xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision b655fa9ce2203eafb1bafee74f5733951b1bc429)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/MachineValueType.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Target/TargetIntrinsicInfo.h"
108 #include "llvm/Target/TargetMachine.h"
109 #include "llvm/Target/TargetOptions.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstddef>
113 #include <cstdint>
114 #include <cstring>
115 #include <iterator>
116 #include <limits>
117 #include <numeric>
118 #include <tuple>
119 #include <utility>
120 #include <vector>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "isel"
125 
126 /// LimitFloatPrecision - Generate low-precision inline sequences for
127 /// some float libcalls (6, 8 or 12 bits).
128 static unsigned LimitFloatPrecision;
129 
130 static cl::opt<unsigned, true>
131 LimitFPPrecision("limit-float-precision",
132                  cl::desc("Generate low-precision inline sequences "
133                           "for some float libcalls"),
134                  cl::location(LimitFloatPrecision),
135                  cl::init(0));
136 
137 static cl::opt<unsigned> SwitchPeelThreshold(
138     "switch-peel-threshold", cl::Hidden, cl::init(66),
139     cl::desc("Set the case probability threshold for peeling the case from a "
140              "switch statement. A value greater than 100 will void this "
141              "optimization"));
142 
143 // Limit the width of DAG chains. This is important in general to prevent
144 // DAG-based analysis from blowing up. For example, alias analysis and
145 // load clustering may not complete in reasonable time. It is difficult to
146 // recognize and avoid this situation within each individual analysis, and
147 // future analyses are likely to have the same behavior. Limiting DAG width is
148 // the safe approach and will be especially important with global DAGs.
149 //
150 // MaxParallelChains default is arbitrarily high to avoid affecting
151 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
152 // sequence over this should have been converted to llvm.memcpy by the
153 // frontend. It is easy to induce this behavior with .ll code such as:
154 // %buffer = alloca [4096 x i8]
155 // %data = load [4096 x i8]* %argPtr
156 // store [4096 x i8] %data, [4096 x i8]* %buffer
157 static const unsigned MaxParallelChains = 64;
158 
159 // True if the Value passed requires ABI mangling as it is a parameter to a
160 // function or a return value from a function which is not an intrinsic.
161 static bool isABIRegCopy(const Value *V) {
162   const bool IsRetInst = V && isa<ReturnInst>(V);
163   const bool IsCallInst = V && isa<CallInst>(V);
164   const bool IsInLineAsm =
165       IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm();
166   const bool IsIndirectFunctionCall =
167       IsCallInst && !IsInLineAsm &&
168       !static_cast<const CallInst *>(V)->getCalledFunction();
169   // It is possible that the call instruction is an inline asm statement or an
170   // indirect function call in which case the return value of
171   // getCalledFunction() would be nullptr.
172   const bool IsInstrinsicCall =
173       IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall &&
174       static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() !=
175           Intrinsic::not_intrinsic;
176 
177   return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall));
178 }
179 
180 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
181                                       const SDValue *Parts, unsigned NumParts,
182                                       MVT PartVT, EVT ValueVT, const Value *V,
183                                       bool IsABIRegCopy);
184 
185 /// getCopyFromParts - Create a value that contains the specified legal parts
186 /// combined into the value they represent.  If the parts combine to a type
187 /// larger than ValueVT then AssertOp can be used to specify whether the extra
188 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
189 /// (ISD::AssertSext).
190 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
191                                 const SDValue *Parts, unsigned NumParts,
192                                 MVT PartVT, EVT ValueVT, const Value *V,
193                                 Optional<ISD::NodeType> AssertOp = None,
194                                 bool IsABIRegCopy = false) {
195   if (ValueVT.isVector())
196     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
197                                   PartVT, ValueVT, V, IsABIRegCopy);
198 
199   assert(NumParts > 0 && "No parts to assemble!");
200   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
201   SDValue Val = Parts[0];
202 
203   if (NumParts > 1) {
204     // Assemble the value from multiple parts.
205     if (ValueVT.isInteger()) {
206       unsigned PartBits = PartVT.getSizeInBits();
207       unsigned ValueBits = ValueVT.getSizeInBits();
208 
209       // Assemble the power of 2 part.
210       unsigned RoundParts = NumParts & (NumParts - 1) ?
211         1 << Log2_32(NumParts) : NumParts;
212       unsigned RoundBits = PartBits * RoundParts;
213       EVT RoundVT = RoundBits == ValueBits ?
214         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
215       SDValue Lo, Hi;
216 
217       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
218 
219       if (RoundParts > 2) {
220         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
221                               PartVT, HalfVT, V);
222         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
223                               RoundParts / 2, PartVT, HalfVT, V);
224       } else {
225         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
226         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
227       }
228 
229       if (DAG.getDataLayout().isBigEndian())
230         std::swap(Lo, Hi);
231 
232       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
233 
234       if (RoundParts < NumParts) {
235         // Assemble the trailing non-power-of-2 part.
236         unsigned OddParts = NumParts - RoundParts;
237         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
238         Hi = getCopyFromParts(DAG, DL,
239                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
240 
241         // Combine the round and odd parts.
242         Lo = Val;
243         if (DAG.getDataLayout().isBigEndian())
244           std::swap(Lo, Hi);
245         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
246         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
247         Hi =
248             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
249                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
250                                         TLI.getPointerTy(DAG.getDataLayout())));
251         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
252         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
253       }
254     } else if (PartVT.isFloatingPoint()) {
255       // FP split into multiple FP parts (for ppcf128)
256       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
257              "Unexpected split");
258       SDValue Lo, Hi;
259       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
260       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
261       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
262         std::swap(Lo, Hi);
263       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
264     } else {
265       // FP split into integer parts (soft fp)
266       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
267              !PartVT.isVector() && "Unexpected split");
268       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
269       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
270     }
271   }
272 
273   // There is now one part, held in Val.  Correct it to match ValueVT.
274   // PartEVT is the type of the register class that holds the value.
275   // ValueVT is the type of the inline asm operation.
276   EVT PartEVT = Val.getValueType();
277 
278   if (PartEVT == ValueVT)
279     return Val;
280 
281   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
282       ValueVT.bitsLT(PartEVT)) {
283     // For an FP value in an integer part, we need to truncate to the right
284     // width first.
285     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
286     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
287   }
288 
289   // Handle types that have the same size.
290   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
291     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
292 
293   // Handle types with different sizes.
294   if (PartEVT.isInteger() && ValueVT.isInteger()) {
295     if (ValueVT.bitsLT(PartEVT)) {
296       // For a truncate, see if we have any information to
297       // indicate whether the truncated bits will always be
298       // zero or sign-extension.
299       if (AssertOp.hasValue())
300         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
301                           DAG.getValueType(ValueVT));
302       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
303     }
304     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
305   }
306 
307   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
308     // FP_ROUND's are always exact here.
309     if (ValueVT.bitsLT(Val.getValueType()))
310       return DAG.getNode(
311           ISD::FP_ROUND, DL, ValueVT, Val,
312           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
313 
314     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
315   }
316 
317   llvm_unreachable("Unknown mismatch!");
318 }
319 
320 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
321                                               const Twine &ErrMsg) {
322   const Instruction *I = dyn_cast_or_null<Instruction>(V);
323   if (!V)
324     return Ctx.emitError(ErrMsg);
325 
326   const char *AsmError = ", possible invalid constraint for vector type";
327   if (const CallInst *CI = dyn_cast<CallInst>(I))
328     if (isa<InlineAsm>(CI->getCalledValue()))
329       return Ctx.emitError(I, ErrMsg + AsmError);
330 
331   return Ctx.emitError(I, ErrMsg);
332 }
333 
334 /// getCopyFromPartsVector - Create a value that contains the specified legal
335 /// parts combined into the value they represent.  If the parts combine to a
336 /// type larger than ValueVT then AssertOp can be used to specify whether the
337 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
338 /// ValueVT (ISD::AssertSext).
339 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
340                                       const SDValue *Parts, unsigned NumParts,
341                                       MVT PartVT, EVT ValueVT, const Value *V,
342                                       bool IsABIRegCopy) {
343   assert(ValueVT.isVector() && "Not a vector value");
344   assert(NumParts > 0 && "No parts to assemble!");
345   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
346   SDValue Val = Parts[0];
347 
348   // Handle a multi-element vector.
349   if (NumParts > 1) {
350     EVT IntermediateVT;
351     MVT RegisterVT;
352     unsigned NumIntermediates;
353     unsigned NumRegs;
354 
355     if (IsABIRegCopy) {
356       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
357           *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
358           RegisterVT);
359     } else {
360       NumRegs =
361           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
362                                      NumIntermediates, RegisterVT);
363     }
364 
365     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
366     NumParts = NumRegs; // Silence a compiler warning.
367     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
368     assert(RegisterVT.getSizeInBits() ==
369            Parts[0].getSimpleValueType().getSizeInBits() &&
370            "Part type sizes don't match!");
371 
372     // Assemble the parts into intermediate operands.
373     SmallVector<SDValue, 8> Ops(NumIntermediates);
374     if (NumIntermediates == NumParts) {
375       // If the register was not expanded, truncate or copy the value,
376       // as appropriate.
377       for (unsigned i = 0; i != NumParts; ++i)
378         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
379                                   PartVT, IntermediateVT, V);
380     } else if (NumParts > 0) {
381       // If the intermediate type was expanded, build the intermediate
382       // operands from the parts.
383       assert(NumParts % NumIntermediates == 0 &&
384              "Must expand into a divisible number of parts!");
385       unsigned Factor = NumParts / NumIntermediates;
386       for (unsigned i = 0; i != NumIntermediates; ++i)
387         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
388                                   PartVT, IntermediateVT, V);
389     }
390 
391     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
392     // intermediate operands.
393     EVT BuiltVectorTy =
394         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
395                          (IntermediateVT.isVector()
396                               ? IntermediateVT.getVectorNumElements() * NumParts
397                               : NumIntermediates));
398     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
399                                                 : ISD::BUILD_VECTOR,
400                       DL, BuiltVectorTy, Ops);
401   }
402 
403   // There is now one part, held in Val.  Correct it to match ValueVT.
404   EVT PartEVT = Val.getValueType();
405 
406   if (PartEVT == ValueVT)
407     return Val;
408 
409   if (PartEVT.isVector()) {
410     // If the element type of the source/dest vectors are the same, but the
411     // parts vector has more elements than the value vector, then we have a
412     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
413     // elements we want.
414     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
415       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
416              "Cannot narrow, it would be a lossy transformation");
417       return DAG.getNode(
418           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
419           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
420     }
421 
422     // Vector/Vector bitcast.
423     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
424       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
425 
426     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
427       "Cannot handle this kind of promotion");
428     // Promoted vector extract
429     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
430 
431   }
432 
433   // Trivial bitcast if the types are the same size and the destination
434   // vector type is legal.
435   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
436       TLI.isTypeLegal(ValueVT))
437     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438 
439   if (ValueVT.getVectorNumElements() != 1) {
440      // Certain ABIs require that vectors are passed as integers. For vectors
441      // are the same size, this is an obvious bitcast.
442      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
443        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
444      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
445        // Bitcast Val back the original type and extract the corresponding
446        // vector we want.
447        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
448        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
449                                            ValueVT.getVectorElementType(), Elts);
450        Val = DAG.getBitcast(WiderVecType, Val);
451        return DAG.getNode(
452            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
453            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
454      }
455 
456      diagnosePossiblyInvalidConstraint(
457          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
458      return DAG.getUNDEF(ValueVT);
459   }
460 
461   // Handle cases such as i8 -> <1 x i1>
462   EVT ValueSVT = ValueVT.getVectorElementType();
463   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
464     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
465                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
466 
467   return DAG.getBuildVector(ValueVT, DL, Val);
468 }
469 
470 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
471                                  SDValue Val, SDValue *Parts, unsigned NumParts,
472                                  MVT PartVT, const Value *V, bool IsABIRegCopy);
473 
474 /// getCopyToParts - Create a series of nodes that contain the specified value
475 /// split into legal parts.  If the parts contain more bits than Val, then, for
476 /// integers, ExtendKind can be used to specify how to generate the extra bits.
477 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
478                            SDValue *Parts, unsigned NumParts, MVT PartVT,
479                            const Value *V,
480                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND,
481                            bool IsABIRegCopy = false) {
482   EVT ValueVT = Val.getValueType();
483 
484   // Handle the vector case separately.
485   if (ValueVT.isVector())
486     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
487                                 IsABIRegCopy);
488 
489   unsigned PartBits = PartVT.getSizeInBits();
490   unsigned OrigNumParts = NumParts;
491   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
492          "Copying to an illegal type!");
493 
494   if (NumParts == 0)
495     return;
496 
497   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
498   EVT PartEVT = PartVT;
499   if (PartEVT == ValueVT) {
500     assert(NumParts == 1 && "No-op copy with multiple parts!");
501     Parts[0] = Val;
502     return;
503   }
504 
505   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
506     // If the parts cover more bits than the value has, promote the value.
507     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
508       assert(NumParts == 1 && "Do not know what to promote to!");
509       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
510     } else {
511       if (ValueVT.isFloatingPoint()) {
512         // FP values need to be bitcast, then extended if they are being put
513         // into a larger container.
514         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
515         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
516       }
517       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
518              ValueVT.isInteger() &&
519              "Unknown mismatch!");
520       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
521       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
522       if (PartVT == MVT::x86mmx)
523         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
524     }
525   } else if (PartBits == ValueVT.getSizeInBits()) {
526     // Different types of the same size.
527     assert(NumParts == 1 && PartEVT != ValueVT);
528     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
529   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
530     // If the parts cover less bits than value has, truncate the value.
531     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
532            ValueVT.isInteger() &&
533            "Unknown mismatch!");
534     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
535     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
536     if (PartVT == MVT::x86mmx)
537       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
538   }
539 
540   // The value may have changed - recompute ValueVT.
541   ValueVT = Val.getValueType();
542   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
543          "Failed to tile the value with PartVT!");
544 
545   if (NumParts == 1) {
546     if (PartEVT != ValueVT) {
547       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
548                                         "scalar-to-vector conversion failed");
549       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
550     }
551 
552     Parts[0] = Val;
553     return;
554   }
555 
556   // Expand the value into multiple parts.
557   if (NumParts & (NumParts - 1)) {
558     // The number of parts is not a power of 2.  Split off and copy the tail.
559     assert(PartVT.isInteger() && ValueVT.isInteger() &&
560            "Do not know what to expand to!");
561     unsigned RoundParts = 1 << Log2_32(NumParts);
562     unsigned RoundBits = RoundParts * PartBits;
563     unsigned OddParts = NumParts - RoundParts;
564     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
565                                  DAG.getIntPtrConstant(RoundBits, DL));
566     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
567 
568     if (DAG.getDataLayout().isBigEndian())
569       // The odd parts were reversed by getCopyToParts - unreverse them.
570       std::reverse(Parts + RoundParts, Parts + NumParts);
571 
572     NumParts = RoundParts;
573     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
574     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
575   }
576 
577   // The number of parts is a power of 2.  Repeatedly bisect the value using
578   // EXTRACT_ELEMENT.
579   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
580                          EVT::getIntegerVT(*DAG.getContext(),
581                                            ValueVT.getSizeInBits()),
582                          Val);
583 
584   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
585     for (unsigned i = 0; i < NumParts; i += StepSize) {
586       unsigned ThisBits = StepSize * PartBits / 2;
587       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
588       SDValue &Part0 = Parts[i];
589       SDValue &Part1 = Parts[i+StepSize/2];
590 
591       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
592                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
593       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
594                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
595 
596       if (ThisBits == PartBits && ThisVT != PartVT) {
597         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
598         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
599       }
600     }
601   }
602 
603   if (DAG.getDataLayout().isBigEndian())
604     std::reverse(Parts, Parts + OrigNumParts);
605 }
606 
607 
608 /// getCopyToPartsVector - Create a series of nodes that contain the specified
609 /// value split into legal parts.
610 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
611                                  SDValue Val, SDValue *Parts, unsigned NumParts,
612                                  MVT PartVT, const Value *V,
613                                  bool IsABIRegCopy) {
614   EVT ValueVT = Val.getValueType();
615   assert(ValueVT.isVector() && "Not a vector");
616   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
617 
618   if (NumParts == 1) {
619     EVT PartEVT = PartVT;
620     if (PartEVT == ValueVT) {
621       // Nothing to do.
622     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
623       // Bitconvert vector->vector case.
624       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
625     } else if (PartVT.isVector() &&
626                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
627                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
628       EVT ElementVT = PartVT.getVectorElementType();
629       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
630       // undef elements.
631       SmallVector<SDValue, 16> Ops;
632       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
633         Ops.push_back(DAG.getNode(
634             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
635             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
636 
637       for (unsigned i = ValueVT.getVectorNumElements(),
638            e = PartVT.getVectorNumElements(); i != e; ++i)
639         Ops.push_back(DAG.getUNDEF(ElementVT));
640 
641       Val = DAG.getBuildVector(PartVT, DL, Ops);
642 
643       // FIXME: Use CONCAT for 2x -> 4x.
644 
645       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
646       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
647     } else if (PartVT.isVector() &&
648                PartEVT.getVectorElementType().bitsGE(
649                  ValueVT.getVectorElementType()) &&
650                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
651 
652       // Promoted vector extract
653       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
654     } else {
655       if (ValueVT.getVectorNumElements() == 1) {
656         Val = DAG.getNode(
657             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
658             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
659       } else {
660         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
661                "lossy conversion of vector to scalar type");
662         EVT IntermediateType =
663             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
664         Val = DAG.getBitcast(IntermediateType, Val);
665         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
666       }
667     }
668 
669     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
670     Parts[0] = Val;
671     return;
672   }
673 
674   // Handle a multi-element vector.
675   EVT IntermediateVT;
676   MVT RegisterVT;
677   unsigned NumIntermediates;
678   unsigned NumRegs;
679   if (IsABIRegCopy) {
680     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
681         *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
682         RegisterVT);
683   } else {
684     NumRegs =
685         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
686                                    NumIntermediates, RegisterVT);
687   }
688   unsigned NumElements = ValueVT.getVectorNumElements();
689 
690   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
691   NumParts = NumRegs; // Silence a compiler warning.
692   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
693 
694   // Convert the vector to the appropiate type if necessary.
695   unsigned DestVectorNoElts =
696       NumIntermediates *
697       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
698   EVT BuiltVectorTy = EVT::getVectorVT(
699       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
700   if (Val.getValueType() != BuiltVectorTy)
701     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
702 
703   // Split the vector into intermediate operands.
704   SmallVector<SDValue, 8> Ops(NumIntermediates);
705   for (unsigned i = 0; i != NumIntermediates; ++i) {
706     if (IntermediateVT.isVector())
707       Ops[i] =
708           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
709                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
710                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
711     else
712       Ops[i] = DAG.getNode(
713           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
714           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
715   }
716 
717   // Split the intermediate operands into legal parts.
718   if (NumParts == NumIntermediates) {
719     // If the register was not expanded, promote or copy the value,
720     // as appropriate.
721     for (unsigned i = 0; i != NumParts; ++i)
722       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
723   } else if (NumParts > 0) {
724     // If the intermediate type was expanded, split each the value into
725     // legal parts.
726     assert(NumIntermediates != 0 && "division by zero");
727     assert(NumParts % NumIntermediates == 0 &&
728            "Must expand into a divisible number of parts!");
729     unsigned Factor = NumParts / NumIntermediates;
730     for (unsigned i = 0; i != NumIntermediates; ++i)
731       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
732   }
733 }
734 
735 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
736                            EVT valuevt, bool IsABIMangledValue)
737     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
738       RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {}
739 
740 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
741                            const DataLayout &DL, unsigned Reg, Type *Ty,
742                            bool IsABIMangledValue) {
743   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
744 
745   IsABIMangled = IsABIMangledValue;
746 
747   for (EVT ValueVT : ValueVTs) {
748     unsigned NumRegs = IsABIMangledValue
749                            ? TLI.getNumRegistersForCallingConv(Context, ValueVT)
750                            : TLI.getNumRegisters(Context, ValueVT);
751     MVT RegisterVT = IsABIMangledValue
752                          ? TLI.getRegisterTypeForCallingConv(Context, ValueVT)
753                          : TLI.getRegisterType(Context, ValueVT);
754     for (unsigned i = 0; i != NumRegs; ++i)
755       Regs.push_back(Reg + i);
756     RegVTs.push_back(RegisterVT);
757     RegCount.push_back(NumRegs);
758     Reg += NumRegs;
759   }
760 }
761 
762 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
763                                       FunctionLoweringInfo &FuncInfo,
764                                       const SDLoc &dl, SDValue &Chain,
765                                       SDValue *Flag, const Value *V) const {
766   // A Value with type {} or [0 x %t] needs no registers.
767   if (ValueVTs.empty())
768     return SDValue();
769 
770   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
771 
772   // Assemble the legal parts into the final values.
773   SmallVector<SDValue, 4> Values(ValueVTs.size());
774   SmallVector<SDValue, 8> Parts;
775   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
776     // Copy the legal parts from the registers.
777     EVT ValueVT = ValueVTs[Value];
778     unsigned NumRegs = RegCount[Value];
779     MVT RegisterVT = IsABIMangled
780                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
781                          : RegVTs[Value];
782 
783     Parts.resize(NumRegs);
784     for (unsigned i = 0; i != NumRegs; ++i) {
785       SDValue P;
786       if (!Flag) {
787         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
788       } else {
789         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
790         *Flag = P.getValue(2);
791       }
792 
793       Chain = P.getValue(1);
794       Parts[i] = P;
795 
796       // If the source register was virtual and if we know something about it,
797       // add an assert node.
798       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
799           !RegisterVT.isInteger() || RegisterVT.isVector())
800         continue;
801 
802       const FunctionLoweringInfo::LiveOutInfo *LOI =
803         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
804       if (!LOI)
805         continue;
806 
807       unsigned RegSize = RegisterVT.getSizeInBits();
808       unsigned NumSignBits = LOI->NumSignBits;
809       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
810 
811       if (NumZeroBits == RegSize) {
812         // The current value is a zero.
813         // Explicitly express that as it would be easier for
814         // optimizations to kick in.
815         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
816         continue;
817       }
818 
819       // FIXME: We capture more information than the dag can represent.  For
820       // now, just use the tightest assertzext/assertsext possible.
821       bool isSExt = true;
822       EVT FromVT(MVT::Other);
823       if (NumSignBits == RegSize) {
824         isSExt = true;   // ASSERT SEXT 1
825         FromVT = MVT::i1;
826       } else if (NumZeroBits >= RegSize - 1) {
827         isSExt = false;  // ASSERT ZEXT 1
828         FromVT = MVT::i1;
829       } else if (NumSignBits > RegSize - 8) {
830         isSExt = true;   // ASSERT SEXT 8
831         FromVT = MVT::i8;
832       } else if (NumZeroBits >= RegSize - 8) {
833         isSExt = false;  // ASSERT ZEXT 8
834         FromVT = MVT::i8;
835       } else if (NumSignBits > RegSize - 16) {
836         isSExt = true;   // ASSERT SEXT 16
837         FromVT = MVT::i16;
838       } else if (NumZeroBits >= RegSize - 16) {
839         isSExt = false;  // ASSERT ZEXT 16
840         FromVT = MVT::i16;
841       } else if (NumSignBits > RegSize - 32) {
842         isSExt = true;   // ASSERT SEXT 32
843         FromVT = MVT::i32;
844       } else if (NumZeroBits >= RegSize - 32) {
845         isSExt = false;  // ASSERT ZEXT 32
846         FromVT = MVT::i32;
847       } else {
848         continue;
849       }
850       // Add an assertion node.
851       assert(FromVT != MVT::Other);
852       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
853                              RegisterVT, P, DAG.getValueType(FromVT));
854     }
855 
856     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
857                                      NumRegs, RegisterVT, ValueVT, V);
858     Part += NumRegs;
859     Parts.clear();
860   }
861 
862   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
863 }
864 
865 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
866                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
867                                  const Value *V,
868                                  ISD::NodeType PreferredExtendType) const {
869   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
870   ISD::NodeType ExtendKind = PreferredExtendType;
871 
872   // Get the list of the values's legal parts.
873   unsigned NumRegs = Regs.size();
874   SmallVector<SDValue, 8> Parts(NumRegs);
875   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
876     unsigned NumParts = RegCount[Value];
877 
878     MVT RegisterVT = IsABIMangled
879                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
880                          : RegVTs[Value];
881 
882     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
883       ExtendKind = ISD::ZERO_EXTEND;
884 
885     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
886                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
887     Part += NumParts;
888   }
889 
890   // Copy the parts into the registers.
891   SmallVector<SDValue, 8> Chains(NumRegs);
892   for (unsigned i = 0; i != NumRegs; ++i) {
893     SDValue Part;
894     if (!Flag) {
895       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
896     } else {
897       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
898       *Flag = Part.getValue(1);
899     }
900 
901     Chains[i] = Part.getValue(0);
902   }
903 
904   if (NumRegs == 1 || Flag)
905     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
906     // flagged to it. That is the CopyToReg nodes and the user are considered
907     // a single scheduling unit. If we create a TokenFactor and return it as
908     // chain, then the TokenFactor is both a predecessor (operand) of the
909     // user as well as a successor (the TF operands are flagged to the user).
910     // c1, f1 = CopyToReg
911     // c2, f2 = CopyToReg
912     // c3     = TokenFactor c1, c2
913     // ...
914     //        = op c3, ..., f2
915     Chain = Chains[NumRegs-1];
916   else
917     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
918 }
919 
920 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
921                                         unsigned MatchingIdx, const SDLoc &dl,
922                                         SelectionDAG &DAG,
923                                         std::vector<SDValue> &Ops) const {
924   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
925 
926   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
927   if (HasMatching)
928     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
929   else if (!Regs.empty() &&
930            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
931     // Put the register class of the virtual registers in the flag word.  That
932     // way, later passes can recompute register class constraints for inline
933     // assembly as well as normal instructions.
934     // Don't do this for tied operands that can use the regclass information
935     // from the def.
936     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
937     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
938     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
939   }
940 
941   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
942   Ops.push_back(Res);
943 
944   if (Code == InlineAsm::Kind_Clobber) {
945     // Clobbers should always have a 1:1 mapping with registers, and may
946     // reference registers that have illegal (e.g. vector) types. Hence, we
947     // shouldn't try to apply any sort of splitting logic to them.
948     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
949            "No 1:1 mapping from clobbers to regs?");
950     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
951     (void)SP;
952     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
953       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
954       assert(
955           (Regs[I] != SP ||
956            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
957           "If we clobbered the stack pointer, MFI should know about it.");
958     }
959     return;
960   }
961 
962   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
963     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
964     MVT RegisterVT = RegVTs[Value];
965     for (unsigned i = 0; i != NumRegs; ++i) {
966       assert(Reg < Regs.size() && "Mismatch in # registers expected");
967       unsigned TheReg = Regs[Reg++];
968       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
969     }
970   }
971 }
972 
973 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
974                                const TargetLibraryInfo *li) {
975   AA = aa;
976   GFI = gfi;
977   LibInfo = li;
978   DL = &DAG.getDataLayout();
979   Context = DAG.getContext();
980   LPadToCallSiteMap.clear();
981 }
982 
983 void SelectionDAGBuilder::clear() {
984   NodeMap.clear();
985   UnusedArgNodeMap.clear();
986   PendingLoads.clear();
987   PendingExports.clear();
988   CurInst = nullptr;
989   HasTailCall = false;
990   SDNodeOrder = LowestSDNodeOrder;
991   StatepointLowering.clear();
992 }
993 
994 void SelectionDAGBuilder::clearDanglingDebugInfo() {
995   DanglingDebugInfoMap.clear();
996 }
997 
998 SDValue SelectionDAGBuilder::getRoot() {
999   if (PendingLoads.empty())
1000     return DAG.getRoot();
1001 
1002   if (PendingLoads.size() == 1) {
1003     SDValue Root = PendingLoads[0];
1004     DAG.setRoot(Root);
1005     PendingLoads.clear();
1006     return Root;
1007   }
1008 
1009   // Otherwise, we have to make a token factor node.
1010   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1011                              PendingLoads);
1012   PendingLoads.clear();
1013   DAG.setRoot(Root);
1014   return Root;
1015 }
1016 
1017 SDValue SelectionDAGBuilder::getControlRoot() {
1018   SDValue Root = DAG.getRoot();
1019 
1020   if (PendingExports.empty())
1021     return Root;
1022 
1023   // Turn all of the CopyToReg chains into one factored node.
1024   if (Root.getOpcode() != ISD::EntryToken) {
1025     unsigned i = 0, e = PendingExports.size();
1026     for (; i != e; ++i) {
1027       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1028       if (PendingExports[i].getNode()->getOperand(0) == Root)
1029         break;  // Don't add the root if we already indirectly depend on it.
1030     }
1031 
1032     if (i == e)
1033       PendingExports.push_back(Root);
1034   }
1035 
1036   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1037                      PendingExports);
1038   PendingExports.clear();
1039   DAG.setRoot(Root);
1040   return Root;
1041 }
1042 
1043 void SelectionDAGBuilder::visit(const Instruction &I) {
1044   // Set up outgoing PHI node register values before emitting the terminator.
1045   if (isa<TerminatorInst>(&I)) {
1046     HandlePHINodesInSuccessorBlocks(I.getParent());
1047   }
1048 
1049   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1050   if (!isa<DbgInfoIntrinsic>(I))
1051     ++SDNodeOrder;
1052 
1053   CurInst = &I;
1054 
1055   visit(I.getOpcode(), I);
1056 
1057   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
1058       !isStatepoint(&I)) // statepoints handle their exports internally
1059     CopyToExportRegsIfNeeded(&I);
1060 
1061   CurInst = nullptr;
1062 }
1063 
1064 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1065   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1066 }
1067 
1068 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1069   // Note: this doesn't use InstVisitor, because it has to work with
1070   // ConstantExpr's in addition to instructions.
1071   switch (Opcode) {
1072   default: llvm_unreachable("Unknown instruction type encountered!");
1073     // Build the switch statement using the Instruction.def file.
1074 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1075     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1076 #include "llvm/IR/Instruction.def"
1077   }
1078 }
1079 
1080 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1081 // generate the debug data structures now that we've seen its definition.
1082 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1083                                                    SDValue Val) {
1084   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1085   if (DDI.getDI()) {
1086     const DbgValueInst *DI = DDI.getDI();
1087     DebugLoc dl = DDI.getdl();
1088     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1089     DILocalVariable *Variable = DI->getVariable();
1090     DIExpression *Expr = DI->getExpression();
1091     assert(Variable->isValidLocationForIntrinsic(dl) &&
1092            "Expected inlined-at fields to agree");
1093     SDDbgValue *SDV;
1094     if (Val.getNode()) {
1095       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1096         SDV = getDbgValue(Val, Variable, Expr, dl, DbgSDNodeOrder);
1097         DAG.AddDbgValue(SDV, Val.getNode(), false);
1098       }
1099     } else
1100       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1101     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1102   }
1103 }
1104 
1105 /// getCopyFromRegs - If there was virtual register allocated for the value V
1106 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1107 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1108   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1109   SDValue Result;
1110 
1111   if (It != FuncInfo.ValueMap.end()) {
1112     unsigned InReg = It->second;
1113 
1114     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1115                      DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V));
1116     SDValue Chain = DAG.getEntryNode();
1117     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1118                                  V);
1119     resolveDanglingDebugInfo(V, Result);
1120   }
1121 
1122   return Result;
1123 }
1124 
1125 /// getValue - Return an SDValue for the given Value.
1126 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1127   // If we already have an SDValue for this value, use it. It's important
1128   // to do this first, so that we don't create a CopyFromReg if we already
1129   // have a regular SDValue.
1130   SDValue &N = NodeMap[V];
1131   if (N.getNode()) return N;
1132 
1133   // If there's a virtual register allocated and initialized for this
1134   // value, use it.
1135   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1136     return copyFromReg;
1137 
1138   // Otherwise create a new SDValue and remember it.
1139   SDValue Val = getValueImpl(V);
1140   NodeMap[V] = Val;
1141   resolveDanglingDebugInfo(V, Val);
1142   return Val;
1143 }
1144 
1145 // Return true if SDValue exists for the given Value
1146 bool SelectionDAGBuilder::findValue(const Value *V) const {
1147   return (NodeMap.find(V) != NodeMap.end()) ||
1148     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1149 }
1150 
1151 /// getNonRegisterValue - Return an SDValue for the given Value, but
1152 /// don't look in FuncInfo.ValueMap for a virtual register.
1153 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1154   // If we already have an SDValue for this value, use it.
1155   SDValue &N = NodeMap[V];
1156   if (N.getNode()) {
1157     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1158       // Remove the debug location from the node as the node is about to be used
1159       // in a location which may differ from the original debug location.  This
1160       // is relevant to Constant and ConstantFP nodes because they can appear
1161       // as constant expressions inside PHI nodes.
1162       N->setDebugLoc(DebugLoc());
1163     }
1164     return N;
1165   }
1166 
1167   // Otherwise create a new SDValue and remember it.
1168   SDValue Val = getValueImpl(V);
1169   NodeMap[V] = Val;
1170   resolveDanglingDebugInfo(V, Val);
1171   return Val;
1172 }
1173 
1174 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1175 /// Create an SDValue for the given value.
1176 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1177   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1178 
1179   if (const Constant *C = dyn_cast<Constant>(V)) {
1180     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1181 
1182     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1183       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1184 
1185     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1186       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1187 
1188     if (isa<ConstantPointerNull>(C)) {
1189       unsigned AS = V->getType()->getPointerAddressSpace();
1190       return DAG.getConstant(0, getCurSDLoc(),
1191                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1192     }
1193 
1194     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1195       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1196 
1197     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1198       return DAG.getUNDEF(VT);
1199 
1200     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1201       visit(CE->getOpcode(), *CE);
1202       SDValue N1 = NodeMap[V];
1203       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1204       return N1;
1205     }
1206 
1207     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1208       SmallVector<SDValue, 4> Constants;
1209       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1210            OI != OE; ++OI) {
1211         SDNode *Val = getValue(*OI).getNode();
1212         // If the operand is an empty aggregate, there are no values.
1213         if (!Val) continue;
1214         // Add each leaf value from the operand to the Constants list
1215         // to form a flattened list of all the values.
1216         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1217           Constants.push_back(SDValue(Val, i));
1218       }
1219 
1220       return DAG.getMergeValues(Constants, getCurSDLoc());
1221     }
1222 
1223     if (const ConstantDataSequential *CDS =
1224           dyn_cast<ConstantDataSequential>(C)) {
1225       SmallVector<SDValue, 4> Ops;
1226       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1227         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1228         // Add each leaf value from the operand to the Constants list
1229         // to form a flattened list of all the values.
1230         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1231           Ops.push_back(SDValue(Val, i));
1232       }
1233 
1234       if (isa<ArrayType>(CDS->getType()))
1235         return DAG.getMergeValues(Ops, getCurSDLoc());
1236       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1237     }
1238 
1239     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1240       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1241              "Unknown struct or array constant!");
1242 
1243       SmallVector<EVT, 4> ValueVTs;
1244       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1245       unsigned NumElts = ValueVTs.size();
1246       if (NumElts == 0)
1247         return SDValue(); // empty struct
1248       SmallVector<SDValue, 4> Constants(NumElts);
1249       for (unsigned i = 0; i != NumElts; ++i) {
1250         EVT EltVT = ValueVTs[i];
1251         if (isa<UndefValue>(C))
1252           Constants[i] = DAG.getUNDEF(EltVT);
1253         else if (EltVT.isFloatingPoint())
1254           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1255         else
1256           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1257       }
1258 
1259       return DAG.getMergeValues(Constants, getCurSDLoc());
1260     }
1261 
1262     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1263       return DAG.getBlockAddress(BA, VT);
1264 
1265     VectorType *VecTy = cast<VectorType>(V->getType());
1266     unsigned NumElements = VecTy->getNumElements();
1267 
1268     // Now that we know the number and type of the elements, get that number of
1269     // elements into the Ops array based on what kind of constant it is.
1270     SmallVector<SDValue, 16> Ops;
1271     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1272       for (unsigned i = 0; i != NumElements; ++i)
1273         Ops.push_back(getValue(CV->getOperand(i)));
1274     } else {
1275       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1276       EVT EltVT =
1277           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1278 
1279       SDValue Op;
1280       if (EltVT.isFloatingPoint())
1281         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1282       else
1283         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1284       Ops.assign(NumElements, Op);
1285     }
1286 
1287     // Create a BUILD_VECTOR node.
1288     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1289   }
1290 
1291   // If this is a static alloca, generate it as the frameindex instead of
1292   // computation.
1293   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1294     DenseMap<const AllocaInst*, int>::iterator SI =
1295       FuncInfo.StaticAllocaMap.find(AI);
1296     if (SI != FuncInfo.StaticAllocaMap.end())
1297       return DAG.getFrameIndex(SI->second,
1298                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1299   }
1300 
1301   // If this is an instruction which fast-isel has deferred, select it now.
1302   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1303     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1304 
1305     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1306                      Inst->getType(), isABIRegCopy(V));
1307     SDValue Chain = DAG.getEntryNode();
1308     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1309   }
1310 
1311   llvm_unreachable("Can't get register for value!");
1312 }
1313 
1314 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1315   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1316   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1317   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1318   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1319   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1320   if (IsMSVCCXX || IsCoreCLR)
1321     CatchPadMBB->setIsEHFuncletEntry();
1322 
1323   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1324 }
1325 
1326 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1327   // Update machine-CFG edge.
1328   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1329   FuncInfo.MBB->addSuccessor(TargetMBB);
1330 
1331   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1332   bool IsSEH = isAsynchronousEHPersonality(Pers);
1333   if (IsSEH) {
1334     // If this is not a fall-through branch or optimizations are switched off,
1335     // emit the branch.
1336     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1337         TM.getOptLevel() == CodeGenOpt::None)
1338       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1339                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1340     return;
1341   }
1342 
1343   // Figure out the funclet membership for the catchret's successor.
1344   // This will be used by the FuncletLayout pass to determine how to order the
1345   // BB's.
1346   // A 'catchret' returns to the outer scope's color.
1347   Value *ParentPad = I.getCatchSwitchParentPad();
1348   const BasicBlock *SuccessorColor;
1349   if (isa<ConstantTokenNone>(ParentPad))
1350     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1351   else
1352     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1353   assert(SuccessorColor && "No parent funclet for catchret!");
1354   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1355   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1356 
1357   // Create the terminator node.
1358   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1359                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1360                             DAG.getBasicBlock(SuccessorColorMBB));
1361   DAG.setRoot(Ret);
1362 }
1363 
1364 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1365   // Don't emit any special code for the cleanuppad instruction. It just marks
1366   // the start of a funclet.
1367   FuncInfo.MBB->setIsEHFuncletEntry();
1368   FuncInfo.MBB->setIsCleanupFuncletEntry();
1369 }
1370 
1371 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1372 /// many places it could ultimately go. In the IR, we have a single unwind
1373 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1374 /// This function skips over imaginary basic blocks that hold catchswitch
1375 /// instructions, and finds all the "real" machine
1376 /// basic block destinations. As those destinations may not be successors of
1377 /// EHPadBB, here we also calculate the edge probability to those destinations.
1378 /// The passed-in Prob is the edge probability to EHPadBB.
1379 static void findUnwindDestinations(
1380     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1381     BranchProbability Prob,
1382     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1383         &UnwindDests) {
1384   EHPersonality Personality =
1385     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1386   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1387   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1388 
1389   while (EHPadBB) {
1390     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1391     BasicBlock *NewEHPadBB = nullptr;
1392     if (isa<LandingPadInst>(Pad)) {
1393       // Stop on landingpads. They are not funclets.
1394       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1395       break;
1396     } else if (isa<CleanupPadInst>(Pad)) {
1397       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1398       // personalities.
1399       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1400       UnwindDests.back().first->setIsEHFuncletEntry();
1401       break;
1402     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1403       // Add the catchpad handlers to the possible destinations.
1404       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1405         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1406         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1407         if (IsMSVCCXX || IsCoreCLR)
1408           UnwindDests.back().first->setIsEHFuncletEntry();
1409       }
1410       NewEHPadBB = CatchSwitch->getUnwindDest();
1411     } else {
1412       continue;
1413     }
1414 
1415     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1416     if (BPI && NewEHPadBB)
1417       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1418     EHPadBB = NewEHPadBB;
1419   }
1420 }
1421 
1422 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1423   // Update successor info.
1424   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1425   auto UnwindDest = I.getUnwindDest();
1426   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1427   BranchProbability UnwindDestProb =
1428       (BPI && UnwindDest)
1429           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1430           : BranchProbability::getZero();
1431   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1432   for (auto &UnwindDest : UnwindDests) {
1433     UnwindDest.first->setIsEHPad();
1434     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1435   }
1436   FuncInfo.MBB->normalizeSuccProbs();
1437 
1438   // Create the terminator node.
1439   SDValue Ret =
1440       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1441   DAG.setRoot(Ret);
1442 }
1443 
1444 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1445   report_fatal_error("visitCatchSwitch not yet implemented!");
1446 }
1447 
1448 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1449   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1450   auto &DL = DAG.getDataLayout();
1451   SDValue Chain = getControlRoot();
1452   SmallVector<ISD::OutputArg, 8> Outs;
1453   SmallVector<SDValue, 8> OutVals;
1454 
1455   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1456   // lower
1457   //
1458   //   %val = call <ty> @llvm.experimental.deoptimize()
1459   //   ret <ty> %val
1460   //
1461   // differently.
1462   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1463     LowerDeoptimizingReturn();
1464     return;
1465   }
1466 
1467   if (!FuncInfo.CanLowerReturn) {
1468     unsigned DemoteReg = FuncInfo.DemoteRegister;
1469     const Function *F = I.getParent()->getParent();
1470 
1471     // Emit a store of the return value through the virtual register.
1472     // Leave Outs empty so that LowerReturn won't try to load return
1473     // registers the usual way.
1474     SmallVector<EVT, 1> PtrValueVTs;
1475     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1476                     PtrValueVTs);
1477 
1478     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1479                                         DemoteReg, PtrValueVTs[0]);
1480     SDValue RetOp = getValue(I.getOperand(0));
1481 
1482     SmallVector<EVT, 4> ValueVTs;
1483     SmallVector<uint64_t, 4> Offsets;
1484     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1485     unsigned NumValues = ValueVTs.size();
1486 
1487     SmallVector<SDValue, 4> Chains(NumValues);
1488     for (unsigned i = 0; i != NumValues; ++i) {
1489       // An aggregate return value cannot wrap around the address space, so
1490       // offsets to its parts don't wrap either.
1491       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1492       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1493                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1494                                // FIXME: better loc info would be nice.
1495                                Ptr, MachinePointerInfo());
1496     }
1497 
1498     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1499                         MVT::Other, Chains);
1500   } else if (I.getNumOperands() != 0) {
1501     SmallVector<EVT, 4> ValueVTs;
1502     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1503     unsigned NumValues = ValueVTs.size();
1504     if (NumValues) {
1505       SDValue RetOp = getValue(I.getOperand(0));
1506 
1507       const Function *F = I.getParent()->getParent();
1508 
1509       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1510       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1511                                           Attribute::SExt))
1512         ExtendKind = ISD::SIGN_EXTEND;
1513       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1514                                                Attribute::ZExt))
1515         ExtendKind = ISD::ZERO_EXTEND;
1516 
1517       LLVMContext &Context = F->getContext();
1518       bool RetInReg = F->getAttributes().hasAttribute(
1519           AttributeList::ReturnIndex, Attribute::InReg);
1520 
1521       for (unsigned j = 0; j != NumValues; ++j) {
1522         EVT VT = ValueVTs[j];
1523 
1524         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1525           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1526 
1527         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT);
1528         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT);
1529         SmallVector<SDValue, 4> Parts(NumParts);
1530         getCopyToParts(DAG, getCurSDLoc(),
1531                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1532                        &Parts[0], NumParts, PartVT, &I, ExtendKind, true);
1533 
1534         // 'inreg' on function refers to return value
1535         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1536         if (RetInReg)
1537           Flags.setInReg();
1538 
1539         // Propagate extension type if any
1540         if (ExtendKind == ISD::SIGN_EXTEND)
1541           Flags.setSExt();
1542         else if (ExtendKind == ISD::ZERO_EXTEND)
1543           Flags.setZExt();
1544 
1545         for (unsigned i = 0; i < NumParts; ++i) {
1546           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1547                                         VT, /*isfixed=*/true, 0, 0));
1548           OutVals.push_back(Parts[i]);
1549         }
1550       }
1551     }
1552   }
1553 
1554   // Push in swifterror virtual register as the last element of Outs. This makes
1555   // sure swifterror virtual register will be returned in the swifterror
1556   // physical register.
1557   const Function *F = I.getParent()->getParent();
1558   if (TLI.supportSwiftError() &&
1559       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1560     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1561     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1562     Flags.setSwiftError();
1563     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1564                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1565                                   true /*isfixed*/, 1 /*origidx*/,
1566                                   0 /*partOffs*/));
1567     // Create SDNode for the swifterror virtual register.
1568     OutVals.push_back(
1569         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1570                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1571                         EVT(TLI.getPointerTy(DL))));
1572   }
1573 
1574   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1575   CallingConv::ID CallConv =
1576     DAG.getMachineFunction().getFunction()->getCallingConv();
1577   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1578       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1579 
1580   // Verify that the target's LowerReturn behaved as expected.
1581   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1582          "LowerReturn didn't return a valid chain!");
1583 
1584   // Update the DAG with the new chain value resulting from return lowering.
1585   DAG.setRoot(Chain);
1586 }
1587 
1588 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1589 /// created for it, emit nodes to copy the value into the virtual
1590 /// registers.
1591 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1592   // Skip empty types
1593   if (V->getType()->isEmptyTy())
1594     return;
1595 
1596   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1597   if (VMI != FuncInfo.ValueMap.end()) {
1598     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1599     CopyValueToVirtualRegister(V, VMI->second);
1600   }
1601 }
1602 
1603 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1604 /// the current basic block, add it to ValueMap now so that we'll get a
1605 /// CopyTo/FromReg.
1606 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1607   // No need to export constants.
1608   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1609 
1610   // Already exported?
1611   if (FuncInfo.isExportedInst(V)) return;
1612 
1613   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1614   CopyValueToVirtualRegister(V, Reg);
1615 }
1616 
1617 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1618                                                      const BasicBlock *FromBB) {
1619   // The operands of the setcc have to be in this block.  We don't know
1620   // how to export them from some other block.
1621   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1622     // Can export from current BB.
1623     if (VI->getParent() == FromBB)
1624       return true;
1625 
1626     // Is already exported, noop.
1627     return FuncInfo.isExportedInst(V);
1628   }
1629 
1630   // If this is an argument, we can export it if the BB is the entry block or
1631   // if it is already exported.
1632   if (isa<Argument>(V)) {
1633     if (FromBB == &FromBB->getParent()->getEntryBlock())
1634       return true;
1635 
1636     // Otherwise, can only export this if it is already exported.
1637     return FuncInfo.isExportedInst(V);
1638   }
1639 
1640   // Otherwise, constants can always be exported.
1641   return true;
1642 }
1643 
1644 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1645 BranchProbability
1646 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1647                                         const MachineBasicBlock *Dst) const {
1648   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1649   const BasicBlock *SrcBB = Src->getBasicBlock();
1650   const BasicBlock *DstBB = Dst->getBasicBlock();
1651   if (!BPI) {
1652     // If BPI is not available, set the default probability as 1 / N, where N is
1653     // the number of successors.
1654     auto SuccSize = std::max<uint32_t>(
1655         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1656     return BranchProbability(1, SuccSize);
1657   }
1658   return BPI->getEdgeProbability(SrcBB, DstBB);
1659 }
1660 
1661 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1662                                                MachineBasicBlock *Dst,
1663                                                BranchProbability Prob) {
1664   if (!FuncInfo.BPI)
1665     Src->addSuccessorWithoutProb(Dst);
1666   else {
1667     if (Prob.isUnknown())
1668       Prob = getEdgeProbability(Src, Dst);
1669     Src->addSuccessor(Dst, Prob);
1670   }
1671 }
1672 
1673 static bool InBlock(const Value *V, const BasicBlock *BB) {
1674   if (const Instruction *I = dyn_cast<Instruction>(V))
1675     return I->getParent() == BB;
1676   return true;
1677 }
1678 
1679 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1680 /// This function emits a branch and is used at the leaves of an OR or an
1681 /// AND operator tree.
1682 void
1683 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1684                                                   MachineBasicBlock *TBB,
1685                                                   MachineBasicBlock *FBB,
1686                                                   MachineBasicBlock *CurBB,
1687                                                   MachineBasicBlock *SwitchBB,
1688                                                   BranchProbability TProb,
1689                                                   BranchProbability FProb,
1690                                                   bool InvertCond) {
1691   const BasicBlock *BB = CurBB->getBasicBlock();
1692 
1693   // If the leaf of the tree is a comparison, merge the condition into
1694   // the caseblock.
1695   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1696     // The operands of the cmp have to be in this block.  We don't know
1697     // how to export them from some other block.  If this is the first block
1698     // of the sequence, no exporting is needed.
1699     if (CurBB == SwitchBB ||
1700         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1701          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1702       ISD::CondCode Condition;
1703       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1704         ICmpInst::Predicate Pred =
1705             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1706         Condition = getICmpCondCode(Pred);
1707       } else {
1708         const FCmpInst *FC = cast<FCmpInst>(Cond);
1709         FCmpInst::Predicate Pred =
1710             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1711         Condition = getFCmpCondCode(Pred);
1712         if (TM.Options.NoNaNsFPMath)
1713           Condition = getFCmpCodeWithoutNaN(Condition);
1714       }
1715 
1716       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1717                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1718       SwitchCases.push_back(CB);
1719       return;
1720     }
1721   }
1722 
1723   // Create a CaseBlock record representing this branch.
1724   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1725   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1726                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1727   SwitchCases.push_back(CB);
1728 }
1729 
1730 /// FindMergedConditions - If Cond is an expression like
1731 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1732                                                MachineBasicBlock *TBB,
1733                                                MachineBasicBlock *FBB,
1734                                                MachineBasicBlock *CurBB,
1735                                                MachineBasicBlock *SwitchBB,
1736                                                Instruction::BinaryOps Opc,
1737                                                BranchProbability TProb,
1738                                                BranchProbability FProb,
1739                                                bool InvertCond) {
1740   // Skip over not part of the tree and remember to invert op and operands at
1741   // next level.
1742   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1743     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1744     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1745       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1746                            !InvertCond);
1747       return;
1748     }
1749   }
1750 
1751   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1752   // Compute the effective opcode for Cond, taking into account whether it needs
1753   // to be inverted, e.g.
1754   //   and (not (or A, B)), C
1755   // gets lowered as
1756   //   and (and (not A, not B), C)
1757   unsigned BOpc = 0;
1758   if (BOp) {
1759     BOpc = BOp->getOpcode();
1760     if (InvertCond) {
1761       if (BOpc == Instruction::And)
1762         BOpc = Instruction::Or;
1763       else if (BOpc == Instruction::Or)
1764         BOpc = Instruction::And;
1765     }
1766   }
1767 
1768   // If this node is not part of the or/and tree, emit it as a branch.
1769   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1770       BOpc != Opc || !BOp->hasOneUse() ||
1771       BOp->getParent() != CurBB->getBasicBlock() ||
1772       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1773       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1774     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1775                                  TProb, FProb, InvertCond);
1776     return;
1777   }
1778 
1779   //  Create TmpBB after CurBB.
1780   MachineFunction::iterator BBI(CurBB);
1781   MachineFunction &MF = DAG.getMachineFunction();
1782   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1783   CurBB->getParent()->insert(++BBI, TmpBB);
1784 
1785   if (Opc == Instruction::Or) {
1786     // Codegen X | Y as:
1787     // BB1:
1788     //   jmp_if_X TBB
1789     //   jmp TmpBB
1790     // TmpBB:
1791     //   jmp_if_Y TBB
1792     //   jmp FBB
1793     //
1794 
1795     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1796     // The requirement is that
1797     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1798     //     = TrueProb for original BB.
1799     // Assuming the original probabilities are A and B, one choice is to set
1800     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1801     // A/(1+B) and 2B/(1+B). This choice assumes that
1802     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1803     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1804     // TmpBB, but the math is more complicated.
1805 
1806     auto NewTrueProb = TProb / 2;
1807     auto NewFalseProb = TProb / 2 + FProb;
1808     // Emit the LHS condition.
1809     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1810                          NewTrueProb, NewFalseProb, InvertCond);
1811 
1812     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1813     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1814     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1815     // Emit the RHS condition into TmpBB.
1816     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1817                          Probs[0], Probs[1], InvertCond);
1818   } else {
1819     assert(Opc == Instruction::And && "Unknown merge op!");
1820     // Codegen X & Y as:
1821     // BB1:
1822     //   jmp_if_X TmpBB
1823     //   jmp FBB
1824     // TmpBB:
1825     //   jmp_if_Y TBB
1826     //   jmp FBB
1827     //
1828     //  This requires creation of TmpBB after CurBB.
1829 
1830     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1831     // The requirement is that
1832     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1833     //     = FalseProb for original BB.
1834     // Assuming the original probabilities are A and B, one choice is to set
1835     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1836     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1837     // TrueProb for BB1 * FalseProb for TmpBB.
1838 
1839     auto NewTrueProb = TProb + FProb / 2;
1840     auto NewFalseProb = FProb / 2;
1841     // Emit the LHS condition.
1842     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1843                          NewTrueProb, NewFalseProb, InvertCond);
1844 
1845     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1846     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1847     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1848     // Emit the RHS condition into TmpBB.
1849     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1850                          Probs[0], Probs[1], InvertCond);
1851   }
1852 }
1853 
1854 /// If the set of cases should be emitted as a series of branches, return true.
1855 /// If we should emit this as a bunch of and/or'd together conditions, return
1856 /// false.
1857 bool
1858 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1859   if (Cases.size() != 2) return true;
1860 
1861   // If this is two comparisons of the same values or'd or and'd together, they
1862   // will get folded into a single comparison, so don't emit two blocks.
1863   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1864        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1865       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1866        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1867     return false;
1868   }
1869 
1870   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1871   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1872   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1873       Cases[0].CC == Cases[1].CC &&
1874       isa<Constant>(Cases[0].CmpRHS) &&
1875       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1876     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1877       return false;
1878     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1879       return false;
1880   }
1881 
1882   return true;
1883 }
1884 
1885 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1886   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1887 
1888   // Update machine-CFG edges.
1889   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1890 
1891   if (I.isUnconditional()) {
1892     // Update machine-CFG edges.
1893     BrMBB->addSuccessor(Succ0MBB);
1894 
1895     // If this is not a fall-through branch or optimizations are switched off,
1896     // emit the branch.
1897     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1898       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1899                               MVT::Other, getControlRoot(),
1900                               DAG.getBasicBlock(Succ0MBB)));
1901 
1902     return;
1903   }
1904 
1905   // If this condition is one of the special cases we handle, do special stuff
1906   // now.
1907   const Value *CondVal = I.getCondition();
1908   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1909 
1910   // If this is a series of conditions that are or'd or and'd together, emit
1911   // this as a sequence of branches instead of setcc's with and/or operations.
1912   // As long as jumps are not expensive, this should improve performance.
1913   // For example, instead of something like:
1914   //     cmp A, B
1915   //     C = seteq
1916   //     cmp D, E
1917   //     F = setle
1918   //     or C, F
1919   //     jnz foo
1920   // Emit:
1921   //     cmp A, B
1922   //     je foo
1923   //     cmp D, E
1924   //     jle foo
1925   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1926     Instruction::BinaryOps Opcode = BOp->getOpcode();
1927     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1928         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1929         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1930       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1931                            Opcode,
1932                            getEdgeProbability(BrMBB, Succ0MBB),
1933                            getEdgeProbability(BrMBB, Succ1MBB),
1934                            /*InvertCond=*/false);
1935       // If the compares in later blocks need to use values not currently
1936       // exported from this block, export them now.  This block should always
1937       // be the first entry.
1938       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1939 
1940       // Allow some cases to be rejected.
1941       if (ShouldEmitAsBranches(SwitchCases)) {
1942         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1943           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1944           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1945         }
1946 
1947         // Emit the branch for this block.
1948         visitSwitchCase(SwitchCases[0], BrMBB);
1949         SwitchCases.erase(SwitchCases.begin());
1950         return;
1951       }
1952 
1953       // Okay, we decided not to do this, remove any inserted MBB's and clear
1954       // SwitchCases.
1955       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1956         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1957 
1958       SwitchCases.clear();
1959     }
1960   }
1961 
1962   // Create a CaseBlock record representing this branch.
1963   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1964                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
1965 
1966   // Use visitSwitchCase to actually insert the fast branch sequence for this
1967   // cond branch.
1968   visitSwitchCase(CB, BrMBB);
1969 }
1970 
1971 /// visitSwitchCase - Emits the necessary code to represent a single node in
1972 /// the binary search tree resulting from lowering a switch instruction.
1973 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1974                                           MachineBasicBlock *SwitchBB) {
1975   SDValue Cond;
1976   SDValue CondLHS = getValue(CB.CmpLHS);
1977   SDLoc dl = CB.DL;
1978 
1979   // Build the setcc now.
1980   if (!CB.CmpMHS) {
1981     // Fold "(X == true)" to X and "(X == false)" to !X to
1982     // handle common cases produced by branch lowering.
1983     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1984         CB.CC == ISD::SETEQ)
1985       Cond = CondLHS;
1986     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1987              CB.CC == ISD::SETEQ) {
1988       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1989       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1990     } else
1991       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1992   } else {
1993     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1994 
1995     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1996     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1997 
1998     SDValue CmpOp = getValue(CB.CmpMHS);
1999     EVT VT = CmpOp.getValueType();
2000 
2001     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2002       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2003                           ISD::SETLE);
2004     } else {
2005       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2006                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2007       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2008                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2009     }
2010   }
2011 
2012   // Update successor info
2013   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2014   // TrueBB and FalseBB are always different unless the incoming IR is
2015   // degenerate. This only happens when running llc on weird IR.
2016   if (CB.TrueBB != CB.FalseBB)
2017     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2018   SwitchBB->normalizeSuccProbs();
2019 
2020   // If the lhs block is the next block, invert the condition so that we can
2021   // fall through to the lhs instead of the rhs block.
2022   if (CB.TrueBB == NextBlock(SwitchBB)) {
2023     std::swap(CB.TrueBB, CB.FalseBB);
2024     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2025     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2026   }
2027 
2028   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2029                                MVT::Other, getControlRoot(), Cond,
2030                                DAG.getBasicBlock(CB.TrueBB));
2031 
2032   // Insert the false branch. Do this even if it's a fall through branch,
2033   // this makes it easier to do DAG optimizations which require inverting
2034   // the branch condition.
2035   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2036                        DAG.getBasicBlock(CB.FalseBB));
2037 
2038   DAG.setRoot(BrCond);
2039 }
2040 
2041 /// visitJumpTable - Emit JumpTable node in the current MBB
2042 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2043   // Emit the code for the jump table
2044   assert(JT.Reg != -1U && "Should lower JT Header first!");
2045   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2046   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2047                                      JT.Reg, PTy);
2048   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2049   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2050                                     MVT::Other, Index.getValue(1),
2051                                     Table, Index);
2052   DAG.setRoot(BrJumpTable);
2053 }
2054 
2055 /// visitJumpTableHeader - This function emits necessary code to produce index
2056 /// in the JumpTable from switch case.
2057 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2058                                                JumpTableHeader &JTH,
2059                                                MachineBasicBlock *SwitchBB) {
2060   SDLoc dl = getCurSDLoc();
2061 
2062   // Subtract the lowest switch case value from the value being switched on and
2063   // conditional branch to default mbb if the result is greater than the
2064   // difference between smallest and largest cases.
2065   SDValue SwitchOp = getValue(JTH.SValue);
2066   EVT VT = SwitchOp.getValueType();
2067   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2068                             DAG.getConstant(JTH.First, dl, VT));
2069 
2070   // The SDNode we just created, which holds the value being switched on minus
2071   // the smallest case value, needs to be copied to a virtual register so it
2072   // can be used as an index into the jump table in a subsequent basic block.
2073   // This value may be smaller or larger than the target's pointer type, and
2074   // therefore require extension or truncating.
2075   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2076   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2077 
2078   unsigned JumpTableReg =
2079       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2080   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2081                                     JumpTableReg, SwitchOp);
2082   JT.Reg = JumpTableReg;
2083 
2084   // Emit the range check for the jump table, and branch to the default block
2085   // for the switch statement if the value being switched on exceeds the largest
2086   // case in the switch.
2087   SDValue CMP = DAG.getSetCC(
2088       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2089                                  Sub.getValueType()),
2090       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2091 
2092   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2093                                MVT::Other, CopyTo, CMP,
2094                                DAG.getBasicBlock(JT.Default));
2095 
2096   // Avoid emitting unnecessary branches to the next block.
2097   if (JT.MBB != NextBlock(SwitchBB))
2098     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2099                          DAG.getBasicBlock(JT.MBB));
2100 
2101   DAG.setRoot(BrCond);
2102 }
2103 
2104 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2105 /// variable if there exists one.
2106 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2107                                  SDValue &Chain) {
2108   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2109   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2110   MachineFunction &MF = DAG.getMachineFunction();
2111   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2112   MachineSDNode *Node =
2113       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2114   if (Global) {
2115     MachinePointerInfo MPInfo(Global);
2116     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2117     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2118                  MachineMemOperand::MODereferenceable;
2119     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2120                                        DAG.getEVTAlignment(PtrTy));
2121     Node->setMemRefs(MemRefs, MemRefs + 1);
2122   }
2123   return SDValue(Node, 0);
2124 }
2125 
2126 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2127 /// tail spliced into a stack protector check success bb.
2128 ///
2129 /// For a high level explanation of how this fits into the stack protector
2130 /// generation see the comment on the declaration of class
2131 /// StackProtectorDescriptor.
2132 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2133                                                   MachineBasicBlock *ParentBB) {
2134 
2135   // First create the loads to the guard/stack slot for the comparison.
2136   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2137   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2138 
2139   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2140   int FI = MFI.getStackProtectorIndex();
2141 
2142   SDValue Guard;
2143   SDLoc dl = getCurSDLoc();
2144   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2145   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2146   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2147 
2148   // Generate code to load the content of the guard slot.
2149   SDValue StackSlot = DAG.getLoad(
2150       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2151       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2152       MachineMemOperand::MOVolatile);
2153 
2154   // Retrieve guard check function, nullptr if instrumentation is inlined.
2155   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2156     // The target provides a guard check function to validate the guard value.
2157     // Generate a call to that function with the content of the guard slot as
2158     // argument.
2159     auto *Fn = cast<Function>(GuardCheck);
2160     FunctionType *FnTy = Fn->getFunctionType();
2161     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2162 
2163     TargetLowering::ArgListTy Args;
2164     TargetLowering::ArgListEntry Entry;
2165     Entry.Node = StackSlot;
2166     Entry.Ty = FnTy->getParamType(0);
2167     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2168       Entry.IsInReg = true;
2169     Args.push_back(Entry);
2170 
2171     TargetLowering::CallLoweringInfo CLI(DAG);
2172     CLI.setDebugLoc(getCurSDLoc())
2173       .setChain(DAG.getEntryNode())
2174       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2175                  getValue(GuardCheck), std::move(Args));
2176 
2177     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2178     DAG.setRoot(Result.second);
2179     return;
2180   }
2181 
2182   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2183   // Otherwise, emit a volatile load to retrieve the stack guard value.
2184   SDValue Chain = DAG.getEntryNode();
2185   if (TLI.useLoadStackGuardNode()) {
2186     Guard = getLoadStackGuard(DAG, dl, Chain);
2187   } else {
2188     const Value *IRGuard = TLI.getSDagStackGuard(M);
2189     SDValue GuardPtr = getValue(IRGuard);
2190 
2191     Guard =
2192         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2193                     Align, MachineMemOperand::MOVolatile);
2194   }
2195 
2196   // Perform the comparison via a subtract/getsetcc.
2197   EVT VT = Guard.getValueType();
2198   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2199 
2200   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2201                                                         *DAG.getContext(),
2202                                                         Sub.getValueType()),
2203                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2204 
2205   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2206   // branch to failure MBB.
2207   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2208                                MVT::Other, StackSlot.getOperand(0),
2209                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2210   // Otherwise branch to success MBB.
2211   SDValue Br = DAG.getNode(ISD::BR, dl,
2212                            MVT::Other, BrCond,
2213                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2214 
2215   DAG.setRoot(Br);
2216 }
2217 
2218 /// Codegen the failure basic block for a stack protector check.
2219 ///
2220 /// A failure stack protector machine basic block consists simply of a call to
2221 /// __stack_chk_fail().
2222 ///
2223 /// For a high level explanation of how this fits into the stack protector
2224 /// generation see the comment on the declaration of class
2225 /// StackProtectorDescriptor.
2226 void
2227 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2228   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2229   SDValue Chain =
2230       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2231                       None, false, getCurSDLoc(), false, false).second;
2232   DAG.setRoot(Chain);
2233 }
2234 
2235 /// visitBitTestHeader - This function emits necessary code to produce value
2236 /// suitable for "bit tests"
2237 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2238                                              MachineBasicBlock *SwitchBB) {
2239   SDLoc dl = getCurSDLoc();
2240 
2241   // Subtract the minimum value
2242   SDValue SwitchOp = getValue(B.SValue);
2243   EVT VT = SwitchOp.getValueType();
2244   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2245                             DAG.getConstant(B.First, dl, VT));
2246 
2247   // Check range
2248   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2249   SDValue RangeCmp = DAG.getSetCC(
2250       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2251                                  Sub.getValueType()),
2252       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2253 
2254   // Determine the type of the test operands.
2255   bool UsePtrType = false;
2256   if (!TLI.isTypeLegal(VT))
2257     UsePtrType = true;
2258   else {
2259     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2260       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2261         // Switch table case range are encoded into series of masks.
2262         // Just use pointer type, it's guaranteed to fit.
2263         UsePtrType = true;
2264         break;
2265       }
2266   }
2267   if (UsePtrType) {
2268     VT = TLI.getPointerTy(DAG.getDataLayout());
2269     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2270   }
2271 
2272   B.RegVT = VT.getSimpleVT();
2273   B.Reg = FuncInfo.CreateReg(B.RegVT);
2274   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2275 
2276   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2277 
2278   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2279   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2280   SwitchBB->normalizeSuccProbs();
2281 
2282   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2283                                 MVT::Other, CopyTo, RangeCmp,
2284                                 DAG.getBasicBlock(B.Default));
2285 
2286   // Avoid emitting unnecessary branches to the next block.
2287   if (MBB != NextBlock(SwitchBB))
2288     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2289                           DAG.getBasicBlock(MBB));
2290 
2291   DAG.setRoot(BrRange);
2292 }
2293 
2294 /// visitBitTestCase - this function produces one "bit test"
2295 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2296                                            MachineBasicBlock* NextMBB,
2297                                            BranchProbability BranchProbToNext,
2298                                            unsigned Reg,
2299                                            BitTestCase &B,
2300                                            MachineBasicBlock *SwitchBB) {
2301   SDLoc dl = getCurSDLoc();
2302   MVT VT = BB.RegVT;
2303   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2304   SDValue Cmp;
2305   unsigned PopCount = countPopulation(B.Mask);
2306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2307   if (PopCount == 1) {
2308     // Testing for a single bit; just compare the shift count with what it
2309     // would need to be to shift a 1 bit in that position.
2310     Cmp = DAG.getSetCC(
2311         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2312         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2313         ISD::SETEQ);
2314   } else if (PopCount == BB.Range) {
2315     // There is only one zero bit in the range, test for it directly.
2316     Cmp = DAG.getSetCC(
2317         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2318         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2319         ISD::SETNE);
2320   } else {
2321     // Make desired shift
2322     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2323                                     DAG.getConstant(1, dl, VT), ShiftOp);
2324 
2325     // Emit bit tests and jumps
2326     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2327                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2328     Cmp = DAG.getSetCC(
2329         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2330         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2331   }
2332 
2333   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2334   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2335   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2336   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2337   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2338   // one as they are relative probabilities (and thus work more like weights),
2339   // and hence we need to normalize them to let the sum of them become one.
2340   SwitchBB->normalizeSuccProbs();
2341 
2342   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2343                               MVT::Other, getControlRoot(),
2344                               Cmp, DAG.getBasicBlock(B.TargetBB));
2345 
2346   // Avoid emitting unnecessary branches to the next block.
2347   if (NextMBB != NextBlock(SwitchBB))
2348     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2349                         DAG.getBasicBlock(NextMBB));
2350 
2351   DAG.setRoot(BrAnd);
2352 }
2353 
2354 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2355   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2356 
2357   // Retrieve successors. Look through artificial IR level blocks like
2358   // catchswitch for successors.
2359   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2360   const BasicBlock *EHPadBB = I.getSuccessor(1);
2361 
2362   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2363   // have to do anything here to lower funclet bundles.
2364   assert(!I.hasOperandBundlesOtherThan(
2365              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2366          "Cannot lower invokes with arbitrary operand bundles yet!");
2367 
2368   const Value *Callee(I.getCalledValue());
2369   const Function *Fn = dyn_cast<Function>(Callee);
2370   if (isa<InlineAsm>(Callee))
2371     visitInlineAsm(&I);
2372   else if (Fn && Fn->isIntrinsic()) {
2373     switch (Fn->getIntrinsicID()) {
2374     default:
2375       llvm_unreachable("Cannot invoke this intrinsic");
2376     case Intrinsic::donothing:
2377       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2378       break;
2379     case Intrinsic::experimental_patchpoint_void:
2380     case Intrinsic::experimental_patchpoint_i64:
2381       visitPatchpoint(&I, EHPadBB);
2382       break;
2383     case Intrinsic::experimental_gc_statepoint:
2384       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2385       break;
2386     }
2387   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2388     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2389     // Eventually we will support lowering the @llvm.experimental.deoptimize
2390     // intrinsic, and right now there are no plans to support other intrinsics
2391     // with deopt state.
2392     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2393   } else {
2394     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2395   }
2396 
2397   // If the value of the invoke is used outside of its defining block, make it
2398   // available as a virtual register.
2399   // We already took care of the exported value for the statepoint instruction
2400   // during call to the LowerStatepoint.
2401   if (!isStatepoint(I)) {
2402     CopyToExportRegsIfNeeded(&I);
2403   }
2404 
2405   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2406   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2407   BranchProbability EHPadBBProb =
2408       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2409           : BranchProbability::getZero();
2410   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2411 
2412   // Update successor info.
2413   addSuccessorWithProb(InvokeMBB, Return);
2414   for (auto &UnwindDest : UnwindDests) {
2415     UnwindDest.first->setIsEHPad();
2416     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2417   }
2418   InvokeMBB->normalizeSuccProbs();
2419 
2420   // Drop into normal successor.
2421   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2422                           MVT::Other, getControlRoot(),
2423                           DAG.getBasicBlock(Return)));
2424 }
2425 
2426 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2427   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2428 }
2429 
2430 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2431   assert(FuncInfo.MBB->isEHPad() &&
2432          "Call to landingpad not in landing pad!");
2433 
2434   MachineBasicBlock *MBB = FuncInfo.MBB;
2435   addLandingPadInfo(LP, *MBB);
2436 
2437   // If there aren't registers to copy the values into (e.g., during SjLj
2438   // exceptions), then don't bother to create these DAG nodes.
2439   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2440   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2441   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2442       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2443     return;
2444 
2445   // If landingpad's return type is token type, we don't create DAG nodes
2446   // for its exception pointer and selector value. The extraction of exception
2447   // pointer or selector value from token type landingpads is not currently
2448   // supported.
2449   if (LP.getType()->isTokenTy())
2450     return;
2451 
2452   SmallVector<EVT, 2> ValueVTs;
2453   SDLoc dl = getCurSDLoc();
2454   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2455   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2456 
2457   // Get the two live-in registers as SDValues. The physregs have already been
2458   // copied into virtual registers.
2459   SDValue Ops[2];
2460   if (FuncInfo.ExceptionPointerVirtReg) {
2461     Ops[0] = DAG.getZExtOrTrunc(
2462         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2463                            FuncInfo.ExceptionPointerVirtReg,
2464                            TLI.getPointerTy(DAG.getDataLayout())),
2465         dl, ValueVTs[0]);
2466   } else {
2467     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2468   }
2469   Ops[1] = DAG.getZExtOrTrunc(
2470       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2471                          FuncInfo.ExceptionSelectorVirtReg,
2472                          TLI.getPointerTy(DAG.getDataLayout())),
2473       dl, ValueVTs[1]);
2474 
2475   // Merge into one.
2476   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2477                             DAG.getVTList(ValueVTs), Ops);
2478   setValue(&LP, Res);
2479 }
2480 
2481 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2482 #ifndef NDEBUG
2483   for (const CaseCluster &CC : Clusters)
2484     assert(CC.Low == CC.High && "Input clusters must be single-case");
2485 #endif
2486 
2487   std::sort(Clusters.begin(), Clusters.end(),
2488             [](const CaseCluster &a, const CaseCluster &b) {
2489     return a.Low->getValue().slt(b.Low->getValue());
2490   });
2491 
2492   // Merge adjacent clusters with the same destination.
2493   const unsigned N = Clusters.size();
2494   unsigned DstIndex = 0;
2495   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2496     CaseCluster &CC = Clusters[SrcIndex];
2497     const ConstantInt *CaseVal = CC.Low;
2498     MachineBasicBlock *Succ = CC.MBB;
2499 
2500     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2501         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2502       // If this case has the same successor and is a neighbour, merge it into
2503       // the previous cluster.
2504       Clusters[DstIndex - 1].High = CaseVal;
2505       Clusters[DstIndex - 1].Prob += CC.Prob;
2506     } else {
2507       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2508                    sizeof(Clusters[SrcIndex]));
2509     }
2510   }
2511   Clusters.resize(DstIndex);
2512 }
2513 
2514 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2515                                            MachineBasicBlock *Last) {
2516   // Update JTCases.
2517   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2518     if (JTCases[i].first.HeaderBB == First)
2519       JTCases[i].first.HeaderBB = Last;
2520 
2521   // Update BitTestCases.
2522   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2523     if (BitTestCases[i].Parent == First)
2524       BitTestCases[i].Parent = Last;
2525 }
2526 
2527 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2528   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2529 
2530   // Update machine-CFG edges with unique successors.
2531   SmallSet<BasicBlock*, 32> Done;
2532   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2533     BasicBlock *BB = I.getSuccessor(i);
2534     bool Inserted = Done.insert(BB).second;
2535     if (!Inserted)
2536         continue;
2537 
2538     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2539     addSuccessorWithProb(IndirectBrMBB, Succ);
2540   }
2541   IndirectBrMBB->normalizeSuccProbs();
2542 
2543   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2544                           MVT::Other, getControlRoot(),
2545                           getValue(I.getAddress())));
2546 }
2547 
2548 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2549   if (DAG.getTarget().Options.TrapUnreachable)
2550     DAG.setRoot(
2551         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2552 }
2553 
2554 void SelectionDAGBuilder::visitFSub(const User &I) {
2555   // -0.0 - X --> fneg
2556   Type *Ty = I.getType();
2557   if (isa<Constant>(I.getOperand(0)) &&
2558       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2559     SDValue Op2 = getValue(I.getOperand(1));
2560     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2561                              Op2.getValueType(), Op2));
2562     return;
2563   }
2564 
2565   visitBinary(I, ISD::FSUB);
2566 }
2567 
2568 /// Checks if the given instruction performs a vector reduction, in which case
2569 /// we have the freedom to alter the elements in the result as long as the
2570 /// reduction of them stays unchanged.
2571 static bool isVectorReductionOp(const User *I) {
2572   const Instruction *Inst = dyn_cast<Instruction>(I);
2573   if (!Inst || !Inst->getType()->isVectorTy())
2574     return false;
2575 
2576   auto OpCode = Inst->getOpcode();
2577   switch (OpCode) {
2578   case Instruction::Add:
2579   case Instruction::Mul:
2580   case Instruction::And:
2581   case Instruction::Or:
2582   case Instruction::Xor:
2583     break;
2584   case Instruction::FAdd:
2585   case Instruction::FMul:
2586     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2587       if (FPOp->getFastMathFlags().isFast())
2588         break;
2589     LLVM_FALLTHROUGH;
2590   default:
2591     return false;
2592   }
2593 
2594   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2595   unsigned ElemNumToReduce = ElemNum;
2596 
2597   // Do DFS search on the def-use chain from the given instruction. We only
2598   // allow four kinds of operations during the search until we reach the
2599   // instruction that extracts the first element from the vector:
2600   //
2601   //   1. The reduction operation of the same opcode as the given instruction.
2602   //
2603   //   2. PHI node.
2604   //
2605   //   3. ShuffleVector instruction together with a reduction operation that
2606   //      does a partial reduction.
2607   //
2608   //   4. ExtractElement that extracts the first element from the vector, and we
2609   //      stop searching the def-use chain here.
2610   //
2611   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2612   // from 1-3 to the stack to continue the DFS. The given instruction is not
2613   // a reduction operation if we meet any other instructions other than those
2614   // listed above.
2615 
2616   SmallVector<const User *, 16> UsersToVisit{Inst};
2617   SmallPtrSet<const User *, 16> Visited;
2618   bool ReduxExtracted = false;
2619 
2620   while (!UsersToVisit.empty()) {
2621     auto User = UsersToVisit.back();
2622     UsersToVisit.pop_back();
2623     if (!Visited.insert(User).second)
2624       continue;
2625 
2626     for (const auto &U : User->users()) {
2627       auto Inst = dyn_cast<Instruction>(U);
2628       if (!Inst)
2629         return false;
2630 
2631       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2632         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2633           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2634             return false;
2635         UsersToVisit.push_back(U);
2636       } else if (const ShuffleVectorInst *ShufInst =
2637                      dyn_cast<ShuffleVectorInst>(U)) {
2638         // Detect the following pattern: A ShuffleVector instruction together
2639         // with a reduction that do partial reduction on the first and second
2640         // ElemNumToReduce / 2 elements, and store the result in
2641         // ElemNumToReduce / 2 elements in another vector.
2642 
2643         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2644         if (ResultElements < ElemNum)
2645           return false;
2646 
2647         if (ElemNumToReduce == 1)
2648           return false;
2649         if (!isa<UndefValue>(U->getOperand(1)))
2650           return false;
2651         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2652           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2653             return false;
2654         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2655           if (ShufInst->getMaskValue(i) != -1)
2656             return false;
2657 
2658         // There is only one user of this ShuffleVector instruction, which
2659         // must be a reduction operation.
2660         if (!U->hasOneUse())
2661           return false;
2662 
2663         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2664         if (!U2 || U2->getOpcode() != OpCode)
2665           return false;
2666 
2667         // Check operands of the reduction operation.
2668         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2669             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2670           UsersToVisit.push_back(U2);
2671           ElemNumToReduce /= 2;
2672         } else
2673           return false;
2674       } else if (isa<ExtractElementInst>(U)) {
2675         // At this moment we should have reduced all elements in the vector.
2676         if (ElemNumToReduce != 1)
2677           return false;
2678 
2679         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2680         if (!Val || Val->getZExtValue() != 0)
2681           return false;
2682 
2683         ReduxExtracted = true;
2684       } else
2685         return false;
2686     }
2687   }
2688   return ReduxExtracted;
2689 }
2690 
2691 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2692   SDValue Op1 = getValue(I.getOperand(0));
2693   SDValue Op2 = getValue(I.getOperand(1));
2694 
2695   bool nuw = false;
2696   bool nsw = false;
2697   bool exact = false;
2698   bool vec_redux = false;
2699   FastMathFlags FMF;
2700 
2701   if (const OverflowingBinaryOperator *OFBinOp =
2702           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2703     nuw = OFBinOp->hasNoUnsignedWrap();
2704     nsw = OFBinOp->hasNoSignedWrap();
2705   }
2706   if (const PossiblyExactOperator *ExactOp =
2707           dyn_cast<const PossiblyExactOperator>(&I))
2708     exact = ExactOp->isExact();
2709   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2710     FMF = FPOp->getFastMathFlags();
2711 
2712   if (isVectorReductionOp(&I)) {
2713     vec_redux = true;
2714     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2715   }
2716 
2717   SDNodeFlags Flags;
2718   Flags.setExact(exact);
2719   Flags.setNoSignedWrap(nsw);
2720   Flags.setNoUnsignedWrap(nuw);
2721   Flags.setVectorReduction(vec_redux);
2722   Flags.setAllowReciprocal(FMF.allowReciprocal());
2723   Flags.setAllowContract(FMF.allowContract());
2724   Flags.setNoInfs(FMF.noInfs());
2725   Flags.setNoNaNs(FMF.noNaNs());
2726   Flags.setNoSignedZeros(FMF.noSignedZeros());
2727   Flags.setUnsafeAlgebra(FMF.isFast());
2728 
2729   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2730                                      Op1, Op2, Flags);
2731   setValue(&I, BinNodeValue);
2732 }
2733 
2734 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2735   SDValue Op1 = getValue(I.getOperand(0));
2736   SDValue Op2 = getValue(I.getOperand(1));
2737 
2738   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2739       Op2.getValueType(), DAG.getDataLayout());
2740 
2741   // Coerce the shift amount to the right type if we can.
2742   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2743     unsigned ShiftSize = ShiftTy.getSizeInBits();
2744     unsigned Op2Size = Op2.getValueSizeInBits();
2745     SDLoc DL = getCurSDLoc();
2746 
2747     // If the operand is smaller than the shift count type, promote it.
2748     if (ShiftSize > Op2Size)
2749       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2750 
2751     // If the operand is larger than the shift count type but the shift
2752     // count type has enough bits to represent any shift value, truncate
2753     // it now. This is a common case and it exposes the truncate to
2754     // optimization early.
2755     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2756       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2757     // Otherwise we'll need to temporarily settle for some other convenient
2758     // type.  Type legalization will make adjustments once the shiftee is split.
2759     else
2760       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2761   }
2762 
2763   bool nuw = false;
2764   bool nsw = false;
2765   bool exact = false;
2766 
2767   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2768 
2769     if (const OverflowingBinaryOperator *OFBinOp =
2770             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2771       nuw = OFBinOp->hasNoUnsignedWrap();
2772       nsw = OFBinOp->hasNoSignedWrap();
2773     }
2774     if (const PossiblyExactOperator *ExactOp =
2775             dyn_cast<const PossiblyExactOperator>(&I))
2776       exact = ExactOp->isExact();
2777   }
2778   SDNodeFlags Flags;
2779   Flags.setExact(exact);
2780   Flags.setNoSignedWrap(nsw);
2781   Flags.setNoUnsignedWrap(nuw);
2782   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2783                             Flags);
2784   setValue(&I, Res);
2785 }
2786 
2787 void SelectionDAGBuilder::visitSDiv(const User &I) {
2788   SDValue Op1 = getValue(I.getOperand(0));
2789   SDValue Op2 = getValue(I.getOperand(1));
2790 
2791   SDNodeFlags Flags;
2792   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2793                  cast<PossiblyExactOperator>(&I)->isExact());
2794   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2795                            Op2, Flags));
2796 }
2797 
2798 void SelectionDAGBuilder::visitICmp(const User &I) {
2799   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2800   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2801     predicate = IC->getPredicate();
2802   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2803     predicate = ICmpInst::Predicate(IC->getPredicate());
2804   SDValue Op1 = getValue(I.getOperand(0));
2805   SDValue Op2 = getValue(I.getOperand(1));
2806   ISD::CondCode Opcode = getICmpCondCode(predicate);
2807 
2808   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2809                                                         I.getType());
2810   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2811 }
2812 
2813 void SelectionDAGBuilder::visitFCmp(const User &I) {
2814   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2815   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2816     predicate = FC->getPredicate();
2817   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2818     predicate = FCmpInst::Predicate(FC->getPredicate());
2819   SDValue Op1 = getValue(I.getOperand(0));
2820   SDValue Op2 = getValue(I.getOperand(1));
2821   ISD::CondCode Condition = getFCmpCondCode(predicate);
2822 
2823   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2824   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2825   // further optimization, but currently FMF is only applicable to binary nodes.
2826   if (TM.Options.NoNaNsFPMath)
2827     Condition = getFCmpCodeWithoutNaN(Condition);
2828   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2829                                                         I.getType());
2830   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2831 }
2832 
2833 // Check if the condition of the select has one use or two users that are both
2834 // selects with the same condition.
2835 static bool hasOnlySelectUsers(const Value *Cond) {
2836   return llvm::all_of(Cond->users(), [](const Value *V) {
2837     return isa<SelectInst>(V);
2838   });
2839 }
2840 
2841 void SelectionDAGBuilder::visitSelect(const User &I) {
2842   SmallVector<EVT, 4> ValueVTs;
2843   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2844                   ValueVTs);
2845   unsigned NumValues = ValueVTs.size();
2846   if (NumValues == 0) return;
2847 
2848   SmallVector<SDValue, 4> Values(NumValues);
2849   SDValue Cond     = getValue(I.getOperand(0));
2850   SDValue LHSVal   = getValue(I.getOperand(1));
2851   SDValue RHSVal   = getValue(I.getOperand(2));
2852   auto BaseOps = {Cond};
2853   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2854     ISD::VSELECT : ISD::SELECT;
2855 
2856   // Min/max matching is only viable if all output VTs are the same.
2857   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2858     EVT VT = ValueVTs[0];
2859     LLVMContext &Ctx = *DAG.getContext();
2860     auto &TLI = DAG.getTargetLoweringInfo();
2861 
2862     // We care about the legality of the operation after it has been type
2863     // legalized.
2864     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2865            VT != TLI.getTypeToTransformTo(Ctx, VT))
2866       VT = TLI.getTypeToTransformTo(Ctx, VT);
2867 
2868     // If the vselect is legal, assume we want to leave this as a vector setcc +
2869     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2870     // min/max is legal on the scalar type.
2871     bool UseScalarMinMax = VT.isVector() &&
2872       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2873 
2874     Value *LHS, *RHS;
2875     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2876     ISD::NodeType Opc = ISD::DELETED_NODE;
2877     switch (SPR.Flavor) {
2878     case SPF_UMAX:    Opc = ISD::UMAX; break;
2879     case SPF_UMIN:    Opc = ISD::UMIN; break;
2880     case SPF_SMAX:    Opc = ISD::SMAX; break;
2881     case SPF_SMIN:    Opc = ISD::SMIN; break;
2882     case SPF_FMINNUM:
2883       switch (SPR.NaNBehavior) {
2884       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2885       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2886       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2887       case SPNB_RETURNS_ANY: {
2888         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2889           Opc = ISD::FMINNUM;
2890         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2891           Opc = ISD::FMINNAN;
2892         else if (UseScalarMinMax)
2893           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2894             ISD::FMINNUM : ISD::FMINNAN;
2895         break;
2896       }
2897       }
2898       break;
2899     case SPF_FMAXNUM:
2900       switch (SPR.NaNBehavior) {
2901       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2902       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2903       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2904       case SPNB_RETURNS_ANY:
2905 
2906         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2907           Opc = ISD::FMAXNUM;
2908         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2909           Opc = ISD::FMAXNAN;
2910         else if (UseScalarMinMax)
2911           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2912             ISD::FMAXNUM : ISD::FMAXNAN;
2913         break;
2914       }
2915       break;
2916     default: break;
2917     }
2918 
2919     if (Opc != ISD::DELETED_NODE &&
2920         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2921          (UseScalarMinMax &&
2922           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2923         // If the underlying comparison instruction is used by any other
2924         // instruction, the consumed instructions won't be destroyed, so it is
2925         // not profitable to convert to a min/max.
2926         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2927       OpCode = Opc;
2928       LHSVal = getValue(LHS);
2929       RHSVal = getValue(RHS);
2930       BaseOps = {};
2931     }
2932   }
2933 
2934   for (unsigned i = 0; i != NumValues; ++i) {
2935     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2936     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2937     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2938     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2939                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2940                             Ops);
2941   }
2942 
2943   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2944                            DAG.getVTList(ValueVTs), Values));
2945 }
2946 
2947 void SelectionDAGBuilder::visitTrunc(const User &I) {
2948   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2949   SDValue N = getValue(I.getOperand(0));
2950   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2951                                                         I.getType());
2952   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2953 }
2954 
2955 void SelectionDAGBuilder::visitZExt(const User &I) {
2956   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2957   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2958   SDValue N = getValue(I.getOperand(0));
2959   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2960                                                         I.getType());
2961   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2962 }
2963 
2964 void SelectionDAGBuilder::visitSExt(const User &I) {
2965   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2966   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2967   SDValue N = getValue(I.getOperand(0));
2968   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2969                                                         I.getType());
2970   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2971 }
2972 
2973 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2974   // FPTrunc is never a no-op cast, no need to check
2975   SDValue N = getValue(I.getOperand(0));
2976   SDLoc dl = getCurSDLoc();
2977   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2978   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2979   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2980                            DAG.getTargetConstant(
2981                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2982 }
2983 
2984 void SelectionDAGBuilder::visitFPExt(const User &I) {
2985   // FPExt is never a no-op cast, no need to check
2986   SDValue N = getValue(I.getOperand(0));
2987   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2988                                                         I.getType());
2989   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2990 }
2991 
2992 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2993   // FPToUI is never a no-op cast, no need to check
2994   SDValue N = getValue(I.getOperand(0));
2995   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2996                                                         I.getType());
2997   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2998 }
2999 
3000 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3001   // FPToSI is never a no-op cast, no need to check
3002   SDValue N = getValue(I.getOperand(0));
3003   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3004                                                         I.getType());
3005   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3006 }
3007 
3008 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3009   // UIToFP is never a no-op cast, no need to check
3010   SDValue N = getValue(I.getOperand(0));
3011   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3012                                                         I.getType());
3013   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3014 }
3015 
3016 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3017   // SIToFP is never a no-op cast, no need to check
3018   SDValue N = getValue(I.getOperand(0));
3019   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3020                                                         I.getType());
3021   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3022 }
3023 
3024 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3025   // What to do depends on the size of the integer and the size of the pointer.
3026   // We can either truncate, zero extend, or no-op, accordingly.
3027   SDValue N = getValue(I.getOperand(0));
3028   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3029                                                         I.getType());
3030   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3031 }
3032 
3033 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3034   // What to do depends on the size of the integer and the size of the pointer.
3035   // We can either truncate, zero extend, or no-op, accordingly.
3036   SDValue N = getValue(I.getOperand(0));
3037   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3038                                                         I.getType());
3039   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3040 }
3041 
3042 void SelectionDAGBuilder::visitBitCast(const User &I) {
3043   SDValue N = getValue(I.getOperand(0));
3044   SDLoc dl = getCurSDLoc();
3045   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3046                                                         I.getType());
3047 
3048   // BitCast assures us that source and destination are the same size so this is
3049   // either a BITCAST or a no-op.
3050   if (DestVT != N.getValueType())
3051     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3052                              DestVT, N)); // convert types.
3053   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3054   // might fold any kind of constant expression to an integer constant and that
3055   // is not what we are looking for. Only recognize a bitcast of a genuine
3056   // constant integer as an opaque constant.
3057   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3058     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3059                                  /*isOpaque*/true));
3060   else
3061     setValue(&I, N);            // noop cast.
3062 }
3063 
3064 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3066   const Value *SV = I.getOperand(0);
3067   SDValue N = getValue(SV);
3068   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3069 
3070   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3071   unsigned DestAS = I.getType()->getPointerAddressSpace();
3072 
3073   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3074     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3075 
3076   setValue(&I, N);
3077 }
3078 
3079 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3080   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3081   SDValue InVec = getValue(I.getOperand(0));
3082   SDValue InVal = getValue(I.getOperand(1));
3083   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3084                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3085   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3086                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3087                            InVec, InVal, InIdx));
3088 }
3089 
3090 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3091   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3092   SDValue InVec = getValue(I.getOperand(0));
3093   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3094                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3095   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3096                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3097                            InVec, InIdx));
3098 }
3099 
3100 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3101   SDValue Src1 = getValue(I.getOperand(0));
3102   SDValue Src2 = getValue(I.getOperand(1));
3103   SDLoc DL = getCurSDLoc();
3104 
3105   SmallVector<int, 8> Mask;
3106   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3107   unsigned MaskNumElts = Mask.size();
3108 
3109   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3110   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3111   EVT SrcVT = Src1.getValueType();
3112   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3113 
3114   if (SrcNumElts == MaskNumElts) {
3115     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3116     return;
3117   }
3118 
3119   // Normalize the shuffle vector since mask and vector length don't match.
3120   if (SrcNumElts < MaskNumElts) {
3121     // Mask is longer than the source vectors. We can use concatenate vector to
3122     // make the mask and vectors lengths match.
3123 
3124     if (MaskNumElts % SrcNumElts == 0) {
3125       // Mask length is a multiple of the source vector length.
3126       // Check if the shuffle is some kind of concatenation of the input
3127       // vectors.
3128       unsigned NumConcat = MaskNumElts / SrcNumElts;
3129       bool IsConcat = true;
3130       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3131       for (unsigned i = 0; i != MaskNumElts; ++i) {
3132         int Idx = Mask[i];
3133         if (Idx < 0)
3134           continue;
3135         // Ensure the indices in each SrcVT sized piece are sequential and that
3136         // the same source is used for the whole piece.
3137         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3138             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3139              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3140           IsConcat = false;
3141           break;
3142         }
3143         // Remember which source this index came from.
3144         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3145       }
3146 
3147       // The shuffle is concatenating multiple vectors together. Just emit
3148       // a CONCAT_VECTORS operation.
3149       if (IsConcat) {
3150         SmallVector<SDValue, 8> ConcatOps;
3151         for (auto Src : ConcatSrcs) {
3152           if (Src < 0)
3153             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3154           else if (Src == 0)
3155             ConcatOps.push_back(Src1);
3156           else
3157             ConcatOps.push_back(Src2);
3158         }
3159         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3160         return;
3161       }
3162     }
3163 
3164     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3165     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3166     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3167                                     PaddedMaskNumElts);
3168 
3169     // Pad both vectors with undefs to make them the same length as the mask.
3170     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3171 
3172     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3173     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3174     MOps1[0] = Src1;
3175     MOps2[0] = Src2;
3176 
3177     Src1 = Src1.isUndef()
3178                ? DAG.getUNDEF(PaddedVT)
3179                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3180     Src2 = Src2.isUndef()
3181                ? DAG.getUNDEF(PaddedVT)
3182                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3183 
3184     // Readjust mask for new input vector length.
3185     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3186     for (unsigned i = 0; i != MaskNumElts; ++i) {
3187       int Idx = Mask[i];
3188       if (Idx >= (int)SrcNumElts)
3189         Idx -= SrcNumElts - PaddedMaskNumElts;
3190       MappedOps[i] = Idx;
3191     }
3192 
3193     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3194 
3195     // If the concatenated vector was padded, extract a subvector with the
3196     // correct number of elements.
3197     if (MaskNumElts != PaddedMaskNumElts)
3198       Result = DAG.getNode(
3199           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3200           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3201 
3202     setValue(&I, Result);
3203     return;
3204   }
3205 
3206   if (SrcNumElts > MaskNumElts) {
3207     // Analyze the access pattern of the vector to see if we can extract
3208     // two subvectors and do the shuffle.
3209     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3210     bool CanExtract = true;
3211     for (int Idx : Mask) {
3212       unsigned Input = 0;
3213       if (Idx < 0)
3214         continue;
3215 
3216       if (Idx >= (int)SrcNumElts) {
3217         Input = 1;
3218         Idx -= SrcNumElts;
3219       }
3220 
3221       // If all the indices come from the same MaskNumElts sized portion of
3222       // the sources we can use extract. Also make sure the extract wouldn't
3223       // extract past the end of the source.
3224       int NewStartIdx = alignDown(Idx, MaskNumElts);
3225       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3226           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3227         CanExtract = false;
3228       // Make sure we always update StartIdx as we use it to track if all
3229       // elements are undef.
3230       StartIdx[Input] = NewStartIdx;
3231     }
3232 
3233     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3234       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3235       return;
3236     }
3237     if (CanExtract) {
3238       // Extract appropriate subvector and generate a vector shuffle
3239       for (unsigned Input = 0; Input < 2; ++Input) {
3240         SDValue &Src = Input == 0 ? Src1 : Src2;
3241         if (StartIdx[Input] < 0)
3242           Src = DAG.getUNDEF(VT);
3243         else {
3244           Src = DAG.getNode(
3245               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3246               DAG.getConstant(StartIdx[Input], DL,
3247                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3248         }
3249       }
3250 
3251       // Calculate new mask.
3252       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3253       for (int &Idx : MappedOps) {
3254         if (Idx >= (int)SrcNumElts)
3255           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3256         else if (Idx >= 0)
3257           Idx -= StartIdx[0];
3258       }
3259 
3260       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3261       return;
3262     }
3263   }
3264 
3265   // We can't use either concat vectors or extract subvectors so fall back to
3266   // replacing the shuffle with extract and build vector.
3267   // to insert and build vector.
3268   EVT EltVT = VT.getVectorElementType();
3269   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3270   SmallVector<SDValue,8> Ops;
3271   for (int Idx : Mask) {
3272     SDValue Res;
3273 
3274     if (Idx < 0) {
3275       Res = DAG.getUNDEF(EltVT);
3276     } else {
3277       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3278       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3279 
3280       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3281                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3282     }
3283 
3284     Ops.push_back(Res);
3285   }
3286 
3287   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3288 }
3289 
3290 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3291   ArrayRef<unsigned> Indices;
3292   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3293     Indices = IV->getIndices();
3294   else
3295     Indices = cast<ConstantExpr>(&I)->getIndices();
3296 
3297   const Value *Op0 = I.getOperand(0);
3298   const Value *Op1 = I.getOperand(1);
3299   Type *AggTy = I.getType();
3300   Type *ValTy = Op1->getType();
3301   bool IntoUndef = isa<UndefValue>(Op0);
3302   bool FromUndef = isa<UndefValue>(Op1);
3303 
3304   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3305 
3306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3307   SmallVector<EVT, 4> AggValueVTs;
3308   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3309   SmallVector<EVT, 4> ValValueVTs;
3310   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3311 
3312   unsigned NumAggValues = AggValueVTs.size();
3313   unsigned NumValValues = ValValueVTs.size();
3314   SmallVector<SDValue, 4> Values(NumAggValues);
3315 
3316   // Ignore an insertvalue that produces an empty object
3317   if (!NumAggValues) {
3318     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3319     return;
3320   }
3321 
3322   SDValue Agg = getValue(Op0);
3323   unsigned i = 0;
3324   // Copy the beginning value(s) from the original aggregate.
3325   for (; i != LinearIndex; ++i)
3326     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3327                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3328   // Copy values from the inserted value(s).
3329   if (NumValValues) {
3330     SDValue Val = getValue(Op1);
3331     for (; i != LinearIndex + NumValValues; ++i)
3332       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3333                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3334   }
3335   // Copy remaining value(s) from the original aggregate.
3336   for (; i != NumAggValues; ++i)
3337     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3338                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3339 
3340   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3341                            DAG.getVTList(AggValueVTs), Values));
3342 }
3343 
3344 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3345   ArrayRef<unsigned> Indices;
3346   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3347     Indices = EV->getIndices();
3348   else
3349     Indices = cast<ConstantExpr>(&I)->getIndices();
3350 
3351   const Value *Op0 = I.getOperand(0);
3352   Type *AggTy = Op0->getType();
3353   Type *ValTy = I.getType();
3354   bool OutOfUndef = isa<UndefValue>(Op0);
3355 
3356   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3357 
3358   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3359   SmallVector<EVT, 4> ValValueVTs;
3360   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3361 
3362   unsigned NumValValues = ValValueVTs.size();
3363 
3364   // Ignore a extractvalue that produces an empty object
3365   if (!NumValValues) {
3366     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3367     return;
3368   }
3369 
3370   SmallVector<SDValue, 4> Values(NumValValues);
3371 
3372   SDValue Agg = getValue(Op0);
3373   // Copy out the selected value(s).
3374   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3375     Values[i - LinearIndex] =
3376       OutOfUndef ?
3377         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3378         SDValue(Agg.getNode(), Agg.getResNo() + i);
3379 
3380   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3381                            DAG.getVTList(ValValueVTs), Values));
3382 }
3383 
3384 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3385   Value *Op0 = I.getOperand(0);
3386   // Note that the pointer operand may be a vector of pointers. Take the scalar
3387   // element which holds a pointer.
3388   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3389   SDValue N = getValue(Op0);
3390   SDLoc dl = getCurSDLoc();
3391 
3392   // Normalize Vector GEP - all scalar operands should be converted to the
3393   // splat vector.
3394   unsigned VectorWidth = I.getType()->isVectorTy() ?
3395     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3396 
3397   if (VectorWidth && !N.getValueType().isVector()) {
3398     LLVMContext &Context = *DAG.getContext();
3399     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3400     N = DAG.getSplatBuildVector(VT, dl, N);
3401   }
3402 
3403   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3404        GTI != E; ++GTI) {
3405     const Value *Idx = GTI.getOperand();
3406     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3407       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3408       if (Field) {
3409         // N = N + Offset
3410         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3411 
3412         // In an inbounds GEP with an offset that is nonnegative even when
3413         // interpreted as signed, assume there is no unsigned overflow.
3414         SDNodeFlags Flags;
3415         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3416           Flags.setNoUnsignedWrap(true);
3417 
3418         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3419                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3420       }
3421     } else {
3422       MVT PtrTy =
3423           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3424       unsigned PtrSize = PtrTy.getSizeInBits();
3425       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3426 
3427       // If this is a scalar constant or a splat vector of constants,
3428       // handle it quickly.
3429       const auto *CI = dyn_cast<ConstantInt>(Idx);
3430       if (!CI && isa<ConstantDataVector>(Idx) &&
3431           cast<ConstantDataVector>(Idx)->getSplatValue())
3432         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3433 
3434       if (CI) {
3435         if (CI->isZero())
3436           continue;
3437         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3438         LLVMContext &Context = *DAG.getContext();
3439         SDValue OffsVal = VectorWidth ?
3440           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3441           DAG.getConstant(Offs, dl, PtrTy);
3442 
3443         // In an inbouds GEP with an offset that is nonnegative even when
3444         // interpreted as signed, assume there is no unsigned overflow.
3445         SDNodeFlags Flags;
3446         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3447           Flags.setNoUnsignedWrap(true);
3448 
3449         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3450         continue;
3451       }
3452 
3453       // N = N + Idx * ElementSize;
3454       SDValue IdxN = getValue(Idx);
3455 
3456       if (!IdxN.getValueType().isVector() && VectorWidth) {
3457         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3458         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3459       }
3460 
3461       // If the index is smaller or larger than intptr_t, truncate or extend
3462       // it.
3463       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3464 
3465       // If this is a multiply by a power of two, turn it into a shl
3466       // immediately.  This is a very common case.
3467       if (ElementSize != 1) {
3468         if (ElementSize.isPowerOf2()) {
3469           unsigned Amt = ElementSize.logBase2();
3470           IdxN = DAG.getNode(ISD::SHL, dl,
3471                              N.getValueType(), IdxN,
3472                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3473         } else {
3474           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3475           IdxN = DAG.getNode(ISD::MUL, dl,
3476                              N.getValueType(), IdxN, Scale);
3477         }
3478       }
3479 
3480       N = DAG.getNode(ISD::ADD, dl,
3481                       N.getValueType(), N, IdxN);
3482     }
3483   }
3484 
3485   setValue(&I, N);
3486 }
3487 
3488 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3489   // If this is a fixed sized alloca in the entry block of the function,
3490   // allocate it statically on the stack.
3491   if (FuncInfo.StaticAllocaMap.count(&I))
3492     return;   // getValue will auto-populate this.
3493 
3494   SDLoc dl = getCurSDLoc();
3495   Type *Ty = I.getAllocatedType();
3496   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3497   auto &DL = DAG.getDataLayout();
3498   uint64_t TySize = DL.getTypeAllocSize(Ty);
3499   unsigned Align =
3500       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3501 
3502   SDValue AllocSize = getValue(I.getArraySize());
3503 
3504   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3505   if (AllocSize.getValueType() != IntPtr)
3506     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3507 
3508   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3509                           AllocSize,
3510                           DAG.getConstant(TySize, dl, IntPtr));
3511 
3512   // Handle alignment.  If the requested alignment is less than or equal to
3513   // the stack alignment, ignore it.  If the size is greater than or equal to
3514   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3515   unsigned StackAlign =
3516       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3517   if (Align <= StackAlign)
3518     Align = 0;
3519 
3520   // Round the size of the allocation up to the stack alignment size
3521   // by add SA-1 to the size. This doesn't overflow because we're computing
3522   // an address inside an alloca.
3523   SDNodeFlags Flags;
3524   Flags.setNoUnsignedWrap(true);
3525   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3526                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3527 
3528   // Mask out the low bits for alignment purposes.
3529   AllocSize =
3530       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3531                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3532 
3533   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3534   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3535   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3536   setValue(&I, DSA);
3537   DAG.setRoot(DSA.getValue(1));
3538 
3539   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3540 }
3541 
3542 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3543   if (I.isAtomic())
3544     return visitAtomicLoad(I);
3545 
3546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3547   const Value *SV = I.getOperand(0);
3548   if (TLI.supportSwiftError()) {
3549     // Swifterror values can come from either a function parameter with
3550     // swifterror attribute or an alloca with swifterror attribute.
3551     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3552       if (Arg->hasSwiftErrorAttr())
3553         return visitLoadFromSwiftError(I);
3554     }
3555 
3556     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3557       if (Alloca->isSwiftError())
3558         return visitLoadFromSwiftError(I);
3559     }
3560   }
3561 
3562   SDValue Ptr = getValue(SV);
3563 
3564   Type *Ty = I.getType();
3565 
3566   bool isVolatile = I.isVolatile();
3567   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3568   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3569   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3570   unsigned Alignment = I.getAlignment();
3571 
3572   AAMDNodes AAInfo;
3573   I.getAAMetadata(AAInfo);
3574   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3575 
3576   SmallVector<EVT, 4> ValueVTs;
3577   SmallVector<uint64_t, 4> Offsets;
3578   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3579   unsigned NumValues = ValueVTs.size();
3580   if (NumValues == 0)
3581     return;
3582 
3583   SDValue Root;
3584   bool ConstantMemory = false;
3585   if (isVolatile || NumValues > MaxParallelChains)
3586     // Serialize volatile loads with other side effects.
3587     Root = getRoot();
3588   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3589                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3590     // Do not serialize (non-volatile) loads of constant memory with anything.
3591     Root = DAG.getEntryNode();
3592     ConstantMemory = true;
3593   } else {
3594     // Do not serialize non-volatile loads against each other.
3595     Root = DAG.getRoot();
3596   }
3597 
3598   SDLoc dl = getCurSDLoc();
3599 
3600   if (isVolatile)
3601     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3602 
3603   // An aggregate load cannot wrap around the address space, so offsets to its
3604   // parts don't wrap either.
3605   SDNodeFlags Flags;
3606   Flags.setNoUnsignedWrap(true);
3607 
3608   SmallVector<SDValue, 4> Values(NumValues);
3609   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3610   EVT PtrVT = Ptr.getValueType();
3611   unsigned ChainI = 0;
3612   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3613     // Serializing loads here may result in excessive register pressure, and
3614     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3615     // could recover a bit by hoisting nodes upward in the chain by recognizing
3616     // they are side-effect free or do not alias. The optimizer should really
3617     // avoid this case by converting large object/array copies to llvm.memcpy
3618     // (MaxParallelChains should always remain as failsafe).
3619     if (ChainI == MaxParallelChains) {
3620       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3621       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3622                                   makeArrayRef(Chains.data(), ChainI));
3623       Root = Chain;
3624       ChainI = 0;
3625     }
3626     SDValue A = DAG.getNode(ISD::ADD, dl,
3627                             PtrVT, Ptr,
3628                             DAG.getConstant(Offsets[i], dl, PtrVT),
3629                             Flags);
3630     auto MMOFlags = MachineMemOperand::MONone;
3631     if (isVolatile)
3632       MMOFlags |= MachineMemOperand::MOVolatile;
3633     if (isNonTemporal)
3634       MMOFlags |= MachineMemOperand::MONonTemporal;
3635     if (isInvariant)
3636       MMOFlags |= MachineMemOperand::MOInvariant;
3637     if (isDereferenceable)
3638       MMOFlags |= MachineMemOperand::MODereferenceable;
3639     MMOFlags |= TLI.getMMOFlags(I);
3640 
3641     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3642                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3643                             MMOFlags, AAInfo, Ranges);
3644 
3645     Values[i] = L;
3646     Chains[ChainI] = L.getValue(1);
3647   }
3648 
3649   if (!ConstantMemory) {
3650     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3651                                 makeArrayRef(Chains.data(), ChainI));
3652     if (isVolatile)
3653       DAG.setRoot(Chain);
3654     else
3655       PendingLoads.push_back(Chain);
3656   }
3657 
3658   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3659                            DAG.getVTList(ValueVTs), Values));
3660 }
3661 
3662 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3663   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3664          "call visitStoreToSwiftError when backend supports swifterror");
3665 
3666   SmallVector<EVT, 4> ValueVTs;
3667   SmallVector<uint64_t, 4> Offsets;
3668   const Value *SrcV = I.getOperand(0);
3669   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3670                   SrcV->getType(), ValueVTs, &Offsets);
3671   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3672          "expect a single EVT for swifterror");
3673 
3674   SDValue Src = getValue(SrcV);
3675   // Create a virtual register, then update the virtual register.
3676   unsigned VReg; bool CreatedVReg;
3677   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3678   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3679   // Chain can be getRoot or getControlRoot.
3680   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3681                                       SDValue(Src.getNode(), Src.getResNo()));
3682   DAG.setRoot(CopyNode);
3683   if (CreatedVReg)
3684     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3685 }
3686 
3687 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3688   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3689          "call visitLoadFromSwiftError when backend supports swifterror");
3690 
3691   assert(!I.isVolatile() &&
3692          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3693          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3694          "Support volatile, non temporal, invariant for load_from_swift_error");
3695 
3696   const Value *SV = I.getOperand(0);
3697   Type *Ty = I.getType();
3698   AAMDNodes AAInfo;
3699   I.getAAMetadata(AAInfo);
3700   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3701              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3702          "load_from_swift_error should not be constant memory");
3703 
3704   SmallVector<EVT, 4> ValueVTs;
3705   SmallVector<uint64_t, 4> Offsets;
3706   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3707                   ValueVTs, &Offsets);
3708   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3709          "expect a single EVT for swifterror");
3710 
3711   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3712   SDValue L = DAG.getCopyFromReg(
3713       getRoot(), getCurSDLoc(),
3714       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3715       ValueVTs[0]);
3716 
3717   setValue(&I, L);
3718 }
3719 
3720 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3721   if (I.isAtomic())
3722     return visitAtomicStore(I);
3723 
3724   const Value *SrcV = I.getOperand(0);
3725   const Value *PtrV = I.getOperand(1);
3726 
3727   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3728   if (TLI.supportSwiftError()) {
3729     // Swifterror values can come from either a function parameter with
3730     // swifterror attribute or an alloca with swifterror attribute.
3731     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3732       if (Arg->hasSwiftErrorAttr())
3733         return visitStoreToSwiftError(I);
3734     }
3735 
3736     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3737       if (Alloca->isSwiftError())
3738         return visitStoreToSwiftError(I);
3739     }
3740   }
3741 
3742   SmallVector<EVT, 4> ValueVTs;
3743   SmallVector<uint64_t, 4> Offsets;
3744   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3745                   SrcV->getType(), ValueVTs, &Offsets);
3746   unsigned NumValues = ValueVTs.size();
3747   if (NumValues == 0)
3748     return;
3749 
3750   // Get the lowered operands. Note that we do this after
3751   // checking if NumResults is zero, because with zero results
3752   // the operands won't have values in the map.
3753   SDValue Src = getValue(SrcV);
3754   SDValue Ptr = getValue(PtrV);
3755 
3756   SDValue Root = getRoot();
3757   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3758   SDLoc dl = getCurSDLoc();
3759   EVT PtrVT = Ptr.getValueType();
3760   unsigned Alignment = I.getAlignment();
3761   AAMDNodes AAInfo;
3762   I.getAAMetadata(AAInfo);
3763 
3764   auto MMOFlags = MachineMemOperand::MONone;
3765   if (I.isVolatile())
3766     MMOFlags |= MachineMemOperand::MOVolatile;
3767   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3768     MMOFlags |= MachineMemOperand::MONonTemporal;
3769   MMOFlags |= TLI.getMMOFlags(I);
3770 
3771   // An aggregate load cannot wrap around the address space, so offsets to its
3772   // parts don't wrap either.
3773   SDNodeFlags Flags;
3774   Flags.setNoUnsignedWrap(true);
3775 
3776   unsigned ChainI = 0;
3777   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3778     // See visitLoad comments.
3779     if (ChainI == MaxParallelChains) {
3780       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3781                                   makeArrayRef(Chains.data(), ChainI));
3782       Root = Chain;
3783       ChainI = 0;
3784     }
3785     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3786                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3787     SDValue St = DAG.getStore(
3788         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3789         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3790     Chains[ChainI] = St;
3791   }
3792 
3793   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3794                                   makeArrayRef(Chains.data(), ChainI));
3795   DAG.setRoot(StoreNode);
3796 }
3797 
3798 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3799                                            bool IsCompressing) {
3800   SDLoc sdl = getCurSDLoc();
3801 
3802   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3803                            unsigned& Alignment) {
3804     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3805     Src0 = I.getArgOperand(0);
3806     Ptr = I.getArgOperand(1);
3807     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3808     Mask = I.getArgOperand(3);
3809   };
3810   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3811                            unsigned& Alignment) {
3812     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3813     Src0 = I.getArgOperand(0);
3814     Ptr = I.getArgOperand(1);
3815     Mask = I.getArgOperand(2);
3816     Alignment = 0;
3817   };
3818 
3819   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3820   unsigned Alignment;
3821   if (IsCompressing)
3822     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3823   else
3824     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3825 
3826   SDValue Ptr = getValue(PtrOperand);
3827   SDValue Src0 = getValue(Src0Operand);
3828   SDValue Mask = getValue(MaskOperand);
3829 
3830   EVT VT = Src0.getValueType();
3831   if (!Alignment)
3832     Alignment = DAG.getEVTAlignment(VT);
3833 
3834   AAMDNodes AAInfo;
3835   I.getAAMetadata(AAInfo);
3836 
3837   MachineMemOperand *MMO =
3838     DAG.getMachineFunction().
3839     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3840                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3841                           Alignment, AAInfo);
3842   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3843                                          MMO, false /* Truncating */,
3844                                          IsCompressing);
3845   DAG.setRoot(StoreNode);
3846   setValue(&I, StoreNode);
3847 }
3848 
3849 // Get a uniform base for the Gather/Scatter intrinsic.
3850 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3851 // We try to represent it as a base pointer + vector of indices.
3852 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3853 // The first operand of the GEP may be a single pointer or a vector of pointers
3854 // Example:
3855 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3856 //  or
3857 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3858 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3859 //
3860 // When the first GEP operand is a single pointer - it is the uniform base we
3861 // are looking for. If first operand of the GEP is a splat vector - we
3862 // extract the splat value and use it as a uniform base.
3863 // In all other cases the function returns 'false'.
3864 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3865                            SelectionDAGBuilder* SDB) {
3866   SelectionDAG& DAG = SDB->DAG;
3867   LLVMContext &Context = *DAG.getContext();
3868 
3869   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3870   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3871   if (!GEP)
3872     return false;
3873 
3874   const Value *GEPPtr = GEP->getPointerOperand();
3875   if (!GEPPtr->getType()->isVectorTy())
3876     Ptr = GEPPtr;
3877   else if (!(Ptr = getSplatValue(GEPPtr)))
3878     return false;
3879 
3880   unsigned FinalIndex = GEP->getNumOperands() - 1;
3881   Value *IndexVal = GEP->getOperand(FinalIndex);
3882 
3883   // Ensure all the other indices are 0.
3884   for (unsigned i = 1; i < FinalIndex; ++i) {
3885     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3886     if (!C || !C->isZero())
3887       return false;
3888   }
3889 
3890   // The operands of the GEP may be defined in another basic block.
3891   // In this case we'll not find nodes for the operands.
3892   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3893     return false;
3894 
3895   Base = SDB->getValue(Ptr);
3896   Index = SDB->getValue(IndexVal);
3897 
3898   if (!Index.getValueType().isVector()) {
3899     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3900     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3901     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3902   }
3903   return true;
3904 }
3905 
3906 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3907   SDLoc sdl = getCurSDLoc();
3908 
3909   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3910   const Value *Ptr = I.getArgOperand(1);
3911   SDValue Src0 = getValue(I.getArgOperand(0));
3912   SDValue Mask = getValue(I.getArgOperand(3));
3913   EVT VT = Src0.getValueType();
3914   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3915   if (!Alignment)
3916     Alignment = DAG.getEVTAlignment(VT);
3917   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3918 
3919   AAMDNodes AAInfo;
3920   I.getAAMetadata(AAInfo);
3921 
3922   SDValue Base;
3923   SDValue Index;
3924   const Value *BasePtr = Ptr;
3925   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3926 
3927   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3928   MachineMemOperand *MMO = DAG.getMachineFunction().
3929     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3930                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3931                          Alignment, AAInfo);
3932   if (!UniformBase) {
3933     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3934     Index = getValue(Ptr);
3935   }
3936   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3937   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3938                                          Ops, MMO);
3939   DAG.setRoot(Scatter);
3940   setValue(&I, Scatter);
3941 }
3942 
3943 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3944   SDLoc sdl = getCurSDLoc();
3945 
3946   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3947                            unsigned& Alignment) {
3948     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3949     Ptr = I.getArgOperand(0);
3950     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3951     Mask = I.getArgOperand(2);
3952     Src0 = I.getArgOperand(3);
3953   };
3954   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3955                            unsigned& Alignment) {
3956     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
3957     Ptr = I.getArgOperand(0);
3958     Alignment = 0;
3959     Mask = I.getArgOperand(1);
3960     Src0 = I.getArgOperand(2);
3961   };
3962 
3963   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3964   unsigned Alignment;
3965   if (IsExpanding)
3966     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3967   else
3968     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3969 
3970   SDValue Ptr = getValue(PtrOperand);
3971   SDValue Src0 = getValue(Src0Operand);
3972   SDValue Mask = getValue(MaskOperand);
3973 
3974   EVT VT = Src0.getValueType();
3975   if (!Alignment)
3976     Alignment = DAG.getEVTAlignment(VT);
3977 
3978   AAMDNodes AAInfo;
3979   I.getAAMetadata(AAInfo);
3980   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3981 
3982   // Do not serialize masked loads of constant memory with anything.
3983   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
3984       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3985   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3986 
3987   MachineMemOperand *MMO =
3988     DAG.getMachineFunction().
3989     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3990                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3991                           Alignment, AAInfo, Ranges);
3992 
3993   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3994                                    ISD::NON_EXTLOAD, IsExpanding);
3995   if (AddToChain) {
3996     SDValue OutChain = Load.getValue(1);
3997     DAG.setRoot(OutChain);
3998   }
3999   setValue(&I, Load);
4000 }
4001 
4002 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4003   SDLoc sdl = getCurSDLoc();
4004 
4005   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4006   const Value *Ptr = I.getArgOperand(0);
4007   SDValue Src0 = getValue(I.getArgOperand(3));
4008   SDValue Mask = getValue(I.getArgOperand(2));
4009 
4010   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4011   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4012   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4013   if (!Alignment)
4014     Alignment = DAG.getEVTAlignment(VT);
4015 
4016   AAMDNodes AAInfo;
4017   I.getAAMetadata(AAInfo);
4018   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4019 
4020   SDValue Root = DAG.getRoot();
4021   SDValue Base;
4022   SDValue Index;
4023   const Value *BasePtr = Ptr;
4024   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
4025   bool ConstantMemory = false;
4026   if (UniformBase &&
4027       AA && AA->pointsToConstantMemory(MemoryLocation(
4028           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4029           AAInfo))) {
4030     // Do not serialize (non-volatile) loads of constant memory with anything.
4031     Root = DAG.getEntryNode();
4032     ConstantMemory = true;
4033   }
4034 
4035   MachineMemOperand *MMO =
4036     DAG.getMachineFunction().
4037     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4038                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4039                          Alignment, AAInfo, Ranges);
4040 
4041   if (!UniformBase) {
4042     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4043     Index = getValue(Ptr);
4044   }
4045   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
4046   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4047                                        Ops, MMO);
4048 
4049   SDValue OutChain = Gather.getValue(1);
4050   if (!ConstantMemory)
4051     PendingLoads.push_back(OutChain);
4052   setValue(&I, Gather);
4053 }
4054 
4055 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4056   SDLoc dl = getCurSDLoc();
4057   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4058   AtomicOrdering FailureOrder = I.getFailureOrdering();
4059   SyncScope::ID SSID = I.getSyncScopeID();
4060 
4061   SDValue InChain = getRoot();
4062 
4063   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4064   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4065   SDValue L = DAG.getAtomicCmpSwap(
4066       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4067       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4068       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4069       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4070 
4071   SDValue OutChain = L.getValue(2);
4072 
4073   setValue(&I, L);
4074   DAG.setRoot(OutChain);
4075 }
4076 
4077 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4078   SDLoc dl = getCurSDLoc();
4079   ISD::NodeType NT;
4080   switch (I.getOperation()) {
4081   default: llvm_unreachable("Unknown atomicrmw operation");
4082   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4083   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4084   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4085   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4086   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4087   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4088   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4089   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4090   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4091   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4092   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4093   }
4094   AtomicOrdering Order = I.getOrdering();
4095   SyncScope::ID SSID = I.getSyncScopeID();
4096 
4097   SDValue InChain = getRoot();
4098 
4099   SDValue L =
4100     DAG.getAtomic(NT, dl,
4101                   getValue(I.getValOperand()).getSimpleValueType(),
4102                   InChain,
4103                   getValue(I.getPointerOperand()),
4104                   getValue(I.getValOperand()),
4105                   I.getPointerOperand(),
4106                   /* Alignment=*/ 0, Order, SSID);
4107 
4108   SDValue OutChain = L.getValue(1);
4109 
4110   setValue(&I, L);
4111   DAG.setRoot(OutChain);
4112 }
4113 
4114 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4115   SDLoc dl = getCurSDLoc();
4116   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4117   SDValue Ops[3];
4118   Ops[0] = getRoot();
4119   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4120                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4121   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4122                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4123   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4124 }
4125 
4126 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4127   SDLoc dl = getCurSDLoc();
4128   AtomicOrdering Order = I.getOrdering();
4129   SyncScope::ID SSID = I.getSyncScopeID();
4130 
4131   SDValue InChain = getRoot();
4132 
4133   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4134   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4135 
4136   if (I.getAlignment() < VT.getStoreSize())
4137     report_fatal_error("Cannot generate unaligned atomic load");
4138 
4139   MachineMemOperand *MMO =
4140       DAG.getMachineFunction().
4141       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4142                            MachineMemOperand::MOVolatile |
4143                            MachineMemOperand::MOLoad,
4144                            VT.getStoreSize(),
4145                            I.getAlignment() ? I.getAlignment() :
4146                                               DAG.getEVTAlignment(VT),
4147                            AAMDNodes(), nullptr, SSID, Order);
4148 
4149   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4150   SDValue L =
4151       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4152                     getValue(I.getPointerOperand()), MMO);
4153 
4154   SDValue OutChain = L.getValue(1);
4155 
4156   setValue(&I, L);
4157   DAG.setRoot(OutChain);
4158 }
4159 
4160 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4161   SDLoc dl = getCurSDLoc();
4162 
4163   AtomicOrdering Order = I.getOrdering();
4164   SyncScope::ID SSID = I.getSyncScopeID();
4165 
4166   SDValue InChain = getRoot();
4167 
4168   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4169   EVT VT =
4170       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4171 
4172   if (I.getAlignment() < VT.getStoreSize())
4173     report_fatal_error("Cannot generate unaligned atomic store");
4174 
4175   SDValue OutChain =
4176     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4177                   InChain,
4178                   getValue(I.getPointerOperand()),
4179                   getValue(I.getValueOperand()),
4180                   I.getPointerOperand(), I.getAlignment(),
4181                   Order, SSID);
4182 
4183   DAG.setRoot(OutChain);
4184 }
4185 
4186 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4187 /// node.
4188 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4189                                                unsigned Intrinsic) {
4190   // Ignore the callsite's attributes. A specific call site may be marked with
4191   // readnone, but the lowering code will expect the chain based on the
4192   // definition.
4193   const Function *F = I.getCalledFunction();
4194   bool HasChain = !F->doesNotAccessMemory();
4195   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4196 
4197   // Build the operand list.
4198   SmallVector<SDValue, 8> Ops;
4199   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4200     if (OnlyLoad) {
4201       // We don't need to serialize loads against other loads.
4202       Ops.push_back(DAG.getRoot());
4203     } else {
4204       Ops.push_back(getRoot());
4205     }
4206   }
4207 
4208   // Info is set by getTgtMemInstrinsic
4209   TargetLowering::IntrinsicInfo Info;
4210   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4211   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4212 
4213   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4214   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4215       Info.opc == ISD::INTRINSIC_W_CHAIN)
4216     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4217                                         TLI.getPointerTy(DAG.getDataLayout())));
4218 
4219   // Add all operands of the call to the operand list.
4220   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4221     SDValue Op = getValue(I.getArgOperand(i));
4222     Ops.push_back(Op);
4223   }
4224 
4225   SmallVector<EVT, 4> ValueVTs;
4226   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4227 
4228   if (HasChain)
4229     ValueVTs.push_back(MVT::Other);
4230 
4231   SDVTList VTs = DAG.getVTList(ValueVTs);
4232 
4233   // Create the node.
4234   SDValue Result;
4235   if (IsTgtIntrinsic) {
4236     // This is target intrinsic that touches memory
4237     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4238                                      VTs, Ops, Info.memVT,
4239                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4240                                      Info.align, Info.vol,
4241                                      Info.readMem, Info.writeMem, Info.size);
4242   } else if (!HasChain) {
4243     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4244   } else if (!I.getType()->isVoidTy()) {
4245     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4246   } else {
4247     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4248   }
4249 
4250   if (HasChain) {
4251     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4252     if (OnlyLoad)
4253       PendingLoads.push_back(Chain);
4254     else
4255       DAG.setRoot(Chain);
4256   }
4257 
4258   if (!I.getType()->isVoidTy()) {
4259     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4260       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4261       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4262     } else
4263       Result = lowerRangeToAssertZExt(DAG, I, Result);
4264 
4265     setValue(&I, Result);
4266   }
4267 }
4268 
4269 /// GetSignificand - Get the significand and build it into a floating-point
4270 /// number with exponent of 1:
4271 ///
4272 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4273 ///
4274 /// where Op is the hexadecimal representation of floating point value.
4275 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4276   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4277                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4278   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4279                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4280   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4281 }
4282 
4283 /// GetExponent - Get the exponent:
4284 ///
4285 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4286 ///
4287 /// where Op is the hexadecimal representation of floating point value.
4288 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4289                            const TargetLowering &TLI, const SDLoc &dl) {
4290   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4291                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4292   SDValue t1 = DAG.getNode(
4293       ISD::SRL, dl, MVT::i32, t0,
4294       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4295   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4296                            DAG.getConstant(127, dl, MVT::i32));
4297   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4298 }
4299 
4300 /// getF32Constant - Get 32-bit floating point constant.
4301 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4302                               const SDLoc &dl) {
4303   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4304                            MVT::f32);
4305 }
4306 
4307 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4308                                        SelectionDAG &DAG) {
4309   // TODO: What fast-math-flags should be set on the floating-point nodes?
4310 
4311   //   IntegerPartOfX = ((int32_t)(t0);
4312   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4313 
4314   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4315   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4316   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4317 
4318   //   IntegerPartOfX <<= 23;
4319   IntegerPartOfX = DAG.getNode(
4320       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4321       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4322                                   DAG.getDataLayout())));
4323 
4324   SDValue TwoToFractionalPartOfX;
4325   if (LimitFloatPrecision <= 6) {
4326     // For floating-point precision of 6:
4327     //
4328     //   TwoToFractionalPartOfX =
4329     //     0.997535578f +
4330     //       (0.735607626f + 0.252464424f * x) * x;
4331     //
4332     // error 0.0144103317, which is 6 bits
4333     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4334                              getF32Constant(DAG, 0x3e814304, dl));
4335     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4336                              getF32Constant(DAG, 0x3f3c50c8, dl));
4337     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4338     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4339                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4340   } else if (LimitFloatPrecision <= 12) {
4341     // For floating-point precision of 12:
4342     //
4343     //   TwoToFractionalPartOfX =
4344     //     0.999892986f +
4345     //       (0.696457318f +
4346     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4347     //
4348     // error 0.000107046256, which is 13 to 14 bits
4349     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4350                              getF32Constant(DAG, 0x3da235e3, dl));
4351     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4352                              getF32Constant(DAG, 0x3e65b8f3, dl));
4353     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4354     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4355                              getF32Constant(DAG, 0x3f324b07, dl));
4356     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4357     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4358                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4359   } else { // LimitFloatPrecision <= 18
4360     // For floating-point precision of 18:
4361     //
4362     //   TwoToFractionalPartOfX =
4363     //     0.999999982f +
4364     //       (0.693148872f +
4365     //         (0.240227044f +
4366     //           (0.554906021e-1f +
4367     //             (0.961591928e-2f +
4368     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4369     // error 2.47208000*10^(-7), which is better than 18 bits
4370     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4371                              getF32Constant(DAG, 0x3924b03e, dl));
4372     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4373                              getF32Constant(DAG, 0x3ab24b87, dl));
4374     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4375     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4376                              getF32Constant(DAG, 0x3c1d8c17, dl));
4377     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4378     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4379                              getF32Constant(DAG, 0x3d634a1d, dl));
4380     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4381     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4382                              getF32Constant(DAG, 0x3e75fe14, dl));
4383     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4384     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4385                               getF32Constant(DAG, 0x3f317234, dl));
4386     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4387     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4388                                          getF32Constant(DAG, 0x3f800000, dl));
4389   }
4390 
4391   // Add the exponent into the result in integer domain.
4392   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4393   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4394                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4395 }
4396 
4397 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4398 /// limited-precision mode.
4399 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4400                          const TargetLowering &TLI) {
4401   if (Op.getValueType() == MVT::f32 &&
4402       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4403 
4404     // Put the exponent in the right bit position for later addition to the
4405     // final result:
4406     //
4407     //   #define LOG2OFe 1.4426950f
4408     //   t0 = Op * LOG2OFe
4409 
4410     // TODO: What fast-math-flags should be set here?
4411     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4412                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4413     return getLimitedPrecisionExp2(t0, dl, DAG);
4414   }
4415 
4416   // No special expansion.
4417   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4418 }
4419 
4420 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4421 /// limited-precision mode.
4422 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4423                          const TargetLowering &TLI) {
4424   // TODO: What fast-math-flags should be set on the floating-point nodes?
4425 
4426   if (Op.getValueType() == MVT::f32 &&
4427       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4428     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4429 
4430     // Scale the exponent by log(2) [0.69314718f].
4431     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4432     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4433                                         getF32Constant(DAG, 0x3f317218, dl));
4434 
4435     // Get the significand and build it into a floating-point number with
4436     // exponent of 1.
4437     SDValue X = GetSignificand(DAG, Op1, dl);
4438 
4439     SDValue LogOfMantissa;
4440     if (LimitFloatPrecision <= 6) {
4441       // For floating-point precision of 6:
4442       //
4443       //   LogofMantissa =
4444       //     -1.1609546f +
4445       //       (1.4034025f - 0.23903021f * x) * x;
4446       //
4447       // error 0.0034276066, which is better than 8 bits
4448       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4449                                getF32Constant(DAG, 0xbe74c456, dl));
4450       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4451                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4452       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4453       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4454                                   getF32Constant(DAG, 0x3f949a29, dl));
4455     } else if (LimitFloatPrecision <= 12) {
4456       // For floating-point precision of 12:
4457       //
4458       //   LogOfMantissa =
4459       //     -1.7417939f +
4460       //       (2.8212026f +
4461       //         (-1.4699568f +
4462       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4463       //
4464       // error 0.000061011436, which is 14 bits
4465       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4466                                getF32Constant(DAG, 0xbd67b6d6, dl));
4467       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4468                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4469       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4470       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4471                                getF32Constant(DAG, 0x3fbc278b, dl));
4472       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4473       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4474                                getF32Constant(DAG, 0x40348e95, dl));
4475       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4476       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4477                                   getF32Constant(DAG, 0x3fdef31a, dl));
4478     } else { // LimitFloatPrecision <= 18
4479       // For floating-point precision of 18:
4480       //
4481       //   LogOfMantissa =
4482       //     -2.1072184f +
4483       //       (4.2372794f +
4484       //         (-3.7029485f +
4485       //           (2.2781945f +
4486       //             (-0.87823314f +
4487       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4488       //
4489       // error 0.0000023660568, which is better than 18 bits
4490       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4491                                getF32Constant(DAG, 0xbc91e5ac, dl));
4492       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4493                                getF32Constant(DAG, 0x3e4350aa, dl));
4494       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4495       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4496                                getF32Constant(DAG, 0x3f60d3e3, dl));
4497       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4498       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4499                                getF32Constant(DAG, 0x4011cdf0, dl));
4500       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4501       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4502                                getF32Constant(DAG, 0x406cfd1c, dl));
4503       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4504       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4505                                getF32Constant(DAG, 0x408797cb, dl));
4506       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4507       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4508                                   getF32Constant(DAG, 0x4006dcab, dl));
4509     }
4510 
4511     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4512   }
4513 
4514   // No special expansion.
4515   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4516 }
4517 
4518 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4519 /// limited-precision mode.
4520 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4521                           const TargetLowering &TLI) {
4522   // TODO: What fast-math-flags should be set on the floating-point nodes?
4523 
4524   if (Op.getValueType() == MVT::f32 &&
4525       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4526     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4527 
4528     // Get the exponent.
4529     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4530 
4531     // Get the significand and build it into a floating-point number with
4532     // exponent of 1.
4533     SDValue X = GetSignificand(DAG, Op1, dl);
4534 
4535     // Different possible minimax approximations of significand in
4536     // floating-point for various degrees of accuracy over [1,2].
4537     SDValue Log2ofMantissa;
4538     if (LimitFloatPrecision <= 6) {
4539       // For floating-point precision of 6:
4540       //
4541       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4542       //
4543       // error 0.0049451742, which is more than 7 bits
4544       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4545                                getF32Constant(DAG, 0xbeb08fe0, dl));
4546       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4547                                getF32Constant(DAG, 0x40019463, dl));
4548       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4549       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4550                                    getF32Constant(DAG, 0x3fd6633d, dl));
4551     } else if (LimitFloatPrecision <= 12) {
4552       // For floating-point precision of 12:
4553       //
4554       //   Log2ofMantissa =
4555       //     -2.51285454f +
4556       //       (4.07009056f +
4557       //         (-2.12067489f +
4558       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4559       //
4560       // error 0.0000876136000, which is better than 13 bits
4561       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4562                                getF32Constant(DAG, 0xbda7262e, dl));
4563       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4564                                getF32Constant(DAG, 0x3f25280b, dl));
4565       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4566       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4567                                getF32Constant(DAG, 0x4007b923, dl));
4568       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4569       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4570                                getF32Constant(DAG, 0x40823e2f, dl));
4571       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4572       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4573                                    getF32Constant(DAG, 0x4020d29c, dl));
4574     } else { // LimitFloatPrecision <= 18
4575       // For floating-point precision of 18:
4576       //
4577       //   Log2ofMantissa =
4578       //     -3.0400495f +
4579       //       (6.1129976f +
4580       //         (-5.3420409f +
4581       //           (3.2865683f +
4582       //             (-1.2669343f +
4583       //               (0.27515199f -
4584       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4585       //
4586       // error 0.0000018516, which is better than 18 bits
4587       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4588                                getF32Constant(DAG, 0xbcd2769e, dl));
4589       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4590                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4591       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4592       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4593                                getF32Constant(DAG, 0x3fa22ae7, dl));
4594       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4595       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4596                                getF32Constant(DAG, 0x40525723, dl));
4597       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4598       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4599                                getF32Constant(DAG, 0x40aaf200, dl));
4600       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4601       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4602                                getF32Constant(DAG, 0x40c39dad, dl));
4603       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4604       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4605                                    getF32Constant(DAG, 0x4042902c, dl));
4606     }
4607 
4608     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4609   }
4610 
4611   // No special expansion.
4612   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4613 }
4614 
4615 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4616 /// limited-precision mode.
4617 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4618                            const TargetLowering &TLI) {
4619   // TODO: What fast-math-flags should be set on the floating-point nodes?
4620 
4621   if (Op.getValueType() == MVT::f32 &&
4622       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4623     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4624 
4625     // Scale the exponent by log10(2) [0.30102999f].
4626     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4627     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4628                                         getF32Constant(DAG, 0x3e9a209a, dl));
4629 
4630     // Get the significand and build it into a floating-point number with
4631     // exponent of 1.
4632     SDValue X = GetSignificand(DAG, Op1, dl);
4633 
4634     SDValue Log10ofMantissa;
4635     if (LimitFloatPrecision <= 6) {
4636       // For floating-point precision of 6:
4637       //
4638       //   Log10ofMantissa =
4639       //     -0.50419619f +
4640       //       (0.60948995f - 0.10380950f * x) * x;
4641       //
4642       // error 0.0014886165, which is 6 bits
4643       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4644                                getF32Constant(DAG, 0xbdd49a13, dl));
4645       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4646                                getF32Constant(DAG, 0x3f1c0789, dl));
4647       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4648       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4649                                     getF32Constant(DAG, 0x3f011300, dl));
4650     } else if (LimitFloatPrecision <= 12) {
4651       // For floating-point precision of 12:
4652       //
4653       //   Log10ofMantissa =
4654       //     -0.64831180f +
4655       //       (0.91751397f +
4656       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4657       //
4658       // error 0.00019228036, which is better than 12 bits
4659       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4660                                getF32Constant(DAG, 0x3d431f31, dl));
4661       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4662                                getF32Constant(DAG, 0x3ea21fb2, dl));
4663       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4664       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4665                                getF32Constant(DAG, 0x3f6ae232, dl));
4666       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4667       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4668                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4669     } else { // LimitFloatPrecision <= 18
4670       // For floating-point precision of 18:
4671       //
4672       //   Log10ofMantissa =
4673       //     -0.84299375f +
4674       //       (1.5327582f +
4675       //         (-1.0688956f +
4676       //           (0.49102474f +
4677       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4678       //
4679       // error 0.0000037995730, which is better than 18 bits
4680       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4681                                getF32Constant(DAG, 0x3c5d51ce, dl));
4682       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4683                                getF32Constant(DAG, 0x3e00685a, dl));
4684       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4685       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4686                                getF32Constant(DAG, 0x3efb6798, dl));
4687       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4688       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4689                                getF32Constant(DAG, 0x3f88d192, dl));
4690       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4691       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4692                                getF32Constant(DAG, 0x3fc4316c, dl));
4693       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4694       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4695                                     getF32Constant(DAG, 0x3f57ce70, dl));
4696     }
4697 
4698     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4699   }
4700 
4701   // No special expansion.
4702   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4703 }
4704 
4705 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4706 /// limited-precision mode.
4707 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4708                           const TargetLowering &TLI) {
4709   if (Op.getValueType() == MVT::f32 &&
4710       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4711     return getLimitedPrecisionExp2(Op, dl, DAG);
4712 
4713   // No special expansion.
4714   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4715 }
4716 
4717 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4718 /// limited-precision mode with x == 10.0f.
4719 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4720                          SelectionDAG &DAG, const TargetLowering &TLI) {
4721   bool IsExp10 = false;
4722   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4723       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4724     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4725       APFloat Ten(10.0f);
4726       IsExp10 = LHSC->isExactlyValue(Ten);
4727     }
4728   }
4729 
4730   // TODO: What fast-math-flags should be set on the FMUL node?
4731   if (IsExp10) {
4732     // Put the exponent in the right bit position for later addition to the
4733     // final result:
4734     //
4735     //   #define LOG2OF10 3.3219281f
4736     //   t0 = Op * LOG2OF10;
4737     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4738                              getF32Constant(DAG, 0x40549a78, dl));
4739     return getLimitedPrecisionExp2(t0, dl, DAG);
4740   }
4741 
4742   // No special expansion.
4743   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4744 }
4745 
4746 /// ExpandPowI - Expand a llvm.powi intrinsic.
4747 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4748                           SelectionDAG &DAG) {
4749   // If RHS is a constant, we can expand this out to a multiplication tree,
4750   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4751   // optimizing for size, we only want to do this if the expansion would produce
4752   // a small number of multiplies, otherwise we do the full expansion.
4753   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4754     // Get the exponent as a positive value.
4755     unsigned Val = RHSC->getSExtValue();
4756     if ((int)Val < 0) Val = -Val;
4757 
4758     // powi(x, 0) -> 1.0
4759     if (Val == 0)
4760       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4761 
4762     const Function *F = DAG.getMachineFunction().getFunction();
4763     if (!F->optForSize() ||
4764         // If optimizing for size, don't insert too many multiplies.
4765         // This inserts up to 5 multiplies.
4766         countPopulation(Val) + Log2_32(Val) < 7) {
4767       // We use the simple binary decomposition method to generate the multiply
4768       // sequence.  There are more optimal ways to do this (for example,
4769       // powi(x,15) generates one more multiply than it should), but this has
4770       // the benefit of being both really simple and much better than a libcall.
4771       SDValue Res;  // Logically starts equal to 1.0
4772       SDValue CurSquare = LHS;
4773       // TODO: Intrinsics should have fast-math-flags that propagate to these
4774       // nodes.
4775       while (Val) {
4776         if (Val & 1) {
4777           if (Res.getNode())
4778             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4779           else
4780             Res = CurSquare;  // 1.0*CurSquare.
4781         }
4782 
4783         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4784                                 CurSquare, CurSquare);
4785         Val >>= 1;
4786       }
4787 
4788       // If the original was negative, invert the result, producing 1/(x*x*x).
4789       if (RHSC->getSExtValue() < 0)
4790         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4791                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4792       return Res;
4793     }
4794   }
4795 
4796   // Otherwise, expand to a libcall.
4797   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4798 }
4799 
4800 // getUnderlyingArgReg - Find underlying register used for a truncated or
4801 // bitcasted argument.
4802 static unsigned getUnderlyingArgReg(const SDValue &N) {
4803   switch (N.getOpcode()) {
4804   case ISD::CopyFromReg:
4805     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4806   case ISD::BITCAST:
4807   case ISD::AssertZext:
4808   case ISD::AssertSext:
4809   case ISD::TRUNCATE:
4810     return getUnderlyingArgReg(N.getOperand(0));
4811   default:
4812     return 0;
4813   }
4814 }
4815 
4816 /// If the DbgValueInst is a dbg_value of a function argument, create the
4817 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4818 /// instruction selection, they will be inserted to the entry BB.
4819 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4820     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4821     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4822   const Argument *Arg = dyn_cast<Argument>(V);
4823   if (!Arg)
4824     return false;
4825 
4826   MachineFunction &MF = DAG.getMachineFunction();
4827   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4828 
4829   bool IsIndirect = false;
4830   Optional<MachineOperand> Op;
4831   // Some arguments' frame index is recorded during argument lowering.
4832   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4833   if (FI != std::numeric_limits<int>::max())
4834     Op = MachineOperand::CreateFI(FI);
4835 
4836   if (!Op && N.getNode()) {
4837     unsigned Reg = getUnderlyingArgReg(N);
4838     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4839       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4840       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4841       if (PR)
4842         Reg = PR;
4843     }
4844     if (Reg) {
4845       Op = MachineOperand::CreateReg(Reg, false);
4846       IsIndirect = IsDbgDeclare;
4847     }
4848   }
4849 
4850   if (!Op) {
4851     // Check if ValueMap has reg number.
4852     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4853     if (VMI != FuncInfo.ValueMap.end()) {
4854       const auto &TLI = DAG.getTargetLoweringInfo();
4855       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4856                        V->getType(), isABIRegCopy(V));
4857       unsigned NumRegs =
4858           std::accumulate(RFV.RegCount.begin(), RFV.RegCount.end(), 0);
4859       if (NumRegs > 1) {
4860         unsigned I = 0;
4861         unsigned Offset = 0;
4862         auto RegisterVT = RFV.RegVTs.begin();
4863         for (auto RegCount : RFV.RegCount) {
4864           unsigned RegisterSize = (RegisterVT++)->getSizeInBits();
4865           for (unsigned E = I + RegCount; I != E; ++I) {
4866             // The vregs are guaranteed to be allocated in sequence.
4867             Op = MachineOperand::CreateReg(VMI->second + I, false);
4868             auto FragmentExpr = DIExpression::createFragmentExpression(
4869                 Expr, Offset, RegisterSize);
4870             if (!FragmentExpr)
4871               continue;
4872             FuncInfo.ArgDbgValues.push_back(
4873                 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4874                         Op->getReg(), Variable, *FragmentExpr));
4875             Offset += RegisterSize;
4876           }
4877         }
4878         return true;
4879       }
4880       Op = MachineOperand::CreateReg(VMI->second, false);
4881       IsIndirect = IsDbgDeclare;
4882     }
4883   }
4884 
4885   if (!Op && N.getNode())
4886     // Check if frame index is available.
4887     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4888       if (FrameIndexSDNode *FINode =
4889           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4890         Op = MachineOperand::CreateFI(FINode->getIndex());
4891 
4892   if (!Op)
4893     return false;
4894 
4895   assert(Variable->isValidLocationForIntrinsic(DL) &&
4896          "Expected inlined-at fields to agree");
4897   if (Op->isReg())
4898     FuncInfo.ArgDbgValues.push_back(
4899         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4900                 Op->getReg(), Variable, Expr));
4901   else
4902     FuncInfo.ArgDbgValues.push_back(
4903         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4904             .add(*Op)
4905             .addImm(0)
4906             .addMetadata(Variable)
4907             .addMetadata(Expr));
4908 
4909   return true;
4910 }
4911 
4912 /// Return the appropriate SDDbgValue based on N.
4913 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4914                                              DILocalVariable *Variable,
4915                                              DIExpression *Expr,
4916                                              const DebugLoc &dl,
4917                                              unsigned DbgSDNodeOrder) {
4918   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4919     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4920     // stack slot locations as such instead of as indirectly addressed
4921     // locations.
4922     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl,
4923                                      DbgSDNodeOrder);
4924   }
4925   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl,
4926                          DbgSDNodeOrder);
4927 }
4928 
4929 // VisualStudio defines setjmp as _setjmp
4930 #if defined(_MSC_VER) && defined(setjmp) && \
4931                          !defined(setjmp_undefined_for_msvc)
4932 #  pragma push_macro("setjmp")
4933 #  undef setjmp
4934 #  define setjmp_undefined_for_msvc
4935 #endif
4936 
4937 /// Lower the call to the specified intrinsic function. If we want to emit this
4938 /// as a call to a named external function, return the name. Otherwise, lower it
4939 /// and return null.
4940 const char *
4941 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4942   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4943   SDLoc sdl = getCurSDLoc();
4944   DebugLoc dl = getCurDebugLoc();
4945   SDValue Res;
4946 
4947   switch (Intrinsic) {
4948   default:
4949     // By default, turn this into a target intrinsic node.
4950     visitTargetIntrinsic(I, Intrinsic);
4951     return nullptr;
4952   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4953   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4954   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4955   case Intrinsic::returnaddress:
4956     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4957                              TLI.getPointerTy(DAG.getDataLayout()),
4958                              getValue(I.getArgOperand(0))));
4959     return nullptr;
4960   case Intrinsic::addressofreturnaddress:
4961     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
4962                              TLI.getPointerTy(DAG.getDataLayout())));
4963     return nullptr;
4964   case Intrinsic::frameaddress:
4965     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4966                              TLI.getPointerTy(DAG.getDataLayout()),
4967                              getValue(I.getArgOperand(0))));
4968     return nullptr;
4969   case Intrinsic::read_register: {
4970     Value *Reg = I.getArgOperand(0);
4971     SDValue Chain = getRoot();
4972     SDValue RegName =
4973         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4974     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4975     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4976       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4977     setValue(&I, Res);
4978     DAG.setRoot(Res.getValue(1));
4979     return nullptr;
4980   }
4981   case Intrinsic::write_register: {
4982     Value *Reg = I.getArgOperand(0);
4983     Value *RegValue = I.getArgOperand(1);
4984     SDValue Chain = getRoot();
4985     SDValue RegName =
4986         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4987     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4988                             RegName, getValue(RegValue)));
4989     return nullptr;
4990   }
4991   case Intrinsic::setjmp:
4992     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4993   case Intrinsic::longjmp:
4994     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4995   case Intrinsic::memcpy: {
4996     SDValue Op1 = getValue(I.getArgOperand(0));
4997     SDValue Op2 = getValue(I.getArgOperand(1));
4998     SDValue Op3 = getValue(I.getArgOperand(2));
4999     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
5000     if (!Align)
5001       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5002     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
5003     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5004     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5005                                false, isTC,
5006                                MachinePointerInfo(I.getArgOperand(0)),
5007                                MachinePointerInfo(I.getArgOperand(1)));
5008     updateDAGForMaybeTailCall(MC);
5009     return nullptr;
5010   }
5011   case Intrinsic::memset: {
5012     SDValue Op1 = getValue(I.getArgOperand(0));
5013     SDValue Op2 = getValue(I.getArgOperand(1));
5014     SDValue Op3 = getValue(I.getArgOperand(2));
5015     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
5016     if (!Align)
5017       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
5018     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
5019     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5020     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5021                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5022     updateDAGForMaybeTailCall(MS);
5023     return nullptr;
5024   }
5025   case Intrinsic::memmove: {
5026     SDValue Op1 = getValue(I.getArgOperand(0));
5027     SDValue Op2 = getValue(I.getArgOperand(1));
5028     SDValue Op3 = getValue(I.getArgOperand(2));
5029     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
5030     if (!Align)
5031       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
5032     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
5033     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5034     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5035                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5036                                 MachinePointerInfo(I.getArgOperand(1)));
5037     updateDAGForMaybeTailCall(MM);
5038     return nullptr;
5039   }
5040   case Intrinsic::memcpy_element_unordered_atomic: {
5041     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5042     SDValue Dst = getValue(MI.getRawDest());
5043     SDValue Src = getValue(MI.getRawSource());
5044     SDValue Length = getValue(MI.getLength());
5045 
5046     // Emit a library call.
5047     TargetLowering::ArgListTy Args;
5048     TargetLowering::ArgListEntry Entry;
5049     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5050     Entry.Node = Dst;
5051     Args.push_back(Entry);
5052 
5053     Entry.Node = Src;
5054     Args.push_back(Entry);
5055 
5056     Entry.Ty = MI.getLength()->getType();
5057     Entry.Node = Length;
5058     Args.push_back(Entry);
5059 
5060     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5061     RTLIB::Libcall LibraryCall =
5062         RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5063     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5064       report_fatal_error("Unsupported element size");
5065 
5066     TargetLowering::CallLoweringInfo CLI(DAG);
5067     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5068         TLI.getLibcallCallingConv(LibraryCall),
5069         Type::getVoidTy(*DAG.getContext()),
5070         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5071                               TLI.getPointerTy(DAG.getDataLayout())),
5072         std::move(Args));
5073 
5074     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5075     DAG.setRoot(CallResult.second);
5076     return nullptr;
5077   }
5078   case Intrinsic::memmove_element_unordered_atomic: {
5079     auto &MI = cast<AtomicMemMoveInst>(I);
5080     SDValue Dst = getValue(MI.getRawDest());
5081     SDValue Src = getValue(MI.getRawSource());
5082     SDValue Length = getValue(MI.getLength());
5083 
5084     // Emit a library call.
5085     TargetLowering::ArgListTy Args;
5086     TargetLowering::ArgListEntry Entry;
5087     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5088     Entry.Node = Dst;
5089     Args.push_back(Entry);
5090 
5091     Entry.Node = Src;
5092     Args.push_back(Entry);
5093 
5094     Entry.Ty = MI.getLength()->getType();
5095     Entry.Node = Length;
5096     Args.push_back(Entry);
5097 
5098     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5099     RTLIB::Libcall LibraryCall =
5100         RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5101     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5102       report_fatal_error("Unsupported element size");
5103 
5104     TargetLowering::CallLoweringInfo CLI(DAG);
5105     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5106         TLI.getLibcallCallingConv(LibraryCall),
5107         Type::getVoidTy(*DAG.getContext()),
5108         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5109                               TLI.getPointerTy(DAG.getDataLayout())),
5110         std::move(Args));
5111 
5112     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5113     DAG.setRoot(CallResult.second);
5114     return nullptr;
5115   }
5116   case Intrinsic::memset_element_unordered_atomic: {
5117     auto &MI = cast<AtomicMemSetInst>(I);
5118     SDValue Dst = getValue(MI.getRawDest());
5119     SDValue Val = getValue(MI.getValue());
5120     SDValue Length = getValue(MI.getLength());
5121 
5122     // Emit a library call.
5123     TargetLowering::ArgListTy Args;
5124     TargetLowering::ArgListEntry Entry;
5125     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5126     Entry.Node = Dst;
5127     Args.push_back(Entry);
5128 
5129     Entry.Ty = Type::getInt8Ty(*DAG.getContext());
5130     Entry.Node = Val;
5131     Args.push_back(Entry);
5132 
5133     Entry.Ty = MI.getLength()->getType();
5134     Entry.Node = Length;
5135     Args.push_back(Entry);
5136 
5137     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5138     RTLIB::Libcall LibraryCall =
5139         RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5140     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5141       report_fatal_error("Unsupported element size");
5142 
5143     TargetLowering::CallLoweringInfo CLI(DAG);
5144     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5145         TLI.getLibcallCallingConv(LibraryCall),
5146         Type::getVoidTy(*DAG.getContext()),
5147         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5148                               TLI.getPointerTy(DAG.getDataLayout())),
5149         std::move(Args));
5150 
5151     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5152     DAG.setRoot(CallResult.second);
5153     return nullptr;
5154   }
5155   case Intrinsic::dbg_addr:
5156   case Intrinsic::dbg_declare: {
5157     const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I);
5158     DILocalVariable *Variable = DI.getVariable();
5159     DIExpression *Expression = DI.getExpression();
5160     assert(Variable && "Missing variable");
5161 
5162     // Check if address has undef value.
5163     const Value *Address = DI.getVariableLocation();
5164     if (!Address || isa<UndefValue>(Address) ||
5165         (Address->use_empty() && !isa<Argument>(Address))) {
5166       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5167       return nullptr;
5168     }
5169 
5170     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5171 
5172     // Check if this variable can be described by a frame index, typically
5173     // either as a static alloca or a byval parameter.
5174     int FI = std::numeric_limits<int>::max();
5175     if (const auto *AI =
5176             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5177       if (AI->isStaticAlloca()) {
5178         auto I = FuncInfo.StaticAllocaMap.find(AI);
5179         if (I != FuncInfo.StaticAllocaMap.end())
5180           FI = I->second;
5181       }
5182     } else if (const auto *Arg = dyn_cast<Argument>(
5183                    Address->stripInBoundsConstantOffsets())) {
5184       FI = FuncInfo.getArgumentFrameIndex(Arg);
5185     }
5186 
5187     // llvm.dbg.addr is control dependent and always generates indirect
5188     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5189     // the MachineFunction variable table.
5190     if (FI != std::numeric_limits<int>::max()) {
5191       if (Intrinsic == Intrinsic::dbg_addr)
5192         DAG.AddDbgValue(DAG.getFrameIndexDbgValue(Variable, Expression, FI, dl,
5193                                                   SDNodeOrder),
5194                         getRoot().getNode(), isParameter);
5195       return nullptr;
5196     }
5197 
5198     SDValue &N = NodeMap[Address];
5199     if (!N.getNode() && isa<Argument>(Address))
5200       // Check unused arguments map.
5201       N = UnusedArgNodeMap[Address];
5202     SDDbgValue *SDV;
5203     if (N.getNode()) {
5204       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5205         Address = BCI->getOperand(0);
5206       // Parameters are handled specially.
5207       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5208       if (isParameter && FINode) {
5209         // Byval parameter. We have a frame index at this point.
5210         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5211                                         FINode->getIndex(), dl, SDNodeOrder);
5212       } else if (isa<Argument>(Address)) {
5213         // Address is an argument, so try to emit its dbg value using
5214         // virtual register info from the FuncInfo.ValueMap.
5215         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5216         return nullptr;
5217       } else {
5218         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5219                               true, dl, SDNodeOrder);
5220       }
5221       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5222     } else {
5223       // If Address is an argument then try to emit its dbg value using
5224       // virtual register info from the FuncInfo.ValueMap.
5225       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5226                                     N)) {
5227         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5228       }
5229     }
5230     return nullptr;
5231   }
5232   case Intrinsic::dbg_value: {
5233     const DbgValueInst &DI = cast<DbgValueInst>(I);
5234     assert(DI.getVariable() && "Missing variable");
5235 
5236     DILocalVariable *Variable = DI.getVariable();
5237     DIExpression *Expression = DI.getExpression();
5238     const Value *V = DI.getValue();
5239     if (!V)
5240       return nullptr;
5241 
5242     SDDbgValue *SDV;
5243     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5244       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5245       DAG.AddDbgValue(SDV, nullptr, false);
5246       return nullptr;
5247     }
5248 
5249     // Do not use getValue() in here; we don't want to generate code at
5250     // this point if it hasn't been done yet.
5251     SDValue N = NodeMap[V];
5252     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5253       N = UnusedArgNodeMap[V];
5254     if (N.getNode()) {
5255       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5256         return nullptr;
5257       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5258       DAG.AddDbgValue(SDV, N.getNode(), false);
5259       return nullptr;
5260     }
5261 
5262     if (!V->use_empty() ) {
5263       // Do not call getValue(V) yet, as we don't want to generate code.
5264       // Remember it for later.
5265       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5266       DanglingDebugInfoMap[V] = DDI;
5267       return nullptr;
5268     }
5269 
5270     DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5271     DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5272     return nullptr;
5273   }
5274 
5275   case Intrinsic::eh_typeid_for: {
5276     // Find the type id for the given typeinfo.
5277     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5278     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5279     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5280     setValue(&I, Res);
5281     return nullptr;
5282   }
5283 
5284   case Intrinsic::eh_return_i32:
5285   case Intrinsic::eh_return_i64:
5286     DAG.getMachineFunction().setCallsEHReturn(true);
5287     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5288                             MVT::Other,
5289                             getControlRoot(),
5290                             getValue(I.getArgOperand(0)),
5291                             getValue(I.getArgOperand(1))));
5292     return nullptr;
5293   case Intrinsic::eh_unwind_init:
5294     DAG.getMachineFunction().setCallsUnwindInit(true);
5295     return nullptr;
5296   case Intrinsic::eh_dwarf_cfa:
5297     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5298                              TLI.getPointerTy(DAG.getDataLayout()),
5299                              getValue(I.getArgOperand(0))));
5300     return nullptr;
5301   case Intrinsic::eh_sjlj_callsite: {
5302     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5303     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5304     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5305     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5306 
5307     MMI.setCurrentCallSite(CI->getZExtValue());
5308     return nullptr;
5309   }
5310   case Intrinsic::eh_sjlj_functioncontext: {
5311     // Get and store the index of the function context.
5312     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5313     AllocaInst *FnCtx =
5314       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5315     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5316     MFI.setFunctionContextIndex(FI);
5317     return nullptr;
5318   }
5319   case Intrinsic::eh_sjlj_setjmp: {
5320     SDValue Ops[2];
5321     Ops[0] = getRoot();
5322     Ops[1] = getValue(I.getArgOperand(0));
5323     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5324                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5325     setValue(&I, Op.getValue(0));
5326     DAG.setRoot(Op.getValue(1));
5327     return nullptr;
5328   }
5329   case Intrinsic::eh_sjlj_longjmp:
5330     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5331                             getRoot(), getValue(I.getArgOperand(0))));
5332     return nullptr;
5333   case Intrinsic::eh_sjlj_setup_dispatch:
5334     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5335                             getRoot()));
5336     return nullptr;
5337   case Intrinsic::masked_gather:
5338     visitMaskedGather(I);
5339     return nullptr;
5340   case Intrinsic::masked_load:
5341     visitMaskedLoad(I);
5342     return nullptr;
5343   case Intrinsic::masked_scatter:
5344     visitMaskedScatter(I);
5345     return nullptr;
5346   case Intrinsic::masked_store:
5347     visitMaskedStore(I);
5348     return nullptr;
5349   case Intrinsic::masked_expandload:
5350     visitMaskedLoad(I, true /* IsExpanding */);
5351     return nullptr;
5352   case Intrinsic::masked_compressstore:
5353     visitMaskedStore(I, true /* IsCompressing */);
5354     return nullptr;
5355   case Intrinsic::x86_mmx_pslli_w:
5356   case Intrinsic::x86_mmx_pslli_d:
5357   case Intrinsic::x86_mmx_pslli_q:
5358   case Intrinsic::x86_mmx_psrli_w:
5359   case Intrinsic::x86_mmx_psrli_d:
5360   case Intrinsic::x86_mmx_psrli_q:
5361   case Intrinsic::x86_mmx_psrai_w:
5362   case Intrinsic::x86_mmx_psrai_d: {
5363     SDValue ShAmt = getValue(I.getArgOperand(1));
5364     if (isa<ConstantSDNode>(ShAmt)) {
5365       visitTargetIntrinsic(I, Intrinsic);
5366       return nullptr;
5367     }
5368     unsigned NewIntrinsic = 0;
5369     EVT ShAmtVT = MVT::v2i32;
5370     switch (Intrinsic) {
5371     case Intrinsic::x86_mmx_pslli_w:
5372       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5373       break;
5374     case Intrinsic::x86_mmx_pslli_d:
5375       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5376       break;
5377     case Intrinsic::x86_mmx_pslli_q:
5378       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5379       break;
5380     case Intrinsic::x86_mmx_psrli_w:
5381       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5382       break;
5383     case Intrinsic::x86_mmx_psrli_d:
5384       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5385       break;
5386     case Intrinsic::x86_mmx_psrli_q:
5387       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5388       break;
5389     case Intrinsic::x86_mmx_psrai_w:
5390       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5391       break;
5392     case Intrinsic::x86_mmx_psrai_d:
5393       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5394       break;
5395     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5396     }
5397 
5398     // The vector shift intrinsics with scalars uses 32b shift amounts but
5399     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5400     // to be zero.
5401     // We must do this early because v2i32 is not a legal type.
5402     SDValue ShOps[2];
5403     ShOps[0] = ShAmt;
5404     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5405     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5406     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5407     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5408     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5409                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5410                        getValue(I.getArgOperand(0)), ShAmt);
5411     setValue(&I, Res);
5412     return nullptr;
5413   }
5414   case Intrinsic::powi:
5415     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5416                             getValue(I.getArgOperand(1)), DAG));
5417     return nullptr;
5418   case Intrinsic::log:
5419     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5420     return nullptr;
5421   case Intrinsic::log2:
5422     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5423     return nullptr;
5424   case Intrinsic::log10:
5425     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5426     return nullptr;
5427   case Intrinsic::exp:
5428     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5429     return nullptr;
5430   case Intrinsic::exp2:
5431     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5432     return nullptr;
5433   case Intrinsic::pow:
5434     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5435                            getValue(I.getArgOperand(1)), DAG, TLI));
5436     return nullptr;
5437   case Intrinsic::sqrt:
5438   case Intrinsic::fabs:
5439   case Intrinsic::sin:
5440   case Intrinsic::cos:
5441   case Intrinsic::floor:
5442   case Intrinsic::ceil:
5443   case Intrinsic::trunc:
5444   case Intrinsic::rint:
5445   case Intrinsic::nearbyint:
5446   case Intrinsic::round:
5447   case Intrinsic::canonicalize: {
5448     unsigned Opcode;
5449     switch (Intrinsic) {
5450     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5451     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5452     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5453     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5454     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5455     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5456     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5457     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5458     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5459     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5460     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5461     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5462     }
5463 
5464     setValue(&I, DAG.getNode(Opcode, sdl,
5465                              getValue(I.getArgOperand(0)).getValueType(),
5466                              getValue(I.getArgOperand(0))));
5467     return nullptr;
5468   }
5469   case Intrinsic::minnum: {
5470     auto VT = getValue(I.getArgOperand(0)).getValueType();
5471     unsigned Opc =
5472         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5473             ? ISD::FMINNAN
5474             : ISD::FMINNUM;
5475     setValue(&I, DAG.getNode(Opc, sdl, VT,
5476                              getValue(I.getArgOperand(0)),
5477                              getValue(I.getArgOperand(1))));
5478     return nullptr;
5479   }
5480   case Intrinsic::maxnum: {
5481     auto VT = getValue(I.getArgOperand(0)).getValueType();
5482     unsigned Opc =
5483         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5484             ? ISD::FMAXNAN
5485             : ISD::FMAXNUM;
5486     setValue(&I, DAG.getNode(Opc, sdl, VT,
5487                              getValue(I.getArgOperand(0)),
5488                              getValue(I.getArgOperand(1))));
5489     return nullptr;
5490   }
5491   case Intrinsic::copysign:
5492     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5493                              getValue(I.getArgOperand(0)).getValueType(),
5494                              getValue(I.getArgOperand(0)),
5495                              getValue(I.getArgOperand(1))));
5496     return nullptr;
5497   case Intrinsic::fma:
5498     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5499                              getValue(I.getArgOperand(0)).getValueType(),
5500                              getValue(I.getArgOperand(0)),
5501                              getValue(I.getArgOperand(1)),
5502                              getValue(I.getArgOperand(2))));
5503     return nullptr;
5504   case Intrinsic::experimental_constrained_fadd:
5505   case Intrinsic::experimental_constrained_fsub:
5506   case Intrinsic::experimental_constrained_fmul:
5507   case Intrinsic::experimental_constrained_fdiv:
5508   case Intrinsic::experimental_constrained_frem:
5509   case Intrinsic::experimental_constrained_fma:
5510   case Intrinsic::experimental_constrained_sqrt:
5511   case Intrinsic::experimental_constrained_pow:
5512   case Intrinsic::experimental_constrained_powi:
5513   case Intrinsic::experimental_constrained_sin:
5514   case Intrinsic::experimental_constrained_cos:
5515   case Intrinsic::experimental_constrained_exp:
5516   case Intrinsic::experimental_constrained_exp2:
5517   case Intrinsic::experimental_constrained_log:
5518   case Intrinsic::experimental_constrained_log10:
5519   case Intrinsic::experimental_constrained_log2:
5520   case Intrinsic::experimental_constrained_rint:
5521   case Intrinsic::experimental_constrained_nearbyint:
5522     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5523     return nullptr;
5524   case Intrinsic::fmuladd: {
5525     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5526     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5527         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5528       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5529                                getValue(I.getArgOperand(0)).getValueType(),
5530                                getValue(I.getArgOperand(0)),
5531                                getValue(I.getArgOperand(1)),
5532                                getValue(I.getArgOperand(2))));
5533     } else {
5534       // TODO: Intrinsic calls should have fast-math-flags.
5535       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5536                                 getValue(I.getArgOperand(0)).getValueType(),
5537                                 getValue(I.getArgOperand(0)),
5538                                 getValue(I.getArgOperand(1)));
5539       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5540                                 getValue(I.getArgOperand(0)).getValueType(),
5541                                 Mul,
5542                                 getValue(I.getArgOperand(2)));
5543       setValue(&I, Add);
5544     }
5545     return nullptr;
5546   }
5547   case Intrinsic::convert_to_fp16:
5548     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5549                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5550                                          getValue(I.getArgOperand(0)),
5551                                          DAG.getTargetConstant(0, sdl,
5552                                                                MVT::i32))));
5553     return nullptr;
5554   case Intrinsic::convert_from_fp16:
5555     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5556                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5557                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5558                                          getValue(I.getArgOperand(0)))));
5559     return nullptr;
5560   case Intrinsic::pcmarker: {
5561     SDValue Tmp = getValue(I.getArgOperand(0));
5562     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5563     return nullptr;
5564   }
5565   case Intrinsic::readcyclecounter: {
5566     SDValue Op = getRoot();
5567     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5568                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5569     setValue(&I, Res);
5570     DAG.setRoot(Res.getValue(1));
5571     return nullptr;
5572   }
5573   case Intrinsic::bitreverse:
5574     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5575                              getValue(I.getArgOperand(0)).getValueType(),
5576                              getValue(I.getArgOperand(0))));
5577     return nullptr;
5578   case Intrinsic::bswap:
5579     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5580                              getValue(I.getArgOperand(0)).getValueType(),
5581                              getValue(I.getArgOperand(0))));
5582     return nullptr;
5583   case Intrinsic::cttz: {
5584     SDValue Arg = getValue(I.getArgOperand(0));
5585     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5586     EVT Ty = Arg.getValueType();
5587     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5588                              sdl, Ty, Arg));
5589     return nullptr;
5590   }
5591   case Intrinsic::ctlz: {
5592     SDValue Arg = getValue(I.getArgOperand(0));
5593     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5594     EVT Ty = Arg.getValueType();
5595     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5596                              sdl, Ty, Arg));
5597     return nullptr;
5598   }
5599   case Intrinsic::ctpop: {
5600     SDValue Arg = getValue(I.getArgOperand(0));
5601     EVT Ty = Arg.getValueType();
5602     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5603     return nullptr;
5604   }
5605   case Intrinsic::stacksave: {
5606     SDValue Op = getRoot();
5607     Res = DAG.getNode(
5608         ISD::STACKSAVE, sdl,
5609         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5610     setValue(&I, Res);
5611     DAG.setRoot(Res.getValue(1));
5612     return nullptr;
5613   }
5614   case Intrinsic::stackrestore:
5615     Res = getValue(I.getArgOperand(0));
5616     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5617     return nullptr;
5618   case Intrinsic::get_dynamic_area_offset: {
5619     SDValue Op = getRoot();
5620     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5621     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5622     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5623     // target.
5624     if (PtrTy != ResTy)
5625       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5626                          " intrinsic!");
5627     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5628                       Op);
5629     DAG.setRoot(Op);
5630     setValue(&I, Res);
5631     return nullptr;
5632   }
5633   case Intrinsic::stackguard: {
5634     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5635     MachineFunction &MF = DAG.getMachineFunction();
5636     const Module &M = *MF.getFunction()->getParent();
5637     SDValue Chain = getRoot();
5638     if (TLI.useLoadStackGuardNode()) {
5639       Res = getLoadStackGuard(DAG, sdl, Chain);
5640     } else {
5641       const Value *Global = TLI.getSDagStackGuard(M);
5642       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5643       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5644                         MachinePointerInfo(Global, 0), Align,
5645                         MachineMemOperand::MOVolatile);
5646     }
5647     DAG.setRoot(Chain);
5648     setValue(&I, Res);
5649     return nullptr;
5650   }
5651   case Intrinsic::stackprotector: {
5652     // Emit code into the DAG to store the stack guard onto the stack.
5653     MachineFunction &MF = DAG.getMachineFunction();
5654     MachineFrameInfo &MFI = MF.getFrameInfo();
5655     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5656     SDValue Src, Chain = getRoot();
5657 
5658     if (TLI.useLoadStackGuardNode())
5659       Src = getLoadStackGuard(DAG, sdl, Chain);
5660     else
5661       Src = getValue(I.getArgOperand(0));   // The guard's value.
5662 
5663     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5664 
5665     int FI = FuncInfo.StaticAllocaMap[Slot];
5666     MFI.setStackProtectorIndex(FI);
5667 
5668     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5669 
5670     // Store the stack protector onto the stack.
5671     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5672                                                  DAG.getMachineFunction(), FI),
5673                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5674     setValue(&I, Res);
5675     DAG.setRoot(Res);
5676     return nullptr;
5677   }
5678   case Intrinsic::objectsize: {
5679     // If we don't know by now, we're never going to know.
5680     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5681 
5682     assert(CI && "Non-constant type in __builtin_object_size?");
5683 
5684     SDValue Arg = getValue(I.getCalledValue());
5685     EVT Ty = Arg.getValueType();
5686 
5687     if (CI->isZero())
5688       Res = DAG.getConstant(-1ULL, sdl, Ty);
5689     else
5690       Res = DAG.getConstant(0, sdl, Ty);
5691 
5692     setValue(&I, Res);
5693     return nullptr;
5694   }
5695   case Intrinsic::annotation:
5696   case Intrinsic::ptr_annotation:
5697   case Intrinsic::invariant_group_barrier:
5698     // Drop the intrinsic, but forward the value
5699     setValue(&I, getValue(I.getOperand(0)));
5700     return nullptr;
5701   case Intrinsic::assume:
5702   case Intrinsic::var_annotation:
5703   case Intrinsic::sideeffect:
5704     // Discard annotate attributes, assumptions, and artificial side-effects.
5705     return nullptr;
5706 
5707   case Intrinsic::codeview_annotation: {
5708     // Emit a label associated with this metadata.
5709     MachineFunction &MF = DAG.getMachineFunction();
5710     MCSymbol *Label =
5711         MF.getMMI().getContext().createTempSymbol("annotation", true);
5712     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5713     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5714     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5715     DAG.setRoot(Res);
5716     return nullptr;
5717   }
5718 
5719   case Intrinsic::init_trampoline: {
5720     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5721 
5722     SDValue Ops[6];
5723     Ops[0] = getRoot();
5724     Ops[1] = getValue(I.getArgOperand(0));
5725     Ops[2] = getValue(I.getArgOperand(1));
5726     Ops[3] = getValue(I.getArgOperand(2));
5727     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5728     Ops[5] = DAG.getSrcValue(F);
5729 
5730     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5731 
5732     DAG.setRoot(Res);
5733     return nullptr;
5734   }
5735   case Intrinsic::adjust_trampoline:
5736     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5737                              TLI.getPointerTy(DAG.getDataLayout()),
5738                              getValue(I.getArgOperand(0))));
5739     return nullptr;
5740   case Intrinsic::gcroot: {
5741     MachineFunction &MF = DAG.getMachineFunction();
5742     const Function *F = MF.getFunction();
5743     (void)F;
5744     assert(F->hasGC() &&
5745            "only valid in functions with gc specified, enforced by Verifier");
5746     assert(GFI && "implied by previous");
5747     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5748     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5749 
5750     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5751     GFI->addStackRoot(FI->getIndex(), TypeMap);
5752     return nullptr;
5753   }
5754   case Intrinsic::gcread:
5755   case Intrinsic::gcwrite:
5756     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5757   case Intrinsic::flt_rounds:
5758     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5759     return nullptr;
5760 
5761   case Intrinsic::expect:
5762     // Just replace __builtin_expect(exp, c) with EXP.
5763     setValue(&I, getValue(I.getArgOperand(0)));
5764     return nullptr;
5765 
5766   case Intrinsic::debugtrap:
5767   case Intrinsic::trap: {
5768     StringRef TrapFuncName =
5769         I.getAttributes()
5770             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5771             .getValueAsString();
5772     if (TrapFuncName.empty()) {
5773       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5774         ISD::TRAP : ISD::DEBUGTRAP;
5775       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5776       return nullptr;
5777     }
5778     TargetLowering::ArgListTy Args;
5779 
5780     TargetLowering::CallLoweringInfo CLI(DAG);
5781     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5782         CallingConv::C, I.getType(),
5783         DAG.getExternalSymbol(TrapFuncName.data(),
5784                               TLI.getPointerTy(DAG.getDataLayout())),
5785         std::move(Args));
5786 
5787     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5788     DAG.setRoot(Result.second);
5789     return nullptr;
5790   }
5791 
5792   case Intrinsic::uadd_with_overflow:
5793   case Intrinsic::sadd_with_overflow:
5794   case Intrinsic::usub_with_overflow:
5795   case Intrinsic::ssub_with_overflow:
5796   case Intrinsic::umul_with_overflow:
5797   case Intrinsic::smul_with_overflow: {
5798     ISD::NodeType Op;
5799     switch (Intrinsic) {
5800     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5801     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5802     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5803     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5804     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5805     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5806     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5807     }
5808     SDValue Op1 = getValue(I.getArgOperand(0));
5809     SDValue Op2 = getValue(I.getArgOperand(1));
5810 
5811     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5812     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5813     return nullptr;
5814   }
5815   case Intrinsic::prefetch: {
5816     SDValue Ops[5];
5817     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5818     Ops[0] = getRoot();
5819     Ops[1] = getValue(I.getArgOperand(0));
5820     Ops[2] = getValue(I.getArgOperand(1));
5821     Ops[3] = getValue(I.getArgOperand(2));
5822     Ops[4] = getValue(I.getArgOperand(3));
5823     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5824                                         DAG.getVTList(MVT::Other), Ops,
5825                                         EVT::getIntegerVT(*Context, 8),
5826                                         MachinePointerInfo(I.getArgOperand(0)),
5827                                         0, /* align */
5828                                         false, /* volatile */
5829                                         rw==0, /* read */
5830                                         rw==1)); /* write */
5831     return nullptr;
5832   }
5833   case Intrinsic::lifetime_start:
5834   case Intrinsic::lifetime_end: {
5835     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5836     // Stack coloring is not enabled in O0, discard region information.
5837     if (TM.getOptLevel() == CodeGenOpt::None)
5838       return nullptr;
5839 
5840     SmallVector<Value *, 4> Allocas;
5841     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5842 
5843     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5844            E = Allocas.end(); Object != E; ++Object) {
5845       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5846 
5847       // Could not find an Alloca.
5848       if (!LifetimeObject)
5849         continue;
5850 
5851       // First check that the Alloca is static, otherwise it won't have a
5852       // valid frame index.
5853       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5854       if (SI == FuncInfo.StaticAllocaMap.end())
5855         return nullptr;
5856 
5857       int FI = SI->second;
5858 
5859       SDValue Ops[2];
5860       Ops[0] = getRoot();
5861       Ops[1] =
5862           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5863       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5864 
5865       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5866       DAG.setRoot(Res);
5867     }
5868     return nullptr;
5869   }
5870   case Intrinsic::invariant_start:
5871     // Discard region information.
5872     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5873     return nullptr;
5874   case Intrinsic::invariant_end:
5875     // Discard region information.
5876     return nullptr;
5877   case Intrinsic::clear_cache:
5878     return TLI.getClearCacheBuiltinName();
5879   case Intrinsic::donothing:
5880     // ignore
5881     return nullptr;
5882   case Intrinsic::experimental_stackmap:
5883     visitStackmap(I);
5884     return nullptr;
5885   case Intrinsic::experimental_patchpoint_void:
5886   case Intrinsic::experimental_patchpoint_i64:
5887     visitPatchpoint(&I);
5888     return nullptr;
5889   case Intrinsic::experimental_gc_statepoint:
5890     LowerStatepoint(ImmutableStatepoint(&I));
5891     return nullptr;
5892   case Intrinsic::experimental_gc_result:
5893     visitGCResult(cast<GCResultInst>(I));
5894     return nullptr;
5895   case Intrinsic::experimental_gc_relocate:
5896     visitGCRelocate(cast<GCRelocateInst>(I));
5897     return nullptr;
5898   case Intrinsic::instrprof_increment:
5899     llvm_unreachable("instrprof failed to lower an increment");
5900   case Intrinsic::instrprof_value_profile:
5901     llvm_unreachable("instrprof failed to lower a value profiling call");
5902   case Intrinsic::localescape: {
5903     MachineFunction &MF = DAG.getMachineFunction();
5904     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5905 
5906     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5907     // is the same on all targets.
5908     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5909       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5910       if (isa<ConstantPointerNull>(Arg))
5911         continue; // Skip null pointers. They represent a hole in index space.
5912       AllocaInst *Slot = cast<AllocaInst>(Arg);
5913       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5914              "can only escape static allocas");
5915       int FI = FuncInfo.StaticAllocaMap[Slot];
5916       MCSymbol *FrameAllocSym =
5917           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5918               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
5919       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5920               TII->get(TargetOpcode::LOCAL_ESCAPE))
5921           .addSym(FrameAllocSym)
5922           .addFrameIndex(FI);
5923     }
5924 
5925     return nullptr;
5926   }
5927 
5928   case Intrinsic::localrecover: {
5929     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5930     MachineFunction &MF = DAG.getMachineFunction();
5931     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5932 
5933     // Get the symbol that defines the frame offset.
5934     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5935     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5936     unsigned IdxVal =
5937         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
5938     MCSymbol *FrameAllocSym =
5939         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5940             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
5941 
5942     // Create a MCSymbol for the label to avoid any target lowering
5943     // that would make this PC relative.
5944     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5945     SDValue OffsetVal =
5946         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5947 
5948     // Add the offset to the FP.
5949     Value *FP = I.getArgOperand(1);
5950     SDValue FPVal = getValue(FP);
5951     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5952     setValue(&I, Add);
5953 
5954     return nullptr;
5955   }
5956 
5957   case Intrinsic::eh_exceptionpointer:
5958   case Intrinsic::eh_exceptioncode: {
5959     // Get the exception pointer vreg, copy from it, and resize it to fit.
5960     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5961     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5962     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5963     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5964     SDValue N =
5965         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5966     if (Intrinsic == Intrinsic::eh_exceptioncode)
5967       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5968     setValue(&I, N);
5969     return nullptr;
5970   }
5971   case Intrinsic::xray_customevent: {
5972     // Here we want to make sure that the intrinsic behaves as if it has a
5973     // specific calling convention, and only for x86_64.
5974     // FIXME: Support other platforms later.
5975     const auto &Triple = DAG.getTarget().getTargetTriple();
5976     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
5977       return nullptr;
5978 
5979     SDLoc DL = getCurSDLoc();
5980     SmallVector<SDValue, 8> Ops;
5981 
5982     // We want to say that we always want the arguments in registers.
5983     SDValue LogEntryVal = getValue(I.getArgOperand(0));
5984     SDValue StrSizeVal = getValue(I.getArgOperand(1));
5985     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
5986     SDValue Chain = getRoot();
5987     Ops.push_back(LogEntryVal);
5988     Ops.push_back(StrSizeVal);
5989     Ops.push_back(Chain);
5990 
5991     // We need to enforce the calling convention for the callsite, so that
5992     // argument ordering is enforced correctly, and that register allocation can
5993     // see that some registers may be assumed clobbered and have to preserve
5994     // them across calls to the intrinsic.
5995     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
5996                                            DL, NodeTys, Ops);
5997     SDValue patchableNode = SDValue(MN, 0);
5998     DAG.setRoot(patchableNode);
5999     setValue(&I, patchableNode);
6000     return nullptr;
6001   }
6002   case Intrinsic::experimental_deoptimize:
6003     LowerDeoptimizeCall(&I);
6004     return nullptr;
6005 
6006   case Intrinsic::experimental_vector_reduce_fadd:
6007   case Intrinsic::experimental_vector_reduce_fmul:
6008   case Intrinsic::experimental_vector_reduce_add:
6009   case Intrinsic::experimental_vector_reduce_mul:
6010   case Intrinsic::experimental_vector_reduce_and:
6011   case Intrinsic::experimental_vector_reduce_or:
6012   case Intrinsic::experimental_vector_reduce_xor:
6013   case Intrinsic::experimental_vector_reduce_smax:
6014   case Intrinsic::experimental_vector_reduce_smin:
6015   case Intrinsic::experimental_vector_reduce_umax:
6016   case Intrinsic::experimental_vector_reduce_umin:
6017   case Intrinsic::experimental_vector_reduce_fmax:
6018   case Intrinsic::experimental_vector_reduce_fmin:
6019     visitVectorReduce(I, Intrinsic);
6020     return nullptr;
6021   }
6022 }
6023 
6024 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6025     const ConstrainedFPIntrinsic &FPI) {
6026   SDLoc sdl = getCurSDLoc();
6027   unsigned Opcode;
6028   switch (FPI.getIntrinsicID()) {
6029   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6030   case Intrinsic::experimental_constrained_fadd:
6031     Opcode = ISD::STRICT_FADD;
6032     break;
6033   case Intrinsic::experimental_constrained_fsub:
6034     Opcode = ISD::STRICT_FSUB;
6035     break;
6036   case Intrinsic::experimental_constrained_fmul:
6037     Opcode = ISD::STRICT_FMUL;
6038     break;
6039   case Intrinsic::experimental_constrained_fdiv:
6040     Opcode = ISD::STRICT_FDIV;
6041     break;
6042   case Intrinsic::experimental_constrained_frem:
6043     Opcode = ISD::STRICT_FREM;
6044     break;
6045   case Intrinsic::experimental_constrained_fma:
6046     Opcode = ISD::STRICT_FMA;
6047     break;
6048   case Intrinsic::experimental_constrained_sqrt:
6049     Opcode = ISD::STRICT_FSQRT;
6050     break;
6051   case Intrinsic::experimental_constrained_pow:
6052     Opcode = ISD::STRICT_FPOW;
6053     break;
6054   case Intrinsic::experimental_constrained_powi:
6055     Opcode = ISD::STRICT_FPOWI;
6056     break;
6057   case Intrinsic::experimental_constrained_sin:
6058     Opcode = ISD::STRICT_FSIN;
6059     break;
6060   case Intrinsic::experimental_constrained_cos:
6061     Opcode = ISD::STRICT_FCOS;
6062     break;
6063   case Intrinsic::experimental_constrained_exp:
6064     Opcode = ISD::STRICT_FEXP;
6065     break;
6066   case Intrinsic::experimental_constrained_exp2:
6067     Opcode = ISD::STRICT_FEXP2;
6068     break;
6069   case Intrinsic::experimental_constrained_log:
6070     Opcode = ISD::STRICT_FLOG;
6071     break;
6072   case Intrinsic::experimental_constrained_log10:
6073     Opcode = ISD::STRICT_FLOG10;
6074     break;
6075   case Intrinsic::experimental_constrained_log2:
6076     Opcode = ISD::STRICT_FLOG2;
6077     break;
6078   case Intrinsic::experimental_constrained_rint:
6079     Opcode = ISD::STRICT_FRINT;
6080     break;
6081   case Intrinsic::experimental_constrained_nearbyint:
6082     Opcode = ISD::STRICT_FNEARBYINT;
6083     break;
6084   }
6085   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6086   SDValue Chain = getRoot();
6087   SmallVector<EVT, 4> ValueVTs;
6088   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6089   ValueVTs.push_back(MVT::Other); // Out chain
6090 
6091   SDVTList VTs = DAG.getVTList(ValueVTs);
6092   SDValue Result;
6093   if (FPI.isUnaryOp())
6094     Result = DAG.getNode(Opcode, sdl, VTs,
6095                          { Chain, getValue(FPI.getArgOperand(0)) });
6096   else if (FPI.isTernaryOp())
6097     Result = DAG.getNode(Opcode, sdl, VTs,
6098                          { Chain, getValue(FPI.getArgOperand(0)),
6099                                   getValue(FPI.getArgOperand(1)),
6100                                   getValue(FPI.getArgOperand(2)) });
6101   else
6102     Result = DAG.getNode(Opcode, sdl, VTs,
6103                          { Chain, getValue(FPI.getArgOperand(0)),
6104                            getValue(FPI.getArgOperand(1))  });
6105 
6106   assert(Result.getNode()->getNumValues() == 2);
6107   SDValue OutChain = Result.getValue(1);
6108   DAG.setRoot(OutChain);
6109   SDValue FPResult = Result.getValue(0);
6110   setValue(&FPI, FPResult);
6111 }
6112 
6113 std::pair<SDValue, SDValue>
6114 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6115                                     const BasicBlock *EHPadBB) {
6116   MachineFunction &MF = DAG.getMachineFunction();
6117   MachineModuleInfo &MMI = MF.getMMI();
6118   MCSymbol *BeginLabel = nullptr;
6119 
6120   if (EHPadBB) {
6121     // Insert a label before the invoke call to mark the try range.  This can be
6122     // used to detect deletion of the invoke via the MachineModuleInfo.
6123     BeginLabel = MMI.getContext().createTempSymbol();
6124 
6125     // For SjLj, keep track of which landing pads go with which invokes
6126     // so as to maintain the ordering of pads in the LSDA.
6127     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6128     if (CallSiteIndex) {
6129       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6130       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6131 
6132       // Now that the call site is handled, stop tracking it.
6133       MMI.setCurrentCallSite(0);
6134     }
6135 
6136     // Both PendingLoads and PendingExports must be flushed here;
6137     // this call might not return.
6138     (void)getRoot();
6139     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6140 
6141     CLI.setChain(getRoot());
6142   }
6143   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6144   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6145 
6146   assert((CLI.IsTailCall || Result.second.getNode()) &&
6147          "Non-null chain expected with non-tail call!");
6148   assert((Result.second.getNode() || !Result.first.getNode()) &&
6149          "Null value expected with tail call!");
6150 
6151   if (!Result.second.getNode()) {
6152     // As a special case, a null chain means that a tail call has been emitted
6153     // and the DAG root is already updated.
6154     HasTailCall = true;
6155 
6156     // Since there's no actual continuation from this block, nothing can be
6157     // relying on us setting vregs for them.
6158     PendingExports.clear();
6159   } else {
6160     DAG.setRoot(Result.second);
6161   }
6162 
6163   if (EHPadBB) {
6164     // Insert a label at the end of the invoke call to mark the try range.  This
6165     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6166     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6167     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6168 
6169     // Inform MachineModuleInfo of range.
6170     if (MF.hasEHFunclets()) {
6171       assert(CLI.CS);
6172       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6173       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6174                                 BeginLabel, EndLabel);
6175     } else {
6176       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6177     }
6178   }
6179 
6180   return Result;
6181 }
6182 
6183 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6184                                       bool isTailCall,
6185                                       const BasicBlock *EHPadBB) {
6186   auto &DL = DAG.getDataLayout();
6187   FunctionType *FTy = CS.getFunctionType();
6188   Type *RetTy = CS.getType();
6189 
6190   TargetLowering::ArgListTy Args;
6191   Args.reserve(CS.arg_size());
6192 
6193   const Value *SwiftErrorVal = nullptr;
6194   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6195 
6196   // We can't tail call inside a function with a swifterror argument. Lowering
6197   // does not support this yet. It would have to move into the swifterror
6198   // register before the call.
6199   auto *Caller = CS.getInstruction()->getParent()->getParent();
6200   if (TLI.supportSwiftError() &&
6201       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6202     isTailCall = false;
6203 
6204   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6205        i != e; ++i) {
6206     TargetLowering::ArgListEntry Entry;
6207     const Value *V = *i;
6208 
6209     // Skip empty types
6210     if (V->getType()->isEmptyTy())
6211       continue;
6212 
6213     SDValue ArgNode = getValue(V);
6214     Entry.Node = ArgNode; Entry.Ty = V->getType();
6215 
6216     Entry.setAttributes(&CS, i - CS.arg_begin());
6217 
6218     // Use swifterror virtual register as input to the call.
6219     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6220       SwiftErrorVal = V;
6221       // We find the virtual register for the actual swifterror argument.
6222       // Instead of using the Value, we use the virtual register instead.
6223       Entry.Node = DAG.getRegister(FuncInfo
6224                                        .getOrCreateSwiftErrorVRegUseAt(
6225                                            CS.getInstruction(), FuncInfo.MBB, V)
6226                                        .first,
6227                                    EVT(TLI.getPointerTy(DL)));
6228     }
6229 
6230     Args.push_back(Entry);
6231 
6232     // If we have an explicit sret argument that is an Instruction, (i.e., it
6233     // might point to function-local memory), we can't meaningfully tail-call.
6234     if (Entry.IsSRet && isa<Instruction>(V))
6235       isTailCall = false;
6236   }
6237 
6238   // Check if target-independent constraints permit a tail call here.
6239   // Target-dependent constraints are checked within TLI->LowerCallTo.
6240   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6241     isTailCall = false;
6242 
6243   // Disable tail calls if there is an swifterror argument. Targets have not
6244   // been updated to support tail calls.
6245   if (TLI.supportSwiftError() && SwiftErrorVal)
6246     isTailCall = false;
6247 
6248   TargetLowering::CallLoweringInfo CLI(DAG);
6249   CLI.setDebugLoc(getCurSDLoc())
6250       .setChain(getRoot())
6251       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6252       .setTailCall(isTailCall)
6253       .setConvergent(CS.isConvergent());
6254   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6255 
6256   if (Result.first.getNode()) {
6257     const Instruction *Inst = CS.getInstruction();
6258     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6259     setValue(Inst, Result.first);
6260   }
6261 
6262   // The last element of CLI.InVals has the SDValue for swifterror return.
6263   // Here we copy it to a virtual register and update SwiftErrorMap for
6264   // book-keeping.
6265   if (SwiftErrorVal && TLI.supportSwiftError()) {
6266     // Get the last element of InVals.
6267     SDValue Src = CLI.InVals.back();
6268     unsigned VReg; bool CreatedVReg;
6269     std::tie(VReg, CreatedVReg) =
6270         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6271     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6272     // We update the virtual register for the actual swifterror argument.
6273     if (CreatedVReg)
6274       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6275     DAG.setRoot(CopyNode);
6276   }
6277 }
6278 
6279 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6280                              SelectionDAGBuilder &Builder) {
6281   // Check to see if this load can be trivially constant folded, e.g. if the
6282   // input is from a string literal.
6283   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6284     // Cast pointer to the type we really want to load.
6285     Type *LoadTy =
6286         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6287     if (LoadVT.isVector())
6288       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6289 
6290     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6291                                          PointerType::getUnqual(LoadTy));
6292 
6293     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6294             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6295       return Builder.getValue(LoadCst);
6296   }
6297 
6298   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6299   // still constant memory, the input chain can be the entry node.
6300   SDValue Root;
6301   bool ConstantMemory = false;
6302 
6303   // Do not serialize (non-volatile) loads of constant memory with anything.
6304   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6305     Root = Builder.DAG.getEntryNode();
6306     ConstantMemory = true;
6307   } else {
6308     // Do not serialize non-volatile loads against each other.
6309     Root = Builder.DAG.getRoot();
6310   }
6311 
6312   SDValue Ptr = Builder.getValue(PtrVal);
6313   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6314                                         Ptr, MachinePointerInfo(PtrVal),
6315                                         /* Alignment = */ 1);
6316 
6317   if (!ConstantMemory)
6318     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6319   return LoadVal;
6320 }
6321 
6322 /// Record the value for an instruction that produces an integer result,
6323 /// converting the type where necessary.
6324 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6325                                                   SDValue Value,
6326                                                   bool IsSigned) {
6327   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6328                                                     I.getType(), true);
6329   if (IsSigned)
6330     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6331   else
6332     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6333   setValue(&I, Value);
6334 }
6335 
6336 /// See if we can lower a memcmp call into an optimized form. If so, return
6337 /// true and lower it. Otherwise return false, and it will be lowered like a
6338 /// normal call.
6339 /// The caller already checked that \p I calls the appropriate LibFunc with a
6340 /// correct prototype.
6341 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6342   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6343   const Value *Size = I.getArgOperand(2);
6344   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6345   if (CSize && CSize->getZExtValue() == 0) {
6346     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6347                                                           I.getType(), true);
6348     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6349     return true;
6350   }
6351 
6352   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6353   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6354       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6355       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6356   if (Res.first.getNode()) {
6357     processIntegerCallValue(I, Res.first, true);
6358     PendingLoads.push_back(Res.second);
6359     return true;
6360   }
6361 
6362   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6363   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6364   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6365     return false;
6366 
6367   // If the target has a fast compare for the given size, it will return a
6368   // preferred load type for that size. Require that the load VT is legal and
6369   // that the target supports unaligned loads of that type. Otherwise, return
6370   // INVALID.
6371   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6372     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6373     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6374     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6375       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6376       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6377       // TODO: Check alignment of src and dest ptrs.
6378       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6379       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6380       if (!TLI.isTypeLegal(LVT) ||
6381           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6382           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6383         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6384     }
6385 
6386     return LVT;
6387   };
6388 
6389   // This turns into unaligned loads. We only do this if the target natively
6390   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6391   // we'll only produce a small number of byte loads.
6392   MVT LoadVT;
6393   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6394   switch (NumBitsToCompare) {
6395   default:
6396     return false;
6397   case 16:
6398     LoadVT = MVT::i16;
6399     break;
6400   case 32:
6401     LoadVT = MVT::i32;
6402     break;
6403   case 64:
6404   case 128:
6405   case 256:
6406     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6407     break;
6408   }
6409 
6410   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6411     return false;
6412 
6413   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6414   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6415 
6416   // Bitcast to a wide integer type if the loads are vectors.
6417   if (LoadVT.isVector()) {
6418     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6419     LoadL = DAG.getBitcast(CmpVT, LoadL);
6420     LoadR = DAG.getBitcast(CmpVT, LoadR);
6421   }
6422 
6423   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6424   processIntegerCallValue(I, Cmp, false);
6425   return true;
6426 }
6427 
6428 /// See if we can lower a memchr call into an optimized form. If so, return
6429 /// true and lower it. Otherwise return false, and it will be lowered like a
6430 /// normal call.
6431 /// The caller already checked that \p I calls the appropriate LibFunc with a
6432 /// correct prototype.
6433 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6434   const Value *Src = I.getArgOperand(0);
6435   const Value *Char = I.getArgOperand(1);
6436   const Value *Length = I.getArgOperand(2);
6437 
6438   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6439   std::pair<SDValue, SDValue> Res =
6440     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6441                                 getValue(Src), getValue(Char), getValue(Length),
6442                                 MachinePointerInfo(Src));
6443   if (Res.first.getNode()) {
6444     setValue(&I, Res.first);
6445     PendingLoads.push_back(Res.second);
6446     return true;
6447   }
6448 
6449   return false;
6450 }
6451 
6452 /// See if we can lower a mempcpy call into an optimized form. If so, return
6453 /// true and lower it. Otherwise return false, and it will be lowered like a
6454 /// normal call.
6455 /// The caller already checked that \p I calls the appropriate LibFunc with a
6456 /// correct prototype.
6457 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6458   SDValue Dst = getValue(I.getArgOperand(0));
6459   SDValue Src = getValue(I.getArgOperand(1));
6460   SDValue Size = getValue(I.getArgOperand(2));
6461 
6462   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6463   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6464   unsigned Align = std::min(DstAlign, SrcAlign);
6465   if (Align == 0) // Alignment of one or both could not be inferred.
6466     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6467 
6468   bool isVol = false;
6469   SDLoc sdl = getCurSDLoc();
6470 
6471   // In the mempcpy context we need to pass in a false value for isTailCall
6472   // because the return pointer needs to be adjusted by the size of
6473   // the copied memory.
6474   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6475                              false, /*isTailCall=*/false,
6476                              MachinePointerInfo(I.getArgOperand(0)),
6477                              MachinePointerInfo(I.getArgOperand(1)));
6478   assert(MC.getNode() != nullptr &&
6479          "** memcpy should not be lowered as TailCall in mempcpy context **");
6480   DAG.setRoot(MC);
6481 
6482   // Check if Size needs to be truncated or extended.
6483   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6484 
6485   // Adjust return pointer to point just past the last dst byte.
6486   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6487                                     Dst, Size);
6488   setValue(&I, DstPlusSize);
6489   return true;
6490 }
6491 
6492 /// See if we can lower a strcpy call into an optimized form.  If so, return
6493 /// true and lower it, otherwise return false and it will be lowered like a
6494 /// normal call.
6495 /// The caller already checked that \p I calls the appropriate LibFunc with a
6496 /// correct prototype.
6497 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6498   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6499 
6500   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6501   std::pair<SDValue, SDValue> Res =
6502     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6503                                 getValue(Arg0), getValue(Arg1),
6504                                 MachinePointerInfo(Arg0),
6505                                 MachinePointerInfo(Arg1), isStpcpy);
6506   if (Res.first.getNode()) {
6507     setValue(&I, Res.first);
6508     DAG.setRoot(Res.second);
6509     return true;
6510   }
6511 
6512   return false;
6513 }
6514 
6515 /// See if we can lower a strcmp call into an optimized form.  If so, return
6516 /// true and lower it, otherwise return false and it will be lowered like a
6517 /// normal call.
6518 /// The caller already checked that \p I calls the appropriate LibFunc with a
6519 /// correct prototype.
6520 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6521   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6522 
6523   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6524   std::pair<SDValue, SDValue> Res =
6525     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6526                                 getValue(Arg0), getValue(Arg1),
6527                                 MachinePointerInfo(Arg0),
6528                                 MachinePointerInfo(Arg1));
6529   if (Res.first.getNode()) {
6530     processIntegerCallValue(I, Res.first, true);
6531     PendingLoads.push_back(Res.second);
6532     return true;
6533   }
6534 
6535   return false;
6536 }
6537 
6538 /// See if we can lower a strlen call into an optimized form.  If so, return
6539 /// true and lower it, otherwise return false and it will be lowered like a
6540 /// normal call.
6541 /// The caller already checked that \p I calls the appropriate LibFunc with a
6542 /// correct prototype.
6543 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6544   const Value *Arg0 = I.getArgOperand(0);
6545 
6546   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6547   std::pair<SDValue, SDValue> Res =
6548     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6549                                 getValue(Arg0), MachinePointerInfo(Arg0));
6550   if (Res.first.getNode()) {
6551     processIntegerCallValue(I, Res.first, false);
6552     PendingLoads.push_back(Res.second);
6553     return true;
6554   }
6555 
6556   return false;
6557 }
6558 
6559 /// See if we can lower a strnlen call into an optimized form.  If so, return
6560 /// true and lower it, otherwise return false and it will be lowered like a
6561 /// normal call.
6562 /// The caller already checked that \p I calls the appropriate LibFunc with a
6563 /// correct prototype.
6564 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6565   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6566 
6567   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6568   std::pair<SDValue, SDValue> Res =
6569     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6570                                  getValue(Arg0), getValue(Arg1),
6571                                  MachinePointerInfo(Arg0));
6572   if (Res.first.getNode()) {
6573     processIntegerCallValue(I, Res.first, false);
6574     PendingLoads.push_back(Res.second);
6575     return true;
6576   }
6577 
6578   return false;
6579 }
6580 
6581 /// See if we can lower a unary floating-point operation into an SDNode with
6582 /// the specified Opcode.  If so, return true and lower it, otherwise return
6583 /// false and it will be lowered like a normal call.
6584 /// The caller already checked that \p I calls the appropriate LibFunc with a
6585 /// correct prototype.
6586 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6587                                               unsigned Opcode) {
6588   // We already checked this call's prototype; verify it doesn't modify errno.
6589   if (!I.onlyReadsMemory())
6590     return false;
6591 
6592   SDValue Tmp = getValue(I.getArgOperand(0));
6593   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6594   return true;
6595 }
6596 
6597 /// See if we can lower a binary floating-point operation into an SDNode with
6598 /// the specified Opcode. If so, return true and lower it. Otherwise return
6599 /// false, and it will be lowered like a normal call.
6600 /// The caller already checked that \p I calls the appropriate LibFunc with a
6601 /// correct prototype.
6602 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6603                                                unsigned Opcode) {
6604   // We already checked this call's prototype; verify it doesn't modify errno.
6605   if (!I.onlyReadsMemory())
6606     return false;
6607 
6608   SDValue Tmp0 = getValue(I.getArgOperand(0));
6609   SDValue Tmp1 = getValue(I.getArgOperand(1));
6610   EVT VT = Tmp0.getValueType();
6611   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6612   return true;
6613 }
6614 
6615 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6616   // Handle inline assembly differently.
6617   if (isa<InlineAsm>(I.getCalledValue())) {
6618     visitInlineAsm(&I);
6619     return;
6620   }
6621 
6622   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6623   computeUsesVAFloatArgument(I, MMI);
6624 
6625   const char *RenameFn = nullptr;
6626   if (Function *F = I.getCalledFunction()) {
6627     if (F->isDeclaration()) {
6628       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6629         if (unsigned IID = II->getIntrinsicID(F)) {
6630           RenameFn = visitIntrinsicCall(I, IID);
6631           if (!RenameFn)
6632             return;
6633         }
6634       }
6635       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6636         RenameFn = visitIntrinsicCall(I, IID);
6637         if (!RenameFn)
6638           return;
6639       }
6640     }
6641 
6642     // Check for well-known libc/libm calls.  If the function is internal, it
6643     // can't be a library call.  Don't do the check if marked as nobuiltin for
6644     // some reason or the call site requires strict floating point semantics.
6645     LibFunc Func;
6646     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6647         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6648         LibInfo->hasOptimizedCodeGen(Func)) {
6649       switch (Func) {
6650       default: break;
6651       case LibFunc_copysign:
6652       case LibFunc_copysignf:
6653       case LibFunc_copysignl:
6654         // We already checked this call's prototype; verify it doesn't modify
6655         // errno.
6656         if (I.onlyReadsMemory()) {
6657           SDValue LHS = getValue(I.getArgOperand(0));
6658           SDValue RHS = getValue(I.getArgOperand(1));
6659           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6660                                    LHS.getValueType(), LHS, RHS));
6661           return;
6662         }
6663         break;
6664       case LibFunc_fabs:
6665       case LibFunc_fabsf:
6666       case LibFunc_fabsl:
6667         if (visitUnaryFloatCall(I, ISD::FABS))
6668           return;
6669         break;
6670       case LibFunc_fmin:
6671       case LibFunc_fminf:
6672       case LibFunc_fminl:
6673         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6674           return;
6675         break;
6676       case LibFunc_fmax:
6677       case LibFunc_fmaxf:
6678       case LibFunc_fmaxl:
6679         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6680           return;
6681         break;
6682       case LibFunc_sin:
6683       case LibFunc_sinf:
6684       case LibFunc_sinl:
6685         if (visitUnaryFloatCall(I, ISD::FSIN))
6686           return;
6687         break;
6688       case LibFunc_cos:
6689       case LibFunc_cosf:
6690       case LibFunc_cosl:
6691         if (visitUnaryFloatCall(I, ISD::FCOS))
6692           return;
6693         break;
6694       case LibFunc_sqrt:
6695       case LibFunc_sqrtf:
6696       case LibFunc_sqrtl:
6697       case LibFunc_sqrt_finite:
6698       case LibFunc_sqrtf_finite:
6699       case LibFunc_sqrtl_finite:
6700         if (visitUnaryFloatCall(I, ISD::FSQRT))
6701           return;
6702         break;
6703       case LibFunc_floor:
6704       case LibFunc_floorf:
6705       case LibFunc_floorl:
6706         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6707           return;
6708         break;
6709       case LibFunc_nearbyint:
6710       case LibFunc_nearbyintf:
6711       case LibFunc_nearbyintl:
6712         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6713           return;
6714         break;
6715       case LibFunc_ceil:
6716       case LibFunc_ceilf:
6717       case LibFunc_ceill:
6718         if (visitUnaryFloatCall(I, ISD::FCEIL))
6719           return;
6720         break;
6721       case LibFunc_rint:
6722       case LibFunc_rintf:
6723       case LibFunc_rintl:
6724         if (visitUnaryFloatCall(I, ISD::FRINT))
6725           return;
6726         break;
6727       case LibFunc_round:
6728       case LibFunc_roundf:
6729       case LibFunc_roundl:
6730         if (visitUnaryFloatCall(I, ISD::FROUND))
6731           return;
6732         break;
6733       case LibFunc_trunc:
6734       case LibFunc_truncf:
6735       case LibFunc_truncl:
6736         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6737           return;
6738         break;
6739       case LibFunc_log2:
6740       case LibFunc_log2f:
6741       case LibFunc_log2l:
6742         if (visitUnaryFloatCall(I, ISD::FLOG2))
6743           return;
6744         break;
6745       case LibFunc_exp2:
6746       case LibFunc_exp2f:
6747       case LibFunc_exp2l:
6748         if (visitUnaryFloatCall(I, ISD::FEXP2))
6749           return;
6750         break;
6751       case LibFunc_memcmp:
6752         if (visitMemCmpCall(I))
6753           return;
6754         break;
6755       case LibFunc_mempcpy:
6756         if (visitMemPCpyCall(I))
6757           return;
6758         break;
6759       case LibFunc_memchr:
6760         if (visitMemChrCall(I))
6761           return;
6762         break;
6763       case LibFunc_strcpy:
6764         if (visitStrCpyCall(I, false))
6765           return;
6766         break;
6767       case LibFunc_stpcpy:
6768         if (visitStrCpyCall(I, true))
6769           return;
6770         break;
6771       case LibFunc_strcmp:
6772         if (visitStrCmpCall(I))
6773           return;
6774         break;
6775       case LibFunc_strlen:
6776         if (visitStrLenCall(I))
6777           return;
6778         break;
6779       case LibFunc_strnlen:
6780         if (visitStrNLenCall(I))
6781           return;
6782         break;
6783       }
6784     }
6785   }
6786 
6787   SDValue Callee;
6788   if (!RenameFn)
6789     Callee = getValue(I.getCalledValue());
6790   else
6791     Callee = DAG.getExternalSymbol(
6792         RenameFn,
6793         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6794 
6795   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6796   // have to do anything here to lower funclet bundles.
6797   assert(!I.hasOperandBundlesOtherThan(
6798              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6799          "Cannot lower calls with arbitrary operand bundles!");
6800 
6801   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6802     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6803   else
6804     // Check if we can potentially perform a tail call. More detailed checking
6805     // is be done within LowerCallTo, after more information about the call is
6806     // known.
6807     LowerCallTo(&I, Callee, I.isTailCall());
6808 }
6809 
6810 namespace {
6811 
6812 /// AsmOperandInfo - This contains information for each constraint that we are
6813 /// lowering.
6814 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6815 public:
6816   /// CallOperand - If this is the result output operand or a clobber
6817   /// this is null, otherwise it is the incoming operand to the CallInst.
6818   /// This gets modified as the asm is processed.
6819   SDValue CallOperand;
6820 
6821   /// AssignedRegs - If this is a register or register class operand, this
6822   /// contains the set of register corresponding to the operand.
6823   RegsForValue AssignedRegs;
6824 
6825   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6826     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
6827   }
6828 
6829   /// Whether or not this operand accesses memory
6830   bool hasMemory(const TargetLowering &TLI) const {
6831     // Indirect operand accesses access memory.
6832     if (isIndirect)
6833       return true;
6834 
6835     for (const auto &Code : Codes)
6836       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6837         return true;
6838 
6839     return false;
6840   }
6841 
6842   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6843   /// corresponds to.  If there is no Value* for this operand, it returns
6844   /// MVT::Other.
6845   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6846                            const DataLayout &DL) const {
6847     if (!CallOperandVal) return MVT::Other;
6848 
6849     if (isa<BasicBlock>(CallOperandVal))
6850       return TLI.getPointerTy(DL);
6851 
6852     llvm::Type *OpTy = CallOperandVal->getType();
6853 
6854     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6855     // If this is an indirect operand, the operand is a pointer to the
6856     // accessed type.
6857     if (isIndirect) {
6858       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6859       if (!PtrTy)
6860         report_fatal_error("Indirect operand for inline asm not a pointer!");
6861       OpTy = PtrTy->getElementType();
6862     }
6863 
6864     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6865     if (StructType *STy = dyn_cast<StructType>(OpTy))
6866       if (STy->getNumElements() == 1)
6867         OpTy = STy->getElementType(0);
6868 
6869     // If OpTy is not a single value, it may be a struct/union that we
6870     // can tile with integers.
6871     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6872       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6873       switch (BitSize) {
6874       default: break;
6875       case 1:
6876       case 8:
6877       case 16:
6878       case 32:
6879       case 64:
6880       case 128:
6881         OpTy = IntegerType::get(Context, BitSize);
6882         break;
6883       }
6884     }
6885 
6886     return TLI.getValueType(DL, OpTy, true);
6887   }
6888 };
6889 
6890 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
6891 
6892 } // end anonymous namespace
6893 
6894 /// Make sure that the output operand \p OpInfo and its corresponding input
6895 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6896 /// out).
6897 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6898                                SDISelAsmOperandInfo &MatchingOpInfo,
6899                                SelectionDAG &DAG) {
6900   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6901     return;
6902 
6903   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6904   const auto &TLI = DAG.getTargetLoweringInfo();
6905 
6906   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6907       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6908                                        OpInfo.ConstraintVT);
6909   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6910       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6911                                        MatchingOpInfo.ConstraintVT);
6912   if ((OpInfo.ConstraintVT.isInteger() !=
6913        MatchingOpInfo.ConstraintVT.isInteger()) ||
6914       (MatchRC.second != InputRC.second)) {
6915     // FIXME: error out in a more elegant fashion
6916     report_fatal_error("Unsupported asm: input constraint"
6917                        " with a matching output constraint of"
6918                        " incompatible type!");
6919   }
6920   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6921 }
6922 
6923 /// Get a direct memory input to behave well as an indirect operand.
6924 /// This may introduce stores, hence the need for a \p Chain.
6925 /// \return The (possibly updated) chain.
6926 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6927                                         SDISelAsmOperandInfo &OpInfo,
6928                                         SelectionDAG &DAG) {
6929   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6930 
6931   // If we don't have an indirect input, put it in the constpool if we can,
6932   // otherwise spill it to a stack slot.
6933   // TODO: This isn't quite right. We need to handle these according to
6934   // the addressing mode that the constraint wants. Also, this may take
6935   // an additional register for the computation and we don't want that
6936   // either.
6937 
6938   // If the operand is a float, integer, or vector constant, spill to a
6939   // constant pool entry to get its address.
6940   const Value *OpVal = OpInfo.CallOperandVal;
6941   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6942       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6943     OpInfo.CallOperand = DAG.getConstantPool(
6944         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6945     return Chain;
6946   }
6947 
6948   // Otherwise, create a stack slot and emit a store to it before the asm.
6949   Type *Ty = OpVal->getType();
6950   auto &DL = DAG.getDataLayout();
6951   uint64_t TySize = DL.getTypeAllocSize(Ty);
6952   unsigned Align = DL.getPrefTypeAlignment(Ty);
6953   MachineFunction &MF = DAG.getMachineFunction();
6954   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6955   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
6956   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6957                        MachinePointerInfo::getFixedStack(MF, SSFI));
6958   OpInfo.CallOperand = StackSlot;
6959 
6960   return Chain;
6961 }
6962 
6963 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6964 /// specified operand.  We prefer to assign virtual registers, to allow the
6965 /// register allocator to handle the assignment process.  However, if the asm
6966 /// uses features that we can't model on machineinstrs, we have SDISel do the
6967 /// allocation.  This produces generally horrible, but correct, code.
6968 ///
6969 ///   OpInfo describes the operand.
6970 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6971                                  const SDLoc &DL,
6972                                  SDISelAsmOperandInfo &OpInfo) {
6973   LLVMContext &Context = *DAG.getContext();
6974 
6975   MachineFunction &MF = DAG.getMachineFunction();
6976   SmallVector<unsigned, 4> Regs;
6977   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6978 
6979   // If this is a constraint for a single physreg, or a constraint for a
6980   // register class, find it.
6981   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6982       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
6983                                        OpInfo.ConstraintVT);
6984 
6985   unsigned NumRegs = 1;
6986   if (OpInfo.ConstraintVT != MVT::Other) {
6987     // If this is a FP input in an integer register (or visa versa) insert a bit
6988     // cast of the input value.  More generally, handle any case where the input
6989     // value disagrees with the register class we plan to stick this in.
6990     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
6991         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
6992       // Try to convert to the first EVT that the reg class contains.  If the
6993       // types are identical size, use a bitcast to convert (e.g. two differing
6994       // vector types).
6995       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
6996       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6997         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6998                                          RegVT, OpInfo.CallOperand);
6999         OpInfo.ConstraintVT = RegVT;
7000       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7001         // If the input is a FP value and we want it in FP registers, do a
7002         // bitcast to the corresponding integer type.  This turns an f64 value
7003         // into i64, which can be passed with two i32 values on a 32-bit
7004         // machine.
7005         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7006         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7007                                          RegVT, OpInfo.CallOperand);
7008         OpInfo.ConstraintVT = RegVT;
7009       }
7010     }
7011 
7012     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7013   }
7014 
7015   MVT RegVT;
7016   EVT ValueVT = OpInfo.ConstraintVT;
7017 
7018   // If this is a constraint for a specific physical register, like {r17},
7019   // assign it now.
7020   if (unsigned AssignedReg = PhysReg.first) {
7021     const TargetRegisterClass *RC = PhysReg.second;
7022     if (OpInfo.ConstraintVT == MVT::Other)
7023       ValueVT = *TRI.legalclasstypes_begin(*RC);
7024 
7025     // Get the actual register value type.  This is important, because the user
7026     // may have asked for (e.g.) the AX register in i32 type.  We need to
7027     // remember that AX is actually i16 to get the right extension.
7028     RegVT = *TRI.legalclasstypes_begin(*RC);
7029 
7030     // This is a explicit reference to a physical register.
7031     Regs.push_back(AssignedReg);
7032 
7033     // If this is an expanded reference, add the rest of the regs to Regs.
7034     if (NumRegs != 1) {
7035       TargetRegisterClass::iterator I = RC->begin();
7036       for (; *I != AssignedReg; ++I)
7037         assert(I != RC->end() && "Didn't find reg!");
7038 
7039       // Already added the first reg.
7040       --NumRegs; ++I;
7041       for (; NumRegs; --NumRegs, ++I) {
7042         assert(I != RC->end() && "Ran out of registers to allocate!");
7043         Regs.push_back(*I);
7044       }
7045     }
7046 
7047     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7048     return;
7049   }
7050 
7051   // Otherwise, if this was a reference to an LLVM register class, create vregs
7052   // for this reference.
7053   if (const TargetRegisterClass *RC = PhysReg.second) {
7054     RegVT = *TRI.legalclasstypes_begin(*RC);
7055     if (OpInfo.ConstraintVT == MVT::Other)
7056       ValueVT = RegVT;
7057 
7058     // Create the appropriate number of virtual registers.
7059     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7060     for (; NumRegs; --NumRegs)
7061       Regs.push_back(RegInfo.createVirtualRegister(RC));
7062 
7063     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7064     return;
7065   }
7066 
7067   // Otherwise, we couldn't allocate enough registers for this.
7068 }
7069 
7070 static unsigned
7071 findMatchingInlineAsmOperand(unsigned OperandNo,
7072                              const std::vector<SDValue> &AsmNodeOperands) {
7073   // Scan until we find the definition we already emitted of this operand.
7074   unsigned CurOp = InlineAsm::Op_FirstOperand;
7075   for (; OperandNo; --OperandNo) {
7076     // Advance to the next operand.
7077     unsigned OpFlag =
7078         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7079     assert((InlineAsm::isRegDefKind(OpFlag) ||
7080             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7081             InlineAsm::isMemKind(OpFlag)) &&
7082            "Skipped past definitions?");
7083     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7084   }
7085   return CurOp;
7086 }
7087 
7088 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7089 /// \return true if it has succeeded, false otherwise
7090 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7091                               MVT RegVT, SelectionDAG &DAG) {
7092   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7093   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7094   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7095     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7096       Regs.push_back(RegInfo.createVirtualRegister(RC));
7097     else
7098       return false;
7099   }
7100   return true;
7101 }
7102 
7103 namespace {
7104 
7105 class ExtraFlags {
7106   unsigned Flags = 0;
7107 
7108 public:
7109   explicit ExtraFlags(ImmutableCallSite CS) {
7110     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7111     if (IA->hasSideEffects())
7112       Flags |= InlineAsm::Extra_HasSideEffects;
7113     if (IA->isAlignStack())
7114       Flags |= InlineAsm::Extra_IsAlignStack;
7115     if (CS.isConvergent())
7116       Flags |= InlineAsm::Extra_IsConvergent;
7117     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7118   }
7119 
7120   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7121     // Ideally, we would only check against memory constraints.  However, the
7122     // meaning of an Other constraint can be target-specific and we can't easily
7123     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7124     // for Other constraints as well.
7125     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7126         OpInfo.ConstraintType == TargetLowering::C_Other) {
7127       if (OpInfo.Type == InlineAsm::isInput)
7128         Flags |= InlineAsm::Extra_MayLoad;
7129       else if (OpInfo.Type == InlineAsm::isOutput)
7130         Flags |= InlineAsm::Extra_MayStore;
7131       else if (OpInfo.Type == InlineAsm::isClobber)
7132         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7133     }
7134   }
7135 
7136   unsigned get() const { return Flags; }
7137 };
7138 
7139 } // end anonymous namespace
7140 
7141 /// visitInlineAsm - Handle a call to an InlineAsm object.
7142 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7143   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7144 
7145   /// ConstraintOperands - Information about all of the constraints.
7146   SDISelAsmOperandInfoVector ConstraintOperands;
7147 
7148   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7149   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7150       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7151 
7152   bool hasMemory = false;
7153 
7154   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7155   ExtraFlags ExtraInfo(CS);
7156 
7157   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7158   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7159   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7160     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7161     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7162 
7163     MVT OpVT = MVT::Other;
7164 
7165     // Compute the value type for each operand.
7166     if (OpInfo.Type == InlineAsm::isInput ||
7167         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7168       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7169 
7170       // Process the call argument. BasicBlocks are labels, currently appearing
7171       // only in asm's.
7172       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7173         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7174       } else {
7175         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7176       }
7177 
7178       OpVT =
7179           OpInfo
7180               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7181               .getSimpleVT();
7182     }
7183 
7184     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7185       // The return value of the call is this value.  As such, there is no
7186       // corresponding argument.
7187       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7188       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7189         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7190                                       STy->getElementType(ResNo));
7191       } else {
7192         assert(ResNo == 0 && "Asm only has one result!");
7193         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7194       }
7195       ++ResNo;
7196     }
7197 
7198     OpInfo.ConstraintVT = OpVT;
7199 
7200     if (!hasMemory)
7201       hasMemory = OpInfo.hasMemory(TLI);
7202 
7203     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7204     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7205     auto TargetConstraint = TargetConstraints[i];
7206 
7207     // Compute the constraint code and ConstraintType to use.
7208     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7209 
7210     ExtraInfo.update(TargetConstraint);
7211   }
7212 
7213   SDValue Chain, Flag;
7214 
7215   // We won't need to flush pending loads if this asm doesn't touch
7216   // memory and is nonvolatile.
7217   if (hasMemory || IA->hasSideEffects())
7218     Chain = getRoot();
7219   else
7220     Chain = DAG.getRoot();
7221 
7222   // Second pass over the constraints: compute which constraint option to use
7223   // and assign registers to constraints that want a specific physreg.
7224   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7225     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7226 
7227     // If this is an output operand with a matching input operand, look up the
7228     // matching input. If their types mismatch, e.g. one is an integer, the
7229     // other is floating point, or their sizes are different, flag it as an
7230     // error.
7231     if (OpInfo.hasMatchingInput()) {
7232       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7233       patchMatchingInput(OpInfo, Input, DAG);
7234     }
7235 
7236     // Compute the constraint code and ConstraintType to use.
7237     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7238 
7239     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7240         OpInfo.Type == InlineAsm::isClobber)
7241       continue;
7242 
7243     // If this is a memory input, and if the operand is not indirect, do what we
7244     // need to to provide an address for the memory input.
7245     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7246         !OpInfo.isIndirect) {
7247       assert((OpInfo.isMultipleAlternative ||
7248               (OpInfo.Type == InlineAsm::isInput)) &&
7249              "Can only indirectify direct input operands!");
7250 
7251       // Memory operands really want the address of the value.
7252       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7253 
7254       // There is no longer a Value* corresponding to this operand.
7255       OpInfo.CallOperandVal = nullptr;
7256 
7257       // It is now an indirect operand.
7258       OpInfo.isIndirect = true;
7259     }
7260 
7261     // If this constraint is for a specific register, allocate it before
7262     // anything else.
7263     if (OpInfo.ConstraintType == TargetLowering::C_Register)
7264       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7265   }
7266 
7267   // Third pass - Loop over all of the operands, assigning virtual or physregs
7268   // to register class operands.
7269   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7270     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7271 
7272     // C_Register operands have already been allocated, Other/Memory don't need
7273     // to be.
7274     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7275       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7276   }
7277 
7278   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7279   std::vector<SDValue> AsmNodeOperands;
7280   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7281   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7282       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7283 
7284   // If we have a !srcloc metadata node associated with it, we want to attach
7285   // this to the ultimately generated inline asm machineinstr.  To do this, we
7286   // pass in the third operand as this (potentially null) inline asm MDNode.
7287   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7288   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7289 
7290   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7291   // bits as operand 3.
7292   AsmNodeOperands.push_back(DAG.getTargetConstant(
7293       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7294 
7295   // Loop over all of the inputs, copying the operand values into the
7296   // appropriate registers and processing the output regs.
7297   RegsForValue RetValRegs;
7298 
7299   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7300   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7301 
7302   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7303     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7304 
7305     switch (OpInfo.Type) {
7306     case InlineAsm::isOutput:
7307       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7308           OpInfo.ConstraintType != TargetLowering::C_Register) {
7309         // Memory output, or 'other' output (e.g. 'X' constraint).
7310         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7311 
7312         unsigned ConstraintID =
7313             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7314         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7315                "Failed to convert memory constraint code to constraint id.");
7316 
7317         // Add information to the INLINEASM node to know about this output.
7318         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7319         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7320         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7321                                                         MVT::i32));
7322         AsmNodeOperands.push_back(OpInfo.CallOperand);
7323         break;
7324       }
7325 
7326       // Otherwise, this is a register or register class output.
7327 
7328       // Copy the output from the appropriate register.  Find a register that
7329       // we can use.
7330       if (OpInfo.AssignedRegs.Regs.empty()) {
7331         emitInlineAsmError(
7332             CS, "couldn't allocate output register for constraint '" +
7333                     Twine(OpInfo.ConstraintCode) + "'");
7334         return;
7335       }
7336 
7337       // If this is an indirect operand, store through the pointer after the
7338       // asm.
7339       if (OpInfo.isIndirect) {
7340         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7341                                                       OpInfo.CallOperandVal));
7342       } else {
7343         // This is the result value of the call.
7344         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7345         // Concatenate this output onto the outputs list.
7346         RetValRegs.append(OpInfo.AssignedRegs);
7347       }
7348 
7349       // Add information to the INLINEASM node to know that this register is
7350       // set.
7351       OpInfo.AssignedRegs
7352           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7353                                     ? InlineAsm::Kind_RegDefEarlyClobber
7354                                     : InlineAsm::Kind_RegDef,
7355                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7356       break;
7357 
7358     case InlineAsm::isInput: {
7359       SDValue InOperandVal = OpInfo.CallOperand;
7360 
7361       if (OpInfo.isMatchingInputConstraint()) {
7362         // If this is required to match an output register we have already set,
7363         // just use its register.
7364         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7365                                                   AsmNodeOperands);
7366         unsigned OpFlag =
7367           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7368         if (InlineAsm::isRegDefKind(OpFlag) ||
7369             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7370           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7371           if (OpInfo.isIndirect) {
7372             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7373             emitInlineAsmError(CS, "inline asm not supported yet:"
7374                                    " don't know how to handle tied "
7375                                    "indirect register inputs");
7376             return;
7377           }
7378 
7379           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7380           SmallVector<unsigned, 4> Regs;
7381 
7382           if (!createVirtualRegs(Regs,
7383                                  InlineAsm::getNumOperandRegisters(OpFlag),
7384                                  RegVT, DAG)) {
7385             emitInlineAsmError(CS, "inline asm error: This value type register "
7386                                    "class is not natively supported!");
7387             return;
7388           }
7389 
7390           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7391 
7392           SDLoc dl = getCurSDLoc();
7393           // Use the produced MatchedRegs object to
7394           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7395                                     CS.getInstruction());
7396           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7397                                            true, OpInfo.getMatchedOperand(), dl,
7398                                            DAG, AsmNodeOperands);
7399           break;
7400         }
7401 
7402         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7403         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7404                "Unexpected number of operands");
7405         // Add information to the INLINEASM node to know about this input.
7406         // See InlineAsm.h isUseOperandTiedToDef.
7407         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7408         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7409                                                     OpInfo.getMatchedOperand());
7410         AsmNodeOperands.push_back(DAG.getTargetConstant(
7411             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7412         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7413         break;
7414       }
7415 
7416       // Treat indirect 'X' constraint as memory.
7417       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7418           OpInfo.isIndirect)
7419         OpInfo.ConstraintType = TargetLowering::C_Memory;
7420 
7421       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7422         std::vector<SDValue> Ops;
7423         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7424                                           Ops, DAG);
7425         if (Ops.empty()) {
7426           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7427                                      Twine(OpInfo.ConstraintCode) + "'");
7428           return;
7429         }
7430 
7431         // Add information to the INLINEASM node to know about this input.
7432         unsigned ResOpType =
7433           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7434         AsmNodeOperands.push_back(DAG.getTargetConstant(
7435             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7436         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7437         break;
7438       }
7439 
7440       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7441         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7442         assert(InOperandVal.getValueType() ==
7443                    TLI.getPointerTy(DAG.getDataLayout()) &&
7444                "Memory operands expect pointer values");
7445 
7446         unsigned ConstraintID =
7447             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7448         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7449                "Failed to convert memory constraint code to constraint id.");
7450 
7451         // Add information to the INLINEASM node to know about this input.
7452         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7453         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7454         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7455                                                         getCurSDLoc(),
7456                                                         MVT::i32));
7457         AsmNodeOperands.push_back(InOperandVal);
7458         break;
7459       }
7460 
7461       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7462               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7463              "Unknown constraint type!");
7464 
7465       // TODO: Support this.
7466       if (OpInfo.isIndirect) {
7467         emitInlineAsmError(
7468             CS, "Don't know how to handle indirect register inputs yet "
7469                 "for constraint '" +
7470                     Twine(OpInfo.ConstraintCode) + "'");
7471         return;
7472       }
7473 
7474       // Copy the input into the appropriate registers.
7475       if (OpInfo.AssignedRegs.Regs.empty()) {
7476         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7477                                    Twine(OpInfo.ConstraintCode) + "'");
7478         return;
7479       }
7480 
7481       SDLoc dl = getCurSDLoc();
7482 
7483       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7484                                         Chain, &Flag, CS.getInstruction());
7485 
7486       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7487                                                dl, DAG, AsmNodeOperands);
7488       break;
7489     }
7490     case InlineAsm::isClobber:
7491       // Add the clobbered value to the operand list, so that the register
7492       // allocator is aware that the physreg got clobbered.
7493       if (!OpInfo.AssignedRegs.Regs.empty())
7494         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7495                                                  false, 0, getCurSDLoc(), DAG,
7496                                                  AsmNodeOperands);
7497       break;
7498     }
7499   }
7500 
7501   // Finish up input operands.  Set the input chain and add the flag last.
7502   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7503   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7504 
7505   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7506                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7507   Flag = Chain.getValue(1);
7508 
7509   // If this asm returns a register value, copy the result from that register
7510   // and set it as the value of the call.
7511   if (!RetValRegs.Regs.empty()) {
7512     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7513                                              Chain, &Flag, CS.getInstruction());
7514 
7515     // FIXME: Why don't we do this for inline asms with MRVs?
7516     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7517       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7518 
7519       // If any of the results of the inline asm is a vector, it may have the
7520       // wrong width/num elts.  This can happen for register classes that can
7521       // contain multiple different value types.  The preg or vreg allocated may
7522       // not have the same VT as was expected.  Convert it to the right type
7523       // with bit_convert.
7524       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7525         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7526                           ResultType, Val);
7527 
7528       } else if (ResultType != Val.getValueType() &&
7529                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7530         // If a result value was tied to an input value, the computed result may
7531         // have a wider width than the expected result.  Extract the relevant
7532         // portion.
7533         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7534       }
7535 
7536       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7537     }
7538 
7539     setValue(CS.getInstruction(), Val);
7540     // Don't need to use this as a chain in this case.
7541     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7542       return;
7543   }
7544 
7545   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7546 
7547   // Process indirect outputs, first output all of the flagged copies out of
7548   // physregs.
7549   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7550     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7551     const Value *Ptr = IndirectStoresToEmit[i].second;
7552     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7553                                              Chain, &Flag, IA);
7554     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7555   }
7556 
7557   // Emit the non-flagged stores from the physregs.
7558   SmallVector<SDValue, 8> OutChains;
7559   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7560     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7561                                getValue(StoresToEmit[i].second),
7562                                MachinePointerInfo(StoresToEmit[i].second));
7563     OutChains.push_back(Val);
7564   }
7565 
7566   if (!OutChains.empty())
7567     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7568 
7569   DAG.setRoot(Chain);
7570 }
7571 
7572 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7573                                              const Twine &Message) {
7574   LLVMContext &Ctx = *DAG.getContext();
7575   Ctx.emitError(CS.getInstruction(), Message);
7576 
7577   // Make sure we leave the DAG in a valid state
7578   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7579   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7580   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7581 }
7582 
7583 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7584   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7585                           MVT::Other, getRoot(),
7586                           getValue(I.getArgOperand(0)),
7587                           DAG.getSrcValue(I.getArgOperand(0))));
7588 }
7589 
7590 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7591   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7592   const DataLayout &DL = DAG.getDataLayout();
7593   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7594                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7595                            DAG.getSrcValue(I.getOperand(0)),
7596                            DL.getABITypeAlignment(I.getType()));
7597   setValue(&I, V);
7598   DAG.setRoot(V.getValue(1));
7599 }
7600 
7601 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7602   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7603                           MVT::Other, getRoot(),
7604                           getValue(I.getArgOperand(0)),
7605                           DAG.getSrcValue(I.getArgOperand(0))));
7606 }
7607 
7608 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7609   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7610                           MVT::Other, getRoot(),
7611                           getValue(I.getArgOperand(0)),
7612                           getValue(I.getArgOperand(1)),
7613                           DAG.getSrcValue(I.getArgOperand(0)),
7614                           DAG.getSrcValue(I.getArgOperand(1))));
7615 }
7616 
7617 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7618                                                     const Instruction &I,
7619                                                     SDValue Op) {
7620   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7621   if (!Range)
7622     return Op;
7623 
7624   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7625   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7626     return Op;
7627 
7628   APInt Lo = CR.getUnsignedMin();
7629   if (!Lo.isMinValue())
7630     return Op;
7631 
7632   APInt Hi = CR.getUnsignedMax();
7633   unsigned Bits = Hi.getActiveBits();
7634 
7635   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7636 
7637   SDLoc SL = getCurSDLoc();
7638 
7639   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7640                              DAG.getValueType(SmallVT));
7641   unsigned NumVals = Op.getNode()->getNumValues();
7642   if (NumVals == 1)
7643     return ZExt;
7644 
7645   SmallVector<SDValue, 4> Ops;
7646 
7647   Ops.push_back(ZExt);
7648   for (unsigned I = 1; I != NumVals; ++I)
7649     Ops.push_back(Op.getValue(I));
7650 
7651   return DAG.getMergeValues(Ops, SL);
7652 }
7653 
7654 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7655 /// the call being lowered.
7656 ///
7657 /// This is a helper for lowering intrinsics that follow a target calling
7658 /// convention or require stack pointer adjustment. Only a subset of the
7659 /// intrinsic's operands need to participate in the calling convention.
7660 void SelectionDAGBuilder::populateCallLoweringInfo(
7661     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7662     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7663     bool IsPatchPoint) {
7664   TargetLowering::ArgListTy Args;
7665   Args.reserve(NumArgs);
7666 
7667   // Populate the argument list.
7668   // Attributes for args start at offset 1, after the return attribute.
7669   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7670        ArgI != ArgE; ++ArgI) {
7671     const Value *V = CS->getOperand(ArgI);
7672 
7673     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7674 
7675     TargetLowering::ArgListEntry Entry;
7676     Entry.Node = getValue(V);
7677     Entry.Ty = V->getType();
7678     Entry.setAttributes(&CS, ArgIdx);
7679     Args.push_back(Entry);
7680   }
7681 
7682   CLI.setDebugLoc(getCurSDLoc())
7683       .setChain(getRoot())
7684       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7685       .setDiscardResult(CS->use_empty())
7686       .setIsPatchPoint(IsPatchPoint);
7687 }
7688 
7689 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7690 /// or patchpoint target node's operand list.
7691 ///
7692 /// Constants are converted to TargetConstants purely as an optimization to
7693 /// avoid constant materialization and register allocation.
7694 ///
7695 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7696 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7697 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7698 /// address materialization and register allocation, but may also be required
7699 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7700 /// alloca in the entry block, then the runtime may assume that the alloca's
7701 /// StackMap location can be read immediately after compilation and that the
7702 /// location is valid at any point during execution (this is similar to the
7703 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7704 /// only available in a register, then the runtime would need to trap when
7705 /// execution reaches the StackMap in order to read the alloca's location.
7706 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7707                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7708                                 SelectionDAGBuilder &Builder) {
7709   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7710     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7711     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7712       Ops.push_back(
7713         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7714       Ops.push_back(
7715         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7716     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7717       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7718       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7719           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7720     } else
7721       Ops.push_back(OpVal);
7722   }
7723 }
7724 
7725 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7726 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7727   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7728   //                                  [live variables...])
7729 
7730   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7731 
7732   SDValue Chain, InFlag, Callee, NullPtr;
7733   SmallVector<SDValue, 32> Ops;
7734 
7735   SDLoc DL = getCurSDLoc();
7736   Callee = getValue(CI.getCalledValue());
7737   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7738 
7739   // The stackmap intrinsic only records the live variables (the arguemnts
7740   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7741   // intrinsic, this won't be lowered to a function call. This means we don't
7742   // have to worry about calling conventions and target specific lowering code.
7743   // Instead we perform the call lowering right here.
7744   //
7745   // chain, flag = CALLSEQ_START(chain, 0, 0)
7746   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7747   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7748   //
7749   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7750   InFlag = Chain.getValue(1);
7751 
7752   // Add the <id> and <numBytes> constants.
7753   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7754   Ops.push_back(DAG.getTargetConstant(
7755                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7756   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7757   Ops.push_back(DAG.getTargetConstant(
7758                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7759                   MVT::i32));
7760 
7761   // Push live variables for the stack map.
7762   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7763 
7764   // We are not pushing any register mask info here on the operands list,
7765   // because the stackmap doesn't clobber anything.
7766 
7767   // Push the chain and the glue flag.
7768   Ops.push_back(Chain);
7769   Ops.push_back(InFlag);
7770 
7771   // Create the STACKMAP node.
7772   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7773   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7774   Chain = SDValue(SM, 0);
7775   InFlag = Chain.getValue(1);
7776 
7777   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7778 
7779   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7780 
7781   // Set the root to the target-lowered call chain.
7782   DAG.setRoot(Chain);
7783 
7784   // Inform the Frame Information that we have a stackmap in this function.
7785   FuncInfo.MF->getFrameInfo().setHasStackMap();
7786 }
7787 
7788 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7789 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7790                                           const BasicBlock *EHPadBB) {
7791   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7792   //                                                 i32 <numBytes>,
7793   //                                                 i8* <target>,
7794   //                                                 i32 <numArgs>,
7795   //                                                 [Args...],
7796   //                                                 [live variables...])
7797 
7798   CallingConv::ID CC = CS.getCallingConv();
7799   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7800   bool HasDef = !CS->getType()->isVoidTy();
7801   SDLoc dl = getCurSDLoc();
7802   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7803 
7804   // Handle immediate and symbolic callees.
7805   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7806     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7807                                    /*isTarget=*/true);
7808   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7809     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7810                                          SDLoc(SymbolicCallee),
7811                                          SymbolicCallee->getValueType(0));
7812 
7813   // Get the real number of arguments participating in the call <numArgs>
7814   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7815   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7816 
7817   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7818   // Intrinsics include all meta-operands up to but not including CC.
7819   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7820   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7821          "Not enough arguments provided to the patchpoint intrinsic");
7822 
7823   // For AnyRegCC the arguments are lowered later on manually.
7824   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7825   Type *ReturnTy =
7826     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7827 
7828   TargetLowering::CallLoweringInfo CLI(DAG);
7829   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7830                            true);
7831   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7832 
7833   SDNode *CallEnd = Result.second.getNode();
7834   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7835     CallEnd = CallEnd->getOperand(0).getNode();
7836 
7837   /// Get a call instruction from the call sequence chain.
7838   /// Tail calls are not allowed.
7839   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7840          "Expected a callseq node.");
7841   SDNode *Call = CallEnd->getOperand(0).getNode();
7842   bool HasGlue = Call->getGluedNode();
7843 
7844   // Replace the target specific call node with the patchable intrinsic.
7845   SmallVector<SDValue, 8> Ops;
7846 
7847   // Add the <id> and <numBytes> constants.
7848   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7849   Ops.push_back(DAG.getTargetConstant(
7850                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7851   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7852   Ops.push_back(DAG.getTargetConstant(
7853                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7854                   MVT::i32));
7855 
7856   // Add the callee.
7857   Ops.push_back(Callee);
7858 
7859   // Adjust <numArgs> to account for any arguments that have been passed on the
7860   // stack instead.
7861   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7862   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7863   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7864   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7865 
7866   // Add the calling convention
7867   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7868 
7869   // Add the arguments we omitted previously. The register allocator should
7870   // place these in any free register.
7871   if (IsAnyRegCC)
7872     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7873       Ops.push_back(getValue(CS.getArgument(i)));
7874 
7875   // Push the arguments from the call instruction up to the register mask.
7876   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7877   Ops.append(Call->op_begin() + 2, e);
7878 
7879   // Push live variables for the stack map.
7880   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7881 
7882   // Push the register mask info.
7883   if (HasGlue)
7884     Ops.push_back(*(Call->op_end()-2));
7885   else
7886     Ops.push_back(*(Call->op_end()-1));
7887 
7888   // Push the chain (this is originally the first operand of the call, but
7889   // becomes now the last or second to last operand).
7890   Ops.push_back(*(Call->op_begin()));
7891 
7892   // Push the glue flag (last operand).
7893   if (HasGlue)
7894     Ops.push_back(*(Call->op_end()-1));
7895 
7896   SDVTList NodeTys;
7897   if (IsAnyRegCC && HasDef) {
7898     // Create the return types based on the intrinsic definition
7899     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7900     SmallVector<EVT, 3> ValueVTs;
7901     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7902     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7903 
7904     // There is always a chain and a glue type at the end
7905     ValueVTs.push_back(MVT::Other);
7906     ValueVTs.push_back(MVT::Glue);
7907     NodeTys = DAG.getVTList(ValueVTs);
7908   } else
7909     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7910 
7911   // Replace the target specific call node with a PATCHPOINT node.
7912   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7913                                          dl, NodeTys, Ops);
7914 
7915   // Update the NodeMap.
7916   if (HasDef) {
7917     if (IsAnyRegCC)
7918       setValue(CS.getInstruction(), SDValue(MN, 0));
7919     else
7920       setValue(CS.getInstruction(), Result.first);
7921   }
7922 
7923   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7924   // call sequence. Furthermore the location of the chain and glue can change
7925   // when the AnyReg calling convention is used and the intrinsic returns a
7926   // value.
7927   if (IsAnyRegCC && HasDef) {
7928     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7929     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7930     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7931   } else
7932     DAG.ReplaceAllUsesWith(Call, MN);
7933   DAG.DeleteNode(Call);
7934 
7935   // Inform the Frame Information that we have a patchpoint in this function.
7936   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7937 }
7938 
7939 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
7940                                             unsigned Intrinsic) {
7941   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7942   SDValue Op1 = getValue(I.getArgOperand(0));
7943   SDValue Op2;
7944   if (I.getNumArgOperands() > 1)
7945     Op2 = getValue(I.getArgOperand(1));
7946   SDLoc dl = getCurSDLoc();
7947   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7948   SDValue Res;
7949   FastMathFlags FMF;
7950   if (isa<FPMathOperator>(I))
7951     FMF = I.getFastMathFlags();
7952   SDNodeFlags SDFlags;
7953   SDFlags.setNoNaNs(FMF.noNaNs());
7954 
7955   switch (Intrinsic) {
7956   case Intrinsic::experimental_vector_reduce_fadd:
7957     if (FMF.isFast())
7958       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
7959     else
7960       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
7961     break;
7962   case Intrinsic::experimental_vector_reduce_fmul:
7963     if (FMF.isFast())
7964       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
7965     else
7966       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
7967     break;
7968   case Intrinsic::experimental_vector_reduce_add:
7969     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
7970     break;
7971   case Intrinsic::experimental_vector_reduce_mul:
7972     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
7973     break;
7974   case Intrinsic::experimental_vector_reduce_and:
7975     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
7976     break;
7977   case Intrinsic::experimental_vector_reduce_or:
7978     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
7979     break;
7980   case Intrinsic::experimental_vector_reduce_xor:
7981     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
7982     break;
7983   case Intrinsic::experimental_vector_reduce_smax:
7984     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
7985     break;
7986   case Intrinsic::experimental_vector_reduce_smin:
7987     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
7988     break;
7989   case Intrinsic::experimental_vector_reduce_umax:
7990     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
7991     break;
7992   case Intrinsic::experimental_vector_reduce_umin:
7993     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
7994     break;
7995   case Intrinsic::experimental_vector_reduce_fmax:
7996     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
7997     break;
7998   case Intrinsic::experimental_vector_reduce_fmin:
7999     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
8000     break;
8001   default:
8002     llvm_unreachable("Unhandled vector reduce intrinsic");
8003   }
8004   setValue(&I, Res);
8005 }
8006 
8007 /// Returns an AttributeList representing the attributes applied to the return
8008 /// value of the given call.
8009 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8010   SmallVector<Attribute::AttrKind, 2> Attrs;
8011   if (CLI.RetSExt)
8012     Attrs.push_back(Attribute::SExt);
8013   if (CLI.RetZExt)
8014     Attrs.push_back(Attribute::ZExt);
8015   if (CLI.IsInReg)
8016     Attrs.push_back(Attribute::InReg);
8017 
8018   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8019                             Attrs);
8020 }
8021 
8022 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8023 /// implementation, which just calls LowerCall.
8024 /// FIXME: When all targets are
8025 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8026 std::pair<SDValue, SDValue>
8027 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8028   // Handle the incoming return values from the call.
8029   CLI.Ins.clear();
8030   Type *OrigRetTy = CLI.RetTy;
8031   SmallVector<EVT, 4> RetTys;
8032   SmallVector<uint64_t, 4> Offsets;
8033   auto &DL = CLI.DAG.getDataLayout();
8034   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8035 
8036   if (CLI.IsPostTypeLegalization) {
8037     // If we are lowering a libcall after legalization, split the return type.
8038     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8039     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8040     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8041       EVT RetVT = OldRetTys[i];
8042       uint64_t Offset = OldOffsets[i];
8043       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8044       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8045       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8046       RetTys.append(NumRegs, RegisterVT);
8047       for (unsigned j = 0; j != NumRegs; ++j)
8048         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8049     }
8050   }
8051 
8052   SmallVector<ISD::OutputArg, 4> Outs;
8053   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8054 
8055   bool CanLowerReturn =
8056       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8057                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8058 
8059   SDValue DemoteStackSlot;
8060   int DemoteStackIdx = -100;
8061   if (!CanLowerReturn) {
8062     // FIXME: equivalent assert?
8063     // assert(!CS.hasInAllocaArgument() &&
8064     //        "sret demotion is incompatible with inalloca");
8065     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8066     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8067     MachineFunction &MF = CLI.DAG.getMachineFunction();
8068     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8069     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
8070 
8071     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8072     ArgListEntry Entry;
8073     Entry.Node = DemoteStackSlot;
8074     Entry.Ty = StackSlotPtrType;
8075     Entry.IsSExt = false;
8076     Entry.IsZExt = false;
8077     Entry.IsInReg = false;
8078     Entry.IsSRet = true;
8079     Entry.IsNest = false;
8080     Entry.IsByVal = false;
8081     Entry.IsReturned = false;
8082     Entry.IsSwiftSelf = false;
8083     Entry.IsSwiftError = false;
8084     Entry.Alignment = Align;
8085     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8086     CLI.NumFixedArgs += 1;
8087     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8088 
8089     // sret demotion isn't compatible with tail-calls, since the sret argument
8090     // points into the callers stack frame.
8091     CLI.IsTailCall = false;
8092   } else {
8093     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8094       EVT VT = RetTys[I];
8095       MVT RegisterVT =
8096           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8097       unsigned NumRegs =
8098           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8099       for (unsigned i = 0; i != NumRegs; ++i) {
8100         ISD::InputArg MyFlags;
8101         MyFlags.VT = RegisterVT;
8102         MyFlags.ArgVT = VT;
8103         MyFlags.Used = CLI.IsReturnValueUsed;
8104         if (CLI.RetSExt)
8105           MyFlags.Flags.setSExt();
8106         if (CLI.RetZExt)
8107           MyFlags.Flags.setZExt();
8108         if (CLI.IsInReg)
8109           MyFlags.Flags.setInReg();
8110         CLI.Ins.push_back(MyFlags);
8111       }
8112     }
8113   }
8114 
8115   // We push in swifterror return as the last element of CLI.Ins.
8116   ArgListTy &Args = CLI.getArgs();
8117   if (supportSwiftError()) {
8118     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8119       if (Args[i].IsSwiftError) {
8120         ISD::InputArg MyFlags;
8121         MyFlags.VT = getPointerTy(DL);
8122         MyFlags.ArgVT = EVT(getPointerTy(DL));
8123         MyFlags.Flags.setSwiftError();
8124         CLI.Ins.push_back(MyFlags);
8125       }
8126     }
8127   }
8128 
8129   // Handle all of the outgoing arguments.
8130   CLI.Outs.clear();
8131   CLI.OutVals.clear();
8132   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8133     SmallVector<EVT, 4> ValueVTs;
8134     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8135     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8136     Type *FinalType = Args[i].Ty;
8137     if (Args[i].IsByVal)
8138       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8139     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8140         FinalType, CLI.CallConv, CLI.IsVarArg);
8141     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8142          ++Value) {
8143       EVT VT = ValueVTs[Value];
8144       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8145       SDValue Op = SDValue(Args[i].Node.getNode(),
8146                            Args[i].Node.getResNo() + Value);
8147       ISD::ArgFlagsTy Flags;
8148 
8149       // Certain targets (such as MIPS), may have a different ABI alignment
8150       // for a type depending on the context. Give the target a chance to
8151       // specify the alignment it wants.
8152       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8153 
8154       if (Args[i].IsZExt)
8155         Flags.setZExt();
8156       if (Args[i].IsSExt)
8157         Flags.setSExt();
8158       if (Args[i].IsInReg) {
8159         // If we are using vectorcall calling convention, a structure that is
8160         // passed InReg - is surely an HVA
8161         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8162             isa<StructType>(FinalType)) {
8163           // The first value of a structure is marked
8164           if (0 == Value)
8165             Flags.setHvaStart();
8166           Flags.setHva();
8167         }
8168         // Set InReg Flag
8169         Flags.setInReg();
8170       }
8171       if (Args[i].IsSRet)
8172         Flags.setSRet();
8173       if (Args[i].IsSwiftSelf)
8174         Flags.setSwiftSelf();
8175       if (Args[i].IsSwiftError)
8176         Flags.setSwiftError();
8177       if (Args[i].IsByVal)
8178         Flags.setByVal();
8179       if (Args[i].IsInAlloca) {
8180         Flags.setInAlloca();
8181         // Set the byval flag for CCAssignFn callbacks that don't know about
8182         // inalloca.  This way we can know how many bytes we should've allocated
8183         // and how many bytes a callee cleanup function will pop.  If we port
8184         // inalloca to more targets, we'll have to add custom inalloca handling
8185         // in the various CC lowering callbacks.
8186         Flags.setByVal();
8187       }
8188       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8189         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8190         Type *ElementTy = Ty->getElementType();
8191         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8192         // For ByVal, alignment should come from FE.  BE will guess if this
8193         // info is not there but there are cases it cannot get right.
8194         unsigned FrameAlign;
8195         if (Args[i].Alignment)
8196           FrameAlign = Args[i].Alignment;
8197         else
8198           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8199         Flags.setByValAlign(FrameAlign);
8200       }
8201       if (Args[i].IsNest)
8202         Flags.setNest();
8203       if (NeedsRegBlock)
8204         Flags.setInConsecutiveRegs();
8205       Flags.setOrigAlign(OriginalAlignment);
8206 
8207       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8208       unsigned NumParts =
8209           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8210       SmallVector<SDValue, 4> Parts(NumParts);
8211       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8212 
8213       if (Args[i].IsSExt)
8214         ExtendKind = ISD::SIGN_EXTEND;
8215       else if (Args[i].IsZExt)
8216         ExtendKind = ISD::ZERO_EXTEND;
8217 
8218       // Conservatively only handle 'returned' on non-vectors for now
8219       if (Args[i].IsReturned && !Op.getValueType().isVector()) {
8220         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8221                "unexpected use of 'returned'");
8222         // Before passing 'returned' to the target lowering code, ensure that
8223         // either the register MVT and the actual EVT are the same size or that
8224         // the return value and argument are extended in the same way; in these
8225         // cases it's safe to pass the argument register value unchanged as the
8226         // return register value (although it's at the target's option whether
8227         // to do so)
8228         // TODO: allow code generation to take advantage of partially preserved
8229         // registers rather than clobbering the entire register when the
8230         // parameter extension method is not compatible with the return
8231         // extension method
8232         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8233             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8234              CLI.RetZExt == Args[i].IsZExt))
8235           Flags.setReturned();
8236       }
8237 
8238       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8239                      CLI.CS.getInstruction(), ExtendKind, true);
8240 
8241       for (unsigned j = 0; j != NumParts; ++j) {
8242         // if it isn't first piece, alignment must be 1
8243         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8244                                i < CLI.NumFixedArgs,
8245                                i, j*Parts[j].getValueType().getStoreSize());
8246         if (NumParts > 1 && j == 0)
8247           MyFlags.Flags.setSplit();
8248         else if (j != 0) {
8249           MyFlags.Flags.setOrigAlign(1);
8250           if (j == NumParts - 1)
8251             MyFlags.Flags.setSplitEnd();
8252         }
8253 
8254         CLI.Outs.push_back(MyFlags);
8255         CLI.OutVals.push_back(Parts[j]);
8256       }
8257 
8258       if (NeedsRegBlock && Value == NumValues - 1)
8259         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8260     }
8261   }
8262 
8263   SmallVector<SDValue, 4> InVals;
8264   CLI.Chain = LowerCall(CLI, InVals);
8265 
8266   // Update CLI.InVals to use outside of this function.
8267   CLI.InVals = InVals;
8268 
8269   // Verify that the target's LowerCall behaved as expected.
8270   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8271          "LowerCall didn't return a valid chain!");
8272   assert((!CLI.IsTailCall || InVals.empty()) &&
8273          "LowerCall emitted a return value for a tail call!");
8274   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8275          "LowerCall didn't emit the correct number of values!");
8276 
8277   // For a tail call, the return value is merely live-out and there aren't
8278   // any nodes in the DAG representing it. Return a special value to
8279   // indicate that a tail call has been emitted and no more Instructions
8280   // should be processed in the current block.
8281   if (CLI.IsTailCall) {
8282     CLI.DAG.setRoot(CLI.Chain);
8283     return std::make_pair(SDValue(), SDValue());
8284   }
8285 
8286 #ifndef NDEBUG
8287   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8288     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8289     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8290            "LowerCall emitted a value with the wrong type!");
8291   }
8292 #endif
8293 
8294   SmallVector<SDValue, 4> ReturnValues;
8295   if (!CanLowerReturn) {
8296     // The instruction result is the result of loading from the
8297     // hidden sret parameter.
8298     SmallVector<EVT, 1> PVTs;
8299     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8300 
8301     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8302     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8303     EVT PtrVT = PVTs[0];
8304 
8305     unsigned NumValues = RetTys.size();
8306     ReturnValues.resize(NumValues);
8307     SmallVector<SDValue, 4> Chains(NumValues);
8308 
8309     // An aggregate return value cannot wrap around the address space, so
8310     // offsets to its parts don't wrap either.
8311     SDNodeFlags Flags;
8312     Flags.setNoUnsignedWrap(true);
8313 
8314     for (unsigned i = 0; i < NumValues; ++i) {
8315       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8316                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8317                                                         PtrVT), Flags);
8318       SDValue L = CLI.DAG.getLoad(
8319           RetTys[i], CLI.DL, CLI.Chain, Add,
8320           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8321                                             DemoteStackIdx, Offsets[i]),
8322           /* Alignment = */ 1);
8323       ReturnValues[i] = L;
8324       Chains[i] = L.getValue(1);
8325     }
8326 
8327     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8328   } else {
8329     // Collect the legal value parts into potentially illegal values
8330     // that correspond to the original function's return values.
8331     Optional<ISD::NodeType> AssertOp;
8332     if (CLI.RetSExt)
8333       AssertOp = ISD::AssertSext;
8334     else if (CLI.RetZExt)
8335       AssertOp = ISD::AssertZext;
8336     unsigned CurReg = 0;
8337     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8338       EVT VT = RetTys[I];
8339       MVT RegisterVT =
8340           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8341       unsigned NumRegs =
8342           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8343 
8344       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8345                                               NumRegs, RegisterVT, VT, nullptr,
8346                                               AssertOp, true));
8347       CurReg += NumRegs;
8348     }
8349 
8350     // For a function returning void, there is no return value. We can't create
8351     // such a node, so we just return a null return value in that case. In
8352     // that case, nothing will actually look at the value.
8353     if (ReturnValues.empty())
8354       return std::make_pair(SDValue(), CLI.Chain);
8355   }
8356 
8357   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8358                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8359   return std::make_pair(Res, CLI.Chain);
8360 }
8361 
8362 void TargetLowering::LowerOperationWrapper(SDNode *N,
8363                                            SmallVectorImpl<SDValue> &Results,
8364                                            SelectionDAG &DAG) const {
8365   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8366     Results.push_back(Res);
8367 }
8368 
8369 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8370   llvm_unreachable("LowerOperation not implemented for this target!");
8371 }
8372 
8373 void
8374 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8375   SDValue Op = getNonRegisterValue(V);
8376   assert((Op.getOpcode() != ISD::CopyFromReg ||
8377           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8378          "Copy from a reg to the same reg!");
8379   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8380 
8381   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8382   // If this is an InlineAsm we have to match the registers required, not the
8383   // notional registers required by the type.
8384 
8385   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8386                    V->getType(), isABIRegCopy(V));
8387   SDValue Chain = DAG.getEntryNode();
8388 
8389   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8390                               FuncInfo.PreferredExtendType.end())
8391                                  ? ISD::ANY_EXTEND
8392                                  : FuncInfo.PreferredExtendType[V];
8393   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8394   PendingExports.push_back(Chain);
8395 }
8396 
8397 #include "llvm/CodeGen/SelectionDAGISel.h"
8398 
8399 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8400 /// entry block, return true.  This includes arguments used by switches, since
8401 /// the switch may expand into multiple basic blocks.
8402 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8403   // With FastISel active, we may be splitting blocks, so force creation
8404   // of virtual registers for all non-dead arguments.
8405   if (FastISel)
8406     return A->use_empty();
8407 
8408   const BasicBlock &Entry = A->getParent()->front();
8409   for (const User *U : A->users())
8410     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8411       return false;  // Use not in entry block.
8412 
8413   return true;
8414 }
8415 
8416 using ArgCopyElisionMapTy =
8417     DenseMap<const Argument *,
8418              std::pair<const AllocaInst *, const StoreInst *>>;
8419 
8420 /// Scan the entry block of the function in FuncInfo for arguments that look
8421 /// like copies into a local alloca. Record any copied arguments in
8422 /// ArgCopyElisionCandidates.
8423 static void
8424 findArgumentCopyElisionCandidates(const DataLayout &DL,
8425                                   FunctionLoweringInfo *FuncInfo,
8426                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8427   // Record the state of every static alloca used in the entry block. Argument
8428   // allocas are all used in the entry block, so we need approximately as many
8429   // entries as we have arguments.
8430   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8431   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8432   unsigned NumArgs = FuncInfo->Fn->arg_size();
8433   StaticAllocas.reserve(NumArgs * 2);
8434 
8435   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8436     if (!V)
8437       return nullptr;
8438     V = V->stripPointerCasts();
8439     const auto *AI = dyn_cast<AllocaInst>(V);
8440     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8441       return nullptr;
8442     auto Iter = StaticAllocas.insert({AI, Unknown});
8443     return &Iter.first->second;
8444   };
8445 
8446   // Look for stores of arguments to static allocas. Look through bitcasts and
8447   // GEPs to handle type coercions, as long as the alloca is fully initialized
8448   // by the store. Any non-store use of an alloca escapes it and any subsequent
8449   // unanalyzed store might write it.
8450   // FIXME: Handle structs initialized with multiple stores.
8451   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8452     // Look for stores, and handle non-store uses conservatively.
8453     const auto *SI = dyn_cast<StoreInst>(&I);
8454     if (!SI) {
8455       // We will look through cast uses, so ignore them completely.
8456       if (I.isCast())
8457         continue;
8458       // Ignore debug info intrinsics, they don't escape or store to allocas.
8459       if (isa<DbgInfoIntrinsic>(I))
8460         continue;
8461       // This is an unknown instruction. Assume it escapes or writes to all
8462       // static alloca operands.
8463       for (const Use &U : I.operands()) {
8464         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8465           *Info = StaticAllocaInfo::Clobbered;
8466       }
8467       continue;
8468     }
8469 
8470     // If the stored value is a static alloca, mark it as escaped.
8471     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8472       *Info = StaticAllocaInfo::Clobbered;
8473 
8474     // Check if the destination is a static alloca.
8475     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8476     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8477     if (!Info)
8478       continue;
8479     const AllocaInst *AI = cast<AllocaInst>(Dst);
8480 
8481     // Skip allocas that have been initialized or clobbered.
8482     if (*Info != StaticAllocaInfo::Unknown)
8483       continue;
8484 
8485     // Check if the stored value is an argument, and that this store fully
8486     // initializes the alloca. Don't elide copies from the same argument twice.
8487     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8488     const auto *Arg = dyn_cast<Argument>(Val);
8489     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8490         Arg->getType()->isEmptyTy() ||
8491         DL.getTypeStoreSize(Arg->getType()) !=
8492             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8493         ArgCopyElisionCandidates.count(Arg)) {
8494       *Info = StaticAllocaInfo::Clobbered;
8495       continue;
8496     }
8497 
8498     DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n');
8499 
8500     // Mark this alloca and store for argument copy elision.
8501     *Info = StaticAllocaInfo::Elidable;
8502     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8503 
8504     // Stop scanning if we've seen all arguments. This will happen early in -O0
8505     // builds, which is useful, because -O0 builds have large entry blocks and
8506     // many allocas.
8507     if (ArgCopyElisionCandidates.size() == NumArgs)
8508       break;
8509   }
8510 }
8511 
8512 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8513 /// ArgVal is a load from a suitable fixed stack object.
8514 static void tryToElideArgumentCopy(
8515     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8516     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8517     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8518     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8519     SDValue ArgVal, bool &ArgHasUses) {
8520   // Check if this is a load from a fixed stack object.
8521   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8522   if (!LNode)
8523     return;
8524   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8525   if (!FINode)
8526     return;
8527 
8528   // Check that the fixed stack object is the right size and alignment.
8529   // Look at the alignment that the user wrote on the alloca instead of looking
8530   // at the stack object.
8531   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8532   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8533   const AllocaInst *AI = ArgCopyIter->second.first;
8534   int FixedIndex = FINode->getIndex();
8535   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8536   int OldIndex = AllocaIndex;
8537   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8538   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8539     DEBUG(dbgs() << "  argument copy elision failed due to bad fixed stack "
8540                     "object size\n");
8541     return;
8542   }
8543   unsigned RequiredAlignment = AI->getAlignment();
8544   if (!RequiredAlignment) {
8545     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8546         AI->getAllocatedType());
8547   }
8548   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8549     DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8550                     "greater than stack argument alignment ("
8551                  << RequiredAlignment << " vs "
8552                  << MFI.getObjectAlignment(FixedIndex) << ")\n");
8553     return;
8554   }
8555 
8556   // Perform the elision. Delete the old stack object and replace its only use
8557   // in the variable info map. Mark the stack object as mutable.
8558   DEBUG({
8559     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8560            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8561            << '\n';
8562   });
8563   MFI.RemoveStackObject(OldIndex);
8564   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8565   AllocaIndex = FixedIndex;
8566   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8567   Chains.push_back(ArgVal.getValue(1));
8568 
8569   // Avoid emitting code for the store implementing the copy.
8570   const StoreInst *SI = ArgCopyIter->second.second;
8571   ElidedArgCopyInstrs.insert(SI);
8572 
8573   // Check for uses of the argument again so that we can avoid exporting ArgVal
8574   // if it is't used by anything other than the store.
8575   for (const Value *U : Arg.users()) {
8576     if (U != SI) {
8577       ArgHasUses = true;
8578       break;
8579     }
8580   }
8581 }
8582 
8583 void SelectionDAGISel::LowerArguments(const Function &F) {
8584   SelectionDAG &DAG = SDB->DAG;
8585   SDLoc dl = SDB->getCurSDLoc();
8586   const DataLayout &DL = DAG.getDataLayout();
8587   SmallVector<ISD::InputArg, 16> Ins;
8588 
8589   if (!FuncInfo->CanLowerReturn) {
8590     // Put in an sret pointer parameter before all the other parameters.
8591     SmallVector<EVT, 1> ValueVTs;
8592     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8593                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8594 
8595     // NOTE: Assuming that a pointer will never break down to more than one VT
8596     // or one register.
8597     ISD::ArgFlagsTy Flags;
8598     Flags.setSRet();
8599     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8600     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8601                          ISD::InputArg::NoArgIndex, 0);
8602     Ins.push_back(RetArg);
8603   }
8604 
8605   // Look for stores of arguments to static allocas. Mark such arguments with a
8606   // flag to ask the target to give us the memory location of that argument if
8607   // available.
8608   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8609   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8610 
8611   // Set up the incoming argument description vector.
8612   for (const Argument &Arg : F.args()) {
8613     unsigned ArgNo = Arg.getArgNo();
8614     SmallVector<EVT, 4> ValueVTs;
8615     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8616     bool isArgValueUsed = !Arg.use_empty();
8617     unsigned PartBase = 0;
8618     Type *FinalType = Arg.getType();
8619     if (Arg.hasAttribute(Attribute::ByVal))
8620       FinalType = cast<PointerType>(FinalType)->getElementType();
8621     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8622         FinalType, F.getCallingConv(), F.isVarArg());
8623     for (unsigned Value = 0, NumValues = ValueVTs.size();
8624          Value != NumValues; ++Value) {
8625       EVT VT = ValueVTs[Value];
8626       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8627       ISD::ArgFlagsTy Flags;
8628 
8629       // Certain targets (such as MIPS), may have a different ABI alignment
8630       // for a type depending on the context. Give the target a chance to
8631       // specify the alignment it wants.
8632       unsigned OriginalAlignment =
8633           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8634 
8635       if (Arg.hasAttribute(Attribute::ZExt))
8636         Flags.setZExt();
8637       if (Arg.hasAttribute(Attribute::SExt))
8638         Flags.setSExt();
8639       if (Arg.hasAttribute(Attribute::InReg)) {
8640         // If we are using vectorcall calling convention, a structure that is
8641         // passed InReg - is surely an HVA
8642         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8643             isa<StructType>(Arg.getType())) {
8644           // The first value of a structure is marked
8645           if (0 == Value)
8646             Flags.setHvaStart();
8647           Flags.setHva();
8648         }
8649         // Set InReg Flag
8650         Flags.setInReg();
8651       }
8652       if (Arg.hasAttribute(Attribute::StructRet))
8653         Flags.setSRet();
8654       if (Arg.hasAttribute(Attribute::SwiftSelf))
8655         Flags.setSwiftSelf();
8656       if (Arg.hasAttribute(Attribute::SwiftError))
8657         Flags.setSwiftError();
8658       if (Arg.hasAttribute(Attribute::ByVal))
8659         Flags.setByVal();
8660       if (Arg.hasAttribute(Attribute::InAlloca)) {
8661         Flags.setInAlloca();
8662         // Set the byval flag for CCAssignFn callbacks that don't know about
8663         // inalloca.  This way we can know how many bytes we should've allocated
8664         // and how many bytes a callee cleanup function will pop.  If we port
8665         // inalloca to more targets, we'll have to add custom inalloca handling
8666         // in the various CC lowering callbacks.
8667         Flags.setByVal();
8668       }
8669       if (F.getCallingConv() == CallingConv::X86_INTR) {
8670         // IA Interrupt passes frame (1st parameter) by value in the stack.
8671         if (ArgNo == 0)
8672           Flags.setByVal();
8673       }
8674       if (Flags.isByVal() || Flags.isInAlloca()) {
8675         PointerType *Ty = cast<PointerType>(Arg.getType());
8676         Type *ElementTy = Ty->getElementType();
8677         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8678         // For ByVal, alignment should be passed from FE.  BE will guess if
8679         // this info is not there but there are cases it cannot get right.
8680         unsigned FrameAlign;
8681         if (Arg.getParamAlignment())
8682           FrameAlign = Arg.getParamAlignment();
8683         else
8684           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8685         Flags.setByValAlign(FrameAlign);
8686       }
8687       if (Arg.hasAttribute(Attribute::Nest))
8688         Flags.setNest();
8689       if (NeedsRegBlock)
8690         Flags.setInConsecutiveRegs();
8691       Flags.setOrigAlign(OriginalAlignment);
8692       if (ArgCopyElisionCandidates.count(&Arg))
8693         Flags.setCopyElisionCandidate();
8694 
8695       MVT RegisterVT =
8696           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8697       unsigned NumRegs =
8698           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8699       for (unsigned i = 0; i != NumRegs; ++i) {
8700         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8701                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8702         if (NumRegs > 1 && i == 0)
8703           MyFlags.Flags.setSplit();
8704         // if it isn't first piece, alignment must be 1
8705         else if (i > 0) {
8706           MyFlags.Flags.setOrigAlign(1);
8707           if (i == NumRegs - 1)
8708             MyFlags.Flags.setSplitEnd();
8709         }
8710         Ins.push_back(MyFlags);
8711       }
8712       if (NeedsRegBlock && Value == NumValues - 1)
8713         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8714       PartBase += VT.getStoreSize();
8715     }
8716   }
8717 
8718   // Call the target to set up the argument values.
8719   SmallVector<SDValue, 8> InVals;
8720   SDValue NewRoot = TLI->LowerFormalArguments(
8721       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8722 
8723   // Verify that the target's LowerFormalArguments behaved as expected.
8724   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8725          "LowerFormalArguments didn't return a valid chain!");
8726   assert(InVals.size() == Ins.size() &&
8727          "LowerFormalArguments didn't emit the correct number of values!");
8728   DEBUG({
8729       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8730         assert(InVals[i].getNode() &&
8731                "LowerFormalArguments emitted a null value!");
8732         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8733                "LowerFormalArguments emitted a value with the wrong type!");
8734       }
8735     });
8736 
8737   // Update the DAG with the new chain value resulting from argument lowering.
8738   DAG.setRoot(NewRoot);
8739 
8740   // Set up the argument values.
8741   unsigned i = 0;
8742   if (!FuncInfo->CanLowerReturn) {
8743     // Create a virtual register for the sret pointer, and put in a copy
8744     // from the sret argument into it.
8745     SmallVector<EVT, 1> ValueVTs;
8746     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8747                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8748     MVT VT = ValueVTs[0].getSimpleVT();
8749     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8750     Optional<ISD::NodeType> AssertOp = None;
8751     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8752                                         RegVT, VT, nullptr, AssertOp);
8753 
8754     MachineFunction& MF = SDB->DAG.getMachineFunction();
8755     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8756     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8757     FuncInfo->DemoteRegister = SRetReg;
8758     NewRoot =
8759         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8760     DAG.setRoot(NewRoot);
8761 
8762     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8763     ++i;
8764   }
8765 
8766   SmallVector<SDValue, 4> Chains;
8767   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8768   for (const Argument &Arg : F.args()) {
8769     SmallVector<SDValue, 4> ArgValues;
8770     SmallVector<EVT, 4> ValueVTs;
8771     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8772     unsigned NumValues = ValueVTs.size();
8773     if (NumValues == 0)
8774       continue;
8775 
8776     bool ArgHasUses = !Arg.use_empty();
8777 
8778     // Elide the copying store if the target loaded this argument from a
8779     // suitable fixed stack object.
8780     if (Ins[i].Flags.isCopyElisionCandidate()) {
8781       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8782                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8783                              InVals[i], ArgHasUses);
8784     }
8785 
8786     // If this argument is unused then remember its value. It is used to generate
8787     // debugging information.
8788     bool isSwiftErrorArg =
8789         TLI->supportSwiftError() &&
8790         Arg.hasAttribute(Attribute::SwiftError);
8791     if (!ArgHasUses && !isSwiftErrorArg) {
8792       SDB->setUnusedArgValue(&Arg, InVals[i]);
8793 
8794       // Also remember any frame index for use in FastISel.
8795       if (FrameIndexSDNode *FI =
8796           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8797         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8798     }
8799 
8800     for (unsigned Val = 0; Val != NumValues; ++Val) {
8801       EVT VT = ValueVTs[Val];
8802       MVT PartVT =
8803           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8804       unsigned NumParts =
8805           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8806 
8807       // Even an apparant 'unused' swifterror argument needs to be returned. So
8808       // we do generate a copy for it that can be used on return from the
8809       // function.
8810       if (ArgHasUses || isSwiftErrorArg) {
8811         Optional<ISD::NodeType> AssertOp;
8812         if (Arg.hasAttribute(Attribute::SExt))
8813           AssertOp = ISD::AssertSext;
8814         else if (Arg.hasAttribute(Attribute::ZExt))
8815           AssertOp = ISD::AssertZext;
8816 
8817         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8818                                              PartVT, VT, nullptr, AssertOp,
8819                                              true));
8820       }
8821 
8822       i += NumParts;
8823     }
8824 
8825     // We don't need to do anything else for unused arguments.
8826     if (ArgValues.empty())
8827       continue;
8828 
8829     // Note down frame index.
8830     if (FrameIndexSDNode *FI =
8831         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8832       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8833 
8834     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8835                                      SDB->getCurSDLoc());
8836 
8837     SDB->setValue(&Arg, Res);
8838     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8839       // We want to associate the argument with the frame index, among
8840       // involved operands, that correspond to the lowest address. The
8841       // getCopyFromParts function, called earlier, is swapping the order of
8842       // the operands to BUILD_PAIR depending on endianness. The result of
8843       // that swapping is that the least significant bits of the argument will
8844       // be in the first operand of the BUILD_PAIR node, and the most
8845       // significant bits will be in the second operand.
8846       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8847       if (LoadSDNode *LNode =
8848           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
8849         if (FrameIndexSDNode *FI =
8850             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8851           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8852     }
8853 
8854     // Update the SwiftErrorVRegDefMap.
8855     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8856       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8857       if (TargetRegisterInfo::isVirtualRegister(Reg))
8858         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8859                                            FuncInfo->SwiftErrorArg, Reg);
8860     }
8861 
8862     // If this argument is live outside of the entry block, insert a copy from
8863     // wherever we got it to the vreg that other BB's will reference it as.
8864     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8865       // If we can, though, try to skip creating an unnecessary vreg.
8866       // FIXME: This isn't very clean... it would be nice to make this more
8867       // general.  It's also subtly incompatible with the hacks FastISel
8868       // uses with vregs.
8869       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8870       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8871         FuncInfo->ValueMap[&Arg] = Reg;
8872         continue;
8873       }
8874     }
8875     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
8876       FuncInfo->InitializeRegForValue(&Arg);
8877       SDB->CopyToExportRegsIfNeeded(&Arg);
8878     }
8879   }
8880 
8881   if (!Chains.empty()) {
8882     Chains.push_back(NewRoot);
8883     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
8884   }
8885 
8886   DAG.setRoot(NewRoot);
8887 
8888   assert(i == InVals.size() && "Argument register count mismatch!");
8889 
8890   // If any argument copy elisions occurred and we have debug info, update the
8891   // stale frame indices used in the dbg.declare variable info table.
8892   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
8893   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
8894     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
8895       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
8896       if (I != ArgCopyElisionFrameIndexMap.end())
8897         VI.Slot = I->second;
8898     }
8899   }
8900 
8901   // Finally, if the target has anything special to do, allow it to do so.
8902   EmitFunctionEntryCode();
8903 }
8904 
8905 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8906 /// ensure constants are generated when needed.  Remember the virtual registers
8907 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8908 /// directly add them, because expansion might result in multiple MBB's for one
8909 /// BB.  As such, the start of the BB might correspond to a different MBB than
8910 /// the end.
8911 void
8912 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8913   const TerminatorInst *TI = LLVMBB->getTerminator();
8914 
8915   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8916 
8917   // Check PHI nodes in successors that expect a value to be available from this
8918   // block.
8919   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8920     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8921     if (!isa<PHINode>(SuccBB->begin())) continue;
8922     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8923 
8924     // If this terminator has multiple identical successors (common for
8925     // switches), only handle each succ once.
8926     if (!SuccsHandled.insert(SuccMBB).second)
8927       continue;
8928 
8929     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8930 
8931     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8932     // nodes and Machine PHI nodes, but the incoming operands have not been
8933     // emitted yet.
8934     for (BasicBlock::const_iterator I = SuccBB->begin();
8935          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8936       // Ignore dead phi's.
8937       if (PN->use_empty()) continue;
8938 
8939       // Skip empty types
8940       if (PN->getType()->isEmptyTy())
8941         continue;
8942 
8943       unsigned Reg;
8944       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8945 
8946       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8947         unsigned &RegOut = ConstantsOut[C];
8948         if (RegOut == 0) {
8949           RegOut = FuncInfo.CreateRegs(C->getType());
8950           CopyValueToVirtualRegister(C, RegOut);
8951         }
8952         Reg = RegOut;
8953       } else {
8954         DenseMap<const Value *, unsigned>::iterator I =
8955           FuncInfo.ValueMap.find(PHIOp);
8956         if (I != FuncInfo.ValueMap.end())
8957           Reg = I->second;
8958         else {
8959           assert(isa<AllocaInst>(PHIOp) &&
8960                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8961                  "Didn't codegen value into a register!??");
8962           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8963           CopyValueToVirtualRegister(PHIOp, Reg);
8964         }
8965       }
8966 
8967       // Remember that this register needs to added to the machine PHI node as
8968       // the input for this MBB.
8969       SmallVector<EVT, 4> ValueVTs;
8970       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8971       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8972       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8973         EVT VT = ValueVTs[vti];
8974         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8975         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8976           FuncInfo.PHINodesToUpdate.push_back(
8977               std::make_pair(&*MBBI++, Reg + i));
8978         Reg += NumRegisters;
8979       }
8980     }
8981   }
8982 
8983   ConstantsOut.clear();
8984 }
8985 
8986 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8987 /// is 0.
8988 MachineBasicBlock *
8989 SelectionDAGBuilder::StackProtectorDescriptor::
8990 AddSuccessorMBB(const BasicBlock *BB,
8991                 MachineBasicBlock *ParentMBB,
8992                 bool IsLikely,
8993                 MachineBasicBlock *SuccMBB) {
8994   // If SuccBB has not been created yet, create it.
8995   if (!SuccMBB) {
8996     MachineFunction *MF = ParentMBB->getParent();
8997     MachineFunction::iterator BBI(ParentMBB);
8998     SuccMBB = MF->CreateMachineBasicBlock(BB);
8999     MF->insert(++BBI, SuccMBB);
9000   }
9001   // Add it as a successor of ParentMBB.
9002   ParentMBB->addSuccessor(
9003       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9004   return SuccMBB;
9005 }
9006 
9007 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9008   MachineFunction::iterator I(MBB);
9009   if (++I == FuncInfo.MF->end())
9010     return nullptr;
9011   return &*I;
9012 }
9013 
9014 /// During lowering new call nodes can be created (such as memset, etc.).
9015 /// Those will become new roots of the current DAG, but complications arise
9016 /// when they are tail calls. In such cases, the call lowering will update
9017 /// the root, but the builder still needs to know that a tail call has been
9018 /// lowered in order to avoid generating an additional return.
9019 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9020   // If the node is null, we do have a tail call.
9021   if (MaybeTC.getNode() != nullptr)
9022     DAG.setRoot(MaybeTC);
9023   else
9024     HasTailCall = true;
9025 }
9026 
9027 uint64_t
9028 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9029                                        unsigned First, unsigned Last) const {
9030   assert(Last >= First);
9031   const APInt &LowCase = Clusters[First].Low->getValue();
9032   const APInt &HighCase = Clusters[Last].High->getValue();
9033   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9034 
9035   // FIXME: A range of consecutive cases has 100% density, but only requires one
9036   // comparison to lower. We should discriminate against such consecutive ranges
9037   // in jump tables.
9038 
9039   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9040 }
9041 
9042 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9043     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9044     unsigned Last) const {
9045   assert(Last >= First);
9046   assert(TotalCases[Last] >= TotalCases[First]);
9047   uint64_t NumCases =
9048       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9049   return NumCases;
9050 }
9051 
9052 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9053                                          unsigned First, unsigned Last,
9054                                          const SwitchInst *SI,
9055                                          MachineBasicBlock *DefaultMBB,
9056                                          CaseCluster &JTCluster) {
9057   assert(First <= Last);
9058 
9059   auto Prob = BranchProbability::getZero();
9060   unsigned NumCmps = 0;
9061   std::vector<MachineBasicBlock*> Table;
9062   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9063 
9064   // Initialize probabilities in JTProbs.
9065   for (unsigned I = First; I <= Last; ++I)
9066     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9067 
9068   for (unsigned I = First; I <= Last; ++I) {
9069     assert(Clusters[I].Kind == CC_Range);
9070     Prob += Clusters[I].Prob;
9071     const APInt &Low = Clusters[I].Low->getValue();
9072     const APInt &High = Clusters[I].High->getValue();
9073     NumCmps += (Low == High) ? 1 : 2;
9074     if (I != First) {
9075       // Fill the gap between this and the previous cluster.
9076       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9077       assert(PreviousHigh.slt(Low));
9078       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9079       for (uint64_t J = 0; J < Gap; J++)
9080         Table.push_back(DefaultMBB);
9081     }
9082     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9083     for (uint64_t J = 0; J < ClusterSize; ++J)
9084       Table.push_back(Clusters[I].MBB);
9085     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9086   }
9087 
9088   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9089   unsigned NumDests = JTProbs.size();
9090   if (TLI.isSuitableForBitTests(
9091           NumDests, NumCmps, Clusters[First].Low->getValue(),
9092           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9093     // Clusters[First..Last] should be lowered as bit tests instead.
9094     return false;
9095   }
9096 
9097   // Create the MBB that will load from and jump through the table.
9098   // Note: We create it here, but it's not inserted into the function yet.
9099   MachineFunction *CurMF = FuncInfo.MF;
9100   MachineBasicBlock *JumpTableMBB =
9101       CurMF->CreateMachineBasicBlock(SI->getParent());
9102 
9103   // Add successors. Note: use table order for determinism.
9104   SmallPtrSet<MachineBasicBlock *, 8> Done;
9105   for (MachineBasicBlock *Succ : Table) {
9106     if (Done.count(Succ))
9107       continue;
9108     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9109     Done.insert(Succ);
9110   }
9111   JumpTableMBB->normalizeSuccProbs();
9112 
9113   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9114                      ->createJumpTableIndex(Table);
9115 
9116   // Set up the jump table info.
9117   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9118   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9119                       Clusters[Last].High->getValue(), SI->getCondition(),
9120                       nullptr, false);
9121   JTCases.emplace_back(std::move(JTH), std::move(JT));
9122 
9123   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9124                                      JTCases.size() - 1, Prob);
9125   return true;
9126 }
9127 
9128 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9129                                          const SwitchInst *SI,
9130                                          MachineBasicBlock *DefaultMBB) {
9131 #ifndef NDEBUG
9132   // Clusters must be non-empty, sorted, and only contain Range clusters.
9133   assert(!Clusters.empty());
9134   for (CaseCluster &C : Clusters)
9135     assert(C.Kind == CC_Range);
9136   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9137     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9138 #endif
9139 
9140   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9141   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9142     return;
9143 
9144   const int64_t N = Clusters.size();
9145   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9146   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9147 
9148   if (N < 2 || N < MinJumpTableEntries)
9149     return;
9150 
9151   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9152   SmallVector<unsigned, 8> TotalCases(N);
9153   for (unsigned i = 0; i < N; ++i) {
9154     const APInt &Hi = Clusters[i].High->getValue();
9155     const APInt &Lo = Clusters[i].Low->getValue();
9156     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9157     if (i != 0)
9158       TotalCases[i] += TotalCases[i - 1];
9159   }
9160 
9161   // Cheap case: the whole range may be suitable for jump table.
9162   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9163   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9164   assert(NumCases < UINT64_MAX / 100);
9165   assert(Range >= NumCases);
9166   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9167     CaseCluster JTCluster;
9168     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9169       Clusters[0] = JTCluster;
9170       Clusters.resize(1);
9171       return;
9172     }
9173   }
9174 
9175   // The algorithm below is not suitable for -O0.
9176   if (TM.getOptLevel() == CodeGenOpt::None)
9177     return;
9178 
9179   // Split Clusters into minimum number of dense partitions. The algorithm uses
9180   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9181   // for the Case Statement'" (1994), but builds the MinPartitions array in
9182   // reverse order to make it easier to reconstruct the partitions in ascending
9183   // order. In the choice between two optimal partitionings, it picks the one
9184   // which yields more jump tables.
9185 
9186   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9187   SmallVector<unsigned, 8> MinPartitions(N);
9188   // LastElement[i] is the last element of the partition starting at i.
9189   SmallVector<unsigned, 8> LastElement(N);
9190   // PartitionsScore[i] is used to break ties when choosing between two
9191   // partitionings resulting in the same number of partitions.
9192   SmallVector<unsigned, 8> PartitionsScore(N);
9193   // For PartitionsScore, a small number of comparisons is considered as good as
9194   // a jump table and a single comparison is considered better than a jump
9195   // table.
9196   enum PartitionScores : unsigned {
9197     NoTable = 0,
9198     Table = 1,
9199     FewCases = 1,
9200     SingleCase = 2
9201   };
9202 
9203   // Base case: There is only one way to partition Clusters[N-1].
9204   MinPartitions[N - 1] = 1;
9205   LastElement[N - 1] = N - 1;
9206   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9207 
9208   // Note: loop indexes are signed to avoid underflow.
9209   for (int64_t i = N - 2; i >= 0; i--) {
9210     // Find optimal partitioning of Clusters[i..N-1].
9211     // Baseline: Put Clusters[i] into a partition on its own.
9212     MinPartitions[i] = MinPartitions[i + 1] + 1;
9213     LastElement[i] = i;
9214     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9215 
9216     // Search for a solution that results in fewer partitions.
9217     for (int64_t j = N - 1; j > i; j--) {
9218       // Try building a partition from Clusters[i..j].
9219       uint64_t Range = getJumpTableRange(Clusters, i, j);
9220       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9221       assert(NumCases < UINT64_MAX / 100);
9222       assert(Range >= NumCases);
9223       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9224         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9225         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9226         int64_t NumEntries = j - i + 1;
9227 
9228         if (NumEntries == 1)
9229           Score += PartitionScores::SingleCase;
9230         else if (NumEntries <= SmallNumberOfEntries)
9231           Score += PartitionScores::FewCases;
9232         else if (NumEntries >= MinJumpTableEntries)
9233           Score += PartitionScores::Table;
9234 
9235         // If this leads to fewer partitions, or to the same number of
9236         // partitions with better score, it is a better partitioning.
9237         if (NumPartitions < MinPartitions[i] ||
9238             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9239           MinPartitions[i] = NumPartitions;
9240           LastElement[i] = j;
9241           PartitionsScore[i] = Score;
9242         }
9243       }
9244     }
9245   }
9246 
9247   // Iterate over the partitions, replacing some with jump tables in-place.
9248   unsigned DstIndex = 0;
9249   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9250     Last = LastElement[First];
9251     assert(Last >= First);
9252     assert(DstIndex <= First);
9253     unsigned NumClusters = Last - First + 1;
9254 
9255     CaseCluster JTCluster;
9256     if (NumClusters >= MinJumpTableEntries &&
9257         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9258       Clusters[DstIndex++] = JTCluster;
9259     } else {
9260       for (unsigned I = First; I <= Last; ++I)
9261         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9262     }
9263   }
9264   Clusters.resize(DstIndex);
9265 }
9266 
9267 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9268                                         unsigned First, unsigned Last,
9269                                         const SwitchInst *SI,
9270                                         CaseCluster &BTCluster) {
9271   assert(First <= Last);
9272   if (First == Last)
9273     return false;
9274 
9275   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9276   unsigned NumCmps = 0;
9277   for (int64_t I = First; I <= Last; ++I) {
9278     assert(Clusters[I].Kind == CC_Range);
9279     Dests.set(Clusters[I].MBB->getNumber());
9280     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9281   }
9282   unsigned NumDests = Dests.count();
9283 
9284   APInt Low = Clusters[First].Low->getValue();
9285   APInt High = Clusters[Last].High->getValue();
9286   assert(Low.slt(High));
9287 
9288   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9289   const DataLayout &DL = DAG.getDataLayout();
9290   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9291     return false;
9292 
9293   APInt LowBound;
9294   APInt CmpRange;
9295 
9296   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9297   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9298          "Case range must fit in bit mask!");
9299 
9300   // Check if the clusters cover a contiguous range such that no value in the
9301   // range will jump to the default statement.
9302   bool ContiguousRange = true;
9303   for (int64_t I = First + 1; I <= Last; ++I) {
9304     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9305       ContiguousRange = false;
9306       break;
9307     }
9308   }
9309 
9310   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9311     // Optimize the case where all the case values fit in a word without having
9312     // to subtract minValue. In this case, we can optimize away the subtraction.
9313     LowBound = APInt::getNullValue(Low.getBitWidth());
9314     CmpRange = High;
9315     ContiguousRange = false;
9316   } else {
9317     LowBound = Low;
9318     CmpRange = High - Low;
9319   }
9320 
9321   CaseBitsVector CBV;
9322   auto TotalProb = BranchProbability::getZero();
9323   for (unsigned i = First; i <= Last; ++i) {
9324     // Find the CaseBits for this destination.
9325     unsigned j;
9326     for (j = 0; j < CBV.size(); ++j)
9327       if (CBV[j].BB == Clusters[i].MBB)
9328         break;
9329     if (j == CBV.size())
9330       CBV.push_back(
9331           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9332     CaseBits *CB = &CBV[j];
9333 
9334     // Update Mask, Bits and ExtraProb.
9335     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9336     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9337     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9338     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9339     CB->Bits += Hi - Lo + 1;
9340     CB->ExtraProb += Clusters[i].Prob;
9341     TotalProb += Clusters[i].Prob;
9342   }
9343 
9344   BitTestInfo BTI;
9345   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9346     // Sort by probability first, number of bits second, bit mask third.
9347     if (a.ExtraProb != b.ExtraProb)
9348       return a.ExtraProb > b.ExtraProb;
9349     if (a.Bits != b.Bits)
9350       return a.Bits > b.Bits;
9351     return a.Mask < b.Mask;
9352   });
9353 
9354   for (auto &CB : CBV) {
9355     MachineBasicBlock *BitTestBB =
9356         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9357     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9358   }
9359   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9360                             SI->getCondition(), -1U, MVT::Other, false,
9361                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9362                             TotalProb);
9363 
9364   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9365                                     BitTestCases.size() - 1, TotalProb);
9366   return true;
9367 }
9368 
9369 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9370                                               const SwitchInst *SI) {
9371 // Partition Clusters into as few subsets as possible, where each subset has a
9372 // range that fits in a machine word and has <= 3 unique destinations.
9373 
9374 #ifndef NDEBUG
9375   // Clusters must be sorted and contain Range or JumpTable clusters.
9376   assert(!Clusters.empty());
9377   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9378   for (const CaseCluster &C : Clusters)
9379     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9380   for (unsigned i = 1; i < Clusters.size(); ++i)
9381     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9382 #endif
9383 
9384   // The algorithm below is not suitable for -O0.
9385   if (TM.getOptLevel() == CodeGenOpt::None)
9386     return;
9387 
9388   // If target does not have legal shift left, do not emit bit tests at all.
9389   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9390   const DataLayout &DL = DAG.getDataLayout();
9391 
9392   EVT PTy = TLI.getPointerTy(DL);
9393   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9394     return;
9395 
9396   int BitWidth = PTy.getSizeInBits();
9397   const int64_t N = Clusters.size();
9398 
9399   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9400   SmallVector<unsigned, 8> MinPartitions(N);
9401   // LastElement[i] is the last element of the partition starting at i.
9402   SmallVector<unsigned, 8> LastElement(N);
9403 
9404   // FIXME: This might not be the best algorithm for finding bit test clusters.
9405 
9406   // Base case: There is only one way to partition Clusters[N-1].
9407   MinPartitions[N - 1] = 1;
9408   LastElement[N - 1] = N - 1;
9409 
9410   // Note: loop indexes are signed to avoid underflow.
9411   for (int64_t i = N - 2; i >= 0; --i) {
9412     // Find optimal partitioning of Clusters[i..N-1].
9413     // Baseline: Put Clusters[i] into a partition on its own.
9414     MinPartitions[i] = MinPartitions[i + 1] + 1;
9415     LastElement[i] = i;
9416 
9417     // Search for a solution that results in fewer partitions.
9418     // Note: the search is limited by BitWidth, reducing time complexity.
9419     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9420       // Try building a partition from Clusters[i..j].
9421 
9422       // Check the range.
9423       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9424                                Clusters[j].High->getValue(), DL))
9425         continue;
9426 
9427       // Check nbr of destinations and cluster types.
9428       // FIXME: This works, but doesn't seem very efficient.
9429       bool RangesOnly = true;
9430       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9431       for (int64_t k = i; k <= j; k++) {
9432         if (Clusters[k].Kind != CC_Range) {
9433           RangesOnly = false;
9434           break;
9435         }
9436         Dests.set(Clusters[k].MBB->getNumber());
9437       }
9438       if (!RangesOnly || Dests.count() > 3)
9439         break;
9440 
9441       // Check if it's a better partition.
9442       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9443       if (NumPartitions < MinPartitions[i]) {
9444         // Found a better partition.
9445         MinPartitions[i] = NumPartitions;
9446         LastElement[i] = j;
9447       }
9448     }
9449   }
9450 
9451   // Iterate over the partitions, replacing with bit-test clusters in-place.
9452   unsigned DstIndex = 0;
9453   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9454     Last = LastElement[First];
9455     assert(First <= Last);
9456     assert(DstIndex <= First);
9457 
9458     CaseCluster BitTestCluster;
9459     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9460       Clusters[DstIndex++] = BitTestCluster;
9461     } else {
9462       size_t NumClusters = Last - First + 1;
9463       std::memmove(&Clusters[DstIndex], &Clusters[First],
9464                    sizeof(Clusters[0]) * NumClusters);
9465       DstIndex += NumClusters;
9466     }
9467   }
9468   Clusters.resize(DstIndex);
9469 }
9470 
9471 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9472                                         MachineBasicBlock *SwitchMBB,
9473                                         MachineBasicBlock *DefaultMBB) {
9474   MachineFunction *CurMF = FuncInfo.MF;
9475   MachineBasicBlock *NextMBB = nullptr;
9476   MachineFunction::iterator BBI(W.MBB);
9477   if (++BBI != FuncInfo.MF->end())
9478     NextMBB = &*BBI;
9479 
9480   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9481 
9482   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9483 
9484   if (Size == 2 && W.MBB == SwitchMBB) {
9485     // If any two of the cases has the same destination, and if one value
9486     // is the same as the other, but has one bit unset that the other has set,
9487     // use bit manipulation to do two compares at once.  For example:
9488     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9489     // TODO: This could be extended to merge any 2 cases in switches with 3
9490     // cases.
9491     // TODO: Handle cases where W.CaseBB != SwitchBB.
9492     CaseCluster &Small = *W.FirstCluster;
9493     CaseCluster &Big = *W.LastCluster;
9494 
9495     if (Small.Low == Small.High && Big.Low == Big.High &&
9496         Small.MBB == Big.MBB) {
9497       const APInt &SmallValue = Small.Low->getValue();
9498       const APInt &BigValue = Big.Low->getValue();
9499 
9500       // Check that there is only one bit different.
9501       APInt CommonBit = BigValue ^ SmallValue;
9502       if (CommonBit.isPowerOf2()) {
9503         SDValue CondLHS = getValue(Cond);
9504         EVT VT = CondLHS.getValueType();
9505         SDLoc DL = getCurSDLoc();
9506 
9507         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9508                                  DAG.getConstant(CommonBit, DL, VT));
9509         SDValue Cond = DAG.getSetCC(
9510             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9511             ISD::SETEQ);
9512 
9513         // Update successor info.
9514         // Both Small and Big will jump to Small.BB, so we sum up the
9515         // probabilities.
9516         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9517         if (BPI)
9518           addSuccessorWithProb(
9519               SwitchMBB, DefaultMBB,
9520               // The default destination is the first successor in IR.
9521               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9522         else
9523           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9524 
9525         // Insert the true branch.
9526         SDValue BrCond =
9527             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9528                         DAG.getBasicBlock(Small.MBB));
9529         // Insert the false branch.
9530         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9531                              DAG.getBasicBlock(DefaultMBB));
9532 
9533         DAG.setRoot(BrCond);
9534         return;
9535       }
9536     }
9537   }
9538 
9539   if (TM.getOptLevel() != CodeGenOpt::None) {
9540     // Here, we order cases by probability so the most likely case will be
9541     // checked first. However, two clusters can have the same probability in
9542     // which case their relative ordering is non-deterministic. So we use Low
9543     // as a tie-breaker as clusters are guaranteed to never overlap.
9544     std::sort(W.FirstCluster, W.LastCluster + 1,
9545               [](const CaseCluster &a, const CaseCluster &b) {
9546       return a.Prob != b.Prob ?
9547              a.Prob > b.Prob :
9548              a.Low->getValue().slt(b.Low->getValue());
9549     });
9550 
9551     // Rearrange the case blocks so that the last one falls through if possible
9552     // without without changing the order of probabilities.
9553     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9554       --I;
9555       if (I->Prob > W.LastCluster->Prob)
9556         break;
9557       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9558         std::swap(*I, *W.LastCluster);
9559         break;
9560       }
9561     }
9562   }
9563 
9564   // Compute total probability.
9565   BranchProbability DefaultProb = W.DefaultProb;
9566   BranchProbability UnhandledProbs = DefaultProb;
9567   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9568     UnhandledProbs += I->Prob;
9569 
9570   MachineBasicBlock *CurMBB = W.MBB;
9571   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9572     MachineBasicBlock *Fallthrough;
9573     if (I == W.LastCluster) {
9574       // For the last cluster, fall through to the default destination.
9575       Fallthrough = DefaultMBB;
9576     } else {
9577       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9578       CurMF->insert(BBI, Fallthrough);
9579       // Put Cond in a virtual register to make it available from the new blocks.
9580       ExportFromCurrentBlock(Cond);
9581     }
9582     UnhandledProbs -= I->Prob;
9583 
9584     switch (I->Kind) {
9585       case CC_JumpTable: {
9586         // FIXME: Optimize away range check based on pivot comparisons.
9587         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9588         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9589 
9590         // The jump block hasn't been inserted yet; insert it here.
9591         MachineBasicBlock *JumpMBB = JT->MBB;
9592         CurMF->insert(BBI, JumpMBB);
9593 
9594         auto JumpProb = I->Prob;
9595         auto FallthroughProb = UnhandledProbs;
9596 
9597         // If the default statement is a target of the jump table, we evenly
9598         // distribute the default probability to successors of CurMBB. Also
9599         // update the probability on the edge from JumpMBB to Fallthrough.
9600         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9601                                               SE = JumpMBB->succ_end();
9602              SI != SE; ++SI) {
9603           if (*SI == DefaultMBB) {
9604             JumpProb += DefaultProb / 2;
9605             FallthroughProb -= DefaultProb / 2;
9606             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9607             JumpMBB->normalizeSuccProbs();
9608             break;
9609           }
9610         }
9611 
9612         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9613         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9614         CurMBB->normalizeSuccProbs();
9615 
9616         // The jump table header will be inserted in our current block, do the
9617         // range check, and fall through to our fallthrough block.
9618         JTH->HeaderBB = CurMBB;
9619         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9620 
9621         // If we're in the right place, emit the jump table header right now.
9622         if (CurMBB == SwitchMBB) {
9623           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9624           JTH->Emitted = true;
9625         }
9626         break;
9627       }
9628       case CC_BitTests: {
9629         // FIXME: Optimize away range check based on pivot comparisons.
9630         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9631 
9632         // The bit test blocks haven't been inserted yet; insert them here.
9633         for (BitTestCase &BTC : BTB->Cases)
9634           CurMF->insert(BBI, BTC.ThisBB);
9635 
9636         // Fill in fields of the BitTestBlock.
9637         BTB->Parent = CurMBB;
9638         BTB->Default = Fallthrough;
9639 
9640         BTB->DefaultProb = UnhandledProbs;
9641         // If the cases in bit test don't form a contiguous range, we evenly
9642         // distribute the probability on the edge to Fallthrough to two
9643         // successors of CurMBB.
9644         if (!BTB->ContiguousRange) {
9645           BTB->Prob += DefaultProb / 2;
9646           BTB->DefaultProb -= DefaultProb / 2;
9647         }
9648 
9649         // If we're in the right place, emit the bit test header right now.
9650         if (CurMBB == SwitchMBB) {
9651           visitBitTestHeader(*BTB, SwitchMBB);
9652           BTB->Emitted = true;
9653         }
9654         break;
9655       }
9656       case CC_Range: {
9657         const Value *RHS, *LHS, *MHS;
9658         ISD::CondCode CC;
9659         if (I->Low == I->High) {
9660           // Check Cond == I->Low.
9661           CC = ISD::SETEQ;
9662           LHS = Cond;
9663           RHS=I->Low;
9664           MHS = nullptr;
9665         } else {
9666           // Check I->Low <= Cond <= I->High.
9667           CC = ISD::SETLE;
9668           LHS = I->Low;
9669           MHS = Cond;
9670           RHS = I->High;
9671         }
9672 
9673         // The false probability is the sum of all unhandled cases.
9674         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
9675                      getCurSDLoc(), I->Prob, UnhandledProbs);
9676 
9677         if (CurMBB == SwitchMBB)
9678           visitSwitchCase(CB, SwitchMBB);
9679         else
9680           SwitchCases.push_back(CB);
9681 
9682         break;
9683       }
9684     }
9685     CurMBB = Fallthrough;
9686   }
9687 }
9688 
9689 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9690                                               CaseClusterIt First,
9691                                               CaseClusterIt Last) {
9692   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9693     if (X.Prob != CC.Prob)
9694       return X.Prob > CC.Prob;
9695 
9696     // Ties are broken by comparing the case value.
9697     return X.Low->getValue().slt(CC.Low->getValue());
9698   });
9699 }
9700 
9701 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9702                                         const SwitchWorkListItem &W,
9703                                         Value *Cond,
9704                                         MachineBasicBlock *SwitchMBB) {
9705   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9706          "Clusters not sorted?");
9707 
9708   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9709 
9710   // Balance the tree based on branch probabilities to create a near-optimal (in
9711   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9712   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9713   CaseClusterIt LastLeft = W.FirstCluster;
9714   CaseClusterIt FirstRight = W.LastCluster;
9715   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9716   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9717 
9718   // Move LastLeft and FirstRight towards each other from opposite directions to
9719   // find a partitioning of the clusters which balances the probability on both
9720   // sides. If LeftProb and RightProb are equal, alternate which side is
9721   // taken to ensure 0-probability nodes are distributed evenly.
9722   unsigned I = 0;
9723   while (LastLeft + 1 < FirstRight) {
9724     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9725       LeftProb += (++LastLeft)->Prob;
9726     else
9727       RightProb += (--FirstRight)->Prob;
9728     I++;
9729   }
9730 
9731   while (true) {
9732     // Our binary search tree differs from a typical BST in that ours can have up
9733     // to three values in each leaf. The pivot selection above doesn't take that
9734     // into account, which means the tree might require more nodes and be less
9735     // efficient. We compensate for this here.
9736 
9737     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9738     unsigned NumRight = W.LastCluster - FirstRight + 1;
9739 
9740     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9741       // If one side has less than 3 clusters, and the other has more than 3,
9742       // consider taking a cluster from the other side.
9743 
9744       if (NumLeft < NumRight) {
9745         // Consider moving the first cluster on the right to the left side.
9746         CaseCluster &CC = *FirstRight;
9747         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9748         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9749         if (LeftSideRank <= RightSideRank) {
9750           // Moving the cluster to the left does not demote it.
9751           ++LastLeft;
9752           ++FirstRight;
9753           continue;
9754         }
9755       } else {
9756         assert(NumRight < NumLeft);
9757         // Consider moving the last element on the left to the right side.
9758         CaseCluster &CC = *LastLeft;
9759         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9760         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9761         if (RightSideRank <= LeftSideRank) {
9762           // Moving the cluster to the right does not demot it.
9763           --LastLeft;
9764           --FirstRight;
9765           continue;
9766         }
9767       }
9768     }
9769     break;
9770   }
9771 
9772   assert(LastLeft + 1 == FirstRight);
9773   assert(LastLeft >= W.FirstCluster);
9774   assert(FirstRight <= W.LastCluster);
9775 
9776   // Use the first element on the right as pivot since we will make less-than
9777   // comparisons against it.
9778   CaseClusterIt PivotCluster = FirstRight;
9779   assert(PivotCluster > W.FirstCluster);
9780   assert(PivotCluster <= W.LastCluster);
9781 
9782   CaseClusterIt FirstLeft = W.FirstCluster;
9783   CaseClusterIt LastRight = W.LastCluster;
9784 
9785   const ConstantInt *Pivot = PivotCluster->Low;
9786 
9787   // New blocks will be inserted immediately after the current one.
9788   MachineFunction::iterator BBI(W.MBB);
9789   ++BBI;
9790 
9791   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9792   // we can branch to its destination directly if it's squeezed exactly in
9793   // between the known lower bound and Pivot - 1.
9794   MachineBasicBlock *LeftMBB;
9795   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9796       FirstLeft->Low == W.GE &&
9797       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9798     LeftMBB = FirstLeft->MBB;
9799   } else {
9800     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9801     FuncInfo.MF->insert(BBI, LeftMBB);
9802     WorkList.push_back(
9803         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9804     // Put Cond in a virtual register to make it available from the new blocks.
9805     ExportFromCurrentBlock(Cond);
9806   }
9807 
9808   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9809   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9810   // directly if RHS.High equals the current upper bound.
9811   MachineBasicBlock *RightMBB;
9812   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9813       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9814     RightMBB = FirstRight->MBB;
9815   } else {
9816     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9817     FuncInfo.MF->insert(BBI, RightMBB);
9818     WorkList.push_back(
9819         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9820     // Put Cond in a virtual register to make it available from the new blocks.
9821     ExportFromCurrentBlock(Cond);
9822   }
9823 
9824   // Create the CaseBlock record that will be used to lower the branch.
9825   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9826                getCurSDLoc(), LeftProb, RightProb);
9827 
9828   if (W.MBB == SwitchMBB)
9829     visitSwitchCase(CB, SwitchMBB);
9830   else
9831     SwitchCases.push_back(CB);
9832 }
9833 
9834 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
9835 // from the swith statement.
9836 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
9837                                             BranchProbability PeeledCaseProb) {
9838   if (PeeledCaseProb == BranchProbability::getOne())
9839     return BranchProbability::getZero();
9840   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
9841 
9842   uint32_t Numerator = CaseProb.getNumerator();
9843   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
9844   return BranchProbability(Numerator, std::max(Numerator, Denominator));
9845 }
9846 
9847 // Try to peel the top probability case if it exceeds the threshold.
9848 // Return current MachineBasicBlock for the switch statement if the peeling
9849 // does not occur.
9850 // If the peeling is performed, return the newly created MachineBasicBlock
9851 // for the peeled switch statement. Also update Clusters to remove the peeled
9852 // case. PeeledCaseProb is the BranchProbability for the peeled case.
9853 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
9854     const SwitchInst &SI, CaseClusterVector &Clusters,
9855     BranchProbability &PeeledCaseProb) {
9856   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9857   // Don't perform if there is only one cluster or optimizing for size.
9858   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
9859       TM.getOptLevel() == CodeGenOpt::None ||
9860       SwitchMBB->getParent()->getFunction()->optForMinSize())
9861     return SwitchMBB;
9862 
9863   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
9864   unsigned PeeledCaseIndex = 0;
9865   bool SwitchPeeled = false;
9866   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
9867     CaseCluster &CC = Clusters[Index];
9868     if (CC.Prob < TopCaseProb)
9869       continue;
9870     TopCaseProb = CC.Prob;
9871     PeeledCaseIndex = Index;
9872     SwitchPeeled = true;
9873   }
9874   if (!SwitchPeeled)
9875     return SwitchMBB;
9876 
9877   DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " << TopCaseProb
9878                << "\n");
9879 
9880   // Record the MBB for the peeled switch statement.
9881   MachineFunction::iterator BBI(SwitchMBB);
9882   ++BBI;
9883   MachineBasicBlock *PeeledSwitchMBB =
9884       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
9885   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
9886 
9887   ExportFromCurrentBlock(SI.getCondition());
9888   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
9889   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
9890                           nullptr,   nullptr,      TopCaseProb.getCompl()};
9891   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
9892 
9893   Clusters.erase(PeeledCaseIt);
9894   for (CaseCluster &CC : Clusters) {
9895     DEBUG(dbgs() << "Scale the probablity for one cluster, before scaling: "
9896                  << CC.Prob << "\n");
9897     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
9898     DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
9899   }
9900   PeeledCaseProb = TopCaseProb;
9901   return PeeledSwitchMBB;
9902 }
9903 
9904 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9905   // Extract cases from the switch.
9906   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9907   CaseClusterVector Clusters;
9908   Clusters.reserve(SI.getNumCases());
9909   for (auto I : SI.cases()) {
9910     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9911     const ConstantInt *CaseVal = I.getCaseValue();
9912     BranchProbability Prob =
9913         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9914             : BranchProbability(1, SI.getNumCases() + 1);
9915     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9916   }
9917 
9918   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9919 
9920   // Cluster adjacent cases with the same destination. We do this at all
9921   // optimization levels because it's cheap to do and will make codegen faster
9922   // if there are many clusters.
9923   sortAndRangeify(Clusters);
9924 
9925   if (TM.getOptLevel() != CodeGenOpt::None) {
9926     // Replace an unreachable default with the most popular destination.
9927     // FIXME: Exploit unreachable default more aggressively.
9928     bool UnreachableDefault =
9929         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9930     if (UnreachableDefault && !Clusters.empty()) {
9931       DenseMap<const BasicBlock *, unsigned> Popularity;
9932       unsigned MaxPop = 0;
9933       const BasicBlock *MaxBB = nullptr;
9934       for (auto I : SI.cases()) {
9935         const BasicBlock *BB = I.getCaseSuccessor();
9936         if (++Popularity[BB] > MaxPop) {
9937           MaxPop = Popularity[BB];
9938           MaxBB = BB;
9939         }
9940       }
9941       // Set new default.
9942       assert(MaxPop > 0 && MaxBB);
9943       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9944 
9945       // Remove cases that were pointing to the destination that is now the
9946       // default.
9947       CaseClusterVector New;
9948       New.reserve(Clusters.size());
9949       for (CaseCluster &CC : Clusters) {
9950         if (CC.MBB != DefaultMBB)
9951           New.push_back(CC);
9952       }
9953       Clusters = std::move(New);
9954     }
9955   }
9956 
9957   // The branch probablity of the peeled case.
9958   BranchProbability PeeledCaseProb = BranchProbability::getZero();
9959   MachineBasicBlock *PeeledSwitchMBB =
9960       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
9961 
9962   // If there is only the default destination, jump there directly.
9963   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9964   if (Clusters.empty()) {
9965     assert(PeeledSwitchMBB == SwitchMBB);
9966     SwitchMBB->addSuccessor(DefaultMBB);
9967     if (DefaultMBB != NextBlock(SwitchMBB)) {
9968       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9969                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9970     }
9971     return;
9972   }
9973 
9974   findJumpTables(Clusters, &SI, DefaultMBB);
9975   findBitTestClusters(Clusters, &SI);
9976 
9977   DEBUG({
9978     dbgs() << "Case clusters: ";
9979     for (const CaseCluster &C : Clusters) {
9980       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9981       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9982 
9983       C.Low->getValue().print(dbgs(), true);
9984       if (C.Low != C.High) {
9985         dbgs() << '-';
9986         C.High->getValue().print(dbgs(), true);
9987       }
9988       dbgs() << ' ';
9989     }
9990     dbgs() << '\n';
9991   });
9992 
9993   assert(!Clusters.empty());
9994   SwitchWorkList WorkList;
9995   CaseClusterIt First = Clusters.begin();
9996   CaseClusterIt Last = Clusters.end() - 1;
9997   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
9998   // Scale the branchprobability for DefaultMBB if the peel occurs and
9999   // DefaultMBB is not replaced.
10000   if (PeeledCaseProb != BranchProbability::getZero() &&
10001       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10002     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10003   WorkList.push_back(
10004       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10005 
10006   while (!WorkList.empty()) {
10007     SwitchWorkListItem W = WorkList.back();
10008     WorkList.pop_back();
10009     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10010 
10011     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10012         !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
10013       // For optimized builds, lower large range as a balanced binary tree.
10014       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10015       continue;
10016     }
10017 
10018     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10019   }
10020 }
10021