1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <iterator> 108 #include <limits> 109 #include <optional> 110 #include <tuple> 111 112 using namespace llvm; 113 using namespace PatternMatch; 114 using namespace SwitchCG; 115 116 #define DEBUG_TYPE "isel" 117 118 /// LimitFloatPrecision - Generate low-precision inline sequences for 119 /// some float libcalls (6, 8 or 12 bits). 120 static unsigned LimitFloatPrecision; 121 122 static cl::opt<bool> 123 InsertAssertAlign("insert-assert-align", cl::init(true), 124 cl::desc("Insert the experimental `assertalign` node."), 125 cl::ReallyHidden); 126 127 static cl::opt<unsigned, true> 128 LimitFPPrecision("limit-float-precision", 129 cl::desc("Generate low-precision inline sequences " 130 "for some float libcalls"), 131 cl::location(LimitFloatPrecision), cl::Hidden, 132 cl::init(0)); 133 134 static cl::opt<unsigned> SwitchPeelThreshold( 135 "switch-peel-threshold", cl::Hidden, cl::init(66), 136 cl::desc("Set the case probability threshold for peeling the case from a " 137 "switch statement. A value greater than 100 will void this " 138 "optimization")); 139 140 // Limit the width of DAG chains. This is important in general to prevent 141 // DAG-based analysis from blowing up. For example, alias analysis and 142 // load clustering may not complete in reasonable time. It is difficult to 143 // recognize and avoid this situation within each individual analysis, and 144 // future analyses are likely to have the same behavior. Limiting DAG width is 145 // the safe approach and will be especially important with global DAGs. 146 // 147 // MaxParallelChains default is arbitrarily high to avoid affecting 148 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 149 // sequence over this should have been converted to llvm.memcpy by the 150 // frontend. It is easy to induce this behavior with .ll code such as: 151 // %buffer = alloca [4096 x i8] 152 // %data = load [4096 x i8]* %argPtr 153 // store [4096 x i8] %data, [4096 x i8]* %buffer 154 static const unsigned MaxParallelChains = 64; 155 156 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 157 const SDValue *Parts, unsigned NumParts, 158 MVT PartVT, EVT ValueVT, const Value *V, 159 SDValue InChain, 160 std::optional<CallingConv::ID> CC); 161 162 /// getCopyFromParts - Create a value that contains the specified legal parts 163 /// combined into the value they represent. If the parts combine to a type 164 /// larger than ValueVT then AssertOp can be used to specify whether the extra 165 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 166 /// (ISD::AssertSext). 167 static SDValue 168 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 169 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 170 SDValue InChain, 171 std::optional<CallingConv::ID> CC = std::nullopt, 172 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 173 // Let the target assemble the parts if it wants to 174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 175 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 176 PartVT, ValueVT, CC)) 177 return Val; 178 179 if (ValueVT.isVector()) 180 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 181 InChain, CC); 182 183 assert(NumParts > 0 && "No parts to assemble!"); 184 SDValue Val = Parts[0]; 185 186 if (NumParts > 1) { 187 // Assemble the value from multiple parts. 188 if (ValueVT.isInteger()) { 189 unsigned PartBits = PartVT.getSizeInBits(); 190 unsigned ValueBits = ValueVT.getSizeInBits(); 191 192 // Assemble the power of 2 part. 193 unsigned RoundParts = llvm::bit_floor(NumParts); 194 unsigned RoundBits = PartBits * RoundParts; 195 EVT RoundVT = RoundBits == ValueBits ? 196 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 197 SDValue Lo, Hi; 198 199 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 200 201 if (RoundParts > 2) { 202 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 203 InChain); 204 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 205 PartVT, HalfVT, V, InChain); 206 } else { 207 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 208 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 209 } 210 211 if (DAG.getDataLayout().isBigEndian()) 212 std::swap(Lo, Hi); 213 214 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 215 216 if (RoundParts < NumParts) { 217 // Assemble the trailing non-power-of-2 part. 218 unsigned OddParts = NumParts - RoundParts; 219 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 220 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 221 OddVT, V, InChain, CC); 222 223 // Combine the round and odd parts. 224 Lo = Val; 225 if (DAG.getDataLayout().isBigEndian()) 226 std::swap(Lo, Hi); 227 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 228 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 229 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 230 DAG.getConstant(Lo.getValueSizeInBits(), DL, 231 TLI.getShiftAmountTy( 232 TotalVT, DAG.getDataLayout()))); 233 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 234 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 235 } 236 } else if (PartVT.isFloatingPoint()) { 237 // FP split into multiple FP parts (for ppcf128) 238 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 239 "Unexpected split"); 240 SDValue Lo, Hi; 241 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 242 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 243 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 244 std::swap(Lo, Hi); 245 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 246 } else { 247 // FP split into integer parts (soft fp) 248 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 249 !PartVT.isVector() && "Unexpected split"); 250 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 251 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 252 InChain, CC); 253 } 254 } 255 256 // There is now one part, held in Val. Correct it to match ValueVT. 257 // PartEVT is the type of the register class that holds the value. 258 // ValueVT is the type of the inline asm operation. 259 EVT PartEVT = Val.getValueType(); 260 261 if (PartEVT == ValueVT) 262 return Val; 263 264 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 265 ValueVT.bitsLT(PartEVT)) { 266 // For an FP value in an integer part, we need to truncate to the right 267 // width first. 268 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 269 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 270 } 271 272 // Handle types that have the same size. 273 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 274 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 275 276 // Handle types with different sizes. 277 if (PartEVT.isInteger() && ValueVT.isInteger()) { 278 if (ValueVT.bitsLT(PartEVT)) { 279 // For a truncate, see if we have any information to 280 // indicate whether the truncated bits will always be 281 // zero or sign-extension. 282 if (AssertOp) 283 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 284 DAG.getValueType(ValueVT)); 285 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 286 } 287 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 288 } 289 290 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 291 // FP_ROUND's are always exact here. 292 if (ValueVT.bitsLT(Val.getValueType())) { 293 294 SDValue NoChange = 295 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 296 297 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 298 llvm::Attribute::StrictFP)) { 299 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 300 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 301 NoChange); 302 } 303 304 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 305 } 306 307 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 308 } 309 310 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 311 // then truncating. 312 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 313 ValueVT.bitsLT(PartEVT)) { 314 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 315 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 316 } 317 318 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (CI->isInlineAsm()) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 SDValue InChain, 344 std::optional<CallingConv::ID> CallConv) { 345 assert(ValueVT.isVector() && "Not a vector value"); 346 assert(NumParts > 0 && "No parts to assemble!"); 347 const bool IsABIRegCopy = CallConv.has_value(); 348 349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 350 SDValue Val = Parts[0]; 351 352 // Handle a multi-element vector. 353 if (NumParts > 1) { 354 EVT IntermediateVT; 355 MVT RegisterVT; 356 unsigned NumIntermediates; 357 unsigned NumRegs; 358 359 if (IsABIRegCopy) { 360 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 361 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 362 NumIntermediates, RegisterVT); 363 } else { 364 NumRegs = 365 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 366 NumIntermediates, RegisterVT); 367 } 368 369 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 370 NumParts = NumRegs; // Silence a compiler warning. 371 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 372 assert(RegisterVT.getSizeInBits() == 373 Parts[0].getSimpleValueType().getSizeInBits() && 374 "Part type sizes don't match!"); 375 376 // Assemble the parts into intermediate operands. 377 SmallVector<SDValue, 8> Ops(NumIntermediates); 378 if (NumIntermediates == NumParts) { 379 // If the register was not expanded, truncate or copy the value, 380 // as appropriate. 381 for (unsigned i = 0; i != NumParts; ++i) 382 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 383 V, InChain, CallConv); 384 } else if (NumParts > 0) { 385 // If the intermediate type was expanded, build the intermediate 386 // operands from the parts. 387 assert(NumParts % NumIntermediates == 0 && 388 "Must expand into a divisible number of parts!"); 389 unsigned Factor = NumParts / NumIntermediates; 390 for (unsigned i = 0; i != NumIntermediates; ++i) 391 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 392 IntermediateVT, V, InChain, CallConv); 393 } 394 395 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 396 // intermediate operands. 397 EVT BuiltVectorTy = 398 IntermediateVT.isVector() 399 ? EVT::getVectorVT( 400 *DAG.getContext(), IntermediateVT.getScalarType(), 401 IntermediateVT.getVectorElementCount() * NumParts) 402 : EVT::getVectorVT(*DAG.getContext(), 403 IntermediateVT.getScalarType(), 404 NumIntermediates); 405 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 406 : ISD::BUILD_VECTOR, 407 DL, BuiltVectorTy, Ops); 408 } 409 410 // There is now one part, held in Val. Correct it to match ValueVT. 411 EVT PartEVT = Val.getValueType(); 412 413 if (PartEVT == ValueVT) 414 return Val; 415 416 if (PartEVT.isVector()) { 417 // Vector/Vector bitcast. 418 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 419 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 421 // If the parts vector has more elements than the value vector, then we 422 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 423 // Extract the elements we want. 424 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 425 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 426 ValueVT.getVectorElementCount().getKnownMinValue()) && 427 (PartEVT.getVectorElementCount().isScalable() == 428 ValueVT.getVectorElementCount().isScalable()) && 429 "Cannot narrow, it would be a lossy transformation"); 430 PartEVT = 431 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 432 ValueVT.getVectorElementCount()); 433 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 434 DAG.getVectorIdxConstant(0, DL)); 435 if (PartEVT == ValueVT) 436 return Val; 437 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 441 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 442 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 443 } 444 445 // Promoted vector extract 446 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 447 } 448 449 // Trivial bitcast if the types are the same size and the destination 450 // vector type is legal. 451 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 452 TLI.isTypeLegal(ValueVT)) 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 455 if (ValueVT.getVectorNumElements() != 1) { 456 // Certain ABIs require that vectors are passed as integers. For vectors 457 // are the same size, this is an obvious bitcast. 458 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 459 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 460 } else if (ValueVT.bitsLT(PartEVT)) { 461 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 462 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 463 // Drop the extra bits. 464 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 465 return DAG.getBitcast(ValueVT, Val); 466 } 467 468 diagnosePossiblyInvalidConstraint( 469 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 470 return DAG.getUNDEF(ValueVT); 471 } 472 473 // Handle cases such as i8 -> <1 x i1> 474 EVT ValueSVT = ValueVT.getVectorElementType(); 475 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 476 unsigned ValueSize = ValueSVT.getSizeInBits(); 477 if (ValueSize == PartEVT.getSizeInBits()) { 478 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 479 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 480 // It's possible a scalar floating point type gets softened to integer and 481 // then promoted to a larger integer. If PartEVT is the larger integer 482 // we need to truncate it and then bitcast to the FP type. 483 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 484 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 485 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 486 Val = DAG.getBitcast(ValueSVT, Val); 487 } else { 488 Val = ValueVT.isFloatingPoint() 489 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 490 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 491 } 492 } 493 494 return DAG.getBuildVector(ValueVT, DL, Val); 495 } 496 497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 498 SDValue Val, SDValue *Parts, unsigned NumParts, 499 MVT PartVT, const Value *V, 500 std::optional<CallingConv::ID> CallConv); 501 502 /// getCopyToParts - Create a series of nodes that contain the specified value 503 /// split into legal parts. If the parts contain more bits than Val, then, for 504 /// integers, ExtendKind can be used to specify how to generate the extra bits. 505 static void 506 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 507 unsigned NumParts, MVT PartVT, const Value *V, 508 std::optional<CallingConv::ID> CallConv = std::nullopt, 509 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 510 // Let the target split the parts if it wants to 511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 512 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 513 CallConv)) 514 return; 515 EVT ValueVT = Val.getValueType(); 516 517 // Handle the vector case separately. 518 if (ValueVT.isVector()) 519 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 520 CallConv); 521 522 unsigned OrigNumParts = NumParts; 523 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 524 "Copying to an illegal type!"); 525 526 if (NumParts == 0) 527 return; 528 529 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 530 EVT PartEVT = PartVT; 531 if (PartEVT == ValueVT) { 532 assert(NumParts == 1 && "No-op copy with multiple parts!"); 533 Parts[0] = Val; 534 return; 535 } 536 537 unsigned PartBits = PartVT.getSizeInBits(); 538 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 539 // If the parts cover more bits than the value has, promote the value. 540 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 541 assert(NumParts == 1 && "Do not know what to promote to!"); 542 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 543 } else { 544 if (ValueVT.isFloatingPoint()) { 545 // FP values need to be bitcast, then extended if they are being put 546 // into a larger container. 547 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 548 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 549 } 550 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 551 ValueVT.isInteger() && 552 "Unknown mismatch!"); 553 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 554 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 555 if (PartVT == MVT::x86mmx) 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } 558 } else if (PartBits == ValueVT.getSizeInBits()) { 559 // Different types of the same size. 560 assert(NumParts == 1 && PartEVT != ValueVT); 561 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 562 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 563 // If the parts cover less bits than value has, truncate the value. 564 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 565 ValueVT.isInteger() && 566 "Unknown mismatch!"); 567 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 568 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 569 if (PartVT == MVT::x86mmx) 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 // The value may have changed - recompute ValueVT. 574 ValueVT = Val.getValueType(); 575 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 576 "Failed to tile the value with PartVT!"); 577 578 if (NumParts == 1) { 579 if (PartEVT != ValueVT) { 580 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 581 "scalar-to-vector conversion failed"); 582 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 583 } 584 585 Parts[0] = Val; 586 return; 587 } 588 589 // Expand the value into multiple parts. 590 if (NumParts & (NumParts - 1)) { 591 // The number of parts is not a power of 2. Split off and copy the tail. 592 assert(PartVT.isInteger() && ValueVT.isInteger() && 593 "Do not know what to expand to!"); 594 unsigned RoundParts = llvm::bit_floor(NumParts); 595 unsigned RoundBits = RoundParts * PartBits; 596 unsigned OddParts = NumParts - RoundParts; 597 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 598 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 599 600 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 601 CallConv); 602 603 if (DAG.getDataLayout().isBigEndian()) 604 // The odd parts were reversed by getCopyToParts - unreverse them. 605 std::reverse(Parts + RoundParts, Parts + NumParts); 606 607 NumParts = RoundParts; 608 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 609 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 610 } 611 612 // The number of parts is a power of 2. Repeatedly bisect the value using 613 // EXTRACT_ELEMENT. 614 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 615 EVT::getIntegerVT(*DAG.getContext(), 616 ValueVT.getSizeInBits()), 617 Val); 618 619 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 620 for (unsigned i = 0; i < NumParts; i += StepSize) { 621 unsigned ThisBits = StepSize * PartBits / 2; 622 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 623 SDValue &Part0 = Parts[i]; 624 SDValue &Part1 = Parts[i+StepSize/2]; 625 626 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 628 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 629 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 630 631 if (ThisBits == PartBits && ThisVT != PartVT) { 632 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 633 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 634 } 635 } 636 } 637 638 if (DAG.getDataLayout().isBigEndian()) 639 std::reverse(Parts, Parts + OrigNumParts); 640 } 641 642 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 643 const SDLoc &DL, EVT PartVT) { 644 if (!PartVT.isVector()) 645 return SDValue(); 646 647 EVT ValueVT = Val.getValueType(); 648 EVT PartEVT = PartVT.getVectorElementType(); 649 EVT ValueEVT = ValueVT.getVectorElementType(); 650 ElementCount PartNumElts = PartVT.getVectorElementCount(); 651 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 652 653 // We only support widening vectors with equivalent element types and 654 // fixed/scalable properties. If a target needs to widen a fixed-length type 655 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 656 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 657 PartNumElts.isScalable() != ValueNumElts.isScalable()) 658 return SDValue(); 659 660 // Have a try for bf16 because some targets share its ABI with fp16. 661 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 662 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 663 "Cannot widen to illegal type"); 664 Val = DAG.getNode(ISD::BITCAST, DL, 665 ValueVT.changeVectorElementType(MVT::f16), Val); 666 } else if (PartEVT != ValueEVT) { 667 return SDValue(); 668 } 669 670 // Widening a scalable vector to another scalable vector is done by inserting 671 // the vector into a larger undef one. 672 if (PartNumElts.isScalable()) 673 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 674 Val, DAG.getVectorIdxConstant(0, DL)); 675 676 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 677 // undef elements. 678 SmallVector<SDValue, 16> Ops; 679 DAG.ExtractVectorElements(Val, Ops); 680 SDValue EltUndef = DAG.getUNDEF(PartEVT); 681 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 682 683 // FIXME: Use CONCAT for 2x -> 4x. 684 return DAG.getBuildVector(PartVT, DL, Ops); 685 } 686 687 /// getCopyToPartsVector - Create a series of nodes that contain the specified 688 /// value split into legal parts. 689 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 690 SDValue Val, SDValue *Parts, unsigned NumParts, 691 MVT PartVT, const Value *V, 692 std::optional<CallingConv::ID> CallConv) { 693 EVT ValueVT = Val.getValueType(); 694 assert(ValueVT.isVector() && "Not a vector"); 695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 696 const bool IsABIRegCopy = CallConv.has_value(); 697 698 if (NumParts == 1) { 699 EVT PartEVT = PartVT; 700 if (PartEVT == ValueVT) { 701 // Nothing to do. 702 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 703 // Bitconvert vector->vector case. 704 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 705 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 706 Val = Widened; 707 } else if (PartVT.isVector() && 708 PartEVT.getVectorElementType().bitsGE( 709 ValueVT.getVectorElementType()) && 710 PartEVT.getVectorElementCount() == 711 ValueVT.getVectorElementCount()) { 712 713 // Promoted vector extract 714 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 715 } else if (PartEVT.isVector() && 716 PartEVT.getVectorElementType() != 717 ValueVT.getVectorElementType() && 718 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 719 TargetLowering::TypeWidenVector) { 720 // Combination of widening and promotion. 721 EVT WidenVT = 722 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 723 PartVT.getVectorElementCount()); 724 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 725 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 726 } else { 727 // Don't extract an integer from a float vector. This can happen if the 728 // FP type gets softened to integer and then promoted. The promotion 729 // prevents it from being picked up by the earlier bitcast case. 730 if (ValueVT.getVectorElementCount().isScalar() && 731 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 732 // If we reach this condition and PartVT is FP, this means that 733 // ValueVT is also FP and both have a different size, otherwise we 734 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 735 // would be invalid since that would mean the smaller FP type has to 736 // be extended to the larger one. 737 if (PartVT.isFloatingPoint()) { 738 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 739 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 740 } else 741 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 742 DAG.getVectorIdxConstant(0, DL)); 743 } else { 744 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 745 assert(PartVT.getFixedSizeInBits() > ValueSize && 746 "lossy conversion of vector to scalar type"); 747 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 748 Val = DAG.getBitcast(IntermediateType, Val); 749 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 750 } 751 } 752 753 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 754 Parts[0] = Val; 755 return; 756 } 757 758 // Handle a multi-element vector. 759 EVT IntermediateVT; 760 MVT RegisterVT; 761 unsigned NumIntermediates; 762 unsigned NumRegs; 763 if (IsABIRegCopy) { 764 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 765 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 766 RegisterVT); 767 } else { 768 NumRegs = 769 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 770 NumIntermediates, RegisterVT); 771 } 772 773 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 774 NumParts = NumRegs; // Silence a compiler warning. 775 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 776 777 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 778 "Mixing scalable and fixed vectors when copying in parts"); 779 780 std::optional<ElementCount> DestEltCnt; 781 782 if (IntermediateVT.isVector()) 783 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 784 else 785 DestEltCnt = ElementCount::getFixed(NumIntermediates); 786 787 EVT BuiltVectorTy = EVT::getVectorVT( 788 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 789 790 if (ValueVT == BuiltVectorTy) { 791 // Nothing to do. 792 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 793 // Bitconvert vector->vector case. 794 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 795 } else { 796 if (BuiltVectorTy.getVectorElementType().bitsGT( 797 ValueVT.getVectorElementType())) { 798 // Integer promotion. 799 ValueVT = EVT::getVectorVT(*DAG.getContext(), 800 BuiltVectorTy.getVectorElementType(), 801 ValueVT.getVectorElementCount()); 802 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 803 } 804 805 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 806 Val = Widened; 807 } 808 } 809 810 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 811 812 // Split the vector into intermediate operands. 813 SmallVector<SDValue, 8> Ops(NumIntermediates); 814 for (unsigned i = 0; i != NumIntermediates; ++i) { 815 if (IntermediateVT.isVector()) { 816 // This does something sensible for scalable vectors - see the 817 // definition of EXTRACT_SUBVECTOR for further details. 818 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 819 Ops[i] = 820 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 821 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 822 } else { 823 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 824 DAG.getVectorIdxConstant(i, DL)); 825 } 826 } 827 828 // Split the intermediate operands into legal parts. 829 if (NumParts == NumIntermediates) { 830 // If the register was not expanded, promote or copy the value, 831 // as appropriate. 832 for (unsigned i = 0; i != NumParts; ++i) 833 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 834 } else if (NumParts > 0) { 835 // If the intermediate type was expanded, split each the value into 836 // legal parts. 837 assert(NumIntermediates != 0 && "division by zero"); 838 assert(NumParts % NumIntermediates == 0 && 839 "Must expand into a divisible number of parts!"); 840 unsigned Factor = NumParts / NumIntermediates; 841 for (unsigned i = 0; i != NumIntermediates; ++i) 842 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 843 CallConv); 844 } 845 } 846 847 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 848 EVT valuevt, std::optional<CallingConv::ID> CC) 849 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 850 RegCount(1, regs.size()), CallConv(CC) {} 851 852 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 853 const DataLayout &DL, unsigned Reg, Type *Ty, 854 std::optional<CallingConv::ID> CC) { 855 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 856 857 CallConv = CC; 858 859 for (EVT ValueVT : ValueVTs) { 860 unsigned NumRegs = 861 isABIMangled() 862 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 863 : TLI.getNumRegisters(Context, ValueVT); 864 MVT RegisterVT = 865 isABIMangled() 866 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 867 : TLI.getRegisterType(Context, ValueVT); 868 for (unsigned i = 0; i != NumRegs; ++i) 869 Regs.push_back(Reg + i); 870 RegVTs.push_back(RegisterVT); 871 RegCount.push_back(NumRegs); 872 Reg += NumRegs; 873 } 874 } 875 876 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 877 FunctionLoweringInfo &FuncInfo, 878 const SDLoc &dl, SDValue &Chain, 879 SDValue *Glue, const Value *V) const { 880 // A Value with type {} or [0 x %t] needs no registers. 881 if (ValueVTs.empty()) 882 return SDValue(); 883 884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 885 886 // Assemble the legal parts into the final values. 887 SmallVector<SDValue, 4> Values(ValueVTs.size()); 888 SmallVector<SDValue, 8> Parts; 889 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 890 // Copy the legal parts from the registers. 891 EVT ValueVT = ValueVTs[Value]; 892 unsigned NumRegs = RegCount[Value]; 893 MVT RegisterVT = isABIMangled() 894 ? TLI.getRegisterTypeForCallingConv( 895 *DAG.getContext(), *CallConv, RegVTs[Value]) 896 : RegVTs[Value]; 897 898 Parts.resize(NumRegs); 899 for (unsigned i = 0; i != NumRegs; ++i) { 900 SDValue P; 901 if (!Glue) { 902 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 903 } else { 904 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 905 *Glue = P.getValue(2); 906 } 907 908 Chain = P.getValue(1); 909 Parts[i] = P; 910 911 // If the source register was virtual and if we know something about it, 912 // add an assert node. 913 if (!Register::isVirtualRegister(Regs[Part + i]) || 914 !RegisterVT.isInteger()) 915 continue; 916 917 const FunctionLoweringInfo::LiveOutInfo *LOI = 918 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 919 if (!LOI) 920 continue; 921 922 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 923 unsigned NumSignBits = LOI->NumSignBits; 924 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 925 926 if (NumZeroBits == RegSize) { 927 // The current value is a zero. 928 // Explicitly express that as it would be easier for 929 // optimizations to kick in. 930 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 931 continue; 932 } 933 934 // FIXME: We capture more information than the dag can represent. For 935 // now, just use the tightest assertzext/assertsext possible. 936 bool isSExt; 937 EVT FromVT(MVT::Other); 938 if (NumZeroBits) { 939 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 940 isSExt = false; 941 } else if (NumSignBits > 1) { 942 FromVT = 943 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 944 isSExt = true; 945 } else { 946 continue; 947 } 948 // Add an assertion node. 949 assert(FromVT != MVT::Other); 950 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 951 RegisterVT, P, DAG.getValueType(FromVT)); 952 } 953 954 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 955 RegisterVT, ValueVT, V, Chain, CallConv); 956 Part += NumRegs; 957 Parts.clear(); 958 } 959 960 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 961 } 962 963 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 964 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 965 const Value *V, 966 ISD::NodeType PreferredExtendType) const { 967 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 968 ISD::NodeType ExtendKind = PreferredExtendType; 969 970 // Get the list of the values's legal parts. 971 unsigned NumRegs = Regs.size(); 972 SmallVector<SDValue, 8> Parts(NumRegs); 973 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 974 unsigned NumParts = RegCount[Value]; 975 976 MVT RegisterVT = isABIMangled() 977 ? TLI.getRegisterTypeForCallingConv( 978 *DAG.getContext(), *CallConv, RegVTs[Value]) 979 : RegVTs[Value]; 980 981 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 982 ExtendKind = ISD::ZERO_EXTEND; 983 984 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 985 NumParts, RegisterVT, V, CallConv, ExtendKind); 986 Part += NumParts; 987 } 988 989 // Copy the parts into the registers. 990 SmallVector<SDValue, 8> Chains(NumRegs); 991 for (unsigned i = 0; i != NumRegs; ++i) { 992 SDValue Part; 993 if (!Glue) { 994 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 995 } else { 996 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 997 *Glue = Part.getValue(1); 998 } 999 1000 Chains[i] = Part.getValue(0); 1001 } 1002 1003 if (NumRegs == 1 || Glue) 1004 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1005 // flagged to it. That is the CopyToReg nodes and the user are considered 1006 // a single scheduling unit. If we create a TokenFactor and return it as 1007 // chain, then the TokenFactor is both a predecessor (operand) of the 1008 // user as well as a successor (the TF operands are flagged to the user). 1009 // c1, f1 = CopyToReg 1010 // c2, f2 = CopyToReg 1011 // c3 = TokenFactor c1, c2 1012 // ... 1013 // = op c3, ..., f2 1014 Chain = Chains[NumRegs-1]; 1015 else 1016 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1017 } 1018 1019 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1020 unsigned MatchingIdx, const SDLoc &dl, 1021 SelectionDAG &DAG, 1022 std::vector<SDValue> &Ops) const { 1023 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1024 1025 InlineAsm::Flag Flag(Code, Regs.size()); 1026 if (HasMatching) 1027 Flag.setMatchingOp(MatchingIdx); 1028 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1029 // Put the register class of the virtual registers in the flag word. That 1030 // way, later passes can recompute register class constraints for inline 1031 // assembly as well as normal instructions. 1032 // Don't do this for tied operands that can use the regclass information 1033 // from the def. 1034 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1035 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1036 Flag.setRegClass(RC->getID()); 1037 } 1038 1039 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1040 Ops.push_back(Res); 1041 1042 if (Code == InlineAsm::Kind::Clobber) { 1043 // Clobbers should always have a 1:1 mapping with registers, and may 1044 // reference registers that have illegal (e.g. vector) types. Hence, we 1045 // shouldn't try to apply any sort of splitting logic to them. 1046 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1047 "No 1:1 mapping from clobbers to regs?"); 1048 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1049 (void)SP; 1050 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1051 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1052 assert( 1053 (Regs[I] != SP || 1054 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1055 "If we clobbered the stack pointer, MFI should know about it."); 1056 } 1057 return; 1058 } 1059 1060 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1061 MVT RegisterVT = RegVTs[Value]; 1062 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1063 RegisterVT); 1064 for (unsigned i = 0; i != NumRegs; ++i) { 1065 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1066 unsigned TheReg = Regs[Reg++]; 1067 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1068 } 1069 } 1070 } 1071 1072 SmallVector<std::pair<unsigned, TypeSize>, 4> 1073 RegsForValue::getRegsAndSizes() const { 1074 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1075 unsigned I = 0; 1076 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1077 unsigned RegCount = std::get<0>(CountAndVT); 1078 MVT RegisterVT = std::get<1>(CountAndVT); 1079 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1080 for (unsigned E = I + RegCount; I != E; ++I) 1081 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1082 } 1083 return OutVec; 1084 } 1085 1086 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1087 AssumptionCache *ac, 1088 const TargetLibraryInfo *li) { 1089 AA = aa; 1090 AC = ac; 1091 GFI = gfi; 1092 LibInfo = li; 1093 Context = DAG.getContext(); 1094 LPadToCallSiteMap.clear(); 1095 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1096 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1097 *DAG.getMachineFunction().getFunction().getParent()); 1098 } 1099 1100 void SelectionDAGBuilder::clear() { 1101 NodeMap.clear(); 1102 UnusedArgNodeMap.clear(); 1103 PendingLoads.clear(); 1104 PendingExports.clear(); 1105 PendingConstrainedFP.clear(); 1106 PendingConstrainedFPStrict.clear(); 1107 CurInst = nullptr; 1108 HasTailCall = false; 1109 SDNodeOrder = LowestSDNodeOrder; 1110 StatepointLowering.clear(); 1111 } 1112 1113 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1114 DanglingDebugInfoMap.clear(); 1115 } 1116 1117 // Update DAG root to include dependencies on Pending chains. 1118 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1119 SDValue Root = DAG.getRoot(); 1120 1121 if (Pending.empty()) 1122 return Root; 1123 1124 // Add current root to PendingChains, unless we already indirectly 1125 // depend on it. 1126 if (Root.getOpcode() != ISD::EntryToken) { 1127 unsigned i = 0, e = Pending.size(); 1128 for (; i != e; ++i) { 1129 assert(Pending[i].getNode()->getNumOperands() > 1); 1130 if (Pending[i].getNode()->getOperand(0) == Root) 1131 break; // Don't add the root if we already indirectly depend on it. 1132 } 1133 1134 if (i == e) 1135 Pending.push_back(Root); 1136 } 1137 1138 if (Pending.size() == 1) 1139 Root = Pending[0]; 1140 else 1141 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1142 1143 DAG.setRoot(Root); 1144 Pending.clear(); 1145 return Root; 1146 } 1147 1148 SDValue SelectionDAGBuilder::getMemoryRoot() { 1149 return updateRoot(PendingLoads); 1150 } 1151 1152 SDValue SelectionDAGBuilder::getRoot() { 1153 // Chain up all pending constrained intrinsics together with all 1154 // pending loads, by simply appending them to PendingLoads and 1155 // then calling getMemoryRoot(). 1156 PendingLoads.reserve(PendingLoads.size() + 1157 PendingConstrainedFP.size() + 1158 PendingConstrainedFPStrict.size()); 1159 PendingLoads.append(PendingConstrainedFP.begin(), 1160 PendingConstrainedFP.end()); 1161 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1162 PendingConstrainedFPStrict.end()); 1163 PendingConstrainedFP.clear(); 1164 PendingConstrainedFPStrict.clear(); 1165 return getMemoryRoot(); 1166 } 1167 1168 SDValue SelectionDAGBuilder::getControlRoot() { 1169 // We need to emit pending fpexcept.strict constrained intrinsics, 1170 // so append them to the PendingExports list. 1171 PendingExports.append(PendingConstrainedFPStrict.begin(), 1172 PendingConstrainedFPStrict.end()); 1173 PendingConstrainedFPStrict.clear(); 1174 return updateRoot(PendingExports); 1175 } 1176 1177 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1178 DILocalVariable *Variable, 1179 DIExpression *Expression, 1180 DebugLoc DL) { 1181 assert(Variable && "Missing variable"); 1182 1183 // Check if address has undef value. 1184 if (!Address || isa<UndefValue>(Address) || 1185 (Address->use_empty() && !isa<Argument>(Address))) { 1186 LLVM_DEBUG( 1187 dbgs() 1188 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1189 return; 1190 } 1191 1192 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1193 1194 SDValue &N = NodeMap[Address]; 1195 if (!N.getNode() && isa<Argument>(Address)) 1196 // Check unused arguments map. 1197 N = UnusedArgNodeMap[Address]; 1198 SDDbgValue *SDV; 1199 if (N.getNode()) { 1200 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1201 Address = BCI->getOperand(0); 1202 // Parameters are handled specially. 1203 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1204 if (IsParameter && FINode) { 1205 // Byval parameter. We have a frame index at this point. 1206 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1207 /*IsIndirect*/ true, DL, SDNodeOrder); 1208 } else if (isa<Argument>(Address)) { 1209 // Address is an argument, so try to emit its dbg value using 1210 // virtual register info from the FuncInfo.ValueMap. 1211 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1212 FuncArgumentDbgValueKind::Declare, N); 1213 return; 1214 } else { 1215 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1216 true, DL, SDNodeOrder); 1217 } 1218 DAG.AddDbgValue(SDV, IsParameter); 1219 } else { 1220 // If Address is an argument then try to emit its dbg value using 1221 // virtual register info from the FuncInfo.ValueMap. 1222 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1223 FuncArgumentDbgValueKind::Declare, N)) { 1224 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1225 << " (could not emit func-arg dbg_value)\n"); 1226 } 1227 } 1228 return; 1229 } 1230 1231 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1232 // Add SDDbgValue nodes for any var locs here. Do so before updating 1233 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1234 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1235 // Add SDDbgValue nodes for any var locs here. Do so before updating 1236 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1237 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1238 It != End; ++It) { 1239 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1240 dropDanglingDebugInfo(Var, It->Expr); 1241 if (It->Values.isKillLocation(It->Expr)) { 1242 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1243 continue; 1244 } 1245 SmallVector<Value *> Values(It->Values.location_ops()); 1246 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1247 It->Values.hasArgList())) { 1248 SmallVector<Value *, 4> Vals; 1249 for (Value *V : It->Values.location_ops()) 1250 Vals.push_back(V); 1251 addDanglingDebugInfo(Vals, 1252 FnVarLocs->getDILocalVariable(It->VariableID), 1253 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1254 } 1255 } 1256 } 1257 1258 // We must skip DbgVariableRecords if they've already been processed above as 1259 // we have just emitted the debug values resulting from assignment tracking 1260 // analysis, making any existing DbgVariableRecords redundant (and probably 1261 // less correct). We still need to process DbgLabelRecords. This does sink 1262 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1263 // be important as it does so deterministcally and ordering between 1264 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1265 // printing). 1266 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1267 // Is there is any debug-info attached to this instruction, in the form of 1268 // DbgRecord non-instruction debug-info records. 1269 for (DbgRecord &DR : I.getDbgRecordRange()) { 1270 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1271 assert(DLR->getLabel() && "Missing label"); 1272 SDDbgLabel *SDV = 1273 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1274 DAG.AddDbgLabel(SDV); 1275 continue; 1276 } 1277 1278 if (SkipDbgVariableRecords) 1279 continue; 1280 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1281 DILocalVariable *Variable = DVR.getVariable(); 1282 DIExpression *Expression = DVR.getExpression(); 1283 dropDanglingDebugInfo(Variable, Expression); 1284 1285 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1286 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1287 continue; 1288 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1289 << "\n"); 1290 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1291 DVR.getDebugLoc()); 1292 continue; 1293 } 1294 1295 // A DbgVariableRecord with no locations is a kill location. 1296 SmallVector<Value *, 4> Values(DVR.location_ops()); 1297 if (Values.empty()) { 1298 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1299 SDNodeOrder); 1300 continue; 1301 } 1302 1303 // A DbgVariableRecord with an undef or absent location is also a kill 1304 // location. 1305 if (llvm::any_of(Values, 1306 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1307 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1308 SDNodeOrder); 1309 continue; 1310 } 1311 1312 bool IsVariadic = DVR.hasArgList(); 1313 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1314 SDNodeOrder, IsVariadic)) { 1315 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1316 DVR.getDebugLoc(), SDNodeOrder); 1317 } 1318 } 1319 } 1320 1321 void SelectionDAGBuilder::visit(const Instruction &I) { 1322 visitDbgInfo(I); 1323 1324 // Set up outgoing PHI node register values before emitting the terminator. 1325 if (I.isTerminator()) { 1326 HandlePHINodesInSuccessorBlocks(I.getParent()); 1327 } 1328 1329 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1330 if (!isa<DbgInfoIntrinsic>(I)) 1331 ++SDNodeOrder; 1332 1333 CurInst = &I; 1334 1335 // Set inserted listener only if required. 1336 bool NodeInserted = false; 1337 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1338 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1339 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1340 if (PCSectionsMD || MMRA) { 1341 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1342 DAG, [&](SDNode *) { NodeInserted = true; }); 1343 } 1344 1345 visit(I.getOpcode(), I); 1346 1347 if (!I.isTerminator() && !HasTailCall && 1348 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1349 CopyToExportRegsIfNeeded(&I); 1350 1351 // Handle metadata. 1352 if (PCSectionsMD || MMRA) { 1353 auto It = NodeMap.find(&I); 1354 if (It != NodeMap.end()) { 1355 if (PCSectionsMD) 1356 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1357 if (MMRA) 1358 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1359 } else if (NodeInserted) { 1360 // This should not happen; if it does, don't let it go unnoticed so we can 1361 // fix it. Relevant visit*() function is probably missing a setValue(). 1362 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1363 << I.getModule()->getName() << "]\n"; 1364 LLVM_DEBUG(I.dump()); 1365 assert(false); 1366 } 1367 } 1368 1369 CurInst = nullptr; 1370 } 1371 1372 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1373 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1374 } 1375 1376 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1377 // Note: this doesn't use InstVisitor, because it has to work with 1378 // ConstantExpr's in addition to instructions. 1379 switch (Opcode) { 1380 default: llvm_unreachable("Unknown instruction type encountered!"); 1381 // Build the switch statement using the Instruction.def file. 1382 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1383 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1384 #include "llvm/IR/Instruction.def" 1385 } 1386 } 1387 1388 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1389 DILocalVariable *Variable, 1390 DebugLoc DL, unsigned Order, 1391 SmallVectorImpl<Value *> &Values, 1392 DIExpression *Expression) { 1393 // For variadic dbg_values we will now insert an undef. 1394 // FIXME: We can potentially recover these! 1395 SmallVector<SDDbgOperand, 2> Locs; 1396 for (const Value *V : Values) { 1397 auto *Undef = UndefValue::get(V->getType()); 1398 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1399 } 1400 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1401 /*IsIndirect=*/false, DL, Order, 1402 /*IsVariadic=*/true); 1403 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1404 return true; 1405 } 1406 1407 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1408 DILocalVariable *Var, 1409 DIExpression *Expr, 1410 bool IsVariadic, DebugLoc DL, 1411 unsigned Order) { 1412 if (IsVariadic) { 1413 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1414 return; 1415 } 1416 // TODO: Dangling debug info will eventually either be resolved or produce 1417 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1418 // between the original dbg.value location and its resolved DBG_VALUE, 1419 // which we should ideally fill with an extra Undef DBG_VALUE. 1420 assert(Values.size() == 1); 1421 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1422 } 1423 1424 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1425 const DIExpression *Expr) { 1426 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1427 DIVariable *DanglingVariable = DDI.getVariable(); 1428 DIExpression *DanglingExpr = DDI.getExpression(); 1429 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1430 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1431 << printDDI(nullptr, DDI) << "\n"); 1432 return true; 1433 } 1434 return false; 1435 }; 1436 1437 for (auto &DDIMI : DanglingDebugInfoMap) { 1438 DanglingDebugInfoVector &DDIV = DDIMI.second; 1439 1440 // If debug info is to be dropped, run it through final checks to see 1441 // whether it can be salvaged. 1442 for (auto &DDI : DDIV) 1443 if (isMatchingDbgValue(DDI)) 1444 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1445 1446 erase_if(DDIV, isMatchingDbgValue); 1447 } 1448 } 1449 1450 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1451 // generate the debug data structures now that we've seen its definition. 1452 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1453 SDValue Val) { 1454 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1455 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1456 return; 1457 1458 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1459 for (auto &DDI : DDIV) { 1460 DebugLoc DL = DDI.getDebugLoc(); 1461 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1462 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1463 DILocalVariable *Variable = DDI.getVariable(); 1464 DIExpression *Expr = DDI.getExpression(); 1465 assert(Variable->isValidLocationForIntrinsic(DL) && 1466 "Expected inlined-at fields to agree"); 1467 SDDbgValue *SDV; 1468 if (Val.getNode()) { 1469 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1470 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1471 // we couldn't resolve it directly when examining the DbgValue intrinsic 1472 // in the first place we should not be more successful here). Unless we 1473 // have some test case that prove this to be correct we should avoid 1474 // calling EmitFuncArgumentDbgValue here. 1475 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1476 FuncArgumentDbgValueKind::Value, Val)) { 1477 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1478 << printDDI(V, DDI) << "\n"); 1479 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1480 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1481 // inserted after the definition of Val when emitting the instructions 1482 // after ISel. An alternative could be to teach 1483 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1484 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1485 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1486 << ValSDNodeOrder << "\n"); 1487 SDV = getDbgValue(Val, Variable, Expr, DL, 1488 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1489 DAG.AddDbgValue(SDV, false); 1490 } else 1491 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1492 << printDDI(V, DDI) 1493 << " in EmitFuncArgumentDbgValue\n"); 1494 } else { 1495 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1496 << "\n"); 1497 auto Undef = UndefValue::get(V->getType()); 1498 auto SDV = 1499 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1500 DAG.AddDbgValue(SDV, false); 1501 } 1502 } 1503 DDIV.clear(); 1504 } 1505 1506 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1507 DanglingDebugInfo &DDI) { 1508 // TODO: For the variadic implementation, instead of only checking the fail 1509 // state of `handleDebugValue`, we need know specifically which values were 1510 // invalid, so that we attempt to salvage only those values when processing 1511 // a DIArgList. 1512 const Value *OrigV = V; 1513 DILocalVariable *Var = DDI.getVariable(); 1514 DIExpression *Expr = DDI.getExpression(); 1515 DebugLoc DL = DDI.getDebugLoc(); 1516 unsigned SDOrder = DDI.getSDNodeOrder(); 1517 1518 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1519 // that DW_OP_stack_value is desired. 1520 bool StackValue = true; 1521 1522 // Can this Value can be encoded without any further work? 1523 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1524 return; 1525 1526 // Attempt to salvage back through as many instructions as possible. Bail if 1527 // a non-instruction is seen, such as a constant expression or global 1528 // variable. FIXME: Further work could recover those too. 1529 while (isa<Instruction>(V)) { 1530 const Instruction &VAsInst = *cast<const Instruction>(V); 1531 // Temporary "0", awaiting real implementation. 1532 SmallVector<uint64_t, 16> Ops; 1533 SmallVector<Value *, 4> AdditionalValues; 1534 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1535 Expr->getNumLocationOperands(), Ops, 1536 AdditionalValues); 1537 // If we cannot salvage any further, and haven't yet found a suitable debug 1538 // expression, bail out. 1539 if (!V) 1540 break; 1541 1542 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1543 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1544 // here for variadic dbg_values, remove that condition. 1545 if (!AdditionalValues.empty()) 1546 break; 1547 1548 // New value and expr now represent this debuginfo. 1549 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1550 1551 // Some kind of simplification occurred: check whether the operand of the 1552 // salvaged debug expression can be encoded in this DAG. 1553 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1554 LLVM_DEBUG( 1555 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1556 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1557 return; 1558 } 1559 } 1560 1561 // This was the final opportunity to salvage this debug information, and it 1562 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1563 // any earlier variable location. 1564 assert(OrigV && "V shouldn't be null"); 1565 auto *Undef = UndefValue::get(OrigV->getType()); 1566 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1567 DAG.AddDbgValue(SDV, false); 1568 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1569 << printDDI(OrigV, DDI) << "\n"); 1570 } 1571 1572 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1573 DIExpression *Expr, 1574 DebugLoc DbgLoc, 1575 unsigned Order) { 1576 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1577 DIExpression *NewExpr = 1578 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1579 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1580 /*IsVariadic*/ false); 1581 } 1582 1583 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1584 DILocalVariable *Var, 1585 DIExpression *Expr, DebugLoc DbgLoc, 1586 unsigned Order, bool IsVariadic) { 1587 if (Values.empty()) 1588 return true; 1589 1590 // Filter EntryValue locations out early. 1591 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1592 return true; 1593 1594 SmallVector<SDDbgOperand> LocationOps; 1595 SmallVector<SDNode *> Dependencies; 1596 for (const Value *V : Values) { 1597 // Constant value. 1598 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1599 isa<ConstantPointerNull>(V)) { 1600 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1601 continue; 1602 } 1603 1604 // Look through IntToPtr constants. 1605 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1606 if (CE->getOpcode() == Instruction::IntToPtr) { 1607 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1608 continue; 1609 } 1610 1611 // If the Value is a frame index, we can create a FrameIndex debug value 1612 // without relying on the DAG at all. 1613 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1614 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1615 if (SI != FuncInfo.StaticAllocaMap.end()) { 1616 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1617 continue; 1618 } 1619 } 1620 1621 // Do not use getValue() in here; we don't want to generate code at 1622 // this point if it hasn't been done yet. 1623 SDValue N = NodeMap[V]; 1624 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1625 N = UnusedArgNodeMap[V]; 1626 if (N.getNode()) { 1627 // Only emit func arg dbg value for non-variadic dbg.values for now. 1628 if (!IsVariadic && 1629 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1630 FuncArgumentDbgValueKind::Value, N)) 1631 return true; 1632 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1633 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1634 // describe stack slot locations. 1635 // 1636 // Consider "int x = 0; int *px = &x;". There are two kinds of 1637 // interesting debug values here after optimization: 1638 // 1639 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1640 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1641 // 1642 // Both describe the direct values of their associated variables. 1643 Dependencies.push_back(N.getNode()); 1644 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1645 continue; 1646 } 1647 LocationOps.emplace_back( 1648 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1649 continue; 1650 } 1651 1652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1653 // Special rules apply for the first dbg.values of parameter variables in a 1654 // function. Identify them by the fact they reference Argument Values, that 1655 // they're parameters, and they are parameters of the current function. We 1656 // need to let them dangle until they get an SDNode. 1657 bool IsParamOfFunc = 1658 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1659 if (IsParamOfFunc) 1660 return false; 1661 1662 // The value is not used in this block yet (or it would have an SDNode). 1663 // We still want the value to appear for the user if possible -- if it has 1664 // an associated VReg, we can refer to that instead. 1665 auto VMI = FuncInfo.ValueMap.find(V); 1666 if (VMI != FuncInfo.ValueMap.end()) { 1667 unsigned Reg = VMI->second; 1668 // If this is a PHI node, it may be split up into several MI PHI nodes 1669 // (in FunctionLoweringInfo::set). 1670 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1671 V->getType(), std::nullopt); 1672 if (RFV.occupiesMultipleRegs()) { 1673 // FIXME: We could potentially support variadic dbg_values here. 1674 if (IsVariadic) 1675 return false; 1676 unsigned Offset = 0; 1677 unsigned BitsToDescribe = 0; 1678 if (auto VarSize = Var->getSizeInBits()) 1679 BitsToDescribe = *VarSize; 1680 if (auto Fragment = Expr->getFragmentInfo()) 1681 BitsToDescribe = Fragment->SizeInBits; 1682 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1683 // Bail out if all bits are described already. 1684 if (Offset >= BitsToDescribe) 1685 break; 1686 // TODO: handle scalable vectors. 1687 unsigned RegisterSize = RegAndSize.second; 1688 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1689 ? BitsToDescribe - Offset 1690 : RegisterSize; 1691 auto FragmentExpr = DIExpression::createFragmentExpression( 1692 Expr, Offset, FragmentSize); 1693 if (!FragmentExpr) 1694 continue; 1695 SDDbgValue *SDV = DAG.getVRegDbgValue( 1696 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1697 DAG.AddDbgValue(SDV, false); 1698 Offset += RegisterSize; 1699 } 1700 return true; 1701 } 1702 // We can use simple vreg locations for variadic dbg_values as well. 1703 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1704 continue; 1705 } 1706 // We failed to create a SDDbgOperand for V. 1707 return false; 1708 } 1709 1710 // We have created a SDDbgOperand for each Value in Values. 1711 assert(!LocationOps.empty()); 1712 SDDbgValue *SDV = 1713 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1714 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1715 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1716 return true; 1717 } 1718 1719 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1720 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1721 for (auto &Pair : DanglingDebugInfoMap) 1722 for (auto &DDI : Pair.second) 1723 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1724 clearDanglingDebugInfo(); 1725 } 1726 1727 /// getCopyFromRegs - If there was virtual register allocated for the value V 1728 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1729 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1730 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1731 SDValue Result; 1732 1733 if (It != FuncInfo.ValueMap.end()) { 1734 Register InReg = It->second; 1735 1736 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1737 DAG.getDataLayout(), InReg, Ty, 1738 std::nullopt); // This is not an ABI copy. 1739 SDValue Chain = DAG.getEntryNode(); 1740 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1741 V); 1742 resolveDanglingDebugInfo(V, Result); 1743 } 1744 1745 return Result; 1746 } 1747 1748 /// getValue - Return an SDValue for the given Value. 1749 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1750 // If we already have an SDValue for this value, use it. It's important 1751 // to do this first, so that we don't create a CopyFromReg if we already 1752 // have a regular SDValue. 1753 SDValue &N = NodeMap[V]; 1754 if (N.getNode()) return N; 1755 1756 // If there's a virtual register allocated and initialized for this 1757 // value, use it. 1758 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1759 return copyFromReg; 1760 1761 // Otherwise create a new SDValue and remember it. 1762 SDValue Val = getValueImpl(V); 1763 NodeMap[V] = Val; 1764 resolveDanglingDebugInfo(V, Val); 1765 return Val; 1766 } 1767 1768 /// getNonRegisterValue - Return an SDValue for the given Value, but 1769 /// don't look in FuncInfo.ValueMap for a virtual register. 1770 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1771 // If we already have an SDValue for this value, use it. 1772 SDValue &N = NodeMap[V]; 1773 if (N.getNode()) { 1774 if (isIntOrFPConstant(N)) { 1775 // Remove the debug location from the node as the node is about to be used 1776 // in a location which may differ from the original debug location. This 1777 // is relevant to Constant and ConstantFP nodes because they can appear 1778 // as constant expressions inside PHI nodes. 1779 N->setDebugLoc(DebugLoc()); 1780 } 1781 return N; 1782 } 1783 1784 // Otherwise create a new SDValue and remember it. 1785 SDValue Val = getValueImpl(V); 1786 NodeMap[V] = Val; 1787 resolveDanglingDebugInfo(V, Val); 1788 return Val; 1789 } 1790 1791 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1792 /// Create an SDValue for the given value. 1793 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 1796 if (const Constant *C = dyn_cast<Constant>(V)) { 1797 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1798 1799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1800 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1801 1802 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1803 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1804 1805 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) { 1806 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT, 1807 getValue(CPA->getPointer()), getValue(CPA->getKey()), 1808 getValue(CPA->getAddrDiscriminator()), 1809 getValue(CPA->getDiscriminator())); 1810 } 1811 1812 if (isa<ConstantPointerNull>(C)) { 1813 unsigned AS = V->getType()->getPointerAddressSpace(); 1814 return DAG.getConstant(0, getCurSDLoc(), 1815 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1816 } 1817 1818 if (match(C, m_VScale())) 1819 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1820 1821 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1822 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1823 1824 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1825 return DAG.getUNDEF(VT); 1826 1827 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1828 visit(CE->getOpcode(), *CE); 1829 SDValue N1 = NodeMap[V]; 1830 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1831 return N1; 1832 } 1833 1834 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1835 SmallVector<SDValue, 4> Constants; 1836 for (const Use &U : C->operands()) { 1837 SDNode *Val = getValue(U).getNode(); 1838 // If the operand is an empty aggregate, there are no values. 1839 if (!Val) continue; 1840 // Add each leaf value from the operand to the Constants list 1841 // to form a flattened list of all the values. 1842 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1843 Constants.push_back(SDValue(Val, i)); 1844 } 1845 1846 return DAG.getMergeValues(Constants, getCurSDLoc()); 1847 } 1848 1849 if (const ConstantDataSequential *CDS = 1850 dyn_cast<ConstantDataSequential>(C)) { 1851 SmallVector<SDValue, 4> Ops; 1852 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1853 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1854 // Add each leaf value from the operand to the Constants list 1855 // to form a flattened list of all the values. 1856 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1857 Ops.push_back(SDValue(Val, i)); 1858 } 1859 1860 if (isa<ArrayType>(CDS->getType())) 1861 return DAG.getMergeValues(Ops, getCurSDLoc()); 1862 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1863 } 1864 1865 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1866 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1867 "Unknown struct or array constant!"); 1868 1869 SmallVector<EVT, 4> ValueVTs; 1870 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1871 unsigned NumElts = ValueVTs.size(); 1872 if (NumElts == 0) 1873 return SDValue(); // empty struct 1874 SmallVector<SDValue, 4> Constants(NumElts); 1875 for (unsigned i = 0; i != NumElts; ++i) { 1876 EVT EltVT = ValueVTs[i]; 1877 if (isa<UndefValue>(C)) 1878 Constants[i] = DAG.getUNDEF(EltVT); 1879 else if (EltVT.isFloatingPoint()) 1880 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1881 else 1882 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1883 } 1884 1885 return DAG.getMergeValues(Constants, getCurSDLoc()); 1886 } 1887 1888 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1889 return DAG.getBlockAddress(BA, VT); 1890 1891 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1892 return getValue(Equiv->getGlobalValue()); 1893 1894 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1895 return getValue(NC->getGlobalValue()); 1896 1897 if (VT == MVT::aarch64svcount) { 1898 assert(C->isNullValue() && "Can only zero this target type!"); 1899 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1900 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1901 } 1902 1903 VectorType *VecTy = cast<VectorType>(V->getType()); 1904 1905 // Now that we know the number and type of the elements, get that number of 1906 // elements into the Ops array based on what kind of constant it is. 1907 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1908 SmallVector<SDValue, 16> Ops; 1909 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1910 for (unsigned i = 0; i != NumElements; ++i) 1911 Ops.push_back(getValue(CV->getOperand(i))); 1912 1913 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1914 } 1915 1916 if (isa<ConstantAggregateZero>(C)) { 1917 EVT EltVT = 1918 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1919 1920 SDValue Op; 1921 if (EltVT.isFloatingPoint()) 1922 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1923 else 1924 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1925 1926 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1927 } 1928 1929 llvm_unreachable("Unknown vector constant"); 1930 } 1931 1932 // If this is a static alloca, generate it as the frameindex instead of 1933 // computation. 1934 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1935 DenseMap<const AllocaInst*, int>::iterator SI = 1936 FuncInfo.StaticAllocaMap.find(AI); 1937 if (SI != FuncInfo.StaticAllocaMap.end()) 1938 return DAG.getFrameIndex( 1939 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1940 } 1941 1942 // If this is an instruction which fast-isel has deferred, select it now. 1943 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1944 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1945 1946 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1947 Inst->getType(), std::nullopt); 1948 SDValue Chain = DAG.getEntryNode(); 1949 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1950 } 1951 1952 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1953 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1954 1955 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1956 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1957 1958 llvm_unreachable("Can't get register for value!"); 1959 } 1960 1961 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1962 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1963 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1964 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1965 bool IsSEH = isAsynchronousEHPersonality(Pers); 1966 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1967 if (!IsSEH) 1968 CatchPadMBB->setIsEHScopeEntry(); 1969 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1970 if (IsMSVCCXX || IsCoreCLR) 1971 CatchPadMBB->setIsEHFuncletEntry(); 1972 } 1973 1974 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1975 // Update machine-CFG edge. 1976 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1977 FuncInfo.MBB->addSuccessor(TargetMBB); 1978 TargetMBB->setIsEHCatchretTarget(true); 1979 DAG.getMachineFunction().setHasEHCatchret(true); 1980 1981 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1982 bool IsSEH = isAsynchronousEHPersonality(Pers); 1983 if (IsSEH) { 1984 // If this is not a fall-through branch or optimizations are switched off, 1985 // emit the branch. 1986 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1987 TM.getOptLevel() == CodeGenOptLevel::None) 1988 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1989 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1990 return; 1991 } 1992 1993 // Figure out the funclet membership for the catchret's successor. 1994 // This will be used by the FuncletLayout pass to determine how to order the 1995 // BB's. 1996 // A 'catchret' returns to the outer scope's color. 1997 Value *ParentPad = I.getCatchSwitchParentPad(); 1998 const BasicBlock *SuccessorColor; 1999 if (isa<ConstantTokenNone>(ParentPad)) 2000 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 2001 else 2002 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 2003 assert(SuccessorColor && "No parent funclet for catchret!"); 2004 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 2005 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 2006 2007 // Create the terminator node. 2008 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2009 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2010 DAG.getBasicBlock(SuccessorColorMBB)); 2011 DAG.setRoot(Ret); 2012 } 2013 2014 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2015 // Don't emit any special code for the cleanuppad instruction. It just marks 2016 // the start of an EH scope/funclet. 2017 FuncInfo.MBB->setIsEHScopeEntry(); 2018 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2019 if (Pers != EHPersonality::Wasm_CXX) { 2020 FuncInfo.MBB->setIsEHFuncletEntry(); 2021 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2022 } 2023 } 2024 2025 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2026 // not match, it is OK to add only the first unwind destination catchpad to the 2027 // successors, because there will be at least one invoke instruction within the 2028 // catch scope that points to the next unwind destination, if one exists, so 2029 // CFGSort cannot mess up with BB sorting order. 2030 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2031 // call within them, and catchpads only consisting of 'catch (...)' have a 2032 // '__cxa_end_catch' call within them, both of which generate invokes in case 2033 // the next unwind destination exists, i.e., the next unwind destination is not 2034 // the caller.) 2035 // 2036 // Having at most one EH pad successor is also simpler and helps later 2037 // transformations. 2038 // 2039 // For example, 2040 // current: 2041 // invoke void @foo to ... unwind label %catch.dispatch 2042 // catch.dispatch: 2043 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2044 // catch.start: 2045 // ... 2046 // ... in this BB or some other child BB dominated by this BB there will be an 2047 // invoke that points to 'next' BB as an unwind destination 2048 // 2049 // next: ; We don't need to add this to 'current' BB's successor 2050 // ... 2051 static void findWasmUnwindDestinations( 2052 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2053 BranchProbability Prob, 2054 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2055 &UnwindDests) { 2056 while (EHPadBB) { 2057 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2058 if (isa<CleanupPadInst>(Pad)) { 2059 // Stop on cleanup pads. 2060 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2061 UnwindDests.back().first->setIsEHScopeEntry(); 2062 break; 2063 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2064 // Add the catchpad handlers to the possible destinations. We don't 2065 // continue to the unwind destination of the catchswitch for wasm. 2066 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2067 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2068 UnwindDests.back().first->setIsEHScopeEntry(); 2069 } 2070 break; 2071 } else { 2072 continue; 2073 } 2074 } 2075 } 2076 2077 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2078 /// many places it could ultimately go. In the IR, we have a single unwind 2079 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2080 /// This function skips over imaginary basic blocks that hold catchswitch 2081 /// instructions, and finds all the "real" machine 2082 /// basic block destinations. As those destinations may not be successors of 2083 /// EHPadBB, here we also calculate the edge probability to those destinations. 2084 /// The passed-in Prob is the edge probability to EHPadBB. 2085 static void findUnwindDestinations( 2086 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2087 BranchProbability Prob, 2088 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2089 &UnwindDests) { 2090 EHPersonality Personality = 2091 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2092 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2093 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2094 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2095 bool IsSEH = isAsynchronousEHPersonality(Personality); 2096 2097 if (IsWasmCXX) { 2098 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2099 assert(UnwindDests.size() <= 1 && 2100 "There should be at most one unwind destination for wasm"); 2101 return; 2102 } 2103 2104 while (EHPadBB) { 2105 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2106 BasicBlock *NewEHPadBB = nullptr; 2107 if (isa<LandingPadInst>(Pad)) { 2108 // Stop on landingpads. They are not funclets. 2109 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2110 break; 2111 } else if (isa<CleanupPadInst>(Pad)) { 2112 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2113 // personalities. 2114 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2115 UnwindDests.back().first->setIsEHScopeEntry(); 2116 UnwindDests.back().first->setIsEHFuncletEntry(); 2117 break; 2118 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2119 // Add the catchpad handlers to the possible destinations. 2120 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2121 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2122 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2123 if (IsMSVCCXX || IsCoreCLR) 2124 UnwindDests.back().first->setIsEHFuncletEntry(); 2125 if (!IsSEH) 2126 UnwindDests.back().first->setIsEHScopeEntry(); 2127 } 2128 NewEHPadBB = CatchSwitch->getUnwindDest(); 2129 } else { 2130 continue; 2131 } 2132 2133 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2134 if (BPI && NewEHPadBB) 2135 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2136 EHPadBB = NewEHPadBB; 2137 } 2138 } 2139 2140 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2141 // Update successor info. 2142 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2143 auto UnwindDest = I.getUnwindDest(); 2144 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2145 BranchProbability UnwindDestProb = 2146 (BPI && UnwindDest) 2147 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2148 : BranchProbability::getZero(); 2149 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2150 for (auto &UnwindDest : UnwindDests) { 2151 UnwindDest.first->setIsEHPad(); 2152 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2153 } 2154 FuncInfo.MBB->normalizeSuccProbs(); 2155 2156 // Create the terminator node. 2157 SDValue Ret = 2158 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2159 DAG.setRoot(Ret); 2160 } 2161 2162 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2163 report_fatal_error("visitCatchSwitch not yet implemented!"); 2164 } 2165 2166 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2168 auto &DL = DAG.getDataLayout(); 2169 SDValue Chain = getControlRoot(); 2170 SmallVector<ISD::OutputArg, 8> Outs; 2171 SmallVector<SDValue, 8> OutVals; 2172 2173 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2174 // lower 2175 // 2176 // %val = call <ty> @llvm.experimental.deoptimize() 2177 // ret <ty> %val 2178 // 2179 // differently. 2180 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2181 LowerDeoptimizingReturn(); 2182 return; 2183 } 2184 2185 if (!FuncInfo.CanLowerReturn) { 2186 unsigned DemoteReg = FuncInfo.DemoteRegister; 2187 const Function *F = I.getParent()->getParent(); 2188 2189 // Emit a store of the return value through the virtual register. 2190 // Leave Outs empty so that LowerReturn won't try to load return 2191 // registers the usual way. 2192 SmallVector<EVT, 1> PtrValueVTs; 2193 ComputeValueVTs(TLI, DL, 2194 PointerType::get(F->getContext(), 2195 DAG.getDataLayout().getAllocaAddrSpace()), 2196 PtrValueVTs); 2197 2198 SDValue RetPtr = 2199 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2200 SDValue RetOp = getValue(I.getOperand(0)); 2201 2202 SmallVector<EVT, 4> ValueVTs, MemVTs; 2203 SmallVector<uint64_t, 4> Offsets; 2204 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2205 &Offsets, 0); 2206 unsigned NumValues = ValueVTs.size(); 2207 2208 SmallVector<SDValue, 4> Chains(NumValues); 2209 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2210 for (unsigned i = 0; i != NumValues; ++i) { 2211 // An aggregate return value cannot wrap around the address space, so 2212 // offsets to its parts don't wrap either. 2213 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2214 TypeSize::getFixed(Offsets[i])); 2215 2216 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2217 if (MemVTs[i] != ValueVTs[i]) 2218 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2219 Chains[i] = DAG.getStore( 2220 Chain, getCurSDLoc(), Val, 2221 // FIXME: better loc info would be nice. 2222 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2223 commonAlignment(BaseAlign, Offsets[i])); 2224 } 2225 2226 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2227 MVT::Other, Chains); 2228 } else if (I.getNumOperands() != 0) { 2229 SmallVector<EVT, 4> ValueVTs; 2230 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2231 unsigned NumValues = ValueVTs.size(); 2232 if (NumValues) { 2233 SDValue RetOp = getValue(I.getOperand(0)); 2234 2235 const Function *F = I.getParent()->getParent(); 2236 2237 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2238 I.getOperand(0)->getType(), F->getCallingConv(), 2239 /*IsVarArg*/ false, DL); 2240 2241 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2242 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2243 ExtendKind = ISD::SIGN_EXTEND; 2244 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2245 ExtendKind = ISD::ZERO_EXTEND; 2246 2247 LLVMContext &Context = F->getContext(); 2248 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2249 2250 for (unsigned j = 0; j != NumValues; ++j) { 2251 EVT VT = ValueVTs[j]; 2252 2253 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2254 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2255 2256 CallingConv::ID CC = F->getCallingConv(); 2257 2258 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2259 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2260 SmallVector<SDValue, 4> Parts(NumParts); 2261 getCopyToParts(DAG, getCurSDLoc(), 2262 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2263 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2264 2265 // 'inreg' on function refers to return value 2266 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2267 if (RetInReg) 2268 Flags.setInReg(); 2269 2270 if (I.getOperand(0)->getType()->isPointerTy()) { 2271 Flags.setPointer(); 2272 Flags.setPointerAddrSpace( 2273 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2274 } 2275 2276 if (NeedsRegBlock) { 2277 Flags.setInConsecutiveRegs(); 2278 if (j == NumValues - 1) 2279 Flags.setInConsecutiveRegsLast(); 2280 } 2281 2282 // Propagate extension type if any 2283 if (ExtendKind == ISD::SIGN_EXTEND) 2284 Flags.setSExt(); 2285 else if (ExtendKind == ISD::ZERO_EXTEND) 2286 Flags.setZExt(); 2287 2288 for (unsigned i = 0; i < NumParts; ++i) { 2289 Outs.push_back(ISD::OutputArg(Flags, 2290 Parts[i].getValueType().getSimpleVT(), 2291 VT, /*isfixed=*/true, 0, 0)); 2292 OutVals.push_back(Parts[i]); 2293 } 2294 } 2295 } 2296 } 2297 2298 // Push in swifterror virtual register as the last element of Outs. This makes 2299 // sure swifterror virtual register will be returned in the swifterror 2300 // physical register. 2301 const Function *F = I.getParent()->getParent(); 2302 if (TLI.supportSwiftError() && 2303 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2304 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2305 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2306 Flags.setSwiftError(); 2307 Outs.push_back(ISD::OutputArg( 2308 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2309 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2310 // Create SDNode for the swifterror virtual register. 2311 OutVals.push_back( 2312 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2313 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2314 EVT(TLI.getPointerTy(DL)))); 2315 } 2316 2317 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2318 CallingConv::ID CallConv = 2319 DAG.getMachineFunction().getFunction().getCallingConv(); 2320 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2321 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2322 2323 // Verify that the target's LowerReturn behaved as expected. 2324 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2325 "LowerReturn didn't return a valid chain!"); 2326 2327 // Update the DAG with the new chain value resulting from return lowering. 2328 DAG.setRoot(Chain); 2329 } 2330 2331 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2332 /// created for it, emit nodes to copy the value into the virtual 2333 /// registers. 2334 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2335 // Skip empty types 2336 if (V->getType()->isEmptyTy()) 2337 return; 2338 2339 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2340 if (VMI != FuncInfo.ValueMap.end()) { 2341 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2342 "Unused value assigned virtual registers!"); 2343 CopyValueToVirtualRegister(V, VMI->second); 2344 } 2345 } 2346 2347 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2348 /// the current basic block, add it to ValueMap now so that we'll get a 2349 /// CopyTo/FromReg. 2350 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2351 // No need to export constants. 2352 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2353 2354 // Already exported? 2355 if (FuncInfo.isExportedInst(V)) return; 2356 2357 Register Reg = FuncInfo.InitializeRegForValue(V); 2358 CopyValueToVirtualRegister(V, Reg); 2359 } 2360 2361 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2362 const BasicBlock *FromBB) { 2363 // The operands of the setcc have to be in this block. We don't know 2364 // how to export them from some other block. 2365 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2366 // Can export from current BB. 2367 if (VI->getParent() == FromBB) 2368 return true; 2369 2370 // Is already exported, noop. 2371 return FuncInfo.isExportedInst(V); 2372 } 2373 2374 // If this is an argument, we can export it if the BB is the entry block or 2375 // if it is already exported. 2376 if (isa<Argument>(V)) { 2377 if (FromBB->isEntryBlock()) 2378 return true; 2379 2380 // Otherwise, can only export this if it is already exported. 2381 return FuncInfo.isExportedInst(V); 2382 } 2383 2384 // Otherwise, constants can always be exported. 2385 return true; 2386 } 2387 2388 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2389 BranchProbability 2390 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2391 const MachineBasicBlock *Dst) const { 2392 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2393 const BasicBlock *SrcBB = Src->getBasicBlock(); 2394 const BasicBlock *DstBB = Dst->getBasicBlock(); 2395 if (!BPI) { 2396 // If BPI is not available, set the default probability as 1 / N, where N is 2397 // the number of successors. 2398 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2399 return BranchProbability(1, SuccSize); 2400 } 2401 return BPI->getEdgeProbability(SrcBB, DstBB); 2402 } 2403 2404 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2405 MachineBasicBlock *Dst, 2406 BranchProbability Prob) { 2407 if (!FuncInfo.BPI) 2408 Src->addSuccessorWithoutProb(Dst); 2409 else { 2410 if (Prob.isUnknown()) 2411 Prob = getEdgeProbability(Src, Dst); 2412 Src->addSuccessor(Dst, Prob); 2413 } 2414 } 2415 2416 static bool InBlock(const Value *V, const BasicBlock *BB) { 2417 if (const Instruction *I = dyn_cast<Instruction>(V)) 2418 return I->getParent() == BB; 2419 return true; 2420 } 2421 2422 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2423 /// This function emits a branch and is used at the leaves of an OR or an 2424 /// AND operator tree. 2425 void 2426 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2427 MachineBasicBlock *TBB, 2428 MachineBasicBlock *FBB, 2429 MachineBasicBlock *CurBB, 2430 MachineBasicBlock *SwitchBB, 2431 BranchProbability TProb, 2432 BranchProbability FProb, 2433 bool InvertCond) { 2434 const BasicBlock *BB = CurBB->getBasicBlock(); 2435 2436 // If the leaf of the tree is a comparison, merge the condition into 2437 // the caseblock. 2438 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2439 // The operands of the cmp have to be in this block. We don't know 2440 // how to export them from some other block. If this is the first block 2441 // of the sequence, no exporting is needed. 2442 if (CurBB == SwitchBB || 2443 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2444 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2445 ISD::CondCode Condition; 2446 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2447 ICmpInst::Predicate Pred = 2448 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2449 Condition = getICmpCondCode(Pred); 2450 } else { 2451 const FCmpInst *FC = cast<FCmpInst>(Cond); 2452 FCmpInst::Predicate Pred = 2453 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2454 Condition = getFCmpCondCode(Pred); 2455 if (TM.Options.NoNaNsFPMath) 2456 Condition = getFCmpCodeWithoutNaN(Condition); 2457 } 2458 2459 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2460 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2461 SL->SwitchCases.push_back(CB); 2462 return; 2463 } 2464 } 2465 2466 // Create a CaseBlock record representing this branch. 2467 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2468 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2469 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2470 SL->SwitchCases.push_back(CB); 2471 } 2472 2473 // Collect dependencies on V recursively. This is used for the cost analysis in 2474 // `shouldKeepJumpConditionsTogether`. 2475 static bool collectInstructionDeps( 2476 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2477 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2478 unsigned Depth = 0) { 2479 // Return false if we have an incomplete count. 2480 if (Depth >= SelectionDAG::MaxRecursionDepth) 2481 return false; 2482 2483 auto *I = dyn_cast<Instruction>(V); 2484 if (I == nullptr) 2485 return true; 2486 2487 if (Necessary != nullptr) { 2488 // This instruction is necessary for the other side of the condition so 2489 // don't count it. 2490 if (Necessary->contains(I)) 2491 return true; 2492 } 2493 2494 // Already added this dep. 2495 if (!Deps->try_emplace(I, false).second) 2496 return true; 2497 2498 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2499 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2500 Depth + 1)) 2501 return false; 2502 return true; 2503 } 2504 2505 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2506 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2507 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2508 TargetLoweringBase::CondMergingParams Params) const { 2509 if (I.getNumSuccessors() != 2) 2510 return false; 2511 2512 if (!I.isConditional()) 2513 return false; 2514 2515 if (Params.BaseCost < 0) 2516 return false; 2517 2518 // Baseline cost. 2519 InstructionCost CostThresh = Params.BaseCost; 2520 2521 BranchProbabilityInfo *BPI = nullptr; 2522 if (Params.LikelyBias || Params.UnlikelyBias) 2523 BPI = FuncInfo.BPI; 2524 if (BPI != nullptr) { 2525 // See if we are either likely to get an early out or compute both lhs/rhs 2526 // of the condition. 2527 BasicBlock *IfFalse = I.getSuccessor(0); 2528 BasicBlock *IfTrue = I.getSuccessor(1); 2529 2530 std::optional<bool> Likely; 2531 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2532 Likely = true; 2533 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2534 Likely = false; 2535 2536 if (Likely) { 2537 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2538 // Its likely we will have to compute both lhs and rhs of condition 2539 CostThresh += Params.LikelyBias; 2540 else { 2541 if (Params.UnlikelyBias < 0) 2542 return false; 2543 // Its likely we will get an early out. 2544 CostThresh -= Params.UnlikelyBias; 2545 } 2546 } 2547 } 2548 2549 if (CostThresh <= 0) 2550 return false; 2551 2552 // Collect "all" instructions that lhs condition is dependent on. 2553 // Use map for stable iteration (to avoid non-determanism of iteration of 2554 // SmallPtrSet). The `bool` value is just a dummy. 2555 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2556 collectInstructionDeps(&LhsDeps, Lhs); 2557 // Collect "all" instructions that rhs condition is dependent on AND are 2558 // dependencies of lhs. This gives us an estimate on which instructions we 2559 // stand to save by splitting the condition. 2560 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2561 return false; 2562 // Add the compare instruction itself unless its a dependency on the LHS. 2563 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2564 if (!LhsDeps.contains(RhsI)) 2565 RhsDeps.try_emplace(RhsI, false); 2566 2567 const auto &TLI = DAG.getTargetLoweringInfo(); 2568 const auto &TTI = 2569 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2570 2571 InstructionCost CostOfIncluding = 0; 2572 // See if this instruction will need to computed independently of whether RHS 2573 // is. 2574 Value *BrCond = I.getCondition(); 2575 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2576 for (const auto *U : Ins->users()) { 2577 // If user is independent of RHS calculation we don't need to count it. 2578 if (auto *UIns = dyn_cast<Instruction>(U)) 2579 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2580 return false; 2581 } 2582 return true; 2583 }; 2584 2585 // Prune instructions from RHS Deps that are dependencies of unrelated 2586 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2587 // arbitrary and just meant to cap the how much time we spend in the pruning 2588 // loop. Its highly unlikely to come into affect. 2589 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2590 // Stop after a certain point. No incorrectness from including too many 2591 // instructions. 2592 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2593 const Instruction *ToDrop = nullptr; 2594 for (const auto &InsPair : RhsDeps) { 2595 if (!ShouldCountInsn(InsPair.first)) { 2596 ToDrop = InsPair.first; 2597 break; 2598 } 2599 } 2600 if (ToDrop == nullptr) 2601 break; 2602 RhsDeps.erase(ToDrop); 2603 } 2604 2605 for (const auto &InsPair : RhsDeps) { 2606 // Finally accumulate latency that we can only attribute to computing the 2607 // RHS condition. Use latency because we are essentially trying to calculate 2608 // the cost of the dependency chain. 2609 // Possible TODO: We could try to estimate ILP and make this more precise. 2610 CostOfIncluding += 2611 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2612 2613 if (CostOfIncluding > CostThresh) 2614 return false; 2615 } 2616 return true; 2617 } 2618 2619 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2620 MachineBasicBlock *TBB, 2621 MachineBasicBlock *FBB, 2622 MachineBasicBlock *CurBB, 2623 MachineBasicBlock *SwitchBB, 2624 Instruction::BinaryOps Opc, 2625 BranchProbability TProb, 2626 BranchProbability FProb, 2627 bool InvertCond) { 2628 // Skip over not part of the tree and remember to invert op and operands at 2629 // next level. 2630 Value *NotCond; 2631 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2632 InBlock(NotCond, CurBB->getBasicBlock())) { 2633 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2634 !InvertCond); 2635 return; 2636 } 2637 2638 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2639 const Value *BOpOp0, *BOpOp1; 2640 // Compute the effective opcode for Cond, taking into account whether it needs 2641 // to be inverted, e.g. 2642 // and (not (or A, B)), C 2643 // gets lowered as 2644 // and (and (not A, not B), C) 2645 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2646 if (BOp) { 2647 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2648 ? Instruction::And 2649 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2650 ? Instruction::Or 2651 : (Instruction::BinaryOps)0); 2652 if (InvertCond) { 2653 if (BOpc == Instruction::And) 2654 BOpc = Instruction::Or; 2655 else if (BOpc == Instruction::Or) 2656 BOpc = Instruction::And; 2657 } 2658 } 2659 2660 // If this node is not part of the or/and tree, emit it as a branch. 2661 // Note that all nodes in the tree should have same opcode. 2662 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2663 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2664 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2665 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2666 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2667 TProb, FProb, InvertCond); 2668 return; 2669 } 2670 2671 // Create TmpBB after CurBB. 2672 MachineFunction::iterator BBI(CurBB); 2673 MachineFunction &MF = DAG.getMachineFunction(); 2674 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2675 CurBB->getParent()->insert(++BBI, TmpBB); 2676 2677 if (Opc == Instruction::Or) { 2678 // Codegen X | Y as: 2679 // BB1: 2680 // jmp_if_X TBB 2681 // jmp TmpBB 2682 // TmpBB: 2683 // jmp_if_Y TBB 2684 // jmp FBB 2685 // 2686 2687 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2688 // The requirement is that 2689 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2690 // = TrueProb for original BB. 2691 // Assuming the original probabilities are A and B, one choice is to set 2692 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2693 // A/(1+B) and 2B/(1+B). This choice assumes that 2694 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2695 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2696 // TmpBB, but the math is more complicated. 2697 2698 auto NewTrueProb = TProb / 2; 2699 auto NewFalseProb = TProb / 2 + FProb; 2700 // Emit the LHS condition. 2701 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2702 NewFalseProb, InvertCond); 2703 2704 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2705 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2706 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2707 // Emit the RHS condition into TmpBB. 2708 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2709 Probs[1], InvertCond); 2710 } else { 2711 assert(Opc == Instruction::And && "Unknown merge op!"); 2712 // Codegen X & Y as: 2713 // BB1: 2714 // jmp_if_X TmpBB 2715 // jmp FBB 2716 // TmpBB: 2717 // jmp_if_Y TBB 2718 // jmp FBB 2719 // 2720 // This requires creation of TmpBB after CurBB. 2721 2722 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2723 // The requirement is that 2724 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2725 // = FalseProb for original BB. 2726 // Assuming the original probabilities are A and B, one choice is to set 2727 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2728 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2729 // TrueProb for BB1 * FalseProb for TmpBB. 2730 2731 auto NewTrueProb = TProb + FProb / 2; 2732 auto NewFalseProb = FProb / 2; 2733 // Emit the LHS condition. 2734 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2735 NewFalseProb, InvertCond); 2736 2737 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2738 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2739 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2740 // Emit the RHS condition into TmpBB. 2741 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2742 Probs[1], InvertCond); 2743 } 2744 } 2745 2746 /// If the set of cases should be emitted as a series of branches, return true. 2747 /// If we should emit this as a bunch of and/or'd together conditions, return 2748 /// false. 2749 bool 2750 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2751 if (Cases.size() != 2) return true; 2752 2753 // If this is two comparisons of the same values or'd or and'd together, they 2754 // will get folded into a single comparison, so don't emit two blocks. 2755 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2756 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2757 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2758 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2759 return false; 2760 } 2761 2762 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2763 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2764 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2765 Cases[0].CC == Cases[1].CC && 2766 isa<Constant>(Cases[0].CmpRHS) && 2767 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2768 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2769 return false; 2770 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2771 return false; 2772 } 2773 2774 return true; 2775 } 2776 2777 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2778 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2779 2780 // Update machine-CFG edges. 2781 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2782 2783 if (I.isUnconditional()) { 2784 // Update machine-CFG edges. 2785 BrMBB->addSuccessor(Succ0MBB); 2786 2787 // If this is not a fall-through branch or optimizations are switched off, 2788 // emit the branch. 2789 if (Succ0MBB != NextBlock(BrMBB) || 2790 TM.getOptLevel() == CodeGenOptLevel::None) { 2791 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2792 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2793 setValue(&I, Br); 2794 DAG.setRoot(Br); 2795 } 2796 2797 return; 2798 } 2799 2800 // If this condition is one of the special cases we handle, do special stuff 2801 // now. 2802 const Value *CondVal = I.getCondition(); 2803 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2804 2805 // If this is a series of conditions that are or'd or and'd together, emit 2806 // this as a sequence of branches instead of setcc's with and/or operations. 2807 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2808 // unpredictable branches, and vector extracts because those jumps are likely 2809 // expensive for any target), this should improve performance. 2810 // For example, instead of something like: 2811 // cmp A, B 2812 // C = seteq 2813 // cmp D, E 2814 // F = setle 2815 // or C, F 2816 // jnz foo 2817 // Emit: 2818 // cmp A, B 2819 // je foo 2820 // cmp D, E 2821 // jle foo 2822 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2823 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2824 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2825 Value *Vec; 2826 const Value *BOp0, *BOp1; 2827 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2828 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2829 Opcode = Instruction::And; 2830 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2831 Opcode = Instruction::Or; 2832 2833 if (Opcode && 2834 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2835 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2836 !shouldKeepJumpConditionsTogether( 2837 FuncInfo, I, Opcode, BOp0, BOp1, 2838 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2839 Opcode, BOp0, BOp1))) { 2840 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2841 getEdgeProbability(BrMBB, Succ0MBB), 2842 getEdgeProbability(BrMBB, Succ1MBB), 2843 /*InvertCond=*/false); 2844 // If the compares in later blocks need to use values not currently 2845 // exported from this block, export them now. This block should always 2846 // be the first entry. 2847 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2848 2849 // Allow some cases to be rejected. 2850 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2851 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2852 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2853 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2854 } 2855 2856 // Emit the branch for this block. 2857 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2858 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2859 return; 2860 } 2861 2862 // Okay, we decided not to do this, remove any inserted MBB's and clear 2863 // SwitchCases. 2864 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2865 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2866 2867 SL->SwitchCases.clear(); 2868 } 2869 } 2870 2871 // Create a CaseBlock record representing this branch. 2872 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2873 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2874 2875 // Use visitSwitchCase to actually insert the fast branch sequence for this 2876 // cond branch. 2877 visitSwitchCase(CB, BrMBB); 2878 } 2879 2880 /// visitSwitchCase - Emits the necessary code to represent a single node in 2881 /// the binary search tree resulting from lowering a switch instruction. 2882 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2883 MachineBasicBlock *SwitchBB) { 2884 SDValue Cond; 2885 SDValue CondLHS = getValue(CB.CmpLHS); 2886 SDLoc dl = CB.DL; 2887 2888 if (CB.CC == ISD::SETTRUE) { 2889 // Branch or fall through to TrueBB. 2890 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2891 SwitchBB->normalizeSuccProbs(); 2892 if (CB.TrueBB != NextBlock(SwitchBB)) { 2893 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2894 DAG.getBasicBlock(CB.TrueBB))); 2895 } 2896 return; 2897 } 2898 2899 auto &TLI = DAG.getTargetLoweringInfo(); 2900 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2901 2902 // Build the setcc now. 2903 if (!CB.CmpMHS) { 2904 // Fold "(X == true)" to X and "(X == false)" to !X to 2905 // handle common cases produced by branch lowering. 2906 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2907 CB.CC == ISD::SETEQ) 2908 Cond = CondLHS; 2909 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2910 CB.CC == ISD::SETEQ) { 2911 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2912 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2913 } else { 2914 SDValue CondRHS = getValue(CB.CmpRHS); 2915 2916 // If a pointer's DAG type is larger than its memory type then the DAG 2917 // values are zero-extended. This breaks signed comparisons so truncate 2918 // back to the underlying type before doing the compare. 2919 if (CondLHS.getValueType() != MemVT) { 2920 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2921 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2922 } 2923 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2924 } 2925 } else { 2926 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2927 2928 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2929 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2930 2931 SDValue CmpOp = getValue(CB.CmpMHS); 2932 EVT VT = CmpOp.getValueType(); 2933 2934 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2935 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2936 ISD::SETLE); 2937 } else { 2938 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2939 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2940 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2941 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2942 } 2943 } 2944 2945 // Update successor info 2946 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2947 // TrueBB and FalseBB are always different unless the incoming IR is 2948 // degenerate. This only happens when running llc on weird IR. 2949 if (CB.TrueBB != CB.FalseBB) 2950 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2951 SwitchBB->normalizeSuccProbs(); 2952 2953 // If the lhs block is the next block, invert the condition so that we can 2954 // fall through to the lhs instead of the rhs block. 2955 if (CB.TrueBB == NextBlock(SwitchBB)) { 2956 std::swap(CB.TrueBB, CB.FalseBB); 2957 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2958 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2959 } 2960 2961 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2962 MVT::Other, getControlRoot(), Cond, 2963 DAG.getBasicBlock(CB.TrueBB)); 2964 2965 setValue(CurInst, BrCond); 2966 2967 // Insert the false branch. Do this even if it's a fall through branch, 2968 // this makes it easier to do DAG optimizations which require inverting 2969 // the branch condition. 2970 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2971 DAG.getBasicBlock(CB.FalseBB)); 2972 2973 DAG.setRoot(BrCond); 2974 } 2975 2976 /// visitJumpTable - Emit JumpTable node in the current MBB 2977 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2978 // Emit the code for the jump table 2979 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2980 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2981 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2982 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2983 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2984 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2985 Index.getValue(1), Table, Index); 2986 DAG.setRoot(BrJumpTable); 2987 } 2988 2989 /// visitJumpTableHeader - This function emits necessary code to produce index 2990 /// in the JumpTable from switch case. 2991 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2992 JumpTableHeader &JTH, 2993 MachineBasicBlock *SwitchBB) { 2994 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2995 const SDLoc &dl = *JT.SL; 2996 2997 // Subtract the lowest switch case value from the value being switched on. 2998 SDValue SwitchOp = getValue(JTH.SValue); 2999 EVT VT = SwitchOp.getValueType(); 3000 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 3001 DAG.getConstant(JTH.First, dl, VT)); 3002 3003 // The SDNode we just created, which holds the value being switched on minus 3004 // the smallest case value, needs to be copied to a virtual register so it 3005 // can be used as an index into the jump table in a subsequent basic block. 3006 // This value may be smaller or larger than the target's pointer type, and 3007 // therefore require extension or truncating. 3008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3009 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 3010 3011 unsigned JumpTableReg = 3012 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 3013 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 3014 JumpTableReg, SwitchOp); 3015 JT.Reg = JumpTableReg; 3016 3017 if (!JTH.FallthroughUnreachable) { 3018 // Emit the range check for the jump table, and branch to the default block 3019 // for the switch statement if the value being switched on exceeds the 3020 // largest case in the switch. 3021 SDValue CMP = DAG.getSetCC( 3022 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3023 Sub.getValueType()), 3024 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3025 3026 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3027 MVT::Other, CopyTo, CMP, 3028 DAG.getBasicBlock(JT.Default)); 3029 3030 // Avoid emitting unnecessary branches to the next block. 3031 if (JT.MBB != NextBlock(SwitchBB)) 3032 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3033 DAG.getBasicBlock(JT.MBB)); 3034 3035 DAG.setRoot(BrCond); 3036 } else { 3037 // Avoid emitting unnecessary branches to the next block. 3038 if (JT.MBB != NextBlock(SwitchBB)) 3039 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3040 DAG.getBasicBlock(JT.MBB))); 3041 else 3042 DAG.setRoot(CopyTo); 3043 } 3044 } 3045 3046 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3047 /// variable if there exists one. 3048 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3049 SDValue &Chain) { 3050 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3051 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3052 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3053 MachineFunction &MF = DAG.getMachineFunction(); 3054 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3055 MachineSDNode *Node = 3056 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3057 if (Global) { 3058 MachinePointerInfo MPInfo(Global); 3059 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3060 MachineMemOperand::MODereferenceable; 3061 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3062 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3063 DAG.getEVTAlign(PtrTy)); 3064 DAG.setNodeMemRefs(Node, {MemRef}); 3065 } 3066 if (PtrTy != PtrMemTy) 3067 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3068 return SDValue(Node, 0); 3069 } 3070 3071 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3072 /// tail spliced into a stack protector check success bb. 3073 /// 3074 /// For a high level explanation of how this fits into the stack protector 3075 /// generation see the comment on the declaration of class 3076 /// StackProtectorDescriptor. 3077 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3078 MachineBasicBlock *ParentBB) { 3079 3080 // First create the loads to the guard/stack slot for the comparison. 3081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3082 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3083 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3084 3085 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3086 int FI = MFI.getStackProtectorIndex(); 3087 3088 SDValue Guard; 3089 SDLoc dl = getCurSDLoc(); 3090 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3091 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3092 Align Align = 3093 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3094 3095 // Generate code to load the content of the guard slot. 3096 SDValue GuardVal = DAG.getLoad( 3097 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3098 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3099 MachineMemOperand::MOVolatile); 3100 3101 if (TLI.useStackGuardXorFP()) 3102 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3103 3104 // Retrieve guard check function, nullptr if instrumentation is inlined. 3105 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3106 // The target provides a guard check function to validate the guard value. 3107 // Generate a call to that function with the content of the guard slot as 3108 // argument. 3109 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3110 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3111 3112 TargetLowering::ArgListTy Args; 3113 TargetLowering::ArgListEntry Entry; 3114 Entry.Node = GuardVal; 3115 Entry.Ty = FnTy->getParamType(0); 3116 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3117 Entry.IsInReg = true; 3118 Args.push_back(Entry); 3119 3120 TargetLowering::CallLoweringInfo CLI(DAG); 3121 CLI.setDebugLoc(getCurSDLoc()) 3122 .setChain(DAG.getEntryNode()) 3123 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3124 getValue(GuardCheckFn), std::move(Args)); 3125 3126 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3127 DAG.setRoot(Result.second); 3128 return; 3129 } 3130 3131 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3132 // Otherwise, emit a volatile load to retrieve the stack guard value. 3133 SDValue Chain = DAG.getEntryNode(); 3134 if (TLI.useLoadStackGuardNode()) { 3135 Guard = getLoadStackGuard(DAG, dl, Chain); 3136 } else { 3137 const Value *IRGuard = TLI.getSDagStackGuard(M); 3138 SDValue GuardPtr = getValue(IRGuard); 3139 3140 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3141 MachinePointerInfo(IRGuard, 0), Align, 3142 MachineMemOperand::MOVolatile); 3143 } 3144 3145 // Perform the comparison via a getsetcc. 3146 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3147 *DAG.getContext(), 3148 Guard.getValueType()), 3149 Guard, GuardVal, ISD::SETNE); 3150 3151 // If the guard/stackslot do not equal, branch to failure MBB. 3152 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3153 MVT::Other, GuardVal.getOperand(0), 3154 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3155 // Otherwise branch to success MBB. 3156 SDValue Br = DAG.getNode(ISD::BR, dl, 3157 MVT::Other, BrCond, 3158 DAG.getBasicBlock(SPD.getSuccessMBB())); 3159 3160 DAG.setRoot(Br); 3161 } 3162 3163 /// Codegen the failure basic block for a stack protector check. 3164 /// 3165 /// A failure stack protector machine basic block consists simply of a call to 3166 /// __stack_chk_fail(). 3167 /// 3168 /// For a high level explanation of how this fits into the stack protector 3169 /// generation see the comment on the declaration of class 3170 /// StackProtectorDescriptor. 3171 void 3172 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3174 TargetLowering::MakeLibCallOptions CallOptions; 3175 CallOptions.setDiscardResult(true); 3176 SDValue Chain = 3177 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3178 std::nullopt, CallOptions, getCurSDLoc()) 3179 .second; 3180 // On PS4/PS5, the "return address" must still be within the calling 3181 // function, even if it's at the very end, so emit an explicit TRAP here. 3182 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3183 if (TM.getTargetTriple().isPS()) 3184 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3185 // WebAssembly needs an unreachable instruction after a non-returning call, 3186 // because the function return type can be different from __stack_chk_fail's 3187 // return type (void). 3188 if (TM.getTargetTriple().isWasm()) 3189 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3190 3191 DAG.setRoot(Chain); 3192 } 3193 3194 /// visitBitTestHeader - This function emits necessary code to produce value 3195 /// suitable for "bit tests" 3196 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3197 MachineBasicBlock *SwitchBB) { 3198 SDLoc dl = getCurSDLoc(); 3199 3200 // Subtract the minimum value. 3201 SDValue SwitchOp = getValue(B.SValue); 3202 EVT VT = SwitchOp.getValueType(); 3203 SDValue RangeSub = 3204 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3205 3206 // Determine the type of the test operands. 3207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3208 bool UsePtrType = false; 3209 if (!TLI.isTypeLegal(VT)) { 3210 UsePtrType = true; 3211 } else { 3212 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3213 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3214 // Switch table case range are encoded into series of masks. 3215 // Just use pointer type, it's guaranteed to fit. 3216 UsePtrType = true; 3217 break; 3218 } 3219 } 3220 SDValue Sub = RangeSub; 3221 if (UsePtrType) { 3222 VT = TLI.getPointerTy(DAG.getDataLayout()); 3223 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3224 } 3225 3226 B.RegVT = VT.getSimpleVT(); 3227 B.Reg = FuncInfo.CreateReg(B.RegVT); 3228 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3229 3230 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3231 3232 if (!B.FallthroughUnreachable) 3233 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3234 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3235 SwitchBB->normalizeSuccProbs(); 3236 3237 SDValue Root = CopyTo; 3238 if (!B.FallthroughUnreachable) { 3239 // Conditional branch to the default block. 3240 SDValue RangeCmp = DAG.getSetCC(dl, 3241 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3242 RangeSub.getValueType()), 3243 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3244 ISD::SETUGT); 3245 3246 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3247 DAG.getBasicBlock(B.Default)); 3248 } 3249 3250 // Avoid emitting unnecessary branches to the next block. 3251 if (MBB != NextBlock(SwitchBB)) 3252 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3253 3254 DAG.setRoot(Root); 3255 } 3256 3257 /// visitBitTestCase - this function produces one "bit test" 3258 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3259 MachineBasicBlock* NextMBB, 3260 BranchProbability BranchProbToNext, 3261 unsigned Reg, 3262 BitTestCase &B, 3263 MachineBasicBlock *SwitchBB) { 3264 SDLoc dl = getCurSDLoc(); 3265 MVT VT = BB.RegVT; 3266 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3267 SDValue Cmp; 3268 unsigned PopCount = llvm::popcount(B.Mask); 3269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3270 if (PopCount == 1) { 3271 // Testing for a single bit; just compare the shift count with what it 3272 // would need to be to shift a 1 bit in that position. 3273 Cmp = DAG.getSetCC( 3274 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3275 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3276 ISD::SETEQ); 3277 } else if (PopCount == BB.Range) { 3278 // There is only one zero bit in the range, test for it directly. 3279 Cmp = DAG.getSetCC( 3280 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3281 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3282 } else { 3283 // Make desired shift 3284 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3285 DAG.getConstant(1, dl, VT), ShiftOp); 3286 3287 // Emit bit tests and jumps 3288 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3289 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3290 Cmp = DAG.getSetCC( 3291 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3292 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3293 } 3294 3295 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3296 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3297 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3298 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3299 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3300 // one as they are relative probabilities (and thus work more like weights), 3301 // and hence we need to normalize them to let the sum of them become one. 3302 SwitchBB->normalizeSuccProbs(); 3303 3304 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3305 MVT::Other, getControlRoot(), 3306 Cmp, DAG.getBasicBlock(B.TargetBB)); 3307 3308 // Avoid emitting unnecessary branches to the next block. 3309 if (NextMBB != NextBlock(SwitchBB)) 3310 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3311 DAG.getBasicBlock(NextMBB)); 3312 3313 DAG.setRoot(BrAnd); 3314 } 3315 3316 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3317 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3318 3319 // Retrieve successors. Look through artificial IR level blocks like 3320 // catchswitch for successors. 3321 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3322 const BasicBlock *EHPadBB = I.getSuccessor(1); 3323 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3324 3325 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3326 // have to do anything here to lower funclet bundles. 3327 assert(!I.hasOperandBundlesOtherThan( 3328 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3329 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3330 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3331 LLVMContext::OB_clang_arc_attachedcall}) && 3332 "Cannot lower invokes with arbitrary operand bundles yet!"); 3333 3334 const Value *Callee(I.getCalledOperand()); 3335 const Function *Fn = dyn_cast<Function>(Callee); 3336 if (isa<InlineAsm>(Callee)) 3337 visitInlineAsm(I, EHPadBB); 3338 else if (Fn && Fn->isIntrinsic()) { 3339 switch (Fn->getIntrinsicID()) { 3340 default: 3341 llvm_unreachable("Cannot invoke this intrinsic"); 3342 case Intrinsic::donothing: 3343 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3344 case Intrinsic::seh_try_begin: 3345 case Intrinsic::seh_scope_begin: 3346 case Intrinsic::seh_try_end: 3347 case Intrinsic::seh_scope_end: 3348 if (EHPadMBB) 3349 // a block referenced by EH table 3350 // so dtor-funclet not removed by opts 3351 EHPadMBB->setMachineBlockAddressTaken(); 3352 break; 3353 case Intrinsic::experimental_patchpoint_void: 3354 case Intrinsic::experimental_patchpoint: 3355 visitPatchpoint(I, EHPadBB); 3356 break; 3357 case Intrinsic::experimental_gc_statepoint: 3358 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3359 break; 3360 case Intrinsic::wasm_rethrow: { 3361 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3362 // special because it can be invoked, so we manually lower it to a DAG 3363 // node here. 3364 SmallVector<SDValue, 8> Ops; 3365 Ops.push_back(getControlRoot()); // inchain for the terminator node 3366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3367 Ops.push_back( 3368 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3369 TLI.getPointerTy(DAG.getDataLayout()))); 3370 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3371 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3372 break; 3373 } 3374 } 3375 } else if (I.hasDeoptState()) { 3376 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3377 // Eventually we will support lowering the @llvm.experimental.deoptimize 3378 // intrinsic, and right now there are no plans to support other intrinsics 3379 // with deopt state. 3380 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3381 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3382 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3383 } else { 3384 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3385 } 3386 3387 // If the value of the invoke is used outside of its defining block, make it 3388 // available as a virtual register. 3389 // We already took care of the exported value for the statepoint instruction 3390 // during call to the LowerStatepoint. 3391 if (!isa<GCStatepointInst>(I)) { 3392 CopyToExportRegsIfNeeded(&I); 3393 } 3394 3395 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3396 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3397 BranchProbability EHPadBBProb = 3398 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3399 : BranchProbability::getZero(); 3400 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3401 3402 // Update successor info. 3403 addSuccessorWithProb(InvokeMBB, Return); 3404 for (auto &UnwindDest : UnwindDests) { 3405 UnwindDest.first->setIsEHPad(); 3406 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3407 } 3408 InvokeMBB->normalizeSuccProbs(); 3409 3410 // Drop into normal successor. 3411 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3412 DAG.getBasicBlock(Return))); 3413 } 3414 3415 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3416 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3417 3418 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3419 // have to do anything here to lower funclet bundles. 3420 assert(!I.hasOperandBundlesOtherThan( 3421 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3422 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3423 3424 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3425 visitInlineAsm(I); 3426 CopyToExportRegsIfNeeded(&I); 3427 3428 // Retrieve successors. 3429 SmallPtrSet<BasicBlock *, 8> Dests; 3430 Dests.insert(I.getDefaultDest()); 3431 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3432 3433 // Update successor info. 3434 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3435 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3436 BasicBlock *Dest = I.getIndirectDest(i); 3437 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3438 Target->setIsInlineAsmBrIndirectTarget(); 3439 Target->setMachineBlockAddressTaken(); 3440 Target->setLabelMustBeEmitted(); 3441 // Don't add duplicate machine successors. 3442 if (Dests.insert(Dest).second) 3443 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3444 } 3445 CallBrMBB->normalizeSuccProbs(); 3446 3447 // Drop into default successor. 3448 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3449 MVT::Other, getControlRoot(), 3450 DAG.getBasicBlock(Return))); 3451 } 3452 3453 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3454 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3455 } 3456 3457 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3458 assert(FuncInfo.MBB->isEHPad() && 3459 "Call to landingpad not in landing pad!"); 3460 3461 // If there aren't registers to copy the values into (e.g., during SjLj 3462 // exceptions), then don't bother to create these DAG nodes. 3463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3464 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3465 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3466 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3467 return; 3468 3469 // If landingpad's return type is token type, we don't create DAG nodes 3470 // for its exception pointer and selector value. The extraction of exception 3471 // pointer or selector value from token type landingpads is not currently 3472 // supported. 3473 if (LP.getType()->isTokenTy()) 3474 return; 3475 3476 SmallVector<EVT, 2> ValueVTs; 3477 SDLoc dl = getCurSDLoc(); 3478 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3479 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3480 3481 // Get the two live-in registers as SDValues. The physregs have already been 3482 // copied into virtual registers. 3483 SDValue Ops[2]; 3484 if (FuncInfo.ExceptionPointerVirtReg) { 3485 Ops[0] = DAG.getZExtOrTrunc( 3486 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3487 FuncInfo.ExceptionPointerVirtReg, 3488 TLI.getPointerTy(DAG.getDataLayout())), 3489 dl, ValueVTs[0]); 3490 } else { 3491 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3492 } 3493 Ops[1] = DAG.getZExtOrTrunc( 3494 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3495 FuncInfo.ExceptionSelectorVirtReg, 3496 TLI.getPointerTy(DAG.getDataLayout())), 3497 dl, ValueVTs[1]); 3498 3499 // Merge into one. 3500 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3501 DAG.getVTList(ValueVTs), Ops); 3502 setValue(&LP, Res); 3503 } 3504 3505 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3506 MachineBasicBlock *Last) { 3507 // Update JTCases. 3508 for (JumpTableBlock &JTB : SL->JTCases) 3509 if (JTB.first.HeaderBB == First) 3510 JTB.first.HeaderBB = Last; 3511 3512 // Update BitTestCases. 3513 for (BitTestBlock &BTB : SL->BitTestCases) 3514 if (BTB.Parent == First) 3515 BTB.Parent = Last; 3516 } 3517 3518 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3519 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3520 3521 // Update machine-CFG edges with unique successors. 3522 SmallSet<BasicBlock*, 32> Done; 3523 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3524 BasicBlock *BB = I.getSuccessor(i); 3525 bool Inserted = Done.insert(BB).second; 3526 if (!Inserted) 3527 continue; 3528 3529 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3530 addSuccessorWithProb(IndirectBrMBB, Succ); 3531 } 3532 IndirectBrMBB->normalizeSuccProbs(); 3533 3534 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3535 MVT::Other, getControlRoot(), 3536 getValue(I.getAddress()))); 3537 } 3538 3539 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3540 if (!DAG.getTarget().Options.TrapUnreachable) 3541 return; 3542 3543 // We may be able to ignore unreachable behind a noreturn call. 3544 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3545 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3546 if (Call->doesNotReturn()) 3547 return; 3548 } 3549 } 3550 3551 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3552 } 3553 3554 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3555 SDNodeFlags Flags; 3556 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3557 Flags.copyFMF(*FPOp); 3558 3559 SDValue Op = getValue(I.getOperand(0)); 3560 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3561 Op, Flags); 3562 setValue(&I, UnNodeValue); 3563 } 3564 3565 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3566 SDNodeFlags Flags; 3567 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3568 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3569 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3570 } 3571 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3572 Flags.setExact(ExactOp->isExact()); 3573 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3574 Flags.setDisjoint(DisjointOp->isDisjoint()); 3575 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3576 Flags.copyFMF(*FPOp); 3577 3578 SDValue Op1 = getValue(I.getOperand(0)); 3579 SDValue Op2 = getValue(I.getOperand(1)); 3580 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3581 Op1, Op2, Flags); 3582 setValue(&I, BinNodeValue); 3583 } 3584 3585 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3586 SDValue Op1 = getValue(I.getOperand(0)); 3587 SDValue Op2 = getValue(I.getOperand(1)); 3588 3589 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3590 Op1.getValueType(), DAG.getDataLayout()); 3591 3592 // Coerce the shift amount to the right type if we can. This exposes the 3593 // truncate or zext to optimization early. 3594 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3595 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3596 "Unexpected shift type"); 3597 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3598 } 3599 3600 bool nuw = false; 3601 bool nsw = false; 3602 bool exact = false; 3603 3604 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3605 3606 if (const OverflowingBinaryOperator *OFBinOp = 3607 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3608 nuw = OFBinOp->hasNoUnsignedWrap(); 3609 nsw = OFBinOp->hasNoSignedWrap(); 3610 } 3611 if (const PossiblyExactOperator *ExactOp = 3612 dyn_cast<const PossiblyExactOperator>(&I)) 3613 exact = ExactOp->isExact(); 3614 } 3615 SDNodeFlags Flags; 3616 Flags.setExact(exact); 3617 Flags.setNoSignedWrap(nsw); 3618 Flags.setNoUnsignedWrap(nuw); 3619 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3620 Flags); 3621 setValue(&I, Res); 3622 } 3623 3624 void SelectionDAGBuilder::visitSDiv(const User &I) { 3625 SDValue Op1 = getValue(I.getOperand(0)); 3626 SDValue Op2 = getValue(I.getOperand(1)); 3627 3628 SDNodeFlags Flags; 3629 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3630 cast<PossiblyExactOperator>(&I)->isExact()); 3631 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3632 Op2, Flags)); 3633 } 3634 3635 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3636 ICmpInst::Predicate predicate = I.getPredicate(); 3637 SDValue Op1 = getValue(I.getOperand(0)); 3638 SDValue Op2 = getValue(I.getOperand(1)); 3639 ISD::CondCode Opcode = getICmpCondCode(predicate); 3640 3641 auto &TLI = DAG.getTargetLoweringInfo(); 3642 EVT MemVT = 3643 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3644 3645 // If a pointer's DAG type is larger than its memory type then the DAG values 3646 // are zero-extended. This breaks signed comparisons so truncate back to the 3647 // underlying type before doing the compare. 3648 if (Op1.getValueType() != MemVT) { 3649 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3650 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3651 } 3652 3653 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3654 I.getType()); 3655 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3656 } 3657 3658 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3659 FCmpInst::Predicate predicate = I.getPredicate(); 3660 SDValue Op1 = getValue(I.getOperand(0)); 3661 SDValue Op2 = getValue(I.getOperand(1)); 3662 3663 ISD::CondCode Condition = getFCmpCondCode(predicate); 3664 auto *FPMO = cast<FPMathOperator>(&I); 3665 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3666 Condition = getFCmpCodeWithoutNaN(Condition); 3667 3668 SDNodeFlags Flags; 3669 Flags.copyFMF(*FPMO); 3670 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3671 3672 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3673 I.getType()); 3674 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3675 } 3676 3677 // Check if the condition of the select has one use or two users that are both 3678 // selects with the same condition. 3679 static bool hasOnlySelectUsers(const Value *Cond) { 3680 return llvm::all_of(Cond->users(), [](const Value *V) { 3681 return isa<SelectInst>(V); 3682 }); 3683 } 3684 3685 void SelectionDAGBuilder::visitSelect(const User &I) { 3686 SmallVector<EVT, 4> ValueVTs; 3687 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3688 ValueVTs); 3689 unsigned NumValues = ValueVTs.size(); 3690 if (NumValues == 0) return; 3691 3692 SmallVector<SDValue, 4> Values(NumValues); 3693 SDValue Cond = getValue(I.getOperand(0)); 3694 SDValue LHSVal = getValue(I.getOperand(1)); 3695 SDValue RHSVal = getValue(I.getOperand(2)); 3696 SmallVector<SDValue, 1> BaseOps(1, Cond); 3697 ISD::NodeType OpCode = 3698 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3699 3700 bool IsUnaryAbs = false; 3701 bool Negate = false; 3702 3703 SDNodeFlags Flags; 3704 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3705 Flags.copyFMF(*FPOp); 3706 3707 Flags.setUnpredictable( 3708 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3709 3710 // Min/max matching is only viable if all output VTs are the same. 3711 if (all_equal(ValueVTs)) { 3712 EVT VT = ValueVTs[0]; 3713 LLVMContext &Ctx = *DAG.getContext(); 3714 auto &TLI = DAG.getTargetLoweringInfo(); 3715 3716 // We care about the legality of the operation after it has been type 3717 // legalized. 3718 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3719 VT = TLI.getTypeToTransformTo(Ctx, VT); 3720 3721 // If the vselect is legal, assume we want to leave this as a vector setcc + 3722 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3723 // min/max is legal on the scalar type. 3724 bool UseScalarMinMax = VT.isVector() && 3725 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3726 3727 // ValueTracking's select pattern matching does not account for -0.0, 3728 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3729 // -0.0 is less than +0.0. 3730 Value *LHS, *RHS; 3731 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3732 ISD::NodeType Opc = ISD::DELETED_NODE; 3733 switch (SPR.Flavor) { 3734 case SPF_UMAX: Opc = ISD::UMAX; break; 3735 case SPF_UMIN: Opc = ISD::UMIN; break; 3736 case SPF_SMAX: Opc = ISD::SMAX; break; 3737 case SPF_SMIN: Opc = ISD::SMIN; break; 3738 case SPF_FMINNUM: 3739 switch (SPR.NaNBehavior) { 3740 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3741 case SPNB_RETURNS_NAN: break; 3742 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3743 case SPNB_RETURNS_ANY: 3744 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3745 (UseScalarMinMax && 3746 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3747 Opc = ISD::FMINNUM; 3748 break; 3749 } 3750 break; 3751 case SPF_FMAXNUM: 3752 switch (SPR.NaNBehavior) { 3753 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3754 case SPNB_RETURNS_NAN: break; 3755 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3756 case SPNB_RETURNS_ANY: 3757 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3758 (UseScalarMinMax && 3759 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3760 Opc = ISD::FMAXNUM; 3761 break; 3762 } 3763 break; 3764 case SPF_NABS: 3765 Negate = true; 3766 [[fallthrough]]; 3767 case SPF_ABS: 3768 IsUnaryAbs = true; 3769 Opc = ISD::ABS; 3770 break; 3771 default: break; 3772 } 3773 3774 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3775 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3776 (UseScalarMinMax && 3777 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3778 // If the underlying comparison instruction is used by any other 3779 // instruction, the consumed instructions won't be destroyed, so it is 3780 // not profitable to convert to a min/max. 3781 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3782 OpCode = Opc; 3783 LHSVal = getValue(LHS); 3784 RHSVal = getValue(RHS); 3785 BaseOps.clear(); 3786 } 3787 3788 if (IsUnaryAbs) { 3789 OpCode = Opc; 3790 LHSVal = getValue(LHS); 3791 BaseOps.clear(); 3792 } 3793 } 3794 3795 if (IsUnaryAbs) { 3796 for (unsigned i = 0; i != NumValues; ++i) { 3797 SDLoc dl = getCurSDLoc(); 3798 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3799 Values[i] = 3800 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3801 if (Negate) 3802 Values[i] = DAG.getNegative(Values[i], dl, VT); 3803 } 3804 } else { 3805 for (unsigned i = 0; i != NumValues; ++i) { 3806 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3807 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3808 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3809 Values[i] = DAG.getNode( 3810 OpCode, getCurSDLoc(), 3811 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3812 } 3813 } 3814 3815 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3816 DAG.getVTList(ValueVTs), Values)); 3817 } 3818 3819 void SelectionDAGBuilder::visitTrunc(const User &I) { 3820 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3821 SDValue N = getValue(I.getOperand(0)); 3822 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3823 I.getType()); 3824 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3825 } 3826 3827 void SelectionDAGBuilder::visitZExt(const User &I) { 3828 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3829 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3830 SDValue N = getValue(I.getOperand(0)); 3831 auto &TLI = DAG.getTargetLoweringInfo(); 3832 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3833 3834 SDNodeFlags Flags; 3835 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3836 Flags.setNonNeg(PNI->hasNonNeg()); 3837 3838 // Eagerly use nonneg information to canonicalize towards sign_extend if 3839 // that is the target's preference. 3840 // TODO: Let the target do this later. 3841 if (Flags.hasNonNeg() && 3842 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3843 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3844 return; 3845 } 3846 3847 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3848 } 3849 3850 void SelectionDAGBuilder::visitSExt(const User &I) { 3851 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3852 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3853 SDValue N = getValue(I.getOperand(0)); 3854 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3855 I.getType()); 3856 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3857 } 3858 3859 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3860 // FPTrunc is never a no-op cast, no need to check 3861 SDValue N = getValue(I.getOperand(0)); 3862 SDLoc dl = getCurSDLoc(); 3863 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3864 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3865 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3866 DAG.getTargetConstant( 3867 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3868 } 3869 3870 void SelectionDAGBuilder::visitFPExt(const User &I) { 3871 // FPExt is never a no-op cast, no need to check 3872 SDValue N = getValue(I.getOperand(0)); 3873 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3874 I.getType()); 3875 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3876 } 3877 3878 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3879 // FPToUI is never a no-op cast, no need to check 3880 SDValue N = getValue(I.getOperand(0)); 3881 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3882 I.getType()); 3883 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3884 } 3885 3886 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3887 // FPToSI is never a no-op cast, no need to check 3888 SDValue N = getValue(I.getOperand(0)); 3889 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3890 I.getType()); 3891 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3892 } 3893 3894 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3895 // UIToFP is never a no-op cast, no need to check 3896 SDValue N = getValue(I.getOperand(0)); 3897 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3898 I.getType()); 3899 SDNodeFlags Flags; 3900 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3901 Flags.setNonNeg(PNI->hasNonNeg()); 3902 3903 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3904 } 3905 3906 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3907 // SIToFP is never a no-op cast, no need to check 3908 SDValue N = getValue(I.getOperand(0)); 3909 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3910 I.getType()); 3911 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3912 } 3913 3914 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3915 // What to do depends on the size of the integer and the size of the pointer. 3916 // We can either truncate, zero extend, or no-op, accordingly. 3917 SDValue N = getValue(I.getOperand(0)); 3918 auto &TLI = DAG.getTargetLoweringInfo(); 3919 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3920 I.getType()); 3921 EVT PtrMemVT = 3922 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3923 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3924 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3925 setValue(&I, N); 3926 } 3927 3928 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3929 // What to do depends on the size of the integer and the size of the pointer. 3930 // We can either truncate, zero extend, or no-op, accordingly. 3931 SDValue N = getValue(I.getOperand(0)); 3932 auto &TLI = DAG.getTargetLoweringInfo(); 3933 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3934 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3935 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3936 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3937 setValue(&I, N); 3938 } 3939 3940 void SelectionDAGBuilder::visitBitCast(const User &I) { 3941 SDValue N = getValue(I.getOperand(0)); 3942 SDLoc dl = getCurSDLoc(); 3943 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3944 I.getType()); 3945 3946 // BitCast assures us that source and destination are the same size so this is 3947 // either a BITCAST or a no-op. 3948 if (DestVT != N.getValueType()) 3949 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3950 DestVT, N)); // convert types. 3951 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3952 // might fold any kind of constant expression to an integer constant and that 3953 // is not what we are looking for. Only recognize a bitcast of a genuine 3954 // constant integer as an opaque constant. 3955 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3956 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3957 /*isOpaque*/true)); 3958 else 3959 setValue(&I, N); // noop cast. 3960 } 3961 3962 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3964 const Value *SV = I.getOperand(0); 3965 SDValue N = getValue(SV); 3966 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3967 3968 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3969 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3970 3971 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3972 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3973 3974 setValue(&I, N); 3975 } 3976 3977 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3978 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3979 SDValue InVec = getValue(I.getOperand(0)); 3980 SDValue InVal = getValue(I.getOperand(1)); 3981 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3982 TLI.getVectorIdxTy(DAG.getDataLayout())); 3983 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3984 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3985 InVec, InVal, InIdx)); 3986 } 3987 3988 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3990 SDValue InVec = getValue(I.getOperand(0)); 3991 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3992 TLI.getVectorIdxTy(DAG.getDataLayout())); 3993 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3994 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3995 InVec, InIdx)); 3996 } 3997 3998 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3999 SDValue Src1 = getValue(I.getOperand(0)); 4000 SDValue Src2 = getValue(I.getOperand(1)); 4001 ArrayRef<int> Mask; 4002 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 4003 Mask = SVI->getShuffleMask(); 4004 else 4005 Mask = cast<ConstantExpr>(I).getShuffleMask(); 4006 SDLoc DL = getCurSDLoc(); 4007 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4008 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4009 EVT SrcVT = Src1.getValueType(); 4010 4011 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4012 VT.isScalableVector()) { 4013 // Canonical splat form of first element of first input vector. 4014 SDValue FirstElt = 4015 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4016 DAG.getVectorIdxConstant(0, DL)); 4017 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4018 return; 4019 } 4020 4021 // For now, we only handle splats for scalable vectors. 4022 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4023 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4024 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4025 4026 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4027 unsigned MaskNumElts = Mask.size(); 4028 4029 if (SrcNumElts == MaskNumElts) { 4030 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4031 return; 4032 } 4033 4034 // Normalize the shuffle vector since mask and vector length don't match. 4035 if (SrcNumElts < MaskNumElts) { 4036 // Mask is longer than the source vectors. We can use concatenate vector to 4037 // make the mask and vectors lengths match. 4038 4039 if (MaskNumElts % SrcNumElts == 0) { 4040 // Mask length is a multiple of the source vector length. 4041 // Check if the shuffle is some kind of concatenation of the input 4042 // vectors. 4043 unsigned NumConcat = MaskNumElts / SrcNumElts; 4044 bool IsConcat = true; 4045 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4046 for (unsigned i = 0; i != MaskNumElts; ++i) { 4047 int Idx = Mask[i]; 4048 if (Idx < 0) 4049 continue; 4050 // Ensure the indices in each SrcVT sized piece are sequential and that 4051 // the same source is used for the whole piece. 4052 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4053 (ConcatSrcs[i / SrcNumElts] >= 0 && 4054 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4055 IsConcat = false; 4056 break; 4057 } 4058 // Remember which source this index came from. 4059 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4060 } 4061 4062 // The shuffle is concatenating multiple vectors together. Just emit 4063 // a CONCAT_VECTORS operation. 4064 if (IsConcat) { 4065 SmallVector<SDValue, 8> ConcatOps; 4066 for (auto Src : ConcatSrcs) { 4067 if (Src < 0) 4068 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4069 else if (Src == 0) 4070 ConcatOps.push_back(Src1); 4071 else 4072 ConcatOps.push_back(Src2); 4073 } 4074 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4075 return; 4076 } 4077 } 4078 4079 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4080 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4081 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4082 PaddedMaskNumElts); 4083 4084 // Pad both vectors with undefs to make them the same length as the mask. 4085 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4086 4087 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4088 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4089 MOps1[0] = Src1; 4090 MOps2[0] = Src2; 4091 4092 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4093 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4094 4095 // Readjust mask for new input vector length. 4096 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4097 for (unsigned i = 0; i != MaskNumElts; ++i) { 4098 int Idx = Mask[i]; 4099 if (Idx >= (int)SrcNumElts) 4100 Idx -= SrcNumElts - PaddedMaskNumElts; 4101 MappedOps[i] = Idx; 4102 } 4103 4104 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4105 4106 // If the concatenated vector was padded, extract a subvector with the 4107 // correct number of elements. 4108 if (MaskNumElts != PaddedMaskNumElts) 4109 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4110 DAG.getVectorIdxConstant(0, DL)); 4111 4112 setValue(&I, Result); 4113 return; 4114 } 4115 4116 if (SrcNumElts > MaskNumElts) { 4117 // Analyze the access pattern of the vector to see if we can extract 4118 // two subvectors and do the shuffle. 4119 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4120 bool CanExtract = true; 4121 for (int Idx : Mask) { 4122 unsigned Input = 0; 4123 if (Idx < 0) 4124 continue; 4125 4126 if (Idx >= (int)SrcNumElts) { 4127 Input = 1; 4128 Idx -= SrcNumElts; 4129 } 4130 4131 // If all the indices come from the same MaskNumElts sized portion of 4132 // the sources we can use extract. Also make sure the extract wouldn't 4133 // extract past the end of the source. 4134 int NewStartIdx = alignDown(Idx, MaskNumElts); 4135 if (NewStartIdx + MaskNumElts > SrcNumElts || 4136 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4137 CanExtract = false; 4138 // Make sure we always update StartIdx as we use it to track if all 4139 // elements are undef. 4140 StartIdx[Input] = NewStartIdx; 4141 } 4142 4143 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4144 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4145 return; 4146 } 4147 if (CanExtract) { 4148 // Extract appropriate subvector and generate a vector shuffle 4149 for (unsigned Input = 0; Input < 2; ++Input) { 4150 SDValue &Src = Input == 0 ? Src1 : Src2; 4151 if (StartIdx[Input] < 0) 4152 Src = DAG.getUNDEF(VT); 4153 else { 4154 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4155 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4156 } 4157 } 4158 4159 // Calculate new mask. 4160 SmallVector<int, 8> MappedOps(Mask); 4161 for (int &Idx : MappedOps) { 4162 if (Idx >= (int)SrcNumElts) 4163 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4164 else if (Idx >= 0) 4165 Idx -= StartIdx[0]; 4166 } 4167 4168 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4169 return; 4170 } 4171 } 4172 4173 // We can't use either concat vectors or extract subvectors so fall back to 4174 // replacing the shuffle with extract and build vector. 4175 // to insert and build vector. 4176 EVT EltVT = VT.getVectorElementType(); 4177 SmallVector<SDValue,8> Ops; 4178 for (int Idx : Mask) { 4179 SDValue Res; 4180 4181 if (Idx < 0) { 4182 Res = DAG.getUNDEF(EltVT); 4183 } else { 4184 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4185 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4186 4187 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4188 DAG.getVectorIdxConstant(Idx, DL)); 4189 } 4190 4191 Ops.push_back(Res); 4192 } 4193 4194 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4195 } 4196 4197 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4198 ArrayRef<unsigned> Indices = I.getIndices(); 4199 const Value *Op0 = I.getOperand(0); 4200 const Value *Op1 = I.getOperand(1); 4201 Type *AggTy = I.getType(); 4202 Type *ValTy = Op1->getType(); 4203 bool IntoUndef = isa<UndefValue>(Op0); 4204 bool FromUndef = isa<UndefValue>(Op1); 4205 4206 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4207 4208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4209 SmallVector<EVT, 4> AggValueVTs; 4210 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4211 SmallVector<EVT, 4> ValValueVTs; 4212 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4213 4214 unsigned NumAggValues = AggValueVTs.size(); 4215 unsigned NumValValues = ValValueVTs.size(); 4216 SmallVector<SDValue, 4> Values(NumAggValues); 4217 4218 // Ignore an insertvalue that produces an empty object 4219 if (!NumAggValues) { 4220 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4221 return; 4222 } 4223 4224 SDValue Agg = getValue(Op0); 4225 unsigned i = 0; 4226 // Copy the beginning value(s) from the original aggregate. 4227 for (; i != LinearIndex; ++i) 4228 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4229 SDValue(Agg.getNode(), Agg.getResNo() + i); 4230 // Copy values from the inserted value(s). 4231 if (NumValValues) { 4232 SDValue Val = getValue(Op1); 4233 for (; i != LinearIndex + NumValValues; ++i) 4234 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4235 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4236 } 4237 // Copy remaining value(s) from the original aggregate. 4238 for (; i != NumAggValues; ++i) 4239 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4240 SDValue(Agg.getNode(), Agg.getResNo() + i); 4241 4242 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4243 DAG.getVTList(AggValueVTs), Values)); 4244 } 4245 4246 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4247 ArrayRef<unsigned> Indices = I.getIndices(); 4248 const Value *Op0 = I.getOperand(0); 4249 Type *AggTy = Op0->getType(); 4250 Type *ValTy = I.getType(); 4251 bool OutOfUndef = isa<UndefValue>(Op0); 4252 4253 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4254 4255 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4256 SmallVector<EVT, 4> ValValueVTs; 4257 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4258 4259 unsigned NumValValues = ValValueVTs.size(); 4260 4261 // Ignore a extractvalue that produces an empty object 4262 if (!NumValValues) { 4263 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4264 return; 4265 } 4266 4267 SmallVector<SDValue, 4> Values(NumValValues); 4268 4269 SDValue Agg = getValue(Op0); 4270 // Copy out the selected value(s). 4271 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4272 Values[i - LinearIndex] = 4273 OutOfUndef ? 4274 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4275 SDValue(Agg.getNode(), Agg.getResNo() + i); 4276 4277 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4278 DAG.getVTList(ValValueVTs), Values)); 4279 } 4280 4281 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4282 Value *Op0 = I.getOperand(0); 4283 // Note that the pointer operand may be a vector of pointers. Take the scalar 4284 // element which holds a pointer. 4285 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4286 SDValue N = getValue(Op0); 4287 SDLoc dl = getCurSDLoc(); 4288 auto &TLI = DAG.getTargetLoweringInfo(); 4289 4290 // Normalize Vector GEP - all scalar operands should be converted to the 4291 // splat vector. 4292 bool IsVectorGEP = I.getType()->isVectorTy(); 4293 ElementCount VectorElementCount = 4294 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4295 : ElementCount::getFixed(0); 4296 4297 if (IsVectorGEP && !N.getValueType().isVector()) { 4298 LLVMContext &Context = *DAG.getContext(); 4299 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4300 N = DAG.getSplat(VT, dl, N); 4301 } 4302 4303 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4304 GTI != E; ++GTI) { 4305 const Value *Idx = GTI.getOperand(); 4306 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4307 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4308 if (Field) { 4309 // N = N + Offset 4310 uint64_t Offset = 4311 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4312 4313 // In an inbounds GEP with an offset that is nonnegative even when 4314 // interpreted as signed, assume there is no unsigned overflow. 4315 SDNodeFlags Flags; 4316 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4317 Flags.setNoUnsignedWrap(true); 4318 4319 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4320 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4321 } 4322 } else { 4323 // IdxSize is the width of the arithmetic according to IR semantics. 4324 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4325 // (and fix up the result later). 4326 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4327 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4328 TypeSize ElementSize = 4329 GTI.getSequentialElementStride(DAG.getDataLayout()); 4330 // We intentionally mask away the high bits here; ElementSize may not 4331 // fit in IdxTy. 4332 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4333 bool ElementScalable = ElementSize.isScalable(); 4334 4335 // If this is a scalar constant or a splat vector of constants, 4336 // handle it quickly. 4337 const auto *C = dyn_cast<Constant>(Idx); 4338 if (C && isa<VectorType>(C->getType())) 4339 C = C->getSplatValue(); 4340 4341 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4342 if (CI && CI->isZero()) 4343 continue; 4344 if (CI && !ElementScalable) { 4345 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4346 LLVMContext &Context = *DAG.getContext(); 4347 SDValue OffsVal; 4348 if (IsVectorGEP) 4349 OffsVal = DAG.getConstant( 4350 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4351 else 4352 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4353 4354 // In an inbounds GEP with an offset that is nonnegative even when 4355 // interpreted as signed, assume there is no unsigned overflow. 4356 SDNodeFlags Flags; 4357 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4358 Flags.setNoUnsignedWrap(true); 4359 4360 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4361 4362 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4363 continue; 4364 } 4365 4366 // N = N + Idx * ElementMul; 4367 SDValue IdxN = getValue(Idx); 4368 4369 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4370 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4371 VectorElementCount); 4372 IdxN = DAG.getSplat(VT, dl, IdxN); 4373 } 4374 4375 // If the index is smaller or larger than intptr_t, truncate or extend 4376 // it. 4377 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4378 4379 if (ElementScalable) { 4380 EVT VScaleTy = N.getValueType().getScalarType(); 4381 SDValue VScale = DAG.getNode( 4382 ISD::VSCALE, dl, VScaleTy, 4383 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4384 if (IsVectorGEP) 4385 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4386 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4387 } else { 4388 // If this is a multiply by a power of two, turn it into a shl 4389 // immediately. This is a very common case. 4390 if (ElementMul != 1) { 4391 if (ElementMul.isPowerOf2()) { 4392 unsigned Amt = ElementMul.logBase2(); 4393 IdxN = DAG.getNode(ISD::SHL, dl, 4394 N.getValueType(), IdxN, 4395 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4396 } else { 4397 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4398 IdxN.getValueType()); 4399 IdxN = DAG.getNode(ISD::MUL, dl, 4400 N.getValueType(), IdxN, Scale); 4401 } 4402 } 4403 } 4404 4405 N = DAG.getNode(ISD::ADD, dl, 4406 N.getValueType(), N, IdxN); 4407 } 4408 } 4409 4410 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4411 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4412 if (IsVectorGEP) { 4413 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4414 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4415 } 4416 4417 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4418 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4419 4420 setValue(&I, N); 4421 } 4422 4423 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4424 // If this is a fixed sized alloca in the entry block of the function, 4425 // allocate it statically on the stack. 4426 if (FuncInfo.StaticAllocaMap.count(&I)) 4427 return; // getValue will auto-populate this. 4428 4429 SDLoc dl = getCurSDLoc(); 4430 Type *Ty = I.getAllocatedType(); 4431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4432 auto &DL = DAG.getDataLayout(); 4433 TypeSize TySize = DL.getTypeAllocSize(Ty); 4434 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4435 4436 SDValue AllocSize = getValue(I.getArraySize()); 4437 4438 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4439 if (AllocSize.getValueType() != IntPtr) 4440 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4441 4442 if (TySize.isScalable()) 4443 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4444 DAG.getVScale(dl, IntPtr, 4445 APInt(IntPtr.getScalarSizeInBits(), 4446 TySize.getKnownMinValue()))); 4447 else { 4448 SDValue TySizeValue = 4449 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4450 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4451 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4452 } 4453 4454 // Handle alignment. If the requested alignment is less than or equal to 4455 // the stack alignment, ignore it. If the size is greater than or equal to 4456 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4457 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4458 if (*Alignment <= StackAlign) 4459 Alignment = std::nullopt; 4460 4461 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4462 // Round the size of the allocation up to the stack alignment size 4463 // by add SA-1 to the size. This doesn't overflow because we're computing 4464 // an address inside an alloca. 4465 SDNodeFlags Flags; 4466 Flags.setNoUnsignedWrap(true); 4467 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4468 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4469 4470 // Mask out the low bits for alignment purposes. 4471 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4472 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4473 4474 SDValue Ops[] = { 4475 getRoot(), AllocSize, 4476 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4477 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4478 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4479 setValue(&I, DSA); 4480 DAG.setRoot(DSA.getValue(1)); 4481 4482 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4483 } 4484 4485 static const MDNode *getRangeMetadata(const Instruction &I) { 4486 // If !noundef is not present, then !range violation results in a poison 4487 // value rather than immediate undefined behavior. In theory, transferring 4488 // these annotations to SDAG is fine, but in practice there are key SDAG 4489 // transforms that are known not to be poison-safe, such as folding logical 4490 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4491 // also present. 4492 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4493 return nullptr; 4494 return I.getMetadata(LLVMContext::MD_range); 4495 } 4496 4497 static std::optional<ConstantRange> getRange(const Instruction &I) { 4498 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4499 // see comment in getRangeMetadata about this check 4500 if (CB->hasRetAttr(Attribute::NoUndef)) 4501 return CB->getRange(); 4502 } 4503 if (const MDNode *Range = getRangeMetadata(I)) 4504 return getConstantRangeFromMetadata(*Range); 4505 return std::nullopt; 4506 } 4507 4508 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4509 if (I.isAtomic()) 4510 return visitAtomicLoad(I); 4511 4512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4513 const Value *SV = I.getOperand(0); 4514 if (TLI.supportSwiftError()) { 4515 // Swifterror values can come from either a function parameter with 4516 // swifterror attribute or an alloca with swifterror attribute. 4517 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4518 if (Arg->hasSwiftErrorAttr()) 4519 return visitLoadFromSwiftError(I); 4520 } 4521 4522 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4523 if (Alloca->isSwiftError()) 4524 return visitLoadFromSwiftError(I); 4525 } 4526 } 4527 4528 SDValue Ptr = getValue(SV); 4529 4530 Type *Ty = I.getType(); 4531 SmallVector<EVT, 4> ValueVTs, MemVTs; 4532 SmallVector<TypeSize, 4> Offsets; 4533 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4534 unsigned NumValues = ValueVTs.size(); 4535 if (NumValues == 0) 4536 return; 4537 4538 Align Alignment = I.getAlign(); 4539 AAMDNodes AAInfo = I.getAAMetadata(); 4540 const MDNode *Ranges = getRangeMetadata(I); 4541 bool isVolatile = I.isVolatile(); 4542 MachineMemOperand::Flags MMOFlags = 4543 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4544 4545 SDValue Root; 4546 bool ConstantMemory = false; 4547 if (isVolatile) 4548 // Serialize volatile loads with other side effects. 4549 Root = getRoot(); 4550 else if (NumValues > MaxParallelChains) 4551 Root = getMemoryRoot(); 4552 else if (AA && 4553 AA->pointsToConstantMemory(MemoryLocation( 4554 SV, 4555 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4556 AAInfo))) { 4557 // Do not serialize (non-volatile) loads of constant memory with anything. 4558 Root = DAG.getEntryNode(); 4559 ConstantMemory = true; 4560 MMOFlags |= MachineMemOperand::MOInvariant; 4561 } else { 4562 // Do not serialize non-volatile loads against each other. 4563 Root = DAG.getRoot(); 4564 } 4565 4566 SDLoc dl = getCurSDLoc(); 4567 4568 if (isVolatile) 4569 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4570 4571 SmallVector<SDValue, 4> Values(NumValues); 4572 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4573 4574 unsigned ChainI = 0; 4575 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4576 // Serializing loads here may result in excessive register pressure, and 4577 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4578 // could recover a bit by hoisting nodes upward in the chain by recognizing 4579 // they are side-effect free or do not alias. The optimizer should really 4580 // avoid this case by converting large object/array copies to llvm.memcpy 4581 // (MaxParallelChains should always remain as failsafe). 4582 if (ChainI == MaxParallelChains) { 4583 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4584 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4585 ArrayRef(Chains.data(), ChainI)); 4586 Root = Chain; 4587 ChainI = 0; 4588 } 4589 4590 // TODO: MachinePointerInfo only supports a fixed length offset. 4591 MachinePointerInfo PtrInfo = 4592 !Offsets[i].isScalable() || Offsets[i].isZero() 4593 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4594 : MachinePointerInfo(); 4595 4596 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4597 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4598 MMOFlags, AAInfo, Ranges); 4599 Chains[ChainI] = L.getValue(1); 4600 4601 if (MemVTs[i] != ValueVTs[i]) 4602 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4603 4604 Values[i] = L; 4605 } 4606 4607 if (!ConstantMemory) { 4608 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4609 ArrayRef(Chains.data(), ChainI)); 4610 if (isVolatile) 4611 DAG.setRoot(Chain); 4612 else 4613 PendingLoads.push_back(Chain); 4614 } 4615 4616 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4617 DAG.getVTList(ValueVTs), Values)); 4618 } 4619 4620 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4621 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4622 "call visitStoreToSwiftError when backend supports swifterror"); 4623 4624 SmallVector<EVT, 4> ValueVTs; 4625 SmallVector<uint64_t, 4> Offsets; 4626 const Value *SrcV = I.getOperand(0); 4627 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4628 SrcV->getType(), ValueVTs, &Offsets, 0); 4629 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4630 "expect a single EVT for swifterror"); 4631 4632 SDValue Src = getValue(SrcV); 4633 // Create a virtual register, then update the virtual register. 4634 Register VReg = 4635 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4636 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4637 // Chain can be getRoot or getControlRoot. 4638 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4639 SDValue(Src.getNode(), Src.getResNo())); 4640 DAG.setRoot(CopyNode); 4641 } 4642 4643 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4644 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4645 "call visitLoadFromSwiftError when backend supports swifterror"); 4646 4647 assert(!I.isVolatile() && 4648 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4649 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4650 "Support volatile, non temporal, invariant for load_from_swift_error"); 4651 4652 const Value *SV = I.getOperand(0); 4653 Type *Ty = I.getType(); 4654 assert( 4655 (!AA || 4656 !AA->pointsToConstantMemory(MemoryLocation( 4657 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4658 I.getAAMetadata()))) && 4659 "load_from_swift_error should not be constant memory"); 4660 4661 SmallVector<EVT, 4> ValueVTs; 4662 SmallVector<uint64_t, 4> Offsets; 4663 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4664 ValueVTs, &Offsets, 0); 4665 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4666 "expect a single EVT for swifterror"); 4667 4668 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4669 SDValue L = DAG.getCopyFromReg( 4670 getRoot(), getCurSDLoc(), 4671 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4672 4673 setValue(&I, L); 4674 } 4675 4676 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4677 if (I.isAtomic()) 4678 return visitAtomicStore(I); 4679 4680 const Value *SrcV = I.getOperand(0); 4681 const Value *PtrV = I.getOperand(1); 4682 4683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4684 if (TLI.supportSwiftError()) { 4685 // Swifterror values can come from either a function parameter with 4686 // swifterror attribute or an alloca with swifterror attribute. 4687 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4688 if (Arg->hasSwiftErrorAttr()) 4689 return visitStoreToSwiftError(I); 4690 } 4691 4692 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4693 if (Alloca->isSwiftError()) 4694 return visitStoreToSwiftError(I); 4695 } 4696 } 4697 4698 SmallVector<EVT, 4> ValueVTs, MemVTs; 4699 SmallVector<TypeSize, 4> Offsets; 4700 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4701 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4702 unsigned NumValues = ValueVTs.size(); 4703 if (NumValues == 0) 4704 return; 4705 4706 // Get the lowered operands. Note that we do this after 4707 // checking if NumResults is zero, because with zero results 4708 // the operands won't have values in the map. 4709 SDValue Src = getValue(SrcV); 4710 SDValue Ptr = getValue(PtrV); 4711 4712 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4713 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4714 SDLoc dl = getCurSDLoc(); 4715 Align Alignment = I.getAlign(); 4716 AAMDNodes AAInfo = I.getAAMetadata(); 4717 4718 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4719 4720 unsigned ChainI = 0; 4721 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4722 // See visitLoad comments. 4723 if (ChainI == MaxParallelChains) { 4724 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4725 ArrayRef(Chains.data(), ChainI)); 4726 Root = Chain; 4727 ChainI = 0; 4728 } 4729 4730 // TODO: MachinePointerInfo only supports a fixed length offset. 4731 MachinePointerInfo PtrInfo = 4732 !Offsets[i].isScalable() || Offsets[i].isZero() 4733 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4734 : MachinePointerInfo(); 4735 4736 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4737 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4738 if (MemVTs[i] != ValueVTs[i]) 4739 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4740 SDValue St = 4741 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4742 Chains[ChainI] = St; 4743 } 4744 4745 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4746 ArrayRef(Chains.data(), ChainI)); 4747 setValue(&I, StoreNode); 4748 DAG.setRoot(StoreNode); 4749 } 4750 4751 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4752 bool IsCompressing) { 4753 SDLoc sdl = getCurSDLoc(); 4754 4755 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4756 Align &Alignment) { 4757 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4758 Src0 = I.getArgOperand(0); 4759 Ptr = I.getArgOperand(1); 4760 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4761 Mask = I.getArgOperand(3); 4762 }; 4763 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4764 Align &Alignment) { 4765 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4766 Src0 = I.getArgOperand(0); 4767 Ptr = I.getArgOperand(1); 4768 Mask = I.getArgOperand(2); 4769 Alignment = I.getParamAlign(1).valueOrOne(); 4770 }; 4771 4772 Value *PtrOperand, *MaskOperand, *Src0Operand; 4773 Align Alignment; 4774 if (IsCompressing) 4775 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4776 else 4777 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4778 4779 SDValue Ptr = getValue(PtrOperand); 4780 SDValue Src0 = getValue(Src0Operand); 4781 SDValue Mask = getValue(MaskOperand); 4782 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4783 4784 EVT VT = Src0.getValueType(); 4785 4786 auto MMOFlags = MachineMemOperand::MOStore; 4787 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4788 MMOFlags |= MachineMemOperand::MONonTemporal; 4789 4790 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4791 MachinePointerInfo(PtrOperand), MMOFlags, 4792 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4793 SDValue StoreNode = 4794 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4795 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4796 DAG.setRoot(StoreNode); 4797 setValue(&I, StoreNode); 4798 } 4799 4800 // Get a uniform base for the Gather/Scatter intrinsic. 4801 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4802 // We try to represent it as a base pointer + vector of indices. 4803 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4804 // The first operand of the GEP may be a single pointer or a vector of pointers 4805 // Example: 4806 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4807 // or 4808 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4809 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4810 // 4811 // When the first GEP operand is a single pointer - it is the uniform base we 4812 // are looking for. If first operand of the GEP is a splat vector - we 4813 // extract the splat value and use it as a uniform base. 4814 // In all other cases the function returns 'false'. 4815 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4816 ISD::MemIndexType &IndexType, SDValue &Scale, 4817 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4818 uint64_t ElemSize) { 4819 SelectionDAG& DAG = SDB->DAG; 4820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4821 const DataLayout &DL = DAG.getDataLayout(); 4822 4823 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4824 4825 // Handle splat constant pointer. 4826 if (auto *C = dyn_cast<Constant>(Ptr)) { 4827 C = C->getSplatValue(); 4828 if (!C) 4829 return false; 4830 4831 Base = SDB->getValue(C); 4832 4833 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4834 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4835 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4836 IndexType = ISD::SIGNED_SCALED; 4837 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4838 return true; 4839 } 4840 4841 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4842 if (!GEP || GEP->getParent() != CurBB) 4843 return false; 4844 4845 if (GEP->getNumOperands() != 2) 4846 return false; 4847 4848 const Value *BasePtr = GEP->getPointerOperand(); 4849 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4850 4851 // Make sure the base is scalar and the index is a vector. 4852 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4853 return false; 4854 4855 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4856 if (ScaleVal.isScalable()) 4857 return false; 4858 4859 // Target may not support the required addressing mode. 4860 if (ScaleVal != 1 && 4861 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4862 return false; 4863 4864 Base = SDB->getValue(BasePtr); 4865 Index = SDB->getValue(IndexVal); 4866 IndexType = ISD::SIGNED_SCALED; 4867 4868 Scale = 4869 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4870 return true; 4871 } 4872 4873 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4874 SDLoc sdl = getCurSDLoc(); 4875 4876 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4877 const Value *Ptr = I.getArgOperand(1); 4878 SDValue Src0 = getValue(I.getArgOperand(0)); 4879 SDValue Mask = getValue(I.getArgOperand(3)); 4880 EVT VT = Src0.getValueType(); 4881 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4882 ->getMaybeAlignValue() 4883 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4885 4886 SDValue Base; 4887 SDValue Index; 4888 ISD::MemIndexType IndexType; 4889 SDValue Scale; 4890 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4891 I.getParent(), VT.getScalarStoreSize()); 4892 4893 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4894 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4895 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4896 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4897 if (!UniformBase) { 4898 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4899 Index = getValue(Ptr); 4900 IndexType = ISD::SIGNED_SCALED; 4901 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4902 } 4903 4904 EVT IdxVT = Index.getValueType(); 4905 EVT EltTy = IdxVT.getVectorElementType(); 4906 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4907 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4908 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4909 } 4910 4911 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4912 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4913 Ops, MMO, IndexType, false); 4914 DAG.setRoot(Scatter); 4915 setValue(&I, Scatter); 4916 } 4917 4918 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4919 SDLoc sdl = getCurSDLoc(); 4920 4921 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4922 Align &Alignment) { 4923 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4924 Ptr = I.getArgOperand(0); 4925 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4926 Mask = I.getArgOperand(2); 4927 Src0 = I.getArgOperand(3); 4928 }; 4929 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4930 Align &Alignment) { 4931 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4932 Ptr = I.getArgOperand(0); 4933 Alignment = I.getParamAlign(0).valueOrOne(); 4934 Mask = I.getArgOperand(1); 4935 Src0 = I.getArgOperand(2); 4936 }; 4937 4938 Value *PtrOperand, *MaskOperand, *Src0Operand; 4939 Align Alignment; 4940 if (IsExpanding) 4941 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4942 else 4943 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4944 4945 SDValue Ptr = getValue(PtrOperand); 4946 SDValue Src0 = getValue(Src0Operand); 4947 SDValue Mask = getValue(MaskOperand); 4948 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4949 4950 EVT VT = Src0.getValueType(); 4951 AAMDNodes AAInfo = I.getAAMetadata(); 4952 const MDNode *Ranges = getRangeMetadata(I); 4953 4954 // Do not serialize masked loads of constant memory with anything. 4955 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4956 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4957 4958 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4959 4960 auto MMOFlags = MachineMemOperand::MOLoad; 4961 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4962 MMOFlags |= MachineMemOperand::MONonTemporal; 4963 4964 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4965 MachinePointerInfo(PtrOperand), MMOFlags, 4966 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4967 4968 SDValue Load = 4969 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4970 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4971 if (AddToChain) 4972 PendingLoads.push_back(Load.getValue(1)); 4973 setValue(&I, Load); 4974 } 4975 4976 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4977 SDLoc sdl = getCurSDLoc(); 4978 4979 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4980 const Value *Ptr = I.getArgOperand(0); 4981 SDValue Src0 = getValue(I.getArgOperand(3)); 4982 SDValue Mask = getValue(I.getArgOperand(2)); 4983 4984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4985 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4986 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4987 ->getMaybeAlignValue() 4988 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4989 4990 const MDNode *Ranges = getRangeMetadata(I); 4991 4992 SDValue Root = DAG.getRoot(); 4993 SDValue Base; 4994 SDValue Index; 4995 ISD::MemIndexType IndexType; 4996 SDValue Scale; 4997 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4998 I.getParent(), VT.getScalarStoreSize()); 4999 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 5000 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5001 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 5002 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 5003 Ranges); 5004 5005 if (!UniformBase) { 5006 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5007 Index = getValue(Ptr); 5008 IndexType = ISD::SIGNED_SCALED; 5009 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5010 } 5011 5012 EVT IdxVT = Index.getValueType(); 5013 EVT EltTy = IdxVT.getVectorElementType(); 5014 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5015 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5016 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5017 } 5018 5019 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5020 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5021 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5022 5023 PendingLoads.push_back(Gather.getValue(1)); 5024 setValue(&I, Gather); 5025 } 5026 5027 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5028 SDLoc dl = getCurSDLoc(); 5029 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5030 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5031 SyncScope::ID SSID = I.getSyncScopeID(); 5032 5033 SDValue InChain = getRoot(); 5034 5035 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5036 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5037 5038 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5039 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5040 5041 MachineFunction &MF = DAG.getMachineFunction(); 5042 MachineMemOperand *MMO = MF.getMachineMemOperand( 5043 MachinePointerInfo(I.getPointerOperand()), Flags, 5044 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5045 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5046 5047 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5048 dl, MemVT, VTs, InChain, 5049 getValue(I.getPointerOperand()), 5050 getValue(I.getCompareOperand()), 5051 getValue(I.getNewValOperand()), MMO); 5052 5053 SDValue OutChain = L.getValue(2); 5054 5055 setValue(&I, L); 5056 DAG.setRoot(OutChain); 5057 } 5058 5059 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5060 SDLoc dl = getCurSDLoc(); 5061 ISD::NodeType NT; 5062 switch (I.getOperation()) { 5063 default: llvm_unreachable("Unknown atomicrmw operation"); 5064 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5065 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5066 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5067 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5068 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5069 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5070 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5071 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5072 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5073 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5074 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5075 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5076 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5077 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5078 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5079 case AtomicRMWInst::UIncWrap: 5080 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5081 break; 5082 case AtomicRMWInst::UDecWrap: 5083 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5084 break; 5085 } 5086 AtomicOrdering Ordering = I.getOrdering(); 5087 SyncScope::ID SSID = I.getSyncScopeID(); 5088 5089 SDValue InChain = getRoot(); 5090 5091 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5093 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5094 5095 MachineFunction &MF = DAG.getMachineFunction(); 5096 MachineMemOperand *MMO = MF.getMachineMemOperand( 5097 MachinePointerInfo(I.getPointerOperand()), Flags, 5098 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5099 AAMDNodes(), nullptr, SSID, Ordering); 5100 5101 SDValue L = 5102 DAG.getAtomic(NT, dl, MemVT, InChain, 5103 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5104 MMO); 5105 5106 SDValue OutChain = L.getValue(1); 5107 5108 setValue(&I, L); 5109 DAG.setRoot(OutChain); 5110 } 5111 5112 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5113 SDLoc dl = getCurSDLoc(); 5114 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5115 SDValue Ops[3]; 5116 Ops[0] = getRoot(); 5117 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5118 TLI.getFenceOperandTy(DAG.getDataLayout())); 5119 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5120 TLI.getFenceOperandTy(DAG.getDataLayout())); 5121 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5122 setValue(&I, N); 5123 DAG.setRoot(N); 5124 } 5125 5126 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5127 SDLoc dl = getCurSDLoc(); 5128 AtomicOrdering Order = I.getOrdering(); 5129 SyncScope::ID SSID = I.getSyncScopeID(); 5130 5131 SDValue InChain = getRoot(); 5132 5133 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5134 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5135 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5136 5137 if (!TLI.supportsUnalignedAtomics() && 5138 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5139 report_fatal_error("Cannot generate unaligned atomic load"); 5140 5141 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5142 5143 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5144 MachinePointerInfo(I.getPointerOperand()), Flags, 5145 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5146 nullptr, SSID, Order); 5147 5148 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5149 5150 SDValue Ptr = getValue(I.getPointerOperand()); 5151 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5152 Ptr, MMO); 5153 5154 SDValue OutChain = L.getValue(1); 5155 if (MemVT != VT) 5156 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5157 5158 setValue(&I, L); 5159 DAG.setRoot(OutChain); 5160 } 5161 5162 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5163 SDLoc dl = getCurSDLoc(); 5164 5165 AtomicOrdering Ordering = I.getOrdering(); 5166 SyncScope::ID SSID = I.getSyncScopeID(); 5167 5168 SDValue InChain = getRoot(); 5169 5170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5171 EVT MemVT = 5172 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5173 5174 if (!TLI.supportsUnalignedAtomics() && 5175 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5176 report_fatal_error("Cannot generate unaligned atomic store"); 5177 5178 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5179 5180 MachineFunction &MF = DAG.getMachineFunction(); 5181 MachineMemOperand *MMO = MF.getMachineMemOperand( 5182 MachinePointerInfo(I.getPointerOperand()), Flags, 5183 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5184 nullptr, SSID, Ordering); 5185 5186 SDValue Val = getValue(I.getValueOperand()); 5187 if (Val.getValueType() != MemVT) 5188 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5189 SDValue Ptr = getValue(I.getPointerOperand()); 5190 5191 SDValue OutChain = 5192 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5193 5194 setValue(&I, OutChain); 5195 DAG.setRoot(OutChain); 5196 } 5197 5198 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5199 /// node. 5200 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5201 unsigned Intrinsic) { 5202 // Ignore the callsite's attributes. A specific call site may be marked with 5203 // readnone, but the lowering code will expect the chain based on the 5204 // definition. 5205 const Function *F = I.getCalledFunction(); 5206 bool HasChain = !F->doesNotAccessMemory(); 5207 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5208 5209 // Build the operand list. 5210 SmallVector<SDValue, 8> Ops; 5211 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5212 if (OnlyLoad) { 5213 // We don't need to serialize loads against other loads. 5214 Ops.push_back(DAG.getRoot()); 5215 } else { 5216 Ops.push_back(getRoot()); 5217 } 5218 } 5219 5220 // Info is set by getTgtMemIntrinsic 5221 TargetLowering::IntrinsicInfo Info; 5222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5223 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5224 DAG.getMachineFunction(), 5225 Intrinsic); 5226 5227 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5228 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5229 Info.opc == ISD::INTRINSIC_W_CHAIN) 5230 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5231 TLI.getPointerTy(DAG.getDataLayout()))); 5232 5233 // Add all operands of the call to the operand list. 5234 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5235 const Value *Arg = I.getArgOperand(i); 5236 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5237 Ops.push_back(getValue(Arg)); 5238 continue; 5239 } 5240 5241 // Use TargetConstant instead of a regular constant for immarg. 5242 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5243 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5244 assert(CI->getBitWidth() <= 64 && 5245 "large intrinsic immediates not handled"); 5246 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5247 } else { 5248 Ops.push_back( 5249 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5250 } 5251 } 5252 5253 SmallVector<EVT, 4> ValueVTs; 5254 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5255 5256 if (HasChain) 5257 ValueVTs.push_back(MVT::Other); 5258 5259 SDVTList VTs = DAG.getVTList(ValueVTs); 5260 5261 // Propagate fast-math-flags from IR to node(s). 5262 SDNodeFlags Flags; 5263 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5264 Flags.copyFMF(*FPMO); 5265 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5266 5267 // Create the node. 5268 SDValue Result; 5269 5270 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5271 auto *Token = Bundle->Inputs[0].get(); 5272 SDValue ConvControlToken = getValue(Token); 5273 assert(Ops.back().getValueType() != MVT::Glue && 5274 "Did not expected another glue node here."); 5275 ConvControlToken = 5276 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5277 Ops.push_back(ConvControlToken); 5278 } 5279 5280 // In some cases, custom collection of operands from CallInst I may be needed. 5281 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5282 if (IsTgtIntrinsic) { 5283 // This is target intrinsic that touches memory 5284 // 5285 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5286 // didn't yield anything useful. 5287 MachinePointerInfo MPI; 5288 if (Info.ptrVal) 5289 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5290 else if (Info.fallbackAddressSpace) 5291 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5292 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5293 Info.memVT, MPI, Info.align, Info.flags, 5294 Info.size, I.getAAMetadata()); 5295 } else if (!HasChain) { 5296 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5297 } else if (!I.getType()->isVoidTy()) { 5298 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5299 } else { 5300 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5301 } 5302 5303 if (HasChain) { 5304 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5305 if (OnlyLoad) 5306 PendingLoads.push_back(Chain); 5307 else 5308 DAG.setRoot(Chain); 5309 } 5310 5311 if (!I.getType()->isVoidTy()) { 5312 if (!isa<VectorType>(I.getType())) 5313 Result = lowerRangeToAssertZExt(DAG, I, Result); 5314 5315 MaybeAlign Alignment = I.getRetAlign(); 5316 5317 // Insert `assertalign` node if there's an alignment. 5318 if (InsertAssertAlign && Alignment) { 5319 Result = 5320 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5321 } 5322 } 5323 5324 setValue(&I, Result); 5325 } 5326 5327 /// GetSignificand - Get the significand and build it into a floating-point 5328 /// number with exponent of 1: 5329 /// 5330 /// Op = (Op & 0x007fffff) | 0x3f800000; 5331 /// 5332 /// where Op is the hexadecimal representation of floating point value. 5333 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5334 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5335 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5336 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5337 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5338 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5339 } 5340 5341 /// GetExponent - Get the exponent: 5342 /// 5343 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5344 /// 5345 /// where Op is the hexadecimal representation of floating point value. 5346 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5347 const TargetLowering &TLI, const SDLoc &dl) { 5348 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5349 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5350 SDValue t1 = DAG.getNode( 5351 ISD::SRL, dl, MVT::i32, t0, 5352 DAG.getConstant(23, dl, 5353 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5354 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5355 DAG.getConstant(127, dl, MVT::i32)); 5356 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5357 } 5358 5359 /// getF32Constant - Get 32-bit floating point constant. 5360 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5361 const SDLoc &dl) { 5362 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5363 MVT::f32); 5364 } 5365 5366 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5367 SelectionDAG &DAG) { 5368 // TODO: What fast-math-flags should be set on the floating-point nodes? 5369 5370 // IntegerPartOfX = ((int32_t)(t0); 5371 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5372 5373 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5374 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5375 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5376 5377 // IntegerPartOfX <<= 23; 5378 IntegerPartOfX = 5379 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5380 DAG.getConstant(23, dl, 5381 DAG.getTargetLoweringInfo().getShiftAmountTy( 5382 MVT::i32, DAG.getDataLayout()))); 5383 5384 SDValue TwoToFractionalPartOfX; 5385 if (LimitFloatPrecision <= 6) { 5386 // For floating-point precision of 6: 5387 // 5388 // TwoToFractionalPartOfX = 5389 // 0.997535578f + 5390 // (0.735607626f + 0.252464424f * x) * x; 5391 // 5392 // error 0.0144103317, which is 6 bits 5393 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5394 getF32Constant(DAG, 0x3e814304, dl)); 5395 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5396 getF32Constant(DAG, 0x3f3c50c8, dl)); 5397 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5398 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5399 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5400 } else if (LimitFloatPrecision <= 12) { 5401 // For floating-point precision of 12: 5402 // 5403 // TwoToFractionalPartOfX = 5404 // 0.999892986f + 5405 // (0.696457318f + 5406 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5407 // 5408 // error 0.000107046256, which is 13 to 14 bits 5409 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5410 getF32Constant(DAG, 0x3da235e3, dl)); 5411 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5412 getF32Constant(DAG, 0x3e65b8f3, dl)); 5413 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5414 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5415 getF32Constant(DAG, 0x3f324b07, dl)); 5416 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5417 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5418 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5419 } else { // LimitFloatPrecision <= 18 5420 // For floating-point precision of 18: 5421 // 5422 // TwoToFractionalPartOfX = 5423 // 0.999999982f + 5424 // (0.693148872f + 5425 // (0.240227044f + 5426 // (0.554906021e-1f + 5427 // (0.961591928e-2f + 5428 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5429 // error 2.47208000*10^(-7), which is better than 18 bits 5430 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5431 getF32Constant(DAG, 0x3924b03e, dl)); 5432 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5433 getF32Constant(DAG, 0x3ab24b87, dl)); 5434 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5435 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5436 getF32Constant(DAG, 0x3c1d8c17, dl)); 5437 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5438 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5439 getF32Constant(DAG, 0x3d634a1d, dl)); 5440 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5441 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5442 getF32Constant(DAG, 0x3e75fe14, dl)); 5443 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5444 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5445 getF32Constant(DAG, 0x3f317234, dl)); 5446 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5447 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5448 getF32Constant(DAG, 0x3f800000, dl)); 5449 } 5450 5451 // Add the exponent into the result in integer domain. 5452 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5453 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5454 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5455 } 5456 5457 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5458 /// limited-precision mode. 5459 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5460 const TargetLowering &TLI, SDNodeFlags Flags) { 5461 if (Op.getValueType() == MVT::f32 && 5462 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5463 5464 // Put the exponent in the right bit position for later addition to the 5465 // final result: 5466 // 5467 // t0 = Op * log2(e) 5468 5469 // TODO: What fast-math-flags should be set here? 5470 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5471 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5472 return getLimitedPrecisionExp2(t0, dl, DAG); 5473 } 5474 5475 // No special expansion. 5476 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5477 } 5478 5479 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5480 /// limited-precision mode. 5481 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5482 const TargetLowering &TLI, SDNodeFlags Flags) { 5483 // TODO: What fast-math-flags should be set on the floating-point nodes? 5484 5485 if (Op.getValueType() == MVT::f32 && 5486 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5487 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5488 5489 // Scale the exponent by log(2). 5490 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5491 SDValue LogOfExponent = 5492 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5493 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5494 5495 // Get the significand and build it into a floating-point number with 5496 // exponent of 1. 5497 SDValue X = GetSignificand(DAG, Op1, dl); 5498 5499 SDValue LogOfMantissa; 5500 if (LimitFloatPrecision <= 6) { 5501 // For floating-point precision of 6: 5502 // 5503 // LogofMantissa = 5504 // -1.1609546f + 5505 // (1.4034025f - 0.23903021f * x) * x; 5506 // 5507 // error 0.0034276066, which is better than 8 bits 5508 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5509 getF32Constant(DAG, 0xbe74c456, dl)); 5510 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5511 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5512 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5513 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5514 getF32Constant(DAG, 0x3f949a29, dl)); 5515 } else if (LimitFloatPrecision <= 12) { 5516 // For floating-point precision of 12: 5517 // 5518 // LogOfMantissa = 5519 // -1.7417939f + 5520 // (2.8212026f + 5521 // (-1.4699568f + 5522 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5523 // 5524 // error 0.000061011436, which is 14 bits 5525 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5526 getF32Constant(DAG, 0xbd67b6d6, dl)); 5527 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5528 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5529 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5530 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5531 getF32Constant(DAG, 0x3fbc278b, dl)); 5532 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5533 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5534 getF32Constant(DAG, 0x40348e95, dl)); 5535 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5536 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5537 getF32Constant(DAG, 0x3fdef31a, dl)); 5538 } else { // LimitFloatPrecision <= 18 5539 // For floating-point precision of 18: 5540 // 5541 // LogOfMantissa = 5542 // -2.1072184f + 5543 // (4.2372794f + 5544 // (-3.7029485f + 5545 // (2.2781945f + 5546 // (-0.87823314f + 5547 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5548 // 5549 // error 0.0000023660568, which is better than 18 bits 5550 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5551 getF32Constant(DAG, 0xbc91e5ac, dl)); 5552 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5553 getF32Constant(DAG, 0x3e4350aa, dl)); 5554 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5555 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5556 getF32Constant(DAG, 0x3f60d3e3, dl)); 5557 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5558 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5559 getF32Constant(DAG, 0x4011cdf0, dl)); 5560 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5561 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5562 getF32Constant(DAG, 0x406cfd1c, dl)); 5563 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5564 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5565 getF32Constant(DAG, 0x408797cb, dl)); 5566 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5567 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5568 getF32Constant(DAG, 0x4006dcab, dl)); 5569 } 5570 5571 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5572 } 5573 5574 // No special expansion. 5575 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5576 } 5577 5578 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5579 /// limited-precision mode. 5580 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5581 const TargetLowering &TLI, SDNodeFlags Flags) { 5582 // TODO: What fast-math-flags should be set on the floating-point nodes? 5583 5584 if (Op.getValueType() == MVT::f32 && 5585 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5586 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5587 5588 // Get the exponent. 5589 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5590 5591 // Get the significand and build it into a floating-point number with 5592 // exponent of 1. 5593 SDValue X = GetSignificand(DAG, Op1, dl); 5594 5595 // Different possible minimax approximations of significand in 5596 // floating-point for various degrees of accuracy over [1,2]. 5597 SDValue Log2ofMantissa; 5598 if (LimitFloatPrecision <= 6) { 5599 // For floating-point precision of 6: 5600 // 5601 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5602 // 5603 // error 0.0049451742, which is more than 7 bits 5604 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5605 getF32Constant(DAG, 0xbeb08fe0, dl)); 5606 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5607 getF32Constant(DAG, 0x40019463, dl)); 5608 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5609 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5610 getF32Constant(DAG, 0x3fd6633d, dl)); 5611 } else if (LimitFloatPrecision <= 12) { 5612 // For floating-point precision of 12: 5613 // 5614 // Log2ofMantissa = 5615 // -2.51285454f + 5616 // (4.07009056f + 5617 // (-2.12067489f + 5618 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5619 // 5620 // error 0.0000876136000, which is better than 13 bits 5621 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5622 getF32Constant(DAG, 0xbda7262e, dl)); 5623 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5624 getF32Constant(DAG, 0x3f25280b, dl)); 5625 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5626 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5627 getF32Constant(DAG, 0x4007b923, dl)); 5628 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5629 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5630 getF32Constant(DAG, 0x40823e2f, dl)); 5631 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5632 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5633 getF32Constant(DAG, 0x4020d29c, dl)); 5634 } else { // LimitFloatPrecision <= 18 5635 // For floating-point precision of 18: 5636 // 5637 // Log2ofMantissa = 5638 // -3.0400495f + 5639 // (6.1129976f + 5640 // (-5.3420409f + 5641 // (3.2865683f + 5642 // (-1.2669343f + 5643 // (0.27515199f - 5644 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5645 // 5646 // error 0.0000018516, which is better than 18 bits 5647 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5648 getF32Constant(DAG, 0xbcd2769e, dl)); 5649 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5650 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5651 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5652 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5653 getF32Constant(DAG, 0x3fa22ae7, dl)); 5654 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5655 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5656 getF32Constant(DAG, 0x40525723, dl)); 5657 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5658 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5659 getF32Constant(DAG, 0x40aaf200, dl)); 5660 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5661 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5662 getF32Constant(DAG, 0x40c39dad, dl)); 5663 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5664 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5665 getF32Constant(DAG, 0x4042902c, dl)); 5666 } 5667 5668 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5669 } 5670 5671 // No special expansion. 5672 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5673 } 5674 5675 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5676 /// limited-precision mode. 5677 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5678 const TargetLowering &TLI, SDNodeFlags Flags) { 5679 // TODO: What fast-math-flags should be set on the floating-point nodes? 5680 5681 if (Op.getValueType() == MVT::f32 && 5682 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5683 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5684 5685 // Scale the exponent by log10(2) [0.30102999f]. 5686 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5687 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5688 getF32Constant(DAG, 0x3e9a209a, dl)); 5689 5690 // Get the significand and build it into a floating-point number with 5691 // exponent of 1. 5692 SDValue X = GetSignificand(DAG, Op1, dl); 5693 5694 SDValue Log10ofMantissa; 5695 if (LimitFloatPrecision <= 6) { 5696 // For floating-point precision of 6: 5697 // 5698 // Log10ofMantissa = 5699 // -0.50419619f + 5700 // (0.60948995f - 0.10380950f * x) * x; 5701 // 5702 // error 0.0014886165, which is 6 bits 5703 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5704 getF32Constant(DAG, 0xbdd49a13, dl)); 5705 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5706 getF32Constant(DAG, 0x3f1c0789, dl)); 5707 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5708 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5709 getF32Constant(DAG, 0x3f011300, dl)); 5710 } else if (LimitFloatPrecision <= 12) { 5711 // For floating-point precision of 12: 5712 // 5713 // Log10ofMantissa = 5714 // -0.64831180f + 5715 // (0.91751397f + 5716 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5717 // 5718 // error 0.00019228036, which is better than 12 bits 5719 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5720 getF32Constant(DAG, 0x3d431f31, dl)); 5721 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5722 getF32Constant(DAG, 0x3ea21fb2, dl)); 5723 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5724 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5725 getF32Constant(DAG, 0x3f6ae232, dl)); 5726 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5727 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5728 getF32Constant(DAG, 0x3f25f7c3, dl)); 5729 } else { // LimitFloatPrecision <= 18 5730 // For floating-point precision of 18: 5731 // 5732 // Log10ofMantissa = 5733 // -0.84299375f + 5734 // (1.5327582f + 5735 // (-1.0688956f + 5736 // (0.49102474f + 5737 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5738 // 5739 // error 0.0000037995730, which is better than 18 bits 5740 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5741 getF32Constant(DAG, 0x3c5d51ce, dl)); 5742 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5743 getF32Constant(DAG, 0x3e00685a, dl)); 5744 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5745 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5746 getF32Constant(DAG, 0x3efb6798, dl)); 5747 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5748 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5749 getF32Constant(DAG, 0x3f88d192, dl)); 5750 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5751 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5752 getF32Constant(DAG, 0x3fc4316c, dl)); 5753 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5754 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5755 getF32Constant(DAG, 0x3f57ce70, dl)); 5756 } 5757 5758 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5759 } 5760 5761 // No special expansion. 5762 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5763 } 5764 5765 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5766 /// limited-precision mode. 5767 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5768 const TargetLowering &TLI, SDNodeFlags Flags) { 5769 if (Op.getValueType() == MVT::f32 && 5770 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5771 return getLimitedPrecisionExp2(Op, dl, DAG); 5772 5773 // No special expansion. 5774 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5775 } 5776 5777 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5778 /// limited-precision mode with x == 10.0f. 5779 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5780 SelectionDAG &DAG, const TargetLowering &TLI, 5781 SDNodeFlags Flags) { 5782 bool IsExp10 = false; 5783 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5784 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5785 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5786 APFloat Ten(10.0f); 5787 IsExp10 = LHSC->isExactlyValue(Ten); 5788 } 5789 } 5790 5791 // TODO: What fast-math-flags should be set on the FMUL node? 5792 if (IsExp10) { 5793 // Put the exponent in the right bit position for later addition to the 5794 // final result: 5795 // 5796 // #define LOG2OF10 3.3219281f 5797 // t0 = Op * LOG2OF10; 5798 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5799 getF32Constant(DAG, 0x40549a78, dl)); 5800 return getLimitedPrecisionExp2(t0, dl, DAG); 5801 } 5802 5803 // No special expansion. 5804 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5805 } 5806 5807 /// ExpandPowI - Expand a llvm.powi intrinsic. 5808 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5809 SelectionDAG &DAG) { 5810 // If RHS is a constant, we can expand this out to a multiplication tree if 5811 // it's beneficial on the target, otherwise we end up lowering to a call to 5812 // __powidf2 (for example). 5813 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5814 unsigned Val = RHSC->getSExtValue(); 5815 5816 // powi(x, 0) -> 1.0 5817 if (Val == 0) 5818 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5819 5820 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5821 Val, DAG.shouldOptForSize())) { 5822 // Get the exponent as a positive value. 5823 if ((int)Val < 0) 5824 Val = -Val; 5825 // We use the simple binary decomposition method to generate the multiply 5826 // sequence. There are more optimal ways to do this (for example, 5827 // powi(x,15) generates one more multiply than it should), but this has 5828 // the benefit of being both really simple and much better than a libcall. 5829 SDValue Res; // Logically starts equal to 1.0 5830 SDValue CurSquare = LHS; 5831 // TODO: Intrinsics should have fast-math-flags that propagate to these 5832 // nodes. 5833 while (Val) { 5834 if (Val & 1) { 5835 if (Res.getNode()) 5836 Res = 5837 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5838 else 5839 Res = CurSquare; // 1.0*CurSquare. 5840 } 5841 5842 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5843 CurSquare, CurSquare); 5844 Val >>= 1; 5845 } 5846 5847 // If the original was negative, invert the result, producing 1/(x*x*x). 5848 if (RHSC->getSExtValue() < 0) 5849 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5850 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5851 return Res; 5852 } 5853 } 5854 5855 // Otherwise, expand to a libcall. 5856 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5857 } 5858 5859 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5860 SDValue LHS, SDValue RHS, SDValue Scale, 5861 SelectionDAG &DAG, const TargetLowering &TLI) { 5862 EVT VT = LHS.getValueType(); 5863 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5864 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5865 LLVMContext &Ctx = *DAG.getContext(); 5866 5867 // If the type is legal but the operation isn't, this node might survive all 5868 // the way to operation legalization. If we end up there and we do not have 5869 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5870 // node. 5871 5872 // Coax the legalizer into expanding the node during type legalization instead 5873 // by bumping the size by one bit. This will force it to Promote, enabling the 5874 // early expansion and avoiding the need to expand later. 5875 5876 // We don't have to do this if Scale is 0; that can always be expanded, unless 5877 // it's a saturating signed operation. Those can experience true integer 5878 // division overflow, a case which we must avoid. 5879 5880 // FIXME: We wouldn't have to do this (or any of the early 5881 // expansion/promotion) if it was possible to expand a libcall of an 5882 // illegal type during operation legalization. But it's not, so things 5883 // get a bit hacky. 5884 unsigned ScaleInt = Scale->getAsZExtVal(); 5885 if ((ScaleInt > 0 || (Saturating && Signed)) && 5886 (TLI.isTypeLegal(VT) || 5887 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5888 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5889 Opcode, VT, ScaleInt); 5890 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5891 EVT PromVT; 5892 if (VT.isScalarInteger()) 5893 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5894 else if (VT.isVector()) { 5895 PromVT = VT.getVectorElementType(); 5896 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5897 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5898 } else 5899 llvm_unreachable("Wrong VT for DIVFIX?"); 5900 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5901 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5902 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5903 // For saturating operations, we need to shift up the LHS to get the 5904 // proper saturation width, and then shift down again afterwards. 5905 if (Saturating) 5906 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5907 DAG.getConstant(1, DL, ShiftTy)); 5908 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5909 if (Saturating) 5910 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5911 DAG.getConstant(1, DL, ShiftTy)); 5912 return DAG.getZExtOrTrunc(Res, DL, VT); 5913 } 5914 } 5915 5916 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5917 } 5918 5919 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5920 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5921 static void 5922 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5923 const SDValue &N) { 5924 switch (N.getOpcode()) { 5925 case ISD::CopyFromReg: { 5926 SDValue Op = N.getOperand(1); 5927 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5928 Op.getValueType().getSizeInBits()); 5929 return; 5930 } 5931 case ISD::BITCAST: 5932 case ISD::AssertZext: 5933 case ISD::AssertSext: 5934 case ISD::TRUNCATE: 5935 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5936 return; 5937 case ISD::BUILD_PAIR: 5938 case ISD::BUILD_VECTOR: 5939 case ISD::CONCAT_VECTORS: 5940 for (SDValue Op : N->op_values()) 5941 getUnderlyingArgRegs(Regs, Op); 5942 return; 5943 default: 5944 return; 5945 } 5946 } 5947 5948 /// If the DbgValueInst is a dbg_value of a function argument, create the 5949 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5950 /// instruction selection, they will be inserted to the entry BB. 5951 /// We don't currently support this for variadic dbg_values, as they shouldn't 5952 /// appear for function arguments or in the prologue. 5953 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5954 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5955 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5956 const Argument *Arg = dyn_cast<Argument>(V); 5957 if (!Arg) 5958 return false; 5959 5960 MachineFunction &MF = DAG.getMachineFunction(); 5961 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5962 5963 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5964 // we've been asked to pursue. 5965 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5966 bool Indirect) { 5967 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5968 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5969 // pointing at the VReg, which will be patched up later. 5970 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5971 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5972 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5973 /* isKill */ false, /* isDead */ false, 5974 /* isUndef */ false, /* isEarlyClobber */ false, 5975 /* SubReg */ 0, /* isDebug */ true)}); 5976 5977 auto *NewDIExpr = FragExpr; 5978 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5979 // the DIExpression. 5980 if (Indirect) 5981 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5982 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5983 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5984 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5985 } else { 5986 // Create a completely standard DBG_VALUE. 5987 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5988 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5989 } 5990 }; 5991 5992 if (Kind == FuncArgumentDbgValueKind::Value) { 5993 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5994 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5995 // the entry block. 5996 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5997 if (!IsInEntryBlock) 5998 return false; 5999 6000 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6001 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 6002 // variable that also is a param. 6003 // 6004 // Although, if we are at the top of the entry block already, we can still 6005 // emit using ArgDbgValue. This might catch some situations when the 6006 // dbg.value refers to an argument that isn't used in the entry block, so 6007 // any CopyToReg node would be optimized out and the only way to express 6008 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6009 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6010 // we should only emit as ArgDbgValue if the Variable is an argument to the 6011 // current function, and the dbg.value intrinsic is found in the entry 6012 // block. 6013 bool VariableIsFunctionInputArg = Variable->isParameter() && 6014 !DL->getInlinedAt(); 6015 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6016 if (!IsInPrologue && !VariableIsFunctionInputArg) 6017 return false; 6018 6019 // Here we assume that a function argument on IR level only can be used to 6020 // describe one input parameter on source level. If we for example have 6021 // source code like this 6022 // 6023 // struct A { long x, y; }; 6024 // void foo(struct A a, long b) { 6025 // ... 6026 // b = a.x; 6027 // ... 6028 // } 6029 // 6030 // and IR like this 6031 // 6032 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6033 // entry: 6034 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6035 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6036 // call void @llvm.dbg.value(metadata i32 %b, "b", 6037 // ... 6038 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6039 // ... 6040 // 6041 // then the last dbg.value is describing a parameter "b" using a value that 6042 // is an argument. But since we already has used %a1 to describe a parameter 6043 // we should not handle that last dbg.value here (that would result in an 6044 // incorrect hoisting of the DBG_VALUE to the function entry). 6045 // Notice that we allow one dbg.value per IR level argument, to accommodate 6046 // for the situation with fragments above. 6047 // If there is no node for the value being handled, we return true to skip 6048 // the normal generation of debug info, as it would kill existing debug 6049 // info for the parameter in case of duplicates. 6050 if (VariableIsFunctionInputArg) { 6051 unsigned ArgNo = Arg->getArgNo(); 6052 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6053 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6054 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6055 return !NodeMap[V].getNode(); 6056 FuncInfo.DescribedArgs.set(ArgNo); 6057 } 6058 } 6059 6060 bool IsIndirect = false; 6061 std::optional<MachineOperand> Op; 6062 // Some arguments' frame index is recorded during argument lowering. 6063 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6064 if (FI != std::numeric_limits<int>::max()) 6065 Op = MachineOperand::CreateFI(FI); 6066 6067 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 6068 if (!Op && N.getNode()) { 6069 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6070 Register Reg; 6071 if (ArgRegsAndSizes.size() == 1) 6072 Reg = ArgRegsAndSizes.front().first; 6073 6074 if (Reg && Reg.isVirtual()) { 6075 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6076 Register PR = RegInfo.getLiveInPhysReg(Reg); 6077 if (PR) 6078 Reg = PR; 6079 } 6080 if (Reg) { 6081 Op = MachineOperand::CreateReg(Reg, false); 6082 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6083 } 6084 } 6085 6086 if (!Op && N.getNode()) { 6087 // Check if frame index is available. 6088 SDValue LCandidate = peekThroughBitcasts(N); 6089 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6090 if (FrameIndexSDNode *FINode = 6091 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6092 Op = MachineOperand::CreateFI(FINode->getIndex()); 6093 } 6094 6095 if (!Op) { 6096 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6097 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 6098 SplitRegs) { 6099 unsigned Offset = 0; 6100 for (const auto &RegAndSize : SplitRegs) { 6101 // If the expression is already a fragment, the current register 6102 // offset+size might extend beyond the fragment. In this case, only 6103 // the register bits that are inside the fragment are relevant. 6104 int RegFragmentSizeInBits = RegAndSize.second; 6105 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6106 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6107 // The register is entirely outside the expression fragment, 6108 // so is irrelevant for debug info. 6109 if (Offset >= ExprFragmentSizeInBits) 6110 break; 6111 // The register is partially outside the expression fragment, only 6112 // the low bits within the fragment are relevant for debug info. 6113 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6114 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6115 } 6116 } 6117 6118 auto FragmentExpr = DIExpression::createFragmentExpression( 6119 Expr, Offset, RegFragmentSizeInBits); 6120 Offset += RegAndSize.second; 6121 // If a valid fragment expression cannot be created, the variable's 6122 // correct value cannot be determined and so it is set as Undef. 6123 if (!FragmentExpr) { 6124 SDDbgValue *SDV = DAG.getConstantDbgValue( 6125 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6126 DAG.AddDbgValue(SDV, false); 6127 continue; 6128 } 6129 MachineInstr *NewMI = 6130 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6131 Kind != FuncArgumentDbgValueKind::Value); 6132 FuncInfo.ArgDbgValues.push_back(NewMI); 6133 } 6134 }; 6135 6136 // Check if ValueMap has reg number. 6137 DenseMap<const Value *, Register>::const_iterator 6138 VMI = FuncInfo.ValueMap.find(V); 6139 if (VMI != FuncInfo.ValueMap.end()) { 6140 const auto &TLI = DAG.getTargetLoweringInfo(); 6141 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6142 V->getType(), std::nullopt); 6143 if (RFV.occupiesMultipleRegs()) { 6144 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6145 return true; 6146 } 6147 6148 Op = MachineOperand::CreateReg(VMI->second, false); 6149 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6150 } else if (ArgRegsAndSizes.size() > 1) { 6151 // This was split due to the calling convention, and no virtual register 6152 // mapping exists for the value. 6153 splitMultiRegDbgValue(ArgRegsAndSizes); 6154 return true; 6155 } 6156 } 6157 6158 if (!Op) 6159 return false; 6160 6161 assert(Variable->isValidLocationForIntrinsic(DL) && 6162 "Expected inlined-at fields to agree"); 6163 MachineInstr *NewMI = nullptr; 6164 6165 if (Op->isReg()) 6166 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6167 else 6168 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6169 Variable, Expr); 6170 6171 // Otherwise, use ArgDbgValues. 6172 FuncInfo.ArgDbgValues.push_back(NewMI); 6173 return true; 6174 } 6175 6176 /// Return the appropriate SDDbgValue based on N. 6177 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6178 DILocalVariable *Variable, 6179 DIExpression *Expr, 6180 const DebugLoc &dl, 6181 unsigned DbgSDNodeOrder) { 6182 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6183 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6184 // stack slot locations. 6185 // 6186 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6187 // debug values here after optimization: 6188 // 6189 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6190 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6191 // 6192 // Both describe the direct values of their associated variables. 6193 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6194 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6195 } 6196 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6197 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6198 } 6199 6200 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6201 switch (Intrinsic) { 6202 case Intrinsic::smul_fix: 6203 return ISD::SMULFIX; 6204 case Intrinsic::umul_fix: 6205 return ISD::UMULFIX; 6206 case Intrinsic::smul_fix_sat: 6207 return ISD::SMULFIXSAT; 6208 case Intrinsic::umul_fix_sat: 6209 return ISD::UMULFIXSAT; 6210 case Intrinsic::sdiv_fix: 6211 return ISD::SDIVFIX; 6212 case Intrinsic::udiv_fix: 6213 return ISD::UDIVFIX; 6214 case Intrinsic::sdiv_fix_sat: 6215 return ISD::SDIVFIXSAT; 6216 case Intrinsic::udiv_fix_sat: 6217 return ISD::UDIVFIXSAT; 6218 default: 6219 llvm_unreachable("Unhandled fixed point intrinsic"); 6220 } 6221 } 6222 6223 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6224 const char *FunctionName) { 6225 assert(FunctionName && "FunctionName must not be nullptr"); 6226 SDValue Callee = DAG.getExternalSymbol( 6227 FunctionName, 6228 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6229 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6230 } 6231 6232 /// Given a @llvm.call.preallocated.setup, return the corresponding 6233 /// preallocated call. 6234 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6235 assert(cast<CallBase>(PreallocatedSetup) 6236 ->getCalledFunction() 6237 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6238 "expected call_preallocated_setup Value"); 6239 for (const auto *U : PreallocatedSetup->users()) { 6240 auto *UseCall = cast<CallBase>(U); 6241 const Function *Fn = UseCall->getCalledFunction(); 6242 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6243 return UseCall; 6244 } 6245 } 6246 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6247 } 6248 6249 /// If DI is a debug value with an EntryValue expression, lower it using the 6250 /// corresponding physical register of the associated Argument value 6251 /// (guaranteed to exist by the verifier). 6252 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6253 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6254 DIExpression *Expr, DebugLoc DbgLoc) { 6255 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6256 return false; 6257 6258 // These properties are guaranteed by the verifier. 6259 const Argument *Arg = cast<Argument>(Values[0]); 6260 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6261 6262 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6263 if (ArgIt == FuncInfo.ValueMap.end()) { 6264 LLVM_DEBUG( 6265 dbgs() << "Dropping dbg.value: expression is entry_value but " 6266 "couldn't find an associated register for the Argument\n"); 6267 return true; 6268 } 6269 Register ArgVReg = ArgIt->getSecond(); 6270 6271 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6272 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6273 SDDbgValue *SDV = DAG.getVRegDbgValue( 6274 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6275 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6276 return true; 6277 } 6278 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6279 "couldn't find a physical register\n"); 6280 return true; 6281 } 6282 6283 /// Lower the call to the specified intrinsic function. 6284 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6285 unsigned Intrinsic) { 6286 SDLoc sdl = getCurSDLoc(); 6287 switch (Intrinsic) { 6288 case Intrinsic::experimental_convergence_anchor: 6289 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6290 break; 6291 case Intrinsic::experimental_convergence_entry: 6292 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6293 break; 6294 case Intrinsic::experimental_convergence_loop: { 6295 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6296 auto *Token = Bundle->Inputs[0].get(); 6297 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6298 getValue(Token))); 6299 break; 6300 } 6301 } 6302 } 6303 6304 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6305 unsigned IntrinsicID) { 6306 // For now, we're only lowering an 'add' histogram. 6307 // We can add others later, e.g. saturating adds, min/max. 6308 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6309 "Tried to lower unsupported histogram type"); 6310 SDLoc sdl = getCurSDLoc(); 6311 Value *Ptr = I.getOperand(0); 6312 SDValue Inc = getValue(I.getOperand(1)); 6313 SDValue Mask = getValue(I.getOperand(2)); 6314 6315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6316 DataLayout TargetDL = DAG.getDataLayout(); 6317 EVT VT = Inc.getValueType(); 6318 Align Alignment = DAG.getEVTAlign(VT); 6319 6320 const MDNode *Ranges = getRangeMetadata(I); 6321 6322 SDValue Root = DAG.getRoot(); 6323 SDValue Base; 6324 SDValue Index; 6325 ISD::MemIndexType IndexType; 6326 SDValue Scale; 6327 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6328 I.getParent(), VT.getScalarStoreSize()); 6329 6330 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6331 6332 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6333 MachinePointerInfo(AS), 6334 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6335 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6336 6337 if (!UniformBase) { 6338 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6339 Index = getValue(Ptr); 6340 IndexType = ISD::SIGNED_SCALED; 6341 Scale = 6342 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6343 } 6344 6345 EVT IdxVT = Index.getValueType(); 6346 EVT EltTy = IdxVT.getVectorElementType(); 6347 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6348 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6349 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6350 } 6351 6352 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6353 6354 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6355 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6356 Ops, MMO, IndexType); 6357 6358 setValue(&I, Histogram); 6359 DAG.setRoot(Histogram); 6360 } 6361 6362 /// Lower the call to the specified intrinsic function. 6363 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6364 unsigned Intrinsic) { 6365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6366 SDLoc sdl = getCurSDLoc(); 6367 DebugLoc dl = getCurDebugLoc(); 6368 SDValue Res; 6369 6370 SDNodeFlags Flags; 6371 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6372 Flags.copyFMF(*FPOp); 6373 6374 switch (Intrinsic) { 6375 default: 6376 // By default, turn this into a target intrinsic node. 6377 visitTargetIntrinsic(I, Intrinsic); 6378 return; 6379 case Intrinsic::vscale: { 6380 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6381 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6382 return; 6383 } 6384 case Intrinsic::vastart: visitVAStart(I); return; 6385 case Intrinsic::vaend: visitVAEnd(I); return; 6386 case Intrinsic::vacopy: visitVACopy(I); return; 6387 case Intrinsic::returnaddress: 6388 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6389 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6390 getValue(I.getArgOperand(0)))); 6391 return; 6392 case Intrinsic::addressofreturnaddress: 6393 setValue(&I, 6394 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6395 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6396 return; 6397 case Intrinsic::sponentry: 6398 setValue(&I, 6399 DAG.getNode(ISD::SPONENTRY, sdl, 6400 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6401 return; 6402 case Intrinsic::frameaddress: 6403 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6404 TLI.getFrameIndexTy(DAG.getDataLayout()), 6405 getValue(I.getArgOperand(0)))); 6406 return; 6407 case Intrinsic::read_volatile_register: 6408 case Intrinsic::read_register: { 6409 Value *Reg = I.getArgOperand(0); 6410 SDValue Chain = getRoot(); 6411 SDValue RegName = 6412 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6413 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6414 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6415 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6416 setValue(&I, Res); 6417 DAG.setRoot(Res.getValue(1)); 6418 return; 6419 } 6420 case Intrinsic::write_register: { 6421 Value *Reg = I.getArgOperand(0); 6422 Value *RegValue = I.getArgOperand(1); 6423 SDValue Chain = getRoot(); 6424 SDValue RegName = 6425 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6426 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6427 RegName, getValue(RegValue))); 6428 return; 6429 } 6430 case Intrinsic::memcpy: { 6431 const auto &MCI = cast<MemCpyInst>(I); 6432 SDValue Op1 = getValue(I.getArgOperand(0)); 6433 SDValue Op2 = getValue(I.getArgOperand(1)); 6434 SDValue Op3 = getValue(I.getArgOperand(2)); 6435 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6436 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6437 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6438 Align Alignment = std::min(DstAlign, SrcAlign); 6439 bool isVol = MCI.isVolatile(); 6440 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6441 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6442 // node. 6443 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6444 SDValue MC = DAG.getMemcpy( 6445 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6446 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6447 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6448 updateDAGForMaybeTailCall(MC); 6449 return; 6450 } 6451 case Intrinsic::memcpy_inline: { 6452 const auto &MCI = cast<MemCpyInlineInst>(I); 6453 SDValue Dst = getValue(I.getArgOperand(0)); 6454 SDValue Src = getValue(I.getArgOperand(1)); 6455 SDValue Size = getValue(I.getArgOperand(2)); 6456 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6457 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6458 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6459 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6460 Align Alignment = std::min(DstAlign, SrcAlign); 6461 bool isVol = MCI.isVolatile(); 6462 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6463 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6464 // node. 6465 SDValue MC = DAG.getMemcpy( 6466 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6467 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6468 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6469 updateDAGForMaybeTailCall(MC); 6470 return; 6471 } 6472 case Intrinsic::memset: { 6473 const auto &MSI = cast<MemSetInst>(I); 6474 SDValue Op1 = getValue(I.getArgOperand(0)); 6475 SDValue Op2 = getValue(I.getArgOperand(1)); 6476 SDValue Op3 = getValue(I.getArgOperand(2)); 6477 // @llvm.memset defines 0 and 1 to both mean no alignment. 6478 Align Alignment = MSI.getDestAlign().valueOrOne(); 6479 bool isVol = MSI.isVolatile(); 6480 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6481 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6482 SDValue MS = DAG.getMemset( 6483 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6484 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6485 updateDAGForMaybeTailCall(MS); 6486 return; 6487 } 6488 case Intrinsic::memset_inline: { 6489 const auto &MSII = cast<MemSetInlineInst>(I); 6490 SDValue Dst = getValue(I.getArgOperand(0)); 6491 SDValue Value = getValue(I.getArgOperand(1)); 6492 SDValue Size = getValue(I.getArgOperand(2)); 6493 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6494 // @llvm.memset defines 0 and 1 to both mean no alignment. 6495 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6496 bool isVol = MSII.isVolatile(); 6497 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6498 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6499 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6500 /* AlwaysInline */ true, isTC, 6501 MachinePointerInfo(I.getArgOperand(0)), 6502 I.getAAMetadata()); 6503 updateDAGForMaybeTailCall(MC); 6504 return; 6505 } 6506 case Intrinsic::memmove: { 6507 const auto &MMI = cast<MemMoveInst>(I); 6508 SDValue Op1 = getValue(I.getArgOperand(0)); 6509 SDValue Op2 = getValue(I.getArgOperand(1)); 6510 SDValue Op3 = getValue(I.getArgOperand(2)); 6511 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6512 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6513 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6514 Align Alignment = std::min(DstAlign, SrcAlign); 6515 bool isVol = MMI.isVolatile(); 6516 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6517 // FIXME: Support passing different dest/src alignments to the memmove DAG 6518 // node. 6519 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6520 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6521 isTC, MachinePointerInfo(I.getArgOperand(0)), 6522 MachinePointerInfo(I.getArgOperand(1)), 6523 I.getAAMetadata(), AA); 6524 updateDAGForMaybeTailCall(MM); 6525 return; 6526 } 6527 case Intrinsic::memcpy_element_unordered_atomic: { 6528 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6529 SDValue Dst = getValue(MI.getRawDest()); 6530 SDValue Src = getValue(MI.getRawSource()); 6531 SDValue Length = getValue(MI.getLength()); 6532 6533 Type *LengthTy = MI.getLength()->getType(); 6534 unsigned ElemSz = MI.getElementSizeInBytes(); 6535 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6536 SDValue MC = 6537 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6538 isTC, MachinePointerInfo(MI.getRawDest()), 6539 MachinePointerInfo(MI.getRawSource())); 6540 updateDAGForMaybeTailCall(MC); 6541 return; 6542 } 6543 case Intrinsic::memmove_element_unordered_atomic: { 6544 auto &MI = cast<AtomicMemMoveInst>(I); 6545 SDValue Dst = getValue(MI.getRawDest()); 6546 SDValue Src = getValue(MI.getRawSource()); 6547 SDValue Length = getValue(MI.getLength()); 6548 6549 Type *LengthTy = MI.getLength()->getType(); 6550 unsigned ElemSz = MI.getElementSizeInBytes(); 6551 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6552 SDValue MC = 6553 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6554 isTC, MachinePointerInfo(MI.getRawDest()), 6555 MachinePointerInfo(MI.getRawSource())); 6556 updateDAGForMaybeTailCall(MC); 6557 return; 6558 } 6559 case Intrinsic::memset_element_unordered_atomic: { 6560 auto &MI = cast<AtomicMemSetInst>(I); 6561 SDValue Dst = getValue(MI.getRawDest()); 6562 SDValue Val = getValue(MI.getValue()); 6563 SDValue Length = getValue(MI.getLength()); 6564 6565 Type *LengthTy = MI.getLength()->getType(); 6566 unsigned ElemSz = MI.getElementSizeInBytes(); 6567 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6568 SDValue MC = 6569 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6570 isTC, MachinePointerInfo(MI.getRawDest())); 6571 updateDAGForMaybeTailCall(MC); 6572 return; 6573 } 6574 case Intrinsic::call_preallocated_setup: { 6575 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6576 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6577 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6578 getRoot(), SrcValue); 6579 setValue(&I, Res); 6580 DAG.setRoot(Res); 6581 return; 6582 } 6583 case Intrinsic::call_preallocated_arg: { 6584 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6585 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6586 SDValue Ops[3]; 6587 Ops[0] = getRoot(); 6588 Ops[1] = SrcValue; 6589 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6590 MVT::i32); // arg index 6591 SDValue Res = DAG.getNode( 6592 ISD::PREALLOCATED_ARG, sdl, 6593 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6594 setValue(&I, Res); 6595 DAG.setRoot(Res.getValue(1)); 6596 return; 6597 } 6598 case Intrinsic::dbg_declare: { 6599 const auto &DI = cast<DbgDeclareInst>(I); 6600 // Debug intrinsics are handled separately in assignment tracking mode. 6601 // Some intrinsics are handled right after Argument lowering. 6602 if (AssignmentTrackingEnabled || 6603 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6604 return; 6605 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6606 DILocalVariable *Variable = DI.getVariable(); 6607 DIExpression *Expression = DI.getExpression(); 6608 dropDanglingDebugInfo(Variable, Expression); 6609 // Assume dbg.declare can not currently use DIArgList, i.e. 6610 // it is non-variadic. 6611 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6612 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6613 DI.getDebugLoc()); 6614 return; 6615 } 6616 case Intrinsic::dbg_label: { 6617 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6618 DILabel *Label = DI.getLabel(); 6619 assert(Label && "Missing label"); 6620 6621 SDDbgLabel *SDV; 6622 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6623 DAG.AddDbgLabel(SDV); 6624 return; 6625 } 6626 case Intrinsic::dbg_assign: { 6627 // Debug intrinsics are handled separately in assignment tracking mode. 6628 if (AssignmentTrackingEnabled) 6629 return; 6630 // If assignment tracking hasn't been enabled then fall through and treat 6631 // the dbg.assign as a dbg.value. 6632 [[fallthrough]]; 6633 } 6634 case Intrinsic::dbg_value: { 6635 // Debug intrinsics are handled separately in assignment tracking mode. 6636 if (AssignmentTrackingEnabled) 6637 return; 6638 const DbgValueInst &DI = cast<DbgValueInst>(I); 6639 assert(DI.getVariable() && "Missing variable"); 6640 6641 DILocalVariable *Variable = DI.getVariable(); 6642 DIExpression *Expression = DI.getExpression(); 6643 dropDanglingDebugInfo(Variable, Expression); 6644 6645 if (DI.isKillLocation()) { 6646 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6647 return; 6648 } 6649 6650 SmallVector<Value *, 4> Values(DI.getValues()); 6651 if (Values.empty()) 6652 return; 6653 6654 bool IsVariadic = DI.hasArgList(); 6655 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6656 SDNodeOrder, IsVariadic)) 6657 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6658 DI.getDebugLoc(), SDNodeOrder); 6659 return; 6660 } 6661 6662 case Intrinsic::eh_typeid_for: { 6663 // Find the type id for the given typeinfo. 6664 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6665 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6666 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6667 setValue(&I, Res); 6668 return; 6669 } 6670 6671 case Intrinsic::eh_return_i32: 6672 case Intrinsic::eh_return_i64: 6673 DAG.getMachineFunction().setCallsEHReturn(true); 6674 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6675 MVT::Other, 6676 getControlRoot(), 6677 getValue(I.getArgOperand(0)), 6678 getValue(I.getArgOperand(1)))); 6679 return; 6680 case Intrinsic::eh_unwind_init: 6681 DAG.getMachineFunction().setCallsUnwindInit(true); 6682 return; 6683 case Intrinsic::eh_dwarf_cfa: 6684 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6685 TLI.getPointerTy(DAG.getDataLayout()), 6686 getValue(I.getArgOperand(0)))); 6687 return; 6688 case Intrinsic::eh_sjlj_callsite: { 6689 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6690 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6691 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6692 6693 MMI.setCurrentCallSite(CI->getZExtValue()); 6694 return; 6695 } 6696 case Intrinsic::eh_sjlj_functioncontext: { 6697 // Get and store the index of the function context. 6698 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6699 AllocaInst *FnCtx = 6700 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6701 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6702 MFI.setFunctionContextIndex(FI); 6703 return; 6704 } 6705 case Intrinsic::eh_sjlj_setjmp: { 6706 SDValue Ops[2]; 6707 Ops[0] = getRoot(); 6708 Ops[1] = getValue(I.getArgOperand(0)); 6709 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6710 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6711 setValue(&I, Op.getValue(0)); 6712 DAG.setRoot(Op.getValue(1)); 6713 return; 6714 } 6715 case Intrinsic::eh_sjlj_longjmp: 6716 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6717 getRoot(), getValue(I.getArgOperand(0)))); 6718 return; 6719 case Intrinsic::eh_sjlj_setup_dispatch: 6720 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6721 getRoot())); 6722 return; 6723 case Intrinsic::masked_gather: 6724 visitMaskedGather(I); 6725 return; 6726 case Intrinsic::masked_load: 6727 visitMaskedLoad(I); 6728 return; 6729 case Intrinsic::masked_scatter: 6730 visitMaskedScatter(I); 6731 return; 6732 case Intrinsic::masked_store: 6733 visitMaskedStore(I); 6734 return; 6735 case Intrinsic::masked_expandload: 6736 visitMaskedLoad(I, true /* IsExpanding */); 6737 return; 6738 case Intrinsic::masked_compressstore: 6739 visitMaskedStore(I, true /* IsCompressing */); 6740 return; 6741 case Intrinsic::powi: 6742 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6743 getValue(I.getArgOperand(1)), DAG)); 6744 return; 6745 case Intrinsic::log: 6746 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6747 return; 6748 case Intrinsic::log2: 6749 setValue(&I, 6750 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6751 return; 6752 case Intrinsic::log10: 6753 setValue(&I, 6754 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6755 return; 6756 case Intrinsic::exp: 6757 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6758 return; 6759 case Intrinsic::exp2: 6760 setValue(&I, 6761 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6762 return; 6763 case Intrinsic::pow: 6764 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6765 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6766 return; 6767 case Intrinsic::sqrt: 6768 case Intrinsic::fabs: 6769 case Intrinsic::sin: 6770 case Intrinsic::cos: 6771 case Intrinsic::tan: 6772 case Intrinsic::exp10: 6773 case Intrinsic::floor: 6774 case Intrinsic::ceil: 6775 case Intrinsic::trunc: 6776 case Intrinsic::rint: 6777 case Intrinsic::nearbyint: 6778 case Intrinsic::round: 6779 case Intrinsic::roundeven: 6780 case Intrinsic::canonicalize: { 6781 unsigned Opcode; 6782 // clang-format off 6783 switch (Intrinsic) { 6784 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6785 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6786 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6787 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6788 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6789 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6790 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6791 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6792 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6793 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6794 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6795 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6796 case Intrinsic::round: Opcode = ISD::FROUND; break; 6797 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6798 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6799 } 6800 // clang-format on 6801 6802 setValue(&I, DAG.getNode(Opcode, sdl, 6803 getValue(I.getArgOperand(0)).getValueType(), 6804 getValue(I.getArgOperand(0)), Flags)); 6805 return; 6806 } 6807 case Intrinsic::lround: 6808 case Intrinsic::llround: 6809 case Intrinsic::lrint: 6810 case Intrinsic::llrint: { 6811 unsigned Opcode; 6812 // clang-format off 6813 switch (Intrinsic) { 6814 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6815 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6816 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6817 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6818 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6819 } 6820 // clang-format on 6821 6822 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6823 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6824 getValue(I.getArgOperand(0)))); 6825 return; 6826 } 6827 case Intrinsic::minnum: 6828 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6829 getValue(I.getArgOperand(0)).getValueType(), 6830 getValue(I.getArgOperand(0)), 6831 getValue(I.getArgOperand(1)), Flags)); 6832 return; 6833 case Intrinsic::maxnum: 6834 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6835 getValue(I.getArgOperand(0)).getValueType(), 6836 getValue(I.getArgOperand(0)), 6837 getValue(I.getArgOperand(1)), Flags)); 6838 return; 6839 case Intrinsic::minimum: 6840 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6841 getValue(I.getArgOperand(0)).getValueType(), 6842 getValue(I.getArgOperand(0)), 6843 getValue(I.getArgOperand(1)), Flags)); 6844 return; 6845 case Intrinsic::maximum: 6846 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6847 getValue(I.getArgOperand(0)).getValueType(), 6848 getValue(I.getArgOperand(0)), 6849 getValue(I.getArgOperand(1)), Flags)); 6850 return; 6851 case Intrinsic::copysign: 6852 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6853 getValue(I.getArgOperand(0)).getValueType(), 6854 getValue(I.getArgOperand(0)), 6855 getValue(I.getArgOperand(1)), Flags)); 6856 return; 6857 case Intrinsic::ldexp: 6858 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6859 getValue(I.getArgOperand(0)).getValueType(), 6860 getValue(I.getArgOperand(0)), 6861 getValue(I.getArgOperand(1)), Flags)); 6862 return; 6863 case Intrinsic::frexp: { 6864 SmallVector<EVT, 2> ValueVTs; 6865 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6866 SDVTList VTs = DAG.getVTList(ValueVTs); 6867 setValue(&I, 6868 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6869 return; 6870 } 6871 case Intrinsic::arithmetic_fence: { 6872 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6873 getValue(I.getArgOperand(0)).getValueType(), 6874 getValue(I.getArgOperand(0)), Flags)); 6875 return; 6876 } 6877 case Intrinsic::fma: 6878 setValue(&I, DAG.getNode( 6879 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6880 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6881 getValue(I.getArgOperand(2)), Flags)); 6882 return; 6883 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6884 case Intrinsic::INTRINSIC: 6885 #include "llvm/IR/ConstrainedOps.def" 6886 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6887 return; 6888 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6889 #include "llvm/IR/VPIntrinsics.def" 6890 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6891 return; 6892 case Intrinsic::fptrunc_round: { 6893 // Get the last argument, the metadata and convert it to an integer in the 6894 // call 6895 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6896 std::optional<RoundingMode> RoundMode = 6897 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6898 6899 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6900 6901 // Propagate fast-math-flags from IR to node(s). 6902 SDNodeFlags Flags; 6903 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6904 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6905 6906 SDValue Result; 6907 Result = DAG.getNode( 6908 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6909 DAG.getTargetConstant((int)*RoundMode, sdl, 6910 TLI.getPointerTy(DAG.getDataLayout()))); 6911 setValue(&I, Result); 6912 6913 return; 6914 } 6915 case Intrinsic::fmuladd: { 6916 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6917 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6918 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6919 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6920 getValue(I.getArgOperand(0)).getValueType(), 6921 getValue(I.getArgOperand(0)), 6922 getValue(I.getArgOperand(1)), 6923 getValue(I.getArgOperand(2)), Flags)); 6924 } else { 6925 // TODO: Intrinsic calls should have fast-math-flags. 6926 SDValue Mul = DAG.getNode( 6927 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6928 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6929 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6930 getValue(I.getArgOperand(0)).getValueType(), 6931 Mul, getValue(I.getArgOperand(2)), Flags); 6932 setValue(&I, Add); 6933 } 6934 return; 6935 } 6936 case Intrinsic::convert_to_fp16: 6937 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6938 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6939 getValue(I.getArgOperand(0)), 6940 DAG.getTargetConstant(0, sdl, 6941 MVT::i32)))); 6942 return; 6943 case Intrinsic::convert_from_fp16: 6944 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6945 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6946 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6947 getValue(I.getArgOperand(0))))); 6948 return; 6949 case Intrinsic::fptosi_sat: { 6950 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6951 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6952 getValue(I.getArgOperand(0)), 6953 DAG.getValueType(VT.getScalarType()))); 6954 return; 6955 } 6956 case Intrinsic::fptoui_sat: { 6957 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6958 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6959 getValue(I.getArgOperand(0)), 6960 DAG.getValueType(VT.getScalarType()))); 6961 return; 6962 } 6963 case Intrinsic::set_rounding: 6964 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6965 {getRoot(), getValue(I.getArgOperand(0))}); 6966 setValue(&I, Res); 6967 DAG.setRoot(Res.getValue(0)); 6968 return; 6969 case Intrinsic::is_fpclass: { 6970 const DataLayout DLayout = DAG.getDataLayout(); 6971 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6972 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6973 FPClassTest Test = static_cast<FPClassTest>( 6974 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6975 MachineFunction &MF = DAG.getMachineFunction(); 6976 const Function &F = MF.getFunction(); 6977 SDValue Op = getValue(I.getArgOperand(0)); 6978 SDNodeFlags Flags; 6979 Flags.setNoFPExcept( 6980 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6981 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6982 // expansion can use illegal types. Making expansion early allows 6983 // legalizing these types prior to selection. 6984 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6985 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6986 setValue(&I, Result); 6987 return; 6988 } 6989 6990 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6991 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6992 setValue(&I, V); 6993 return; 6994 } 6995 case Intrinsic::get_fpenv: { 6996 const DataLayout DLayout = DAG.getDataLayout(); 6997 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6998 Align TempAlign = DAG.getEVTAlign(EnvVT); 6999 SDValue Chain = getRoot(); 7000 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 7001 // and temporary storage in stack. 7002 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 7003 Res = DAG.getNode( 7004 ISD::GET_FPENV, sdl, 7005 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7006 MVT::Other), 7007 Chain); 7008 } else { 7009 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7010 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7011 auto MPI = 7012 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7013 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7014 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7015 TempAlign); 7016 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7017 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7018 } 7019 setValue(&I, Res); 7020 DAG.setRoot(Res.getValue(1)); 7021 return; 7022 } 7023 case Intrinsic::set_fpenv: { 7024 const DataLayout DLayout = DAG.getDataLayout(); 7025 SDValue Env = getValue(I.getArgOperand(0)); 7026 EVT EnvVT = Env.getValueType(); 7027 Align TempAlign = DAG.getEVTAlign(EnvVT); 7028 SDValue Chain = getRoot(); 7029 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7030 // environment from memory. 7031 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7032 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7033 } else { 7034 // Allocate space in stack, copy environment bits into it and use this 7035 // memory in SET_FPENV_MEM. 7036 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7037 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7038 auto MPI = 7039 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7040 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7041 MachineMemOperand::MOStore); 7042 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7043 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7044 TempAlign); 7045 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7046 } 7047 DAG.setRoot(Chain); 7048 return; 7049 } 7050 case Intrinsic::reset_fpenv: 7051 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7052 return; 7053 case Intrinsic::get_fpmode: 7054 Res = DAG.getNode( 7055 ISD::GET_FPMODE, sdl, 7056 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7057 MVT::Other), 7058 DAG.getRoot()); 7059 setValue(&I, Res); 7060 DAG.setRoot(Res.getValue(1)); 7061 return; 7062 case Intrinsic::set_fpmode: 7063 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7064 getValue(I.getArgOperand(0))); 7065 DAG.setRoot(Res); 7066 return; 7067 case Intrinsic::reset_fpmode: { 7068 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7069 DAG.setRoot(Res); 7070 return; 7071 } 7072 case Intrinsic::pcmarker: { 7073 SDValue Tmp = getValue(I.getArgOperand(0)); 7074 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7075 return; 7076 } 7077 case Intrinsic::readcyclecounter: { 7078 SDValue Op = getRoot(); 7079 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7080 DAG.getVTList(MVT::i64, MVT::Other), Op); 7081 setValue(&I, Res); 7082 DAG.setRoot(Res.getValue(1)); 7083 return; 7084 } 7085 case Intrinsic::readsteadycounter: { 7086 SDValue Op = getRoot(); 7087 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7088 DAG.getVTList(MVT::i64, MVT::Other), Op); 7089 setValue(&I, Res); 7090 DAG.setRoot(Res.getValue(1)); 7091 return; 7092 } 7093 case Intrinsic::bitreverse: 7094 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7095 getValue(I.getArgOperand(0)).getValueType(), 7096 getValue(I.getArgOperand(0)))); 7097 return; 7098 case Intrinsic::bswap: 7099 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7100 getValue(I.getArgOperand(0)).getValueType(), 7101 getValue(I.getArgOperand(0)))); 7102 return; 7103 case Intrinsic::cttz: { 7104 SDValue Arg = getValue(I.getArgOperand(0)); 7105 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7106 EVT Ty = Arg.getValueType(); 7107 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7108 sdl, Ty, Arg)); 7109 return; 7110 } 7111 case Intrinsic::ctlz: { 7112 SDValue Arg = getValue(I.getArgOperand(0)); 7113 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7114 EVT Ty = Arg.getValueType(); 7115 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7116 sdl, Ty, Arg)); 7117 return; 7118 } 7119 case Intrinsic::ctpop: { 7120 SDValue Arg = getValue(I.getArgOperand(0)); 7121 EVT Ty = Arg.getValueType(); 7122 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7123 return; 7124 } 7125 case Intrinsic::fshl: 7126 case Intrinsic::fshr: { 7127 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7128 SDValue X = getValue(I.getArgOperand(0)); 7129 SDValue Y = getValue(I.getArgOperand(1)); 7130 SDValue Z = getValue(I.getArgOperand(2)); 7131 EVT VT = X.getValueType(); 7132 7133 if (X == Y) { 7134 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7135 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7136 } else { 7137 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7138 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7139 } 7140 return; 7141 } 7142 case Intrinsic::sadd_sat: { 7143 SDValue Op1 = getValue(I.getArgOperand(0)); 7144 SDValue Op2 = getValue(I.getArgOperand(1)); 7145 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7146 return; 7147 } 7148 case Intrinsic::uadd_sat: { 7149 SDValue Op1 = getValue(I.getArgOperand(0)); 7150 SDValue Op2 = getValue(I.getArgOperand(1)); 7151 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7152 return; 7153 } 7154 case Intrinsic::ssub_sat: { 7155 SDValue Op1 = getValue(I.getArgOperand(0)); 7156 SDValue Op2 = getValue(I.getArgOperand(1)); 7157 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7158 return; 7159 } 7160 case Intrinsic::usub_sat: { 7161 SDValue Op1 = getValue(I.getArgOperand(0)); 7162 SDValue Op2 = getValue(I.getArgOperand(1)); 7163 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7164 return; 7165 } 7166 case Intrinsic::sshl_sat: { 7167 SDValue Op1 = getValue(I.getArgOperand(0)); 7168 SDValue Op2 = getValue(I.getArgOperand(1)); 7169 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7170 return; 7171 } 7172 case Intrinsic::ushl_sat: { 7173 SDValue Op1 = getValue(I.getArgOperand(0)); 7174 SDValue Op2 = getValue(I.getArgOperand(1)); 7175 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7176 return; 7177 } 7178 case Intrinsic::smul_fix: 7179 case Intrinsic::umul_fix: 7180 case Intrinsic::smul_fix_sat: 7181 case Intrinsic::umul_fix_sat: { 7182 SDValue Op1 = getValue(I.getArgOperand(0)); 7183 SDValue Op2 = getValue(I.getArgOperand(1)); 7184 SDValue Op3 = getValue(I.getArgOperand(2)); 7185 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7186 Op1.getValueType(), Op1, Op2, Op3)); 7187 return; 7188 } 7189 case Intrinsic::sdiv_fix: 7190 case Intrinsic::udiv_fix: 7191 case Intrinsic::sdiv_fix_sat: 7192 case Intrinsic::udiv_fix_sat: { 7193 SDValue Op1 = getValue(I.getArgOperand(0)); 7194 SDValue Op2 = getValue(I.getArgOperand(1)); 7195 SDValue Op3 = getValue(I.getArgOperand(2)); 7196 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7197 Op1, Op2, Op3, DAG, TLI)); 7198 return; 7199 } 7200 case Intrinsic::smax: { 7201 SDValue Op1 = getValue(I.getArgOperand(0)); 7202 SDValue Op2 = getValue(I.getArgOperand(1)); 7203 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7204 return; 7205 } 7206 case Intrinsic::smin: { 7207 SDValue Op1 = getValue(I.getArgOperand(0)); 7208 SDValue Op2 = getValue(I.getArgOperand(1)); 7209 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7210 return; 7211 } 7212 case Intrinsic::umax: { 7213 SDValue Op1 = getValue(I.getArgOperand(0)); 7214 SDValue Op2 = getValue(I.getArgOperand(1)); 7215 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7216 return; 7217 } 7218 case Intrinsic::umin: { 7219 SDValue Op1 = getValue(I.getArgOperand(0)); 7220 SDValue Op2 = getValue(I.getArgOperand(1)); 7221 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7222 return; 7223 } 7224 case Intrinsic::abs: { 7225 // TODO: Preserve "int min is poison" arg in SDAG? 7226 SDValue Op1 = getValue(I.getArgOperand(0)); 7227 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7228 return; 7229 } 7230 case Intrinsic::scmp: { 7231 SDValue Op1 = getValue(I.getArgOperand(0)); 7232 SDValue Op2 = getValue(I.getArgOperand(1)); 7233 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7234 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7235 break; 7236 } 7237 case Intrinsic::ucmp: { 7238 SDValue Op1 = getValue(I.getArgOperand(0)); 7239 SDValue Op2 = getValue(I.getArgOperand(1)); 7240 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7241 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7242 break; 7243 } 7244 case Intrinsic::stacksave: { 7245 SDValue Op = getRoot(); 7246 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7247 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7248 setValue(&I, Res); 7249 DAG.setRoot(Res.getValue(1)); 7250 return; 7251 } 7252 case Intrinsic::stackrestore: 7253 Res = getValue(I.getArgOperand(0)); 7254 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7255 return; 7256 case Intrinsic::get_dynamic_area_offset: { 7257 SDValue Op = getRoot(); 7258 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7259 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7260 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7261 // target. 7262 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7263 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7264 " intrinsic!"); 7265 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7266 Op); 7267 DAG.setRoot(Op); 7268 setValue(&I, Res); 7269 return; 7270 } 7271 case Intrinsic::stackguard: { 7272 MachineFunction &MF = DAG.getMachineFunction(); 7273 const Module &M = *MF.getFunction().getParent(); 7274 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7275 SDValue Chain = getRoot(); 7276 if (TLI.useLoadStackGuardNode()) { 7277 Res = getLoadStackGuard(DAG, sdl, Chain); 7278 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7279 } else { 7280 const Value *Global = TLI.getSDagStackGuard(M); 7281 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7282 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7283 MachinePointerInfo(Global, 0), Align, 7284 MachineMemOperand::MOVolatile); 7285 } 7286 if (TLI.useStackGuardXorFP()) 7287 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7288 DAG.setRoot(Chain); 7289 setValue(&I, Res); 7290 return; 7291 } 7292 case Intrinsic::stackprotector: { 7293 // Emit code into the DAG to store the stack guard onto the stack. 7294 MachineFunction &MF = DAG.getMachineFunction(); 7295 MachineFrameInfo &MFI = MF.getFrameInfo(); 7296 SDValue Src, Chain = getRoot(); 7297 7298 if (TLI.useLoadStackGuardNode()) 7299 Src = getLoadStackGuard(DAG, sdl, Chain); 7300 else 7301 Src = getValue(I.getArgOperand(0)); // The guard's value. 7302 7303 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7304 7305 int FI = FuncInfo.StaticAllocaMap[Slot]; 7306 MFI.setStackProtectorIndex(FI); 7307 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7308 7309 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7310 7311 // Store the stack protector onto the stack. 7312 Res = DAG.getStore( 7313 Chain, sdl, Src, FIN, 7314 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7315 MaybeAlign(), MachineMemOperand::MOVolatile); 7316 setValue(&I, Res); 7317 DAG.setRoot(Res); 7318 return; 7319 } 7320 case Intrinsic::objectsize: 7321 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7322 7323 case Intrinsic::is_constant: 7324 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7325 7326 case Intrinsic::annotation: 7327 case Intrinsic::ptr_annotation: 7328 case Intrinsic::launder_invariant_group: 7329 case Intrinsic::strip_invariant_group: 7330 // Drop the intrinsic, but forward the value 7331 setValue(&I, getValue(I.getOperand(0))); 7332 return; 7333 7334 case Intrinsic::assume: 7335 case Intrinsic::experimental_noalias_scope_decl: 7336 case Intrinsic::var_annotation: 7337 case Intrinsic::sideeffect: 7338 // Discard annotate attributes, noalias scope declarations, assumptions, and 7339 // artificial side-effects. 7340 return; 7341 7342 case Intrinsic::codeview_annotation: { 7343 // Emit a label associated with this metadata. 7344 MachineFunction &MF = DAG.getMachineFunction(); 7345 MCSymbol *Label = 7346 MF.getMMI().getContext().createTempSymbol("annotation", true); 7347 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7348 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7349 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7350 DAG.setRoot(Res); 7351 return; 7352 } 7353 7354 case Intrinsic::init_trampoline: { 7355 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7356 7357 SDValue Ops[6]; 7358 Ops[0] = getRoot(); 7359 Ops[1] = getValue(I.getArgOperand(0)); 7360 Ops[2] = getValue(I.getArgOperand(1)); 7361 Ops[3] = getValue(I.getArgOperand(2)); 7362 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7363 Ops[5] = DAG.getSrcValue(F); 7364 7365 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7366 7367 DAG.setRoot(Res); 7368 return; 7369 } 7370 case Intrinsic::adjust_trampoline: 7371 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7372 TLI.getPointerTy(DAG.getDataLayout()), 7373 getValue(I.getArgOperand(0)))); 7374 return; 7375 case Intrinsic::gcroot: { 7376 assert(DAG.getMachineFunction().getFunction().hasGC() && 7377 "only valid in functions with gc specified, enforced by Verifier"); 7378 assert(GFI && "implied by previous"); 7379 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7380 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7381 7382 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7383 GFI->addStackRoot(FI->getIndex(), TypeMap); 7384 return; 7385 } 7386 case Intrinsic::gcread: 7387 case Intrinsic::gcwrite: 7388 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7389 case Intrinsic::get_rounding: 7390 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7391 setValue(&I, Res); 7392 DAG.setRoot(Res.getValue(1)); 7393 return; 7394 7395 case Intrinsic::expect: 7396 // Just replace __builtin_expect(exp, c) with EXP. 7397 setValue(&I, getValue(I.getArgOperand(0))); 7398 return; 7399 7400 case Intrinsic::ubsantrap: 7401 case Intrinsic::debugtrap: 7402 case Intrinsic::trap: { 7403 StringRef TrapFuncName = 7404 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7405 if (TrapFuncName.empty()) { 7406 switch (Intrinsic) { 7407 case Intrinsic::trap: 7408 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7409 break; 7410 case Intrinsic::debugtrap: 7411 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7412 break; 7413 case Intrinsic::ubsantrap: 7414 DAG.setRoot(DAG.getNode( 7415 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7416 DAG.getTargetConstant( 7417 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7418 MVT::i32))); 7419 break; 7420 default: llvm_unreachable("unknown trap intrinsic"); 7421 } 7422 return; 7423 } 7424 TargetLowering::ArgListTy Args; 7425 if (Intrinsic == Intrinsic::ubsantrap) { 7426 Args.push_back(TargetLoweringBase::ArgListEntry()); 7427 Args[0].Val = I.getArgOperand(0); 7428 Args[0].Node = getValue(Args[0].Val); 7429 Args[0].Ty = Args[0].Val->getType(); 7430 } 7431 7432 TargetLowering::CallLoweringInfo CLI(DAG); 7433 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7434 CallingConv::C, I.getType(), 7435 DAG.getExternalSymbol(TrapFuncName.data(), 7436 TLI.getPointerTy(DAG.getDataLayout())), 7437 std::move(Args)); 7438 7439 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7440 DAG.setRoot(Result.second); 7441 return; 7442 } 7443 7444 case Intrinsic::allow_runtime_check: 7445 case Intrinsic::allow_ubsan_check: 7446 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7447 return; 7448 7449 case Intrinsic::uadd_with_overflow: 7450 case Intrinsic::sadd_with_overflow: 7451 case Intrinsic::usub_with_overflow: 7452 case Intrinsic::ssub_with_overflow: 7453 case Intrinsic::umul_with_overflow: 7454 case Intrinsic::smul_with_overflow: { 7455 ISD::NodeType Op; 7456 switch (Intrinsic) { 7457 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7458 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7459 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7460 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7461 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7462 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7463 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7464 } 7465 SDValue Op1 = getValue(I.getArgOperand(0)); 7466 SDValue Op2 = getValue(I.getArgOperand(1)); 7467 7468 EVT ResultVT = Op1.getValueType(); 7469 EVT OverflowVT = MVT::i1; 7470 if (ResultVT.isVector()) 7471 OverflowVT = EVT::getVectorVT( 7472 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7473 7474 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7475 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7476 return; 7477 } 7478 case Intrinsic::prefetch: { 7479 SDValue Ops[5]; 7480 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7481 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7482 Ops[0] = DAG.getRoot(); 7483 Ops[1] = getValue(I.getArgOperand(0)); 7484 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7485 MVT::i32); 7486 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7487 MVT::i32); 7488 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7489 MVT::i32); 7490 SDValue Result = DAG.getMemIntrinsicNode( 7491 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7492 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7493 /* align */ std::nullopt, Flags); 7494 7495 // Chain the prefetch in parallel with any pending loads, to stay out of 7496 // the way of later optimizations. 7497 PendingLoads.push_back(Result); 7498 Result = getRoot(); 7499 DAG.setRoot(Result); 7500 return; 7501 } 7502 case Intrinsic::lifetime_start: 7503 case Intrinsic::lifetime_end: { 7504 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7505 // Stack coloring is not enabled in O0, discard region information. 7506 if (TM.getOptLevel() == CodeGenOptLevel::None) 7507 return; 7508 7509 const int64_t ObjectSize = 7510 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7511 Value *const ObjectPtr = I.getArgOperand(1); 7512 SmallVector<const Value *, 4> Allocas; 7513 getUnderlyingObjects(ObjectPtr, Allocas); 7514 7515 for (const Value *Alloca : Allocas) { 7516 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7517 7518 // Could not find an Alloca. 7519 if (!LifetimeObject) 7520 continue; 7521 7522 // First check that the Alloca is static, otherwise it won't have a 7523 // valid frame index. 7524 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7525 if (SI == FuncInfo.StaticAllocaMap.end()) 7526 return; 7527 7528 const int FrameIndex = SI->second; 7529 int64_t Offset; 7530 if (GetPointerBaseWithConstantOffset( 7531 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7532 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7533 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7534 Offset); 7535 DAG.setRoot(Res); 7536 } 7537 return; 7538 } 7539 case Intrinsic::pseudoprobe: { 7540 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7541 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7542 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7543 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7544 DAG.setRoot(Res); 7545 return; 7546 } 7547 case Intrinsic::invariant_start: 7548 // Discard region information. 7549 setValue(&I, 7550 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7551 return; 7552 case Intrinsic::invariant_end: 7553 // Discard region information. 7554 return; 7555 case Intrinsic::clear_cache: { 7556 SDValue InputChain = DAG.getRoot(); 7557 SDValue StartVal = getValue(I.getArgOperand(0)); 7558 SDValue EndVal = getValue(I.getArgOperand(1)); 7559 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7560 {InputChain, StartVal, EndVal}); 7561 setValue(&I, Res); 7562 DAG.setRoot(Res); 7563 return; 7564 } 7565 case Intrinsic::donothing: 7566 case Intrinsic::seh_try_begin: 7567 case Intrinsic::seh_scope_begin: 7568 case Intrinsic::seh_try_end: 7569 case Intrinsic::seh_scope_end: 7570 // ignore 7571 return; 7572 case Intrinsic::experimental_stackmap: 7573 visitStackmap(I); 7574 return; 7575 case Intrinsic::experimental_patchpoint_void: 7576 case Intrinsic::experimental_patchpoint: 7577 visitPatchpoint(I); 7578 return; 7579 case Intrinsic::experimental_gc_statepoint: 7580 LowerStatepoint(cast<GCStatepointInst>(I)); 7581 return; 7582 case Intrinsic::experimental_gc_result: 7583 visitGCResult(cast<GCResultInst>(I)); 7584 return; 7585 case Intrinsic::experimental_gc_relocate: 7586 visitGCRelocate(cast<GCRelocateInst>(I)); 7587 return; 7588 case Intrinsic::instrprof_cover: 7589 llvm_unreachable("instrprof failed to lower a cover"); 7590 case Intrinsic::instrprof_increment: 7591 llvm_unreachable("instrprof failed to lower an increment"); 7592 case Intrinsic::instrprof_timestamp: 7593 llvm_unreachable("instrprof failed to lower a timestamp"); 7594 case Intrinsic::instrprof_value_profile: 7595 llvm_unreachable("instrprof failed to lower a value profiling call"); 7596 case Intrinsic::instrprof_mcdc_parameters: 7597 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7598 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7599 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7600 case Intrinsic::localescape: { 7601 MachineFunction &MF = DAG.getMachineFunction(); 7602 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7603 7604 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7605 // is the same on all targets. 7606 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7607 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7608 if (isa<ConstantPointerNull>(Arg)) 7609 continue; // Skip null pointers. They represent a hole in index space. 7610 AllocaInst *Slot = cast<AllocaInst>(Arg); 7611 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7612 "can only escape static allocas"); 7613 int FI = FuncInfo.StaticAllocaMap[Slot]; 7614 MCSymbol *FrameAllocSym = 7615 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7616 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7617 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7618 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7619 .addSym(FrameAllocSym) 7620 .addFrameIndex(FI); 7621 } 7622 7623 return; 7624 } 7625 7626 case Intrinsic::localrecover: { 7627 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7628 MachineFunction &MF = DAG.getMachineFunction(); 7629 7630 // Get the symbol that defines the frame offset. 7631 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7632 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7633 unsigned IdxVal = 7634 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7635 MCSymbol *FrameAllocSym = 7636 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7637 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7638 7639 Value *FP = I.getArgOperand(1); 7640 SDValue FPVal = getValue(FP); 7641 EVT PtrVT = FPVal.getValueType(); 7642 7643 // Create a MCSymbol for the label to avoid any target lowering 7644 // that would make this PC relative. 7645 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7646 SDValue OffsetVal = 7647 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7648 7649 // Add the offset to the FP. 7650 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7651 setValue(&I, Add); 7652 7653 return; 7654 } 7655 7656 case Intrinsic::eh_exceptionpointer: 7657 case Intrinsic::eh_exceptioncode: { 7658 // Get the exception pointer vreg, copy from it, and resize it to fit. 7659 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7660 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7661 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7662 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7663 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7664 if (Intrinsic == Intrinsic::eh_exceptioncode) 7665 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7666 setValue(&I, N); 7667 return; 7668 } 7669 case Intrinsic::xray_customevent: { 7670 // Here we want to make sure that the intrinsic behaves as if it has a 7671 // specific calling convention. 7672 const auto &Triple = DAG.getTarget().getTargetTriple(); 7673 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7674 return; 7675 7676 SmallVector<SDValue, 8> Ops; 7677 7678 // We want to say that we always want the arguments in registers. 7679 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7680 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7681 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7682 SDValue Chain = getRoot(); 7683 Ops.push_back(LogEntryVal); 7684 Ops.push_back(StrSizeVal); 7685 Ops.push_back(Chain); 7686 7687 // We need to enforce the calling convention for the callsite, so that 7688 // argument ordering is enforced correctly, and that register allocation can 7689 // see that some registers may be assumed clobbered and have to preserve 7690 // them across calls to the intrinsic. 7691 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7692 sdl, NodeTys, Ops); 7693 SDValue patchableNode = SDValue(MN, 0); 7694 DAG.setRoot(patchableNode); 7695 setValue(&I, patchableNode); 7696 return; 7697 } 7698 case Intrinsic::xray_typedevent: { 7699 // Here we want to make sure that the intrinsic behaves as if it has a 7700 // specific calling convention. 7701 const auto &Triple = DAG.getTarget().getTargetTriple(); 7702 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7703 return; 7704 7705 SmallVector<SDValue, 8> Ops; 7706 7707 // We want to say that we always want the arguments in registers. 7708 // It's unclear to me how manipulating the selection DAG here forces callers 7709 // to provide arguments in registers instead of on the stack. 7710 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7711 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7712 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7713 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7714 SDValue Chain = getRoot(); 7715 Ops.push_back(LogTypeId); 7716 Ops.push_back(LogEntryVal); 7717 Ops.push_back(StrSizeVal); 7718 Ops.push_back(Chain); 7719 7720 // We need to enforce the calling convention for the callsite, so that 7721 // argument ordering is enforced correctly, and that register allocation can 7722 // see that some registers may be assumed clobbered and have to preserve 7723 // them across calls to the intrinsic. 7724 MachineSDNode *MN = DAG.getMachineNode( 7725 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7726 SDValue patchableNode = SDValue(MN, 0); 7727 DAG.setRoot(patchableNode); 7728 setValue(&I, patchableNode); 7729 return; 7730 } 7731 case Intrinsic::experimental_deoptimize: 7732 LowerDeoptimizeCall(&I); 7733 return; 7734 case Intrinsic::experimental_stepvector: 7735 visitStepVector(I); 7736 return; 7737 case Intrinsic::vector_reduce_fadd: 7738 case Intrinsic::vector_reduce_fmul: 7739 case Intrinsic::vector_reduce_add: 7740 case Intrinsic::vector_reduce_mul: 7741 case Intrinsic::vector_reduce_and: 7742 case Intrinsic::vector_reduce_or: 7743 case Intrinsic::vector_reduce_xor: 7744 case Intrinsic::vector_reduce_smax: 7745 case Intrinsic::vector_reduce_smin: 7746 case Intrinsic::vector_reduce_umax: 7747 case Intrinsic::vector_reduce_umin: 7748 case Intrinsic::vector_reduce_fmax: 7749 case Intrinsic::vector_reduce_fmin: 7750 case Intrinsic::vector_reduce_fmaximum: 7751 case Intrinsic::vector_reduce_fminimum: 7752 visitVectorReduce(I, Intrinsic); 7753 return; 7754 7755 case Intrinsic::icall_branch_funnel: { 7756 SmallVector<SDValue, 16> Ops; 7757 Ops.push_back(getValue(I.getArgOperand(0))); 7758 7759 int64_t Offset; 7760 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7761 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7762 if (!Base) 7763 report_fatal_error( 7764 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7765 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7766 7767 struct BranchFunnelTarget { 7768 int64_t Offset; 7769 SDValue Target; 7770 }; 7771 SmallVector<BranchFunnelTarget, 8> Targets; 7772 7773 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7774 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7775 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7776 if (ElemBase != Base) 7777 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7778 "to the same GlobalValue"); 7779 7780 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7781 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7782 if (!GA) 7783 report_fatal_error( 7784 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7785 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7786 GA->getGlobal(), sdl, Val.getValueType(), 7787 GA->getOffset())}); 7788 } 7789 llvm::sort(Targets, 7790 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7791 return T1.Offset < T2.Offset; 7792 }); 7793 7794 for (auto &T : Targets) { 7795 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7796 Ops.push_back(T.Target); 7797 } 7798 7799 Ops.push_back(DAG.getRoot()); // Chain 7800 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7801 MVT::Other, Ops), 7802 0); 7803 DAG.setRoot(N); 7804 setValue(&I, N); 7805 HasTailCall = true; 7806 return; 7807 } 7808 7809 case Intrinsic::wasm_landingpad_index: 7810 // Information this intrinsic contained has been transferred to 7811 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7812 // delete it now. 7813 return; 7814 7815 case Intrinsic::aarch64_settag: 7816 case Intrinsic::aarch64_settag_zero: { 7817 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7818 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7819 SDValue Val = TSI.EmitTargetCodeForSetTag( 7820 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7821 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7822 ZeroMemory); 7823 DAG.setRoot(Val); 7824 setValue(&I, Val); 7825 return; 7826 } 7827 case Intrinsic::amdgcn_cs_chain: { 7828 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7829 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7830 "Non-zero flags not supported yet"); 7831 7832 // At this point we don't care if it's amdgpu_cs_chain or 7833 // amdgpu_cs_chain_preserve. 7834 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7835 7836 Type *RetTy = I.getType(); 7837 assert(RetTy->isVoidTy() && "Should not return"); 7838 7839 SDValue Callee = getValue(I.getOperand(0)); 7840 7841 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7842 // We'll also tack the value of the EXEC mask at the end. 7843 TargetLowering::ArgListTy Args; 7844 Args.reserve(3); 7845 7846 for (unsigned Idx : {2, 3, 1}) { 7847 TargetLowering::ArgListEntry Arg; 7848 Arg.Node = getValue(I.getOperand(Idx)); 7849 Arg.Ty = I.getOperand(Idx)->getType(); 7850 Arg.setAttributes(&I, Idx); 7851 Args.push_back(Arg); 7852 } 7853 7854 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7855 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7856 Args[2].IsInReg = true; // EXEC should be inreg 7857 7858 TargetLowering::CallLoweringInfo CLI(DAG); 7859 CLI.setDebugLoc(getCurSDLoc()) 7860 .setChain(getRoot()) 7861 .setCallee(CC, RetTy, Callee, std::move(Args)) 7862 .setNoReturn(true) 7863 .setTailCall(true) 7864 .setConvergent(I.isConvergent()); 7865 CLI.CB = &I; 7866 std::pair<SDValue, SDValue> Result = 7867 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7868 (void)Result; 7869 assert(!Result.first.getNode() && !Result.second.getNode() && 7870 "Should've lowered as tail call"); 7871 7872 HasTailCall = true; 7873 return; 7874 } 7875 case Intrinsic::ptrmask: { 7876 SDValue Ptr = getValue(I.getOperand(0)); 7877 SDValue Mask = getValue(I.getOperand(1)); 7878 7879 // On arm64_32, pointers are 32 bits when stored in memory, but 7880 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 7881 // match the index type, but the pointer is 64 bits, so the the mask must be 7882 // zero-extended up to 64 bits to match the pointer. 7883 EVT PtrVT = 7884 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7885 EVT MemVT = 7886 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7887 assert(PtrVT == Ptr.getValueType()); 7888 assert(MemVT == Mask.getValueType()); 7889 if (MemVT != PtrVT) 7890 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 7891 7892 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7893 return; 7894 } 7895 case Intrinsic::threadlocal_address: { 7896 setValue(&I, getValue(I.getOperand(0))); 7897 return; 7898 } 7899 case Intrinsic::get_active_lane_mask: { 7900 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7901 SDValue Index = getValue(I.getOperand(0)); 7902 EVT ElementVT = Index.getValueType(); 7903 7904 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7905 visitTargetIntrinsic(I, Intrinsic); 7906 return; 7907 } 7908 7909 SDValue TripCount = getValue(I.getOperand(1)); 7910 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7911 CCVT.getVectorElementCount()); 7912 7913 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7914 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7915 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7916 SDValue VectorInduction = DAG.getNode( 7917 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7918 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7919 VectorTripCount, ISD::CondCode::SETULT); 7920 setValue(&I, SetCC); 7921 return; 7922 } 7923 case Intrinsic::experimental_get_vector_length: { 7924 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7925 "Expected positive VF"); 7926 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7927 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7928 7929 SDValue Count = getValue(I.getOperand(0)); 7930 EVT CountVT = Count.getValueType(); 7931 7932 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7933 visitTargetIntrinsic(I, Intrinsic); 7934 return; 7935 } 7936 7937 // Expand to a umin between the trip count and the maximum elements the type 7938 // can hold. 7939 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7940 7941 // Extend the trip count to at least the result VT. 7942 if (CountVT.bitsLT(VT)) { 7943 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7944 CountVT = VT; 7945 } 7946 7947 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7948 ElementCount::get(VF, IsScalable)); 7949 7950 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7951 // Clip to the result type if needed. 7952 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7953 7954 setValue(&I, Trunc); 7955 return; 7956 } 7957 case Intrinsic::experimental_cttz_elts: { 7958 auto DL = getCurSDLoc(); 7959 SDValue Op = getValue(I.getOperand(0)); 7960 EVT OpVT = Op.getValueType(); 7961 7962 if (!TLI.shouldExpandCttzElements(OpVT)) { 7963 visitTargetIntrinsic(I, Intrinsic); 7964 return; 7965 } 7966 7967 if (OpVT.getScalarType() != MVT::i1) { 7968 // Compare the input vector elements to zero & use to count trailing zeros 7969 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7970 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7971 OpVT.getVectorElementCount()); 7972 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7973 } 7974 7975 // If the zero-is-poison flag is set, we can assume the upper limit 7976 // of the result is VF-1. 7977 bool ZeroIsPoison = 7978 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 7979 ConstantRange VScaleRange(1, true); // Dummy value. 7980 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 7981 VScaleRange = getVScaleRange(I.getCaller(), 64); 7982 unsigned EltWidth = TLI.getBitWidthForCttzElements( 7983 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 7984 7985 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7986 7987 // Create the new vector type & get the vector length 7988 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7989 OpVT.getVectorElementCount()); 7990 7991 SDValue VL = 7992 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7993 7994 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7995 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7996 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7997 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7998 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7999 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 8000 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 8001 8002 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8003 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 8004 8005 setValue(&I, Ret); 8006 return; 8007 } 8008 case Intrinsic::vector_insert: { 8009 SDValue Vec = getValue(I.getOperand(0)); 8010 SDValue SubVec = getValue(I.getOperand(1)); 8011 SDValue Index = getValue(I.getOperand(2)); 8012 8013 // The intrinsic's index type is i64, but the SDNode requires an index type 8014 // suitable for the target. Convert the index as required. 8015 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8016 if (Index.getValueType() != VectorIdxTy) 8017 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8018 8019 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8020 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8021 Index)); 8022 return; 8023 } 8024 case Intrinsic::vector_extract: { 8025 SDValue Vec = getValue(I.getOperand(0)); 8026 SDValue Index = getValue(I.getOperand(1)); 8027 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8028 8029 // The intrinsic's index type is i64, but the SDNode requires an index type 8030 // suitable for the target. Convert the index as required. 8031 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8032 if (Index.getValueType() != VectorIdxTy) 8033 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8034 8035 setValue(&I, 8036 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8037 return; 8038 } 8039 case Intrinsic::vector_reverse: 8040 visitVectorReverse(I); 8041 return; 8042 case Intrinsic::vector_splice: 8043 visitVectorSplice(I); 8044 return; 8045 case Intrinsic::callbr_landingpad: 8046 visitCallBrLandingPad(I); 8047 return; 8048 case Intrinsic::vector_interleave2: 8049 visitVectorInterleave(I); 8050 return; 8051 case Intrinsic::vector_deinterleave2: 8052 visitVectorDeinterleave(I); 8053 return; 8054 case Intrinsic::experimental_convergence_anchor: 8055 case Intrinsic::experimental_convergence_entry: 8056 case Intrinsic::experimental_convergence_loop: 8057 visitConvergenceControl(I, Intrinsic); 8058 return; 8059 case Intrinsic::experimental_vector_histogram_add: { 8060 visitVectorHistogram(I, Intrinsic); 8061 return; 8062 } 8063 } 8064 } 8065 8066 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8067 const ConstrainedFPIntrinsic &FPI) { 8068 SDLoc sdl = getCurSDLoc(); 8069 8070 // We do not need to serialize constrained FP intrinsics against 8071 // each other or against (nonvolatile) loads, so they can be 8072 // chained like loads. 8073 SDValue Chain = DAG.getRoot(); 8074 SmallVector<SDValue, 4> Opers; 8075 Opers.push_back(Chain); 8076 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8077 Opers.push_back(getValue(FPI.getArgOperand(I))); 8078 8079 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8080 assert(Result.getNode()->getNumValues() == 2); 8081 8082 // Push node to the appropriate list so that future instructions can be 8083 // chained up correctly. 8084 SDValue OutChain = Result.getValue(1); 8085 switch (EB) { 8086 case fp::ExceptionBehavior::ebIgnore: 8087 // The only reason why ebIgnore nodes still need to be chained is that 8088 // they might depend on the current rounding mode, and therefore must 8089 // not be moved across instruction that may change that mode. 8090 [[fallthrough]]; 8091 case fp::ExceptionBehavior::ebMayTrap: 8092 // These must not be moved across calls or instructions that may change 8093 // floating-point exception masks. 8094 PendingConstrainedFP.push_back(OutChain); 8095 break; 8096 case fp::ExceptionBehavior::ebStrict: 8097 // These must not be moved across calls or instructions that may change 8098 // floating-point exception masks or read floating-point exception flags. 8099 // In addition, they cannot be optimized out even if unused. 8100 PendingConstrainedFPStrict.push_back(OutChain); 8101 break; 8102 } 8103 }; 8104 8105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8106 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8107 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8108 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8109 8110 SDNodeFlags Flags; 8111 if (EB == fp::ExceptionBehavior::ebIgnore) 8112 Flags.setNoFPExcept(true); 8113 8114 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8115 Flags.copyFMF(*FPOp); 8116 8117 unsigned Opcode; 8118 switch (FPI.getIntrinsicID()) { 8119 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8120 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8121 case Intrinsic::INTRINSIC: \ 8122 Opcode = ISD::STRICT_##DAGN; \ 8123 break; 8124 #include "llvm/IR/ConstrainedOps.def" 8125 case Intrinsic::experimental_constrained_fmuladd: { 8126 Opcode = ISD::STRICT_FMA; 8127 // Break fmuladd into fmul and fadd. 8128 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8129 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8130 Opers.pop_back(); 8131 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8132 pushOutChain(Mul, EB); 8133 Opcode = ISD::STRICT_FADD; 8134 Opers.clear(); 8135 Opers.push_back(Mul.getValue(1)); 8136 Opers.push_back(Mul.getValue(0)); 8137 Opers.push_back(getValue(FPI.getArgOperand(2))); 8138 } 8139 break; 8140 } 8141 } 8142 8143 // A few strict DAG nodes carry additional operands that are not 8144 // set up by the default code above. 8145 switch (Opcode) { 8146 default: break; 8147 case ISD::STRICT_FP_ROUND: 8148 Opers.push_back( 8149 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8150 break; 8151 case ISD::STRICT_FSETCC: 8152 case ISD::STRICT_FSETCCS: { 8153 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8154 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8155 if (TM.Options.NoNaNsFPMath) 8156 Condition = getFCmpCodeWithoutNaN(Condition); 8157 Opers.push_back(DAG.getCondCode(Condition)); 8158 break; 8159 } 8160 } 8161 8162 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8163 pushOutChain(Result, EB); 8164 8165 SDValue FPResult = Result.getValue(0); 8166 setValue(&FPI, FPResult); 8167 } 8168 8169 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8170 std::optional<unsigned> ResOPC; 8171 switch (VPIntrin.getIntrinsicID()) { 8172 case Intrinsic::vp_ctlz: { 8173 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8174 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8175 break; 8176 } 8177 case Intrinsic::vp_cttz: { 8178 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8179 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8180 break; 8181 } 8182 case Intrinsic::vp_cttz_elts: { 8183 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8184 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8185 break; 8186 } 8187 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8188 case Intrinsic::VPID: \ 8189 ResOPC = ISD::VPSD; \ 8190 break; 8191 #include "llvm/IR/VPIntrinsics.def" 8192 } 8193 8194 if (!ResOPC) 8195 llvm_unreachable( 8196 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8197 8198 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8199 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8200 if (VPIntrin.getFastMathFlags().allowReassoc()) 8201 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8202 : ISD::VP_REDUCE_FMUL; 8203 } 8204 8205 return *ResOPC; 8206 } 8207 8208 void SelectionDAGBuilder::visitVPLoad( 8209 const VPIntrinsic &VPIntrin, EVT VT, 8210 const SmallVectorImpl<SDValue> &OpValues) { 8211 SDLoc DL = getCurSDLoc(); 8212 Value *PtrOperand = VPIntrin.getArgOperand(0); 8213 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8214 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8215 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8216 SDValue LD; 8217 // Do not serialize variable-length loads of constant memory with 8218 // anything. 8219 if (!Alignment) 8220 Alignment = DAG.getEVTAlign(VT); 8221 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8222 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8223 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8224 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8225 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8226 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8227 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8228 MMO, false /*IsExpanding */); 8229 if (AddToChain) 8230 PendingLoads.push_back(LD.getValue(1)); 8231 setValue(&VPIntrin, LD); 8232 } 8233 8234 void SelectionDAGBuilder::visitVPGather( 8235 const VPIntrinsic &VPIntrin, EVT VT, 8236 const SmallVectorImpl<SDValue> &OpValues) { 8237 SDLoc DL = getCurSDLoc(); 8238 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8239 Value *PtrOperand = VPIntrin.getArgOperand(0); 8240 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8241 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8242 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8243 SDValue LD; 8244 if (!Alignment) 8245 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8246 unsigned AS = 8247 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8248 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8249 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8250 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8251 SDValue Base, Index, Scale; 8252 ISD::MemIndexType IndexType; 8253 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8254 this, VPIntrin.getParent(), 8255 VT.getScalarStoreSize()); 8256 if (!UniformBase) { 8257 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8258 Index = getValue(PtrOperand); 8259 IndexType = ISD::SIGNED_SCALED; 8260 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8261 } 8262 EVT IdxVT = Index.getValueType(); 8263 EVT EltTy = IdxVT.getVectorElementType(); 8264 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8265 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8266 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8267 } 8268 LD = DAG.getGatherVP( 8269 DAG.getVTList(VT, MVT::Other), VT, DL, 8270 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8271 IndexType); 8272 PendingLoads.push_back(LD.getValue(1)); 8273 setValue(&VPIntrin, LD); 8274 } 8275 8276 void SelectionDAGBuilder::visitVPStore( 8277 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8278 SDLoc DL = getCurSDLoc(); 8279 Value *PtrOperand = VPIntrin.getArgOperand(1); 8280 EVT VT = OpValues[0].getValueType(); 8281 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8282 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8283 SDValue ST; 8284 if (!Alignment) 8285 Alignment = DAG.getEVTAlign(VT); 8286 SDValue Ptr = OpValues[1]; 8287 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8288 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8289 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8290 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8291 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8292 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8293 /* IsTruncating */ false, /*IsCompressing*/ false); 8294 DAG.setRoot(ST); 8295 setValue(&VPIntrin, ST); 8296 } 8297 8298 void SelectionDAGBuilder::visitVPScatter( 8299 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8300 SDLoc DL = getCurSDLoc(); 8301 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8302 Value *PtrOperand = VPIntrin.getArgOperand(1); 8303 EVT VT = OpValues[0].getValueType(); 8304 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8305 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8306 SDValue ST; 8307 if (!Alignment) 8308 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8309 unsigned AS = 8310 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8311 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8312 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8313 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8314 SDValue Base, Index, Scale; 8315 ISD::MemIndexType IndexType; 8316 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8317 this, VPIntrin.getParent(), 8318 VT.getScalarStoreSize()); 8319 if (!UniformBase) { 8320 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8321 Index = getValue(PtrOperand); 8322 IndexType = ISD::SIGNED_SCALED; 8323 Scale = 8324 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8325 } 8326 EVT IdxVT = Index.getValueType(); 8327 EVT EltTy = IdxVT.getVectorElementType(); 8328 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8329 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8330 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8331 } 8332 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8333 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8334 OpValues[2], OpValues[3]}, 8335 MMO, IndexType); 8336 DAG.setRoot(ST); 8337 setValue(&VPIntrin, ST); 8338 } 8339 8340 void SelectionDAGBuilder::visitVPStridedLoad( 8341 const VPIntrinsic &VPIntrin, EVT VT, 8342 const SmallVectorImpl<SDValue> &OpValues) { 8343 SDLoc DL = getCurSDLoc(); 8344 Value *PtrOperand = VPIntrin.getArgOperand(0); 8345 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8346 if (!Alignment) 8347 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8348 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8349 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8350 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8351 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8352 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8353 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8354 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8355 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8356 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8357 8358 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8359 OpValues[2], OpValues[3], MMO, 8360 false /*IsExpanding*/); 8361 8362 if (AddToChain) 8363 PendingLoads.push_back(LD.getValue(1)); 8364 setValue(&VPIntrin, LD); 8365 } 8366 8367 void SelectionDAGBuilder::visitVPStridedStore( 8368 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8369 SDLoc DL = getCurSDLoc(); 8370 Value *PtrOperand = VPIntrin.getArgOperand(1); 8371 EVT VT = OpValues[0].getValueType(); 8372 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8373 if (!Alignment) 8374 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8375 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8376 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8377 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8378 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8379 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8380 8381 SDValue ST = DAG.getStridedStoreVP( 8382 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8383 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8384 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8385 /*IsCompressing*/ false); 8386 8387 DAG.setRoot(ST); 8388 setValue(&VPIntrin, ST); 8389 } 8390 8391 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8392 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8393 SDLoc DL = getCurSDLoc(); 8394 8395 ISD::CondCode Condition; 8396 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8397 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8398 if (IsFP) { 8399 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8400 // flags, but calls that don't return floating-point types can't be 8401 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8402 Condition = getFCmpCondCode(CondCode); 8403 if (TM.Options.NoNaNsFPMath) 8404 Condition = getFCmpCodeWithoutNaN(Condition); 8405 } else { 8406 Condition = getICmpCondCode(CondCode); 8407 } 8408 8409 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8410 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8411 // #2 is the condition code 8412 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8413 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8414 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8415 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8416 "Unexpected target EVL type"); 8417 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8418 8419 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8420 VPIntrin.getType()); 8421 setValue(&VPIntrin, 8422 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8423 } 8424 8425 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8426 const VPIntrinsic &VPIntrin) { 8427 SDLoc DL = getCurSDLoc(); 8428 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8429 8430 auto IID = VPIntrin.getIntrinsicID(); 8431 8432 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8433 return visitVPCmp(*CmpI); 8434 8435 SmallVector<EVT, 4> ValueVTs; 8436 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8437 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8438 SDVTList VTs = DAG.getVTList(ValueVTs); 8439 8440 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8441 8442 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8443 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8444 "Unexpected target EVL type"); 8445 8446 // Request operands. 8447 SmallVector<SDValue, 7> OpValues; 8448 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8449 auto Op = getValue(VPIntrin.getArgOperand(I)); 8450 if (I == EVLParamPos) 8451 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8452 OpValues.push_back(Op); 8453 } 8454 8455 switch (Opcode) { 8456 default: { 8457 SDNodeFlags SDFlags; 8458 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8459 SDFlags.copyFMF(*FPMO); 8460 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8461 setValue(&VPIntrin, Result); 8462 break; 8463 } 8464 case ISD::VP_LOAD: 8465 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8466 break; 8467 case ISD::VP_GATHER: 8468 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8469 break; 8470 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8471 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8472 break; 8473 case ISD::VP_STORE: 8474 visitVPStore(VPIntrin, OpValues); 8475 break; 8476 case ISD::VP_SCATTER: 8477 visitVPScatter(VPIntrin, OpValues); 8478 break; 8479 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8480 visitVPStridedStore(VPIntrin, OpValues); 8481 break; 8482 case ISD::VP_FMULADD: { 8483 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8484 SDNodeFlags SDFlags; 8485 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8486 SDFlags.copyFMF(*FPMO); 8487 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8488 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8489 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8490 } else { 8491 SDValue Mul = DAG.getNode( 8492 ISD::VP_FMUL, DL, VTs, 8493 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8494 SDValue Add = 8495 DAG.getNode(ISD::VP_FADD, DL, VTs, 8496 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8497 setValue(&VPIntrin, Add); 8498 } 8499 break; 8500 } 8501 case ISD::VP_IS_FPCLASS: { 8502 const DataLayout DLayout = DAG.getDataLayout(); 8503 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8504 auto Constant = OpValues[1]->getAsZExtVal(); 8505 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8506 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8507 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8508 setValue(&VPIntrin, V); 8509 return; 8510 } 8511 case ISD::VP_INTTOPTR: { 8512 SDValue N = OpValues[0]; 8513 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8514 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8515 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8516 OpValues[2]); 8517 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8518 OpValues[2]); 8519 setValue(&VPIntrin, N); 8520 break; 8521 } 8522 case ISD::VP_PTRTOINT: { 8523 SDValue N = OpValues[0]; 8524 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8525 VPIntrin.getType()); 8526 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8527 VPIntrin.getOperand(0)->getType()); 8528 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8529 OpValues[2]); 8530 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8531 OpValues[2]); 8532 setValue(&VPIntrin, N); 8533 break; 8534 } 8535 case ISD::VP_ABS: 8536 case ISD::VP_CTLZ: 8537 case ISD::VP_CTLZ_ZERO_UNDEF: 8538 case ISD::VP_CTTZ: 8539 case ISD::VP_CTTZ_ZERO_UNDEF: 8540 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8541 case ISD::VP_CTTZ_ELTS: { 8542 SDValue Result = 8543 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8544 setValue(&VPIntrin, Result); 8545 break; 8546 } 8547 } 8548 } 8549 8550 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8551 const BasicBlock *EHPadBB, 8552 MCSymbol *&BeginLabel) { 8553 MachineFunction &MF = DAG.getMachineFunction(); 8554 MachineModuleInfo &MMI = MF.getMMI(); 8555 8556 // Insert a label before the invoke call to mark the try range. This can be 8557 // used to detect deletion of the invoke via the MachineModuleInfo. 8558 BeginLabel = MMI.getContext().createTempSymbol(); 8559 8560 // For SjLj, keep track of which landing pads go with which invokes 8561 // so as to maintain the ordering of pads in the LSDA. 8562 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8563 if (CallSiteIndex) { 8564 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8565 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8566 8567 // Now that the call site is handled, stop tracking it. 8568 MMI.setCurrentCallSite(0); 8569 } 8570 8571 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8572 } 8573 8574 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8575 const BasicBlock *EHPadBB, 8576 MCSymbol *BeginLabel) { 8577 assert(BeginLabel && "BeginLabel should've been set"); 8578 8579 MachineFunction &MF = DAG.getMachineFunction(); 8580 MachineModuleInfo &MMI = MF.getMMI(); 8581 8582 // Insert a label at the end of the invoke call to mark the try range. This 8583 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8584 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8585 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8586 8587 // Inform MachineModuleInfo of range. 8588 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8589 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8590 // actually use outlined funclets and their LSDA info style. 8591 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8592 assert(II && "II should've been set"); 8593 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8594 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8595 } else if (!isScopedEHPersonality(Pers)) { 8596 assert(EHPadBB); 8597 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8598 } 8599 8600 return Chain; 8601 } 8602 8603 std::pair<SDValue, SDValue> 8604 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8605 const BasicBlock *EHPadBB) { 8606 MCSymbol *BeginLabel = nullptr; 8607 8608 if (EHPadBB) { 8609 // Both PendingLoads and PendingExports must be flushed here; 8610 // this call might not return. 8611 (void)getRoot(); 8612 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8613 CLI.setChain(getRoot()); 8614 } 8615 8616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8617 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8618 8619 assert((CLI.IsTailCall || Result.second.getNode()) && 8620 "Non-null chain expected with non-tail call!"); 8621 assert((Result.second.getNode() || !Result.first.getNode()) && 8622 "Null value expected with tail call!"); 8623 8624 if (!Result.second.getNode()) { 8625 // As a special case, a null chain means that a tail call has been emitted 8626 // and the DAG root is already updated. 8627 HasTailCall = true; 8628 8629 // Since there's no actual continuation from this block, nothing can be 8630 // relying on us setting vregs for them. 8631 PendingExports.clear(); 8632 } else { 8633 DAG.setRoot(Result.second); 8634 } 8635 8636 if (EHPadBB) { 8637 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8638 BeginLabel)); 8639 Result.second = getRoot(); 8640 } 8641 8642 return Result; 8643 } 8644 8645 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8646 bool isTailCall, bool isMustTailCall, 8647 const BasicBlock *EHPadBB, 8648 const TargetLowering::PtrAuthInfo *PAI) { 8649 auto &DL = DAG.getDataLayout(); 8650 FunctionType *FTy = CB.getFunctionType(); 8651 Type *RetTy = CB.getType(); 8652 8653 TargetLowering::ArgListTy Args; 8654 Args.reserve(CB.arg_size()); 8655 8656 const Value *SwiftErrorVal = nullptr; 8657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8658 8659 if (isTailCall) { 8660 // Avoid emitting tail calls in functions with the disable-tail-calls 8661 // attribute. 8662 auto *Caller = CB.getParent()->getParent(); 8663 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8664 "true" && !isMustTailCall) 8665 isTailCall = false; 8666 8667 // We can't tail call inside a function with a swifterror argument. Lowering 8668 // does not support this yet. It would have to move into the swifterror 8669 // register before the call. 8670 if (TLI.supportSwiftError() && 8671 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8672 isTailCall = false; 8673 } 8674 8675 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8676 TargetLowering::ArgListEntry Entry; 8677 const Value *V = *I; 8678 8679 // Skip empty types 8680 if (V->getType()->isEmptyTy()) 8681 continue; 8682 8683 SDValue ArgNode = getValue(V); 8684 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8685 8686 Entry.setAttributes(&CB, I - CB.arg_begin()); 8687 8688 // Use swifterror virtual register as input to the call. 8689 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8690 SwiftErrorVal = V; 8691 // We find the virtual register for the actual swifterror argument. 8692 // Instead of using the Value, we use the virtual register instead. 8693 Entry.Node = 8694 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8695 EVT(TLI.getPointerTy(DL))); 8696 } 8697 8698 Args.push_back(Entry); 8699 8700 // If we have an explicit sret argument that is an Instruction, (i.e., it 8701 // might point to function-local memory), we can't meaningfully tail-call. 8702 if (Entry.IsSRet && isa<Instruction>(V)) 8703 isTailCall = false; 8704 } 8705 8706 // If call site has a cfguardtarget operand bundle, create and add an 8707 // additional ArgListEntry. 8708 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8709 TargetLowering::ArgListEntry Entry; 8710 Value *V = Bundle->Inputs[0]; 8711 SDValue ArgNode = getValue(V); 8712 Entry.Node = ArgNode; 8713 Entry.Ty = V->getType(); 8714 Entry.IsCFGuardTarget = true; 8715 Args.push_back(Entry); 8716 } 8717 8718 // Check if target-independent constraints permit a tail call here. 8719 // Target-dependent constraints are checked within TLI->LowerCallTo. 8720 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8721 isTailCall = false; 8722 8723 // Disable tail calls if there is an swifterror argument. Targets have not 8724 // been updated to support tail calls. 8725 if (TLI.supportSwiftError() && SwiftErrorVal) 8726 isTailCall = false; 8727 8728 ConstantInt *CFIType = nullptr; 8729 if (CB.isIndirectCall()) { 8730 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8731 if (!TLI.supportKCFIBundles()) 8732 report_fatal_error( 8733 "Target doesn't support calls with kcfi operand bundles."); 8734 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8735 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8736 } 8737 } 8738 8739 SDValue ConvControlToken; 8740 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8741 auto *Token = Bundle->Inputs[0].get(); 8742 ConvControlToken = getValue(Token); 8743 } 8744 8745 TargetLowering::CallLoweringInfo CLI(DAG); 8746 CLI.setDebugLoc(getCurSDLoc()) 8747 .setChain(getRoot()) 8748 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8749 .setTailCall(isTailCall) 8750 .setConvergent(CB.isConvergent()) 8751 .setIsPreallocated( 8752 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8753 .setCFIType(CFIType) 8754 .setConvergenceControlToken(ConvControlToken); 8755 8756 // Set the pointer authentication info if we have it. 8757 if (PAI) { 8758 if (!TLI.supportPtrAuthBundles()) 8759 report_fatal_error( 8760 "This target doesn't support calls with ptrauth operand bundles."); 8761 CLI.setPtrAuth(*PAI); 8762 } 8763 8764 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8765 8766 if (Result.first.getNode()) { 8767 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8768 setValue(&CB, Result.first); 8769 } 8770 8771 // The last element of CLI.InVals has the SDValue for swifterror return. 8772 // Here we copy it to a virtual register and update SwiftErrorMap for 8773 // book-keeping. 8774 if (SwiftErrorVal && TLI.supportSwiftError()) { 8775 // Get the last element of InVals. 8776 SDValue Src = CLI.InVals.back(); 8777 Register VReg = 8778 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8779 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8780 DAG.setRoot(CopyNode); 8781 } 8782 } 8783 8784 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8785 SelectionDAGBuilder &Builder) { 8786 // Check to see if this load can be trivially constant folded, e.g. if the 8787 // input is from a string literal. 8788 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8789 // Cast pointer to the type we really want to load. 8790 Type *LoadTy = 8791 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8792 if (LoadVT.isVector()) 8793 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8794 8795 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8796 PointerType::getUnqual(LoadTy)); 8797 8798 if (const Constant *LoadCst = 8799 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8800 LoadTy, Builder.DAG.getDataLayout())) 8801 return Builder.getValue(LoadCst); 8802 } 8803 8804 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8805 // still constant memory, the input chain can be the entry node. 8806 SDValue Root; 8807 bool ConstantMemory = false; 8808 8809 // Do not serialize (non-volatile) loads of constant memory with anything. 8810 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8811 Root = Builder.DAG.getEntryNode(); 8812 ConstantMemory = true; 8813 } else { 8814 // Do not serialize non-volatile loads against each other. 8815 Root = Builder.DAG.getRoot(); 8816 } 8817 8818 SDValue Ptr = Builder.getValue(PtrVal); 8819 SDValue LoadVal = 8820 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8821 MachinePointerInfo(PtrVal), Align(1)); 8822 8823 if (!ConstantMemory) 8824 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8825 return LoadVal; 8826 } 8827 8828 /// Record the value for an instruction that produces an integer result, 8829 /// converting the type where necessary. 8830 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8831 SDValue Value, 8832 bool IsSigned) { 8833 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8834 I.getType(), true); 8835 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8836 setValue(&I, Value); 8837 } 8838 8839 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8840 /// true and lower it. Otherwise return false, and it will be lowered like a 8841 /// normal call. 8842 /// The caller already checked that \p I calls the appropriate LibFunc with a 8843 /// correct prototype. 8844 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8845 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8846 const Value *Size = I.getArgOperand(2); 8847 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8848 if (CSize && CSize->getZExtValue() == 0) { 8849 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8850 I.getType(), true); 8851 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8852 return true; 8853 } 8854 8855 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8856 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8857 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8858 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8859 if (Res.first.getNode()) { 8860 processIntegerCallValue(I, Res.first, true); 8861 PendingLoads.push_back(Res.second); 8862 return true; 8863 } 8864 8865 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8866 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8867 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8868 return false; 8869 8870 // If the target has a fast compare for the given size, it will return a 8871 // preferred load type for that size. Require that the load VT is legal and 8872 // that the target supports unaligned loads of that type. Otherwise, return 8873 // INVALID. 8874 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8876 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8877 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8878 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8879 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8880 // TODO: Check alignment of src and dest ptrs. 8881 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8882 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8883 if (!TLI.isTypeLegal(LVT) || 8884 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8885 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8886 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8887 } 8888 8889 return LVT; 8890 }; 8891 8892 // This turns into unaligned loads. We only do this if the target natively 8893 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8894 // we'll only produce a small number of byte loads. 8895 MVT LoadVT; 8896 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8897 switch (NumBitsToCompare) { 8898 default: 8899 return false; 8900 case 16: 8901 LoadVT = MVT::i16; 8902 break; 8903 case 32: 8904 LoadVT = MVT::i32; 8905 break; 8906 case 64: 8907 case 128: 8908 case 256: 8909 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8910 break; 8911 } 8912 8913 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8914 return false; 8915 8916 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8917 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8918 8919 // Bitcast to a wide integer type if the loads are vectors. 8920 if (LoadVT.isVector()) { 8921 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8922 LoadL = DAG.getBitcast(CmpVT, LoadL); 8923 LoadR = DAG.getBitcast(CmpVT, LoadR); 8924 } 8925 8926 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8927 processIntegerCallValue(I, Cmp, false); 8928 return true; 8929 } 8930 8931 /// See if we can lower a memchr call into an optimized form. If so, return 8932 /// true and lower it. Otherwise return false, and it will be lowered like a 8933 /// normal call. 8934 /// The caller already checked that \p I calls the appropriate LibFunc with a 8935 /// correct prototype. 8936 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8937 const Value *Src = I.getArgOperand(0); 8938 const Value *Char = I.getArgOperand(1); 8939 const Value *Length = I.getArgOperand(2); 8940 8941 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8942 std::pair<SDValue, SDValue> Res = 8943 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8944 getValue(Src), getValue(Char), getValue(Length), 8945 MachinePointerInfo(Src)); 8946 if (Res.first.getNode()) { 8947 setValue(&I, Res.first); 8948 PendingLoads.push_back(Res.second); 8949 return true; 8950 } 8951 8952 return false; 8953 } 8954 8955 /// See if we can lower a mempcpy call into an optimized form. If so, return 8956 /// true and lower it. Otherwise return false, and it will be lowered like a 8957 /// normal call. 8958 /// The caller already checked that \p I calls the appropriate LibFunc with a 8959 /// correct prototype. 8960 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8961 SDValue Dst = getValue(I.getArgOperand(0)); 8962 SDValue Src = getValue(I.getArgOperand(1)); 8963 SDValue Size = getValue(I.getArgOperand(2)); 8964 8965 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8966 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8967 // DAG::getMemcpy needs Alignment to be defined. 8968 Align Alignment = std::min(DstAlign, SrcAlign); 8969 8970 SDLoc sdl = getCurSDLoc(); 8971 8972 // In the mempcpy context we need to pass in a false value for isTailCall 8973 // because the return pointer needs to be adjusted by the size of 8974 // the copied memory. 8975 SDValue Root = getMemoryRoot(); 8976 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8977 /*isTailCall=*/false, 8978 MachinePointerInfo(I.getArgOperand(0)), 8979 MachinePointerInfo(I.getArgOperand(1)), 8980 I.getAAMetadata()); 8981 assert(MC.getNode() != nullptr && 8982 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8983 DAG.setRoot(MC); 8984 8985 // Check if Size needs to be truncated or extended. 8986 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8987 8988 // Adjust return pointer to point just past the last dst byte. 8989 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8990 Dst, Size); 8991 setValue(&I, DstPlusSize); 8992 return true; 8993 } 8994 8995 /// See if we can lower a strcpy call into an optimized form. If so, return 8996 /// true and lower it, otherwise return false and it will be lowered like a 8997 /// normal call. 8998 /// The caller already checked that \p I calls the appropriate LibFunc with a 8999 /// correct prototype. 9000 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 9001 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9002 9003 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9004 std::pair<SDValue, SDValue> Res = 9005 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 9006 getValue(Arg0), getValue(Arg1), 9007 MachinePointerInfo(Arg0), 9008 MachinePointerInfo(Arg1), isStpcpy); 9009 if (Res.first.getNode()) { 9010 setValue(&I, Res.first); 9011 DAG.setRoot(Res.second); 9012 return true; 9013 } 9014 9015 return false; 9016 } 9017 9018 /// See if we can lower a strcmp call into an optimized form. If so, return 9019 /// true and lower it, otherwise return false and it will be lowered like a 9020 /// normal call. 9021 /// The caller already checked that \p I calls the appropriate LibFunc with a 9022 /// correct prototype. 9023 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9024 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9025 9026 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9027 std::pair<SDValue, SDValue> Res = 9028 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9029 getValue(Arg0), getValue(Arg1), 9030 MachinePointerInfo(Arg0), 9031 MachinePointerInfo(Arg1)); 9032 if (Res.first.getNode()) { 9033 processIntegerCallValue(I, Res.first, true); 9034 PendingLoads.push_back(Res.second); 9035 return true; 9036 } 9037 9038 return false; 9039 } 9040 9041 /// See if we can lower a strlen call into an optimized form. If so, return 9042 /// true and lower it, otherwise return false and it will be lowered like a 9043 /// normal call. 9044 /// The caller already checked that \p I calls the appropriate LibFunc with a 9045 /// correct prototype. 9046 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9047 const Value *Arg0 = I.getArgOperand(0); 9048 9049 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9050 std::pair<SDValue, SDValue> Res = 9051 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9052 getValue(Arg0), MachinePointerInfo(Arg0)); 9053 if (Res.first.getNode()) { 9054 processIntegerCallValue(I, Res.first, false); 9055 PendingLoads.push_back(Res.second); 9056 return true; 9057 } 9058 9059 return false; 9060 } 9061 9062 /// See if we can lower a strnlen call into an optimized form. If so, return 9063 /// true and lower it, otherwise return false and it will be lowered like a 9064 /// normal call. 9065 /// The caller already checked that \p I calls the appropriate LibFunc with a 9066 /// correct prototype. 9067 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9068 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9069 9070 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9071 std::pair<SDValue, SDValue> Res = 9072 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9073 getValue(Arg0), getValue(Arg1), 9074 MachinePointerInfo(Arg0)); 9075 if (Res.first.getNode()) { 9076 processIntegerCallValue(I, Res.first, false); 9077 PendingLoads.push_back(Res.second); 9078 return true; 9079 } 9080 9081 return false; 9082 } 9083 9084 /// See if we can lower a unary floating-point operation into an SDNode with 9085 /// the specified Opcode. If so, return true and lower it, otherwise return 9086 /// false and it will be lowered like a normal call. 9087 /// The caller already checked that \p I calls the appropriate LibFunc with a 9088 /// correct prototype. 9089 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9090 unsigned Opcode) { 9091 // We already checked this call's prototype; verify it doesn't modify errno. 9092 if (!I.onlyReadsMemory()) 9093 return false; 9094 9095 SDNodeFlags Flags; 9096 Flags.copyFMF(cast<FPMathOperator>(I)); 9097 9098 SDValue Tmp = getValue(I.getArgOperand(0)); 9099 setValue(&I, 9100 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9101 return true; 9102 } 9103 9104 /// See if we can lower a binary floating-point operation into an SDNode with 9105 /// the specified Opcode. If so, return true and lower it. Otherwise return 9106 /// false, and it will be lowered like a normal call. 9107 /// The caller already checked that \p I calls the appropriate LibFunc with a 9108 /// correct prototype. 9109 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9110 unsigned Opcode) { 9111 // We already checked this call's prototype; verify it doesn't modify errno. 9112 if (!I.onlyReadsMemory()) 9113 return false; 9114 9115 SDNodeFlags Flags; 9116 Flags.copyFMF(cast<FPMathOperator>(I)); 9117 9118 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9119 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9120 EVT VT = Tmp0.getValueType(); 9121 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9122 return true; 9123 } 9124 9125 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9126 // Handle inline assembly differently. 9127 if (I.isInlineAsm()) { 9128 visitInlineAsm(I); 9129 return; 9130 } 9131 9132 diagnoseDontCall(I); 9133 9134 if (Function *F = I.getCalledFunction()) { 9135 if (F->isDeclaration()) { 9136 // Is this an LLVM intrinsic or a target-specific intrinsic? 9137 unsigned IID = F->getIntrinsicID(); 9138 if (!IID) 9139 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9140 IID = II->getIntrinsicID(F); 9141 9142 if (IID) { 9143 visitIntrinsicCall(I, IID); 9144 return; 9145 } 9146 } 9147 9148 // Check for well-known libc/libm calls. If the function is internal, it 9149 // can't be a library call. Don't do the check if marked as nobuiltin for 9150 // some reason or the call site requires strict floating point semantics. 9151 LibFunc Func; 9152 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9153 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9154 LibInfo->hasOptimizedCodeGen(Func)) { 9155 switch (Func) { 9156 default: break; 9157 case LibFunc_bcmp: 9158 if (visitMemCmpBCmpCall(I)) 9159 return; 9160 break; 9161 case LibFunc_copysign: 9162 case LibFunc_copysignf: 9163 case LibFunc_copysignl: 9164 // We already checked this call's prototype; verify it doesn't modify 9165 // errno. 9166 if (I.onlyReadsMemory()) { 9167 SDValue LHS = getValue(I.getArgOperand(0)); 9168 SDValue RHS = getValue(I.getArgOperand(1)); 9169 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9170 LHS.getValueType(), LHS, RHS)); 9171 return; 9172 } 9173 break; 9174 case LibFunc_fabs: 9175 case LibFunc_fabsf: 9176 case LibFunc_fabsl: 9177 if (visitUnaryFloatCall(I, ISD::FABS)) 9178 return; 9179 break; 9180 case LibFunc_fmin: 9181 case LibFunc_fminf: 9182 case LibFunc_fminl: 9183 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9184 return; 9185 break; 9186 case LibFunc_fmax: 9187 case LibFunc_fmaxf: 9188 case LibFunc_fmaxl: 9189 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9190 return; 9191 break; 9192 case LibFunc_sin: 9193 case LibFunc_sinf: 9194 case LibFunc_sinl: 9195 if (visitUnaryFloatCall(I, ISD::FSIN)) 9196 return; 9197 break; 9198 case LibFunc_cos: 9199 case LibFunc_cosf: 9200 case LibFunc_cosl: 9201 if (visitUnaryFloatCall(I, ISD::FCOS)) 9202 return; 9203 break; 9204 case LibFunc_tan: 9205 case LibFunc_tanf: 9206 case LibFunc_tanl: 9207 if (visitUnaryFloatCall(I, ISD::FTAN)) 9208 return; 9209 break; 9210 case LibFunc_sqrt: 9211 case LibFunc_sqrtf: 9212 case LibFunc_sqrtl: 9213 case LibFunc_sqrt_finite: 9214 case LibFunc_sqrtf_finite: 9215 case LibFunc_sqrtl_finite: 9216 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9217 return; 9218 break; 9219 case LibFunc_floor: 9220 case LibFunc_floorf: 9221 case LibFunc_floorl: 9222 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9223 return; 9224 break; 9225 case LibFunc_nearbyint: 9226 case LibFunc_nearbyintf: 9227 case LibFunc_nearbyintl: 9228 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9229 return; 9230 break; 9231 case LibFunc_ceil: 9232 case LibFunc_ceilf: 9233 case LibFunc_ceill: 9234 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9235 return; 9236 break; 9237 case LibFunc_rint: 9238 case LibFunc_rintf: 9239 case LibFunc_rintl: 9240 if (visitUnaryFloatCall(I, ISD::FRINT)) 9241 return; 9242 break; 9243 case LibFunc_round: 9244 case LibFunc_roundf: 9245 case LibFunc_roundl: 9246 if (visitUnaryFloatCall(I, ISD::FROUND)) 9247 return; 9248 break; 9249 case LibFunc_trunc: 9250 case LibFunc_truncf: 9251 case LibFunc_truncl: 9252 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9253 return; 9254 break; 9255 case LibFunc_log2: 9256 case LibFunc_log2f: 9257 case LibFunc_log2l: 9258 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9259 return; 9260 break; 9261 case LibFunc_exp2: 9262 case LibFunc_exp2f: 9263 case LibFunc_exp2l: 9264 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9265 return; 9266 break; 9267 case LibFunc_exp10: 9268 case LibFunc_exp10f: 9269 case LibFunc_exp10l: 9270 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9271 return; 9272 break; 9273 case LibFunc_ldexp: 9274 case LibFunc_ldexpf: 9275 case LibFunc_ldexpl: 9276 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9277 return; 9278 break; 9279 case LibFunc_memcmp: 9280 if (visitMemCmpBCmpCall(I)) 9281 return; 9282 break; 9283 case LibFunc_mempcpy: 9284 if (visitMemPCpyCall(I)) 9285 return; 9286 break; 9287 case LibFunc_memchr: 9288 if (visitMemChrCall(I)) 9289 return; 9290 break; 9291 case LibFunc_strcpy: 9292 if (visitStrCpyCall(I, false)) 9293 return; 9294 break; 9295 case LibFunc_stpcpy: 9296 if (visitStrCpyCall(I, true)) 9297 return; 9298 break; 9299 case LibFunc_strcmp: 9300 if (visitStrCmpCall(I)) 9301 return; 9302 break; 9303 case LibFunc_strlen: 9304 if (visitStrLenCall(I)) 9305 return; 9306 break; 9307 case LibFunc_strnlen: 9308 if (visitStrNLenCall(I)) 9309 return; 9310 break; 9311 } 9312 } 9313 } 9314 9315 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9316 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9317 return; 9318 } 9319 9320 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9321 // have to do anything here to lower funclet bundles. 9322 // CFGuardTarget bundles are lowered in LowerCallTo. 9323 assert(!I.hasOperandBundlesOtherThan( 9324 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9325 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9326 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9327 LLVMContext::OB_convergencectrl}) && 9328 "Cannot lower calls with arbitrary operand bundles!"); 9329 9330 SDValue Callee = getValue(I.getCalledOperand()); 9331 9332 if (I.hasDeoptState()) 9333 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9334 else 9335 // Check if we can potentially perform a tail call. More detailed checking 9336 // is be done within LowerCallTo, after more information about the call is 9337 // known. 9338 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9339 } 9340 9341 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9342 const CallBase &CB, const BasicBlock *EHPadBB) { 9343 auto PAB = CB.getOperandBundle("ptrauth"); 9344 const Value *CalleeV = CB.getCalledOperand(); 9345 9346 // Gather the call ptrauth data from the operand bundle: 9347 // [ i32 <key>, i64 <discriminator> ] 9348 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9349 const Value *Discriminator = PAB->Inputs[1]; 9350 9351 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9352 assert(Discriminator->getType()->isIntegerTy(64) && 9353 "Invalid ptrauth discriminator"); 9354 9355 // Functions should never be ptrauth-called directly. 9356 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9357 9358 // Otherwise, do an authenticated indirect call. 9359 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9360 getValue(Discriminator)}; 9361 9362 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9363 EHPadBB, &PAI); 9364 } 9365 9366 namespace { 9367 9368 /// AsmOperandInfo - This contains information for each constraint that we are 9369 /// lowering. 9370 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9371 public: 9372 /// CallOperand - If this is the result output operand or a clobber 9373 /// this is null, otherwise it is the incoming operand to the CallInst. 9374 /// This gets modified as the asm is processed. 9375 SDValue CallOperand; 9376 9377 /// AssignedRegs - If this is a register or register class operand, this 9378 /// contains the set of register corresponding to the operand. 9379 RegsForValue AssignedRegs; 9380 9381 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9382 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9383 } 9384 9385 /// Whether or not this operand accesses memory 9386 bool hasMemory(const TargetLowering &TLI) const { 9387 // Indirect operand accesses access memory. 9388 if (isIndirect) 9389 return true; 9390 9391 for (const auto &Code : Codes) 9392 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9393 return true; 9394 9395 return false; 9396 } 9397 }; 9398 9399 9400 } // end anonymous namespace 9401 9402 /// Make sure that the output operand \p OpInfo and its corresponding input 9403 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9404 /// out). 9405 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9406 SDISelAsmOperandInfo &MatchingOpInfo, 9407 SelectionDAG &DAG) { 9408 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9409 return; 9410 9411 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9412 const auto &TLI = DAG.getTargetLoweringInfo(); 9413 9414 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9415 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9416 OpInfo.ConstraintVT); 9417 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9418 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9419 MatchingOpInfo.ConstraintVT); 9420 if ((OpInfo.ConstraintVT.isInteger() != 9421 MatchingOpInfo.ConstraintVT.isInteger()) || 9422 (MatchRC.second != InputRC.second)) { 9423 // FIXME: error out in a more elegant fashion 9424 report_fatal_error("Unsupported asm: input constraint" 9425 " with a matching output constraint of" 9426 " incompatible type!"); 9427 } 9428 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9429 } 9430 9431 /// Get a direct memory input to behave well as an indirect operand. 9432 /// This may introduce stores, hence the need for a \p Chain. 9433 /// \return The (possibly updated) chain. 9434 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9435 SDISelAsmOperandInfo &OpInfo, 9436 SelectionDAG &DAG) { 9437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9438 9439 // If we don't have an indirect input, put it in the constpool if we can, 9440 // otherwise spill it to a stack slot. 9441 // TODO: This isn't quite right. We need to handle these according to 9442 // the addressing mode that the constraint wants. Also, this may take 9443 // an additional register for the computation and we don't want that 9444 // either. 9445 9446 // If the operand is a float, integer, or vector constant, spill to a 9447 // constant pool entry to get its address. 9448 const Value *OpVal = OpInfo.CallOperandVal; 9449 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9450 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9451 OpInfo.CallOperand = DAG.getConstantPool( 9452 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9453 return Chain; 9454 } 9455 9456 // Otherwise, create a stack slot and emit a store to it before the asm. 9457 Type *Ty = OpVal->getType(); 9458 auto &DL = DAG.getDataLayout(); 9459 uint64_t TySize = DL.getTypeAllocSize(Ty); 9460 MachineFunction &MF = DAG.getMachineFunction(); 9461 int SSFI = MF.getFrameInfo().CreateStackObject( 9462 TySize, DL.getPrefTypeAlign(Ty), false); 9463 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9464 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9465 MachinePointerInfo::getFixedStack(MF, SSFI), 9466 TLI.getMemValueType(DL, Ty)); 9467 OpInfo.CallOperand = StackSlot; 9468 9469 return Chain; 9470 } 9471 9472 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9473 /// specified operand. We prefer to assign virtual registers, to allow the 9474 /// register allocator to handle the assignment process. However, if the asm 9475 /// uses features that we can't model on machineinstrs, we have SDISel do the 9476 /// allocation. This produces generally horrible, but correct, code. 9477 /// 9478 /// OpInfo describes the operand 9479 /// RefOpInfo describes the matching operand if any, the operand otherwise 9480 static std::optional<unsigned> 9481 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9482 SDISelAsmOperandInfo &OpInfo, 9483 SDISelAsmOperandInfo &RefOpInfo) { 9484 LLVMContext &Context = *DAG.getContext(); 9485 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9486 9487 MachineFunction &MF = DAG.getMachineFunction(); 9488 SmallVector<unsigned, 4> Regs; 9489 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9490 9491 // No work to do for memory/address operands. 9492 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9493 OpInfo.ConstraintType == TargetLowering::C_Address) 9494 return std::nullopt; 9495 9496 // If this is a constraint for a single physreg, or a constraint for a 9497 // register class, find it. 9498 unsigned AssignedReg; 9499 const TargetRegisterClass *RC; 9500 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9501 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9502 // RC is unset only on failure. Return immediately. 9503 if (!RC) 9504 return std::nullopt; 9505 9506 // Get the actual register value type. This is important, because the user 9507 // may have asked for (e.g.) the AX register in i32 type. We need to 9508 // remember that AX is actually i16 to get the right extension. 9509 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9510 9511 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9512 // If this is an FP operand in an integer register (or visa versa), or more 9513 // generally if the operand value disagrees with the register class we plan 9514 // to stick it in, fix the operand type. 9515 // 9516 // If this is an input value, the bitcast to the new type is done now. 9517 // Bitcast for output value is done at the end of visitInlineAsm(). 9518 if ((OpInfo.Type == InlineAsm::isOutput || 9519 OpInfo.Type == InlineAsm::isInput) && 9520 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9521 // Try to convert to the first EVT that the reg class contains. If the 9522 // types are identical size, use a bitcast to convert (e.g. two differing 9523 // vector types). Note: output bitcast is done at the end of 9524 // visitInlineAsm(). 9525 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9526 // Exclude indirect inputs while they are unsupported because the code 9527 // to perform the load is missing and thus OpInfo.CallOperand still 9528 // refers to the input address rather than the pointed-to value. 9529 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9530 OpInfo.CallOperand = 9531 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9532 OpInfo.ConstraintVT = RegVT; 9533 // If the operand is an FP value and we want it in integer registers, 9534 // use the corresponding integer type. This turns an f64 value into 9535 // i64, which can be passed with two i32 values on a 32-bit machine. 9536 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9537 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9538 if (OpInfo.Type == InlineAsm::isInput) 9539 OpInfo.CallOperand = 9540 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9541 OpInfo.ConstraintVT = VT; 9542 } 9543 } 9544 } 9545 9546 // No need to allocate a matching input constraint since the constraint it's 9547 // matching to has already been allocated. 9548 if (OpInfo.isMatchingInputConstraint()) 9549 return std::nullopt; 9550 9551 EVT ValueVT = OpInfo.ConstraintVT; 9552 if (OpInfo.ConstraintVT == MVT::Other) 9553 ValueVT = RegVT; 9554 9555 // Initialize NumRegs. 9556 unsigned NumRegs = 1; 9557 if (OpInfo.ConstraintVT != MVT::Other) 9558 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9559 9560 // If this is a constraint for a specific physical register, like {r17}, 9561 // assign it now. 9562 9563 // If this associated to a specific register, initialize iterator to correct 9564 // place. If virtual, make sure we have enough registers 9565 9566 // Initialize iterator if necessary 9567 TargetRegisterClass::iterator I = RC->begin(); 9568 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9569 9570 // Do not check for single registers. 9571 if (AssignedReg) { 9572 I = std::find(I, RC->end(), AssignedReg); 9573 if (I == RC->end()) { 9574 // RC does not contain the selected register, which indicates a 9575 // mismatch between the register and the required type/bitwidth. 9576 return {AssignedReg}; 9577 } 9578 } 9579 9580 for (; NumRegs; --NumRegs, ++I) { 9581 assert(I != RC->end() && "Ran out of registers to allocate!"); 9582 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9583 Regs.push_back(R); 9584 } 9585 9586 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9587 return std::nullopt; 9588 } 9589 9590 static unsigned 9591 findMatchingInlineAsmOperand(unsigned OperandNo, 9592 const std::vector<SDValue> &AsmNodeOperands) { 9593 // Scan until we find the definition we already emitted of this operand. 9594 unsigned CurOp = InlineAsm::Op_FirstOperand; 9595 for (; OperandNo; --OperandNo) { 9596 // Advance to the next operand. 9597 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9598 const InlineAsm::Flag F(OpFlag); 9599 assert( 9600 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9601 "Skipped past definitions?"); 9602 CurOp += F.getNumOperandRegisters() + 1; 9603 } 9604 return CurOp; 9605 } 9606 9607 namespace { 9608 9609 class ExtraFlags { 9610 unsigned Flags = 0; 9611 9612 public: 9613 explicit ExtraFlags(const CallBase &Call) { 9614 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9615 if (IA->hasSideEffects()) 9616 Flags |= InlineAsm::Extra_HasSideEffects; 9617 if (IA->isAlignStack()) 9618 Flags |= InlineAsm::Extra_IsAlignStack; 9619 if (Call.isConvergent()) 9620 Flags |= InlineAsm::Extra_IsConvergent; 9621 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9622 } 9623 9624 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9625 // Ideally, we would only check against memory constraints. However, the 9626 // meaning of an Other constraint can be target-specific and we can't easily 9627 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9628 // for Other constraints as well. 9629 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9630 OpInfo.ConstraintType == TargetLowering::C_Other) { 9631 if (OpInfo.Type == InlineAsm::isInput) 9632 Flags |= InlineAsm::Extra_MayLoad; 9633 else if (OpInfo.Type == InlineAsm::isOutput) 9634 Flags |= InlineAsm::Extra_MayStore; 9635 else if (OpInfo.Type == InlineAsm::isClobber) 9636 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9637 } 9638 } 9639 9640 unsigned get() const { return Flags; } 9641 }; 9642 9643 } // end anonymous namespace 9644 9645 static bool isFunction(SDValue Op) { 9646 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9647 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9648 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9649 9650 // In normal "call dllimport func" instruction (non-inlineasm) it force 9651 // indirect access by specifing call opcode. And usually specially print 9652 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9653 // not do in this way now. (In fact, this is similar with "Data Access" 9654 // action). So here we ignore dllimport function. 9655 if (Fn && !Fn->hasDLLImportStorageClass()) 9656 return true; 9657 } 9658 } 9659 return false; 9660 } 9661 9662 /// visitInlineAsm - Handle a call to an InlineAsm object. 9663 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9664 const BasicBlock *EHPadBB) { 9665 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9666 9667 /// ConstraintOperands - Information about all of the constraints. 9668 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9669 9670 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9671 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9672 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9673 9674 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9675 // AsmDialect, MayLoad, MayStore). 9676 bool HasSideEffect = IA->hasSideEffects(); 9677 ExtraFlags ExtraInfo(Call); 9678 9679 for (auto &T : TargetConstraints) { 9680 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9681 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9682 9683 if (OpInfo.CallOperandVal) 9684 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9685 9686 if (!HasSideEffect) 9687 HasSideEffect = OpInfo.hasMemory(TLI); 9688 9689 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9690 // FIXME: Could we compute this on OpInfo rather than T? 9691 9692 // Compute the constraint code and ConstraintType to use. 9693 TLI.ComputeConstraintToUse(T, SDValue()); 9694 9695 if (T.ConstraintType == TargetLowering::C_Immediate && 9696 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9697 // We've delayed emitting a diagnostic like the "n" constraint because 9698 // inlining could cause an integer showing up. 9699 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9700 "' expects an integer constant " 9701 "expression"); 9702 9703 ExtraInfo.update(T); 9704 } 9705 9706 // We won't need to flush pending loads if this asm doesn't touch 9707 // memory and is nonvolatile. 9708 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9709 9710 bool EmitEHLabels = isa<InvokeInst>(Call); 9711 if (EmitEHLabels) { 9712 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9713 } 9714 bool IsCallBr = isa<CallBrInst>(Call); 9715 9716 if (IsCallBr || EmitEHLabels) { 9717 // If this is a callbr or invoke we need to flush pending exports since 9718 // inlineasm_br and invoke are terminators. 9719 // We need to do this before nodes are glued to the inlineasm_br node. 9720 Chain = getControlRoot(); 9721 } 9722 9723 MCSymbol *BeginLabel = nullptr; 9724 if (EmitEHLabels) { 9725 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9726 } 9727 9728 int OpNo = -1; 9729 SmallVector<StringRef> AsmStrs; 9730 IA->collectAsmStrs(AsmStrs); 9731 9732 // Second pass over the constraints: compute which constraint option to use. 9733 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9734 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9735 OpNo++; 9736 9737 // If this is an output operand with a matching input operand, look up the 9738 // matching input. If their types mismatch, e.g. one is an integer, the 9739 // other is floating point, or their sizes are different, flag it as an 9740 // error. 9741 if (OpInfo.hasMatchingInput()) { 9742 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9743 patchMatchingInput(OpInfo, Input, DAG); 9744 } 9745 9746 // Compute the constraint code and ConstraintType to use. 9747 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9748 9749 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9750 OpInfo.Type == InlineAsm::isClobber) || 9751 OpInfo.ConstraintType == TargetLowering::C_Address) 9752 continue; 9753 9754 // In Linux PIC model, there are 4 cases about value/label addressing: 9755 // 9756 // 1: Function call or Label jmp inside the module. 9757 // 2: Data access (such as global variable, static variable) inside module. 9758 // 3: Function call or Label jmp outside the module. 9759 // 4: Data access (such as global variable) outside the module. 9760 // 9761 // Due to current llvm inline asm architecture designed to not "recognize" 9762 // the asm code, there are quite troubles for us to treat mem addressing 9763 // differently for same value/adress used in different instuctions. 9764 // For example, in pic model, call a func may in plt way or direclty 9765 // pc-related, but lea/mov a function adress may use got. 9766 // 9767 // Here we try to "recognize" function call for the case 1 and case 3 in 9768 // inline asm. And try to adjust the constraint for them. 9769 // 9770 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9771 // label, so here we don't handle jmp function label now, but we need to 9772 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9773 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9774 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9775 TM.getCodeModel() != CodeModel::Large) { 9776 OpInfo.isIndirect = false; 9777 OpInfo.ConstraintType = TargetLowering::C_Address; 9778 } 9779 9780 // If this is a memory input, and if the operand is not indirect, do what we 9781 // need to provide an address for the memory input. 9782 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9783 !OpInfo.isIndirect) { 9784 assert((OpInfo.isMultipleAlternative || 9785 (OpInfo.Type == InlineAsm::isInput)) && 9786 "Can only indirectify direct input operands!"); 9787 9788 // Memory operands really want the address of the value. 9789 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9790 9791 // There is no longer a Value* corresponding to this operand. 9792 OpInfo.CallOperandVal = nullptr; 9793 9794 // It is now an indirect operand. 9795 OpInfo.isIndirect = true; 9796 } 9797 9798 } 9799 9800 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9801 std::vector<SDValue> AsmNodeOperands; 9802 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9803 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9804 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9805 9806 // If we have a !srcloc metadata node associated with it, we want to attach 9807 // this to the ultimately generated inline asm machineinstr. To do this, we 9808 // pass in the third operand as this (potentially null) inline asm MDNode. 9809 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9810 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9811 9812 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9813 // bits as operand 3. 9814 AsmNodeOperands.push_back(DAG.getTargetConstant( 9815 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9816 9817 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9818 // this, assign virtual and physical registers for inputs and otput. 9819 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9820 // Assign Registers. 9821 SDISelAsmOperandInfo &RefOpInfo = 9822 OpInfo.isMatchingInputConstraint() 9823 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9824 : OpInfo; 9825 const auto RegError = 9826 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9827 if (RegError) { 9828 const MachineFunction &MF = DAG.getMachineFunction(); 9829 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9830 const char *RegName = TRI.getName(*RegError); 9831 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9832 "' allocated for constraint '" + 9833 Twine(OpInfo.ConstraintCode) + 9834 "' does not match required type"); 9835 return; 9836 } 9837 9838 auto DetectWriteToReservedRegister = [&]() { 9839 const MachineFunction &MF = DAG.getMachineFunction(); 9840 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9841 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9842 if (Register::isPhysicalRegister(Reg) && 9843 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9844 const char *RegName = TRI.getName(Reg); 9845 emitInlineAsmError(Call, "write to reserved register '" + 9846 Twine(RegName) + "'"); 9847 return true; 9848 } 9849 } 9850 return false; 9851 }; 9852 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9853 (OpInfo.Type == InlineAsm::isInput && 9854 !OpInfo.isMatchingInputConstraint())) && 9855 "Only address as input operand is allowed."); 9856 9857 switch (OpInfo.Type) { 9858 case InlineAsm::isOutput: 9859 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9860 const InlineAsm::ConstraintCode ConstraintID = 9861 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9862 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9863 "Failed to convert memory constraint code to constraint id."); 9864 9865 // Add information to the INLINEASM node to know about this output. 9866 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9867 OpFlags.setMemConstraint(ConstraintID); 9868 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9869 MVT::i32)); 9870 AsmNodeOperands.push_back(OpInfo.CallOperand); 9871 } else { 9872 // Otherwise, this outputs to a register (directly for C_Register / 9873 // C_RegisterClass, and a target-defined fashion for 9874 // C_Immediate/C_Other). Find a register that we can use. 9875 if (OpInfo.AssignedRegs.Regs.empty()) { 9876 emitInlineAsmError( 9877 Call, "couldn't allocate output register for constraint '" + 9878 Twine(OpInfo.ConstraintCode) + "'"); 9879 return; 9880 } 9881 9882 if (DetectWriteToReservedRegister()) 9883 return; 9884 9885 // Add information to the INLINEASM node to know that this register is 9886 // set. 9887 OpInfo.AssignedRegs.AddInlineAsmOperands( 9888 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9889 : InlineAsm::Kind::RegDef, 9890 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9891 } 9892 break; 9893 9894 case InlineAsm::isInput: 9895 case InlineAsm::isLabel: { 9896 SDValue InOperandVal = OpInfo.CallOperand; 9897 9898 if (OpInfo.isMatchingInputConstraint()) { 9899 // If this is required to match an output register we have already set, 9900 // just use its register. 9901 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9902 AsmNodeOperands); 9903 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 9904 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9905 if (OpInfo.isIndirect) { 9906 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9907 emitInlineAsmError(Call, "inline asm not supported yet: " 9908 "don't know how to handle tied " 9909 "indirect register inputs"); 9910 return; 9911 } 9912 9913 SmallVector<unsigned, 4> Regs; 9914 MachineFunction &MF = DAG.getMachineFunction(); 9915 MachineRegisterInfo &MRI = MF.getRegInfo(); 9916 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9917 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9918 Register TiedReg = R->getReg(); 9919 MVT RegVT = R->getSimpleValueType(0); 9920 const TargetRegisterClass *RC = 9921 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9922 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9923 : TRI.getMinimalPhysRegClass(TiedReg); 9924 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9925 Regs.push_back(MRI.createVirtualRegister(RC)); 9926 9927 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9928 9929 SDLoc dl = getCurSDLoc(); 9930 // Use the produced MatchedRegs object to 9931 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9932 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9933 OpInfo.getMatchedOperand(), dl, DAG, 9934 AsmNodeOperands); 9935 break; 9936 } 9937 9938 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9939 assert(Flag.getNumOperandRegisters() == 1 && 9940 "Unexpected number of operands"); 9941 // Add information to the INLINEASM node to know about this input. 9942 // See InlineAsm.h isUseOperandTiedToDef. 9943 Flag.clearMemConstraint(); 9944 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9945 AsmNodeOperands.push_back(DAG.getTargetConstant( 9946 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9947 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9948 break; 9949 } 9950 9951 // Treat indirect 'X' constraint as memory. 9952 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9953 OpInfo.isIndirect) 9954 OpInfo.ConstraintType = TargetLowering::C_Memory; 9955 9956 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9957 OpInfo.ConstraintType == TargetLowering::C_Other) { 9958 std::vector<SDValue> Ops; 9959 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9960 Ops, DAG); 9961 if (Ops.empty()) { 9962 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9963 if (isa<ConstantSDNode>(InOperandVal)) { 9964 emitInlineAsmError(Call, "value out of range for constraint '" + 9965 Twine(OpInfo.ConstraintCode) + "'"); 9966 return; 9967 } 9968 9969 emitInlineAsmError(Call, 9970 "invalid operand for inline asm constraint '" + 9971 Twine(OpInfo.ConstraintCode) + "'"); 9972 return; 9973 } 9974 9975 // Add information to the INLINEASM node to know about this input. 9976 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9977 AsmNodeOperands.push_back(DAG.getTargetConstant( 9978 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9979 llvm::append_range(AsmNodeOperands, Ops); 9980 break; 9981 } 9982 9983 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9984 assert((OpInfo.isIndirect || 9985 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9986 "Operand must be indirect to be a mem!"); 9987 assert(InOperandVal.getValueType() == 9988 TLI.getPointerTy(DAG.getDataLayout()) && 9989 "Memory operands expect pointer values"); 9990 9991 const InlineAsm::ConstraintCode ConstraintID = 9992 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9993 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9994 "Failed to convert memory constraint code to constraint id."); 9995 9996 // Add information to the INLINEASM node to know about this input. 9997 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9998 ResOpType.setMemConstraint(ConstraintID); 9999 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 10000 getCurSDLoc(), 10001 MVT::i32)); 10002 AsmNodeOperands.push_back(InOperandVal); 10003 break; 10004 } 10005 10006 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10007 const InlineAsm::ConstraintCode ConstraintID = 10008 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10009 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10010 "Failed to convert memory constraint code to constraint id."); 10011 10012 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10013 10014 SDValue AsmOp = InOperandVal; 10015 if (isFunction(InOperandVal)) { 10016 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10017 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10018 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10019 InOperandVal.getValueType(), 10020 GA->getOffset()); 10021 } 10022 10023 // Add information to the INLINEASM node to know about this input. 10024 ResOpType.setMemConstraint(ConstraintID); 10025 10026 AsmNodeOperands.push_back( 10027 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10028 10029 AsmNodeOperands.push_back(AsmOp); 10030 break; 10031 } 10032 10033 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 10034 OpInfo.ConstraintType != TargetLowering::C_Register) { 10035 emitInlineAsmError(Call, "unknown asm constraint '" + 10036 Twine(OpInfo.ConstraintCode) + "'"); 10037 return; 10038 } 10039 10040 // TODO: Support this. 10041 if (OpInfo.isIndirect) { 10042 emitInlineAsmError( 10043 Call, "Don't know how to handle indirect register inputs yet " 10044 "for constraint '" + 10045 Twine(OpInfo.ConstraintCode) + "'"); 10046 return; 10047 } 10048 10049 // Copy the input into the appropriate registers. 10050 if (OpInfo.AssignedRegs.Regs.empty()) { 10051 emitInlineAsmError(Call, 10052 "couldn't allocate input reg for constraint '" + 10053 Twine(OpInfo.ConstraintCode) + "'"); 10054 return; 10055 } 10056 10057 if (DetectWriteToReservedRegister()) 10058 return; 10059 10060 SDLoc dl = getCurSDLoc(); 10061 10062 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10063 &Call); 10064 10065 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10066 0, dl, DAG, AsmNodeOperands); 10067 break; 10068 } 10069 case InlineAsm::isClobber: 10070 // Add the clobbered value to the operand list, so that the register 10071 // allocator is aware that the physreg got clobbered. 10072 if (!OpInfo.AssignedRegs.Regs.empty()) 10073 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10074 false, 0, getCurSDLoc(), DAG, 10075 AsmNodeOperands); 10076 break; 10077 } 10078 } 10079 10080 // Finish up input operands. Set the input chain and add the flag last. 10081 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10082 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10083 10084 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10085 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10086 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10087 Glue = Chain.getValue(1); 10088 10089 // Do additional work to generate outputs. 10090 10091 SmallVector<EVT, 1> ResultVTs; 10092 SmallVector<SDValue, 1> ResultValues; 10093 SmallVector<SDValue, 8> OutChains; 10094 10095 llvm::Type *CallResultType = Call.getType(); 10096 ArrayRef<Type *> ResultTypes; 10097 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10098 ResultTypes = StructResult->elements(); 10099 else if (!CallResultType->isVoidTy()) 10100 ResultTypes = ArrayRef(CallResultType); 10101 10102 auto CurResultType = ResultTypes.begin(); 10103 auto handleRegAssign = [&](SDValue V) { 10104 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10105 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10106 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10107 ++CurResultType; 10108 // If the type of the inline asm call site return value is different but has 10109 // same size as the type of the asm output bitcast it. One example of this 10110 // is for vectors with different width / number of elements. This can 10111 // happen for register classes that can contain multiple different value 10112 // types. The preg or vreg allocated may not have the same VT as was 10113 // expected. 10114 // 10115 // This can also happen for a return value that disagrees with the register 10116 // class it is put in, eg. a double in a general-purpose register on a 10117 // 32-bit machine. 10118 if (ResultVT != V.getValueType() && 10119 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10120 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10121 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10122 V.getValueType().isInteger()) { 10123 // If a result value was tied to an input value, the computed result 10124 // may have a wider width than the expected result. Extract the 10125 // relevant portion. 10126 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10127 } 10128 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10129 ResultVTs.push_back(ResultVT); 10130 ResultValues.push_back(V); 10131 }; 10132 10133 // Deal with output operands. 10134 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10135 if (OpInfo.Type == InlineAsm::isOutput) { 10136 SDValue Val; 10137 // Skip trivial output operands. 10138 if (OpInfo.AssignedRegs.Regs.empty()) 10139 continue; 10140 10141 switch (OpInfo.ConstraintType) { 10142 case TargetLowering::C_Register: 10143 case TargetLowering::C_RegisterClass: 10144 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10145 Chain, &Glue, &Call); 10146 break; 10147 case TargetLowering::C_Immediate: 10148 case TargetLowering::C_Other: 10149 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10150 OpInfo, DAG); 10151 break; 10152 case TargetLowering::C_Memory: 10153 break; // Already handled. 10154 case TargetLowering::C_Address: 10155 break; // Silence warning. 10156 case TargetLowering::C_Unknown: 10157 assert(false && "Unexpected unknown constraint"); 10158 } 10159 10160 // Indirect output manifest as stores. Record output chains. 10161 if (OpInfo.isIndirect) { 10162 const Value *Ptr = OpInfo.CallOperandVal; 10163 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10164 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10165 MachinePointerInfo(Ptr)); 10166 OutChains.push_back(Store); 10167 } else { 10168 // generate CopyFromRegs to associated registers. 10169 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10170 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10171 for (const SDValue &V : Val->op_values()) 10172 handleRegAssign(V); 10173 } else 10174 handleRegAssign(Val); 10175 } 10176 } 10177 } 10178 10179 // Set results. 10180 if (!ResultValues.empty()) { 10181 assert(CurResultType == ResultTypes.end() && 10182 "Mismatch in number of ResultTypes"); 10183 assert(ResultValues.size() == ResultTypes.size() && 10184 "Mismatch in number of output operands in asm result"); 10185 10186 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10187 DAG.getVTList(ResultVTs), ResultValues); 10188 setValue(&Call, V); 10189 } 10190 10191 // Collect store chains. 10192 if (!OutChains.empty()) 10193 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10194 10195 if (EmitEHLabels) { 10196 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10197 } 10198 10199 // Only Update Root if inline assembly has a memory effect. 10200 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10201 EmitEHLabels) 10202 DAG.setRoot(Chain); 10203 } 10204 10205 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10206 const Twine &Message) { 10207 LLVMContext &Ctx = *DAG.getContext(); 10208 Ctx.emitError(&Call, Message); 10209 10210 // Make sure we leave the DAG in a valid state 10211 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10212 SmallVector<EVT, 1> ValueVTs; 10213 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10214 10215 if (ValueVTs.empty()) 10216 return; 10217 10218 SmallVector<SDValue, 1> Ops; 10219 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 10220 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 10221 10222 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10223 } 10224 10225 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10226 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10227 MVT::Other, getRoot(), 10228 getValue(I.getArgOperand(0)), 10229 DAG.getSrcValue(I.getArgOperand(0)))); 10230 } 10231 10232 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10234 const DataLayout &DL = DAG.getDataLayout(); 10235 SDValue V = DAG.getVAArg( 10236 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10237 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10238 DL.getABITypeAlign(I.getType()).value()); 10239 DAG.setRoot(V.getValue(1)); 10240 10241 if (I.getType()->isPointerTy()) 10242 V = DAG.getPtrExtOrTrunc( 10243 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10244 setValue(&I, V); 10245 } 10246 10247 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10248 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10249 MVT::Other, getRoot(), 10250 getValue(I.getArgOperand(0)), 10251 DAG.getSrcValue(I.getArgOperand(0)))); 10252 } 10253 10254 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10255 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10256 MVT::Other, getRoot(), 10257 getValue(I.getArgOperand(0)), 10258 getValue(I.getArgOperand(1)), 10259 DAG.getSrcValue(I.getArgOperand(0)), 10260 DAG.getSrcValue(I.getArgOperand(1)))); 10261 } 10262 10263 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10264 const Instruction &I, 10265 SDValue Op) { 10266 std::optional<ConstantRange> CR = getRange(I); 10267 10268 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10269 return Op; 10270 10271 APInt Lo = CR->getUnsignedMin(); 10272 if (!Lo.isMinValue()) 10273 return Op; 10274 10275 APInt Hi = CR->getUnsignedMax(); 10276 unsigned Bits = std::max(Hi.getActiveBits(), 10277 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10278 10279 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10280 10281 SDLoc SL = getCurSDLoc(); 10282 10283 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10284 DAG.getValueType(SmallVT)); 10285 unsigned NumVals = Op.getNode()->getNumValues(); 10286 if (NumVals == 1) 10287 return ZExt; 10288 10289 SmallVector<SDValue, 4> Ops; 10290 10291 Ops.push_back(ZExt); 10292 for (unsigned I = 1; I != NumVals; ++I) 10293 Ops.push_back(Op.getValue(I)); 10294 10295 return DAG.getMergeValues(Ops, SL); 10296 } 10297 10298 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10299 /// the call being lowered. 10300 /// 10301 /// This is a helper for lowering intrinsics that follow a target calling 10302 /// convention or require stack pointer adjustment. Only a subset of the 10303 /// intrinsic's operands need to participate in the calling convention. 10304 void SelectionDAGBuilder::populateCallLoweringInfo( 10305 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10306 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10307 AttributeSet RetAttrs, bool IsPatchPoint) { 10308 TargetLowering::ArgListTy Args; 10309 Args.reserve(NumArgs); 10310 10311 // Populate the argument list. 10312 // Attributes for args start at offset 1, after the return attribute. 10313 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10314 ArgI != ArgE; ++ArgI) { 10315 const Value *V = Call->getOperand(ArgI); 10316 10317 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10318 10319 TargetLowering::ArgListEntry Entry; 10320 Entry.Node = getValue(V); 10321 Entry.Ty = V->getType(); 10322 Entry.setAttributes(Call, ArgI); 10323 Args.push_back(Entry); 10324 } 10325 10326 CLI.setDebugLoc(getCurSDLoc()) 10327 .setChain(getRoot()) 10328 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10329 RetAttrs) 10330 .setDiscardResult(Call->use_empty()) 10331 .setIsPatchPoint(IsPatchPoint) 10332 .setIsPreallocated( 10333 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10334 } 10335 10336 /// Add a stack map intrinsic call's live variable operands to a stackmap 10337 /// or patchpoint target node's operand list. 10338 /// 10339 /// Constants are converted to TargetConstants purely as an optimization to 10340 /// avoid constant materialization and register allocation. 10341 /// 10342 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10343 /// generate addess computation nodes, and so FinalizeISel can convert the 10344 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10345 /// address materialization and register allocation, but may also be required 10346 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10347 /// alloca in the entry block, then the runtime may assume that the alloca's 10348 /// StackMap location can be read immediately after compilation and that the 10349 /// location is valid at any point during execution (this is similar to the 10350 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10351 /// only available in a register, then the runtime would need to trap when 10352 /// execution reaches the StackMap in order to read the alloca's location. 10353 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10354 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10355 SelectionDAGBuilder &Builder) { 10356 SelectionDAG &DAG = Builder.DAG; 10357 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10358 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10359 10360 // Things on the stack are pointer-typed, meaning that they are already 10361 // legal and can be emitted directly to target nodes. 10362 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10363 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10364 } else { 10365 // Otherwise emit a target independent node to be legalised. 10366 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10367 } 10368 } 10369 } 10370 10371 /// Lower llvm.experimental.stackmap. 10372 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10373 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10374 // [live variables...]) 10375 10376 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10377 10378 SDValue Chain, InGlue, Callee; 10379 SmallVector<SDValue, 32> Ops; 10380 10381 SDLoc DL = getCurSDLoc(); 10382 Callee = getValue(CI.getCalledOperand()); 10383 10384 // The stackmap intrinsic only records the live variables (the arguments 10385 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10386 // intrinsic, this won't be lowered to a function call. This means we don't 10387 // have to worry about calling conventions and target specific lowering code. 10388 // Instead we perform the call lowering right here. 10389 // 10390 // chain, flag = CALLSEQ_START(chain, 0, 0) 10391 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10392 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10393 // 10394 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10395 InGlue = Chain.getValue(1); 10396 10397 // Add the STACKMAP operands, starting with DAG house-keeping. 10398 Ops.push_back(Chain); 10399 Ops.push_back(InGlue); 10400 10401 // Add the <id>, <numShadowBytes> operands. 10402 // 10403 // These do not require legalisation, and can be emitted directly to target 10404 // constant nodes. 10405 SDValue ID = getValue(CI.getArgOperand(0)); 10406 assert(ID.getValueType() == MVT::i64); 10407 SDValue IDConst = 10408 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10409 Ops.push_back(IDConst); 10410 10411 SDValue Shad = getValue(CI.getArgOperand(1)); 10412 assert(Shad.getValueType() == MVT::i32); 10413 SDValue ShadConst = 10414 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10415 Ops.push_back(ShadConst); 10416 10417 // Add the live variables. 10418 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10419 10420 // Create the STACKMAP node. 10421 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10422 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10423 InGlue = Chain.getValue(1); 10424 10425 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10426 10427 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10428 10429 // Set the root to the target-lowered call chain. 10430 DAG.setRoot(Chain); 10431 10432 // Inform the Frame Information that we have a stackmap in this function. 10433 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10434 } 10435 10436 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10437 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10438 const BasicBlock *EHPadBB) { 10439 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10440 // i32 <numBytes>, 10441 // i8* <target>, 10442 // i32 <numArgs>, 10443 // [Args...], 10444 // [live variables...]) 10445 10446 CallingConv::ID CC = CB.getCallingConv(); 10447 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10448 bool HasDef = !CB.getType()->isVoidTy(); 10449 SDLoc dl = getCurSDLoc(); 10450 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10451 10452 // Handle immediate and symbolic callees. 10453 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10454 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10455 /*isTarget=*/true); 10456 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10457 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10458 SDLoc(SymbolicCallee), 10459 SymbolicCallee->getValueType(0)); 10460 10461 // Get the real number of arguments participating in the call <numArgs> 10462 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10463 unsigned NumArgs = NArgVal->getAsZExtVal(); 10464 10465 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10466 // Intrinsics include all meta-operands up to but not including CC. 10467 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10468 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10469 "Not enough arguments provided to the patchpoint intrinsic"); 10470 10471 // For AnyRegCC the arguments are lowered later on manually. 10472 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10473 Type *ReturnTy = 10474 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10475 10476 TargetLowering::CallLoweringInfo CLI(DAG); 10477 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10478 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10479 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10480 10481 SDNode *CallEnd = Result.second.getNode(); 10482 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10483 CallEnd = CallEnd->getOperand(0).getNode(); 10484 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10485 CallEnd = CallEnd->getOperand(0).getNode(); 10486 10487 /// Get a call instruction from the call sequence chain. 10488 /// Tail calls are not allowed. 10489 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10490 "Expected a callseq node."); 10491 SDNode *Call = CallEnd->getOperand(0).getNode(); 10492 bool HasGlue = Call->getGluedNode(); 10493 10494 // Replace the target specific call node with the patchable intrinsic. 10495 SmallVector<SDValue, 8> Ops; 10496 10497 // Push the chain. 10498 Ops.push_back(*(Call->op_begin())); 10499 10500 // Optionally, push the glue (if any). 10501 if (HasGlue) 10502 Ops.push_back(*(Call->op_end() - 1)); 10503 10504 // Push the register mask info. 10505 if (HasGlue) 10506 Ops.push_back(*(Call->op_end() - 2)); 10507 else 10508 Ops.push_back(*(Call->op_end() - 1)); 10509 10510 // Add the <id> and <numBytes> constants. 10511 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10512 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10513 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10514 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10515 10516 // Add the callee. 10517 Ops.push_back(Callee); 10518 10519 // Adjust <numArgs> to account for any arguments that have been passed on the 10520 // stack instead. 10521 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10522 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10523 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10524 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10525 10526 // Add the calling convention 10527 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10528 10529 // Add the arguments we omitted previously. The register allocator should 10530 // place these in any free register. 10531 if (IsAnyRegCC) 10532 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10533 Ops.push_back(getValue(CB.getArgOperand(i))); 10534 10535 // Push the arguments from the call instruction. 10536 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10537 Ops.append(Call->op_begin() + 2, e); 10538 10539 // Push live variables for the stack map. 10540 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10541 10542 SDVTList NodeTys; 10543 if (IsAnyRegCC && HasDef) { 10544 // Create the return types based on the intrinsic definition 10545 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10546 SmallVector<EVT, 3> ValueVTs; 10547 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10548 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10549 10550 // There is always a chain and a glue type at the end 10551 ValueVTs.push_back(MVT::Other); 10552 ValueVTs.push_back(MVT::Glue); 10553 NodeTys = DAG.getVTList(ValueVTs); 10554 } else 10555 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10556 10557 // Replace the target specific call node with a PATCHPOINT node. 10558 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10559 10560 // Update the NodeMap. 10561 if (HasDef) { 10562 if (IsAnyRegCC) 10563 setValue(&CB, SDValue(PPV.getNode(), 0)); 10564 else 10565 setValue(&CB, Result.first); 10566 } 10567 10568 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10569 // call sequence. Furthermore the location of the chain and glue can change 10570 // when the AnyReg calling convention is used and the intrinsic returns a 10571 // value. 10572 if (IsAnyRegCC && HasDef) { 10573 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10574 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10575 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10576 } else 10577 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10578 DAG.DeleteNode(Call); 10579 10580 // Inform the Frame Information that we have a patchpoint in this function. 10581 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10582 } 10583 10584 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10585 unsigned Intrinsic) { 10586 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10587 SDValue Op1 = getValue(I.getArgOperand(0)); 10588 SDValue Op2; 10589 if (I.arg_size() > 1) 10590 Op2 = getValue(I.getArgOperand(1)); 10591 SDLoc dl = getCurSDLoc(); 10592 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10593 SDValue Res; 10594 SDNodeFlags SDFlags; 10595 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10596 SDFlags.copyFMF(*FPMO); 10597 10598 switch (Intrinsic) { 10599 case Intrinsic::vector_reduce_fadd: 10600 if (SDFlags.hasAllowReassociation()) 10601 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10602 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10603 SDFlags); 10604 else 10605 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10606 break; 10607 case Intrinsic::vector_reduce_fmul: 10608 if (SDFlags.hasAllowReassociation()) 10609 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10610 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10611 SDFlags); 10612 else 10613 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10614 break; 10615 case Intrinsic::vector_reduce_add: 10616 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10617 break; 10618 case Intrinsic::vector_reduce_mul: 10619 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10620 break; 10621 case Intrinsic::vector_reduce_and: 10622 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10623 break; 10624 case Intrinsic::vector_reduce_or: 10625 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10626 break; 10627 case Intrinsic::vector_reduce_xor: 10628 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10629 break; 10630 case Intrinsic::vector_reduce_smax: 10631 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10632 break; 10633 case Intrinsic::vector_reduce_smin: 10634 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10635 break; 10636 case Intrinsic::vector_reduce_umax: 10637 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10638 break; 10639 case Intrinsic::vector_reduce_umin: 10640 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10641 break; 10642 case Intrinsic::vector_reduce_fmax: 10643 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10644 break; 10645 case Intrinsic::vector_reduce_fmin: 10646 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10647 break; 10648 case Intrinsic::vector_reduce_fmaximum: 10649 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10650 break; 10651 case Intrinsic::vector_reduce_fminimum: 10652 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10653 break; 10654 default: 10655 llvm_unreachable("Unhandled vector reduce intrinsic"); 10656 } 10657 setValue(&I, Res); 10658 } 10659 10660 /// Returns an AttributeList representing the attributes applied to the return 10661 /// value of the given call. 10662 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10663 SmallVector<Attribute::AttrKind, 2> Attrs; 10664 if (CLI.RetSExt) 10665 Attrs.push_back(Attribute::SExt); 10666 if (CLI.RetZExt) 10667 Attrs.push_back(Attribute::ZExt); 10668 if (CLI.IsInReg) 10669 Attrs.push_back(Attribute::InReg); 10670 10671 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10672 Attrs); 10673 } 10674 10675 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10676 /// implementation, which just calls LowerCall. 10677 /// FIXME: When all targets are 10678 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10679 std::pair<SDValue, SDValue> 10680 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10681 // Handle the incoming return values from the call. 10682 CLI.Ins.clear(); 10683 Type *OrigRetTy = CLI.RetTy; 10684 SmallVector<EVT, 4> RetTys; 10685 SmallVector<TypeSize, 4> Offsets; 10686 auto &DL = CLI.DAG.getDataLayout(); 10687 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10688 10689 if (CLI.IsPostTypeLegalization) { 10690 // If we are lowering a libcall after legalization, split the return type. 10691 SmallVector<EVT, 4> OldRetTys; 10692 SmallVector<TypeSize, 4> OldOffsets; 10693 RetTys.swap(OldRetTys); 10694 Offsets.swap(OldOffsets); 10695 10696 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10697 EVT RetVT = OldRetTys[i]; 10698 uint64_t Offset = OldOffsets[i]; 10699 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10700 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10701 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10702 RetTys.append(NumRegs, RegisterVT); 10703 for (unsigned j = 0; j != NumRegs; ++j) 10704 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10705 } 10706 } 10707 10708 SmallVector<ISD::OutputArg, 4> Outs; 10709 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10710 10711 bool CanLowerReturn = 10712 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10713 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10714 10715 SDValue DemoteStackSlot; 10716 int DemoteStackIdx = -100; 10717 if (!CanLowerReturn) { 10718 // FIXME: equivalent assert? 10719 // assert(!CS.hasInAllocaArgument() && 10720 // "sret demotion is incompatible with inalloca"); 10721 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10722 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10723 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10724 DemoteStackIdx = 10725 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10726 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10727 DL.getAllocaAddrSpace()); 10728 10729 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10730 ArgListEntry Entry; 10731 Entry.Node = DemoteStackSlot; 10732 Entry.Ty = StackSlotPtrType; 10733 Entry.IsSExt = false; 10734 Entry.IsZExt = false; 10735 Entry.IsInReg = false; 10736 Entry.IsSRet = true; 10737 Entry.IsNest = false; 10738 Entry.IsByVal = false; 10739 Entry.IsByRef = false; 10740 Entry.IsReturned = false; 10741 Entry.IsSwiftSelf = false; 10742 Entry.IsSwiftAsync = false; 10743 Entry.IsSwiftError = false; 10744 Entry.IsCFGuardTarget = false; 10745 Entry.Alignment = Alignment; 10746 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10747 CLI.NumFixedArgs += 1; 10748 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10749 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10750 10751 // sret demotion isn't compatible with tail-calls, since the sret argument 10752 // points into the callers stack frame. 10753 CLI.IsTailCall = false; 10754 } else { 10755 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10756 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10757 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10758 ISD::ArgFlagsTy Flags; 10759 if (NeedsRegBlock) { 10760 Flags.setInConsecutiveRegs(); 10761 if (I == RetTys.size() - 1) 10762 Flags.setInConsecutiveRegsLast(); 10763 } 10764 EVT VT = RetTys[I]; 10765 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10766 CLI.CallConv, VT); 10767 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10768 CLI.CallConv, VT); 10769 for (unsigned i = 0; i != NumRegs; ++i) { 10770 ISD::InputArg MyFlags; 10771 MyFlags.Flags = Flags; 10772 MyFlags.VT = RegisterVT; 10773 MyFlags.ArgVT = VT; 10774 MyFlags.Used = CLI.IsReturnValueUsed; 10775 if (CLI.RetTy->isPointerTy()) { 10776 MyFlags.Flags.setPointer(); 10777 MyFlags.Flags.setPointerAddrSpace( 10778 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10779 } 10780 if (CLI.RetSExt) 10781 MyFlags.Flags.setSExt(); 10782 if (CLI.RetZExt) 10783 MyFlags.Flags.setZExt(); 10784 if (CLI.IsInReg) 10785 MyFlags.Flags.setInReg(); 10786 CLI.Ins.push_back(MyFlags); 10787 } 10788 } 10789 } 10790 10791 // We push in swifterror return as the last element of CLI.Ins. 10792 ArgListTy &Args = CLI.getArgs(); 10793 if (supportSwiftError()) { 10794 for (const ArgListEntry &Arg : Args) { 10795 if (Arg.IsSwiftError) { 10796 ISD::InputArg MyFlags; 10797 MyFlags.VT = getPointerTy(DL); 10798 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10799 MyFlags.Flags.setSwiftError(); 10800 CLI.Ins.push_back(MyFlags); 10801 } 10802 } 10803 } 10804 10805 // Handle all of the outgoing arguments. 10806 CLI.Outs.clear(); 10807 CLI.OutVals.clear(); 10808 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10809 SmallVector<EVT, 4> ValueVTs; 10810 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10811 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10812 Type *FinalType = Args[i].Ty; 10813 if (Args[i].IsByVal) 10814 FinalType = Args[i].IndirectType; 10815 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10816 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10817 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10818 ++Value) { 10819 EVT VT = ValueVTs[Value]; 10820 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10821 SDValue Op = SDValue(Args[i].Node.getNode(), 10822 Args[i].Node.getResNo() + Value); 10823 ISD::ArgFlagsTy Flags; 10824 10825 // Certain targets (such as MIPS), may have a different ABI alignment 10826 // for a type depending on the context. Give the target a chance to 10827 // specify the alignment it wants. 10828 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10829 Flags.setOrigAlign(OriginalAlignment); 10830 10831 if (Args[i].Ty->isPointerTy()) { 10832 Flags.setPointer(); 10833 Flags.setPointerAddrSpace( 10834 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10835 } 10836 if (Args[i].IsZExt) 10837 Flags.setZExt(); 10838 if (Args[i].IsSExt) 10839 Flags.setSExt(); 10840 if (Args[i].IsInReg) { 10841 // If we are using vectorcall calling convention, a structure that is 10842 // passed InReg - is surely an HVA 10843 if (CLI.CallConv == CallingConv::X86_VectorCall && 10844 isa<StructType>(FinalType)) { 10845 // The first value of a structure is marked 10846 if (0 == Value) 10847 Flags.setHvaStart(); 10848 Flags.setHva(); 10849 } 10850 // Set InReg Flag 10851 Flags.setInReg(); 10852 } 10853 if (Args[i].IsSRet) 10854 Flags.setSRet(); 10855 if (Args[i].IsSwiftSelf) 10856 Flags.setSwiftSelf(); 10857 if (Args[i].IsSwiftAsync) 10858 Flags.setSwiftAsync(); 10859 if (Args[i].IsSwiftError) 10860 Flags.setSwiftError(); 10861 if (Args[i].IsCFGuardTarget) 10862 Flags.setCFGuardTarget(); 10863 if (Args[i].IsByVal) 10864 Flags.setByVal(); 10865 if (Args[i].IsByRef) 10866 Flags.setByRef(); 10867 if (Args[i].IsPreallocated) { 10868 Flags.setPreallocated(); 10869 // Set the byval flag for CCAssignFn callbacks that don't know about 10870 // preallocated. This way we can know how many bytes we should've 10871 // allocated and how many bytes a callee cleanup function will pop. If 10872 // we port preallocated to more targets, we'll have to add custom 10873 // preallocated handling in the various CC lowering callbacks. 10874 Flags.setByVal(); 10875 } 10876 if (Args[i].IsInAlloca) { 10877 Flags.setInAlloca(); 10878 // Set the byval flag for CCAssignFn callbacks that don't know about 10879 // inalloca. This way we can know how many bytes we should've allocated 10880 // and how many bytes a callee cleanup function will pop. If we port 10881 // inalloca to more targets, we'll have to add custom inalloca handling 10882 // in the various CC lowering callbacks. 10883 Flags.setByVal(); 10884 } 10885 Align MemAlign; 10886 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10887 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10888 Flags.setByValSize(FrameSize); 10889 10890 // info is not there but there are cases it cannot get right. 10891 if (auto MA = Args[i].Alignment) 10892 MemAlign = *MA; 10893 else 10894 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10895 } else if (auto MA = Args[i].Alignment) { 10896 MemAlign = *MA; 10897 } else { 10898 MemAlign = OriginalAlignment; 10899 } 10900 Flags.setMemAlign(MemAlign); 10901 if (Args[i].IsNest) 10902 Flags.setNest(); 10903 if (NeedsRegBlock) 10904 Flags.setInConsecutiveRegs(); 10905 10906 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10907 CLI.CallConv, VT); 10908 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10909 CLI.CallConv, VT); 10910 SmallVector<SDValue, 4> Parts(NumParts); 10911 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10912 10913 if (Args[i].IsSExt) 10914 ExtendKind = ISD::SIGN_EXTEND; 10915 else if (Args[i].IsZExt) 10916 ExtendKind = ISD::ZERO_EXTEND; 10917 10918 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10919 // for now. 10920 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10921 CanLowerReturn) { 10922 assert((CLI.RetTy == Args[i].Ty || 10923 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10924 CLI.RetTy->getPointerAddressSpace() == 10925 Args[i].Ty->getPointerAddressSpace())) && 10926 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10927 // Before passing 'returned' to the target lowering code, ensure that 10928 // either the register MVT and the actual EVT are the same size or that 10929 // the return value and argument are extended in the same way; in these 10930 // cases it's safe to pass the argument register value unchanged as the 10931 // return register value (although it's at the target's option whether 10932 // to do so) 10933 // TODO: allow code generation to take advantage of partially preserved 10934 // registers rather than clobbering the entire register when the 10935 // parameter extension method is not compatible with the return 10936 // extension method 10937 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10938 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10939 CLI.RetZExt == Args[i].IsZExt)) 10940 Flags.setReturned(); 10941 } 10942 10943 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10944 CLI.CallConv, ExtendKind); 10945 10946 for (unsigned j = 0; j != NumParts; ++j) { 10947 // if it isn't first piece, alignment must be 1 10948 // For scalable vectors the scalable part is currently handled 10949 // by individual targets, so we just use the known minimum size here. 10950 ISD::OutputArg MyFlags( 10951 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10952 i < CLI.NumFixedArgs, i, 10953 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10954 if (NumParts > 1 && j == 0) 10955 MyFlags.Flags.setSplit(); 10956 else if (j != 0) { 10957 MyFlags.Flags.setOrigAlign(Align(1)); 10958 if (j == NumParts - 1) 10959 MyFlags.Flags.setSplitEnd(); 10960 } 10961 10962 CLI.Outs.push_back(MyFlags); 10963 CLI.OutVals.push_back(Parts[j]); 10964 } 10965 10966 if (NeedsRegBlock && Value == NumValues - 1) 10967 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10968 } 10969 } 10970 10971 SmallVector<SDValue, 4> InVals; 10972 CLI.Chain = LowerCall(CLI, InVals); 10973 10974 // Update CLI.InVals to use outside of this function. 10975 CLI.InVals = InVals; 10976 10977 // Verify that the target's LowerCall behaved as expected. 10978 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10979 "LowerCall didn't return a valid chain!"); 10980 assert((!CLI.IsTailCall || InVals.empty()) && 10981 "LowerCall emitted a return value for a tail call!"); 10982 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10983 "LowerCall didn't emit the correct number of values!"); 10984 10985 // For a tail call, the return value is merely live-out and there aren't 10986 // any nodes in the DAG representing it. Return a special value to 10987 // indicate that a tail call has been emitted and no more Instructions 10988 // should be processed in the current block. 10989 if (CLI.IsTailCall) { 10990 CLI.DAG.setRoot(CLI.Chain); 10991 return std::make_pair(SDValue(), SDValue()); 10992 } 10993 10994 #ifndef NDEBUG 10995 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10996 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10997 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10998 "LowerCall emitted a value with the wrong type!"); 10999 } 11000 #endif 11001 11002 SmallVector<SDValue, 4> ReturnValues; 11003 if (!CanLowerReturn) { 11004 // The instruction result is the result of loading from the 11005 // hidden sret parameter. 11006 SmallVector<EVT, 1> PVTs; 11007 Type *PtrRetTy = 11008 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 11009 11010 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 11011 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 11012 EVT PtrVT = PVTs[0]; 11013 11014 unsigned NumValues = RetTys.size(); 11015 ReturnValues.resize(NumValues); 11016 SmallVector<SDValue, 4> Chains(NumValues); 11017 11018 // An aggregate return value cannot wrap around the address space, so 11019 // offsets to its parts don't wrap either. 11020 SDNodeFlags Flags; 11021 Flags.setNoUnsignedWrap(true); 11022 11023 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11024 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11025 for (unsigned i = 0; i < NumValues; ++i) { 11026 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11027 CLI.DAG.getConstant(Offsets[i], CLI.DL, 11028 PtrVT), Flags); 11029 SDValue L = CLI.DAG.getLoad( 11030 RetTys[i], CLI.DL, CLI.Chain, Add, 11031 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11032 DemoteStackIdx, Offsets[i]), 11033 HiddenSRetAlign); 11034 ReturnValues[i] = L; 11035 Chains[i] = L.getValue(1); 11036 } 11037 11038 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11039 } else { 11040 // Collect the legal value parts into potentially illegal values 11041 // that correspond to the original function's return values. 11042 std::optional<ISD::NodeType> AssertOp; 11043 if (CLI.RetSExt) 11044 AssertOp = ISD::AssertSext; 11045 else if (CLI.RetZExt) 11046 AssertOp = ISD::AssertZext; 11047 unsigned CurReg = 0; 11048 for (EVT VT : RetTys) { 11049 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11050 CLI.CallConv, VT); 11051 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11052 CLI.CallConv, VT); 11053 11054 ReturnValues.push_back(getCopyFromParts( 11055 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11056 CLI.Chain, CLI.CallConv, AssertOp)); 11057 CurReg += NumRegs; 11058 } 11059 11060 // For a function returning void, there is no return value. We can't create 11061 // such a node, so we just return a null return value in that case. In 11062 // that case, nothing will actually look at the value. 11063 if (ReturnValues.empty()) 11064 return std::make_pair(SDValue(), CLI.Chain); 11065 } 11066 11067 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11068 CLI.DAG.getVTList(RetTys), ReturnValues); 11069 return std::make_pair(Res, CLI.Chain); 11070 } 11071 11072 /// Places new result values for the node in Results (their number 11073 /// and types must exactly match those of the original return values of 11074 /// the node), or leaves Results empty, which indicates that the node is not 11075 /// to be custom lowered after all. 11076 void TargetLowering::LowerOperationWrapper(SDNode *N, 11077 SmallVectorImpl<SDValue> &Results, 11078 SelectionDAG &DAG) const { 11079 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11080 11081 if (!Res.getNode()) 11082 return; 11083 11084 // If the original node has one result, take the return value from 11085 // LowerOperation as is. It might not be result number 0. 11086 if (N->getNumValues() == 1) { 11087 Results.push_back(Res); 11088 return; 11089 } 11090 11091 // If the original node has multiple results, then the return node should 11092 // have the same number of results. 11093 assert((N->getNumValues() == Res->getNumValues()) && 11094 "Lowering returned the wrong number of results!"); 11095 11096 // Places new result values base on N result number. 11097 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11098 Results.push_back(Res.getValue(I)); 11099 } 11100 11101 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11102 llvm_unreachable("LowerOperation not implemented for this target!"); 11103 } 11104 11105 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11106 unsigned Reg, 11107 ISD::NodeType ExtendType) { 11108 SDValue Op = getNonRegisterValue(V); 11109 assert((Op.getOpcode() != ISD::CopyFromReg || 11110 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11111 "Copy from a reg to the same reg!"); 11112 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11113 11114 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11115 // If this is an InlineAsm we have to match the registers required, not the 11116 // notional registers required by the type. 11117 11118 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11119 std::nullopt); // This is not an ABI copy. 11120 SDValue Chain = DAG.getEntryNode(); 11121 11122 if (ExtendType == ISD::ANY_EXTEND) { 11123 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11124 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11125 ExtendType = PreferredExtendIt->second; 11126 } 11127 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11128 PendingExports.push_back(Chain); 11129 } 11130 11131 #include "llvm/CodeGen/SelectionDAGISel.h" 11132 11133 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11134 /// entry block, return true. This includes arguments used by switches, since 11135 /// the switch may expand into multiple basic blocks. 11136 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11137 // With FastISel active, we may be splitting blocks, so force creation 11138 // of virtual registers for all non-dead arguments. 11139 if (FastISel) 11140 return A->use_empty(); 11141 11142 const BasicBlock &Entry = A->getParent()->front(); 11143 for (const User *U : A->users()) 11144 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11145 return false; // Use not in entry block. 11146 11147 return true; 11148 } 11149 11150 using ArgCopyElisionMapTy = 11151 DenseMap<const Argument *, 11152 std::pair<const AllocaInst *, const StoreInst *>>; 11153 11154 /// Scan the entry block of the function in FuncInfo for arguments that look 11155 /// like copies into a local alloca. Record any copied arguments in 11156 /// ArgCopyElisionCandidates. 11157 static void 11158 findArgumentCopyElisionCandidates(const DataLayout &DL, 11159 FunctionLoweringInfo *FuncInfo, 11160 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11161 // Record the state of every static alloca used in the entry block. Argument 11162 // allocas are all used in the entry block, so we need approximately as many 11163 // entries as we have arguments. 11164 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11165 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11166 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11167 StaticAllocas.reserve(NumArgs * 2); 11168 11169 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11170 if (!V) 11171 return nullptr; 11172 V = V->stripPointerCasts(); 11173 const auto *AI = dyn_cast<AllocaInst>(V); 11174 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11175 return nullptr; 11176 auto Iter = StaticAllocas.insert({AI, Unknown}); 11177 return &Iter.first->second; 11178 }; 11179 11180 // Look for stores of arguments to static allocas. Look through bitcasts and 11181 // GEPs to handle type coercions, as long as the alloca is fully initialized 11182 // by the store. Any non-store use of an alloca escapes it and any subsequent 11183 // unanalyzed store might write it. 11184 // FIXME: Handle structs initialized with multiple stores. 11185 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11186 // Look for stores, and handle non-store uses conservatively. 11187 const auto *SI = dyn_cast<StoreInst>(&I); 11188 if (!SI) { 11189 // We will look through cast uses, so ignore them completely. 11190 if (I.isCast()) 11191 continue; 11192 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11193 // to allocas. 11194 if (I.isDebugOrPseudoInst()) 11195 continue; 11196 // This is an unknown instruction. Assume it escapes or writes to all 11197 // static alloca operands. 11198 for (const Use &U : I.operands()) { 11199 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11200 *Info = StaticAllocaInfo::Clobbered; 11201 } 11202 continue; 11203 } 11204 11205 // If the stored value is a static alloca, mark it as escaped. 11206 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11207 *Info = StaticAllocaInfo::Clobbered; 11208 11209 // Check if the destination is a static alloca. 11210 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11211 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11212 if (!Info) 11213 continue; 11214 const AllocaInst *AI = cast<AllocaInst>(Dst); 11215 11216 // Skip allocas that have been initialized or clobbered. 11217 if (*Info != StaticAllocaInfo::Unknown) 11218 continue; 11219 11220 // Check if the stored value is an argument, and that this store fully 11221 // initializes the alloca. 11222 // If the argument type has padding bits we can't directly forward a pointer 11223 // as the upper bits may contain garbage. 11224 // Don't elide copies from the same argument twice. 11225 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11226 const auto *Arg = dyn_cast<Argument>(Val); 11227 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11228 Arg->getType()->isEmptyTy() || 11229 DL.getTypeStoreSize(Arg->getType()) != 11230 DL.getTypeAllocSize(AI->getAllocatedType()) || 11231 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11232 ArgCopyElisionCandidates.count(Arg)) { 11233 *Info = StaticAllocaInfo::Clobbered; 11234 continue; 11235 } 11236 11237 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11238 << '\n'); 11239 11240 // Mark this alloca and store for argument copy elision. 11241 *Info = StaticAllocaInfo::Elidable; 11242 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11243 11244 // Stop scanning if we've seen all arguments. This will happen early in -O0 11245 // builds, which is useful, because -O0 builds have large entry blocks and 11246 // many allocas. 11247 if (ArgCopyElisionCandidates.size() == NumArgs) 11248 break; 11249 } 11250 } 11251 11252 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11253 /// ArgVal is a load from a suitable fixed stack object. 11254 static void tryToElideArgumentCopy( 11255 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11256 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11257 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11258 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11259 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11260 // Check if this is a load from a fixed stack object. 11261 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11262 if (!LNode) 11263 return; 11264 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11265 if (!FINode) 11266 return; 11267 11268 // Check that the fixed stack object is the right size and alignment. 11269 // Look at the alignment that the user wrote on the alloca instead of looking 11270 // at the stack object. 11271 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11272 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11273 const AllocaInst *AI = ArgCopyIter->second.first; 11274 int FixedIndex = FINode->getIndex(); 11275 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11276 int OldIndex = AllocaIndex; 11277 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11278 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11279 LLVM_DEBUG( 11280 dbgs() << " argument copy elision failed due to bad fixed stack " 11281 "object size\n"); 11282 return; 11283 } 11284 Align RequiredAlignment = AI->getAlign(); 11285 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11286 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11287 "greater than stack argument alignment (" 11288 << DebugStr(RequiredAlignment) << " vs " 11289 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11290 return; 11291 } 11292 11293 // Perform the elision. Delete the old stack object and replace its only use 11294 // in the variable info map. Mark the stack object as mutable and aliased. 11295 LLVM_DEBUG({ 11296 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11297 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11298 << '\n'; 11299 }); 11300 MFI.RemoveStackObject(OldIndex); 11301 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11302 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11303 AllocaIndex = FixedIndex; 11304 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11305 for (SDValue ArgVal : ArgVals) 11306 Chains.push_back(ArgVal.getValue(1)); 11307 11308 // Avoid emitting code for the store implementing the copy. 11309 const StoreInst *SI = ArgCopyIter->second.second; 11310 ElidedArgCopyInstrs.insert(SI); 11311 11312 // Check for uses of the argument again so that we can avoid exporting ArgVal 11313 // if it is't used by anything other than the store. 11314 for (const Value *U : Arg.users()) { 11315 if (U != SI) { 11316 ArgHasUses = true; 11317 break; 11318 } 11319 } 11320 } 11321 11322 void SelectionDAGISel::LowerArguments(const Function &F) { 11323 SelectionDAG &DAG = SDB->DAG; 11324 SDLoc dl = SDB->getCurSDLoc(); 11325 const DataLayout &DL = DAG.getDataLayout(); 11326 SmallVector<ISD::InputArg, 16> Ins; 11327 11328 // In Naked functions we aren't going to save any registers. 11329 if (F.hasFnAttribute(Attribute::Naked)) 11330 return; 11331 11332 if (!FuncInfo->CanLowerReturn) { 11333 // Put in an sret pointer parameter before all the other parameters. 11334 SmallVector<EVT, 1> ValueVTs; 11335 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11336 PointerType::get(F.getContext(), 11337 DAG.getDataLayout().getAllocaAddrSpace()), 11338 ValueVTs); 11339 11340 // NOTE: Assuming that a pointer will never break down to more than one VT 11341 // or one register. 11342 ISD::ArgFlagsTy Flags; 11343 Flags.setSRet(); 11344 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11345 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11346 ISD::InputArg::NoArgIndex, 0); 11347 Ins.push_back(RetArg); 11348 } 11349 11350 // Look for stores of arguments to static allocas. Mark such arguments with a 11351 // flag to ask the target to give us the memory location of that argument if 11352 // available. 11353 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11354 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11355 ArgCopyElisionCandidates); 11356 11357 // Set up the incoming argument description vector. 11358 for (const Argument &Arg : F.args()) { 11359 unsigned ArgNo = Arg.getArgNo(); 11360 SmallVector<EVT, 4> ValueVTs; 11361 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11362 bool isArgValueUsed = !Arg.use_empty(); 11363 unsigned PartBase = 0; 11364 Type *FinalType = Arg.getType(); 11365 if (Arg.hasAttribute(Attribute::ByVal)) 11366 FinalType = Arg.getParamByValType(); 11367 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11368 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11369 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11370 Value != NumValues; ++Value) { 11371 EVT VT = ValueVTs[Value]; 11372 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11373 ISD::ArgFlagsTy Flags; 11374 11375 11376 if (Arg.getType()->isPointerTy()) { 11377 Flags.setPointer(); 11378 Flags.setPointerAddrSpace( 11379 cast<PointerType>(Arg.getType())->getAddressSpace()); 11380 } 11381 if (Arg.hasAttribute(Attribute::ZExt)) 11382 Flags.setZExt(); 11383 if (Arg.hasAttribute(Attribute::SExt)) 11384 Flags.setSExt(); 11385 if (Arg.hasAttribute(Attribute::InReg)) { 11386 // If we are using vectorcall calling convention, a structure that is 11387 // passed InReg - is surely an HVA 11388 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11389 isa<StructType>(Arg.getType())) { 11390 // The first value of a structure is marked 11391 if (0 == Value) 11392 Flags.setHvaStart(); 11393 Flags.setHva(); 11394 } 11395 // Set InReg Flag 11396 Flags.setInReg(); 11397 } 11398 if (Arg.hasAttribute(Attribute::StructRet)) 11399 Flags.setSRet(); 11400 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11401 Flags.setSwiftSelf(); 11402 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11403 Flags.setSwiftAsync(); 11404 if (Arg.hasAttribute(Attribute::SwiftError)) 11405 Flags.setSwiftError(); 11406 if (Arg.hasAttribute(Attribute::ByVal)) 11407 Flags.setByVal(); 11408 if (Arg.hasAttribute(Attribute::ByRef)) 11409 Flags.setByRef(); 11410 if (Arg.hasAttribute(Attribute::InAlloca)) { 11411 Flags.setInAlloca(); 11412 // Set the byval flag for CCAssignFn callbacks that don't know about 11413 // inalloca. This way we can know how many bytes we should've allocated 11414 // and how many bytes a callee cleanup function will pop. If we port 11415 // inalloca to more targets, we'll have to add custom inalloca handling 11416 // in the various CC lowering callbacks. 11417 Flags.setByVal(); 11418 } 11419 if (Arg.hasAttribute(Attribute::Preallocated)) { 11420 Flags.setPreallocated(); 11421 // Set the byval flag for CCAssignFn callbacks that don't know about 11422 // preallocated. This way we can know how many bytes we should've 11423 // allocated and how many bytes a callee cleanup function will pop. If 11424 // we port preallocated to more targets, we'll have to add custom 11425 // preallocated handling in the various CC lowering callbacks. 11426 Flags.setByVal(); 11427 } 11428 11429 // Certain targets (such as MIPS), may have a different ABI alignment 11430 // for a type depending on the context. Give the target a chance to 11431 // specify the alignment it wants. 11432 const Align OriginalAlignment( 11433 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11434 Flags.setOrigAlign(OriginalAlignment); 11435 11436 Align MemAlign; 11437 Type *ArgMemTy = nullptr; 11438 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11439 Flags.isByRef()) { 11440 if (!ArgMemTy) 11441 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11442 11443 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11444 11445 // For in-memory arguments, size and alignment should be passed from FE. 11446 // BE will guess if this info is not there but there are cases it cannot 11447 // get right. 11448 if (auto ParamAlign = Arg.getParamStackAlign()) 11449 MemAlign = *ParamAlign; 11450 else if ((ParamAlign = Arg.getParamAlign())) 11451 MemAlign = *ParamAlign; 11452 else 11453 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11454 if (Flags.isByRef()) 11455 Flags.setByRefSize(MemSize); 11456 else 11457 Flags.setByValSize(MemSize); 11458 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11459 MemAlign = *ParamAlign; 11460 } else { 11461 MemAlign = OriginalAlignment; 11462 } 11463 Flags.setMemAlign(MemAlign); 11464 11465 if (Arg.hasAttribute(Attribute::Nest)) 11466 Flags.setNest(); 11467 if (NeedsRegBlock) 11468 Flags.setInConsecutiveRegs(); 11469 if (ArgCopyElisionCandidates.count(&Arg)) 11470 Flags.setCopyElisionCandidate(); 11471 if (Arg.hasAttribute(Attribute::Returned)) 11472 Flags.setReturned(); 11473 11474 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11475 *CurDAG->getContext(), F.getCallingConv(), VT); 11476 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11477 *CurDAG->getContext(), F.getCallingConv(), VT); 11478 for (unsigned i = 0; i != NumRegs; ++i) { 11479 // For scalable vectors, use the minimum size; individual targets 11480 // are responsible for handling scalable vector arguments and 11481 // return values. 11482 ISD::InputArg MyFlags( 11483 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11484 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11485 if (NumRegs > 1 && i == 0) 11486 MyFlags.Flags.setSplit(); 11487 // if it isn't first piece, alignment must be 1 11488 else if (i > 0) { 11489 MyFlags.Flags.setOrigAlign(Align(1)); 11490 if (i == NumRegs - 1) 11491 MyFlags.Flags.setSplitEnd(); 11492 } 11493 Ins.push_back(MyFlags); 11494 } 11495 if (NeedsRegBlock && Value == NumValues - 1) 11496 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11497 PartBase += VT.getStoreSize().getKnownMinValue(); 11498 } 11499 } 11500 11501 // Call the target to set up the argument values. 11502 SmallVector<SDValue, 8> InVals; 11503 SDValue NewRoot = TLI->LowerFormalArguments( 11504 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11505 11506 // Verify that the target's LowerFormalArguments behaved as expected. 11507 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11508 "LowerFormalArguments didn't return a valid chain!"); 11509 assert(InVals.size() == Ins.size() && 11510 "LowerFormalArguments didn't emit the correct number of values!"); 11511 LLVM_DEBUG({ 11512 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11513 assert(InVals[i].getNode() && 11514 "LowerFormalArguments emitted a null value!"); 11515 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11516 "LowerFormalArguments emitted a value with the wrong type!"); 11517 } 11518 }); 11519 11520 // Update the DAG with the new chain value resulting from argument lowering. 11521 DAG.setRoot(NewRoot); 11522 11523 // Set up the argument values. 11524 unsigned i = 0; 11525 if (!FuncInfo->CanLowerReturn) { 11526 // Create a virtual register for the sret pointer, and put in a copy 11527 // from the sret argument into it. 11528 SmallVector<EVT, 1> ValueVTs; 11529 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11530 PointerType::get(F.getContext(), 11531 DAG.getDataLayout().getAllocaAddrSpace()), 11532 ValueVTs); 11533 MVT VT = ValueVTs[0].getSimpleVT(); 11534 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11535 std::optional<ISD::NodeType> AssertOp; 11536 SDValue ArgValue = 11537 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11538 F.getCallingConv(), AssertOp); 11539 11540 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11541 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11542 Register SRetReg = 11543 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11544 FuncInfo->DemoteRegister = SRetReg; 11545 NewRoot = 11546 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11547 DAG.setRoot(NewRoot); 11548 11549 // i indexes lowered arguments. Bump it past the hidden sret argument. 11550 ++i; 11551 } 11552 11553 SmallVector<SDValue, 4> Chains; 11554 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11555 for (const Argument &Arg : F.args()) { 11556 SmallVector<SDValue, 4> ArgValues; 11557 SmallVector<EVT, 4> ValueVTs; 11558 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11559 unsigned NumValues = ValueVTs.size(); 11560 if (NumValues == 0) 11561 continue; 11562 11563 bool ArgHasUses = !Arg.use_empty(); 11564 11565 // Elide the copying store if the target loaded this argument from a 11566 // suitable fixed stack object. 11567 if (Ins[i].Flags.isCopyElisionCandidate()) { 11568 unsigned NumParts = 0; 11569 for (EVT VT : ValueVTs) 11570 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11571 F.getCallingConv(), VT); 11572 11573 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11574 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11575 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11576 } 11577 11578 // If this argument is unused then remember its value. It is used to generate 11579 // debugging information. 11580 bool isSwiftErrorArg = 11581 TLI->supportSwiftError() && 11582 Arg.hasAttribute(Attribute::SwiftError); 11583 if (!ArgHasUses && !isSwiftErrorArg) { 11584 SDB->setUnusedArgValue(&Arg, InVals[i]); 11585 11586 // Also remember any frame index for use in FastISel. 11587 if (FrameIndexSDNode *FI = 11588 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11589 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11590 } 11591 11592 for (unsigned Val = 0; Val != NumValues; ++Val) { 11593 EVT VT = ValueVTs[Val]; 11594 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11595 F.getCallingConv(), VT); 11596 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11597 *CurDAG->getContext(), F.getCallingConv(), VT); 11598 11599 // Even an apparent 'unused' swifterror argument needs to be returned. So 11600 // we do generate a copy for it that can be used on return from the 11601 // function. 11602 if (ArgHasUses || isSwiftErrorArg) { 11603 std::optional<ISD::NodeType> AssertOp; 11604 if (Arg.hasAttribute(Attribute::SExt)) 11605 AssertOp = ISD::AssertSext; 11606 else if (Arg.hasAttribute(Attribute::ZExt)) 11607 AssertOp = ISD::AssertZext; 11608 11609 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11610 PartVT, VT, nullptr, NewRoot, 11611 F.getCallingConv(), AssertOp)); 11612 } 11613 11614 i += NumParts; 11615 } 11616 11617 // We don't need to do anything else for unused arguments. 11618 if (ArgValues.empty()) 11619 continue; 11620 11621 // Note down frame index. 11622 if (FrameIndexSDNode *FI = 11623 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11624 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11625 11626 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11627 SDB->getCurSDLoc()); 11628 11629 SDB->setValue(&Arg, Res); 11630 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11631 // We want to associate the argument with the frame index, among 11632 // involved operands, that correspond to the lowest address. The 11633 // getCopyFromParts function, called earlier, is swapping the order of 11634 // the operands to BUILD_PAIR depending on endianness. The result of 11635 // that swapping is that the least significant bits of the argument will 11636 // be in the first operand of the BUILD_PAIR node, and the most 11637 // significant bits will be in the second operand. 11638 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11639 if (LoadSDNode *LNode = 11640 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11641 if (FrameIndexSDNode *FI = 11642 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11643 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11644 } 11645 11646 // Analyses past this point are naive and don't expect an assertion. 11647 if (Res.getOpcode() == ISD::AssertZext) 11648 Res = Res.getOperand(0); 11649 11650 // Update the SwiftErrorVRegDefMap. 11651 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11652 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11653 if (Register::isVirtualRegister(Reg)) 11654 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11655 Reg); 11656 } 11657 11658 // If this argument is live outside of the entry block, insert a copy from 11659 // wherever we got it to the vreg that other BB's will reference it as. 11660 if (Res.getOpcode() == ISD::CopyFromReg) { 11661 // If we can, though, try to skip creating an unnecessary vreg. 11662 // FIXME: This isn't very clean... it would be nice to make this more 11663 // general. 11664 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11665 if (Register::isVirtualRegister(Reg)) { 11666 FuncInfo->ValueMap[&Arg] = Reg; 11667 continue; 11668 } 11669 } 11670 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11671 FuncInfo->InitializeRegForValue(&Arg); 11672 SDB->CopyToExportRegsIfNeeded(&Arg); 11673 } 11674 } 11675 11676 if (!Chains.empty()) { 11677 Chains.push_back(NewRoot); 11678 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11679 } 11680 11681 DAG.setRoot(NewRoot); 11682 11683 assert(i == InVals.size() && "Argument register count mismatch!"); 11684 11685 // If any argument copy elisions occurred and we have debug info, update the 11686 // stale frame indices used in the dbg.declare variable info table. 11687 if (!ArgCopyElisionFrameIndexMap.empty()) { 11688 for (MachineFunction::VariableDbgInfo &VI : 11689 MF->getInStackSlotVariableDbgInfo()) { 11690 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11691 if (I != ArgCopyElisionFrameIndexMap.end()) 11692 VI.updateStackSlot(I->second); 11693 } 11694 } 11695 11696 // Finally, if the target has anything special to do, allow it to do so. 11697 emitFunctionEntryCode(); 11698 } 11699 11700 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11701 /// ensure constants are generated when needed. Remember the virtual registers 11702 /// that need to be added to the Machine PHI nodes as input. We cannot just 11703 /// directly add them, because expansion might result in multiple MBB's for one 11704 /// BB. As such, the start of the BB might correspond to a different MBB than 11705 /// the end. 11706 void 11707 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11708 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11709 11710 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11711 11712 // Check PHI nodes in successors that expect a value to be available from this 11713 // block. 11714 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11715 if (!isa<PHINode>(SuccBB->begin())) continue; 11716 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11717 11718 // If this terminator has multiple identical successors (common for 11719 // switches), only handle each succ once. 11720 if (!SuccsHandled.insert(SuccMBB).second) 11721 continue; 11722 11723 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11724 11725 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11726 // nodes and Machine PHI nodes, but the incoming operands have not been 11727 // emitted yet. 11728 for (const PHINode &PN : SuccBB->phis()) { 11729 // Ignore dead phi's. 11730 if (PN.use_empty()) 11731 continue; 11732 11733 // Skip empty types 11734 if (PN.getType()->isEmptyTy()) 11735 continue; 11736 11737 unsigned Reg; 11738 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11739 11740 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11741 unsigned &RegOut = ConstantsOut[C]; 11742 if (RegOut == 0) { 11743 RegOut = FuncInfo.CreateRegs(C); 11744 // We need to zero/sign extend ConstantInt phi operands to match 11745 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11746 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11747 if (auto *CI = dyn_cast<ConstantInt>(C)) 11748 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11749 : ISD::ZERO_EXTEND; 11750 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11751 } 11752 Reg = RegOut; 11753 } else { 11754 DenseMap<const Value *, Register>::iterator I = 11755 FuncInfo.ValueMap.find(PHIOp); 11756 if (I != FuncInfo.ValueMap.end()) 11757 Reg = I->second; 11758 else { 11759 assert(isa<AllocaInst>(PHIOp) && 11760 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11761 "Didn't codegen value into a register!??"); 11762 Reg = FuncInfo.CreateRegs(PHIOp); 11763 CopyValueToVirtualRegister(PHIOp, Reg); 11764 } 11765 } 11766 11767 // Remember that this register needs to added to the machine PHI node as 11768 // the input for this MBB. 11769 SmallVector<EVT, 4> ValueVTs; 11770 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11771 for (EVT VT : ValueVTs) { 11772 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11773 for (unsigned i = 0; i != NumRegisters; ++i) 11774 FuncInfo.PHINodesToUpdate.push_back( 11775 std::make_pair(&*MBBI++, Reg + i)); 11776 Reg += NumRegisters; 11777 } 11778 } 11779 } 11780 11781 ConstantsOut.clear(); 11782 } 11783 11784 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11785 MachineFunction::iterator I(MBB); 11786 if (++I == FuncInfo.MF->end()) 11787 return nullptr; 11788 return &*I; 11789 } 11790 11791 /// During lowering new call nodes can be created (such as memset, etc.). 11792 /// Those will become new roots of the current DAG, but complications arise 11793 /// when they are tail calls. In such cases, the call lowering will update 11794 /// the root, but the builder still needs to know that a tail call has been 11795 /// lowered in order to avoid generating an additional return. 11796 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11797 // If the node is null, we do have a tail call. 11798 if (MaybeTC.getNode() != nullptr) 11799 DAG.setRoot(MaybeTC); 11800 else 11801 HasTailCall = true; 11802 } 11803 11804 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11805 MachineBasicBlock *SwitchMBB, 11806 MachineBasicBlock *DefaultMBB) { 11807 MachineFunction *CurMF = FuncInfo.MF; 11808 MachineBasicBlock *NextMBB = nullptr; 11809 MachineFunction::iterator BBI(W.MBB); 11810 if (++BBI != FuncInfo.MF->end()) 11811 NextMBB = &*BBI; 11812 11813 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11814 11815 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11816 11817 if (Size == 2 && W.MBB == SwitchMBB) { 11818 // If any two of the cases has the same destination, and if one value 11819 // is the same as the other, but has one bit unset that the other has set, 11820 // use bit manipulation to do two compares at once. For example: 11821 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11822 // TODO: This could be extended to merge any 2 cases in switches with 3 11823 // cases. 11824 // TODO: Handle cases where W.CaseBB != SwitchBB. 11825 CaseCluster &Small = *W.FirstCluster; 11826 CaseCluster &Big = *W.LastCluster; 11827 11828 if (Small.Low == Small.High && Big.Low == Big.High && 11829 Small.MBB == Big.MBB) { 11830 const APInt &SmallValue = Small.Low->getValue(); 11831 const APInt &BigValue = Big.Low->getValue(); 11832 11833 // Check that there is only one bit different. 11834 APInt CommonBit = BigValue ^ SmallValue; 11835 if (CommonBit.isPowerOf2()) { 11836 SDValue CondLHS = getValue(Cond); 11837 EVT VT = CondLHS.getValueType(); 11838 SDLoc DL = getCurSDLoc(); 11839 11840 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11841 DAG.getConstant(CommonBit, DL, VT)); 11842 SDValue Cond = DAG.getSetCC( 11843 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11844 ISD::SETEQ); 11845 11846 // Update successor info. 11847 // Both Small and Big will jump to Small.BB, so we sum up the 11848 // probabilities. 11849 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11850 if (BPI) 11851 addSuccessorWithProb( 11852 SwitchMBB, DefaultMBB, 11853 // The default destination is the first successor in IR. 11854 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11855 else 11856 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11857 11858 // Insert the true branch. 11859 SDValue BrCond = 11860 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11861 DAG.getBasicBlock(Small.MBB)); 11862 // Insert the false branch. 11863 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11864 DAG.getBasicBlock(DefaultMBB)); 11865 11866 DAG.setRoot(BrCond); 11867 return; 11868 } 11869 } 11870 } 11871 11872 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11873 // Here, we order cases by probability so the most likely case will be 11874 // checked first. However, two clusters can have the same probability in 11875 // which case their relative ordering is non-deterministic. So we use Low 11876 // as a tie-breaker as clusters are guaranteed to never overlap. 11877 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11878 [](const CaseCluster &a, const CaseCluster &b) { 11879 return a.Prob != b.Prob ? 11880 a.Prob > b.Prob : 11881 a.Low->getValue().slt(b.Low->getValue()); 11882 }); 11883 11884 // Rearrange the case blocks so that the last one falls through if possible 11885 // without changing the order of probabilities. 11886 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11887 --I; 11888 if (I->Prob > W.LastCluster->Prob) 11889 break; 11890 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11891 std::swap(*I, *W.LastCluster); 11892 break; 11893 } 11894 } 11895 } 11896 11897 // Compute total probability. 11898 BranchProbability DefaultProb = W.DefaultProb; 11899 BranchProbability UnhandledProbs = DefaultProb; 11900 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11901 UnhandledProbs += I->Prob; 11902 11903 MachineBasicBlock *CurMBB = W.MBB; 11904 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11905 bool FallthroughUnreachable = false; 11906 MachineBasicBlock *Fallthrough; 11907 if (I == W.LastCluster) { 11908 // For the last cluster, fall through to the default destination. 11909 Fallthrough = DefaultMBB; 11910 FallthroughUnreachable = isa<UnreachableInst>( 11911 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11912 } else { 11913 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11914 CurMF->insert(BBI, Fallthrough); 11915 // Put Cond in a virtual register to make it available from the new blocks. 11916 ExportFromCurrentBlock(Cond); 11917 } 11918 UnhandledProbs -= I->Prob; 11919 11920 switch (I->Kind) { 11921 case CC_JumpTable: { 11922 // FIXME: Optimize away range check based on pivot comparisons. 11923 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11924 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11925 11926 // The jump block hasn't been inserted yet; insert it here. 11927 MachineBasicBlock *JumpMBB = JT->MBB; 11928 CurMF->insert(BBI, JumpMBB); 11929 11930 auto JumpProb = I->Prob; 11931 auto FallthroughProb = UnhandledProbs; 11932 11933 // If the default statement is a target of the jump table, we evenly 11934 // distribute the default probability to successors of CurMBB. Also 11935 // update the probability on the edge from JumpMBB to Fallthrough. 11936 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11937 SE = JumpMBB->succ_end(); 11938 SI != SE; ++SI) { 11939 if (*SI == DefaultMBB) { 11940 JumpProb += DefaultProb / 2; 11941 FallthroughProb -= DefaultProb / 2; 11942 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11943 JumpMBB->normalizeSuccProbs(); 11944 break; 11945 } 11946 } 11947 11948 // If the default clause is unreachable, propagate that knowledge into 11949 // JTH->FallthroughUnreachable which will use it to suppress the range 11950 // check. 11951 // 11952 // However, don't do this if we're doing branch target enforcement, 11953 // because a table branch _without_ a range check can be a tempting JOP 11954 // gadget - out-of-bounds inputs that are impossible in correct 11955 // execution become possible again if an attacker can influence the 11956 // control flow. So if an attacker doesn't already have a BTI bypass 11957 // available, we don't want them to be able to get one out of this 11958 // table branch. 11959 if (FallthroughUnreachable) { 11960 Function &CurFunc = CurMF->getFunction(); 11961 bool HasBranchTargetEnforcement = false; 11962 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11963 HasBranchTargetEnforcement = 11964 CurFunc.getFnAttribute("branch-target-enforcement") 11965 .getValueAsBool(); 11966 } else { 11967 HasBranchTargetEnforcement = 11968 CurMF->getMMI().getModule()->getModuleFlag( 11969 "branch-target-enforcement"); 11970 } 11971 if (!HasBranchTargetEnforcement) 11972 JTH->FallthroughUnreachable = true; 11973 } 11974 11975 if (!JTH->FallthroughUnreachable) 11976 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11977 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11978 CurMBB->normalizeSuccProbs(); 11979 11980 // The jump table header will be inserted in our current block, do the 11981 // range check, and fall through to our fallthrough block. 11982 JTH->HeaderBB = CurMBB; 11983 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11984 11985 // If we're in the right place, emit the jump table header right now. 11986 if (CurMBB == SwitchMBB) { 11987 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11988 JTH->Emitted = true; 11989 } 11990 break; 11991 } 11992 case CC_BitTests: { 11993 // FIXME: Optimize away range check based on pivot comparisons. 11994 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11995 11996 // The bit test blocks haven't been inserted yet; insert them here. 11997 for (BitTestCase &BTC : BTB->Cases) 11998 CurMF->insert(BBI, BTC.ThisBB); 11999 12000 // Fill in fields of the BitTestBlock. 12001 BTB->Parent = CurMBB; 12002 BTB->Default = Fallthrough; 12003 12004 BTB->DefaultProb = UnhandledProbs; 12005 // If the cases in bit test don't form a contiguous range, we evenly 12006 // distribute the probability on the edge to Fallthrough to two 12007 // successors of CurMBB. 12008 if (!BTB->ContiguousRange) { 12009 BTB->Prob += DefaultProb / 2; 12010 BTB->DefaultProb -= DefaultProb / 2; 12011 } 12012 12013 if (FallthroughUnreachable) 12014 BTB->FallthroughUnreachable = true; 12015 12016 // If we're in the right place, emit the bit test header right now. 12017 if (CurMBB == SwitchMBB) { 12018 visitBitTestHeader(*BTB, SwitchMBB); 12019 BTB->Emitted = true; 12020 } 12021 break; 12022 } 12023 case CC_Range: { 12024 const Value *RHS, *LHS, *MHS; 12025 ISD::CondCode CC; 12026 if (I->Low == I->High) { 12027 // Check Cond == I->Low. 12028 CC = ISD::SETEQ; 12029 LHS = Cond; 12030 RHS=I->Low; 12031 MHS = nullptr; 12032 } else { 12033 // Check I->Low <= Cond <= I->High. 12034 CC = ISD::SETLE; 12035 LHS = I->Low; 12036 MHS = Cond; 12037 RHS = I->High; 12038 } 12039 12040 // If Fallthrough is unreachable, fold away the comparison. 12041 if (FallthroughUnreachable) 12042 CC = ISD::SETTRUE; 12043 12044 // The false probability is the sum of all unhandled cases. 12045 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12046 getCurSDLoc(), I->Prob, UnhandledProbs); 12047 12048 if (CurMBB == SwitchMBB) 12049 visitSwitchCase(CB, SwitchMBB); 12050 else 12051 SL->SwitchCases.push_back(CB); 12052 12053 break; 12054 } 12055 } 12056 CurMBB = Fallthrough; 12057 } 12058 } 12059 12060 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12061 const SwitchWorkListItem &W, 12062 Value *Cond, 12063 MachineBasicBlock *SwitchMBB) { 12064 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12065 "Clusters not sorted?"); 12066 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12067 12068 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12069 SL->computeSplitWorkItemInfo(W); 12070 12071 // Use the first element on the right as pivot since we will make less-than 12072 // comparisons against it. 12073 CaseClusterIt PivotCluster = FirstRight; 12074 assert(PivotCluster > W.FirstCluster); 12075 assert(PivotCluster <= W.LastCluster); 12076 12077 CaseClusterIt FirstLeft = W.FirstCluster; 12078 CaseClusterIt LastRight = W.LastCluster; 12079 12080 const ConstantInt *Pivot = PivotCluster->Low; 12081 12082 // New blocks will be inserted immediately after the current one. 12083 MachineFunction::iterator BBI(W.MBB); 12084 ++BBI; 12085 12086 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12087 // we can branch to its destination directly if it's squeezed exactly in 12088 // between the known lower bound and Pivot - 1. 12089 MachineBasicBlock *LeftMBB; 12090 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12091 FirstLeft->Low == W.GE && 12092 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12093 LeftMBB = FirstLeft->MBB; 12094 } else { 12095 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12096 FuncInfo.MF->insert(BBI, LeftMBB); 12097 WorkList.push_back( 12098 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12099 // Put Cond in a virtual register to make it available from the new blocks. 12100 ExportFromCurrentBlock(Cond); 12101 } 12102 12103 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12104 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12105 // directly if RHS.High equals the current upper bound. 12106 MachineBasicBlock *RightMBB; 12107 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12108 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12109 RightMBB = FirstRight->MBB; 12110 } else { 12111 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12112 FuncInfo.MF->insert(BBI, RightMBB); 12113 WorkList.push_back( 12114 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12115 // Put Cond in a virtual register to make it available from the new blocks. 12116 ExportFromCurrentBlock(Cond); 12117 } 12118 12119 // Create the CaseBlock record that will be used to lower the branch. 12120 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12121 getCurSDLoc(), LeftProb, RightProb); 12122 12123 if (W.MBB == SwitchMBB) 12124 visitSwitchCase(CB, SwitchMBB); 12125 else 12126 SL->SwitchCases.push_back(CB); 12127 } 12128 12129 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12130 // from the swith statement. 12131 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12132 BranchProbability PeeledCaseProb) { 12133 if (PeeledCaseProb == BranchProbability::getOne()) 12134 return BranchProbability::getZero(); 12135 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12136 12137 uint32_t Numerator = CaseProb.getNumerator(); 12138 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12139 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12140 } 12141 12142 // Try to peel the top probability case if it exceeds the threshold. 12143 // Return current MachineBasicBlock for the switch statement if the peeling 12144 // does not occur. 12145 // If the peeling is performed, return the newly created MachineBasicBlock 12146 // for the peeled switch statement. Also update Clusters to remove the peeled 12147 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12148 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12149 const SwitchInst &SI, CaseClusterVector &Clusters, 12150 BranchProbability &PeeledCaseProb) { 12151 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12152 // Don't perform if there is only one cluster or optimizing for size. 12153 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12154 TM.getOptLevel() == CodeGenOptLevel::None || 12155 SwitchMBB->getParent()->getFunction().hasMinSize()) 12156 return SwitchMBB; 12157 12158 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12159 unsigned PeeledCaseIndex = 0; 12160 bool SwitchPeeled = false; 12161 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12162 CaseCluster &CC = Clusters[Index]; 12163 if (CC.Prob < TopCaseProb) 12164 continue; 12165 TopCaseProb = CC.Prob; 12166 PeeledCaseIndex = Index; 12167 SwitchPeeled = true; 12168 } 12169 if (!SwitchPeeled) 12170 return SwitchMBB; 12171 12172 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12173 << TopCaseProb << "\n"); 12174 12175 // Record the MBB for the peeled switch statement. 12176 MachineFunction::iterator BBI(SwitchMBB); 12177 ++BBI; 12178 MachineBasicBlock *PeeledSwitchMBB = 12179 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12180 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12181 12182 ExportFromCurrentBlock(SI.getCondition()); 12183 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12184 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12185 nullptr, nullptr, TopCaseProb.getCompl()}; 12186 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12187 12188 Clusters.erase(PeeledCaseIt); 12189 for (CaseCluster &CC : Clusters) { 12190 LLVM_DEBUG( 12191 dbgs() << "Scale the probablity for one cluster, before scaling: " 12192 << CC.Prob << "\n"); 12193 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12194 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12195 } 12196 PeeledCaseProb = TopCaseProb; 12197 return PeeledSwitchMBB; 12198 } 12199 12200 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12201 // Extract cases from the switch. 12202 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12203 CaseClusterVector Clusters; 12204 Clusters.reserve(SI.getNumCases()); 12205 for (auto I : SI.cases()) { 12206 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 12207 const ConstantInt *CaseVal = I.getCaseValue(); 12208 BranchProbability Prob = 12209 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12210 : BranchProbability(1, SI.getNumCases() + 1); 12211 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12212 } 12213 12214 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 12215 12216 // Cluster adjacent cases with the same destination. We do this at all 12217 // optimization levels because it's cheap to do and will make codegen faster 12218 // if there are many clusters. 12219 sortAndRangeify(Clusters); 12220 12221 // The branch probablity of the peeled case. 12222 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12223 MachineBasicBlock *PeeledSwitchMBB = 12224 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12225 12226 // If there is only the default destination, jump there directly. 12227 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12228 if (Clusters.empty()) { 12229 assert(PeeledSwitchMBB == SwitchMBB); 12230 SwitchMBB->addSuccessor(DefaultMBB); 12231 if (DefaultMBB != NextBlock(SwitchMBB)) { 12232 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12233 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12234 } 12235 return; 12236 } 12237 12238 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12239 DAG.getBFI()); 12240 SL->findBitTestClusters(Clusters, &SI); 12241 12242 LLVM_DEBUG({ 12243 dbgs() << "Case clusters: "; 12244 for (const CaseCluster &C : Clusters) { 12245 if (C.Kind == CC_JumpTable) 12246 dbgs() << "JT:"; 12247 if (C.Kind == CC_BitTests) 12248 dbgs() << "BT:"; 12249 12250 C.Low->getValue().print(dbgs(), true); 12251 if (C.Low != C.High) { 12252 dbgs() << '-'; 12253 C.High->getValue().print(dbgs(), true); 12254 } 12255 dbgs() << ' '; 12256 } 12257 dbgs() << '\n'; 12258 }); 12259 12260 assert(!Clusters.empty()); 12261 SwitchWorkList WorkList; 12262 CaseClusterIt First = Clusters.begin(); 12263 CaseClusterIt Last = Clusters.end() - 1; 12264 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12265 // Scale the branchprobability for DefaultMBB if the peel occurs and 12266 // DefaultMBB is not replaced. 12267 if (PeeledCaseProb != BranchProbability::getZero() && 12268 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 12269 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12270 WorkList.push_back( 12271 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12272 12273 while (!WorkList.empty()) { 12274 SwitchWorkListItem W = WorkList.pop_back_val(); 12275 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12276 12277 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12278 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12279 // For optimized builds, lower large range as a balanced binary tree. 12280 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12281 continue; 12282 } 12283 12284 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12285 } 12286 } 12287 12288 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12289 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12290 auto DL = getCurSDLoc(); 12291 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12292 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12293 } 12294 12295 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12296 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12297 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12298 12299 SDLoc DL = getCurSDLoc(); 12300 SDValue V = getValue(I.getOperand(0)); 12301 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12302 12303 if (VT.isScalableVector()) { 12304 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12305 return; 12306 } 12307 12308 // Use VECTOR_SHUFFLE for the fixed-length vector 12309 // to maintain existing behavior. 12310 SmallVector<int, 8> Mask; 12311 unsigned NumElts = VT.getVectorMinNumElements(); 12312 for (unsigned i = 0; i != NumElts; ++i) 12313 Mask.push_back(NumElts - 1 - i); 12314 12315 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12316 } 12317 12318 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12319 auto DL = getCurSDLoc(); 12320 SDValue InVec = getValue(I.getOperand(0)); 12321 EVT OutVT = 12322 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12323 12324 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12325 12326 // ISD Node needs the input vectors split into two equal parts 12327 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12328 DAG.getVectorIdxConstant(0, DL)); 12329 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12330 DAG.getVectorIdxConstant(OutNumElts, DL)); 12331 12332 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12333 // legalisation and combines. 12334 if (OutVT.isFixedLengthVector()) { 12335 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12336 createStrideMask(0, 2, OutNumElts)); 12337 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12338 createStrideMask(1, 2, OutNumElts)); 12339 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12340 setValue(&I, Res); 12341 return; 12342 } 12343 12344 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12345 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12346 setValue(&I, Res); 12347 } 12348 12349 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12350 auto DL = getCurSDLoc(); 12351 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12352 SDValue InVec0 = getValue(I.getOperand(0)); 12353 SDValue InVec1 = getValue(I.getOperand(1)); 12354 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12355 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12356 12357 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12358 // legalisation and combines. 12359 if (OutVT.isFixedLengthVector()) { 12360 unsigned NumElts = InVT.getVectorMinNumElements(); 12361 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12362 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12363 createInterleaveMask(NumElts, 2))); 12364 return; 12365 } 12366 12367 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12368 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12369 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12370 Res.getValue(1)); 12371 setValue(&I, Res); 12372 } 12373 12374 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12375 SmallVector<EVT, 4> ValueVTs; 12376 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12377 ValueVTs); 12378 unsigned NumValues = ValueVTs.size(); 12379 if (NumValues == 0) return; 12380 12381 SmallVector<SDValue, 4> Values(NumValues); 12382 SDValue Op = getValue(I.getOperand(0)); 12383 12384 for (unsigned i = 0; i != NumValues; ++i) 12385 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12386 SDValue(Op.getNode(), Op.getResNo() + i)); 12387 12388 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12389 DAG.getVTList(ValueVTs), Values)); 12390 } 12391 12392 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12393 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12394 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12395 12396 SDLoc DL = getCurSDLoc(); 12397 SDValue V1 = getValue(I.getOperand(0)); 12398 SDValue V2 = getValue(I.getOperand(1)); 12399 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12400 12401 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12402 if (VT.isScalableVector()) { 12403 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12404 DAG.getVectorIdxConstant(Imm, DL))); 12405 return; 12406 } 12407 12408 unsigned NumElts = VT.getVectorNumElements(); 12409 12410 uint64_t Idx = (NumElts + Imm) % NumElts; 12411 12412 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12413 SmallVector<int, 8> Mask; 12414 for (unsigned i = 0; i < NumElts; ++i) 12415 Mask.push_back(Idx + i); 12416 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12417 } 12418 12419 // Consider the following MIR after SelectionDAG, which produces output in 12420 // phyregs in the first case or virtregs in the second case. 12421 // 12422 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12423 // %5:gr32 = COPY $ebx 12424 // %6:gr32 = COPY $edx 12425 // %1:gr32 = COPY %6:gr32 12426 // %0:gr32 = COPY %5:gr32 12427 // 12428 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12429 // %1:gr32 = COPY %6:gr32 12430 // %0:gr32 = COPY %5:gr32 12431 // 12432 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12433 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12434 // 12435 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12436 // to a single virtreg (such as %0). The remaining outputs monotonically 12437 // increase in virtreg number from there. If a callbr has no outputs, then it 12438 // should not have a corresponding callbr landingpad; in fact, the callbr 12439 // landingpad would not even be able to refer to such a callbr. 12440 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12441 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12442 // There is definitely at least one copy. 12443 assert(MI->getOpcode() == TargetOpcode::COPY && 12444 "start of copy chain MUST be COPY"); 12445 Reg = MI->getOperand(1).getReg(); 12446 MI = MRI.def_begin(Reg)->getParent(); 12447 // There may be an optional second copy. 12448 if (MI->getOpcode() == TargetOpcode::COPY) { 12449 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12450 Reg = MI->getOperand(1).getReg(); 12451 assert(Reg.isPhysical() && "expected COPY of physical register"); 12452 MI = MRI.def_begin(Reg)->getParent(); 12453 } 12454 // The start of the chain must be an INLINEASM_BR. 12455 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12456 "end of copy chain MUST be INLINEASM_BR"); 12457 return Reg; 12458 } 12459 12460 // We must do this walk rather than the simpler 12461 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12462 // otherwise we will end up with copies of virtregs only valid along direct 12463 // edges. 12464 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12465 SmallVector<EVT, 8> ResultVTs; 12466 SmallVector<SDValue, 8> ResultValues; 12467 const auto *CBR = 12468 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12469 12470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12471 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12472 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12473 12474 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12475 SDValue Chain = DAG.getRoot(); 12476 12477 // Re-parse the asm constraints string. 12478 TargetLowering::AsmOperandInfoVector TargetConstraints = 12479 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12480 for (auto &T : TargetConstraints) { 12481 SDISelAsmOperandInfo OpInfo(T); 12482 if (OpInfo.Type != InlineAsm::isOutput) 12483 continue; 12484 12485 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12486 // individual constraint. 12487 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12488 12489 switch (OpInfo.ConstraintType) { 12490 case TargetLowering::C_Register: 12491 case TargetLowering::C_RegisterClass: { 12492 // Fill in OpInfo.AssignedRegs.Regs. 12493 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12494 12495 // getRegistersForValue may produce 1 to many registers based on whether 12496 // the OpInfo.ConstraintVT is legal on the target or not. 12497 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12498 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12499 if (Register::isPhysicalRegister(OriginalDef)) 12500 FuncInfo.MBB->addLiveIn(OriginalDef); 12501 // Update the assigned registers to use the original defs. 12502 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12503 } 12504 12505 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12506 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12507 ResultValues.push_back(V); 12508 ResultVTs.push_back(OpInfo.ConstraintVT); 12509 break; 12510 } 12511 case TargetLowering::C_Other: { 12512 SDValue Flag; 12513 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12514 OpInfo, DAG); 12515 ++InitialDef; 12516 ResultValues.push_back(V); 12517 ResultVTs.push_back(OpInfo.ConstraintVT); 12518 break; 12519 } 12520 default: 12521 break; 12522 } 12523 } 12524 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12525 DAG.getVTList(ResultVTs), ResultValues); 12526 setValue(&I, V); 12527 } 12528