtf_finite:
7786       case LibFunc_sqrtl_finite:
7787         if (visitUnaryFloatCall(I, ISD::FSQRT))
7788           return;
7789         break;
7790       case LibFunc_floor:
7791       case LibFunc_floorf:
7792       case LibFunc_floorl:
7793         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7794           return;
7795         break;
7796       case LibFunc_nearbyint:
7797       case LibFunc_nearbyintf:
7798       case LibFunc_nearbyintl:
7799         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7800           return;
7801         break;
7802       case LibFunc_ceil:
7803       case LibFunc_ceilf:
7804       case LibFunc_ceill:
7805         if (visitUnaryFloatCall(I, ISD::FCEIL))
7806           return;
7807         break;
7808       case LibFunc_rint:
7809       case LibFunc_rintf:
7810       case LibFunc_rintl:
7811         if (visitUnaryFloatCall(I, ISD::FRINT))
7812           return;
7813         break;
7814       case LibFunc_round:
7815       case LibFunc_roundf:
7816       case LibFunc_roundl:
7817         if (visitUnaryFloatCall(I, ISD::FROUND))
7818           return;
7819         break;
7820       case LibFunc_trunc:
7821       case LibFunc_truncf:
7822       case LibFunc_truncl:
7823         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7824           return;
7825         break;
7826       case LibFunc_log2:
7827       case LibFunc_log2f:
7828       case LibFunc_log2l:
7829         if (visitUnaryFloatCall(I, ISD::FLOG2))
7830           return;
7831         break;
7832       case LibFunc_exp2:
7833       case LibFunc_exp2f:
7834       case LibFunc_exp2l:
7835         if (visitUnaryFloatCall(I, ISD::FEXP2))
7836           return;
7837         break;
7838       case LibFunc_memcmp:
7839         if (visitMemCmpBCmpCall(I))
7840           return;
7841         break;
7842       case LibFunc_mempcpy:
7843         if (visitMemPCpyCall(I))
7844           return;
7845         break;
7846       case LibFunc_memchr:
7847         if (visitMemChrCall(I))
7848           return;
7849         break;
7850       case LibFunc_strcpy:
7851         if (visitStrCpyCall(I, false))
7852           return;
7853         break;
7854       case LibFunc_stpcpy:
7855         if (visitStrCpyCall(I, true))
7856           return;
7857         break;
7858       case LibFunc_strcmp:
7859         if (visitStrCmpCall(I))
7860           return;
7861         break;
7862       case LibFunc_strlen:
7863         if (visitStrLenCall(I))
7864           return;
7865         break;
7866       case LibFunc_strnlen:
7867         if (visitStrNLenCall(I))
7868           return;
7869         break;
7870       }
7871     }
7872   }
7873 
7874   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7875   // have to do anything here to lower funclet bundles.
7876   // CFGuardTarget bundles are lowered in LowerCallTo.
7877   assert(!I.hasOperandBundlesOtherThan(
7878              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7879               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7880          "Cannot lower calls with arbitrary operand bundles!");
7881 
7882   SDValue Callee = getValue(I.getCalledOperand());
7883 
7884   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7885     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7886   else
7887     // Check if we can potentially perform a tail call. More detailed checking
7888     // is be done within LowerCallTo, after more information about the call is
7889     // known.
7890     LowerCallTo(I, Callee, I.isTailCall());
7891 }
7892 
7893 namespace {
7894 
7895 /// AsmOperandInfo - This contains information for each constraint that we are
7896 /// lowering.
7897 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7898 public:
7899   /// CallOperand - If this is the result output operand or a clobber
7900   /// this is null, otherwise it is the incoming operand to the CallInst.
7901   /// This gets modified as the asm is processed.
7902   SDValue CallOperand;
7903 
7904   /// AssignedRegs - If this is a register or register class operand, this
7905   /// contains the set of register corresponding to the operand.
7906   RegsForValue AssignedRegs;
7907 
7908   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7909     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7910   }
7911 
7912   /// Whether or not this operand accesses memory
7913   bool hasMemory(const TargetLowering &TLI) const {
7914     // Indirect operand accesses access memory.
7915     if (isIndirect)
7916       return true;
7917 
7918     for (const auto &Code : Codes)
7919       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7920         return true;
7921 
7922     return false;
7923   }
7924 
7925   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7926   /// corresponds to.  If there is no Value* for this operand, it returns
7927   /// MVT::Other.
7928   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7929                            const DataLayout &DL) const {
7930     if (!CallOperandVal) return MVT::Other;
7931 
7932     if (isa<BasicBlock>(CallOperandVal))
7933       return TLI.getProgramPointerTy(DL);
7934 
7935     llvm::Type *OpTy = CallOperandVal->getType();
7936 
7937     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7938     // If this is an indirect operand, the operand is a pointer to the
7939     // accessed type.
7940     if (isIndirect) {
7941       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7942       if (!PtrTy)
7943         report_fatal_error("Indirect operand for inline asm not a pointer!");
7944       OpTy = PtrTy->getElementType();
7945     }
7946 
7947     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7948     if (StructType *STy = dyn_cast<StructType>(OpTy))
7949       if (STy->getNumElements() == 1)
7950         OpTy = STy->getElementType(0);
7951 
7952     // If OpTy is not a single value, it may be a struct/union that we
7953     // can tile with integers.
7954     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7955       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7956       switch (BitSize) {
7957       default: break;
7958       case 1:
7959       case 8:
7960       case 16:
7961       case 32:
7962       case 64:
7963       case 128:
7964         OpTy = IntegerType::get(Context, BitSize);
7965         break;
7966       }
7967     }
7968 
7969     return TLI.getValueType(DL, OpTy, true);
7970   }
7971 };
7972 
7973 
7974 } // end anonymous namespace
7975 
7976 /// Make sure that the output operand \p OpInfo and its corresponding input
7977 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7978 /// out).
7979 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7980                                SDISelAsmOperandInfo &MatchingOpInfo,
7981                                SelectionDAG &DAG) {
7982   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7983     return;
7984 
7985   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7986   const auto &TLI = DAG.getTargetLoweringInfo();
7987 
7988   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7989       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7990                                        OpInfo.ConstraintVT);
7991   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7992       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7993                                        MatchingOpInfo.ConstraintVT);
7994   if ((OpInfo.ConstraintVT.isInteger() !=
7995        MatchingOpInfo.ConstraintVT.isInteger()) ||
7996       (MatchRC.second != InputRC.second)) {
7997     // FIXME: error out in a more elegant fashion
7998     report_fatal_error("Unsupported asm: input constraint"
7999                        " with a matching output constraint of"
8000                        " incompatible type!");
8001   }
8002   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8003 }
8004 
8005 /// Get a direct memory input to behave well as an indirect operand.
8006 /// This may introduce stores, hence the need for a \p Chain.
8007 /// \return The (possibly updated) chain.
8008 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8009                                         SDISelAsmOperandInfo &OpInfo,
8010                                         SelectionDAG &DAG) {
8011   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8012 
8013   // If we don't have an indirect input, put it in the constpool if we can,
8014   // otherwise spill it to a stack slot.
8015   // TODO: This isn't quite right. We need to handle these according to
8016   // the addressing mode that the constraint wants. Also, this may take
8017   // an additional register for the computation and we don't want that
8018   // either.
8019 
8020   // If the operand is a float, integer, or vector constant, spill to a
8021   // constant pool entry to get its address.
8022   const Value *OpVal = OpInfo.CallOperandVal;
8023   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8024       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8025     OpInfo.CallOperand = DAG.getConstantPool(
8026         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8027     return Chain;
8028   }
8029 
8030   // Otherwise, create a stack slot and emit a store to it before the asm.
8031   Type *Ty = OpVal->getType();
8032   auto &DL = DAG.getDataLayout();
8033   uint64_t TySize = DL.getTypeAllocSize(Ty);
8034   MachineFunction &MF = DAG.getMachineFunction();
8035   int SSFI = MF.getFrameInfo().CreateStackObject(
8036       TySize, DL.getPrefTypeAlign(Ty), false);
8037   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8038   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8039                             MachinePointerInfo::getFixedStack(MF, SSFI),
8040                             TLI.getMemValueType(DL, Ty));
8041   OpInfo.CallOperand = StackSlot;
8042 
8043   return Chain;
8044 }
8045 
8046 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8047 /// specified operand.  We prefer to assign virtual registers, to allow the
8048 /// register allocator to handle the assignment process.  However, if the asm
8049 /// uses features that we can't model on machineinstrs, we have SDISel do the
8050 /// allocation.  This produces generally horrible, but correct, code.
8051 ///
8052 ///   OpInfo describes the operand
8053 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8054 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8055                                  SDISelAsmOperandInfo &OpInfo,
8056                                  SDISelAsmOperandInfo &RefOpInfo) {
8057   LLVMContext &Context = *DAG.getContext();
8058   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8059 
8060   MachineFunction &MF = DAG.getMachineFunction();
8061   SmallVector<unsigned, 4> Regs;
8062   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8063 
8064   // No work to do for memory operations.
8065   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8066     return;
8067 
8068   // If this is a constraint for a single physreg, or a constraint for a
8069   // register class, find it.
8070   unsigned AssignedReg;
8071   const TargetRegisterClass *RC;
8072   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8073       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8074   // RC is unset only on failure. Return immediately.
8075   if (!RC)
8076     return;
8077 
8078   // Get the actual register value type.  This is important, because the user
8079   // may have asked for (e.g.) the AX register in i32 type.  We need to
8080   // remember that AX is actually i16 to get the right extension.
8081   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8082 
8083   if (OpInfo.ConstraintVT != MVT::Other) {
8084     // If this is an FP operand in an integer register (or visa versa), or more
8085     // generally if the operand value disagrees with the register class we plan
8086     // to stick it in, fix the operand type.
8087     //
8088     // If this is an input value, the bitcast to the new type is done now.
8089     // Bitcast for output value is done at the end of visitInlineAsm().
8090     if ((OpInfo.Type == InlineAsm::isOutput ||
8091          OpInfo.Type == InlineAsm::isInput) &&
8092         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8093       // Try to convert to the first EVT that the reg class contains.  If the
8094       // types are identical size, use a bitcast to convert (e.g. two differing
8095       // vector types).  Note: output bitcast is done at the end of
8096       // visitInlineAsm().
8097       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8098         // Exclude indirect inputs while they are unsupported because the code
8099         // to perform the load is missing and thus OpInfo.CallOperand still
8100         // refers to the input address rather than the pointed-to value.
8101         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8102           OpInfo.CallOperand =
8103               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8104         OpInfo.ConstraintVT = RegVT;
8105         // If the operand is an FP value and we want it in integer registers,
8106         // use the corresponding integer type. This turns an f64 value into
8107         // i64, which can be passed with two i32 values on a 32-bit machine.
8108       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8109         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8110         if (OpInfo.Type == InlineAsm::isInput)
8111           OpInfo.CallOperand =
8112               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8113         OpInfo.ConstraintVT = VT;
8114       }
8115     }
8116   }
8117 
8118   // No need to allocate a matching input constraint since the constraint it's
8119   // matching to has already been allocated.
8120   if (OpInfo.isMatchingInputConstraint())
8121     return;
8122 
8123   EVT ValueVT = OpInfo.ConstraintVT;
8124   if (OpInfo.ConstraintVT == MVT::Other)
8125     ValueVT = RegVT;
8126 
8127   // Initialize NumRegs.
8128   unsigned NumRegs = 1;
8129   if (OpInfo.ConstraintVT != MVT::Other)
8130     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8131 
8132   // If this is a constraint for a specific physical register, like {r17},
8133   // assign it now.
8134 
8135   // If this associated to a specific register, initialize iterator to correct
8136   // place. If virtual, make sure we have enough registers
8137 
8138   // Initialize iterator if necessary
8139   TargetRegisterClass::iterator I = RC->begin();
8140   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8141 
8142   // Do not check for single registers.
8143   if (AssignedReg) {
8144       for (; *I != AssignedReg; ++I)
8145         assert(I != RC->end() && "AssignedReg should be member of RC");
8146   }
8147 
8148   for (; NumRegs; --NumRegs, ++I) {
8149     assert(I != RC->end() && "Ran out of registers to allocate!");
8150     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8151     Regs.push_back(R);
8152   }
8153 
8154   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8155 }
8156 
8157 static unsigned
8158 findMatchingInlineAsmOperand(unsigned OperandNo,
8159                              const std::vector<SDValue> &AsmNodeOperands) {
8160   // Scan until we find the definition we already emitted of this operand.
8161   unsigned CurOp = InlineAsm::Op_FirstOperand;
8162   for (; OperandNo; --OperandNo) {
8163     // Advance to the next operand.
8164     unsigned OpFlag =
8165         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8166     assert((InlineAsm::isRegDefKind(OpFlag) ||
8167             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8168             InlineAsm::isMemKind(OpFlag)) &&
8169            "Skipped past definitions?");
8170     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8171   }
8172   return CurOp;
8173 }
8174 
8175 namespace {
8176 
8177 class ExtraFlags {
8178   unsigned Flags = 0;
8179 
8180 public:
8181   explicit ExtraFlags(const CallBase &Call) {
8182     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8183     if (IA->hasSideEffects())
8184       Flags |= InlineAsm::Extra_HasSideEffects;
8185     if (IA->isAlignStack())
8186       Flags |= InlineAsm::Extra_IsAlignStack;
8187     if (Call.isConvergent())
8188       Flags |= InlineAsm::Extra_IsConvergent;
8189     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8190   }
8191 
8192   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8193     // Ideally, we would only check against memory constraints.  However, the
8194     // meaning of an Other constraint can be target-specific and we can't easily
8195     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8196     // for Other constraints as well.
8197     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8198         OpInfo.ConstraintType == TargetLowering::C_Other) {
8199       if (OpInfo.Type == InlineAsm::isInput)
8200         Flags |= InlineAsm::Extra_MayLoad;
8201       else if (OpInfo.Type == InlineAsm::isOutput)
8202         Flags |= InlineAsm::Extra_MayStore;
8203       else if (OpInfo.Type == InlineAsm::isClobber)
8204         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8205     }
8206   }
8207 
8208   unsigned get() const { return Flags; }
8209 };
8210 
8211 } // end anonymous namespace
8212 
8213 /// visitInlineAsm - Handle a call to an InlineAsm object.
8214 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8215   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8216 
8217   /// ConstraintOperands - Information about all of the constraints.
8218   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8219 
8220   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8221   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8222       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8223 
8224   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8225   // AsmDialect, MayLoad, MayStore).
8226   bool HasSideEffect = IA->hasSideEffects();
8227   ExtraFlags ExtraInfo(Call);
8228 
8229   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8230   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8231   unsigned NumMatchingOps = 0;
8232   for (auto &T : TargetConstraints) {
8233     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8234     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8235 
8236     // Compute the value type for each operand.
8237     if (OpInfo.Type == InlineAsm::isInput ||
8238         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8239       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8240 
8241       // Process the call argument. BasicBlocks are labels, currently appearing
8242       // only in asm's.
8243       if (isa<CallBrInst>(Call) &&
8244           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8245                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8246                         NumMatchingOps) &&
8247           (NumMatchingOps == 0 ||
8248            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8249                         NumMatchingOps))) {
8250         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8251         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8252         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8253       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8254         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8255       } else {
8256         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8257       }
8258 
8259       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8260                                            DAG.getDataLayout());
8261       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8262     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8263       // The return value of the call is this value.  As such, there is no
8264       // corresponding argument.
8265       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8266       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8267         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8268             DAG.getDataLayout(), STy->getElementType(ResNo));
8269       } else {
8270         assert(ResNo == 0 && "Asm only has one result!");
8271         OpInfo.ConstraintVT =
8272             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8273       }
8274       ++ResNo;
8275     } else {
8276       OpInfo.ConstraintVT = MVT::Other;
8277     }
8278 
8279     if (OpInfo.hasMatchingInput())
8280       ++NumMatchingOps;
8281 
8282     if (!HasSideEffect)
8283       HasSideEffect = OpInfo.hasMemory(TLI);
8284 
8285     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8286     // FIXME: Could we compute this on OpInfo rather than T?
8287 
8288     // Compute the constraint code and ConstraintType to use.
8289     TLI.ComputeConstraintToUse(T, SDValue());
8290 
8291     if (T.ConstraintType == TargetLowering::C_Immediate &&
8292         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8293       // We've delayed emitting a diagnostic like the "n" constraint because
8294       // inlining could cause an integer showing up.
8295       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8296                                           "' expects an integer constant "
8297                                           "expression");
8298 
8299     ExtraInfo.update(T);
8300   }
8301 
8302 
8303   // We won't need to flush pending loads if this asm doesn't touch
8304   // memory and is nonvolatile.
8305   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8306 
8307   bool IsCallBr = isa<CallBrInst>(Call);
8308   if (IsCallBr) {
8309     // If this is a callbr we need to flush pending exports since inlineasm_br
8310     // is a terminator. We need to do this before nodes are glued to
8311     // the inlineasm_br node.
8312     Chain = getControlRoot();
8313   }
8314 
8315   // Second pass over the constraints: compute which constraint option to use.
8316   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8317     // If this is an output operand with a matching input operand, look up the
8318     // matching input. If their types mismatch, e.g. one is an integer, the
8319     // other is floating point, or their sizes are different, flag it as an
8320     // error.
8321     if (OpInfo.hasMatchingInput()) {
8322       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8323       patchMatchingInput(OpInfo, Input, DAG);
8324     }
8325 
8326     // Compute the constraint code and ConstraintType to use.
8327     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8328 
8329     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8330         OpInfo.Type == InlineAsm::isClobber)
8331       continue;
8332 
8333     // If this is a memory input, and if the operand is not indirect, do what we
8334     // need to provide an address for the memory input.
8335     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8336         !OpInfo.isIndirect) {
8337       assert((OpInfo.isMultipleAlternative ||
8338               (OpInfo.Type == InlineAsm::isInput)) &&
8339              "Can only indirectify direct input operands!");
8340 
8341       // Memory operands really want the address of the value.
8342       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8343 
8344       // There is no longer a Value* corresponding to this operand.
8345       OpInfo.CallOperandVal = nullptr;
8346 
8347       // It is now an indirect operand.
8348       OpInfo.isIndirect = true;
8349     }
8350 
8351   }
8352 
8353   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8354   std::vector<SDValue> AsmNodeOperands;
8355   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8356   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8357       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8358 
8359   // If we have a !srcloc metadata node associated with it, we want to attach
8360   // this to the ultimately generated inline asm machineinstr.  To do this, we
8361   // pass in the third operand as this (potentially null) inline asm MDNode.
8362   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8363   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8364 
8365   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8366   // bits as operand 3.
8367   AsmNodeOperands.push_back(DAG.getTargetConstant(
8368       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8369 
8370   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8371   // this, assign virtual and physical registers for inputs and otput.
8372   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8373     // Assign Registers.
8374     SDISelAsmOperandInfo &RefOpInfo =
8375         OpInfo.isMatchingInputConstraint()
8376             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8377             : OpInfo;
8378     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8379 
8380     auto DetectWriteToReservedRegister = [&]() {
8381       const MachineFunction &MF = DAG.getMachineFunction();
8382       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8383       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8384         if (Register::isPhysicalRegister(Reg) &&
8385             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8386           const char *RegName = TRI.getName(Reg);
8387           emitInlineAsmError(Call, "write to reserved register '" +
8388                                        Twine(RegName) + "'");
8389           return true;
8390         }
8391       }
8392       return false;
8393     };
8394 
8395     switch (OpInfo.Type) {
8396     case InlineAsm::isOutput:
8397       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8398         unsigned ConstraintID =
8399             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8400         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8401                "Failed to convert memory constraint code to constraint id.");
8402 
8403         // Add information to the INLINEASM node to know about this output.
8404         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8405         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8406         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8407                                                         MVT::i32));
8408         AsmNodeOperands.push_back(OpInfo.CallOperand);
8409       } else {
8410         // Otherwise, this outputs to a register (directly for C_Register /
8411         // C_RegisterClass, and a target-defined fashion for
8412         // C_Immediate/C_Other). Find a register that we can use.
8413         if (OpInfo.AssignedRegs.Regs.empty()) {
8414           emitInlineAsmError(
8415               Call, "couldn't allocate output register for constraint '" +
8416                         Twine(OpInfo.ConstraintCode) + "'");
8417           return;
8418         }
8419 
8420         if (DetectWriteToReservedRegister())
8421           return;
8422 
8423         // Add information to the INLINEASM node to know that this register is
8424         // set.
8425         OpInfo.AssignedRegs.AddInlineAsmOperands(
8426             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8427                                   : InlineAsm::Kind_RegDef,
8428             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8429       }
8430       break;
8431 
8432     case InlineAsm::isInput: {
8433       SDValue InOperandVal = OpInfo.CallOperand;
8434 
8435       if (OpInfo.isMatchingInputConstraint()) {
8436         // If this is required to match an output register we have already set,
8437         // just use its register.
8438         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8439                                                   AsmNodeOperands);
8440         unsigned OpFlag =
8441           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8442         if (InlineAsm::isRegDefKind(OpFlag) ||
8443             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8444           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8445           if (OpInfo.isIndirect) {
8446             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8447             emitInlineAsmError(Call, "inline asm not supported yet: "
8448                                      "don't know how to handle tied "
8449                                      "indirect register inputs");
8450             return;
8451           }
8452 
8453           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8454           SmallVector<unsigned, 4> Regs;
8455 
8456           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8457             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8458             MachineRegisterInfo &RegInfo =
8459                 DAG.getMachineFunction().getRegInfo();
8460             for (unsigned i = 0; i != NumRegs; ++i)
8461               Regs.push_back(RegInfo.createVirtualRegister(RC));
8462           } else {
8463             emitInlineAsmError(Call,
8464                                "inline asm error: This value type register "
8465                                "class is not natively supported!");
8466             return;
8467           }
8468 
8469           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8470 
8471           SDLoc dl = getCurSDLoc();
8472           // Use the produced MatchedRegs object to
8473           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8474           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8475                                            true, OpInfo.getMatchedOperand(), dl,
8476                                            DAG, AsmNodeOperands);
8477           break;
8478         }
8479 
8480         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8481         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8482                "Unexpected number of operands");
8483         // Add information to the INLINEASM node to know about this input.
8484         // See InlineAsm.h isUseOperandTiedToDef.
8485         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8486         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8487                                                     OpInfo.getMatchedOperand());
8488         AsmNodeOperands.push_back(DAG.getTargetConstant(
8489             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8490         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8491         break;
8492       }
8493 
8494       // Treat indirect 'X' constraint as memory.
8495       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8496           OpInfo.isIndirect)
8497         OpInfo.ConstraintType = TargetLowering::C_Memory;
8498 
8499       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8500           OpInfo.ConstraintType == TargetLowering::C_Other) {
8501         std::vector<SDValue> Ops;
8502         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8503                                           Ops, DAG);
8504         if (Ops.empty()) {
8505           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8506             if (isa<ConstantSDNode>(InOperandVal)) {
8507               emitInlineAsmError(Call, "value out of range for constraint '" +
8508                                            Twine(OpInfo.ConstraintCode) + "'");
8509               return;
8510             }
8511 
8512           emitInlineAsmError(Call,
8513                              "invalid operand for inline asm constraint '" +
8514                                  Twine(OpInfo.ConstraintCode) + "'");
8515           return;
8516         }
8517 
8518         // Add information to the INLINEASM node to know about this input.
8519         unsigned ResOpType =
8520           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8521         AsmNodeOperands.push_back(DAG.getTargetConstant(
8522             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8523         llvm::append_range(AsmNodeOperands, Ops);
8524         break;
8525       }
8526 
8527       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8528         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8529         assert(InOperandVal.getValueType() ==
8530                    TLI.getPointerTy(DAG.getDataLayout()) &&
8531                "Memory operands expect pointer values");
8532 
8533         unsigned ConstraintID =
8534             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8535         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8536                "Failed to convert memory constraint code to constraint id.");
8537 
8538         // Add information to the INLINEASM node to know about this input.
8539         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8540         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8541         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8542                                                         getCurSDLoc(),
8543                                                         MVT::i32));
8544         AsmNodeOperands.push_back(InOperandVal);
8545         break;
8546       }
8547 
8548       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8549               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8550              "Unknown constraint type!");
8551 
8552       // TODO: Support this.
8553       if (OpInfo.isIndirect) {
8554         emitInlineAsmError(
8555             Call, "Don't know how to handle indirect register inputs yet "
8556                   "for constraint '" +
8557                       Twine(OpInfo.ConstraintCode) + "'");
8558         return;
8559       }
8560 
8561       // Copy the input into the appropriate registers.
8562       if (OpInfo.AssignedRegs.Regs.empty()) {
8563         emitInlineAsmError(Call,
8564                            "couldn't allocate input reg for constraint '" +
8565                                Twine(OpInfo.ConstraintCode) + "'");
8566         return;
8567       }
8568 
8569       if (DetectWriteToReservedRegister())
8570         return;
8571 
8572       SDLoc dl = getCurSDLoc();
8573 
8574       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8575                                         &Call);
8576 
8577       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8578                                                dl, DAG, AsmNodeOperands);
8579       break;
8580     }
8581     case InlineAsm::isClobber:
8582       // Add the clobbered value to the operand list, so that the register
8583       // allocator is aware that the physreg got clobbered.
8584       if (!OpInfo.AssignedRegs.Regs.empty())
8585         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8586                                                  false, 0, getCurSDLoc(), DAG,
8587                                                  AsmNodeOperands);
8588       break;
8589     }
8590   }
8591 
8592   // Finish up input operands.  Set the input chain and add the flag last.
8593   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8594   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8595 
8596   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8597   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8598                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8599   Flag = Chain.getValue(1);
8600 
8601   // Do additional work to generate outputs.
8602 
8603   SmallVector<EVT, 1> ResultVTs;
8604   SmallVector<SDValue, 1> ResultValues;
8605   SmallVector<SDValue, 8> OutChains;
8606 
8607   llvm::Type *CallResultType = Call.getType();
8608   ArrayRef<Type *> ResultTypes;
8609   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8610     ResultTypes = StructResult->elements();
8611   else if (!CallResultType->isVoidTy())
8612     ResultTypes = makeArrayRef(CallResultType);
8613 
8614   auto CurResultType = ResultTypes.begin();
8615   auto handleRegAssign = [&](SDValue V) {
8616     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8617     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8618     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8619     ++CurResultType;
8620     // If the type of the inline asm call site return value is different but has
8621     // same size as the type of the asm output bitcast it.  One example of this
8622     // is for vectors with different width / number of elements.  This can
8623     // happen for register classes that can contain multiple different value
8624     // types.  The preg or vreg allocated may not have the same VT as was
8625     // expected.
8626     //
8627     // This can also happen for a return value that disagrees with the register
8628     // class it is put in, eg. a double in a general-purpose register on a
8629     // 32-bit machine.
8630     if (ResultVT != V.getValueType() &&
8631         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8632       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8633     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8634              V.getValueType().isInteger()) {
8635       // If a result value was tied to an input value, the computed result
8636       // may have a wider width than the expected result.  Extract the
8637       // relevant portion.
8638       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8639     }
8640     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8641     ResultVTs.push_back(ResultVT);
8642     ResultValues.push_back(V);
8643   };
8644 
8645   // Deal with output operands.
8646   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8647     if (OpInfo.Type == InlineAsm::isOutput) {
8648       SDValue Val;
8649       // Skip trivial output operands.
8650       if (OpInfo.AssignedRegs.Regs.empty())
8651         continue;
8652 
8653       switch (OpInfo.ConstraintType) {
8654       case TargetLowering::C_Register:
8655       case TargetLowering::C_RegisterClass:
8656         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8657                                                   Chain, &Flag, &Call);
8658         break;
8659       case TargetLowering::C_Immediate:
8660       case TargetLowering::C_Other:
8661         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8662                                               OpInfo, DAG);
8663         break;
8664       case TargetLowering::C_Memory:
8665         break; // Already handled.
8666       case TargetLowering::C_Unknown:
8667         assert(false && "Unexpected unknown constraint");
8668       }
8669 
8670       // Indirect output manifest as stores. Record output chains.
8671       if (OpInfo.isIndirect) {
8672         const Value *Ptr = OpInfo.CallOperandVal;
8673         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8674         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8675                                      MachinePointerInfo(Ptr));
8676         OutChains.push_back(Store);
8677       } else {
8678         // generate CopyFromRegs to associated registers.
8679         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8680         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8681           for (const SDValue &V : Val->op_values())
8682             handleRegAssign(V);
8683         } else
8684           handleRegAssign(Val);
8685       }
8686     }
8687   }
8688 
8689   // Set results.
8690   if (!ResultValues.empty()) {
8691     assert(CurResultType == ResultTypes.end() &&
8692            "Mismatch in number of ResultTypes");
8693     assert(ResultValues.size() == ResultTypes.size() &&
8694            "Mismatch in number of output operands in asm result");
8695 
8696     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8697                             DAG.getVTList(ResultVTs), ResultValues);
8698     setValue(&Call, V);
8699   }
8700 
8701   // Collect store chains.
8702   if (!OutChains.empty())
8703     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8704 
8705   // Only Update Root if inline assembly has a memory effect.
8706   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8707     DAG.setRoot(Chain);
8708 }
8709 
8710 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8711                                              const Twine &Message) {
8712   LLVMContext &Ctx = *DAG.getContext();
8713   Ctx.emitError(&Call, Message);
8714 
8715   // Make sure we leave the DAG in a valid state
8716   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8717   SmallVector<EVT, 1> ValueVTs;
8718   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8719 
8720   if (ValueVTs.empty())
8721     return;
8722 
8723   SmallVector<SDValue, 1> Ops;
8724   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8725     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8726 
8727   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8728 }
8729 
8730 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8731   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8732                           MVT::Other, getRoot(),
8733                           getValue(I.getArgOperand(0)),
8734                           DAG.getSrcValue(I.getArgOperand(0))));
8735 }
8736 
8737 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8738   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8739   const DataLayout &DL = DAG.getDataLayout();
8740   SDValue V = DAG.getVAArg(
8741       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8742       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8743       DL.getABITypeAlign(I.getType()).value());
8744   DAG.setRoot(V.getValue(1));
8745 
8746   if (I.getType()->isPointerTy())
8747     V = DAG.getPtrExtOrTrunc(
8748         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8749   setValue(&I, V);
8750 }
8751 
8752 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8753   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8754                           MVT::Other, getRoot(),
8755                           getValue(I.getArgOperand(0)),
8756                           DAG.getSrcValue(I.getArgOperand(0))));
8757 }
8758 
8759 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8760   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8761                           MVT::Other, getRoot(),
8762                           getValue(I.getArgOperand(0)),
8763                           getValue(I.getArgOperand(1)),
8764                           DAG.getSrcValue(I.getArgOperand(0)),
8765                           DAG.getSrcValue(I.getArgOperand(1))));
8766 }
8767 
8768 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8769                                                     const Instruction &I,
8770                                                     SDValue Op) {
8771   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8772   if (!Range)
8773     return Op;
8774 
8775   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8776   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8777     return Op;
8778 
8779   APInt Lo = CR.getUnsignedMin();
8780   if (!Lo.isMinValue())
8781     return Op;
8782 
8783   APInt Hi = CR.getUnsignedMax();
8784   unsigned Bits = std::max(Hi.getActiveBits(),
8785                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8786 
8787   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8788 
8789   SDLoc SL = getCurSDLoc();
8790 
8791   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8792                              DAG.getValueType(SmallVT));
8793   unsigned NumVals = Op.getNode()->getNumValues();
8794   if (NumVals == 1)
8795     return ZExt;
8796 
8797   SmallVector<SDValue, 4> Ops;
8798 
8799   Ops.push_back(ZExt);
8800   for (unsigned I = 1; I != NumVals; ++I)
8801     Ops.push_back(Op.getValue(I));
8802 
8803   return DAG.getMergeValues(Ops, SL);
8804 }
8805 
8806 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8807 /// the call being lowered.
8808 ///
8809 /// This is a helper for lowering intrinsics that follow a target calling
8810 /// convention or require stack pointer adjustment. Only a subset of the
8811 /// intrinsic's operands need to participate in the calling convention.
8812 void SelectionDAGBuilder::populateCallLoweringInfo(
8813     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8814     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8815     bool IsPatchPoint) {
8816   TargetLowering::ArgListTy Args;
8817   Args.reserve(NumArgs);
8818 
8819   // Populate the argument list.
8820   // Attributes for args start at offset 1, after the return attribute.
8821   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8822        ArgI != ArgE; ++ArgI) {
8823     const Value *V = Call->getOperand(ArgI);
8824 
8825     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8826 
8827     TargetLowering::ArgListEntry Entry;
8828     Entry.Node = getValue(V);
8829     Entry.Ty = V->getType();
8830     Entry.setAttributes(Call, ArgI);
8831     Args.push_back(Entry);
8832   }
8833 
8834   CLI.setDebugLoc(getCurSDLoc())
8835       .setChain(getRoot())
8836       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8837       .setDiscardResult(Call->use_empty())
8838       .setIsPatchPoint(IsPatchPoint)
8839       .setIsPreallocated(
8840           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8841 }
8842 
8843 /// Add a stack map intrinsic call's live variable operands to a stackmap
8844 /// or patchpoint target node's operand list.
8845 ///
8846 /// Constants are converted to TargetConstants purely as an optimization to
8847 /// avoid constant materialization and register allocation.
8848 ///
8849 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8850 /// generate addess computation nodes, and so FinalizeISel can convert the
8851 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8852 /// address materialization and register allocation, but may also be required
8853 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8854 /// alloca in the entry block, then the runtime may assume that the alloca's
8855 /// StackMap location can be read immediately after compilation and that the
8856 /// location is valid at any point during execution (this is similar to the
8857 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8858 /// only available in a register, then the runtime would need to trap when
8859 /// execution reaches the StackMap in order to read the alloca's location.
8860 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8861                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8862                                 SelectionDAGBuilder &Builder) {
8863   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8864     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8865     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8866       Ops.push_back(
8867         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8868       Ops.push_back(
8869         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8870     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8871       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8872       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8873           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8874     } else
8875       Ops.push_back(OpVal);
8876   }
8877 }
8878 
8879 /// Lower llvm.experimental.stackmap directly to its target opcode.
8880 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8881   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8882   //                                  [live variables...])
8883 
8884   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8885 
8886   SDValue Chain, InFlag, Callee, NullPtr;
8887   SmallVector<SDValue, 32> Ops;
8888 
8889   SDLoc DL = getCurSDLoc();
8890   Callee = getValue(CI.getCalledOperand());
8891   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8892 
8893   // The stackmap intrinsic only records the live variables (the arguments
8894   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8895   // intrinsic, this won't be lowered to a function call. This means we don't
8896   // have to worry about calling conventions and target specific lowering code.
8897   // Instead we perform the call lowering right here.
8898   //
8899   // chain, flag = CALLSEQ_START(chain, 0, 0)
8900   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8901   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8902   //
8903   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8904   InFlag = Chain.getValue(1);
8905 
8906   // Add the <id> and <numBytes> constants.
8907   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8908   Ops.push_back(DAG.getTargetConstant(
8909                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8910   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8911   Ops.push_back(DAG.getTargetConstant(
8912                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8913                   MVT::i32));
8914 
8915   // Push live variables for the stack map.
8916   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8917 
8918   // We are not pushing any register mask info here on the operands list,
8919   // because the stackmap doesn't clobber anything.
8920 
8921   // Push the chain and the glue flag.
8922   Ops.push_back(Chain);
8923   Ops.push_back(InFlag);
8924 
8925   // Create the STACKMAP node.
8926   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8927   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8928   Chain = SDValue(SM, 0);
8929   InFlag = Chain.getValue(1);
8930 
8931   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8932 
8933   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8934 
8935   // Set the root to the target-lowered call chain.
8936   DAG.setRoot(Chain);
8937 
8938   // Inform the Frame Information that we have a stackmap in this function.
8939   FuncInfo.MF->getFrameInfo().setHasStackMap();
8940 }
8941 
8942 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8943 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8944                                           const BasicBlock *EHPadBB) {
8945   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8946   //                                                 i32 <numBytes>,
8947   //                                                 i8* <target>,
8948   //                                                 i32 <numArgs>,
8949   //                                                 [Args...],
8950   //                                                 [live variables...])
8951 
8952   CallingConv::ID CC = CB.getCallingConv();
8953   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8954   bool HasDef = !CB.getType()->isVoidTy();
8955   SDLoc dl = getCurSDLoc();
8956   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8957 
8958   // Handle immediate and symbolic callees.
8959   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8960     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8961                                    /*isTarget=*/true);
8962   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8963     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8964                                          SDLoc(SymbolicCallee),
8965                                          SymbolicCallee->getValueType(0));
8966 
8967   // Get the real number of arguments participating in the call <numArgs>
8968   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8969   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8970 
8971   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8972   // Intrinsics include all meta-operands up to but not including CC.
8973   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8974   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8975          "Not enough arguments provided to the patchpoint intrinsic");
8976 
8977   // For AnyRegCC the arguments are lowered later on manually.
8978   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8979   Type *ReturnTy =
8980       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8981 
8982   TargetLowering::CallLoweringInfo CLI(DAG);
8983   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8984                            ReturnTy, true);
8985   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8986 
8987   SDNode *CallEnd = Result.second.getNode();
8988   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8989     CallEnd = CallEnd->getOperand(0).getNode();
8990 
8991   /// Get a call instruction from the call sequence chain.
8992   /// Tail calls are not allowed.
8993   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8994          "Expected a callseq node.");
8995   SDNode *Call = CallEnd->getOperand(0).getNode();
8996   bool HasGlue = Call->getGluedNode();
8997 
8998   // Replace the target specific call node with the patchable intrinsic.
8999   SmallVector<SDValue, 8> Ops;
9000 
9001   // Add the <id> and <numBytes> constants.
9002   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9003   Ops.push_back(DAG.getTargetConstant(
9004                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9005   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9006   Ops.push_back(DAG.getTargetConstant(
9007                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9008                   MVT::i32));
9009 
9010   // Add the callee.
9011   Ops.push_back(Callee);
9012 
9013   // Adjust <numArgs> to account for any arguments that have been passed on the
9014   // stack instead.
9015   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9016   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9017   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9018   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9019 
9020   // Add the calling convention
9021   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9022 
9023   // Add the arguments we omitted previously. The register allocator should
9024   // place these in any free register.
9025   if (IsAnyRegCC)
9026     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9027       Ops.push_back(getValue(CB.getArgOperand(i)));
9028 
9029   // Push the arguments from the call instruction up to the register mask.
9030   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9031   Ops.append(Call->op_begin() + 2, e);
9032 
9033   // Push live variables for the stack map.
9034   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9035 
9036   // Push the register mask info.
9037   if (HasGlue)
9038     Ops.push_back(*(Call->op_end()-2));
9039   else
9040     Ops.push_back(*(Call->op_end()-1));
9041 
9042   // Push the chain (this is originally the first operand of the call, but
9043   // becomes now the last or second to last operand).
9044   Ops.push_back(*(Call->op_begin()));
9045 
9046   // Push the glue flag (last operand).
9047   if (HasGlue)
9048     Ops.push_back(*(Call->op_end()-1));
9049 
9050   SDVTList NodeTys;
9051   if (IsAnyRegCC && HasDef) {
9052     // Create the return types based on the intrinsic definition
9053     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9054     SmallVector<EVT, 3> ValueVTs;
9055     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9056     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9057 
9058     // There is always a chain and a glue type at the end
9059     ValueVTs.push_back(MVT::Other);
9060     ValueVTs.push_back(MVT::Glue);
9061     NodeTys = DAG.getVTList(ValueVTs);
9062   } else
9063     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9064 
9065   // Replace the target specific call node with a PATCHPOINT node.
9066   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9067                                          dl, NodeTys, Ops);
9068 
9069   // Update the NodeMap.
9070   if (HasDef) {
9071     if (IsAnyRegCC)
9072       setValue(&CB, SDValue(MN, 0));
9073     else
9074       setValue(&CB, Result.first);
9075   }
9076 
9077   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9078   // call sequence. Furthermore the location of the chain and glue can change
9079   // when the AnyReg calling convention is used and the intrinsic returns a
9080   // value.
9081   if (IsAnyRegCC && HasDef) {
9082     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9083     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9084     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9085   } else
9086     DAG.ReplaceAllUsesWith(Call, MN);
9087   DAG.DeleteNode(Call);
9088 
9089   // Inform the Frame Information that we have a patchpoint in this function.
9090   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9091 }
9092 
9093 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9094                                             unsigned Intrinsic) {
9095   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9096   SDValue Op1 = getValue(I.getArgOperand(0));
9097   SDValue Op2;
9098   if (I.getNumArgOperands() > 1)
9099     Op2 = getValue(I.getArgOperand(1));
9100   SDLoc dl = getCurSDLoc();
9101   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9102   SDValue Res;
9103   SDNodeFlags SDFlags;
9104   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9105     SDFlags.copyFMF(*FPMO);
9106 
9107   switch (Intrinsic) {
9108   case Intrinsic::vector_reduce_fadd:
9109     if (SDFlags.hasAllowReassociation())
9110       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9111                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9112                         SDFlags);
9113     else
9114       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9115     break;
9116   case Intrinsic::vector_reduce_fmul:
9117     if (SDFlags.hasAllowReassociation())
9118       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9119                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9120                         SDFlags);
9121     else
9122       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9123     break;
9124   case Intrinsic::vector_reduce_add:
9125     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9126     break;
9127   case Intrinsic::vector_reduce_mul:
9128     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9129     break;
9130   case Intrinsic::vector_reduce_and:
9131     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9132     break;
9133   case Intrinsic::vector_reduce_or:
9134     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9135     break;
9136   case Intrinsic::vector_reduce_xor:
9137     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9138     break;
9139   case Intrinsic::vector_reduce_smax:
9140     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9141     break;
9142   case Intrinsic::vector_reduce_smin:
9143     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9144     break;
9145   case Intrinsic::vector_reduce_umax:
9146     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9147     break;
9148   case Intrinsic::vector_reduce_umin:
9149     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9150     break;
9151   case Intrinsic::vector_reduce_fmax:
9152     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9153     break;
9154   case Intrinsic::vector_reduce_fmin:
9155     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9156     break;
9157   default:
9158     llvm_unreachable("Unhandled vector reduce intrinsic");
9159   }
9160   setValue(&I, Res);
9161 }
9162 
9163 /// Returns an AttributeList representing the attributes applied to the return
9164 /// value of the given call.
9165 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9166   SmallVector<Attribute::AttrKind, 2> Attrs;
9167   if (CLI.RetSExt)
9168     Attrs.push_back(Attribute::SExt);
9169   if (CLI.RetZExt)
9170     Attrs.push_back(Attribute::ZExt);
9171   if (CLI.IsInReg)
9172     Attrs.push_back(Attribute::InReg);
9173 
9174   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9175                             Attrs);
9176 }
9177 
9178 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9179 /// implementation, which just calls LowerCall.
9180 /// FIXME: When all targets are
9181 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9182 std::pair<SDValue, SDValue>
9183 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9184   // Handle the incoming return values from the call.
9185   CLI.Ins.clear();
9186   Type *OrigRetTy = CLI.RetTy;
9187   SmallVector<EVT, 4> RetTys;
9188   SmallVector<uint64_t, 4> Offsets;
9189   auto &DL = CLI.DAG.getDataLayout();
9190   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9191 
9192   if (CLI.IsPostTypeLegalization) {
9193     // If we are lowering a libcall after legalization, split the return type.
9194     SmallVector<EVT, 4> OldRetTys;
9195     SmallVector<uint64_t, 4> OldOffsets;
9196     RetTys.swap(OldRetTys);
9197     Offsets.swap(OldOffsets);
9198 
9199     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9200       EVT RetVT = OldRetTys[i];
9201       uint64_t Offset = OldOffsets[i];
9202       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9203       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9204       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9205       RetTys.append(NumRegs, RegisterVT);
9206       for (unsigned j = 0; j != NumRegs; ++j)
9207         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9208     }
9209   }
9210 
9211   SmallVector<ISD::OutputArg, 4> Outs;
9212   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9213 
9214   bool CanLowerReturn =
9215       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9216                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9217 
9218   SDValue DemoteStackSlot;
9219   int DemoteStackIdx = -100;
9220   if (!CanLowerReturn) {
9221     // FIXME: equivalent assert?
9222     // assert(!CS.hasInAllocaArgument() &&
9223     //        "sret demotion is incompatible with inalloca");
9224     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9225     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9226     MachineFunction &MF = CLI.DAG.getMachineFunction();
9227     DemoteStackIdx =
9228         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9229     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9230                                               DL.getAllocaAddrSpace());
9231 
9232     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9233     ArgListEntry Entry;
9234     Entry.Node = DemoteStackSlot;
9235     Entry.Ty = StackSlotPtrType;
9236     Entry.IsSExt = false;
9237     Entry.IsZExt = false;
9238     Entry.IsInReg = false;
9239     Entry.IsSRet = true;
9240     Entry.IsNest = false;
9241     Entry.IsByVal = false;
9242     Entry.IsByRef = false;
9243     Entry.IsReturned = false;
9244     Entry.IsSwiftSelf = false;
9245     Entry.IsSwiftError = false;
9246     Entry.IsCFGuardTarget = false;
9247     Entry.Alignment = Alignment;
9248     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9249     CLI.NumFixedArgs += 1;
9250     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9251 
9252     // sret demotion isn't compatible with tail-calls, since the sret argument
9253     // points into the callers stack frame.
9254     CLI.IsTailCall = false;
9255   } else {
9256     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9257         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9258     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9259       ISD::ArgFlagsTy Flags;
9260       if (NeedsRegBlock) {
9261         Flags.setInConsecutiveRegs();
9262         if (I == RetTys.size() - 1)
9263           Flags.setInConsecutiveRegsLast();
9264       }
9265       EVT VT = RetTys[I];
9266       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9267                                                      CLI.CallConv, VT);
9268       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9269                                                        CLI.CallConv, VT);
9270       for (unsigned i = 0; i != NumRegs; ++i) {
9271         ISD::InputArg MyFlags;
9272         MyFlags.Flags = Flags;
9273         MyFlags.VT = RegisterVT;
9274         MyFlags.ArgVT = VT;
9275         MyFlags.Used = CLI.IsReturnValueUsed;
9276         if (CLI.RetTy->isPointerTy()) {
9277           MyFlags.Flags.setPointer();
9278           MyFlags.Flags.setPointerAddrSpace(
9279               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9280         }
9281         if (CLI.RetSExt)
9282           MyFlags.Flags.setSExt();
9283         if (CLI.RetZExt)
9284           MyFlags.Flags.setZExt();
9285         if (CLI.IsInReg)
9286           MyFlags.Flags.setInReg();
9287         CLI.Ins.push_back(MyFlags);
9288       }
9289     }
9290   }
9291 
9292   // We push in swifterror return as the last element of CLI.Ins.
9293   ArgListTy &Args = CLI.getArgs();
9294   if (supportSwiftError()) {
9295     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9296       if (Args[i].IsSwiftError) {
9297         ISD::InputArg MyFlags;
9298         MyFlags.VT = getPointerTy(DL);
9299         MyFlags.ArgVT = EVT(getPointerTy(DL));
9300         MyFlags.Flags.setSwiftError();
9301         CLI.Ins.push_back(MyFlags);
9302       }
9303     }
9304   }
9305 
9306   // Handle all of the outgoing arguments.
9307   CLI.Outs.clear();
9308   CLI.OutVals.clear();
9309   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9310     SmallVector<EVT, 4> ValueVTs;
9311     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9312     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9313     Type *FinalType = Args[i].Ty;
9314     if (Args[i].IsByVal)
9315       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9316     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9317         FinalType, CLI.CallConv, CLI.IsVarArg);
9318     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9319          ++Value) {
9320       EVT VT = ValueVTs[Value];
9321       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9322       SDValue Op = SDValue(Args[i].Node.getNode(),
9323                            Args[i].Node.getResNo() + Value);
9324       ISD::ArgFlagsTy Flags;
9325 
9326       // Certain targets (such as MIPS), may have a different ABI alignment
9327       // for a type depending on the context. Give the target a chance to
9328       // specify the alignment it wants.
9329       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9330 
9331       if (Args[i].Ty->isPointerTy()) {
9332         Flags.setPointer();
9333         Flags.setPointerAddrSpace(
9334             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9335       }
9336       if (Args[i].IsZExt)
9337         Flags.setZExt();
9338       if (Args[i].IsSExt)
9339         Flags.setSExt();
9340       if (Args[i].IsInReg) {
9341         // If we are using vectorcall calling convention, a structure that is
9342         // passed InReg - is surely an HVA
9343         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9344             isa<StructType>(FinalType)) {
9345           // The first value of a structure is marked
9346           if (0 == Value)
9347             Flags.setHvaStart();
9348           Flags.setHva();
9349         }
9350         // Set InReg Flag
9351         Flags.setInReg();
9352       }
9353       if (Args[i].IsSRet)
9354         Flags.setSRet();
9355       if (Args[i].IsSwiftSelf)
9356         Flags.setSwiftSelf();
9357       if (Args[i].IsSwiftError)
9358         Flags.setSwiftError();
9359       if (Args[i].IsCFGuardTarget)
9360         Flags.setCFGuardTarget();
9361       if (Args[i].IsByVal)
9362         Flags.setByVal();
9363       if (Args[i].IsByRef)
9364         Flags.setByRef();
9365       if (Args[i].IsPreallocated) {
9366         Flags.setPreallocated();
9367         // Set the byval flag for CCAssignFn callbacks that don't know about
9368         // preallocated.  This way we can know how many bytes we should've
9369         // allocated and how many bytes a callee cleanup function will pop.  If
9370         // we port preallocated to more targets, we'll have to add custom
9371         // preallocated handling in the various CC lowering callbacks.
9372         Flags.setByVal();
9373       }
9374       if (Args[i].IsInAlloca) {
9375         Flags.setInAlloca();
9376         // Set the byval flag for CCAssignFn callbacks that don't know about
9377         // inalloca.  This way we can know how many bytes we should've allocated
9378         // and how many bytes a callee cleanup function will pop.  If we port
9379         // inalloca to more targets, we'll have to add custom inalloca handling
9380         // in the various CC lowering callbacks.
9381         Flags.setByVal();
9382       }
9383       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9384         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9385         Type *ElementTy = Ty->getElementType();
9386 
9387         unsigned FrameSize = DL.getTypeAllocSize(
9388             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9389         Flags.setByValSize(FrameSize);
9390 
9391         // info is not there but there are cases it cannot get right.
9392         Align FrameAlign;
9393         if (auto MA = Args[i].Alignment)
9394           FrameAlign = *MA;
9395         else
9396           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9397         Flags.setByValAlign(FrameAlign);
9398       }
9399       if (Args[i].IsNest)
9400         Flags.setNest();
9401       if (NeedsRegBlock)
9402         Flags.setInConsecutiveRegs();
9403       Flags.setOrigAlign(OriginalAlignment);
9404 
9405       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9406                                                  CLI.CallConv, VT);
9407       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9408                                                         CLI.CallConv, VT);
9409       SmallVector<SDValue, 4> Parts(NumParts);
9410       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9411 
9412       if (Args[i].IsSExt)
9413         ExtendKind = ISD::SIGN_EXTEND;
9414       else if (Args[i].IsZExt)
9415         ExtendKind = ISD::ZERO_EXTEND;
9416 
9417       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9418       // for now.
9419       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9420           CanLowerReturn) {
9421         assert((CLI.RetTy == Args[i].Ty ||
9422                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9423                  CLI.RetTy->getPointerAddressSpace() ==
9424                      Args[i].Ty->getPointerAddressSpace())) &&
9425                RetTys.size() == NumValues && "unexpected use of 'returned'");
9426         // Before passing 'returned' to the target lowering code, ensure that
9427         // either the register MVT and the actual EVT are the same size or that
9428         // the return value and argument are extended in the same way; in these
9429         // cases it's safe to pass the argument register value unchanged as the
9430         // return register value (although it's at the target's option whether
9431         // to do so)
9432         // TODO: allow code generation to take advantage of partially preserved
9433         // registers rather than clobbering the entire register when the
9434         // parameter extension method is not compatible with the return
9435         // extension method
9436         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9437             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9438              CLI.RetZExt == Args[i].IsZExt))
9439           Flags.setReturned();
9440       }
9441 
9442       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9443                      CLI.CallConv, ExtendKind);
9444 
9445       for (unsigned j = 0; j != NumParts; ++j) {
9446         // if it isn't first piece, alignment must be 1
9447         // For scalable vectors the scalable part is currently handled
9448         // by individual targets, so we just use the known minimum size here.
9449         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9450                     i < CLI.NumFixedArgs, i,
9451                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9452         if (NumParts > 1 && j == 0)
9453           MyFlags.Flags.setSplit();
9454         else if (j != 0) {
9455           MyFlags.Flags.setOrigAlign(Align(1));
9456           if (j == NumParts - 1)
9457             MyFlags.Flags.setSplitEnd();
9458         }
9459 
9460         CLI.Outs.push_back(MyFlags);
9461         CLI.OutVals.push_back(Parts[j]);
9462       }
9463 
9464       if (NeedsRegBlock && Value == NumValues - 1)
9465         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9466     }
9467   }
9468 
9469   SmallVector<SDValue, 4> InVals;
9470   CLI.Chain = LowerCall(CLI, InVals);
9471 
9472   // Update CLI.InVals to use outside of this function.
9473   CLI.InVals = InVals;
9474 
9475   // Verify that the target's LowerCall behaved as expected.
9476   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9477          "LowerCall didn't return a valid chain!");
9478   assert((!CLI.IsTailCall || InVals.empty()) &&
9479          "LowerCall emitted a return value for a tail call!");
9480   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9481          "LowerCall didn't emit the correct number of values!");
9482 
9483   // For a tail call, the return value is merely live-out and there aren't
9484   // any nodes in the DAG representing it. Return a special value to
9485   // indicate that a tail call has been emitted and no more Instructions
9486   // should be processed in the current block.
9487   if (CLI.IsTailCall) {
9488     CLI.DAG.setRoot(CLI.Chain);
9489     return std::make_pair(SDValue(), SDValue());
9490   }
9491 
9492 #ifndef NDEBUG
9493   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9494     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9495     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9496            "LowerCall emitted a value with the wrong type!");
9497   }
9498 #endif
9499 
9500   SmallVector<SDValue, 4> ReturnValues;
9501   if (!CanLowerReturn) {
9502     // The instruction result is the result of loading from the
9503     // hidden sret parameter.
9504     SmallVector<EVT, 1> PVTs;
9505     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9506 
9507     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9508     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9509     EVT PtrVT = PVTs[0];
9510 
9511     unsigned NumValues = RetTys.size();
9512     ReturnValues.resize(NumValues);
9513     SmallVector<SDValue, 4> Chains(NumValues);
9514 
9515     // An aggregate return value cannot wrap around the address space, so
9516     // offsets to its parts don't wrap either.
9517     SDNodeFlags Flags;
9518     Flags.setNoUnsignedWrap(true);
9519 
9520     MachineFunction &MF = CLI.DAG.getMachineFunction();
9521     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9522     for (unsigned i = 0; i < NumValues; ++i) {
9523       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9524                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9525                                                         PtrVT), Flags);
9526       SDValue L = CLI.DAG.getLoad(
9527           RetTys[i], CLI.DL, CLI.Chain, Add,
9528           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9529                                             DemoteStackIdx, Offsets[i]),
9530           HiddenSRetAlign);
9531       ReturnValues[i] = L;
9532       Chains[i] = L.getValue(1);
9533     }
9534 
9535     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9536   } else {
9537     // Collect the legal value parts into potentially illegal values
9538     // that correspond to the original function's return values.
9539     Optional<ISD::NodeType> AssertOp;
9540     if (CLI.RetSExt)
9541       AssertOp = ISD::AssertSext;
9542     else if (CLI.RetZExt)
9543       AssertOp = ISD::AssertZext;
9544     unsigned CurReg = 0;
9545     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9546       EVT VT = RetTys[I];
9547       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9548                                                      CLI.CallConv, VT);
9549       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9550                                                        CLI.CallConv, VT);
9551 
9552       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9553                                               NumRegs, RegisterVT, VT, nullptr,
9554                                               CLI.CallConv, AssertOp));
9555       CurReg += NumRegs;
9556     }
9557 
9558     // For a function returning void, there is no return value. We can't create
9559     // such a node, so we just return a null return value in that case. In
9560     // that case, nothing will actually look at the value.
9561     if (ReturnValues.empty())
9562       return std::make_pair(SDValue(), CLI.Chain);
9563   }
9564 
9565   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9566                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9567   return std::make_pair(Res, CLI.Chain);
9568 }
9569 
9570 /// Places new result values for the node in Results (their number
9571 /// and types must exactly match those of the original return values of
9572 /// the node), or leaves Results empty, which indicates that the node is not
9573 /// to be custom lowered after all.
9574 void TargetLowering::LowerOperationWrapper(SDNode *N,
9575                                            SmallVectorImpl<SDValue> &Results,
9576                                            SelectionDAG &DAG) const {
9577   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9578 
9579   if (!Res.getNode())
9580     return;
9581 
9582   // If the original node has one result, take the return value from
9583   // LowerOperation as is. It might not be result number 0.
9584   if (N->getNumValues() == 1) {
9585     Results.push_back(Res);
9586     return;
9587   }
9588 
9589   // If the original node has multiple results, then the return node should
9590   // have the same number of results.
9591   assert((N->getNumValues() == Res->getNumValues()) &&
9592       "Lowering returned the wrong number of results!");
9593 
9594   // Places new result values base on N result number.
9595   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9596     Results.push_back(Res.getValue(I));
9597 }
9598 
9599 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9600   llvm_unreachable("LowerOperation not implemented for this target!");
9601 }
9602 
9603 void
9604 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9605   SDValue Op = getNonRegisterValue(V);
9606   assert((Op.getOpcode() != ISD::CopyFromReg ||
9607           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9608          "Copy from a reg to the same reg!");
9609   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9610 
9611   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9612   // If this is an InlineAsm we have to match the registers required, not the
9613   // notional registers required by the type.
9614 
9615   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9616                    None); // This is not an ABI copy.
9617   SDValue Chain = DAG.getEntryNode();
9618 
9619   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9620                               FuncInfo.PreferredExtendType.end())
9621                                  ? ISD::ANY_EXTEND
9622                                  : FuncInfo.PreferredExtendType[V];
9623   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9624   PendingExports.push_back(Chain);
9625 }
9626 
9627 #include "llvm/CodeGen/SelectionDAGISel.h"
9628 
9629 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9630 /// entry block, return true.  This includes arguments used by switches, since
9631 /// the switch may expand into multiple basic blocks.
9632 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9633   // With FastISel active, we may be splitting blocks, so force creation
9634   // of virtual registers for all non-dead arguments.
9635   if (FastISel)
9636     return A->use_empty();
9637 
9638   const BasicBlock &Entry = A->getParent()->front();
9639   for (const User *U : A->users())
9640     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9641       return false;  // Use not in entry block.
9642 
9643   return true;
9644 }
9645 
9646 using ArgCopyElisionMapTy =
9647     DenseMap<const Argument *,
9648              std::pair<const AllocaInst *, const StoreInst *>>;
9649 
9650 /// Scan the entry block of the function in FuncInfo for arguments that look
9651 /// like copies into a local alloca. Record any copied arguments in
9652 /// ArgCopyElisionCandidates.
9653 static void
9654 findArgumentCopyElisionCandidates(const DataLayout &DL,
9655                                   FunctionLoweringInfo *FuncInfo,
9656                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9657   // Record the state of every static alloca used in the entry block. Argument
9658   // allocas are all used in the entry block, so we need approximately as many
9659   // entries as we have arguments.
9660   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9661   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9662   unsigned NumArgs = FuncInfo->Fn->arg_size();
9663   StaticAllocas.reserve(NumArgs * 2);
9664 
9665   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9666     if (!V)
9667       return nullptr;
9668     V = V->stripPointerCasts();
9669     const auto *AI = dyn_cast<AllocaInst>(V);
9670     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9671       return nullptr;
9672     auto Iter = StaticAllocas.insert({AI, Unknown});
9673     return &Iter.first->second;
9674   };
9675 
9676   // Look for stores of arguments to static allocas. Look through bitcasts and
9677   // GEPs to handle type coercions, as long as the alloca is fully initialized
9678   // by the store. Any non-store use of an alloca escapes it and any subsequent
9679   // unanalyzed store might write it.
9680   // FIXME: Handle structs initialized with multiple stores.
9681   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9682     // Look for stores, and handle non-store uses conservatively.
9683     const auto *SI = dyn_cast<StoreInst>(&I);
9684     if (!SI) {
9685       // We will look through cast uses, so ignore them completely.
9686       if (I.isCast())
9687         continue;
9688       // Ignore debug info and pseudo op intrinsics, they don't escape or store
9689       // to allocas.
9690       if (I.isDebugOrPseudoInst())
9691         continue;
9692       // This is an unknown instruction. Assume it escapes or writes to all
9693       // static alloca operands.
9694       for (const Use &U : I.operands()) {
9695         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9696           *Info = StaticAllocaInfo::Clobbered;
9697       }
9698       continue;
9699     }
9700 
9701     // If the stored value is a static alloca, mark it as escaped.
9702     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9703       *Info = StaticAllocaInfo::Clobbered;
9704 
9705     // Check if the destination is a static alloca.
9706     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9707     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9708     if (!Info)
9709       continue;
9710     const AllocaInst *AI = cast<AllocaInst>(Dst);
9711 
9712     // Skip allocas that have been initialized or clobbered.
9713     if (*Info != StaticAllocaInfo::Unknown)
9714       continue;
9715 
9716     // Check if the stored value is an argument, and that this store fully
9717     // initializes the alloca. Don't elide copies from the same argument twice.
9718     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9719     const auto *Arg = dyn_cast<Argument>(Val);
9720     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9721         Arg->getType()->isEmptyTy() ||
9722         DL.getTypeStoreSize(Arg->getType()) !=
9723             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9724         ArgCopyElisionCandidates.count(Arg)) {
9725       *Info = StaticAllocaInfo::Clobbered;
9726       continue;
9727     }
9728 
9729     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9730                       << '\n');
9731 
9732     // Mark this alloca and store for argument copy elision.
9733     *Info = StaticAllocaInfo::Elidable;
9734     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9735 
9736     // Stop scanning if we've seen all arguments. This will happen early in -O0
9737     // builds, which is useful, because -O0 builds have large entry blocks and
9738     // many allocas.
9739     if (ArgCopyElisionCandidates.size() == NumArgs)
9740       break;
9741   }
9742 }
9743 
9744 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9745 /// ArgVal is a load from a suitable fixed stack object.
9746 static void tryToElideArgumentCopy(
9747     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9748     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9749     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9750     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9751     SDValue ArgVal, bool &ArgHasUses) {
9752   // Check if this is a load from a fixed stack object.
9753   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9754   if (!LNode)
9755     return;
9756   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9757   if (!FINode)
9758     return;
9759 
9760   // Check that the fixed stack object is the right size and alignment.
9761   // Look at the alignment that the user wrote on the alloca instead of looking
9762   // at the stack object.
9763   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9764   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9765   const AllocaInst *AI = ArgCopyIter->second.first;
9766   int FixedIndex = FINode->getIndex();
9767   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9768   int OldIndex = AllocaIndex;
9769   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9770   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9771     LLVM_DEBUG(
9772         dbgs() << "  argument copy elision failed due to bad fixed stack "
9773                   "object size\n");
9774     return;
9775   }
9776   Align RequiredAlignment = AI->getAlign();
9777   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9778     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9779                          "greater than stack argument alignment ("
9780                       << DebugStr(RequiredAlignment) << " vs "
9781                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9782     return;
9783   }
9784 
9785   // Perform the elision. Delete the old stack object and replace its only use
9786   // in the variable info map. Mark the stack object as mutable.
9787   LLVM_DEBUG({
9788     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9789            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9790            << '\n';
9791   });
9792   MFI.RemoveStackObject(OldIndex);
9793   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9794   AllocaIndex = FixedIndex;
9795   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9796   Chains.push_back(ArgVal.getValue(1));
9797 
9798   // Avoid emitting code for the store implementing the copy.
9799   const StoreInst *SI = ArgCopyIter->second.second;
9800   ElidedArgCopyInstrs.insert(SI);
9801 
9802   // Check for uses of the argument again so that we can avoid exporting ArgVal
9803   // if it is't used by anything other than the store.
9804   for (const Value *U : Arg.users()) {
9805     if (U != SI) {
9806       ArgHasUses = true;
9807       break;
9808     }
9809   }
9810 }
9811 
9812 void SelectionDAGISel::LowerArguments(const Function &F) {
9813   SelectionDAG &DAG = SDB->DAG;
9814   SDLoc dl = SDB->getCurSDLoc();
9815   const DataLayout &DL = DAG.getDataLayout();
9816   SmallVector<ISD::InputArg, 16> Ins;
9817 
9818   // In Naked functions we aren't going to save any registers.
9819   if (F.hasFnAttribute(Attribute::Naked))
9820     return;
9821 
9822   if (!FuncInfo->CanLowerReturn) {
9823     // Put in an sret pointer parameter before all the other parameters.
9824     SmallVector<EVT, 1> ValueVTs;
9825     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9826                     F.getReturnType()->getPointerTo(
9827                         DAG.getDataLayout().getAllocaAddrSpace()),
9828                     ValueVTs);
9829 
9830     // NOTE: Assuming that a pointer will never break down to more than one VT
9831     // or one register.
9832     ISD::ArgFlagsTy Flags;
9833     Flags.setSRet();
9834     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9835     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9836                          ISD::InputArg::NoArgIndex, 0);
9837     Ins.push_back(RetArg);
9838   }
9839 
9840   // Look for stores of arguments to static allocas. Mark such arguments with a
9841   // flag to ask the target to give us the memory location of that argument if
9842   // available.
9843   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9844   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9845                                     ArgCopyElisionCandidates);
9846 
9847   // Set up the incoming argument description vector.
9848   for (const Argument &Arg : F.args()) {
9849     unsigned ArgNo = Arg.getArgNo();
9850     SmallVector<EVT, 4> ValueVTs;
9851     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9852     bool isArgValueUsed = !Arg.use_empty();
9853     unsigned PartBase = 0;
9854     Type *FinalType = Arg.getType();
9855     if (Arg.hasAttribute(Attribute::ByVal))
9856       FinalType = Arg.getParamByValType();
9857     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9858         FinalType, F.getCallingConv(), F.isVarArg());
9859     for (unsigned Value = 0, NumValues = ValueVTs.size();
9860          Value != NumValues; ++Value) {
9861       EVT VT = ValueVTs[Value];
9862       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9863       ISD::ArgFlagsTy Flags;
9864 
9865       // Certain targets (such as MIPS), may have a different ABI alignment
9866       // for a type depending on the context. Give the target a chance to
9867       // specify the alignment it wants.
9868       const Align OriginalAlignment(
9869           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9870 
9871       if (Arg.getType()->isPointerTy()) {
9872         Flags.setPointer();
9873         Flags.setPointerAddrSpace(
9874             cast<PointerType>(Arg.getType())->getAddressSpace());
9875       }
9876       if (Arg.hasAttribute(Attribute::ZExt))
9877         Flags.setZExt();
9878       if (Arg.hasAttribute(Attribute::SExt))
9879         Flags.setSExt();
9880       if (Arg.hasAttribute(Attribute::InReg)) {
9881         // If we are using vectorcall calling convention, a structure that is
9882         // passed InReg - is surely an HVA
9883         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9884             isa<StructType>(Arg.getType())) {
9885           // The first value of a structure is marked
9886           if (0 == Value)
9887             Flags.setHvaStart();
9888           Flags.setHva();
9889         }
9890         // Set InReg Flag
9891         Flags.setInReg();
9892       }
9893       if (Arg.hasAttribute(Attribute::StructRet))
9894         Flags.setSRet();
9895       if (Arg.hasAttribute(Attribute::SwiftSelf))
9896         Flags.setSwiftSelf();
9897       if (Arg.hasAttribute(Attribute::SwiftError))
9898         Flags.setSwiftError();
9899       if (Arg.hasAttribute(Attribute::ByVal))
9900         Flags.setByVal();
9901       if (Arg.hasAttribute(Attribute::ByRef))
9902         Flags.setByRef();
9903       if (Arg.hasAttribute(Attribute::InAlloca)) {
9904         Flags.setInAlloca();
9905         // Set the byval flag for CCAssignFn callbacks that don't know about
9906         // inalloca.  This way we can know how many bytes we should've allocated
9907         // and how many bytes a callee cleanup function will pop.  If we port
9908         // inalloca to more targets, we'll have to add custom inalloca handling
9909         // in the various CC lowering callbacks.
9910         Flags.setByVal();
9911       }
9912       if (Arg.hasAttribute(Attribute::Preallocated)) {
9913         Flags.setPreallocated();
9914         // Set the byval flag for CCAssignFn callbacks that don't know about
9915         // preallocated.  This way we can know how many bytes we should've
9916         // allocated and how many bytes a callee cleanup function will pop.  If
9917         // we port preallocated to more targets, we'll have to add custom
9918         // preallocated handling in the various CC lowering callbacks.
9919         Flags.setByVal();
9920       }
9921 
9922       Type *ArgMemTy = nullptr;
9923       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
9924           Flags.isByRef()) {
9925         if (!ArgMemTy)
9926           ArgMemTy = Arg.getPointeeInMemoryValueType();
9927 
9928         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
9929 
9930         // For in-memory arguments, size and alignment should be passed from FE.
9931         // BE will guess if this info is not there but there are cases it cannot
9932         // get right.
9933         MaybeAlign MemAlign = Arg.getParamAlign();
9934         if (!MemAlign)
9935           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
9936 
9937         if (Flags.isByRef()) {
9938           Flags.setByRefSize(MemSize);
9939           Flags.setByRefAlign(*MemAlign);
9940         } else {
9941           Flags.setByValSize(MemSize);
9942           Flags.setByValAlign(*MemAlign);
9943         }
9944       }
9945 
9946       if (Arg.hasAttribute(Attribute::Nest))
9947         Flags.setNest();
9948       if (NeedsRegBlock)
9949         Flags.setInConsecutiveRegs();
9950       Flags.setOrigAlign(OriginalAlignment);
9951       if (ArgCopyElisionCandidates.count(&Arg))
9952         Flags.setCopyElisionCandidate();
9953       if (Arg.hasAttribute(Attribute::Returned))
9954         Flags.setReturned();
9955 
9956       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9957           *CurDAG->getContext(), F.getCallingConv(), VT);
9958       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9959           *CurDAG->getContext(), F.getCallingConv(), VT);
9960       for (unsigned i = 0; i != NumRegs; ++i) {
9961         // For scalable vectors, use the minimum size; individual targets
9962         // are responsible for handling scalable vector arguments and
9963         // return values.
9964         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9965                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9966         if (NumRegs > 1 && i == 0)
9967           MyFlags.Flags.setSplit();
9968         // if it isn't first piece, alignment must be 1
9969         else if (i > 0) {
9970           MyFlags.Flags.setOrigAlign(Align(1));
9971           if (i == NumRegs - 1)
9972             MyFlags.Flags.setSplitEnd();
9973         }
9974         Ins.push_back(MyFlags);
9975       }
9976       if (NeedsRegBlock && Value == NumValues - 1)
9977         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9978       PartBase += VT.getStoreSize().getKnownMinSize();
9979     }
9980   }
9981 
9982   // Call the target to set up the argument values.
9983   SmallVector<SDValue, 8> InVals;
9984   SDValue NewRoot = TLI->LowerFormalArguments(
9985       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9986 
9987   // Verify that the target's LowerFormalArguments behaved as expected.
9988   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9989          "LowerFormalArguments didn't return a valid chain!");
9990   assert(InVals.size() == Ins.size() &&
9991          "LowerFormalArguments didn't emit the correct number of values!");
9992   LLVM_DEBUG({
9993     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9994       assert(InVals[i].getNode() &&
9995              "LowerFormalArguments emitted a null value!");
9996       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9997              "LowerFormalArguments emitted a value with the wrong type!");
9998     }
9999   });
10000 
10001   // Update the DAG with the new chain value resulting from argument lowering.
10002   DAG.setRoot(NewRoot);
10003 
10004   // Set up the argument values.
10005   unsigned i = 0;
10006   if (!FuncInfo->CanLowerReturn) {
10007     // Create a virtual register for the sret pointer, and put in a copy
10008     // from the sret argument into it.
10009     SmallVector<EVT, 1> ValueVTs;
10010     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10011                     F.getReturnType()->getPointerTo(
10012                         DAG.getDataLayout().getAllocaAddrSpace()),
10013                     ValueVTs);
10014     MVT VT = ValueVTs[0].getSimpleVT();
10015     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10016     Optional<ISD::NodeType> AssertOp = None;
10017     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10018                                         nullptr, F.getCallingConv(), AssertOp);
10019 
10020     MachineFunction& MF = SDB->DAG.getMachineFunction();
10021     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10022     Register SRetReg =
10023         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10024     FuncInfo->DemoteRegister = SRetReg;
10025     NewRoot =
10026         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10027     DAG.setRoot(NewRoot);
10028 
10029     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10030     ++i;
10031   }
10032 
10033   SmallVector<SDValue, 4> Chains;
10034   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10035   for (const Argument &Arg : F.args()) {
10036     SmallVector<SDValue, 4> ArgValues;
10037     SmallVector<EVT, 4> ValueVTs;
10038     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10039     unsigned NumValues = ValueVTs.size();
10040     if (NumValues == 0)
10041       continue;
10042 
10043     bool ArgHasUses = !Arg.use_empty();
10044 
10045     // Elide the copying store if the target loaded this argument from a
10046     // suitable fixed stack object.
10047     if (Ins[i].Flags.isCopyElisionCandidate()) {
10048       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10049                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10050                              InVals[i], ArgHasUses);
10051     }
10052 
10053     // If this argument is unused then remember its value. It is used to generate
10054     // debugging information.
10055     bool isSwiftErrorArg =
10056         TLI->supportSwiftError() &&
10057         Arg.hasAttribute(Attribute::SwiftError);
10058     if (!ArgHasUses && !isSwiftErrorArg) {
10059       SDB->setUnusedArgValue(&Arg, InVals[i]);
10060 
10061       // Also remember any frame index for use in FastISel.
10062       if (FrameIndexSDNode *FI =
10063           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10064         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10065     }
10066 
10067     for (unsigned Val = 0; Val != NumValues; ++Val) {
10068       EVT VT = ValueVTs[Val];
10069       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10070                                                       F.getCallingConv(), VT);
10071       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10072           *CurDAG->getContext(), F.getCallingConv(), VT);
10073 
10074       // Even an apparent 'unused' swifterror argument needs to be returned. So
10075       // we do generate a copy for it that can be used on return from the
10076       // function.
10077       if (ArgHasUses || isSwiftErrorArg) {
10078         Optional<ISD::NodeType> AssertOp;
10079         if (Arg.hasAttribute(Attribute::SExt))
10080           AssertOp = ISD::AssertSext;
10081         else if (Arg.hasAttribute(Attribute::ZExt))
10082           AssertOp = ISD::AssertZext;
10083 
10084         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10085                                              PartVT, VT, nullptr,
10086                                              F.getCallingConv(), AssertOp));
10087       }
10088 
10089       i += NumParts;
10090     }
10091 
10092     // We don't need to do anything else for unused arguments.
10093     if (ArgValues.empty())
10094       continue;
10095 
10096     // Note down frame index.
10097     if (FrameIndexSDNode *FI =
10098         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10099       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10100 
10101     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10102                                      SDB->getCurSDLoc());
10103 
10104     SDB->setValue(&Arg, Res);
10105     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10106       // We want to associate the argument with the frame index, among
10107       // involved operands, that correspond to the lowest address. The
10108       // getCopyFromParts function, called earlier, is swapping the order of
10109       // the operands to BUILD_PAIR depending on endianness. The result of
10110       // that swapping is that the least significant bits of the argument will
10111       // be in the first operand of the BUILD_PAIR node, and the most
10112       // significant bits will be in the second operand.
10113       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10114       if (LoadSDNode *LNode =
10115           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10116         if (FrameIndexSDNode *FI =
10117             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10118           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10119     }
10120 
10121     // Analyses past this point are naive and don't expect an assertion.
10122     if (Res.getOpcode() == ISD::AssertZext)
10123       Res = Res.getOperand(0);
10124 
10125     // Update the SwiftErrorVRegDefMap.
10126     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10127       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10128       if (Register::isVirtualRegister(Reg))
10129         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10130                                    Reg);
10131     }
10132 
10133     // If this argument is live outside of the entry block, insert a copy from
10134     // wherever we got it to the vreg that other BB's will reference it as.
10135     if (Res.getOpcode() == ISD::CopyFromReg) {
10136       // If we can, though, try to skip creating an unnecessary vreg.
10137       // FIXME: This isn't very clean... it would be nice to make this more
10138       // general.
10139       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10140       if (Register::isVirtualRegister(Reg)) {
10141         FuncInfo->ValueMap[&Arg] = Reg;
10142         continue;
10143       }
10144     }
10145     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10146       FuncInfo->InitializeRegForValue(&Arg);
10147       SDB->CopyToExportRegsIfNeeded(&Arg);
10148     }
10149   }
10150 
10151   if (!Chains.empty()) {
10152     Chains.push_back(NewRoot);
10153     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10154   }
10155 
10156   DAG.setRoot(NewRoot);
10157 
10158   assert(i == InVals.size() && "Argument register count mismatch!");
10159 
10160   // If any argument copy elisions occurred and we have debug info, update the
10161   // stale frame indices used in the dbg.declare variable info table.
10162   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10163   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10164     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10165       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10166       if (I != ArgCopyElisionFrameIndexMap.end())
10167         VI.Slot = I->second;
10168     }
10169   }
10170 
10171   // Finally, if the target has anything special to do, allow it to do so.
10172   emitFunctionEntryCode();
10173 }
10174 
10175 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10176 /// ensure constants are generated when needed.  Remember the virtual registers
10177 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10178 /// directly add them, because expansion might result in multiple MBB's for one
10179 /// BB.  As such, the start of the BB might correspond to a different MBB than
10180 /// the end.
10181 void
10182 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10183   const Instruction *TI = LLVMBB->getTerminator();
10184 
10185   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10186 
10187   // Check PHI nodes in successors that expect a value to be available from this
10188   // block.
10189   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10190     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10191     if (!isa<PHINode>(SuccBB->begin())) continue;
10192     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10193 
10194     // If this terminator has multiple identical successors (common for
10195     // switches), only handle each succ once.
10196     if (!SuccsHandled.insert(SuccMBB).second)
10197       continue;
10198 
10199     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10200 
10201     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10202     // nodes and Machine PHI nodes, but the incoming operands have not been
10203     // emitted yet.
10204     for (const PHINode &PN : SuccBB->phis()) {
10205       // Ignore dead phi's.
10206       if (PN.use_empty())
10207         continue;
10208 
10209       // Skip empty types
10210       if (PN.getType()->isEmptyTy())
10211         continue;
10212 
10213       unsigned Reg;
10214       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10215 
10216       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10217         unsigned &RegOut = ConstantsOut[C];
10218         if (RegOut == 0) {
10219           RegOut = FuncInfo.CreateRegs(C);
10220           CopyValueToVirtualRegister(C, RegOut);
10221         }
10222         Reg = RegOut;
10223       } else {
10224         DenseMap<const Value *, Register>::iterator I =
10225           FuncInfo.ValueMap.find(PHIOp);
10226         if (I != FuncInfo.ValueMap.end())
10227           Reg = I->second;
10228         else {
10229           assert(isa<AllocaInst>(PHIOp) &&
10230                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10231                  "Didn't codegen value into a register!??");
10232           Reg = FuncInfo.CreateRegs(PHIOp);
10233           CopyValueToVirtualRegister(PHIOp, Reg);
10234         }
10235       }
10236 
10237       // Remember that this register needs to added to the machine PHI node as
10238       // the input for this MBB.
10239       SmallVector<EVT, 4> ValueVTs;
10240       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10241       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10242       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10243         EVT VT = ValueVTs[vti];
10244         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10245         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10246           FuncInfo.PHINodesToUpdate.push_back(
10247               std::make_pair(&*MBBI++, Reg + i));
10248         Reg += NumRegisters;
10249       }
10250     }
10251   }
10252 
10253   ConstantsOut.clear();
10254 }
10255 
10256 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10257 /// is 0.
10258 MachineBasicBlock *
10259 SelectionDAGBuilder::StackProtectorDescriptor::
10260 AddSuccessorMBB(const BasicBlock *BB,
10261                 MachineBasicBlock *ParentMBB,
10262                 bool IsLikely,
10263                 MachineBasicBlock *SuccMBB) {
10264   // If SuccBB has not been created yet, create it.
10265   if (!SuccMBB) {
10266     MachineFunction *MF = ParentMBB->getParent();
10267     MachineFunction::iterator BBI(ParentMBB);
10268     SuccMBB = MF->CreateMachineBasicBlock(BB);
10269     MF->insert(++BBI, SuccMBB);
10270   }
10271   // Add it as a successor of ParentMBB.
10272   ParentMBB->addSuccessor(
10273       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10274   return SuccMBB;
10275 }
10276 
10277 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10278   MachineFunction::iterator I(MBB);
10279   if (++I == FuncInfo.MF->end())
10280     return nullptr;
10281   return &*I;
10282 }
10283 
10284 /// During lowering new call nodes can be created (such as memset, etc.).
10285 /// Those will become new roots of the current DAG, but complications arise
10286 /// when they are tail calls. In such cases, the call lowering will update
10287 /// the root, but the builder still needs to know that a tail call has been
10288 /// lowered in order to avoid generating an additional return.
10289 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10290   // If the node is null, we do have a tail call.
10291   if (MaybeTC.getNode() != nullptr)
10292     DAG.setRoot(MaybeTC);
10293   else
10294     HasTailCall = true;
10295 }
10296 
10297 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10298                                         MachineBasicBlock *SwitchMBB,
10299                                         MachineBasicBlock *DefaultMBB) {
10300   MachineFunction *CurMF = FuncInfo.MF;
10301   MachineBasicBlock *NextMBB = nullptr;
10302   MachineFunction::iterator BBI(W.MBB);
10303   if (++BBI != FuncInfo.MF->end())
10304     NextMBB = &*BBI;
10305 
10306   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10307 
10308   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10309 
10310   if (Size == 2 && W.MBB == SwitchMBB) {
10311     // If any two of the cases has the same destination, and if one value
10312     // is the same as the other, but has one bit unset that the other has set,
10313     // use bit manipulation to do two compares at once.  For example:
10314     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10315     // TODO: This could be extended to merge any 2 cases in switches with 3
10316     // cases.
10317     // TODO: Handle cases where W.CaseBB != SwitchBB.
10318     CaseCluster &Small = *W.FirstCluster;
10319     CaseCluster &Big = *W.LastCluster;
10320 
10321     if (Small.Low == Small.High && Big.Low == Big.High &&
10322         Small.MBB == Big.MBB) {
10323       const APInt &SmallValue = Small.Low->getValue();
10324       const APInt &BigValue = Big.Low->getValue();
10325 
10326       // Check that there is only one bit different.
10327       APInt CommonBit = BigValue ^ SmallValue;
10328       if (CommonBit.isPowerOf2()) {
10329         SDValue CondLHS = getValue(Cond);
10330         EVT VT = CondLHS.getValueType();
10331         SDLoc DL = getCurSDLoc();
10332 
10333         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10334                                  DAG.getConstant(CommonBit, DL, VT));
10335         SDValue Cond = DAG.getSetCC(
10336             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10337             ISD::SETEQ);
10338 
10339         // Update successor info.
10340         // Both Small and Big will jump to Small.BB, so we sum up the
10341         // probabilities.
10342         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10343         if (BPI)
10344           addSuccessorWithProb(
10345               SwitchMBB, DefaultMBB,
10346               // The default destination is the first successor in IR.
10347               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10348         else
10349           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10350 
10351         // Insert the true branch.
10352         SDValue BrCond =
10353             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10354                         DAG.getBasicBlock(Small.MBB));
10355         // Insert the false branch.
10356         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10357                              DAG.getBasicBlock(DefaultMBB));
10358 
10359         DAG.setRoot(BrCond);
10360         return;
10361       }
10362     }
10363   }
10364 
10365   if (TM.getOptLevel() != CodeGenOpt::None) {
10366     // Here, we order cases by probability so the most likely case will be
10367     // checked first. However, two clusters can have the same probability in
10368     // which case their relative ordering is non-deterministic. So we use Low
10369     // as a tie-breaker as clusters are guaranteed to never overlap.
10370     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10371                [](const CaseCluster &a, const CaseCluster &b) {
10372       return a.Prob != b.Prob ?
10373              a.Prob > b.Prob :
10374              a.Low->getValue().slt(b.Low->getValue());
10375     });
10376 
10377     // Rearrange the case blocks so that the last one falls through if possible
10378     // without changing the order of probabilities.
10379     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10380       --I;
10381       if (I->Prob > W.LastCluster->Prob)
10382         break;
10383       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10384         std::swap(*I, *W.LastCluster);
10385         break;
10386       }
10387     }
10388   }
10389 
10390   // Compute total probability.
10391   BranchProbability DefaultProb = W.DefaultProb;
10392   BranchProbability UnhandledProbs = DefaultProb;
10393   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10394     UnhandledProbs += I->Prob;
10395 
10396   MachineBasicBlock *CurMBB = W.MBB;
10397   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10398     bool FallthroughUnreachable = false;
10399     MachineBasicBlock *Fallthrough;
10400     if (I == W.LastCluster) {
10401       // For the last cluster, fall through to the default destination.
10402       Fallthrough = DefaultMBB;
10403       FallthroughUnreachable = isa<UnreachableInst>(
10404           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10405     } else {
10406       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10407       CurMF->insert(BBI, Fallthrough);
10408       // Put Cond in a virtual register to make it available from the new blocks.
10409       ExportFromCurrentBlock(Cond);
10410     }
10411     UnhandledProbs -= I->Prob;
10412 
10413     switch (I->Kind) {
10414       case CC_JumpTable: {
10415         // FIXME: Optimize away range check based on pivot comparisons.
10416         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10417         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10418 
10419         // The jump block hasn't been inserted yet; insert it here.
10420         MachineBasicBlock *JumpMBB = JT->MBB;
10421         CurMF->insert(BBI, JumpMBB);
10422 
10423         auto JumpProb = I->Prob;
10424         auto FallthroughProb = UnhandledProbs;
10425 
10426         // If the default statement is a target of the jump table, we evenly
10427         // distribute the default probability to successors of CurMBB. Also
10428         // update the probability on the edge from JumpMBB to Fallthrough.
10429         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10430                                               SE = JumpMBB->succ_end();
10431              SI != SE; ++SI) {
10432           if (*SI == DefaultMBB) {
10433             JumpProb += DefaultProb / 2;
10434             FallthroughProb -= DefaultProb / 2;
10435             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10436             JumpMBB->normalizeSuccProbs();
10437             break;
10438           }
10439         }
10440 
10441         if (FallthroughUnreachable) {
10442           // Skip the range check if the fallthrough block is unreachable.
10443           JTH->OmitRangeCheck = true;
10444         }
10445 
10446         if (!JTH->OmitRangeCheck)
10447           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10448         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10449         CurMBB->normalizeSuccProbs();
10450 
10451         // The jump table header will be inserted in our current block, do the
10452         // range check, and fall through to our fallthrough block.
10453         JTH->HeaderBB = CurMBB;
10454         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10455 
10456         // If we're in the right place, emit the jump table header right now.
10457         if (CurMBB == SwitchMBB) {
10458           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10459           JTH->Emitted = true;
10460         }
10461         break;
10462       }
10463       case CC_BitTests: {
10464         // FIXME: Optimize away range check based on pivot comparisons.
10465         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10466 
10467         // The bit test blocks haven't been inserted yet; insert them here.
10468         for (BitTestCase &BTC : BTB->Cases)
10469           CurMF->insert(BBI, BTC.ThisBB);
10470 
10471         // Fill in fields of the BitTestBlock.
10472         BTB->Parent = CurMBB;
10473         BTB->Default = Fallthrough;
10474 
10475         BTB->DefaultProb = UnhandledProbs;
10476         // If the cases in bit test don't form a contiguous range, we evenly
10477         // distribute the probability on the edge to Fallthrough to two
10478         // successors of CurMBB.
10479         if (!BTB->ContiguousRange) {
10480           BTB->Prob += DefaultProb / 2;
10481           BTB->DefaultProb -= DefaultProb / 2;
10482         }
10483 
10484         if (FallthroughUnreachable) {
10485           // Skip the range check if the fallthrough block is unreachable.
10486           BTB->OmitRangeCheck = true;
10487         }
10488 
10489         // If we're in the right place, emit the bit test header right now.
10490         if (CurMBB == SwitchMBB) {
10491           visitBitTestHeader(*BTB, SwitchMBB);
10492           BTB->Emitted = true;
10493         }
10494         break;
10495       }
10496       case CC_Range: {
10497         const Value *RHS, *LHS, *MHS;
10498         ISD::CondCode CC;
10499         if (I->Low == I->High) {
10500           // Check Cond == I->Low.
10501           CC = ISD::SETEQ;
10502           LHS = Cond;
10503           RHS=I->Low;
10504           MHS = nullptr;
10505         } else {
10506           // Check I->Low <= Cond <= I->High.
10507           CC = ISD::SETLE;
10508           LHS = I->Low;
10509           MHS = Cond;
10510           RHS = I->High;
10511         }
10512 
10513         // If Fallthrough is unreachable, fold away the comparison.
10514         if (FallthroughUnreachable)
10515           CC = ISD::SETTRUE;
10516 
10517         // The false probability is the sum of all unhandled cases.
10518         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10519                      getCurSDLoc(), I->Prob, UnhandledProbs);
10520 
10521         if (CurMBB == SwitchMBB)
10522           visitSwitchCase(CB, SwitchMBB);
10523         else
10524           SL->SwitchCases.push_back(CB);
10525 
10526         break;
10527       }
10528     }
10529     CurMBB = Fallthrough;
10530   }
10531 }
10532 
10533 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10534                                               CaseClusterIt First,
10535                                               CaseClusterIt Last) {
10536   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10537     if (X.Prob != CC.Prob)
10538       return X.Prob > CC.Prob;
10539 
10540     // Ties are broken by comparing the case value.
10541     return X.Low->getValue().slt(CC.Low->getValue());
10542   });
10543 }
10544 
10545 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10546                                         const SwitchWorkListItem &W,
10547                                         Value *Cond,
10548                                         MachineBasicBlock *SwitchMBB) {
10549   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10550          "Clusters not sorted?");
10551 
10552   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10553 
10554   // Balance the tree based on branch probabilities to create a near-optimal (in
10555   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10556   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10557   CaseClusterIt LastLeft = W.FirstCluster;
10558   CaseClusterIt FirstRight = W.LastCluster;
10559   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10560   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10561 
10562   // Move LastLeft and FirstRight towards each other from opposite directions to
10563   // find a partitioning of the clusters which balances the probability on both
10564   // sides. If LeftProb and RightProb are equal, alternate which side is
10565   // taken to ensure 0-probability nodes are distributed evenly.
10566   unsigned I = 0;
10567   while (LastLeft + 1 < FirstRight) {
10568     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10569       LeftProb += (++LastLeft)->Prob;
10570     else
10571       RightProb += (--FirstRight)->Prob;
10572     I++;
10573   }
10574 
10575   while (true) {
10576     // Our binary search tree differs from a typical BST in that ours can have up
10577     // to three values in each leaf. The pivot selection above doesn't take that
10578     // into account, which means the tree might require more nodes and be less
10579     // efficient. We compensate for this here.
10580 
10581     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10582     unsigned NumRight = W.LastCluster - FirstRight + 1;
10583 
10584     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10585       // If one side has less than 3 clusters, and the other has more than 3,
10586       // consider taking a cluster from the other side.
10587 
10588       if (NumLeft < NumRight) {
10589         // Consider moving the first cluster on the right to the left side.
10590         CaseCluster &CC = *FirstRight;
10591         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10592         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10593         if (LeftSideRank <= RightSideRank) {
10594           // Moving the cluster to the left does not demote it.
10595           ++LastLeft;
10596           ++FirstRight;
10597           continue;
10598         }
10599       } else {
10600         assert(NumRight < NumLeft);
10601         // Consider moving the last element on the left to the right side.
10602         CaseCluster &CC = *LastLeft;
10603         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10604         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10605         if (RightSideRank <= LeftSideRank) {
10606           // Moving the cluster to the right does not demot it.
10607           --LastLeft;
10608           --FirstRight;
10609           continue;
10610         }
10611       }
10612     }
10613     break;
10614   }
10615 
10616   assert(LastLeft + 1 == FirstRight);
10617   assert(LastLeft >= W.FirstCluster);
10618   assert(FirstRight <= W.LastCluster);
10619 
10620   // Use the first element on the right as pivot since we will make less-than
10621   // comparisons against it.
10622   CaseClusterIt PivotCluster = FirstRight;
10623   assert(PivotCluster > W.FirstCluster);
10624   assert(PivotCluster <= W.LastCluster);
10625 
10626   CaseClusterIt FirstLeft = W.FirstCluster;
10627   CaseClusterIt LastRight = W.LastCluster;
10628 
10629   const ConstantInt *Pivot = PivotCluster->Low;
10630 
10631   // New blocks will be inserted immediately after the current one.
10632   MachineFunction::iterator BBI(W.MBB);
10633   ++BBI;
10634 
10635   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10636   // we can branch to its destination directly if it's squeezed exactly in
10637   // between the known lower bound and Pivot - 1.
10638   MachineBasicBlock *LeftMBB;
10639   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10640       FirstLeft->Low == W.GE &&
10641       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10642     LeftMBB = FirstLeft->MBB;
10643   } else {
10644     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10645     FuncInfo.MF->insert(BBI, LeftMBB);
10646     WorkList.push_back(
10647         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10648     // Put Cond in a virtual register to make it available from the new blocks.
10649     ExportFromCurrentBlock(Cond);
10650   }
10651 
10652   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10653   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10654   // directly if RHS.High equals the current upper bound.
10655   MachineBasicBlock *RightMBB;
10656   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10657       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10658     RightMBB = FirstRight->MBB;
10659   } else {
10660     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10661     FuncInfo.MF->insert(BBI, RightMBB);
10662     WorkList.push_back(
10663         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10664     // Put Cond in a virtual register to make it available from the new blocks.
10665     ExportFromCurrentBlock(Cond);
10666   }
10667 
10668   // Create the CaseBlock record that will be used to lower the branch.
10669   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10670                getCurSDLoc(), LeftProb, RightProb);
10671 
10672   if (W.MBB == SwitchMBB)
10673     visitSwitchCase(CB, SwitchMBB);
10674   else
10675     SL->SwitchCases.push_back(CB);
10676 }
10677 
10678 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10679 // from the swith statement.
10680 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10681                                             BranchProbability PeeledCaseProb) {
10682   if (PeeledCaseProb == BranchProbability::getOne())
10683     return BranchProbability::getZero();
10684   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10685 
10686   uint32_t Numerator = CaseProb.getNumerator();
10687   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10688   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10689 }
10690 
10691 // Try to peel the top probability case if it exceeds the threshold.
10692 // Return current MachineBasicBlock for the switch statement if the peeling
10693 // does not occur.
10694 // If the peeling is performed, return the newly created MachineBasicBlock
10695 // for the peeled switch statement. Also update Clusters to remove the peeled
10696 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10697 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10698     const SwitchInst &SI, CaseClusterVector &Clusters,
10699     BranchProbability &PeeledCaseProb) {
10700   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10701   // Don't perform if there is only one cluster or optimizing for size.
10702   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10703       TM.getOptLevel() == CodeGenOpt::None ||
10704       SwitchMBB->getParent()->getFunction().hasMinSize())
10705     return SwitchMBB;
10706 
10707   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10708   unsigned PeeledCaseIndex = 0;
10709   bool SwitchPeeled = false;
10710   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10711     CaseCluster &CC = Clusters[Index];
10712     if (CC.Prob < TopCaseProb)
10713       continue;
10714     TopCaseProb = CC.Prob;
10715     PeeledCaseIndex = Index;
10716     SwitchPeeled = true;
10717   }
10718   if (!SwitchPeeled)
10719     return SwitchMBB;
10720 
10721   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10722                     << TopCaseProb << "\n");
10723 
10724   // Record the MBB for the peeled switch statement.
10725   MachineFunction::iterator BBI(SwitchMBB);
10726   ++BBI;
10727   MachineBasicBlock *PeeledSwitchMBB =
10728       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10729   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10730 
10731   ExportFromCurrentBlock(SI.getCondition());
10732   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10733   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10734                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10735   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10736 
10737   Clusters.erase(PeeledCaseIt);
10738   for (CaseCluster &CC : Clusters) {
10739     LLVM_DEBUG(
10740         dbgs() << "Scale the probablity for one cluster, before scaling: "
10741                << CC.Prob << "\n");
10742     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10743     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10744   }
10745   PeeledCaseProb = TopCaseProb;
10746   return PeeledSwitchMBB;
10747 }
10748 
10749 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10750   // Extract cases from the switch.
10751   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10752   CaseClusterVector Clusters;
10753   Clusters.reserve(SI.getNumCases());
10754   for (auto I : SI.cases()) {
10755     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10756     const ConstantInt *CaseVal = I.getCaseValue();
10757     BranchProbability Prob =
10758         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10759             : BranchProbability(1, SI.getNumCases() + 1);
10760     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10761   }
10762 
10763   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10764 
10765   // Cluster adjacent cases with the same destination. We do this at all
10766   // optimization levels because it's cheap to do and will make codegen faster
10767   // if there are many clusters.
10768   sortAndRangeify(Clusters);
10769 
10770   // The branch probablity of the peeled case.
10771   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10772   MachineBasicBlock *PeeledSwitchMBB =
10773       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10774 
10775   // If there is only the default destination, jump there directly.
10776   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10777   if (Clusters.empty()) {
10778     assert(PeeledSwitchMBB == SwitchMBB);
10779     SwitchMBB->addSuccessor(DefaultMBB);
10780     if (DefaultMBB != NextBlock(SwitchMBB)) {
10781       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10782                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10783     }
10784     return;
10785   }
10786 
10787   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10788   SL->findBitTestClusters(Clusters, &SI);
10789 
10790   LLVM_DEBUG({
10791     dbgs() << "Case clusters: ";
10792     for (const CaseCluster &C : Clusters) {
10793       if (C.Kind == CC_JumpTable)
10794         dbgs() << "JT:";
10795       if (C.Kind == CC_BitTests)
10796         dbgs() << "BT:";
10797 
10798       C.Low->getValue().print(dbgs(), true);
10799       if (C.Low != C.High) {
10800         dbgs() << '-';
10801         C.High->getValue().print(dbgs(), true);
10802       }
10803       dbgs() << ' ';
10804     }
10805     dbgs() << '\n';
10806   });
10807 
10808   assert(!Clusters.empty());
10809   SwitchWorkList WorkList;
10810   CaseClusterIt First = Clusters.begin();
10811   CaseClusterIt Last = Clusters.end() - 1;
10812   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10813   // Scale the branchprobability for DefaultMBB if the peel occurs and
10814   // DefaultMBB is not replaced.
10815   if (PeeledCaseProb != BranchProbability::getZero() &&
10816       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10817     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10818   WorkList.push_back(
10819       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10820 
10821   while (!WorkList.empty()) {
10822     SwitchWorkListItem W = WorkList.pop_back_val();
10823     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10824 
10825     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10826         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10827       // For optimized builds, lower large range as a balanced binary tree.
10828       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10829       continue;
10830     }
10831 
10832     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10833   }
10834 }
10835 
10836 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10837   SmallVector<EVT, 4> ValueVTs;
10838   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10839                   ValueVTs);
10840   unsigned NumValues = ValueVTs.size();
10841   if (NumValues == 0) return;
10842 
10843   SmallVector<SDValue, 4> Values(NumValues);
10844   SDValue Op = getValue(I.getOperand(0));
10845 
10846   for (unsigned i = 0; i != NumValues; ++i)
10847     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10848                             SDValue(Op.getNode(), Op.getResNo() + i));
10849 
10850   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10851                            DAG.getVTList(ValueVTs), Values));
10852 }
10853