1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/DebugInfo.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/IntegersSubsetMapping.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetFrameLowering.h" 56 #include "llvm/Target/TargetInstrInfo.h" 57 #include "llvm/Target/TargetIntrinsicInfo.h" 58 #include "llvm/Target/TargetLibraryInfo.h" 59 #include "llvm/Target/TargetLowering.h" 60 #include "llvm/Target/TargetOptions.h" 61 #include <algorithm> 62 using namespace llvm; 63 64 /// LimitFloatPrecision - Generate low-precision inline sequences for 65 /// some float libcalls (6, 8 or 12 bits). 66 static unsigned LimitFloatPrecision; 67 68 static cl::opt<unsigned, true> 69 LimitFPPrecision("limit-float-precision", 70 cl::desc("Generate low-precision inline sequences " 71 "for some float libcalls"), 72 cl::location(LimitFloatPrecision), 73 cl::init(0)); 74 75 // Limit the width of DAG chains. This is important in general to prevent 76 // prevent DAG-based analysis from blowing up. For example, alias analysis and 77 // load clustering may not complete in reasonable time. It is difficult to 78 // recognize and avoid this situation within each individual analysis, and 79 // future analyses are likely to have the same behavior. Limiting DAG width is 80 // the safe approach, and will be especially important with global DAGs. 81 // 82 // MaxParallelChains default is arbitrarily high to avoid affecting 83 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 84 // sequence over this should have been converted to llvm.memcpy by the 85 // frontend. It easy to induce this behavior with .ll code such as: 86 // %buffer = alloca [4096 x i8] 87 // %data = load [4096 x i8]* %argPtr 88 // store [4096 x i8] %data, [4096 x i8]* %buffer 89 static const unsigned MaxParallelChains = 64; 90 91 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 92 const SDValue *Parts, unsigned NumParts, 93 MVT PartVT, EVT ValueVT, const Value *V); 94 95 /// getCopyFromParts - Create a value that contains the specified legal parts 96 /// combined into the value they represent. If the parts combine to a type 97 /// larger then ValueVT then AssertOp can be used to specify whether the extra 98 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 99 /// (ISD::AssertSext). 100 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 101 const SDValue *Parts, 102 unsigned NumParts, MVT PartVT, EVT ValueVT, 103 const Value *V, 104 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 105 if (ValueVT.isVector()) 106 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 107 PartVT, ValueVT, V); 108 109 assert(NumParts > 0 && "No parts to assemble!"); 110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 111 SDValue Val = Parts[0]; 112 113 if (NumParts > 1) { 114 // Assemble the value from multiple parts. 115 if (ValueVT.isInteger()) { 116 unsigned PartBits = PartVT.getSizeInBits(); 117 unsigned ValueBits = ValueVT.getSizeInBits(); 118 119 // Assemble the power of 2 part. 120 unsigned RoundParts = NumParts & (NumParts - 1) ? 121 1 << Log2_32(NumParts) : NumParts; 122 unsigned RoundBits = PartBits * RoundParts; 123 EVT RoundVT = RoundBits == ValueBits ? 124 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 125 SDValue Lo, Hi; 126 127 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 128 129 if (RoundParts > 2) { 130 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 131 PartVT, HalfVT, V); 132 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 133 RoundParts / 2, PartVT, HalfVT, V); 134 } else { 135 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 136 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 137 } 138 139 if (TLI.isBigEndian()) 140 std::swap(Lo, Hi); 141 142 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 143 144 if (RoundParts < NumParts) { 145 // Assemble the trailing non-power-of-2 part. 146 unsigned OddParts = NumParts - RoundParts; 147 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 148 Hi = getCopyFromParts(DAG, DL, 149 Parts + RoundParts, OddParts, PartVT, OddVT, V); 150 151 // Combine the round and odd parts. 152 Lo = Val; 153 if (TLI.isBigEndian()) 154 std::swap(Lo, Hi); 155 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 156 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 157 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 158 DAG.getConstant(Lo.getValueType().getSizeInBits(), 159 TLI.getPointerTy())); 160 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 161 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 162 } 163 } else if (PartVT.isFloatingPoint()) { 164 // FP split into multiple FP parts (for ppcf128) 165 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 166 "Unexpected split"); 167 SDValue Lo, Hi; 168 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 169 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 170 if (TLI.isBigEndian()) 171 std::swap(Lo, Hi); 172 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 173 } else { 174 // FP split into integer parts (soft fp) 175 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 176 !PartVT.isVector() && "Unexpected split"); 177 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 178 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 179 } 180 } 181 182 // There is now one part, held in Val. Correct it to match ValueVT. 183 EVT PartEVT = Val.getValueType(); 184 185 if (PartEVT == ValueVT) 186 return Val; 187 188 if (PartEVT.isInteger() && ValueVT.isInteger()) { 189 if (ValueVT.bitsLT(PartEVT)) { 190 // For a truncate, see if we have any information to 191 // indicate whether the truncated bits will always be 192 // zero or sign-extension. 193 if (AssertOp != ISD::DELETED_NODE) 194 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 195 DAG.getValueType(ValueVT)); 196 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 197 } 198 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 199 } 200 201 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 202 // FP_ROUND's are always exact here. 203 if (ValueVT.bitsLT(Val.getValueType())) 204 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 205 DAG.getTargetConstant(1, TLI.getPointerTy())); 206 207 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 208 } 209 210 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 211 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 212 213 llvm_unreachable("Unknown mismatch!"); 214 } 215 216 /// getCopyFromPartsVector - Create a value that contains the specified legal 217 /// parts combined into the value they represent. If the parts combine to a 218 /// type larger then ValueVT then AssertOp can be used to specify whether the 219 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 220 /// ValueVT (ISD::AssertSext). 221 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 222 const SDValue *Parts, unsigned NumParts, 223 MVT PartVT, EVT ValueVT, const Value *V) { 224 assert(ValueVT.isVector() && "Not a vector value"); 225 assert(NumParts > 0 && "No parts to assemble!"); 226 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 227 SDValue Val = Parts[0]; 228 229 // Handle a multi-element vector. 230 if (NumParts > 1) { 231 EVT IntermediateVT; 232 MVT RegisterVT; 233 unsigned NumIntermediates; 234 unsigned NumRegs = 235 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 236 NumIntermediates, RegisterVT); 237 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 238 NumParts = NumRegs; // Silence a compiler warning. 239 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 240 assert(RegisterVT == Parts[0].getSimpleValueType() && 241 "Part type doesn't match part!"); 242 243 // Assemble the parts into intermediate operands. 244 SmallVector<SDValue, 8> Ops(NumIntermediates); 245 if (NumIntermediates == NumParts) { 246 // If the register was not expanded, truncate or copy the value, 247 // as appropriate. 248 for (unsigned i = 0; i != NumParts; ++i) 249 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 250 PartVT, IntermediateVT, V); 251 } else if (NumParts > 0) { 252 // If the intermediate type was expanded, build the intermediate 253 // operands from the parts. 254 assert(NumParts % NumIntermediates == 0 && 255 "Must expand into a divisible number of parts!"); 256 unsigned Factor = NumParts / NumIntermediates; 257 for (unsigned i = 0; i != NumIntermediates; ++i) 258 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 259 PartVT, IntermediateVT, V); 260 } 261 262 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 263 // intermediate operands. 264 Val = DAG.getNode(IntermediateVT.isVector() ? 265 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 266 ValueVT, &Ops[0], NumIntermediates); 267 } 268 269 // There is now one part, held in Val. Correct it to match ValueVT. 270 EVT PartEVT = Val.getValueType(); 271 272 if (PartEVT == ValueVT) 273 return Val; 274 275 if (PartEVT.isVector()) { 276 // If the element type of the source/dest vectors are the same, but the 277 // parts vector has more elements than the value vector, then we have a 278 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 279 // elements we want. 280 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 281 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 282 "Cannot narrow, it would be a lossy transformation"); 283 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 284 DAG.getIntPtrConstant(0)); 285 } 286 287 // Vector/Vector bitcast. 288 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 289 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 290 291 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 292 "Cannot handle this kind of promotion"); 293 // Promoted vector extract 294 bool Smaller = ValueVT.bitsLE(PartEVT); 295 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 296 DL, ValueVT, Val); 297 298 } 299 300 // Trivial bitcast if the types are the same size and the destination 301 // vector type is legal. 302 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 303 TLI.isTypeLegal(ValueVT)) 304 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 305 306 // Handle cases such as i8 -> <1 x i1> 307 if (ValueVT.getVectorNumElements() != 1) { 308 LLVMContext &Ctx = *DAG.getContext(); 309 Twine ErrMsg("non-trivial scalar-to-vector conversion"); 310 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 311 if (const CallInst *CI = dyn_cast<CallInst>(I)) 312 if (isa<InlineAsm>(CI->getCalledValue())) 313 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 314 Ctx.emitError(I, ErrMsg); 315 } else { 316 Ctx.emitError(ErrMsg); 317 } 318 return DAG.getUNDEF(ValueVT); 319 } 320 321 if (ValueVT.getVectorNumElements() == 1 && 322 ValueVT.getVectorElementType() != PartEVT) { 323 bool Smaller = ValueVT.bitsLE(PartEVT); 324 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 325 DL, ValueVT.getScalarType(), Val); 326 } 327 328 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 329 } 330 331 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 332 SDValue Val, SDValue *Parts, unsigned NumParts, 333 MVT PartVT, const Value *V); 334 335 /// getCopyToParts - Create a series of nodes that contain the specified value 336 /// split into legal parts. If the parts contain more bits than Val, then, for 337 /// integers, ExtendKind can be used to specify how to generate the extra bits. 338 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 339 SDValue Val, SDValue *Parts, unsigned NumParts, 340 MVT PartVT, const Value *V, 341 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 342 EVT ValueVT = Val.getValueType(); 343 344 // Handle the vector case separately. 345 if (ValueVT.isVector()) 346 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 347 348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 349 unsigned PartBits = PartVT.getSizeInBits(); 350 unsigned OrigNumParts = NumParts; 351 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 352 353 if (NumParts == 0) 354 return; 355 356 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 357 EVT PartEVT = PartVT; 358 if (PartEVT == ValueVT) { 359 assert(NumParts == 1 && "No-op copy with multiple parts!"); 360 Parts[0] = Val; 361 return; 362 } 363 364 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 365 // If the parts cover more bits than the value has, promote the value. 366 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 367 assert(NumParts == 1 && "Do not know what to promote to!"); 368 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 369 } else { 370 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 371 ValueVT.isInteger() && 372 "Unknown mismatch!"); 373 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 374 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 375 if (PartVT == MVT::x86mmx) 376 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 377 } 378 } else if (PartBits == ValueVT.getSizeInBits()) { 379 // Different types of the same size. 380 assert(NumParts == 1 && PartEVT != ValueVT); 381 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 382 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 383 // If the parts cover less bits than value has, truncate the value. 384 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 385 ValueVT.isInteger() && 386 "Unknown mismatch!"); 387 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 388 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 389 if (PartVT == MVT::x86mmx) 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } 392 393 // The value may have changed - recompute ValueVT. 394 ValueVT = Val.getValueType(); 395 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 396 "Failed to tile the value with PartVT!"); 397 398 if (NumParts == 1) { 399 if (PartEVT != ValueVT) { 400 LLVMContext &Ctx = *DAG.getContext(); 401 Twine ErrMsg("scalar-to-vector conversion failed"); 402 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 403 if (const CallInst *CI = dyn_cast<CallInst>(I)) 404 if (isa<InlineAsm>(CI->getCalledValue())) 405 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 406 Ctx.emitError(I, ErrMsg); 407 } else { 408 Ctx.emitError(ErrMsg); 409 } 410 } 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getIntPtrConstant(i))); 494 495 for (unsigned i = ValueVT.getVectorNumElements(), 496 e = PartVT.getVectorNumElements(); i != e; ++i) 497 Ops.push_back(DAG.getUNDEF(ElementVT)); 498 499 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 500 501 // FIXME: Use CONCAT for 2x -> 4x. 502 503 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 504 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 505 } else if (PartVT.isVector() && 506 PartEVT.getVectorElementType().bitsGE( 507 ValueVT.getVectorElementType()) && 508 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 509 510 // Promoted vector extract 511 bool Smaller = PartEVT.bitsLE(ValueVT); 512 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 513 DL, PartVT, Val); 514 } else{ 515 // Vector -> scalar conversion. 516 assert(ValueVT.getVectorNumElements() == 1 && 517 "Only trivial vector-to-scalar conversions should get here!"); 518 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 519 PartVT, Val, DAG.getIntPtrConstant(0)); 520 521 bool Smaller = ValueVT.bitsLE(PartVT); 522 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 523 DL, PartVT, Val); 524 } 525 526 Parts[0] = Val; 527 return; 528 } 529 530 // Handle a multi-element vector. 531 EVT IntermediateVT; 532 MVT RegisterVT; 533 unsigned NumIntermediates; 534 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 535 IntermediateVT, 536 NumIntermediates, RegisterVT); 537 unsigned NumElements = ValueVT.getVectorNumElements(); 538 539 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 540 NumParts = NumRegs; // Silence a compiler warning. 541 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 542 543 // Split the vector into intermediate operands. 544 SmallVector<SDValue, 8> Ops(NumIntermediates); 545 for (unsigned i = 0; i != NumIntermediates; ++i) { 546 if (IntermediateVT.isVector()) 547 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 548 IntermediateVT, Val, 549 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 550 else 551 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 552 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 553 } 554 555 // Split the intermediate operands into legal parts. 556 if (NumParts == NumIntermediates) { 557 // If the register was not expanded, promote or copy the value, 558 // as appropriate. 559 for (unsigned i = 0; i != NumParts; ++i) 560 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 561 } else if (NumParts > 0) { 562 // If the intermediate type was expanded, split each the value into 563 // legal parts. 564 assert(NumParts % NumIntermediates == 0 && 565 "Must expand into a divisible number of parts!"); 566 unsigned Factor = NumParts / NumIntermediates; 567 for (unsigned i = 0; i != NumIntermediates; ++i) 568 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 569 } 570 } 571 572 namespace { 573 /// RegsForValue - This struct represents the registers (physical or virtual) 574 /// that a particular set of values is assigned, and the type information 575 /// about the value. The most common situation is to represent one value at a 576 /// time, but struct or array values are handled element-wise as multiple 577 /// values. The splitting of aggregates is performed recursively, so that we 578 /// never have aggregate-typed registers. The values at this point do not 579 /// necessarily have legal types, so each value may require one or more 580 /// registers of some legal type. 581 /// 582 struct RegsForValue { 583 /// ValueVTs - The value types of the values, which may not be legal, and 584 /// may need be promoted or synthesized from one or more registers. 585 /// 586 SmallVector<EVT, 4> ValueVTs; 587 588 /// RegVTs - The value types of the registers. This is the same size as 589 /// ValueVTs and it records, for each value, what the type of the assigned 590 /// register or registers are. (Individual values are never synthesized 591 /// from more than one type of register.) 592 /// 593 /// With virtual registers, the contents of RegVTs is redundant with TLI's 594 /// getRegisterType member function, however when with physical registers 595 /// it is necessary to have a separate record of the types. 596 /// 597 SmallVector<MVT, 4> RegVTs; 598 599 /// Regs - This list holds the registers assigned to the values. 600 /// Each legal or promoted value requires one register, and each 601 /// expanded value requires multiple registers. 602 /// 603 SmallVector<unsigned, 4> Regs; 604 605 RegsForValue() {} 606 607 RegsForValue(const SmallVector<unsigned, 4> ®s, 608 MVT regvt, EVT valuevt) 609 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 610 611 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 612 unsigned Reg, Type *Ty) { 613 ComputeValueVTs(tli, Ty, ValueVTs); 614 615 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 616 EVT ValueVT = ValueVTs[Value]; 617 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 618 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 619 for (unsigned i = 0; i != NumRegs; ++i) 620 Regs.push_back(Reg + i); 621 RegVTs.push_back(RegisterVT); 622 Reg += NumRegs; 623 } 624 } 625 626 /// areValueTypesLegal - Return true if types of all the values are legal. 627 bool areValueTypesLegal(const TargetLowering &TLI) { 628 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 629 MVT RegisterVT = RegVTs[Value]; 630 if (!TLI.isTypeLegal(RegisterVT)) 631 return false; 632 } 633 return true; 634 } 635 636 /// append - Add the specified values to this one. 637 void append(const RegsForValue &RHS) { 638 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 639 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 640 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 641 } 642 643 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 644 /// this value and returns the result as a ValueVTs value. This uses 645 /// Chain/Flag as the input and updates them for the output Chain/Flag. 646 /// If the Flag pointer is NULL, no flag is used. 647 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 648 SDLoc dl, 649 SDValue &Chain, SDValue *Flag, 650 const Value *V = 0) const; 651 652 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 653 /// specified value into the registers specified by this object. This uses 654 /// Chain/Flag as the input and updates them for the output Chain/Flag. 655 /// If the Flag pointer is NULL, no flag is used. 656 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 657 SDValue &Chain, SDValue *Flag, const Value *V) const; 658 659 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 660 /// operand list. This adds the code marker, matching input operand index 661 /// (if applicable), and includes the number of values added into it. 662 void AddInlineAsmOperands(unsigned Kind, 663 bool HasMatching, unsigned MatchingIdx, 664 SelectionDAG &DAG, 665 std::vector<SDValue> &Ops) const; 666 }; 667 } 668 669 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 670 /// this value and returns the result as a ValueVT value. This uses 671 /// Chain/Flag as the input and updates them for the output Chain/Flag. 672 /// If the Flag pointer is NULL, no flag is used. 673 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 674 FunctionLoweringInfo &FuncInfo, 675 SDLoc dl, 676 SDValue &Chain, SDValue *Flag, 677 const Value *V) const { 678 // A Value with type {} or [0 x %t] needs no registers. 679 if (ValueVTs.empty()) 680 return SDValue(); 681 682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 683 684 // Assemble the legal parts into the final values. 685 SmallVector<SDValue, 4> Values(ValueVTs.size()); 686 SmallVector<SDValue, 8> Parts; 687 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 688 // Copy the legal parts from the registers. 689 EVT ValueVT = ValueVTs[Value]; 690 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 691 MVT RegisterVT = RegVTs[Value]; 692 693 Parts.resize(NumRegs); 694 for (unsigned i = 0; i != NumRegs; ++i) { 695 SDValue P; 696 if (Flag == 0) { 697 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 698 } else { 699 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 700 *Flag = P.getValue(2); 701 } 702 703 Chain = P.getValue(1); 704 Parts[i] = P; 705 706 // If the source register was virtual and if we know something about it, 707 // add an assert node. 708 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 709 !RegisterVT.isInteger() || RegisterVT.isVector()) 710 continue; 711 712 const FunctionLoweringInfo::LiveOutInfo *LOI = 713 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 714 if (!LOI) 715 continue; 716 717 unsigned RegSize = RegisterVT.getSizeInBits(); 718 unsigned NumSignBits = LOI->NumSignBits; 719 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 720 721 if (NumZeroBits == RegSize) { 722 // The current value is a zero. 723 // Explicitly express that as it would be easier for 724 // optimizations to kick in. 725 Parts[i] = DAG.getConstant(0, RegisterVT); 726 continue; 727 } 728 729 // FIXME: We capture more information than the dag can represent. For 730 // now, just use the tightest assertzext/assertsext possible. 731 bool isSExt = true; 732 EVT FromVT(MVT::Other); 733 if (NumSignBits == RegSize) 734 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 735 else if (NumZeroBits >= RegSize-1) 736 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 737 else if (NumSignBits > RegSize-8) 738 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 739 else if (NumZeroBits >= RegSize-8) 740 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 741 else if (NumSignBits > RegSize-16) 742 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 743 else if (NumZeroBits >= RegSize-16) 744 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 745 else if (NumSignBits > RegSize-32) 746 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 747 else if (NumZeroBits >= RegSize-32) 748 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 749 else 750 continue; 751 752 // Add an assertion node. 753 assert(FromVT != MVT::Other); 754 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 755 RegisterVT, P, DAG.getValueType(FromVT)); 756 } 757 758 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 759 NumRegs, RegisterVT, ValueVT, V); 760 Part += NumRegs; 761 Parts.clear(); 762 } 763 764 return DAG.getNode(ISD::MERGE_VALUES, dl, 765 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 766 &Values[0], ValueVTs.size()); 767 } 768 769 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 770 /// specified value into the registers specified by this object. This uses 771 /// Chain/Flag as the input and updates them for the output Chain/Flag. 772 /// If the Flag pointer is NULL, no flag is used. 773 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 774 SDValue &Chain, SDValue *Flag, 775 const Value *V) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 // Get the list of the values's legal parts. 779 unsigned NumRegs = Regs.size(); 780 SmallVector<SDValue, 8> Parts(NumRegs); 781 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 782 EVT ValueVT = ValueVTs[Value]; 783 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 784 MVT RegisterVT = RegVTs[Value]; 785 ISD::NodeType ExtendKind = 786 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 787 788 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 789 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 790 Part += NumParts; 791 } 792 793 // Copy the parts into the registers. 794 SmallVector<SDValue, 8> Chains(NumRegs); 795 for (unsigned i = 0; i != NumRegs; ++i) { 796 SDValue Part; 797 if (Flag == 0) { 798 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 799 } else { 800 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 801 *Flag = Part.getValue(1); 802 } 803 804 Chains[i] = Part.getValue(0); 805 } 806 807 if (NumRegs == 1 || Flag) 808 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 809 // flagged to it. That is the CopyToReg nodes and the user are considered 810 // a single scheduling unit. If we create a TokenFactor and return it as 811 // chain, then the TokenFactor is both a predecessor (operand) of the 812 // user as well as a successor (the TF operands are flagged to the user). 813 // c1, f1 = CopyToReg 814 // c2, f2 = CopyToReg 815 // c3 = TokenFactor c1, c2 816 // ... 817 // = op c3, ..., f2 818 Chain = Chains[NumRegs-1]; 819 else 820 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 821 } 822 823 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 824 /// operand list. This adds the code marker and includes the number of 825 /// values added into it. 826 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 827 unsigned MatchingIdx, 828 SelectionDAG &DAG, 829 std::vector<SDValue> &Ops) const { 830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 831 832 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 833 if (HasMatching) 834 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 835 else if (!Regs.empty() && 836 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 837 // Put the register class of the virtual registers in the flag word. That 838 // way, later passes can recompute register class constraints for inline 839 // assembly as well as normal instructions. 840 // Don't do this for tied operands that can use the regclass information 841 // from the def. 842 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 843 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 844 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 845 } 846 847 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 848 Ops.push_back(Res); 849 850 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 851 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 852 MVT RegisterVT = RegVTs[Value]; 853 for (unsigned i = 0; i != NumRegs; ++i) { 854 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 855 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 856 } 857 } 858 } 859 860 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 861 const TargetLibraryInfo *li) { 862 AA = &aa; 863 GFI = gfi; 864 LibInfo = li; 865 TD = DAG.getTarget().getDataLayout(); 866 Context = DAG.getContext(); 867 LPadToCallSiteMap.clear(); 868 } 869 870 /// clear - Clear out the current SelectionDAG and the associated 871 /// state and prepare this SelectionDAGBuilder object to be used 872 /// for a new block. This doesn't clear out information about 873 /// additional blocks that are needed to complete switch lowering 874 /// or PHI node updating; that information is cleared out as it is 875 /// consumed. 876 void SelectionDAGBuilder::clear() { 877 NodeMap.clear(); 878 UnusedArgNodeMap.clear(); 879 PendingLoads.clear(); 880 PendingExports.clear(); 881 CurInst = NULL; 882 HasTailCall = false; 883 } 884 885 /// clearDanglingDebugInfo - Clear the dangling debug information 886 /// map. This function is separated from the clear so that debug 887 /// information that is dangling in a basic block can be properly 888 /// resolved in a different basic block. This allows the 889 /// SelectionDAG to resolve dangling debug information attached 890 /// to PHI nodes. 891 void SelectionDAGBuilder::clearDanglingDebugInfo() { 892 DanglingDebugInfoMap.clear(); 893 } 894 895 /// getRoot - Return the current virtual root of the Selection DAG, 896 /// flushing any PendingLoad items. This must be done before emitting 897 /// a store or any other node that may need to be ordered after any 898 /// prior load instructions. 899 /// 900 SDValue SelectionDAGBuilder::getRoot() { 901 if (PendingLoads.empty()) 902 return DAG.getRoot(); 903 904 if (PendingLoads.size() == 1) { 905 SDValue Root = PendingLoads[0]; 906 DAG.setRoot(Root); 907 PendingLoads.clear(); 908 return Root; 909 } 910 911 // Otherwise, we have to make a token factor node. 912 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 913 &PendingLoads[0], PendingLoads.size()); 914 PendingLoads.clear(); 915 DAG.setRoot(Root); 916 return Root; 917 } 918 919 /// getControlRoot - Similar to getRoot, but instead of flushing all the 920 /// PendingLoad items, flush all the PendingExports items. It is necessary 921 /// to do this before emitting a terminator instruction. 922 /// 923 SDValue SelectionDAGBuilder::getControlRoot() { 924 SDValue Root = DAG.getRoot(); 925 926 if (PendingExports.empty()) 927 return Root; 928 929 // Turn all of the CopyToReg chains into one factored node. 930 if (Root.getOpcode() != ISD::EntryToken) { 931 unsigned i = 0, e = PendingExports.size(); 932 for (; i != e; ++i) { 933 assert(PendingExports[i].getNode()->getNumOperands() > 1); 934 if (PendingExports[i].getNode()->getOperand(0) == Root) 935 break; // Don't add the root if we already indirectly depend on it. 936 } 937 938 if (i == e) 939 PendingExports.push_back(Root); 940 } 941 942 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 943 &PendingExports[0], 944 PendingExports.size()); 945 PendingExports.clear(); 946 DAG.setRoot(Root); 947 return Root; 948 } 949 950 void SelectionDAGBuilder::visit(const Instruction &I) { 951 // Set up outgoing PHI node register values before emitting the terminator. 952 if (isa<TerminatorInst>(&I)) 953 HandlePHINodesInSuccessorBlocks(I.getParent()); 954 955 ++SDNodeOrder; 956 957 CurInst = &I; 958 959 visit(I.getOpcode(), I); 960 961 if (!isa<TerminatorInst>(&I) && !HasTailCall) 962 CopyToExportRegsIfNeeded(&I); 963 964 CurInst = NULL; 965 } 966 967 void SelectionDAGBuilder::visitPHI(const PHINode &) { 968 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 969 } 970 971 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 972 // Note: this doesn't use InstVisitor, because it has to work with 973 // ConstantExpr's in addition to instructions. 974 switch (Opcode) { 975 default: llvm_unreachable("Unknown instruction type encountered!"); 976 // Build the switch statement using the Instruction.def file. 977 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 978 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 979 #include "llvm/IR/Instruction.def" 980 } 981 } 982 983 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 984 // generate the debug data structures now that we've seen its definition. 985 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 986 SDValue Val) { 987 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 988 if (DDI.getDI()) { 989 const DbgValueInst *DI = DDI.getDI(); 990 DebugLoc dl = DDI.getdl(); 991 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 992 MDNode *Variable = DI->getVariable(); 993 uint64_t Offset = DI->getOffset(); 994 SDDbgValue *SDV; 995 if (Val.getNode()) { 996 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 997 SDV = DAG.getDbgValue(Variable, Val.getNode(), 998 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 999 DAG.AddDbgValue(SDV, Val.getNode(), false); 1000 } 1001 } else 1002 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1003 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1004 } 1005 } 1006 1007 /// getValue - Return an SDValue for the given Value. 1008 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1009 // If we already have an SDValue for this value, use it. It's important 1010 // to do this first, so that we don't create a CopyFromReg if we already 1011 // have a regular SDValue. 1012 SDValue &N = NodeMap[V]; 1013 if (N.getNode()) return N; 1014 1015 // If there's a virtual register allocated and initialized for this 1016 // value, use it. 1017 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1018 if (It != FuncInfo.ValueMap.end()) { 1019 unsigned InReg = It->second; 1020 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 1021 SDValue Chain = DAG.getEntryNode(); 1022 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1023 resolveDanglingDebugInfo(V, N); 1024 return N; 1025 } 1026 1027 // Otherwise create a new SDValue and remember it. 1028 SDValue Val = getValueImpl(V); 1029 NodeMap[V] = Val; 1030 resolveDanglingDebugInfo(V, Val); 1031 return Val; 1032 } 1033 1034 /// getNonRegisterValue - Return an SDValue for the given Value, but 1035 /// don't look in FuncInfo.ValueMap for a virtual register. 1036 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1037 // If we already have an SDValue for this value, use it. 1038 SDValue &N = NodeMap[V]; 1039 if (N.getNode()) return N; 1040 1041 // Otherwise create a new SDValue and remember it. 1042 SDValue Val = getValueImpl(V); 1043 NodeMap[V] = Val; 1044 resolveDanglingDebugInfo(V, Val); 1045 return Val; 1046 } 1047 1048 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1049 /// Create an SDValue for the given value. 1050 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1051 if (const Constant *C = dyn_cast<Constant>(V)) { 1052 EVT VT = TLI.getValueType(V->getType(), true); 1053 1054 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1055 return DAG.getConstant(*CI, VT); 1056 1057 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1058 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1059 1060 if (isa<ConstantPointerNull>(C)) 1061 return DAG.getConstant(0, TLI.getPointerTy()); 1062 1063 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1064 return DAG.getConstantFP(*CFP, VT); 1065 1066 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1067 return DAG.getUNDEF(VT); 1068 1069 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1070 visit(CE->getOpcode(), *CE); 1071 SDValue N1 = NodeMap[V]; 1072 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1073 return N1; 1074 } 1075 1076 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1077 SmallVector<SDValue, 4> Constants; 1078 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1079 OI != OE; ++OI) { 1080 SDNode *Val = getValue(*OI).getNode(); 1081 // If the operand is an empty aggregate, there are no values. 1082 if (!Val) continue; 1083 // Add each leaf value from the operand to the Constants list 1084 // to form a flattened list of all the values. 1085 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1086 Constants.push_back(SDValue(Val, i)); 1087 } 1088 1089 return DAG.getMergeValues(&Constants[0], Constants.size(), 1090 getCurSDLoc()); 1091 } 1092 1093 if (const ConstantDataSequential *CDS = 1094 dyn_cast<ConstantDataSequential>(C)) { 1095 SmallVector<SDValue, 4> Ops; 1096 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1097 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1098 // Add each leaf value from the operand to the Constants list 1099 // to form a flattened list of all the values. 1100 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1101 Ops.push_back(SDValue(Val, i)); 1102 } 1103 1104 if (isa<ArrayType>(CDS->getType())) 1105 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1106 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1107 VT, &Ops[0], Ops.size()); 1108 } 1109 1110 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1111 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1112 "Unknown struct or array constant!"); 1113 1114 SmallVector<EVT, 4> ValueVTs; 1115 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1116 unsigned NumElts = ValueVTs.size(); 1117 if (NumElts == 0) 1118 return SDValue(); // empty struct 1119 SmallVector<SDValue, 4> Constants(NumElts); 1120 for (unsigned i = 0; i != NumElts; ++i) { 1121 EVT EltVT = ValueVTs[i]; 1122 if (isa<UndefValue>(C)) 1123 Constants[i] = DAG.getUNDEF(EltVT); 1124 else if (EltVT.isFloatingPoint()) 1125 Constants[i] = DAG.getConstantFP(0, EltVT); 1126 else 1127 Constants[i] = DAG.getConstant(0, EltVT); 1128 } 1129 1130 return DAG.getMergeValues(&Constants[0], NumElts, 1131 getCurSDLoc()); 1132 } 1133 1134 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1135 return DAG.getBlockAddress(BA, VT); 1136 1137 VectorType *VecTy = cast<VectorType>(V->getType()); 1138 unsigned NumElements = VecTy->getNumElements(); 1139 1140 // Now that we know the number and type of the elements, get that number of 1141 // elements into the Ops array based on what kind of constant it is. 1142 SmallVector<SDValue, 16> Ops; 1143 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1144 for (unsigned i = 0; i != NumElements; ++i) 1145 Ops.push_back(getValue(CV->getOperand(i))); 1146 } else { 1147 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1148 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1149 1150 SDValue Op; 1151 if (EltVT.isFloatingPoint()) 1152 Op = DAG.getConstantFP(0, EltVT); 1153 else 1154 Op = DAG.getConstant(0, EltVT); 1155 Ops.assign(NumElements, Op); 1156 } 1157 1158 // Create a BUILD_VECTOR node. 1159 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1160 VT, &Ops[0], Ops.size()); 1161 } 1162 1163 // If this is a static alloca, generate it as the frameindex instead of 1164 // computation. 1165 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1166 DenseMap<const AllocaInst*, int>::iterator SI = 1167 FuncInfo.StaticAllocaMap.find(AI); 1168 if (SI != FuncInfo.StaticAllocaMap.end()) 1169 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1170 } 1171 1172 // If this is an instruction which fast-isel has deferred, select it now. 1173 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1174 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1175 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1176 SDValue Chain = DAG.getEntryNode(); 1177 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1178 } 1179 1180 llvm_unreachable("Can't get register for value!"); 1181 } 1182 1183 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1184 SDValue Chain = getControlRoot(); 1185 SmallVector<ISD::OutputArg, 8> Outs; 1186 SmallVector<SDValue, 8> OutVals; 1187 1188 if (!FuncInfo.CanLowerReturn) { 1189 unsigned DemoteReg = FuncInfo.DemoteRegister; 1190 const Function *F = I.getParent()->getParent(); 1191 1192 // Emit a store of the return value through the virtual register. 1193 // Leave Outs empty so that LowerReturn won't try to load return 1194 // registers the usual way. 1195 SmallVector<EVT, 1> PtrValueVTs; 1196 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1197 PtrValueVTs); 1198 1199 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1200 SDValue RetOp = getValue(I.getOperand(0)); 1201 1202 SmallVector<EVT, 4> ValueVTs; 1203 SmallVector<uint64_t, 4> Offsets; 1204 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1205 unsigned NumValues = ValueVTs.size(); 1206 1207 SmallVector<SDValue, 4> Chains(NumValues); 1208 for (unsigned i = 0; i != NumValues; ++i) { 1209 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1210 RetPtr.getValueType(), RetPtr, 1211 DAG.getIntPtrConstant(Offsets[i])); 1212 Chains[i] = 1213 DAG.getStore(Chain, getCurSDLoc(), 1214 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1215 // FIXME: better loc info would be nice. 1216 Add, MachinePointerInfo(), false, false, 0); 1217 } 1218 1219 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1220 MVT::Other, &Chains[0], NumValues); 1221 } else if (I.getNumOperands() != 0) { 1222 SmallVector<EVT, 4> ValueVTs; 1223 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1224 unsigned NumValues = ValueVTs.size(); 1225 if (NumValues) { 1226 SDValue RetOp = getValue(I.getOperand(0)); 1227 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1228 EVT VT = ValueVTs[j]; 1229 1230 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1231 1232 const Function *F = I.getParent()->getParent(); 1233 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1234 Attribute::SExt)) 1235 ExtendKind = ISD::SIGN_EXTEND; 1236 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1237 Attribute::ZExt)) 1238 ExtendKind = ISD::ZERO_EXTEND; 1239 1240 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1241 VT = TLI.getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1242 1243 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1244 MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1245 SmallVector<SDValue, 4> Parts(NumParts); 1246 getCopyToParts(DAG, getCurSDLoc(), 1247 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1248 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1249 1250 // 'inreg' on function refers to return value 1251 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1252 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1253 Attribute::InReg)) 1254 Flags.setInReg(); 1255 1256 // Propagate extension type if any 1257 if (ExtendKind == ISD::SIGN_EXTEND) 1258 Flags.setSExt(); 1259 else if (ExtendKind == ISD::ZERO_EXTEND) 1260 Flags.setZExt(); 1261 1262 for (unsigned i = 0; i < NumParts; ++i) { 1263 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1264 /*isfixed=*/true, 0, 0)); 1265 OutVals.push_back(Parts[i]); 1266 } 1267 } 1268 } 1269 } 1270 1271 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1272 CallingConv::ID CallConv = 1273 DAG.getMachineFunction().getFunction()->getCallingConv(); 1274 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1275 Outs, OutVals, getCurSDLoc(), DAG); 1276 1277 // Verify that the target's LowerReturn behaved as expected. 1278 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1279 "LowerReturn didn't return a valid chain!"); 1280 1281 // Update the DAG with the new chain value resulting from return lowering. 1282 DAG.setRoot(Chain); 1283 } 1284 1285 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1286 /// created for it, emit nodes to copy the value into the virtual 1287 /// registers. 1288 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1289 // Skip empty types 1290 if (V->getType()->isEmptyTy()) 1291 return; 1292 1293 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1294 if (VMI != FuncInfo.ValueMap.end()) { 1295 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1296 CopyValueToVirtualRegister(V, VMI->second); 1297 } 1298 } 1299 1300 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1301 /// the current basic block, add it to ValueMap now so that we'll get a 1302 /// CopyTo/FromReg. 1303 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1304 // No need to export constants. 1305 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1306 1307 // Already exported? 1308 if (FuncInfo.isExportedInst(V)) return; 1309 1310 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1311 CopyValueToVirtualRegister(V, Reg); 1312 } 1313 1314 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1315 const BasicBlock *FromBB) { 1316 // The operands of the setcc have to be in this block. We don't know 1317 // how to export them from some other block. 1318 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1319 // Can export from current BB. 1320 if (VI->getParent() == FromBB) 1321 return true; 1322 1323 // Is already exported, noop. 1324 return FuncInfo.isExportedInst(V); 1325 } 1326 1327 // If this is an argument, we can export it if the BB is the entry block or 1328 // if it is already exported. 1329 if (isa<Argument>(V)) { 1330 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1331 return true; 1332 1333 // Otherwise, can only export this if it is already exported. 1334 return FuncInfo.isExportedInst(V); 1335 } 1336 1337 // Otherwise, constants can always be exported. 1338 return true; 1339 } 1340 1341 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1342 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1343 const MachineBasicBlock *Dst) const { 1344 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1345 if (!BPI) 1346 return 0; 1347 const BasicBlock *SrcBB = Src->getBasicBlock(); 1348 const BasicBlock *DstBB = Dst->getBasicBlock(); 1349 return BPI->getEdgeWeight(SrcBB, DstBB); 1350 } 1351 1352 void SelectionDAGBuilder:: 1353 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1354 uint32_t Weight /* = 0 */) { 1355 if (!Weight) 1356 Weight = getEdgeWeight(Src, Dst); 1357 Src->addSuccessor(Dst, Weight); 1358 } 1359 1360 1361 static bool InBlock(const Value *V, const BasicBlock *BB) { 1362 if (const Instruction *I = dyn_cast<Instruction>(V)) 1363 return I->getParent() == BB; 1364 return true; 1365 } 1366 1367 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1368 /// This function emits a branch and is used at the leaves of an OR or an 1369 /// AND operator tree. 1370 /// 1371 void 1372 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1373 MachineBasicBlock *TBB, 1374 MachineBasicBlock *FBB, 1375 MachineBasicBlock *CurBB, 1376 MachineBasicBlock *SwitchBB) { 1377 const BasicBlock *BB = CurBB->getBasicBlock(); 1378 1379 // If the leaf of the tree is a comparison, merge the condition into 1380 // the caseblock. 1381 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1382 // The operands of the cmp have to be in this block. We don't know 1383 // how to export them from some other block. If this is the first block 1384 // of the sequence, no exporting is needed. 1385 if (CurBB == SwitchBB || 1386 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1387 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1388 ISD::CondCode Condition; 1389 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1390 Condition = getICmpCondCode(IC->getPredicate()); 1391 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1392 Condition = getFCmpCondCode(FC->getPredicate()); 1393 if (TM.Options.NoNaNsFPMath) 1394 Condition = getFCmpCodeWithoutNaN(Condition); 1395 } else { 1396 Condition = ISD::SETEQ; // silence warning. 1397 llvm_unreachable("Unknown compare instruction"); 1398 } 1399 1400 CaseBlock CB(Condition, BOp->getOperand(0), 1401 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1402 SwitchCases.push_back(CB); 1403 return; 1404 } 1405 } 1406 1407 // Create a CaseBlock record representing this branch. 1408 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1409 NULL, TBB, FBB, CurBB); 1410 SwitchCases.push_back(CB); 1411 } 1412 1413 /// FindMergedConditions - If Cond is an expression like 1414 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1415 MachineBasicBlock *TBB, 1416 MachineBasicBlock *FBB, 1417 MachineBasicBlock *CurBB, 1418 MachineBasicBlock *SwitchBB, 1419 unsigned Opc) { 1420 // If this node is not part of the or/and tree, emit it as a branch. 1421 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1422 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1423 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1424 BOp->getParent() != CurBB->getBasicBlock() || 1425 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1426 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1427 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1428 return; 1429 } 1430 1431 // Create TmpBB after CurBB. 1432 MachineFunction::iterator BBI = CurBB; 1433 MachineFunction &MF = DAG.getMachineFunction(); 1434 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1435 CurBB->getParent()->insert(++BBI, TmpBB); 1436 1437 if (Opc == Instruction::Or) { 1438 // Codegen X | Y as: 1439 // jmp_if_X TBB 1440 // jmp TmpBB 1441 // TmpBB: 1442 // jmp_if_Y TBB 1443 // jmp FBB 1444 // 1445 1446 // Emit the LHS condition. 1447 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1448 1449 // Emit the RHS condition into TmpBB. 1450 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1451 } else { 1452 assert(Opc == Instruction::And && "Unknown merge op!"); 1453 // Codegen X & Y as: 1454 // jmp_if_X TmpBB 1455 // jmp FBB 1456 // TmpBB: 1457 // jmp_if_Y TBB 1458 // jmp FBB 1459 // 1460 // This requires creation of TmpBB after CurBB. 1461 1462 // Emit the LHS condition. 1463 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1464 1465 // Emit the RHS condition into TmpBB. 1466 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1467 } 1468 } 1469 1470 /// If the set of cases should be emitted as a series of branches, return true. 1471 /// If we should emit this as a bunch of and/or'd together conditions, return 1472 /// false. 1473 bool 1474 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1475 if (Cases.size() != 2) return true; 1476 1477 // If this is two comparisons of the same values or'd or and'd together, they 1478 // will get folded into a single comparison, so don't emit two blocks. 1479 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1480 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1481 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1482 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1483 return false; 1484 } 1485 1486 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1487 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1488 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1489 Cases[0].CC == Cases[1].CC && 1490 isa<Constant>(Cases[0].CmpRHS) && 1491 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1492 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1493 return false; 1494 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1495 return false; 1496 } 1497 1498 return true; 1499 } 1500 1501 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1502 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1503 1504 // Update machine-CFG edges. 1505 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1506 1507 // Figure out which block is immediately after the current one. 1508 MachineBasicBlock *NextBlock = 0; 1509 MachineFunction::iterator BBI = BrMBB; 1510 if (++BBI != FuncInfo.MF->end()) 1511 NextBlock = BBI; 1512 1513 if (I.isUnconditional()) { 1514 // Update machine-CFG edges. 1515 BrMBB->addSuccessor(Succ0MBB); 1516 1517 // If this is not a fall-through branch, emit the branch. 1518 if (Succ0MBB != NextBlock) 1519 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1520 MVT::Other, getControlRoot(), 1521 DAG.getBasicBlock(Succ0MBB))); 1522 1523 return; 1524 } 1525 1526 // If this condition is one of the special cases we handle, do special stuff 1527 // now. 1528 const Value *CondVal = I.getCondition(); 1529 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1530 1531 // If this is a series of conditions that are or'd or and'd together, emit 1532 // this as a sequence of branches instead of setcc's with and/or operations. 1533 // As long as jumps are not expensive, this should improve performance. 1534 // For example, instead of something like: 1535 // cmp A, B 1536 // C = seteq 1537 // cmp D, E 1538 // F = setle 1539 // or C, F 1540 // jnz foo 1541 // Emit: 1542 // cmp A, B 1543 // je foo 1544 // cmp D, E 1545 // jle foo 1546 // 1547 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1548 if (!TLI.isJumpExpensive() && 1549 BOp->hasOneUse() && 1550 (BOp->getOpcode() == Instruction::And || 1551 BOp->getOpcode() == Instruction::Or)) { 1552 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1553 BOp->getOpcode()); 1554 // If the compares in later blocks need to use values not currently 1555 // exported from this block, export them now. This block should always 1556 // be the first entry. 1557 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1558 1559 // Allow some cases to be rejected. 1560 if (ShouldEmitAsBranches(SwitchCases)) { 1561 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1562 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1563 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1564 } 1565 1566 // Emit the branch for this block. 1567 visitSwitchCase(SwitchCases[0], BrMBB); 1568 SwitchCases.erase(SwitchCases.begin()); 1569 return; 1570 } 1571 1572 // Okay, we decided not to do this, remove any inserted MBB's and clear 1573 // SwitchCases. 1574 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1575 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1576 1577 SwitchCases.clear(); 1578 } 1579 } 1580 1581 // Create a CaseBlock record representing this branch. 1582 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1583 NULL, Succ0MBB, Succ1MBB, BrMBB); 1584 1585 // Use visitSwitchCase to actually insert the fast branch sequence for this 1586 // cond branch. 1587 visitSwitchCase(CB, BrMBB); 1588 } 1589 1590 /// visitSwitchCase - Emits the necessary code to represent a single node in 1591 /// the binary search tree resulting from lowering a switch instruction. 1592 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1593 MachineBasicBlock *SwitchBB) { 1594 SDValue Cond; 1595 SDValue CondLHS = getValue(CB.CmpLHS); 1596 SDLoc dl = getCurSDLoc(); 1597 1598 // Build the setcc now. 1599 if (CB.CmpMHS == NULL) { 1600 // Fold "(X == true)" to X and "(X == false)" to !X to 1601 // handle common cases produced by branch lowering. 1602 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1603 CB.CC == ISD::SETEQ) 1604 Cond = CondLHS; 1605 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1606 CB.CC == ISD::SETEQ) { 1607 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1608 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1609 } else 1610 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1611 } else { 1612 assert(CB.CC == ISD::SETCC_INVALID && 1613 "Condition is undefined for to-the-range belonging check."); 1614 1615 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1616 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1617 1618 SDValue CmpOp = getValue(CB.CmpMHS); 1619 EVT VT = CmpOp.getValueType(); 1620 1621 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) { 1622 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1623 ISD::SETULE); 1624 } else { 1625 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1626 VT, CmpOp, DAG.getConstant(Low, VT)); 1627 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1628 DAG.getConstant(High-Low, VT), ISD::SETULE); 1629 } 1630 } 1631 1632 // Update successor info 1633 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1634 // TrueBB and FalseBB are always different unless the incoming IR is 1635 // degenerate. This only happens when running llc on weird IR. 1636 if (CB.TrueBB != CB.FalseBB) 1637 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1638 1639 // Set NextBlock to be the MBB immediately after the current one, if any. 1640 // This is used to avoid emitting unnecessary branches to the next block. 1641 MachineBasicBlock *NextBlock = 0; 1642 MachineFunction::iterator BBI = SwitchBB; 1643 if (++BBI != FuncInfo.MF->end()) 1644 NextBlock = BBI; 1645 1646 // If the lhs block is the next block, invert the condition so that we can 1647 // fall through to the lhs instead of the rhs block. 1648 if (CB.TrueBB == NextBlock) { 1649 std::swap(CB.TrueBB, CB.FalseBB); 1650 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1651 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1652 } 1653 1654 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1655 MVT::Other, getControlRoot(), Cond, 1656 DAG.getBasicBlock(CB.TrueBB)); 1657 1658 // Insert the false branch. Do this even if it's a fall through branch, 1659 // this makes it easier to do DAG optimizations which require inverting 1660 // the branch condition. 1661 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1662 DAG.getBasicBlock(CB.FalseBB)); 1663 1664 DAG.setRoot(BrCond); 1665 } 1666 1667 /// visitJumpTable - Emit JumpTable node in the current MBB 1668 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1669 // Emit the code for the jump table 1670 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1671 EVT PTy = TLI.getPointerTy(); 1672 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1673 JT.Reg, PTy); 1674 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1675 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1676 MVT::Other, Index.getValue(1), 1677 Table, Index); 1678 DAG.setRoot(BrJumpTable); 1679 } 1680 1681 /// visitJumpTableHeader - This function emits necessary code to produce index 1682 /// in the JumpTable from switch case. 1683 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1684 JumpTableHeader &JTH, 1685 MachineBasicBlock *SwitchBB) { 1686 // Subtract the lowest switch case value from the value being switched on and 1687 // conditional branch to default mbb if the result is greater than the 1688 // difference between smallest and largest cases. 1689 SDValue SwitchOp = getValue(JTH.SValue); 1690 EVT VT = SwitchOp.getValueType(); 1691 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1692 DAG.getConstant(JTH.First, VT)); 1693 1694 // The SDNode we just created, which holds the value being switched on minus 1695 // the smallest case value, needs to be copied to a virtual register so it 1696 // can be used as an index into the jump table in a subsequent basic block. 1697 // This value may be smaller or larger than the target's pointer type, and 1698 // therefore require extension or truncating. 1699 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1700 1701 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1702 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1703 JumpTableReg, SwitchOp); 1704 JT.Reg = JumpTableReg; 1705 1706 // Emit the range check for the jump table, and branch to the default block 1707 // for the switch statement if the value being switched on exceeds the largest 1708 // case in the switch. 1709 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1710 TLI.getSetCCResultType(*DAG.getContext(), 1711 Sub.getValueType()), 1712 Sub, 1713 DAG.getConstant(JTH.Last - JTH.First,VT), 1714 ISD::SETUGT); 1715 1716 // Set NextBlock to be the MBB immediately after the current one, if any. 1717 // This is used to avoid emitting unnecessary branches to the next block. 1718 MachineBasicBlock *NextBlock = 0; 1719 MachineFunction::iterator BBI = SwitchBB; 1720 1721 if (++BBI != FuncInfo.MF->end()) 1722 NextBlock = BBI; 1723 1724 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1725 MVT::Other, CopyTo, CMP, 1726 DAG.getBasicBlock(JT.Default)); 1727 1728 if (JT.MBB != NextBlock) 1729 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1730 DAG.getBasicBlock(JT.MBB)); 1731 1732 DAG.setRoot(BrCond); 1733 } 1734 1735 /// visitBitTestHeader - This function emits necessary code to produce value 1736 /// suitable for "bit tests" 1737 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1738 MachineBasicBlock *SwitchBB) { 1739 // Subtract the minimum value 1740 SDValue SwitchOp = getValue(B.SValue); 1741 EVT VT = SwitchOp.getValueType(); 1742 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1743 DAG.getConstant(B.First, VT)); 1744 1745 // Check range 1746 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1747 TLI.getSetCCResultType(*DAG.getContext(), 1748 Sub.getValueType()), 1749 Sub, DAG.getConstant(B.Range, VT), 1750 ISD::SETUGT); 1751 1752 // Determine the type of the test operands. 1753 bool UsePtrType = false; 1754 if (!TLI.isTypeLegal(VT)) 1755 UsePtrType = true; 1756 else { 1757 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1758 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1759 // Switch table case range are encoded into series of masks. 1760 // Just use pointer type, it's guaranteed to fit. 1761 UsePtrType = true; 1762 break; 1763 } 1764 } 1765 if (UsePtrType) { 1766 VT = TLI.getPointerTy(); 1767 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1768 } 1769 1770 B.RegVT = VT.getSimpleVT(); 1771 B.Reg = FuncInfo.CreateReg(B.RegVT); 1772 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1773 B.Reg, Sub); 1774 1775 // Set NextBlock to be the MBB immediately after the current one, if any. 1776 // This is used to avoid emitting unnecessary branches to the next block. 1777 MachineBasicBlock *NextBlock = 0; 1778 MachineFunction::iterator BBI = SwitchBB; 1779 if (++BBI != FuncInfo.MF->end()) 1780 NextBlock = BBI; 1781 1782 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1783 1784 addSuccessorWithWeight(SwitchBB, B.Default); 1785 addSuccessorWithWeight(SwitchBB, MBB); 1786 1787 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1788 MVT::Other, CopyTo, RangeCmp, 1789 DAG.getBasicBlock(B.Default)); 1790 1791 if (MBB != NextBlock) 1792 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1793 DAG.getBasicBlock(MBB)); 1794 1795 DAG.setRoot(BrRange); 1796 } 1797 1798 /// visitBitTestCase - this function produces one "bit test" 1799 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1800 MachineBasicBlock* NextMBB, 1801 uint32_t BranchWeightToNext, 1802 unsigned Reg, 1803 BitTestCase &B, 1804 MachineBasicBlock *SwitchBB) { 1805 MVT VT = BB.RegVT; 1806 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1807 Reg, VT); 1808 SDValue Cmp; 1809 unsigned PopCount = CountPopulation_64(B.Mask); 1810 if (PopCount == 1) { 1811 // Testing for a single bit; just compare the shift count with what it 1812 // would need to be to shift a 1 bit in that position. 1813 Cmp = DAG.getSetCC(getCurSDLoc(), 1814 TLI.getSetCCResultType(*DAG.getContext(), VT), 1815 ShiftOp, 1816 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1817 ISD::SETEQ); 1818 } else if (PopCount == BB.Range) { 1819 // There is only one zero bit in the range, test for it directly. 1820 Cmp = DAG.getSetCC(getCurSDLoc(), 1821 TLI.getSetCCResultType(*DAG.getContext(), VT), 1822 ShiftOp, 1823 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1824 ISD::SETNE); 1825 } else { 1826 // Make desired shift 1827 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1828 DAG.getConstant(1, VT), ShiftOp); 1829 1830 // Emit bit tests and jumps 1831 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1832 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1833 Cmp = DAG.getSetCC(getCurSDLoc(), 1834 TLI.getSetCCResultType(*DAG.getContext(), VT), 1835 AndOp, DAG.getConstant(0, VT), 1836 ISD::SETNE); 1837 } 1838 1839 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1840 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1841 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1842 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1843 1844 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1845 MVT::Other, getControlRoot(), 1846 Cmp, DAG.getBasicBlock(B.TargetBB)); 1847 1848 // Set NextBlock to be the MBB immediately after the current one, if any. 1849 // This is used to avoid emitting unnecessary branches to the next block. 1850 MachineBasicBlock *NextBlock = 0; 1851 MachineFunction::iterator BBI = SwitchBB; 1852 if (++BBI != FuncInfo.MF->end()) 1853 NextBlock = BBI; 1854 1855 if (NextMBB != NextBlock) 1856 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1857 DAG.getBasicBlock(NextMBB)); 1858 1859 DAG.setRoot(BrAnd); 1860 } 1861 1862 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1863 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1864 1865 // Retrieve successors. 1866 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1867 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1868 1869 const Value *Callee(I.getCalledValue()); 1870 const Function *Fn = dyn_cast<Function>(Callee); 1871 if (isa<InlineAsm>(Callee)) 1872 visitInlineAsm(&I); 1873 else if (Fn && Fn->isIntrinsic()) { 1874 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1875 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1876 } else 1877 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1878 1879 // If the value of the invoke is used outside of its defining block, make it 1880 // available as a virtual register. 1881 CopyToExportRegsIfNeeded(&I); 1882 1883 // Update successor info 1884 addSuccessorWithWeight(InvokeMBB, Return); 1885 addSuccessorWithWeight(InvokeMBB, LandingPad); 1886 1887 // Drop into normal successor. 1888 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1889 MVT::Other, getControlRoot(), 1890 DAG.getBasicBlock(Return))); 1891 } 1892 1893 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1894 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1895 } 1896 1897 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1898 assert(FuncInfo.MBB->isLandingPad() && 1899 "Call to landingpad not in landing pad!"); 1900 1901 MachineBasicBlock *MBB = FuncInfo.MBB; 1902 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1903 AddLandingPadInfo(LP, MMI, MBB); 1904 1905 // If there aren't registers to copy the values into (e.g., during SjLj 1906 // exceptions), then don't bother to create these DAG nodes. 1907 if (TLI.getExceptionPointerRegister() == 0 && 1908 TLI.getExceptionSelectorRegister() == 0) 1909 return; 1910 1911 SmallVector<EVT, 2> ValueVTs; 1912 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1913 1914 // Insert the EXCEPTIONADDR instruction. 1915 assert(FuncInfo.MBB->isLandingPad() && 1916 "Call to eh.exception not in landing pad!"); 1917 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1918 SDValue Ops[2]; 1919 Ops[0] = DAG.getRoot(); 1920 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurSDLoc(), VTs, Ops, 1); 1921 SDValue Chain = Op1.getValue(1); 1922 1923 // Insert the EHSELECTION instruction. 1924 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1925 Ops[0] = Op1; 1926 Ops[1] = Chain; 1927 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurSDLoc(), VTs, Ops, 2); 1928 Chain = Op2.getValue(1); 1929 Op2 = DAG.getSExtOrTrunc(Op2, getCurSDLoc(), MVT::i32); 1930 1931 Ops[0] = Op1; 1932 Ops[1] = Op2; 1933 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 1934 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1935 &Ops[0], 2); 1936 1937 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1938 setValue(&LP, RetPair.first); 1939 DAG.setRoot(RetPair.second); 1940 } 1941 1942 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1943 /// small case ranges). 1944 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1945 CaseRecVector& WorkList, 1946 const Value* SV, 1947 MachineBasicBlock *Default, 1948 MachineBasicBlock *SwitchBB) { 1949 // Size is the number of Cases represented by this range. 1950 size_t Size = CR.Range.second - CR.Range.first; 1951 if (Size > 3) 1952 return false; 1953 1954 // Get the MachineFunction which holds the current MBB. This is used when 1955 // inserting any additional MBBs necessary to represent the switch. 1956 MachineFunction *CurMF = FuncInfo.MF; 1957 1958 // Figure out which block is immediately after the current one. 1959 MachineBasicBlock *NextBlock = 0; 1960 MachineFunction::iterator BBI = CR.CaseBB; 1961 1962 if (++BBI != FuncInfo.MF->end()) 1963 NextBlock = BBI; 1964 1965 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1966 // If any two of the cases has the same destination, and if one value 1967 // is the same as the other, but has one bit unset that the other has set, 1968 // use bit manipulation to do two compares at once. For example: 1969 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1970 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1971 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1972 if (Size == 2 && CR.CaseBB == SwitchBB) { 1973 Case &Small = *CR.Range.first; 1974 Case &Big = *(CR.Range.second-1); 1975 1976 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1977 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1978 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1979 1980 // Check that there is only one bit different. 1981 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1982 (SmallValue | BigValue) == BigValue) { 1983 // Isolate the common bit. 1984 APInt CommonBit = BigValue & ~SmallValue; 1985 assert((SmallValue | CommonBit) == BigValue && 1986 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1987 1988 SDValue CondLHS = getValue(SV); 1989 EVT VT = CondLHS.getValueType(); 1990 SDLoc DL = getCurSDLoc(); 1991 1992 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1993 DAG.getConstant(CommonBit, VT)); 1994 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1995 Or, DAG.getConstant(BigValue, VT), 1996 ISD::SETEQ); 1997 1998 // Update successor info. 1999 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2000 addSuccessorWithWeight(SwitchBB, Small.BB, 2001 Small.ExtraWeight + Big.ExtraWeight); 2002 addSuccessorWithWeight(SwitchBB, Default, 2003 // The default destination is the first successor in IR. 2004 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2005 2006 // Insert the true branch. 2007 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2008 getControlRoot(), Cond, 2009 DAG.getBasicBlock(Small.BB)); 2010 2011 // Insert the false branch. 2012 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2013 DAG.getBasicBlock(Default)); 2014 2015 DAG.setRoot(BrCond); 2016 return true; 2017 } 2018 } 2019 } 2020 2021 // Order cases by weight so the most likely case will be checked first. 2022 uint32_t UnhandledWeights = 0; 2023 if (BPI) { 2024 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2025 uint32_t IWeight = I->ExtraWeight; 2026 UnhandledWeights += IWeight; 2027 for (CaseItr J = CR.Range.first; J < I; ++J) { 2028 uint32_t JWeight = J->ExtraWeight; 2029 if (IWeight > JWeight) 2030 std::swap(*I, *J); 2031 } 2032 } 2033 } 2034 // Rearrange the case blocks so that the last one falls through if possible. 2035 Case &BackCase = *(CR.Range.second-1); 2036 if (Size > 1 && 2037 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2038 // The last case block won't fall through into 'NextBlock' if we emit the 2039 // branches in this order. See if rearranging a case value would help. 2040 // We start at the bottom as it's the case with the least weight. 2041 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){ 2042 if (I->BB == NextBlock) { 2043 std::swap(*I, BackCase); 2044 break; 2045 } 2046 } 2047 } 2048 2049 // Create a CaseBlock record representing a conditional branch to 2050 // the Case's target mbb if the value being switched on SV is equal 2051 // to C. 2052 MachineBasicBlock *CurBlock = CR.CaseBB; 2053 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2054 MachineBasicBlock *FallThrough; 2055 if (I != E-1) { 2056 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2057 CurMF->insert(BBI, FallThrough); 2058 2059 // Put SV in a virtual register to make it available from the new blocks. 2060 ExportFromCurrentBlock(SV); 2061 } else { 2062 // If the last case doesn't match, go to the default block. 2063 FallThrough = Default; 2064 } 2065 2066 const Value *RHS, *LHS, *MHS; 2067 ISD::CondCode CC; 2068 if (I->High == I->Low) { 2069 // This is just small small case range :) containing exactly 1 case 2070 CC = ISD::SETEQ; 2071 LHS = SV; RHS = I->High; MHS = NULL; 2072 } else { 2073 CC = ISD::SETCC_INVALID; 2074 LHS = I->Low; MHS = SV; RHS = I->High; 2075 } 2076 2077 // The false weight should be sum of all un-handled cases. 2078 UnhandledWeights -= I->ExtraWeight; 2079 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2080 /* me */ CurBlock, 2081 /* trueweight */ I->ExtraWeight, 2082 /* falseweight */ UnhandledWeights); 2083 2084 // If emitting the first comparison, just call visitSwitchCase to emit the 2085 // code into the current block. Otherwise, push the CaseBlock onto the 2086 // vector to be later processed by SDISel, and insert the node's MBB 2087 // before the next MBB. 2088 if (CurBlock == SwitchBB) 2089 visitSwitchCase(CB, SwitchBB); 2090 else 2091 SwitchCases.push_back(CB); 2092 2093 CurBlock = FallThrough; 2094 } 2095 2096 return true; 2097 } 2098 2099 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2100 return TLI.supportJumpTables() && 2101 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2102 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2103 } 2104 2105 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2106 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2107 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); 2108 return (LastExt - FirstExt + 1ULL); 2109 } 2110 2111 /// handleJTSwitchCase - Emit jumptable for current switch case range 2112 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2113 CaseRecVector &WorkList, 2114 const Value *SV, 2115 MachineBasicBlock *Default, 2116 MachineBasicBlock *SwitchBB) { 2117 Case& FrontCase = *CR.Range.first; 2118 Case& BackCase = *(CR.Range.second-1); 2119 2120 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2121 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2122 2123 APInt TSize(First.getBitWidth(), 0); 2124 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2125 TSize += I->size(); 2126 2127 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2128 return false; 2129 2130 APInt Range = ComputeRange(First, Last); 2131 // The density is TSize / Range. Require at least 40%. 2132 // It should not be possible for IntTSize to saturate for sane code, but make 2133 // sure we handle Range saturation correctly. 2134 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2135 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2136 if (IntTSize * 10 < IntRange * 4) 2137 return false; 2138 2139 DEBUG(dbgs() << "Lowering jump table\n" 2140 << "First entry: " << First << ". Last entry: " << Last << '\n' 2141 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2142 2143 // Get the MachineFunction which holds the current MBB. This is used when 2144 // inserting any additional MBBs necessary to represent the switch. 2145 MachineFunction *CurMF = FuncInfo.MF; 2146 2147 // Figure out which block is immediately after the current one. 2148 MachineFunction::iterator BBI = CR.CaseBB; 2149 ++BBI; 2150 2151 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2152 2153 // Create a new basic block to hold the code for loading the address 2154 // of the jump table, and jumping to it. Update successor information; 2155 // we will either branch to the default case for the switch, or the jump 2156 // table. 2157 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2158 CurMF->insert(BBI, JumpTableBB); 2159 2160 addSuccessorWithWeight(CR.CaseBB, Default); 2161 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2162 2163 // Build a vector of destination BBs, corresponding to each target 2164 // of the jump table. If the value of the jump table slot corresponds to 2165 // a case statement, push the case's BB onto the vector, otherwise, push 2166 // the default BB. 2167 std::vector<MachineBasicBlock*> DestBBs; 2168 APInt TEI = First; 2169 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2170 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2171 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2172 2173 if (Low.ule(TEI) && TEI.ule(High)) { 2174 DestBBs.push_back(I->BB); 2175 if (TEI==High) 2176 ++I; 2177 } else { 2178 DestBBs.push_back(Default); 2179 } 2180 } 2181 2182 // Calculate weight for each unique destination in CR. 2183 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2184 if (FuncInfo.BPI) 2185 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2186 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2187 DestWeights.find(I->BB); 2188 if (Itr != DestWeights.end()) 2189 Itr->second += I->ExtraWeight; 2190 else 2191 DestWeights[I->BB] = I->ExtraWeight; 2192 } 2193 2194 // Update successor info. Add one edge to each unique successor. 2195 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2196 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2197 E = DestBBs.end(); I != E; ++I) { 2198 if (!SuccsHandled[(*I)->getNumber()]) { 2199 SuccsHandled[(*I)->getNumber()] = true; 2200 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2201 DestWeights.find(*I); 2202 addSuccessorWithWeight(JumpTableBB, *I, 2203 Itr != DestWeights.end() ? Itr->second : 0); 2204 } 2205 } 2206 2207 // Create a jump table index for this jump table. 2208 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2209 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2210 ->createJumpTableIndex(DestBBs); 2211 2212 // Set the jump table information so that we can codegen it as a second 2213 // MachineBasicBlock 2214 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2215 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2216 if (CR.CaseBB == SwitchBB) 2217 visitJumpTableHeader(JT, JTH, SwitchBB); 2218 2219 JTCases.push_back(JumpTableBlock(JTH, JT)); 2220 return true; 2221 } 2222 2223 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2224 /// 2 subtrees. 2225 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2226 CaseRecVector& WorkList, 2227 const Value* SV, 2228 MachineBasicBlock *Default, 2229 MachineBasicBlock *SwitchBB) { 2230 // Get the MachineFunction which holds the current MBB. This is used when 2231 // inserting any additional MBBs necessary to represent the switch. 2232 MachineFunction *CurMF = FuncInfo.MF; 2233 2234 // Figure out which block is immediately after the current one. 2235 MachineFunction::iterator BBI = CR.CaseBB; 2236 ++BBI; 2237 2238 Case& FrontCase = *CR.Range.first; 2239 Case& BackCase = *(CR.Range.second-1); 2240 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2241 2242 // Size is the number of Cases represented by this range. 2243 unsigned Size = CR.Range.second - CR.Range.first; 2244 2245 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2246 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2247 double FMetric = 0; 2248 CaseItr Pivot = CR.Range.first + Size/2; 2249 2250 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2251 // (heuristically) allow us to emit JumpTable's later. 2252 APInt TSize(First.getBitWidth(), 0); 2253 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2254 I!=E; ++I) 2255 TSize += I->size(); 2256 2257 APInt LSize = FrontCase.size(); 2258 APInt RSize = TSize-LSize; 2259 DEBUG(dbgs() << "Selecting best pivot: \n" 2260 << "First: " << First << ", Last: " << Last <<'\n' 2261 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2262 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2263 J!=E; ++I, ++J) { 2264 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2265 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2266 APInt Range = ComputeRange(LEnd, RBegin); 2267 assert((Range - 2ULL).isNonNegative() && 2268 "Invalid case distance"); 2269 // Use volatile double here to avoid excess precision issues on some hosts, 2270 // e.g. that use 80-bit X87 registers. 2271 volatile double LDensity = 2272 (double)LSize.roundToDouble() / 2273 (LEnd - First + 1ULL).roundToDouble(); 2274 volatile double RDensity = 2275 (double)RSize.roundToDouble() / 2276 (Last - RBegin + 1ULL).roundToDouble(); 2277 double Metric = Range.logBase2()*(LDensity+RDensity); 2278 // Should always split in some non-trivial place 2279 DEBUG(dbgs() <<"=>Step\n" 2280 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2281 << "LDensity: " << LDensity 2282 << ", RDensity: " << RDensity << '\n' 2283 << "Metric: " << Metric << '\n'); 2284 if (FMetric < Metric) { 2285 Pivot = J; 2286 FMetric = Metric; 2287 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2288 } 2289 2290 LSize += J->size(); 2291 RSize -= J->size(); 2292 } 2293 if (areJTsAllowed(TLI)) { 2294 // If our case is dense we *really* should handle it earlier! 2295 assert((FMetric > 0) && "Should handle dense range earlier!"); 2296 } else { 2297 Pivot = CR.Range.first + Size/2; 2298 } 2299 2300 CaseRange LHSR(CR.Range.first, Pivot); 2301 CaseRange RHSR(Pivot, CR.Range.second); 2302 const Constant *C = Pivot->Low; 2303 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2304 2305 // We know that we branch to the LHS if the Value being switched on is 2306 // less than the Pivot value, C. We use this to optimize our binary 2307 // tree a bit, by recognizing that if SV is greater than or equal to the 2308 // LHS's Case Value, and that Case Value is exactly one less than the 2309 // Pivot's Value, then we can branch directly to the LHS's Target, 2310 // rather than creating a leaf node for it. 2311 if ((LHSR.second - LHSR.first) == 1 && 2312 LHSR.first->High == CR.GE && 2313 cast<ConstantInt>(C)->getValue() == 2314 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2315 TrueBB = LHSR.first->BB; 2316 } else { 2317 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2318 CurMF->insert(BBI, TrueBB); 2319 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2320 2321 // Put SV in a virtual register to make it available from the new blocks. 2322 ExportFromCurrentBlock(SV); 2323 } 2324 2325 // Similar to the optimization above, if the Value being switched on is 2326 // known to be less than the Constant CR.LT, and the current Case Value 2327 // is CR.LT - 1, then we can branch directly to the target block for 2328 // the current Case Value, rather than emitting a RHS leaf node for it. 2329 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2330 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2331 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2332 FalseBB = RHSR.first->BB; 2333 } else { 2334 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2335 CurMF->insert(BBI, FalseBB); 2336 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2337 2338 // Put SV in a virtual register to make it available from the new blocks. 2339 ExportFromCurrentBlock(SV); 2340 } 2341 2342 // Create a CaseBlock record representing a conditional branch to 2343 // the LHS node if the value being switched on SV is less than C. 2344 // Otherwise, branch to LHS. 2345 CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2346 2347 if (CR.CaseBB == SwitchBB) 2348 visitSwitchCase(CB, SwitchBB); 2349 else 2350 SwitchCases.push_back(CB); 2351 2352 return true; 2353 } 2354 2355 /// handleBitTestsSwitchCase - if current case range has few destination and 2356 /// range span less, than machine word bitwidth, encode case range into series 2357 /// of masks and emit bit tests with these masks. 2358 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2359 CaseRecVector& WorkList, 2360 const Value* SV, 2361 MachineBasicBlock* Default, 2362 MachineBasicBlock *SwitchBB){ 2363 EVT PTy = TLI.getPointerTy(); 2364 unsigned IntPtrBits = PTy.getSizeInBits(); 2365 2366 Case& FrontCase = *CR.Range.first; 2367 Case& BackCase = *(CR.Range.second-1); 2368 2369 // Get the MachineFunction which holds the current MBB. This is used when 2370 // inserting any additional MBBs necessary to represent the switch. 2371 MachineFunction *CurMF = FuncInfo.MF; 2372 2373 // If target does not have legal shift left, do not emit bit tests at all. 2374 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2375 return false; 2376 2377 size_t numCmps = 0; 2378 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2379 I!=E; ++I) { 2380 // Single case counts one, case range - two. 2381 numCmps += (I->Low == I->High ? 1 : 2); 2382 } 2383 2384 // Count unique destinations 2385 SmallSet<MachineBasicBlock*, 4> Dests; 2386 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2387 Dests.insert(I->BB); 2388 if (Dests.size() > 3) 2389 // Don't bother the code below, if there are too much unique destinations 2390 return false; 2391 } 2392 DEBUG(dbgs() << "Total number of unique destinations: " 2393 << Dests.size() << '\n' 2394 << "Total number of comparisons: " << numCmps << '\n'); 2395 2396 // Compute span of values. 2397 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2398 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2399 APInt cmpRange = maxValue - minValue; 2400 2401 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2402 << "Low bound: " << minValue << '\n' 2403 << "High bound: " << maxValue << '\n'); 2404 2405 if (cmpRange.uge(IntPtrBits) || 2406 (!(Dests.size() == 1 && numCmps >= 3) && 2407 !(Dests.size() == 2 && numCmps >= 5) && 2408 !(Dests.size() >= 3 && numCmps >= 6))) 2409 return false; 2410 2411 DEBUG(dbgs() << "Emitting bit tests\n"); 2412 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2413 2414 // Optimize the case where all the case values fit in a 2415 // word without having to subtract minValue. In this case, 2416 // we can optimize away the subtraction. 2417 if (maxValue.ult(IntPtrBits)) { 2418 cmpRange = maxValue; 2419 } else { 2420 lowBound = minValue; 2421 } 2422 2423 CaseBitsVector CasesBits; 2424 unsigned i, count = 0; 2425 2426 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2427 MachineBasicBlock* Dest = I->BB; 2428 for (i = 0; i < count; ++i) 2429 if (Dest == CasesBits[i].BB) 2430 break; 2431 2432 if (i == count) { 2433 assert((count < 3) && "Too much destinations to test!"); 2434 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2435 count++; 2436 } 2437 2438 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2439 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2440 2441 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2442 uint64_t hi = (highValue - lowBound).getZExtValue(); 2443 CasesBits[i].ExtraWeight += I->ExtraWeight; 2444 2445 for (uint64_t j = lo; j <= hi; j++) { 2446 CasesBits[i].Mask |= 1ULL << j; 2447 CasesBits[i].Bits++; 2448 } 2449 2450 } 2451 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2452 2453 BitTestInfo BTC; 2454 2455 // Figure out which block is immediately after the current one. 2456 MachineFunction::iterator BBI = CR.CaseBB; 2457 ++BBI; 2458 2459 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2460 2461 DEBUG(dbgs() << "Cases:\n"); 2462 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2463 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2464 << ", Bits: " << CasesBits[i].Bits 2465 << ", BB: " << CasesBits[i].BB << '\n'); 2466 2467 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2468 CurMF->insert(BBI, CaseBB); 2469 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2470 CaseBB, 2471 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2472 2473 // Put SV in a virtual register to make it available from the new blocks. 2474 ExportFromCurrentBlock(SV); 2475 } 2476 2477 BitTestBlock BTB(lowBound, cmpRange, SV, 2478 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2479 CR.CaseBB, Default, BTC); 2480 2481 if (CR.CaseBB == SwitchBB) 2482 visitBitTestHeader(BTB, SwitchBB); 2483 2484 BitTestCases.push_back(BTB); 2485 2486 return true; 2487 } 2488 2489 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2490 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2491 const SwitchInst& SI) { 2492 2493 /// Use a shorter form of declaration, and also 2494 /// show the we want to use CRSBuilder as Clusterifier. 2495 typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier; 2496 2497 Clusterifier TheClusterifier; 2498 2499 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2500 // Start with "simple" cases 2501 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2502 i != e; ++i) { 2503 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2504 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2505 2506 TheClusterifier.add(i.getCaseValueEx(), SMBB, 2507 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0); 2508 } 2509 2510 TheClusterifier.optimize(); 2511 2512 size_t numCmps = 0; 2513 for (Clusterifier::RangeIterator i = TheClusterifier.begin(), 2514 e = TheClusterifier.end(); i != e; ++i, ++numCmps) { 2515 Clusterifier::Cluster &C = *i; 2516 // Update edge weight for the cluster. 2517 unsigned W = C.first.Weight; 2518 2519 // FIXME: Currently work with ConstantInt based numbers. 2520 // Changing it to APInt based is a pretty heavy for this commit. 2521 Cases.push_back(Case(C.first.getLow().toConstantInt(), 2522 C.first.getHigh().toConstantInt(), C.second, W)); 2523 2524 if (C.first.getLow() != C.first.getHigh()) 2525 // A range counts double, since it requires two compares. 2526 ++numCmps; 2527 } 2528 2529 return numCmps; 2530 } 2531 2532 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2533 MachineBasicBlock *Last) { 2534 // Update JTCases. 2535 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2536 if (JTCases[i].first.HeaderBB == First) 2537 JTCases[i].first.HeaderBB = Last; 2538 2539 // Update BitTestCases. 2540 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2541 if (BitTestCases[i].Parent == First) 2542 BitTestCases[i].Parent = Last; 2543 } 2544 2545 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2546 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2547 2548 // Figure out which block is immediately after the current one. 2549 MachineBasicBlock *NextBlock = 0; 2550 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2551 2552 // If there is only the default destination, branch to it if it is not the 2553 // next basic block. Otherwise, just fall through. 2554 if (!SI.getNumCases()) { 2555 // Update machine-CFG edges. 2556 2557 // If this is not a fall-through branch, emit the branch. 2558 SwitchMBB->addSuccessor(Default); 2559 if (Default != NextBlock) 2560 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2561 MVT::Other, getControlRoot(), 2562 DAG.getBasicBlock(Default))); 2563 2564 return; 2565 } 2566 2567 // If there are any non-default case statements, create a vector of Cases 2568 // representing each one, and sort the vector so that we can efficiently 2569 // create a binary search tree from them. 2570 CaseVector Cases; 2571 size_t numCmps = Clusterify(Cases, SI); 2572 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2573 << ". Total compares: " << numCmps << '\n'); 2574 (void)numCmps; 2575 2576 // Get the Value to be switched on and default basic blocks, which will be 2577 // inserted into CaseBlock records, representing basic blocks in the binary 2578 // search tree. 2579 const Value *SV = SI.getCondition(); 2580 2581 // Push the initial CaseRec onto the worklist 2582 CaseRecVector WorkList; 2583 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2584 CaseRange(Cases.begin(),Cases.end()))); 2585 2586 while (!WorkList.empty()) { 2587 // Grab a record representing a case range to process off the worklist 2588 CaseRec CR = WorkList.back(); 2589 WorkList.pop_back(); 2590 2591 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2592 continue; 2593 2594 // If the range has few cases (two or less) emit a series of specific 2595 // tests. 2596 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2597 continue; 2598 2599 // If the switch has more than N blocks, and is at least 40% dense, and the 2600 // target supports indirect branches, then emit a jump table rather than 2601 // lowering the switch to a binary tree of conditional branches. 2602 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2603 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2604 continue; 2605 2606 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2607 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2608 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2609 } 2610 } 2611 2612 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2613 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2614 2615 // Update machine-CFG edges with unique successors. 2616 SmallSet<BasicBlock*, 32> Done; 2617 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2618 BasicBlock *BB = I.getSuccessor(i); 2619 bool Inserted = Done.insert(BB); 2620 if (!Inserted) 2621 continue; 2622 2623 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2624 addSuccessorWithWeight(IndirectBrMBB, Succ); 2625 } 2626 2627 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2628 MVT::Other, getControlRoot(), 2629 getValue(I.getAddress()))); 2630 } 2631 2632 void SelectionDAGBuilder::visitFSub(const User &I) { 2633 // -0.0 - X --> fneg 2634 Type *Ty = I.getType(); 2635 if (isa<Constant>(I.getOperand(0)) && 2636 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2637 SDValue Op2 = getValue(I.getOperand(1)); 2638 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2639 Op2.getValueType(), Op2)); 2640 return; 2641 } 2642 2643 visitBinary(I, ISD::FSUB); 2644 } 2645 2646 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2647 SDValue Op1 = getValue(I.getOperand(0)); 2648 SDValue Op2 = getValue(I.getOperand(1)); 2649 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2650 Op1.getValueType(), Op1, Op2)); 2651 } 2652 2653 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2654 SDValue Op1 = getValue(I.getOperand(0)); 2655 SDValue Op2 = getValue(I.getOperand(1)); 2656 2657 EVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2658 2659 // Coerce the shift amount to the right type if we can. 2660 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2661 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2662 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2663 SDLoc DL = getCurSDLoc(); 2664 2665 // If the operand is smaller than the shift count type, promote it. 2666 if (ShiftSize > Op2Size) 2667 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2668 2669 // If the operand is larger than the shift count type but the shift 2670 // count type has enough bits to represent any shift value, truncate 2671 // it now. This is a common case and it exposes the truncate to 2672 // optimization early. 2673 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2674 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2675 // Otherwise we'll need to temporarily settle for some other convenient 2676 // type. Type legalization will make adjustments once the shiftee is split. 2677 else 2678 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2679 } 2680 2681 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2682 Op1.getValueType(), Op1, Op2)); 2683 } 2684 2685 void SelectionDAGBuilder::visitSDiv(const User &I) { 2686 SDValue Op1 = getValue(I.getOperand(0)); 2687 SDValue Op2 = getValue(I.getOperand(1)); 2688 2689 // Turn exact SDivs into multiplications. 2690 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2691 // exact bit. 2692 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2693 !isa<ConstantSDNode>(Op1) && 2694 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2695 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2696 else 2697 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2698 Op1, Op2)); 2699 } 2700 2701 void SelectionDAGBuilder::visitICmp(const User &I) { 2702 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2703 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2704 predicate = IC->getPredicate(); 2705 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2706 predicate = ICmpInst::Predicate(IC->getPredicate()); 2707 SDValue Op1 = getValue(I.getOperand(0)); 2708 SDValue Op2 = getValue(I.getOperand(1)); 2709 ISD::CondCode Opcode = getICmpCondCode(predicate); 2710 2711 EVT DestVT = TLI.getValueType(I.getType()); 2712 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2713 } 2714 2715 void SelectionDAGBuilder::visitFCmp(const User &I) { 2716 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2717 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2718 predicate = FC->getPredicate(); 2719 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2720 predicate = FCmpInst::Predicate(FC->getPredicate()); 2721 SDValue Op1 = getValue(I.getOperand(0)); 2722 SDValue Op2 = getValue(I.getOperand(1)); 2723 ISD::CondCode Condition = getFCmpCondCode(predicate); 2724 if (TM.Options.NoNaNsFPMath) 2725 Condition = getFCmpCodeWithoutNaN(Condition); 2726 EVT DestVT = TLI.getValueType(I.getType()); 2727 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2728 } 2729 2730 void SelectionDAGBuilder::visitSelect(const User &I) { 2731 SmallVector<EVT, 4> ValueVTs; 2732 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2733 unsigned NumValues = ValueVTs.size(); 2734 if (NumValues == 0) return; 2735 2736 SmallVector<SDValue, 4> Values(NumValues); 2737 SDValue Cond = getValue(I.getOperand(0)); 2738 SDValue TrueVal = getValue(I.getOperand(1)); 2739 SDValue FalseVal = getValue(I.getOperand(2)); 2740 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2741 ISD::VSELECT : ISD::SELECT; 2742 2743 for (unsigned i = 0; i != NumValues; ++i) 2744 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2745 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2746 Cond, 2747 SDValue(TrueVal.getNode(), 2748 TrueVal.getResNo() + i), 2749 SDValue(FalseVal.getNode(), 2750 FalseVal.getResNo() + i)); 2751 2752 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2753 DAG.getVTList(&ValueVTs[0], NumValues), 2754 &Values[0], NumValues)); 2755 } 2756 2757 void SelectionDAGBuilder::visitTrunc(const User &I) { 2758 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2759 SDValue N = getValue(I.getOperand(0)); 2760 EVT DestVT = TLI.getValueType(I.getType()); 2761 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2762 } 2763 2764 void SelectionDAGBuilder::visitZExt(const User &I) { 2765 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2766 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2767 SDValue N = getValue(I.getOperand(0)); 2768 EVT DestVT = TLI.getValueType(I.getType()); 2769 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2770 } 2771 2772 void SelectionDAGBuilder::visitSExt(const User &I) { 2773 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2774 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2775 SDValue N = getValue(I.getOperand(0)); 2776 EVT DestVT = TLI.getValueType(I.getType()); 2777 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2778 } 2779 2780 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2781 // FPTrunc is never a no-op cast, no need to check 2782 SDValue N = getValue(I.getOperand(0)); 2783 EVT DestVT = TLI.getValueType(I.getType()); 2784 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2785 DestVT, N, 2786 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2787 } 2788 2789 void SelectionDAGBuilder::visitFPExt(const User &I){ 2790 // FPExt is never a no-op cast, no need to check 2791 SDValue N = getValue(I.getOperand(0)); 2792 EVT DestVT = TLI.getValueType(I.getType()); 2793 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2794 } 2795 2796 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2797 // FPToUI is never a no-op cast, no need to check 2798 SDValue N = getValue(I.getOperand(0)); 2799 EVT DestVT = TLI.getValueType(I.getType()); 2800 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2801 } 2802 2803 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2804 // FPToSI is never a no-op cast, no need to check 2805 SDValue N = getValue(I.getOperand(0)); 2806 EVT DestVT = TLI.getValueType(I.getType()); 2807 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2808 } 2809 2810 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2811 // UIToFP is never a no-op cast, no need to check 2812 SDValue N = getValue(I.getOperand(0)); 2813 EVT DestVT = TLI.getValueType(I.getType()); 2814 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2815 } 2816 2817 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2818 // SIToFP is never a no-op cast, no need to check 2819 SDValue N = getValue(I.getOperand(0)); 2820 EVT DestVT = TLI.getValueType(I.getType()); 2821 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2822 } 2823 2824 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2825 // What to do depends on the size of the integer and the size of the pointer. 2826 // We can either truncate, zero extend, or no-op, accordingly. 2827 SDValue N = getValue(I.getOperand(0)); 2828 EVT DestVT = TLI.getValueType(I.getType()); 2829 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2830 } 2831 2832 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2833 // What to do depends on the size of the integer and the size of the pointer. 2834 // We can either truncate, zero extend, or no-op, accordingly. 2835 SDValue N = getValue(I.getOperand(0)); 2836 EVT DestVT = TLI.getValueType(I.getType()); 2837 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2838 } 2839 2840 void SelectionDAGBuilder::visitBitCast(const User &I) { 2841 SDValue N = getValue(I.getOperand(0)); 2842 EVT DestVT = TLI.getValueType(I.getType()); 2843 2844 // BitCast assures us that source and destination are the same size so this is 2845 // either a BITCAST or a no-op. 2846 if (DestVT != N.getValueType()) 2847 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2848 DestVT, N)); // convert types. 2849 else 2850 setValue(&I, N); // noop cast. 2851 } 2852 2853 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2854 SDValue InVec = getValue(I.getOperand(0)); 2855 SDValue InVal = getValue(I.getOperand(1)); 2856 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), 2857 TLI.getPointerTy(), 2858 getValue(I.getOperand(2))); 2859 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2860 TLI.getValueType(I.getType()), 2861 InVec, InVal, InIdx)); 2862 } 2863 2864 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2865 SDValue InVec = getValue(I.getOperand(0)); 2866 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), 2867 TLI.getPointerTy(), 2868 getValue(I.getOperand(1))); 2869 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2870 TLI.getValueType(I.getType()), InVec, InIdx)); 2871 } 2872 2873 // Utility for visitShuffleVector - Return true if every element in Mask, 2874 // beginning from position Pos and ending in Pos+Size, falls within the 2875 // specified sequential range [L, L+Pos). or is undef. 2876 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2877 unsigned Pos, unsigned Size, int Low) { 2878 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2879 if (Mask[i] >= 0 && Mask[i] != Low) 2880 return false; 2881 return true; 2882 } 2883 2884 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2885 SDValue Src1 = getValue(I.getOperand(0)); 2886 SDValue Src2 = getValue(I.getOperand(1)); 2887 2888 SmallVector<int, 8> Mask; 2889 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2890 unsigned MaskNumElts = Mask.size(); 2891 2892 EVT VT = TLI.getValueType(I.getType()); 2893 EVT SrcVT = Src1.getValueType(); 2894 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2895 2896 if (SrcNumElts == MaskNumElts) { 2897 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2898 &Mask[0])); 2899 return; 2900 } 2901 2902 // Normalize the shuffle vector since mask and vector length don't match. 2903 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2904 // Mask is longer than the source vectors and is a multiple of the source 2905 // vectors. We can use concatenate vector to make the mask and vectors 2906 // lengths match. 2907 if (SrcNumElts*2 == MaskNumElts) { 2908 // First check for Src1 in low and Src2 in high 2909 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2910 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2911 // The shuffle is concatenating two vectors together. 2912 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2913 VT, Src1, Src2)); 2914 return; 2915 } 2916 // Then check for Src2 in low and Src1 in high 2917 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2918 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2919 // The shuffle is concatenating two vectors together. 2920 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2921 VT, Src2, Src1)); 2922 return; 2923 } 2924 } 2925 2926 // Pad both vectors with undefs to make them the same length as the mask. 2927 unsigned NumConcat = MaskNumElts / SrcNumElts; 2928 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2929 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2930 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2931 2932 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2933 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2934 MOps1[0] = Src1; 2935 MOps2[0] = Src2; 2936 2937 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2938 getCurSDLoc(), VT, 2939 &MOps1[0], NumConcat); 2940 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2941 getCurSDLoc(), VT, 2942 &MOps2[0], NumConcat); 2943 2944 // Readjust mask for new input vector length. 2945 SmallVector<int, 8> MappedOps; 2946 for (unsigned i = 0; i != MaskNumElts; ++i) { 2947 int Idx = Mask[i]; 2948 if (Idx >= (int)SrcNumElts) 2949 Idx -= SrcNumElts - MaskNumElts; 2950 MappedOps.push_back(Idx); 2951 } 2952 2953 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2954 &MappedOps[0])); 2955 return; 2956 } 2957 2958 if (SrcNumElts > MaskNumElts) { 2959 // Analyze the access pattern of the vector to see if we can extract 2960 // two subvectors and do the shuffle. The analysis is done by calculating 2961 // the range of elements the mask access on both vectors. 2962 int MinRange[2] = { static_cast<int>(SrcNumElts), 2963 static_cast<int>(SrcNumElts)}; 2964 int MaxRange[2] = {-1, -1}; 2965 2966 for (unsigned i = 0; i != MaskNumElts; ++i) { 2967 int Idx = Mask[i]; 2968 unsigned Input = 0; 2969 if (Idx < 0) 2970 continue; 2971 2972 if (Idx >= (int)SrcNumElts) { 2973 Input = 1; 2974 Idx -= SrcNumElts; 2975 } 2976 if (Idx > MaxRange[Input]) 2977 MaxRange[Input] = Idx; 2978 if (Idx < MinRange[Input]) 2979 MinRange[Input] = Idx; 2980 } 2981 2982 // Check if the access is smaller than the vector size and can we find 2983 // a reasonable extract index. 2984 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2985 // Extract. 2986 int StartIdx[2]; // StartIdx to extract from 2987 for (unsigned Input = 0; Input < 2; ++Input) { 2988 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2989 RangeUse[Input] = 0; // Unused 2990 StartIdx[Input] = 0; 2991 continue; 2992 } 2993 2994 // Find a good start index that is a multiple of the mask length. Then 2995 // see if the rest of the elements are in range. 2996 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2997 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2998 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2999 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3000 } 3001 3002 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3003 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3004 return; 3005 } 3006 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3007 // Extract appropriate subvector and generate a vector shuffle 3008 for (unsigned Input = 0; Input < 2; ++Input) { 3009 SDValue &Src = Input == 0 ? Src1 : Src2; 3010 if (RangeUse[Input] == 0) 3011 Src = DAG.getUNDEF(VT); 3012 else 3013 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3014 Src, DAG.getIntPtrConstant(StartIdx[Input])); 3015 } 3016 3017 // Calculate new mask. 3018 SmallVector<int, 8> MappedOps; 3019 for (unsigned i = 0; i != MaskNumElts; ++i) { 3020 int Idx = Mask[i]; 3021 if (Idx >= 0) { 3022 if (Idx < (int)SrcNumElts) 3023 Idx -= StartIdx[0]; 3024 else 3025 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3026 } 3027 MappedOps.push_back(Idx); 3028 } 3029 3030 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3031 &MappedOps[0])); 3032 return; 3033 } 3034 } 3035 3036 // We can't use either concat vectors or extract subvectors so fall back to 3037 // replacing the shuffle with extract and build vector. 3038 // to insert and build vector. 3039 EVT EltVT = VT.getVectorElementType(); 3040 EVT PtrVT = TLI.getPointerTy(); 3041 SmallVector<SDValue,8> Ops; 3042 for (unsigned i = 0; i != MaskNumElts; ++i) { 3043 int Idx = Mask[i]; 3044 SDValue Res; 3045 3046 if (Idx < 0) { 3047 Res = DAG.getUNDEF(EltVT); 3048 } else { 3049 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3050 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3051 3052 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3053 EltVT, Src, DAG.getConstant(Idx, PtrVT)); 3054 } 3055 3056 Ops.push_back(Res); 3057 } 3058 3059 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 3060 VT, &Ops[0], Ops.size())); 3061 } 3062 3063 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3064 const Value *Op0 = I.getOperand(0); 3065 const Value *Op1 = I.getOperand(1); 3066 Type *AggTy = I.getType(); 3067 Type *ValTy = Op1->getType(); 3068 bool IntoUndef = isa<UndefValue>(Op0); 3069 bool FromUndef = isa<UndefValue>(Op1); 3070 3071 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3072 3073 SmallVector<EVT, 4> AggValueVTs; 3074 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3075 SmallVector<EVT, 4> ValValueVTs; 3076 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3077 3078 unsigned NumAggValues = AggValueVTs.size(); 3079 unsigned NumValValues = ValValueVTs.size(); 3080 SmallVector<SDValue, 4> Values(NumAggValues); 3081 3082 SDValue Agg = getValue(Op0); 3083 unsigned i = 0; 3084 // Copy the beginning value(s) from the original aggregate. 3085 for (; i != LinearIndex; ++i) 3086 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3087 SDValue(Agg.getNode(), Agg.getResNo() + i); 3088 // Copy values from the inserted value(s). 3089 if (NumValValues) { 3090 SDValue Val = getValue(Op1); 3091 for (; i != LinearIndex + NumValValues; ++i) 3092 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3093 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3094 } 3095 // Copy remaining value(s) from the original aggregate. 3096 for (; i != NumAggValues; ++i) 3097 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3098 SDValue(Agg.getNode(), Agg.getResNo() + i); 3099 3100 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3101 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3102 &Values[0], NumAggValues)); 3103 } 3104 3105 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3106 const Value *Op0 = I.getOperand(0); 3107 Type *AggTy = Op0->getType(); 3108 Type *ValTy = I.getType(); 3109 bool OutOfUndef = isa<UndefValue>(Op0); 3110 3111 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3112 3113 SmallVector<EVT, 4> ValValueVTs; 3114 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3115 3116 unsigned NumValValues = ValValueVTs.size(); 3117 3118 // Ignore a extractvalue that produces an empty object 3119 if (!NumValValues) { 3120 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3121 return; 3122 } 3123 3124 SmallVector<SDValue, 4> Values(NumValValues); 3125 3126 SDValue Agg = getValue(Op0); 3127 // Copy out the selected value(s). 3128 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3129 Values[i - LinearIndex] = 3130 OutOfUndef ? 3131 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3132 SDValue(Agg.getNode(), Agg.getResNo() + i); 3133 3134 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3135 DAG.getVTList(&ValValueVTs[0], NumValValues), 3136 &Values[0], NumValValues)); 3137 } 3138 3139 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3140 SDValue N = getValue(I.getOperand(0)); 3141 // Note that the pointer operand may be a vector of pointers. Take the scalar 3142 // element which holds a pointer. 3143 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3144 3145 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3146 OI != E; ++OI) { 3147 const Value *Idx = *OI; 3148 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3149 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3150 if (Field) { 3151 // N = N + Offset 3152 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3153 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3154 DAG.getConstant(Offset, N.getValueType())); 3155 } 3156 3157 Ty = StTy->getElementType(Field); 3158 } else { 3159 Ty = cast<SequentialType>(Ty)->getElementType(); 3160 3161 // If this is a constant subscript, handle it quickly. 3162 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3163 if (CI->isZero()) continue; 3164 uint64_t Offs = 3165 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3166 SDValue OffsVal; 3167 EVT PTy = TLI.getPointerTy(); 3168 unsigned PtrBits = PTy.getSizeInBits(); 3169 if (PtrBits < 64) 3170 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), 3171 TLI.getPointerTy(), 3172 DAG.getConstant(Offs, MVT::i64)); 3173 else 3174 OffsVal = DAG.getIntPtrConstant(Offs); 3175 3176 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3177 OffsVal); 3178 continue; 3179 } 3180 3181 // N = N + Idx * ElementSize; 3182 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3183 TD->getTypeAllocSize(Ty)); 3184 SDValue IdxN = getValue(Idx); 3185 3186 // If the index is smaller or larger than intptr_t, truncate or extend 3187 // it. 3188 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3189 3190 // If this is a multiply by a power of two, turn it into a shl 3191 // immediately. This is a very common case. 3192 if (ElementSize != 1) { 3193 if (ElementSize.isPowerOf2()) { 3194 unsigned Amt = ElementSize.logBase2(); 3195 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3196 N.getValueType(), IdxN, 3197 DAG.getConstant(Amt, IdxN.getValueType())); 3198 } else { 3199 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3200 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3201 N.getValueType(), IdxN, Scale); 3202 } 3203 } 3204 3205 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3206 N.getValueType(), N, IdxN); 3207 } 3208 } 3209 3210 setValue(&I, N); 3211 } 3212 3213 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3214 // If this is a fixed sized alloca in the entry block of the function, 3215 // allocate it statically on the stack. 3216 if (FuncInfo.StaticAllocaMap.count(&I)) 3217 return; // getValue will auto-populate this. 3218 3219 Type *Ty = I.getAllocatedType(); 3220 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3221 unsigned Align = 3222 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3223 I.getAlignment()); 3224 3225 SDValue AllocSize = getValue(I.getArraySize()); 3226 3227 EVT IntPtr = TLI.getPointerTy(); 3228 if (AllocSize.getValueType() != IntPtr) 3229 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3230 3231 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3232 AllocSize, 3233 DAG.getConstant(TySize, IntPtr)); 3234 3235 // Handle alignment. If the requested alignment is less than or equal to 3236 // the stack alignment, ignore it. If the size is greater than or equal to 3237 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3238 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3239 if (Align <= StackAlign) 3240 Align = 0; 3241 3242 // Round the size of the allocation up to the stack alignment size 3243 // by add SA-1 to the size. 3244 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3245 AllocSize.getValueType(), AllocSize, 3246 DAG.getIntPtrConstant(StackAlign-1)); 3247 3248 // Mask out the low bits for alignment purposes. 3249 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3250 AllocSize.getValueType(), AllocSize, 3251 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3252 3253 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3254 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3255 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), 3256 VTs, Ops, 3); 3257 setValue(&I, DSA); 3258 DAG.setRoot(DSA.getValue(1)); 3259 3260 // Inform the Frame Information that we have just allocated a variable-sized 3261 // object. 3262 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3263 } 3264 3265 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3266 if (I.isAtomic()) 3267 return visitAtomicLoad(I); 3268 3269 const Value *SV = I.getOperand(0); 3270 SDValue Ptr = getValue(SV); 3271 3272 Type *Ty = I.getType(); 3273 3274 bool isVolatile = I.isVolatile(); 3275 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3276 bool isInvariant = I.getMetadata("invariant.load") != 0; 3277 unsigned Alignment = I.getAlignment(); 3278 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3279 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3280 3281 SmallVector<EVT, 4> ValueVTs; 3282 SmallVector<uint64_t, 4> Offsets; 3283 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3284 unsigned NumValues = ValueVTs.size(); 3285 if (NumValues == 0) 3286 return; 3287 3288 SDValue Root; 3289 bool ConstantMemory = false; 3290 if (I.isVolatile() || NumValues > MaxParallelChains) 3291 // Serialize volatile loads with other side effects. 3292 Root = getRoot(); 3293 else if (AA->pointsToConstantMemory( 3294 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3295 // Do not serialize (non-volatile) loads of constant memory with anything. 3296 Root = DAG.getEntryNode(); 3297 ConstantMemory = true; 3298 } else { 3299 // Do not serialize non-volatile loads against each other. 3300 Root = DAG.getRoot(); 3301 } 3302 3303 SmallVector<SDValue, 4> Values(NumValues); 3304 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3305 NumValues)); 3306 EVT PtrVT = Ptr.getValueType(); 3307 unsigned ChainI = 0; 3308 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3309 // Serializing loads here may result in excessive register pressure, and 3310 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3311 // could recover a bit by hoisting nodes upward in the chain by recognizing 3312 // they are side-effect free or do not alias. The optimizer should really 3313 // avoid this case by converting large object/array copies to llvm.memcpy 3314 // (MaxParallelChains should always remain as failsafe). 3315 if (ChainI == MaxParallelChains) { 3316 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3317 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3318 MVT::Other, &Chains[0], ChainI); 3319 Root = Chain; 3320 ChainI = 0; 3321 } 3322 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3323 PtrVT, Ptr, 3324 DAG.getConstant(Offsets[i], PtrVT)); 3325 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3326 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3327 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3328 Ranges); 3329 3330 Values[i] = L; 3331 Chains[ChainI] = L.getValue(1); 3332 } 3333 3334 if (!ConstantMemory) { 3335 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3336 MVT::Other, &Chains[0], ChainI); 3337 if (isVolatile) 3338 DAG.setRoot(Chain); 3339 else 3340 PendingLoads.push_back(Chain); 3341 } 3342 3343 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3344 DAG.getVTList(&ValueVTs[0], NumValues), 3345 &Values[0], NumValues)); 3346 } 3347 3348 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3349 if (I.isAtomic()) 3350 return visitAtomicStore(I); 3351 3352 const Value *SrcV = I.getOperand(0); 3353 const Value *PtrV = I.getOperand(1); 3354 3355 SmallVector<EVT, 4> ValueVTs; 3356 SmallVector<uint64_t, 4> Offsets; 3357 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3358 unsigned NumValues = ValueVTs.size(); 3359 if (NumValues == 0) 3360 return; 3361 3362 // Get the lowered operands. Note that we do this after 3363 // checking if NumResults is zero, because with zero results 3364 // the operands won't have values in the map. 3365 SDValue Src = getValue(SrcV); 3366 SDValue Ptr = getValue(PtrV); 3367 3368 SDValue Root = getRoot(); 3369 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3370 NumValues)); 3371 EVT PtrVT = Ptr.getValueType(); 3372 bool isVolatile = I.isVolatile(); 3373 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3374 unsigned Alignment = I.getAlignment(); 3375 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3376 3377 unsigned ChainI = 0; 3378 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3379 // See visitLoad comments. 3380 if (ChainI == MaxParallelChains) { 3381 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3382 MVT::Other, &Chains[0], ChainI); 3383 Root = Chain; 3384 ChainI = 0; 3385 } 3386 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3387 DAG.getConstant(Offsets[i], PtrVT)); 3388 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3389 SDValue(Src.getNode(), Src.getResNo() + i), 3390 Add, MachinePointerInfo(PtrV, Offsets[i]), 3391 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3392 Chains[ChainI] = St; 3393 } 3394 3395 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3396 MVT::Other, &Chains[0], ChainI); 3397 DAG.setRoot(StoreNode); 3398 } 3399 3400 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3401 SynchronizationScope Scope, 3402 bool Before, SDLoc dl, 3403 SelectionDAG &DAG, 3404 const TargetLowering &TLI) { 3405 // Fence, if necessary 3406 if (Before) { 3407 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3408 Order = Release; 3409 else if (Order == Acquire || Order == Monotonic) 3410 return Chain; 3411 } else { 3412 if (Order == AcquireRelease) 3413 Order = Acquire; 3414 else if (Order == Release || Order == Monotonic) 3415 return Chain; 3416 } 3417 SDValue Ops[3]; 3418 Ops[0] = Chain; 3419 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3420 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3421 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3422 } 3423 3424 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3425 SDLoc dl = getCurSDLoc(); 3426 AtomicOrdering Order = I.getOrdering(); 3427 SynchronizationScope Scope = I.getSynchScope(); 3428 3429 SDValue InChain = getRoot(); 3430 3431 if (TLI.getInsertFencesForAtomic()) 3432 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3433 DAG, TLI); 3434 3435 SDValue L = 3436 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3437 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3438 InChain, 3439 getValue(I.getPointerOperand()), 3440 getValue(I.getCompareOperand()), 3441 getValue(I.getNewValOperand()), 3442 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3443 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3444 Scope); 3445 3446 SDValue OutChain = L.getValue(1); 3447 3448 if (TLI.getInsertFencesForAtomic()) 3449 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3450 DAG, TLI); 3451 3452 setValue(&I, L); 3453 DAG.setRoot(OutChain); 3454 } 3455 3456 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3457 SDLoc dl = getCurSDLoc(); 3458 ISD::NodeType NT; 3459 switch (I.getOperation()) { 3460 default: llvm_unreachable("Unknown atomicrmw operation"); 3461 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3462 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3463 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3464 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3465 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3466 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3467 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3468 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3469 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3470 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3471 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3472 } 3473 AtomicOrdering Order = I.getOrdering(); 3474 SynchronizationScope Scope = I.getSynchScope(); 3475 3476 SDValue InChain = getRoot(); 3477 3478 if (TLI.getInsertFencesForAtomic()) 3479 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3480 DAG, TLI); 3481 3482 SDValue L = 3483 DAG.getAtomic(NT, dl, 3484 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3485 InChain, 3486 getValue(I.getPointerOperand()), 3487 getValue(I.getValOperand()), 3488 I.getPointerOperand(), 0 /* Alignment */, 3489 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3490 Scope); 3491 3492 SDValue OutChain = L.getValue(1); 3493 3494 if (TLI.getInsertFencesForAtomic()) 3495 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3496 DAG, TLI); 3497 3498 setValue(&I, L); 3499 DAG.setRoot(OutChain); 3500 } 3501 3502 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3503 SDLoc dl = getCurSDLoc(); 3504 SDValue Ops[3]; 3505 Ops[0] = getRoot(); 3506 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3507 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3508 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3509 } 3510 3511 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3512 SDLoc dl = getCurSDLoc(); 3513 AtomicOrdering Order = I.getOrdering(); 3514 SynchronizationScope Scope = I.getSynchScope(); 3515 3516 SDValue InChain = getRoot(); 3517 3518 EVT VT = TLI.getValueType(I.getType()); 3519 3520 if (I.getAlignment() < VT.getSizeInBits() / 8) 3521 report_fatal_error("Cannot generate unaligned atomic load"); 3522 3523 SDValue L = 3524 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3525 getValue(I.getPointerOperand()), 3526 I.getPointerOperand(), I.getAlignment(), 3527 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3528 Scope); 3529 3530 SDValue OutChain = L.getValue(1); 3531 3532 if (TLI.getInsertFencesForAtomic()) 3533 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3534 DAG, TLI); 3535 3536 setValue(&I, L); 3537 DAG.setRoot(OutChain); 3538 } 3539 3540 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3541 SDLoc dl = getCurSDLoc(); 3542 3543 AtomicOrdering Order = I.getOrdering(); 3544 SynchronizationScope Scope = I.getSynchScope(); 3545 3546 SDValue InChain = getRoot(); 3547 3548 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3549 3550 if (I.getAlignment() < VT.getSizeInBits() / 8) 3551 report_fatal_error("Cannot generate unaligned atomic store"); 3552 3553 if (TLI.getInsertFencesForAtomic()) 3554 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3555 DAG, TLI); 3556 3557 SDValue OutChain = 3558 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3559 InChain, 3560 getValue(I.getPointerOperand()), 3561 getValue(I.getValueOperand()), 3562 I.getPointerOperand(), I.getAlignment(), 3563 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3564 Scope); 3565 3566 if (TLI.getInsertFencesForAtomic()) 3567 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3568 DAG, TLI); 3569 3570 DAG.setRoot(OutChain); 3571 } 3572 3573 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3574 /// node. 3575 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3576 unsigned Intrinsic) { 3577 bool HasChain = !I.doesNotAccessMemory(); 3578 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3579 3580 // Build the operand list. 3581 SmallVector<SDValue, 8> Ops; 3582 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3583 if (OnlyLoad) { 3584 // We don't need to serialize loads against other loads. 3585 Ops.push_back(DAG.getRoot()); 3586 } else { 3587 Ops.push_back(getRoot()); 3588 } 3589 } 3590 3591 // Info is set by getTgtMemInstrinsic 3592 TargetLowering::IntrinsicInfo Info; 3593 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3594 3595 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3596 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3597 Info.opc == ISD::INTRINSIC_W_CHAIN) 3598 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3599 3600 // Add all operands of the call to the operand list. 3601 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3602 SDValue Op = getValue(I.getArgOperand(i)); 3603 Ops.push_back(Op); 3604 } 3605 3606 SmallVector<EVT, 4> ValueVTs; 3607 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3608 3609 if (HasChain) 3610 ValueVTs.push_back(MVT::Other); 3611 3612 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3613 3614 // Create the node. 3615 SDValue Result; 3616 if (IsTgtIntrinsic) { 3617 // This is target intrinsic that touches memory 3618 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3619 VTs, &Ops[0], Ops.size(), 3620 Info.memVT, 3621 MachinePointerInfo(Info.ptrVal, Info.offset), 3622 Info.align, Info.vol, 3623 Info.readMem, Info.writeMem); 3624 } else if (!HasChain) { 3625 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), 3626 VTs, &Ops[0], Ops.size()); 3627 } else if (!I.getType()->isVoidTy()) { 3628 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), 3629 VTs, &Ops[0], Ops.size()); 3630 } else { 3631 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), 3632 VTs, &Ops[0], Ops.size()); 3633 } 3634 3635 if (HasChain) { 3636 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3637 if (OnlyLoad) 3638 PendingLoads.push_back(Chain); 3639 else 3640 DAG.setRoot(Chain); 3641 } 3642 3643 if (!I.getType()->isVoidTy()) { 3644 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3645 EVT VT = TLI.getValueType(PTy); 3646 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3647 } 3648 3649 setValue(&I, Result); 3650 } 3651 } 3652 3653 /// GetSignificand - Get the significand and build it into a floating-point 3654 /// number with exponent of 1: 3655 /// 3656 /// Op = (Op & 0x007fffff) | 0x3f800000; 3657 /// 3658 /// where Op is the hexadecimal representation of floating point value. 3659 static SDValue 3660 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3661 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3662 DAG.getConstant(0x007fffff, MVT::i32)); 3663 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3664 DAG.getConstant(0x3f800000, MVT::i32)); 3665 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3666 } 3667 3668 /// GetExponent - Get the exponent: 3669 /// 3670 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3671 /// 3672 /// where Op is the hexadecimal representation of floating point value. 3673 static SDValue 3674 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3675 SDLoc dl) { 3676 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3677 DAG.getConstant(0x7f800000, MVT::i32)); 3678 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3679 DAG.getConstant(23, TLI.getPointerTy())); 3680 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3681 DAG.getConstant(127, MVT::i32)); 3682 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3683 } 3684 3685 /// getF32Constant - Get 32-bit floating point constant. 3686 static SDValue 3687 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3688 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3689 MVT::f32); 3690 } 3691 3692 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3693 /// limited-precision mode. 3694 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3695 const TargetLowering &TLI) { 3696 if (Op.getValueType() == MVT::f32 && 3697 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3698 3699 // Put the exponent in the right bit position for later addition to the 3700 // final result: 3701 // 3702 // #define LOG2OFe 1.4426950f 3703 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3704 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3705 getF32Constant(DAG, 0x3fb8aa3b)); 3706 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3707 3708 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3709 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3710 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3711 3712 // IntegerPartOfX <<= 23; 3713 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3714 DAG.getConstant(23, TLI.getPointerTy())); 3715 3716 SDValue TwoToFracPartOfX; 3717 if (LimitFloatPrecision <= 6) { 3718 // For floating-point precision of 6: 3719 // 3720 // TwoToFractionalPartOfX = 3721 // 0.997535578f + 3722 // (0.735607626f + 0.252464424f * x) * x; 3723 // 3724 // error 0.0144103317, which is 6 bits 3725 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3726 getF32Constant(DAG, 0x3e814304)); 3727 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3728 getF32Constant(DAG, 0x3f3c50c8)); 3729 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3730 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3731 getF32Constant(DAG, 0x3f7f5e7e)); 3732 } else if (LimitFloatPrecision <= 12) { 3733 // For floating-point precision of 12: 3734 // 3735 // TwoToFractionalPartOfX = 3736 // 0.999892986f + 3737 // (0.696457318f + 3738 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3739 // 3740 // 0.000107046256 error, which is 13 to 14 bits 3741 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3742 getF32Constant(DAG, 0x3da235e3)); 3743 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3744 getF32Constant(DAG, 0x3e65b8f3)); 3745 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3746 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3747 getF32Constant(DAG, 0x3f324b07)); 3748 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3749 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3750 getF32Constant(DAG, 0x3f7ff8fd)); 3751 } else { // LimitFloatPrecision <= 18 3752 // For floating-point precision of 18: 3753 // 3754 // TwoToFractionalPartOfX = 3755 // 0.999999982f + 3756 // (0.693148872f + 3757 // (0.240227044f + 3758 // (0.554906021e-1f + 3759 // (0.961591928e-2f + 3760 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3761 // 3762 // error 2.47208000*10^(-7), which is better than 18 bits 3763 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3764 getF32Constant(DAG, 0x3924b03e)); 3765 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3766 getF32Constant(DAG, 0x3ab24b87)); 3767 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3768 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3769 getF32Constant(DAG, 0x3c1d8c17)); 3770 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3771 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3772 getF32Constant(DAG, 0x3d634a1d)); 3773 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3774 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3775 getF32Constant(DAG, 0x3e75fe14)); 3776 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3777 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3778 getF32Constant(DAG, 0x3f317234)); 3779 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3780 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3781 getF32Constant(DAG, 0x3f800000)); 3782 } 3783 3784 // Add the exponent into the result in integer domain. 3785 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3786 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3787 DAG.getNode(ISD::ADD, dl, MVT::i32, 3788 t13, IntegerPartOfX)); 3789 } 3790 3791 // No special expansion. 3792 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3793 } 3794 3795 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3796 /// limited-precision mode. 3797 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3798 const TargetLowering &TLI) { 3799 if (Op.getValueType() == MVT::f32 && 3800 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3801 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3802 3803 // Scale the exponent by log(2) [0.69314718f]. 3804 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3805 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3806 getF32Constant(DAG, 0x3f317218)); 3807 3808 // Get the significand and build it into a floating-point number with 3809 // exponent of 1. 3810 SDValue X = GetSignificand(DAG, Op1, dl); 3811 3812 SDValue LogOfMantissa; 3813 if (LimitFloatPrecision <= 6) { 3814 // For floating-point precision of 6: 3815 // 3816 // LogofMantissa = 3817 // -1.1609546f + 3818 // (1.4034025f - 0.23903021f * x) * x; 3819 // 3820 // error 0.0034276066, which is better than 8 bits 3821 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3822 getF32Constant(DAG, 0xbe74c456)); 3823 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3824 getF32Constant(DAG, 0x3fb3a2b1)); 3825 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3826 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3827 getF32Constant(DAG, 0x3f949a29)); 3828 } else if (LimitFloatPrecision <= 12) { 3829 // For floating-point precision of 12: 3830 // 3831 // LogOfMantissa = 3832 // -1.7417939f + 3833 // (2.8212026f + 3834 // (-1.4699568f + 3835 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3836 // 3837 // error 0.000061011436, which is 14 bits 3838 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3839 getF32Constant(DAG, 0xbd67b6d6)); 3840 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3841 getF32Constant(DAG, 0x3ee4f4b8)); 3842 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3843 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3844 getF32Constant(DAG, 0x3fbc278b)); 3845 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3846 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3847 getF32Constant(DAG, 0x40348e95)); 3848 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3849 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3850 getF32Constant(DAG, 0x3fdef31a)); 3851 } else { // LimitFloatPrecision <= 18 3852 // For floating-point precision of 18: 3853 // 3854 // LogOfMantissa = 3855 // -2.1072184f + 3856 // (4.2372794f + 3857 // (-3.7029485f + 3858 // (2.2781945f + 3859 // (-0.87823314f + 3860 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3861 // 3862 // error 0.0000023660568, which is better than 18 bits 3863 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3864 getF32Constant(DAG, 0xbc91e5ac)); 3865 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3866 getF32Constant(DAG, 0x3e4350aa)); 3867 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3868 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3869 getF32Constant(DAG, 0x3f60d3e3)); 3870 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3871 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3872 getF32Constant(DAG, 0x4011cdf0)); 3873 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3874 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3875 getF32Constant(DAG, 0x406cfd1c)); 3876 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3877 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3878 getF32Constant(DAG, 0x408797cb)); 3879 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3880 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3881 getF32Constant(DAG, 0x4006dcab)); 3882 } 3883 3884 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3885 } 3886 3887 // No special expansion. 3888 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3889 } 3890 3891 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3892 /// limited-precision mode. 3893 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3894 const TargetLowering &TLI) { 3895 if (Op.getValueType() == MVT::f32 && 3896 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3897 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3898 3899 // Get the exponent. 3900 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3901 3902 // Get the significand and build it into a floating-point number with 3903 // exponent of 1. 3904 SDValue X = GetSignificand(DAG, Op1, dl); 3905 3906 // Different possible minimax approximations of significand in 3907 // floating-point for various degrees of accuracy over [1,2]. 3908 SDValue Log2ofMantissa; 3909 if (LimitFloatPrecision <= 6) { 3910 // For floating-point precision of 6: 3911 // 3912 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3913 // 3914 // error 0.0049451742, which is more than 7 bits 3915 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3916 getF32Constant(DAG, 0xbeb08fe0)); 3917 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3918 getF32Constant(DAG, 0x40019463)); 3919 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3920 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3921 getF32Constant(DAG, 0x3fd6633d)); 3922 } else if (LimitFloatPrecision <= 12) { 3923 // For floating-point precision of 12: 3924 // 3925 // Log2ofMantissa = 3926 // -2.51285454f + 3927 // (4.07009056f + 3928 // (-2.12067489f + 3929 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3930 // 3931 // error 0.0000876136000, which is better than 13 bits 3932 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3933 getF32Constant(DAG, 0xbda7262e)); 3934 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3935 getF32Constant(DAG, 0x3f25280b)); 3936 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3937 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3938 getF32Constant(DAG, 0x4007b923)); 3939 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3940 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3941 getF32Constant(DAG, 0x40823e2f)); 3942 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3943 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3944 getF32Constant(DAG, 0x4020d29c)); 3945 } else { // LimitFloatPrecision <= 18 3946 // For floating-point precision of 18: 3947 // 3948 // Log2ofMantissa = 3949 // -3.0400495f + 3950 // (6.1129976f + 3951 // (-5.3420409f + 3952 // (3.2865683f + 3953 // (-1.2669343f + 3954 // (0.27515199f - 3955 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3956 // 3957 // error 0.0000018516, which is better than 18 bits 3958 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3959 getF32Constant(DAG, 0xbcd2769e)); 3960 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3961 getF32Constant(DAG, 0x3e8ce0b9)); 3962 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3963 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3964 getF32Constant(DAG, 0x3fa22ae7)); 3965 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3966 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3967 getF32Constant(DAG, 0x40525723)); 3968 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3969 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3970 getF32Constant(DAG, 0x40aaf200)); 3971 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3972 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3973 getF32Constant(DAG, 0x40c39dad)); 3974 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3975 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3976 getF32Constant(DAG, 0x4042902c)); 3977 } 3978 3979 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3980 } 3981 3982 // No special expansion. 3983 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3984 } 3985 3986 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3987 /// limited-precision mode. 3988 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3989 const TargetLowering &TLI) { 3990 if (Op.getValueType() == MVT::f32 && 3991 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3992 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3993 3994 // Scale the exponent by log10(2) [0.30102999f]. 3995 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3996 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3997 getF32Constant(DAG, 0x3e9a209a)); 3998 3999 // Get the significand and build it into a floating-point number with 4000 // exponent of 1. 4001 SDValue X = GetSignificand(DAG, Op1, dl); 4002 4003 SDValue Log10ofMantissa; 4004 if (LimitFloatPrecision <= 6) { 4005 // For floating-point precision of 6: 4006 // 4007 // Log10ofMantissa = 4008 // -0.50419619f + 4009 // (0.60948995f - 0.10380950f * x) * x; 4010 // 4011 // error 0.0014886165, which is 6 bits 4012 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4013 getF32Constant(DAG, 0xbdd49a13)); 4014 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4015 getF32Constant(DAG, 0x3f1c0789)); 4016 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4017 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4018 getF32Constant(DAG, 0x3f011300)); 4019 } else if (LimitFloatPrecision <= 12) { 4020 // For floating-point precision of 12: 4021 // 4022 // Log10ofMantissa = 4023 // -0.64831180f + 4024 // (0.91751397f + 4025 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4026 // 4027 // error 0.00019228036, which is better than 12 bits 4028 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4029 getF32Constant(DAG, 0x3d431f31)); 4030 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4031 getF32Constant(DAG, 0x3ea21fb2)); 4032 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4033 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4034 getF32Constant(DAG, 0x3f6ae232)); 4035 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4036 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4037 getF32Constant(DAG, 0x3f25f7c3)); 4038 } else { // LimitFloatPrecision <= 18 4039 // For floating-point precision of 18: 4040 // 4041 // Log10ofMantissa = 4042 // -0.84299375f + 4043 // (1.5327582f + 4044 // (-1.0688956f + 4045 // (0.49102474f + 4046 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4047 // 4048 // error 0.0000037995730, which is better than 18 bits 4049 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4050 getF32Constant(DAG, 0x3c5d51ce)); 4051 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4052 getF32Constant(DAG, 0x3e00685a)); 4053 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4054 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4055 getF32Constant(DAG, 0x3efb6798)); 4056 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4057 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4058 getF32Constant(DAG, 0x3f88d192)); 4059 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4060 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4061 getF32Constant(DAG, 0x3fc4316c)); 4062 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4063 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4064 getF32Constant(DAG, 0x3f57ce70)); 4065 } 4066 4067 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4068 } 4069 4070 // No special expansion. 4071 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4072 } 4073 4074 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4075 /// limited-precision mode. 4076 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4077 const TargetLowering &TLI) { 4078 if (Op.getValueType() == MVT::f32 && 4079 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4080 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4081 4082 // FractionalPartOfX = x - (float)IntegerPartOfX; 4083 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4084 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4085 4086 // IntegerPartOfX <<= 23; 4087 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4088 DAG.getConstant(23, TLI.getPointerTy())); 4089 4090 SDValue TwoToFractionalPartOfX; 4091 if (LimitFloatPrecision <= 6) { 4092 // For floating-point precision of 6: 4093 // 4094 // TwoToFractionalPartOfX = 4095 // 0.997535578f + 4096 // (0.735607626f + 0.252464424f * x) * x; 4097 // 4098 // error 0.0144103317, which is 6 bits 4099 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4100 getF32Constant(DAG, 0x3e814304)); 4101 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4102 getF32Constant(DAG, 0x3f3c50c8)); 4103 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4104 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4105 getF32Constant(DAG, 0x3f7f5e7e)); 4106 } else if (LimitFloatPrecision <= 12) { 4107 // For floating-point precision of 12: 4108 // 4109 // TwoToFractionalPartOfX = 4110 // 0.999892986f + 4111 // (0.696457318f + 4112 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4113 // 4114 // error 0.000107046256, which is 13 to 14 bits 4115 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4116 getF32Constant(DAG, 0x3da235e3)); 4117 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4118 getF32Constant(DAG, 0x3e65b8f3)); 4119 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4120 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4121 getF32Constant(DAG, 0x3f324b07)); 4122 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4123 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4124 getF32Constant(DAG, 0x3f7ff8fd)); 4125 } else { // LimitFloatPrecision <= 18 4126 // For floating-point precision of 18: 4127 // 4128 // TwoToFractionalPartOfX = 4129 // 0.999999982f + 4130 // (0.693148872f + 4131 // (0.240227044f + 4132 // (0.554906021e-1f + 4133 // (0.961591928e-2f + 4134 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4135 // error 2.47208000*10^(-7), which is better than 18 bits 4136 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4137 getF32Constant(DAG, 0x3924b03e)); 4138 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4139 getF32Constant(DAG, 0x3ab24b87)); 4140 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4141 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4142 getF32Constant(DAG, 0x3c1d8c17)); 4143 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4144 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4145 getF32Constant(DAG, 0x3d634a1d)); 4146 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4147 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4148 getF32Constant(DAG, 0x3e75fe14)); 4149 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4150 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4151 getF32Constant(DAG, 0x3f317234)); 4152 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4153 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4154 getF32Constant(DAG, 0x3f800000)); 4155 } 4156 4157 // Add the exponent into the result in integer domain. 4158 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4159 TwoToFractionalPartOfX); 4160 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4161 DAG.getNode(ISD::ADD, dl, MVT::i32, 4162 t13, IntegerPartOfX)); 4163 } 4164 4165 // No special expansion. 4166 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4167 } 4168 4169 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4170 /// limited-precision mode with x == 10.0f. 4171 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4172 SelectionDAG &DAG, const TargetLowering &TLI) { 4173 bool IsExp10 = false; 4174 if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 && 4175 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4176 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4177 APFloat Ten(10.0f); 4178 IsExp10 = LHSC->isExactlyValue(Ten); 4179 } 4180 } 4181 4182 if (IsExp10) { 4183 // Put the exponent in the right bit position for later addition to the 4184 // final result: 4185 // 4186 // #define LOG2OF10 3.3219281f 4187 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4188 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4189 getF32Constant(DAG, 0x40549a78)); 4190 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4191 4192 // FractionalPartOfX = x - (float)IntegerPartOfX; 4193 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4194 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4195 4196 // IntegerPartOfX <<= 23; 4197 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4198 DAG.getConstant(23, TLI.getPointerTy())); 4199 4200 SDValue TwoToFractionalPartOfX; 4201 if (LimitFloatPrecision <= 6) { 4202 // For floating-point precision of 6: 4203 // 4204 // twoToFractionalPartOfX = 4205 // 0.997535578f + 4206 // (0.735607626f + 0.252464424f * x) * x; 4207 // 4208 // error 0.0144103317, which is 6 bits 4209 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4210 getF32Constant(DAG, 0x3e814304)); 4211 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4212 getF32Constant(DAG, 0x3f3c50c8)); 4213 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4214 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4215 getF32Constant(DAG, 0x3f7f5e7e)); 4216 } else if (LimitFloatPrecision <= 12) { 4217 // For floating-point precision of 12: 4218 // 4219 // TwoToFractionalPartOfX = 4220 // 0.999892986f + 4221 // (0.696457318f + 4222 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4223 // 4224 // error 0.000107046256, which is 13 to 14 bits 4225 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4226 getF32Constant(DAG, 0x3da235e3)); 4227 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4228 getF32Constant(DAG, 0x3e65b8f3)); 4229 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4230 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4231 getF32Constant(DAG, 0x3f324b07)); 4232 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4233 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4234 getF32Constant(DAG, 0x3f7ff8fd)); 4235 } else { // LimitFloatPrecision <= 18 4236 // For floating-point precision of 18: 4237 // 4238 // TwoToFractionalPartOfX = 4239 // 0.999999982f + 4240 // (0.693148872f + 4241 // (0.240227044f + 4242 // (0.554906021e-1f + 4243 // (0.961591928e-2f + 4244 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4245 // error 2.47208000*10^(-7), which is better than 18 bits 4246 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4247 getF32Constant(DAG, 0x3924b03e)); 4248 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4249 getF32Constant(DAG, 0x3ab24b87)); 4250 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4251 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4252 getF32Constant(DAG, 0x3c1d8c17)); 4253 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4254 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4255 getF32Constant(DAG, 0x3d634a1d)); 4256 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4257 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4258 getF32Constant(DAG, 0x3e75fe14)); 4259 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4260 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4261 getF32Constant(DAG, 0x3f317234)); 4262 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4263 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4264 getF32Constant(DAG, 0x3f800000)); 4265 } 4266 4267 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4268 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4269 DAG.getNode(ISD::ADD, dl, MVT::i32, 4270 t13, IntegerPartOfX)); 4271 } 4272 4273 // No special expansion. 4274 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4275 } 4276 4277 4278 /// ExpandPowI - Expand a llvm.powi intrinsic. 4279 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4280 SelectionDAG &DAG) { 4281 // If RHS is a constant, we can expand this out to a multiplication tree, 4282 // otherwise we end up lowering to a call to __powidf2 (for example). When 4283 // optimizing for size, we only want to do this if the expansion would produce 4284 // a small number of multiplies, otherwise we do the full expansion. 4285 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4286 // Get the exponent as a positive value. 4287 unsigned Val = RHSC->getSExtValue(); 4288 if ((int)Val < 0) Val = -Val; 4289 4290 // powi(x, 0) -> 1.0 4291 if (Val == 0) 4292 return DAG.getConstantFP(1.0, LHS.getValueType()); 4293 4294 const Function *F = DAG.getMachineFunction().getFunction(); 4295 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4296 Attribute::OptimizeForSize) || 4297 // If optimizing for size, don't insert too many multiplies. This 4298 // inserts up to 5 multiplies. 4299 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4300 // We use the simple binary decomposition method to generate the multiply 4301 // sequence. There are more optimal ways to do this (for example, 4302 // powi(x,15) generates one more multiply than it should), but this has 4303 // the benefit of being both really simple and much better than a libcall. 4304 SDValue Res; // Logically starts equal to 1.0 4305 SDValue CurSquare = LHS; 4306 while (Val) { 4307 if (Val & 1) { 4308 if (Res.getNode()) 4309 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4310 else 4311 Res = CurSquare; // 1.0*CurSquare. 4312 } 4313 4314 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4315 CurSquare, CurSquare); 4316 Val >>= 1; 4317 } 4318 4319 // If the original was negative, invert the result, producing 1/(x*x*x). 4320 if (RHSC->getSExtValue() < 0) 4321 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4322 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4323 return Res; 4324 } 4325 } 4326 4327 // Otherwise, expand to a libcall. 4328 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4329 } 4330 4331 // getTruncatedArgReg - Find underlying register used for an truncated 4332 // argument. 4333 static unsigned getTruncatedArgReg(const SDValue &N) { 4334 if (N.getOpcode() != ISD::TRUNCATE) 4335 return 0; 4336 4337 const SDValue &Ext = N.getOperand(0); 4338 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4339 const SDValue &CFR = Ext.getOperand(0); 4340 if (CFR.getOpcode() == ISD::CopyFromReg) 4341 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4342 if (CFR.getOpcode() == ISD::TRUNCATE) 4343 return getTruncatedArgReg(CFR); 4344 } 4345 return 0; 4346 } 4347 4348 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4349 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4350 /// At the end of instruction selection, they will be inserted to the entry BB. 4351 bool 4352 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4353 int64_t Offset, 4354 const SDValue &N) { 4355 const Argument *Arg = dyn_cast<Argument>(V); 4356 if (!Arg) 4357 return false; 4358 4359 MachineFunction &MF = DAG.getMachineFunction(); 4360 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4361 4362 // Ignore inlined function arguments here. 4363 DIVariable DV(Variable); 4364 if (DV.isInlinedFnArgument(MF.getFunction())) 4365 return false; 4366 4367 Optional<MachineOperand> Op; 4368 // Some arguments' frame index is recorded during argument lowering. 4369 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4370 Op = MachineOperand::CreateFI(FI); 4371 4372 if (!Op && N.getNode()) { 4373 unsigned Reg; 4374 if (N.getOpcode() == ISD::CopyFromReg) 4375 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4376 else 4377 Reg = getTruncatedArgReg(N); 4378 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4379 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4380 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4381 if (PR) 4382 Reg = PR; 4383 } 4384 if (Reg) 4385 Op = MachineOperand::CreateReg(Reg, false); 4386 } 4387 4388 if (!Op) { 4389 // Check if ValueMap has reg number. 4390 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4391 if (VMI != FuncInfo.ValueMap.end()) 4392 Op = MachineOperand::CreateReg(VMI->second, false); 4393 } 4394 4395 if (!Op && N.getNode()) 4396 // Check if frame index is available. 4397 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4398 if (FrameIndexSDNode *FINode = 4399 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4400 Op = MachineOperand::CreateFI(FINode->getIndex()); 4401 4402 if (!Op) 4403 return false; 4404 4405 if (Op->isReg()) 4406 Op->setIsDebug(); 4407 4408 FuncInfo.ArgDbgValues.push_back( 4409 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4410 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4411 return true; 4412 } 4413 4414 // VisualStudio defines setjmp as _setjmp 4415 #if defined(_MSC_VER) && defined(setjmp) && \ 4416 !defined(setjmp_undefined_for_msvc) 4417 # pragma push_macro("setjmp") 4418 # undef setjmp 4419 # define setjmp_undefined_for_msvc 4420 #endif 4421 4422 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4423 /// we want to emit this as a call to a named external function, return the name 4424 /// otherwise lower it and return null. 4425 const char * 4426 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4427 SDLoc sdl = getCurSDLoc(); 4428 DebugLoc dl = getCurDebugLoc(); 4429 SDValue Res; 4430 4431 switch (Intrinsic) { 4432 default: 4433 // By default, turn this into a target intrinsic node. 4434 visitTargetIntrinsic(I, Intrinsic); 4435 return 0; 4436 case Intrinsic::vastart: visitVAStart(I); return 0; 4437 case Intrinsic::vaend: visitVAEnd(I); return 0; 4438 case Intrinsic::vacopy: visitVACopy(I); return 0; 4439 case Intrinsic::returnaddress: 4440 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4441 getValue(I.getArgOperand(0)))); 4442 return 0; 4443 case Intrinsic::frameaddress: 4444 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4445 getValue(I.getArgOperand(0)))); 4446 return 0; 4447 case Intrinsic::setjmp: 4448 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4449 case Intrinsic::longjmp: 4450 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4451 case Intrinsic::memcpy: { 4452 // Assert for address < 256 since we support only user defined address 4453 // spaces. 4454 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4455 < 256 && 4456 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4457 < 256 && 4458 "Unknown address space"); 4459 SDValue Op1 = getValue(I.getArgOperand(0)); 4460 SDValue Op2 = getValue(I.getArgOperand(1)); 4461 SDValue Op3 = getValue(I.getArgOperand(2)); 4462 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4463 if (!Align) 4464 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4465 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4466 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4467 MachinePointerInfo(I.getArgOperand(0)), 4468 MachinePointerInfo(I.getArgOperand(1)))); 4469 return 0; 4470 } 4471 case Intrinsic::memset: { 4472 // Assert for address < 256 since we support only user defined address 4473 // spaces. 4474 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4475 < 256 && 4476 "Unknown address space"); 4477 SDValue Op1 = getValue(I.getArgOperand(0)); 4478 SDValue Op2 = getValue(I.getArgOperand(1)); 4479 SDValue Op3 = getValue(I.getArgOperand(2)); 4480 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4481 if (!Align) 4482 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4483 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4484 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4485 MachinePointerInfo(I.getArgOperand(0)))); 4486 return 0; 4487 } 4488 case Intrinsic::memmove: { 4489 // Assert for address < 256 since we support only user defined address 4490 // spaces. 4491 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4492 < 256 && 4493 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4494 < 256 && 4495 "Unknown address space"); 4496 SDValue Op1 = getValue(I.getArgOperand(0)); 4497 SDValue Op2 = getValue(I.getArgOperand(1)); 4498 SDValue Op3 = getValue(I.getArgOperand(2)); 4499 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4500 if (!Align) 4501 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4502 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4503 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4504 MachinePointerInfo(I.getArgOperand(0)), 4505 MachinePointerInfo(I.getArgOperand(1)))); 4506 return 0; 4507 } 4508 case Intrinsic::dbg_declare: { 4509 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4510 MDNode *Variable = DI.getVariable(); 4511 const Value *Address = DI.getAddress(); 4512 if (!Address || !DIVariable(Variable).Verify()) { 4513 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4514 return 0; 4515 } 4516 4517 // Check if address has undef value. 4518 if (isa<UndefValue>(Address) || 4519 (Address->use_empty() && !isa<Argument>(Address))) { 4520 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4521 return 0; 4522 } 4523 4524 SDValue &N = NodeMap[Address]; 4525 if (!N.getNode() && isa<Argument>(Address)) 4526 // Check unused arguments map. 4527 N = UnusedArgNodeMap[Address]; 4528 SDDbgValue *SDV; 4529 if (N.getNode()) { 4530 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4531 Address = BCI->getOperand(0); 4532 // Parameters are handled specially. 4533 bool isParameter = 4534 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4535 isa<Argument>(Address)); 4536 4537 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4538 4539 if (isParameter && !AI) { 4540 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4541 if (FINode) 4542 // Byval parameter. We have a frame index at this point. 4543 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4544 0, dl, SDNodeOrder); 4545 else { 4546 // Address is an argument, so try to emit its dbg value using 4547 // virtual register info from the FuncInfo.ValueMap. 4548 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4549 return 0; 4550 } 4551 } else if (AI) 4552 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4553 0, dl, SDNodeOrder); 4554 else { 4555 // Can't do anything with other non-AI cases yet. 4556 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4557 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4558 DEBUG(Address->dump()); 4559 return 0; 4560 } 4561 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4562 } else { 4563 // If Address is an argument then try to emit its dbg value using 4564 // virtual register info from the FuncInfo.ValueMap. 4565 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4566 // If variable is pinned by a alloca in dominating bb then 4567 // use StaticAllocaMap. 4568 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4569 if (AI->getParent() != DI.getParent()) { 4570 DenseMap<const AllocaInst*, int>::iterator SI = 4571 FuncInfo.StaticAllocaMap.find(AI); 4572 if (SI != FuncInfo.StaticAllocaMap.end()) { 4573 SDV = DAG.getDbgValue(Variable, SI->second, 4574 0, dl, SDNodeOrder); 4575 DAG.AddDbgValue(SDV, 0, false); 4576 return 0; 4577 } 4578 } 4579 } 4580 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4581 } 4582 } 4583 return 0; 4584 } 4585 case Intrinsic::dbg_value: { 4586 const DbgValueInst &DI = cast<DbgValueInst>(I); 4587 if (!DIVariable(DI.getVariable()).Verify()) 4588 return 0; 4589 4590 MDNode *Variable = DI.getVariable(); 4591 uint64_t Offset = DI.getOffset(); 4592 const Value *V = DI.getValue(); 4593 if (!V) 4594 return 0; 4595 4596 SDDbgValue *SDV; 4597 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4598 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4599 DAG.AddDbgValue(SDV, 0, false); 4600 } else { 4601 // Do not use getValue() in here; we don't want to generate code at 4602 // this point if it hasn't been done yet. 4603 SDValue N = NodeMap[V]; 4604 if (!N.getNode() && isa<Argument>(V)) 4605 // Check unused arguments map. 4606 N = UnusedArgNodeMap[V]; 4607 if (N.getNode()) { 4608 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4609 SDV = DAG.getDbgValue(Variable, N.getNode(), 4610 N.getResNo(), Offset, dl, SDNodeOrder); 4611 DAG.AddDbgValue(SDV, N.getNode(), false); 4612 } 4613 } else if (!V->use_empty() ) { 4614 // Do not call getValue(V) yet, as we don't want to generate code. 4615 // Remember it for later. 4616 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4617 DanglingDebugInfoMap[V] = DDI; 4618 } else { 4619 // We may expand this to cover more cases. One case where we have no 4620 // data available is an unreferenced parameter. 4621 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4622 } 4623 } 4624 4625 // Build a debug info table entry. 4626 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4627 V = BCI->getOperand(0); 4628 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4629 // Don't handle byval struct arguments or VLAs, for example. 4630 if (!AI) { 4631 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4632 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4633 return 0; 4634 } 4635 DenseMap<const AllocaInst*, int>::iterator SI = 4636 FuncInfo.StaticAllocaMap.find(AI); 4637 if (SI == FuncInfo.StaticAllocaMap.end()) 4638 return 0; // VLAs. 4639 int FI = SI->second; 4640 4641 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4642 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4643 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4644 return 0; 4645 } 4646 4647 case Intrinsic::eh_typeid_for: { 4648 // Find the type id for the given typeinfo. 4649 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4650 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4651 Res = DAG.getConstant(TypeID, MVT::i32); 4652 setValue(&I, Res); 4653 return 0; 4654 } 4655 4656 case Intrinsic::eh_return_i32: 4657 case Intrinsic::eh_return_i64: 4658 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4659 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4660 MVT::Other, 4661 getControlRoot(), 4662 getValue(I.getArgOperand(0)), 4663 getValue(I.getArgOperand(1)))); 4664 return 0; 4665 case Intrinsic::eh_unwind_init: 4666 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4667 return 0; 4668 case Intrinsic::eh_dwarf_cfa: { 4669 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4670 TLI.getPointerTy()); 4671 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4672 TLI.getPointerTy(), 4673 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4674 TLI.getPointerTy()), 4675 CfaArg); 4676 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4677 TLI.getPointerTy(), 4678 DAG.getConstant(0, TLI.getPointerTy())); 4679 setValue(&I, DAG.getNode(ISD::ADD, sdl, TLI.getPointerTy(), 4680 FA, Offset)); 4681 return 0; 4682 } 4683 case Intrinsic::eh_sjlj_callsite: { 4684 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4685 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4686 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4687 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4688 4689 MMI.setCurrentCallSite(CI->getZExtValue()); 4690 return 0; 4691 } 4692 case Intrinsic::eh_sjlj_functioncontext: { 4693 // Get and store the index of the function context. 4694 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4695 AllocaInst *FnCtx = 4696 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4697 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4698 MFI->setFunctionContextIndex(FI); 4699 return 0; 4700 } 4701 case Intrinsic::eh_sjlj_setjmp: { 4702 SDValue Ops[2]; 4703 Ops[0] = getRoot(); 4704 Ops[1] = getValue(I.getArgOperand(0)); 4705 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4706 DAG.getVTList(MVT::i32, MVT::Other), 4707 Ops, 2); 4708 setValue(&I, Op.getValue(0)); 4709 DAG.setRoot(Op.getValue(1)); 4710 return 0; 4711 } 4712 case Intrinsic::eh_sjlj_longjmp: { 4713 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4714 getRoot(), getValue(I.getArgOperand(0)))); 4715 return 0; 4716 } 4717 4718 case Intrinsic::x86_mmx_pslli_w: 4719 case Intrinsic::x86_mmx_pslli_d: 4720 case Intrinsic::x86_mmx_pslli_q: 4721 case Intrinsic::x86_mmx_psrli_w: 4722 case Intrinsic::x86_mmx_psrli_d: 4723 case Intrinsic::x86_mmx_psrli_q: 4724 case Intrinsic::x86_mmx_psrai_w: 4725 case Intrinsic::x86_mmx_psrai_d: { 4726 SDValue ShAmt = getValue(I.getArgOperand(1)); 4727 if (isa<ConstantSDNode>(ShAmt)) { 4728 visitTargetIntrinsic(I, Intrinsic); 4729 return 0; 4730 } 4731 unsigned NewIntrinsic = 0; 4732 EVT ShAmtVT = MVT::v2i32; 4733 switch (Intrinsic) { 4734 case Intrinsic::x86_mmx_pslli_w: 4735 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4736 break; 4737 case Intrinsic::x86_mmx_pslli_d: 4738 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4739 break; 4740 case Intrinsic::x86_mmx_pslli_q: 4741 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4742 break; 4743 case Intrinsic::x86_mmx_psrli_w: 4744 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4745 break; 4746 case Intrinsic::x86_mmx_psrli_d: 4747 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4748 break; 4749 case Intrinsic::x86_mmx_psrli_q: 4750 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4751 break; 4752 case Intrinsic::x86_mmx_psrai_w: 4753 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4754 break; 4755 case Intrinsic::x86_mmx_psrai_d: 4756 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4757 break; 4758 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4759 } 4760 4761 // The vector shift intrinsics with scalars uses 32b shift amounts but 4762 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4763 // to be zero. 4764 // We must do this early because v2i32 is not a legal type. 4765 SDValue ShOps[2]; 4766 ShOps[0] = ShAmt; 4767 ShOps[1] = DAG.getConstant(0, MVT::i32); 4768 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); 4769 EVT DestVT = TLI.getValueType(I.getType()); 4770 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4771 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4772 DAG.getConstant(NewIntrinsic, MVT::i32), 4773 getValue(I.getArgOperand(0)), ShAmt); 4774 setValue(&I, Res); 4775 return 0; 4776 } 4777 case Intrinsic::x86_avx_vinsertf128_pd_256: 4778 case Intrinsic::x86_avx_vinsertf128_ps_256: 4779 case Intrinsic::x86_avx_vinsertf128_si_256: 4780 case Intrinsic::x86_avx2_vinserti128: { 4781 EVT DestVT = TLI.getValueType(I.getType()); 4782 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4783 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4784 ElVT.getVectorNumElements(); 4785 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4786 getValue(I.getArgOperand(0)), 4787 getValue(I.getArgOperand(1)), 4788 DAG.getIntPtrConstant(Idx)); 4789 setValue(&I, Res); 4790 return 0; 4791 } 4792 case Intrinsic::x86_avx_vextractf128_pd_256: 4793 case Intrinsic::x86_avx_vextractf128_ps_256: 4794 case Intrinsic::x86_avx_vextractf128_si_256: 4795 case Intrinsic::x86_avx2_vextracti128: { 4796 EVT DestVT = TLI.getValueType(I.getType()); 4797 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4798 DestVT.getVectorNumElements(); 4799 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4800 getValue(I.getArgOperand(0)), 4801 DAG.getIntPtrConstant(Idx)); 4802 setValue(&I, Res); 4803 return 0; 4804 } 4805 case Intrinsic::convertff: 4806 case Intrinsic::convertfsi: 4807 case Intrinsic::convertfui: 4808 case Intrinsic::convertsif: 4809 case Intrinsic::convertuif: 4810 case Intrinsic::convertss: 4811 case Intrinsic::convertsu: 4812 case Intrinsic::convertus: 4813 case Intrinsic::convertuu: { 4814 ISD::CvtCode Code = ISD::CVT_INVALID; 4815 switch (Intrinsic) { 4816 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4817 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4818 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4819 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4820 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4821 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4822 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4823 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4824 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4825 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4826 } 4827 EVT DestVT = TLI.getValueType(I.getType()); 4828 const Value *Op1 = I.getArgOperand(0); 4829 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4830 DAG.getValueType(DestVT), 4831 DAG.getValueType(getValue(Op1).getValueType()), 4832 getValue(I.getArgOperand(1)), 4833 getValue(I.getArgOperand(2)), 4834 Code); 4835 setValue(&I, Res); 4836 return 0; 4837 } 4838 case Intrinsic::powi: 4839 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4840 getValue(I.getArgOperand(1)), DAG)); 4841 return 0; 4842 case Intrinsic::log: 4843 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4844 return 0; 4845 case Intrinsic::log2: 4846 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4847 return 0; 4848 case Intrinsic::log10: 4849 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4850 return 0; 4851 case Intrinsic::exp: 4852 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4853 return 0; 4854 case Intrinsic::exp2: 4855 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4856 return 0; 4857 case Intrinsic::pow: 4858 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4859 getValue(I.getArgOperand(1)), DAG, TLI)); 4860 return 0; 4861 case Intrinsic::sqrt: 4862 case Intrinsic::fabs: 4863 case Intrinsic::sin: 4864 case Intrinsic::cos: 4865 case Intrinsic::floor: 4866 case Intrinsic::ceil: 4867 case Intrinsic::trunc: 4868 case Intrinsic::rint: 4869 case Intrinsic::nearbyint: { 4870 unsigned Opcode; 4871 switch (Intrinsic) { 4872 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4873 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4874 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4875 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4876 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4877 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4878 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4879 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4880 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4881 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4882 } 4883 4884 setValue(&I, DAG.getNode(Opcode, sdl, 4885 getValue(I.getArgOperand(0)).getValueType(), 4886 getValue(I.getArgOperand(0)))); 4887 return 0; 4888 } 4889 case Intrinsic::fma: 4890 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4891 getValue(I.getArgOperand(0)).getValueType(), 4892 getValue(I.getArgOperand(0)), 4893 getValue(I.getArgOperand(1)), 4894 getValue(I.getArgOperand(2)))); 4895 return 0; 4896 case Intrinsic::fmuladd: { 4897 EVT VT = TLI.getValueType(I.getType()); 4898 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4899 TLI.isFMAFasterThanMulAndAdd(VT)){ 4900 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4901 getValue(I.getArgOperand(0)).getValueType(), 4902 getValue(I.getArgOperand(0)), 4903 getValue(I.getArgOperand(1)), 4904 getValue(I.getArgOperand(2)))); 4905 } else { 4906 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4907 getValue(I.getArgOperand(0)).getValueType(), 4908 getValue(I.getArgOperand(0)), 4909 getValue(I.getArgOperand(1))); 4910 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4911 getValue(I.getArgOperand(0)).getValueType(), 4912 Mul, 4913 getValue(I.getArgOperand(2))); 4914 setValue(&I, Add); 4915 } 4916 return 0; 4917 } 4918 case Intrinsic::convert_to_fp16: 4919 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 4920 MVT::i16, getValue(I.getArgOperand(0)))); 4921 return 0; 4922 case Intrinsic::convert_from_fp16: 4923 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 4924 MVT::f32, getValue(I.getArgOperand(0)))); 4925 return 0; 4926 case Intrinsic::pcmarker: { 4927 SDValue Tmp = getValue(I.getArgOperand(0)); 4928 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4929 return 0; 4930 } 4931 case Intrinsic::readcyclecounter: { 4932 SDValue Op = getRoot(); 4933 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4934 DAG.getVTList(MVT::i64, MVT::Other), 4935 &Op, 1); 4936 setValue(&I, Res); 4937 DAG.setRoot(Res.getValue(1)); 4938 return 0; 4939 } 4940 case Intrinsic::bswap: 4941 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4942 getValue(I.getArgOperand(0)).getValueType(), 4943 getValue(I.getArgOperand(0)))); 4944 return 0; 4945 case Intrinsic::cttz: { 4946 SDValue Arg = getValue(I.getArgOperand(0)); 4947 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4948 EVT Ty = Arg.getValueType(); 4949 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4950 sdl, Ty, Arg)); 4951 return 0; 4952 } 4953 case Intrinsic::ctlz: { 4954 SDValue Arg = getValue(I.getArgOperand(0)); 4955 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4956 EVT Ty = Arg.getValueType(); 4957 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4958 sdl, Ty, Arg)); 4959 return 0; 4960 } 4961 case Intrinsic::ctpop: { 4962 SDValue Arg = getValue(I.getArgOperand(0)); 4963 EVT Ty = Arg.getValueType(); 4964 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4965 return 0; 4966 } 4967 case Intrinsic::stacksave: { 4968 SDValue Op = getRoot(); 4969 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4970 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4971 setValue(&I, Res); 4972 DAG.setRoot(Res.getValue(1)); 4973 return 0; 4974 } 4975 case Intrinsic::stackrestore: { 4976 Res = getValue(I.getArgOperand(0)); 4977 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4978 return 0; 4979 } 4980 case Intrinsic::stackprotector: { 4981 // Emit code into the DAG to store the stack guard onto the stack. 4982 MachineFunction &MF = DAG.getMachineFunction(); 4983 MachineFrameInfo *MFI = MF.getFrameInfo(); 4984 EVT PtrTy = TLI.getPointerTy(); 4985 4986 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4987 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4988 4989 int FI = FuncInfo.StaticAllocaMap[Slot]; 4990 MFI->setStackProtectorIndex(FI); 4991 4992 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4993 4994 // Store the stack protector onto the stack. 4995 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 4996 MachinePointerInfo::getFixedStack(FI), 4997 true, false, 0); 4998 setValue(&I, Res); 4999 DAG.setRoot(Res); 5000 return 0; 5001 } 5002 case Intrinsic::objectsize: { 5003 // If we don't know by now, we're never going to know. 5004 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5005 5006 assert(CI && "Non-constant type in __builtin_object_size?"); 5007 5008 SDValue Arg = getValue(I.getCalledValue()); 5009 EVT Ty = Arg.getValueType(); 5010 5011 if (CI->isZero()) 5012 Res = DAG.getConstant(-1ULL, Ty); 5013 else 5014 Res = DAG.getConstant(0, Ty); 5015 5016 setValue(&I, Res); 5017 return 0; 5018 } 5019 case Intrinsic::annotation: 5020 case Intrinsic::ptr_annotation: 5021 // Drop the intrinsic, but forward the value 5022 setValue(&I, getValue(I.getOperand(0))); 5023 return 0; 5024 case Intrinsic::var_annotation: 5025 // Discard annotate attributes 5026 return 0; 5027 5028 case Intrinsic::init_trampoline: { 5029 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5030 5031 SDValue Ops[6]; 5032 Ops[0] = getRoot(); 5033 Ops[1] = getValue(I.getArgOperand(0)); 5034 Ops[2] = getValue(I.getArgOperand(1)); 5035 Ops[3] = getValue(I.getArgOperand(2)); 5036 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5037 Ops[5] = DAG.getSrcValue(F); 5038 5039 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); 5040 5041 DAG.setRoot(Res); 5042 return 0; 5043 } 5044 case Intrinsic::adjust_trampoline: { 5045 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5046 TLI.getPointerTy(), 5047 getValue(I.getArgOperand(0)))); 5048 return 0; 5049 } 5050 case Intrinsic::gcroot: 5051 if (GFI) { 5052 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5053 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5054 5055 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5056 GFI->addStackRoot(FI->getIndex(), TypeMap); 5057 } 5058 return 0; 5059 case Intrinsic::gcread: 5060 case Intrinsic::gcwrite: 5061 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5062 case Intrinsic::flt_rounds: 5063 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5064 return 0; 5065 5066 case Intrinsic::expect: { 5067 // Just replace __builtin_expect(exp, c) with EXP. 5068 setValue(&I, getValue(I.getArgOperand(0))); 5069 return 0; 5070 } 5071 5072 case Intrinsic::debugtrap: 5073 case Intrinsic::trap: { 5074 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5075 if (TrapFuncName.empty()) { 5076 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5077 ISD::TRAP : ISD::DEBUGTRAP; 5078 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5079 return 0; 5080 } 5081 TargetLowering::ArgListTy Args; 5082 TargetLowering:: 5083 CallLoweringInfo CLI(getRoot(), I.getType(), 5084 false, false, false, false, 0, CallingConv::C, 5085 /*isTailCall=*/false, 5086 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5087 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5088 Args, DAG, sdl); 5089 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5090 DAG.setRoot(Result.second); 5091 return 0; 5092 } 5093 5094 case Intrinsic::uadd_with_overflow: 5095 case Intrinsic::sadd_with_overflow: 5096 case Intrinsic::usub_with_overflow: 5097 case Intrinsic::ssub_with_overflow: 5098 case Intrinsic::umul_with_overflow: 5099 case Intrinsic::smul_with_overflow: { 5100 ISD::NodeType Op; 5101 switch (Intrinsic) { 5102 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5103 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5104 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5105 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5106 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5107 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5108 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5109 } 5110 SDValue Op1 = getValue(I.getArgOperand(0)); 5111 SDValue Op2 = getValue(I.getArgOperand(1)); 5112 5113 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5114 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5115 return 0; 5116 } 5117 case Intrinsic::prefetch: { 5118 SDValue Ops[5]; 5119 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5120 Ops[0] = getRoot(); 5121 Ops[1] = getValue(I.getArgOperand(0)); 5122 Ops[2] = getValue(I.getArgOperand(1)); 5123 Ops[3] = getValue(I.getArgOperand(2)); 5124 Ops[4] = getValue(I.getArgOperand(3)); 5125 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5126 DAG.getVTList(MVT::Other), 5127 &Ops[0], 5, 5128 EVT::getIntegerVT(*Context, 8), 5129 MachinePointerInfo(I.getArgOperand(0)), 5130 0, /* align */ 5131 false, /* volatile */ 5132 rw==0, /* read */ 5133 rw==1)); /* write */ 5134 return 0; 5135 } 5136 case Intrinsic::lifetime_start: 5137 case Intrinsic::lifetime_end: { 5138 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5139 // Stack coloring is not enabled in O0, discard region information. 5140 if (TM.getOptLevel() == CodeGenOpt::None) 5141 return 0; 5142 5143 SmallVector<Value *, 4> Allocas; 5144 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); 5145 5146 for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(), 5147 E = Allocas.end(); Object != E; ++Object) { 5148 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5149 5150 // Could not find an Alloca. 5151 if (!LifetimeObject) 5152 continue; 5153 5154 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5155 5156 SDValue Ops[2]; 5157 Ops[0] = getRoot(); 5158 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5159 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5160 5161 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); 5162 DAG.setRoot(Res); 5163 } 5164 return 0; 5165 } 5166 case Intrinsic::invariant_start: 5167 // Discard region information. 5168 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5169 return 0; 5170 case Intrinsic::invariant_end: 5171 // Discard region information. 5172 return 0; 5173 case Intrinsic::donothing: 5174 // ignore 5175 return 0; 5176 } 5177 } 5178 5179 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5180 bool isTailCall, 5181 MachineBasicBlock *LandingPad) { 5182 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5183 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5184 Type *RetTy = FTy->getReturnType(); 5185 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5186 MCSymbol *BeginLabel = 0; 5187 5188 TargetLowering::ArgListTy Args; 5189 TargetLowering::ArgListEntry Entry; 5190 Args.reserve(CS.arg_size()); 5191 5192 // Check whether the function can return without sret-demotion. 5193 SmallVector<ISD::OutputArg, 4> Outs; 5194 GetReturnInfo(RetTy, CS.getAttributes(), Outs, TLI); 5195 5196 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5197 DAG.getMachineFunction(), 5198 FTy->isVarArg(), Outs, 5199 FTy->getContext()); 5200 5201 SDValue DemoteStackSlot; 5202 int DemoteStackIdx = -100; 5203 5204 if (!CanLowerReturn) { 5205 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize( 5206 FTy->getReturnType()); 5207 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment( 5208 FTy->getReturnType()); 5209 MachineFunction &MF = DAG.getMachineFunction(); 5210 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5211 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5212 5213 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5214 Entry.Node = DemoteStackSlot; 5215 Entry.Ty = StackSlotPtrType; 5216 Entry.isSExt = false; 5217 Entry.isZExt = false; 5218 Entry.isInReg = false; 5219 Entry.isSRet = true; 5220 Entry.isNest = false; 5221 Entry.isByVal = false; 5222 Entry.isReturned = false; 5223 Entry.Alignment = Align; 5224 Args.push_back(Entry); 5225 RetTy = Type::getVoidTy(FTy->getContext()); 5226 } 5227 5228 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5229 i != e; ++i) { 5230 const Value *V = *i; 5231 5232 // Skip empty types 5233 if (V->getType()->isEmptyTy()) 5234 continue; 5235 5236 SDValue ArgNode = getValue(V); 5237 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5238 5239 unsigned attrInd = i - CS.arg_begin() + 1; 5240 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5241 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5242 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5243 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5244 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5245 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5246 Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned); 5247 Entry.Alignment = CS.getParamAlignment(attrInd); 5248 Args.push_back(Entry); 5249 } 5250 5251 if (LandingPad) { 5252 // Insert a label before the invoke call to mark the try range. This can be 5253 // used to detect deletion of the invoke via the MachineModuleInfo. 5254 BeginLabel = MMI.getContext().CreateTempSymbol(); 5255 5256 // For SjLj, keep track of which landing pads go with which invokes 5257 // so as to maintain the ordering of pads in the LSDA. 5258 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5259 if (CallSiteIndex) { 5260 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5261 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5262 5263 // Now that the call site is handled, stop tracking it. 5264 MMI.setCurrentCallSite(0); 5265 } 5266 5267 // Both PendingLoads and PendingExports must be flushed here; 5268 // this call might not return. 5269 (void)getRoot(); 5270 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5271 } 5272 5273 // Check if target-independent constraints permit a tail call here. 5274 // Target-dependent constraints are checked within TLI.LowerCallTo. 5275 if (isTailCall && !isInTailCallPosition(CS, TLI)) 5276 isTailCall = false; 5277 5278 TargetLowering:: 5279 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5280 getCurSDLoc(), CS); 5281 std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI); 5282 assert((isTailCall || Result.second.getNode()) && 5283 "Non-null chain expected with non-tail call!"); 5284 assert((Result.second.getNode() || !Result.first.getNode()) && 5285 "Null value expected with tail call!"); 5286 if (Result.first.getNode()) { 5287 setValue(CS.getInstruction(), Result.first); 5288 } else if (!CanLowerReturn && Result.second.getNode()) { 5289 // The instruction result is the result of loading from the 5290 // hidden sret parameter. 5291 SmallVector<EVT, 1> PVTs; 5292 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5293 5294 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5295 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5296 EVT PtrVT = PVTs[0]; 5297 5298 SmallVector<EVT, 4> RetTys; 5299 SmallVector<uint64_t, 4> Offsets; 5300 RetTy = FTy->getReturnType(); 5301 ComputeValueVTs(TLI, RetTy, RetTys, &Offsets); 5302 5303 unsigned NumValues = RetTys.size(); 5304 SmallVector<SDValue, 4> Values(NumValues); 5305 SmallVector<SDValue, 4> Chains(NumValues); 5306 5307 for (unsigned i = 0; i < NumValues; ++i) { 5308 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5309 DemoteStackSlot, 5310 DAG.getConstant(Offsets[i], PtrVT)); 5311 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5312 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5313 false, false, false, 1); 5314 Values[i] = L; 5315 Chains[i] = L.getValue(1); 5316 } 5317 5318 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5319 MVT::Other, &Chains[0], NumValues); 5320 PendingLoads.push_back(Chain); 5321 5322 setValue(CS.getInstruction(), 5323 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5324 DAG.getVTList(&RetTys[0], RetTys.size()), 5325 &Values[0], Values.size())); 5326 } 5327 5328 if (!Result.second.getNode()) { 5329 // As a special case, a null chain means that a tail call has been emitted and 5330 // the DAG root is already updated. 5331 HasTailCall = true; 5332 } else { 5333 DAG.setRoot(Result.second); 5334 } 5335 5336 if (LandingPad) { 5337 // Insert a label at the end of the invoke call to mark the try range. This 5338 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5339 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5340 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5341 5342 // Inform MachineModuleInfo of range. 5343 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5344 } 5345 } 5346 5347 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5348 /// value is equal or not-equal to zero. 5349 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5350 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5351 UI != E; ++UI) { 5352 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5353 if (IC->isEquality()) 5354 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5355 if (C->isNullValue()) 5356 continue; 5357 // Unknown instruction. 5358 return false; 5359 } 5360 return true; 5361 } 5362 5363 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5364 Type *LoadTy, 5365 SelectionDAGBuilder &Builder) { 5366 5367 // Check to see if this load can be trivially constant folded, e.g. if the 5368 // input is from a string literal. 5369 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5370 // Cast pointer to the type we really want to load. 5371 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5372 PointerType::getUnqual(LoadTy)); 5373 5374 if (const Constant *LoadCst = 5375 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5376 Builder.TD)) 5377 return Builder.getValue(LoadCst); 5378 } 5379 5380 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5381 // still constant memory, the input chain can be the entry node. 5382 SDValue Root; 5383 bool ConstantMemory = false; 5384 5385 // Do not serialize (non-volatile) loads of constant memory with anything. 5386 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5387 Root = Builder.DAG.getEntryNode(); 5388 ConstantMemory = true; 5389 } else { 5390 // Do not serialize non-volatile loads against each other. 5391 Root = Builder.DAG.getRoot(); 5392 } 5393 5394 SDValue Ptr = Builder.getValue(PtrVal); 5395 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5396 Ptr, MachinePointerInfo(PtrVal), 5397 false /*volatile*/, 5398 false /*nontemporal*/, 5399 false /*isinvariant*/, 1 /* align=1 */); 5400 5401 if (!ConstantMemory) 5402 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5403 return LoadVal; 5404 } 5405 5406 5407 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5408 /// If so, return true and lower it, otherwise return false and it will be 5409 /// lowered like a normal call. 5410 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5411 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5412 if (I.getNumArgOperands() != 3) 5413 return false; 5414 5415 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5416 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5417 !I.getArgOperand(2)->getType()->isIntegerTy() || 5418 !I.getType()->isIntegerTy()) 5419 return false; 5420 5421 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5422 5423 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5424 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5425 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5426 bool ActuallyDoIt = true; 5427 MVT LoadVT; 5428 Type *LoadTy; 5429 switch (Size->getZExtValue()) { 5430 default: 5431 LoadVT = MVT::Other; 5432 LoadTy = 0; 5433 ActuallyDoIt = false; 5434 break; 5435 case 2: 5436 LoadVT = MVT::i16; 5437 LoadTy = Type::getInt16Ty(Size->getContext()); 5438 break; 5439 case 4: 5440 LoadVT = MVT::i32; 5441 LoadTy = Type::getInt32Ty(Size->getContext()); 5442 break; 5443 case 8: 5444 LoadVT = MVT::i64; 5445 LoadTy = Type::getInt64Ty(Size->getContext()); 5446 break; 5447 /* 5448 case 16: 5449 LoadVT = MVT::v4i32; 5450 LoadTy = Type::getInt32Ty(Size->getContext()); 5451 LoadTy = VectorType::get(LoadTy, 4); 5452 break; 5453 */ 5454 } 5455 5456 // This turns into unaligned loads. We only do this if the target natively 5457 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5458 // we'll only produce a small number of byte loads. 5459 5460 // Require that we can find a legal MVT, and only do this if the target 5461 // supports unaligned loads of that type. Expanding into byte loads would 5462 // bloat the code. 5463 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5464 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5465 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5466 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5467 ActuallyDoIt = false; 5468 } 5469 5470 if (ActuallyDoIt) { 5471 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5472 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5473 5474 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5475 ISD::SETNE); 5476 EVT CallVT = TLI.getValueType(I.getType(), true); 5477 setValue(&I, DAG.getZExtOrTrunc(Res, getCurSDLoc(), CallVT)); 5478 return true; 5479 } 5480 } 5481 5482 5483 return false; 5484 } 5485 5486 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5487 /// operation (as expected), translate it to an SDNode with the specified opcode 5488 /// and return true. 5489 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5490 unsigned Opcode) { 5491 // Sanity check that it really is a unary floating-point call. 5492 if (I.getNumArgOperands() != 1 || 5493 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5494 I.getType() != I.getArgOperand(0)->getType() || 5495 !I.onlyReadsMemory()) 5496 return false; 5497 5498 SDValue Tmp = getValue(I.getArgOperand(0)); 5499 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5500 return true; 5501 } 5502 5503 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5504 // Handle inline assembly differently. 5505 if (isa<InlineAsm>(I.getCalledValue())) { 5506 visitInlineAsm(&I); 5507 return; 5508 } 5509 5510 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5511 ComputeUsesVAFloatArgument(I, &MMI); 5512 5513 const char *RenameFn = 0; 5514 if (Function *F = I.getCalledFunction()) { 5515 if (F->isDeclaration()) { 5516 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5517 if (unsigned IID = II->getIntrinsicID(F)) { 5518 RenameFn = visitIntrinsicCall(I, IID); 5519 if (!RenameFn) 5520 return; 5521 } 5522 } 5523 if (unsigned IID = F->getIntrinsicID()) { 5524 RenameFn = visitIntrinsicCall(I, IID); 5525 if (!RenameFn) 5526 return; 5527 } 5528 } 5529 5530 // Check for well-known libc/libm calls. If the function is internal, it 5531 // can't be a library call. 5532 LibFunc::Func Func; 5533 if (!F->hasLocalLinkage() && F->hasName() && 5534 LibInfo->getLibFunc(F->getName(), Func) && 5535 LibInfo->hasOptimizedCodeGen(Func)) { 5536 switch (Func) { 5537 default: break; 5538 case LibFunc::copysign: 5539 case LibFunc::copysignf: 5540 case LibFunc::copysignl: 5541 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5542 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5543 I.getType() == I.getArgOperand(0)->getType() && 5544 I.getType() == I.getArgOperand(1)->getType() && 5545 I.onlyReadsMemory()) { 5546 SDValue LHS = getValue(I.getArgOperand(0)); 5547 SDValue RHS = getValue(I.getArgOperand(1)); 5548 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5549 LHS.getValueType(), LHS, RHS)); 5550 return; 5551 } 5552 break; 5553 case LibFunc::fabs: 5554 case LibFunc::fabsf: 5555 case LibFunc::fabsl: 5556 if (visitUnaryFloatCall(I, ISD::FABS)) 5557 return; 5558 break; 5559 case LibFunc::sin: 5560 case LibFunc::sinf: 5561 case LibFunc::sinl: 5562 if (visitUnaryFloatCall(I, ISD::FSIN)) 5563 return; 5564 break; 5565 case LibFunc::cos: 5566 case LibFunc::cosf: 5567 case LibFunc::cosl: 5568 if (visitUnaryFloatCall(I, ISD::FCOS)) 5569 return; 5570 break; 5571 case LibFunc::sqrt: 5572 case LibFunc::sqrtf: 5573 case LibFunc::sqrtl: 5574 case LibFunc::sqrt_finite: 5575 case LibFunc::sqrtf_finite: 5576 case LibFunc::sqrtl_finite: 5577 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5578 return; 5579 break; 5580 case LibFunc::floor: 5581 case LibFunc::floorf: 5582 case LibFunc::floorl: 5583 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5584 return; 5585 break; 5586 case LibFunc::nearbyint: 5587 case LibFunc::nearbyintf: 5588 case LibFunc::nearbyintl: 5589 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5590 return; 5591 break; 5592 case LibFunc::ceil: 5593 case LibFunc::ceilf: 5594 case LibFunc::ceill: 5595 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5596 return; 5597 break; 5598 case LibFunc::rint: 5599 case LibFunc::rintf: 5600 case LibFunc::rintl: 5601 if (visitUnaryFloatCall(I, ISD::FRINT)) 5602 return; 5603 break; 5604 case LibFunc::trunc: 5605 case LibFunc::truncf: 5606 case LibFunc::truncl: 5607 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5608 return; 5609 break; 5610 case LibFunc::log2: 5611 case LibFunc::log2f: 5612 case LibFunc::log2l: 5613 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5614 return; 5615 break; 5616 case LibFunc::exp2: 5617 case LibFunc::exp2f: 5618 case LibFunc::exp2l: 5619 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5620 return; 5621 break; 5622 case LibFunc::memcmp: 5623 if (visitMemCmpCall(I)) 5624 return; 5625 break; 5626 } 5627 } 5628 } 5629 5630 SDValue Callee; 5631 if (!RenameFn) 5632 Callee = getValue(I.getCalledValue()); 5633 else 5634 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5635 5636 // Check if we can potentially perform a tail call. More detailed checking is 5637 // be done within LowerCallTo, after more information about the call is known. 5638 LowerCallTo(&I, Callee, I.isTailCall()); 5639 } 5640 5641 namespace { 5642 5643 /// AsmOperandInfo - This contains information for each constraint that we are 5644 /// lowering. 5645 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5646 public: 5647 /// CallOperand - If this is the result output operand or a clobber 5648 /// this is null, otherwise it is the incoming operand to the CallInst. 5649 /// This gets modified as the asm is processed. 5650 SDValue CallOperand; 5651 5652 /// AssignedRegs - If this is a register or register class operand, this 5653 /// contains the set of register corresponding to the operand. 5654 RegsForValue AssignedRegs; 5655 5656 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5657 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5658 } 5659 5660 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5661 /// corresponds to. If there is no Value* for this operand, it returns 5662 /// MVT::Other. 5663 EVT getCallOperandValEVT(LLVMContext &Context, 5664 const TargetLowering &TLI, 5665 const DataLayout *TD) const { 5666 if (CallOperandVal == 0) return MVT::Other; 5667 5668 if (isa<BasicBlock>(CallOperandVal)) 5669 return TLI.getPointerTy(); 5670 5671 llvm::Type *OpTy = CallOperandVal->getType(); 5672 5673 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5674 // If this is an indirect operand, the operand is a pointer to the 5675 // accessed type. 5676 if (isIndirect) { 5677 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5678 if (!PtrTy) 5679 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5680 OpTy = PtrTy->getElementType(); 5681 } 5682 5683 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5684 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5685 if (STy->getNumElements() == 1) 5686 OpTy = STy->getElementType(0); 5687 5688 // If OpTy is not a single value, it may be a struct/union that we 5689 // can tile with integers. 5690 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5691 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5692 switch (BitSize) { 5693 default: break; 5694 case 1: 5695 case 8: 5696 case 16: 5697 case 32: 5698 case 64: 5699 case 128: 5700 OpTy = IntegerType::get(Context, BitSize); 5701 break; 5702 } 5703 } 5704 5705 return TLI.getValueType(OpTy, true); 5706 } 5707 }; 5708 5709 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5710 5711 } // end anonymous namespace 5712 5713 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5714 /// specified operand. We prefer to assign virtual registers, to allow the 5715 /// register allocator to handle the assignment process. However, if the asm 5716 /// uses features that we can't model on machineinstrs, we have SDISel do the 5717 /// allocation. This produces generally horrible, but correct, code. 5718 /// 5719 /// OpInfo describes the operand. 5720 /// 5721 static void GetRegistersForValue(SelectionDAG &DAG, 5722 const TargetLowering &TLI, 5723 SDLoc DL, 5724 SDISelAsmOperandInfo &OpInfo) { 5725 LLVMContext &Context = *DAG.getContext(); 5726 5727 MachineFunction &MF = DAG.getMachineFunction(); 5728 SmallVector<unsigned, 4> Regs; 5729 5730 // If this is a constraint for a single physreg, or a constraint for a 5731 // register class, find it. 5732 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5733 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5734 OpInfo.ConstraintVT); 5735 5736 unsigned NumRegs = 1; 5737 if (OpInfo.ConstraintVT != MVT::Other) { 5738 // If this is a FP input in an integer register (or visa versa) insert a bit 5739 // cast of the input value. More generally, handle any case where the input 5740 // value disagrees with the register class we plan to stick this in. 5741 if (OpInfo.Type == InlineAsm::isInput && 5742 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5743 // Try to convert to the first EVT that the reg class contains. If the 5744 // types are identical size, use a bitcast to convert (e.g. two differing 5745 // vector types). 5746 MVT RegVT = *PhysReg.second->vt_begin(); 5747 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5748 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5749 RegVT, OpInfo.CallOperand); 5750 OpInfo.ConstraintVT = RegVT; 5751 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5752 // If the input is a FP value and we want it in FP registers, do a 5753 // bitcast to the corresponding integer type. This turns an f64 value 5754 // into i64, which can be passed with two i32 values on a 32-bit 5755 // machine. 5756 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5757 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5758 RegVT, OpInfo.CallOperand); 5759 OpInfo.ConstraintVT = RegVT; 5760 } 5761 } 5762 5763 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5764 } 5765 5766 MVT RegVT; 5767 EVT ValueVT = OpInfo.ConstraintVT; 5768 5769 // If this is a constraint for a specific physical register, like {r17}, 5770 // assign it now. 5771 if (unsigned AssignedReg = PhysReg.first) { 5772 const TargetRegisterClass *RC = PhysReg.second; 5773 if (OpInfo.ConstraintVT == MVT::Other) 5774 ValueVT = *RC->vt_begin(); 5775 5776 // Get the actual register value type. This is important, because the user 5777 // may have asked for (e.g.) the AX register in i32 type. We need to 5778 // remember that AX is actually i16 to get the right extension. 5779 RegVT = *RC->vt_begin(); 5780 5781 // This is a explicit reference to a physical register. 5782 Regs.push_back(AssignedReg); 5783 5784 // If this is an expanded reference, add the rest of the regs to Regs. 5785 if (NumRegs != 1) { 5786 TargetRegisterClass::iterator I = RC->begin(); 5787 for (; *I != AssignedReg; ++I) 5788 assert(I != RC->end() && "Didn't find reg!"); 5789 5790 // Already added the first reg. 5791 --NumRegs; ++I; 5792 for (; NumRegs; --NumRegs, ++I) { 5793 assert(I != RC->end() && "Ran out of registers to allocate!"); 5794 Regs.push_back(*I); 5795 } 5796 } 5797 5798 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5799 return; 5800 } 5801 5802 // Otherwise, if this was a reference to an LLVM register class, create vregs 5803 // for this reference. 5804 if (const TargetRegisterClass *RC = PhysReg.second) { 5805 RegVT = *RC->vt_begin(); 5806 if (OpInfo.ConstraintVT == MVT::Other) 5807 ValueVT = RegVT; 5808 5809 // Create the appropriate number of virtual registers. 5810 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5811 for (; NumRegs; --NumRegs) 5812 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5813 5814 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5815 return; 5816 } 5817 5818 // Otherwise, we couldn't allocate enough registers for this. 5819 } 5820 5821 /// visitInlineAsm - Handle a call to an InlineAsm object. 5822 /// 5823 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5824 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5825 5826 /// ConstraintOperands - Information about all of the constraints. 5827 SDISelAsmOperandInfoVector ConstraintOperands; 5828 5829 TargetLowering::AsmOperandInfoVector 5830 TargetConstraints = TLI.ParseConstraints(CS); 5831 5832 bool hasMemory = false; 5833 5834 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5835 unsigned ResNo = 0; // ResNo - The result number of the next output. 5836 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5837 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5838 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5839 5840 MVT OpVT = MVT::Other; 5841 5842 // Compute the value type for each operand. 5843 switch (OpInfo.Type) { 5844 case InlineAsm::isOutput: 5845 // Indirect outputs just consume an argument. 5846 if (OpInfo.isIndirect) { 5847 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5848 break; 5849 } 5850 5851 // The return value of the call is this value. As such, there is no 5852 // corresponding argument. 5853 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5854 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5855 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5856 } else { 5857 assert(ResNo == 0 && "Asm only has one result!"); 5858 OpVT = TLI.getSimpleValueType(CS.getType()); 5859 } 5860 ++ResNo; 5861 break; 5862 case InlineAsm::isInput: 5863 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5864 break; 5865 case InlineAsm::isClobber: 5866 // Nothing to do. 5867 break; 5868 } 5869 5870 // If this is an input or an indirect output, process the call argument. 5871 // BasicBlocks are labels, currently appearing only in asm's. 5872 if (OpInfo.CallOperandVal) { 5873 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5874 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5875 } else { 5876 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5877 } 5878 5879 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD). 5880 getSimpleVT(); 5881 } 5882 5883 OpInfo.ConstraintVT = OpVT; 5884 5885 // Indirect operand accesses access memory. 5886 if (OpInfo.isIndirect) 5887 hasMemory = true; 5888 else { 5889 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5890 TargetLowering::ConstraintType 5891 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5892 if (CType == TargetLowering::C_Memory) { 5893 hasMemory = true; 5894 break; 5895 } 5896 } 5897 } 5898 } 5899 5900 SDValue Chain, Flag; 5901 5902 // We won't need to flush pending loads if this asm doesn't touch 5903 // memory and is nonvolatile. 5904 if (hasMemory || IA->hasSideEffects()) 5905 Chain = getRoot(); 5906 else 5907 Chain = DAG.getRoot(); 5908 5909 // Second pass over the constraints: compute which constraint option to use 5910 // and assign registers to constraints that want a specific physreg. 5911 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5912 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5913 5914 // If this is an output operand with a matching input operand, look up the 5915 // matching input. If their types mismatch, e.g. one is an integer, the 5916 // other is floating point, or their sizes are different, flag it as an 5917 // error. 5918 if (OpInfo.hasMatchingInput()) { 5919 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5920 5921 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5922 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5923 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5924 OpInfo.ConstraintVT); 5925 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5926 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5927 Input.ConstraintVT); 5928 if ((OpInfo.ConstraintVT.isInteger() != 5929 Input.ConstraintVT.isInteger()) || 5930 (MatchRC.second != InputRC.second)) { 5931 report_fatal_error("Unsupported asm: input constraint" 5932 " with a matching output constraint of" 5933 " incompatible type!"); 5934 } 5935 Input.ConstraintVT = OpInfo.ConstraintVT; 5936 } 5937 } 5938 5939 // Compute the constraint code and ConstraintType to use. 5940 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5941 5942 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5943 OpInfo.Type == InlineAsm::isClobber) 5944 continue; 5945 5946 // If this is a memory input, and if the operand is not indirect, do what we 5947 // need to to provide an address for the memory input. 5948 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5949 !OpInfo.isIndirect) { 5950 assert((OpInfo.isMultipleAlternative || 5951 (OpInfo.Type == InlineAsm::isInput)) && 5952 "Can only indirectify direct input operands!"); 5953 5954 // Memory operands really want the address of the value. If we don't have 5955 // an indirect input, put it in the constpool if we can, otherwise spill 5956 // it to a stack slot. 5957 // TODO: This isn't quite right. We need to handle these according to 5958 // the addressing mode that the constraint wants. Also, this may take 5959 // an additional register for the computation and we don't want that 5960 // either. 5961 5962 // If the operand is a float, integer, or vector constant, spill to a 5963 // constant pool entry to get its address. 5964 const Value *OpVal = OpInfo.CallOperandVal; 5965 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5966 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5967 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5968 TLI.getPointerTy()); 5969 } else { 5970 // Otherwise, create a stack slot and emit a store to it before the 5971 // asm. 5972 Type *Ty = OpVal->getType(); 5973 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5974 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5975 MachineFunction &MF = DAG.getMachineFunction(); 5976 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5977 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5978 Chain = DAG.getStore(Chain, getCurSDLoc(), 5979 OpInfo.CallOperand, StackSlot, 5980 MachinePointerInfo::getFixedStack(SSFI), 5981 false, false, 0); 5982 OpInfo.CallOperand = StackSlot; 5983 } 5984 5985 // There is no longer a Value* corresponding to this operand. 5986 OpInfo.CallOperandVal = 0; 5987 5988 // It is now an indirect operand. 5989 OpInfo.isIndirect = true; 5990 } 5991 5992 // If this constraint is for a specific register, allocate it before 5993 // anything else. 5994 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5995 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5996 } 5997 5998 // Second pass - Loop over all of the operands, assigning virtual or physregs 5999 // to register class operands. 6000 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6001 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6002 6003 // C_Register operands have already been allocated, Other/Memory don't need 6004 // to be. 6005 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6006 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6007 } 6008 6009 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6010 std::vector<SDValue> AsmNodeOperands; 6011 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6012 AsmNodeOperands.push_back( 6013 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6014 TLI.getPointerTy())); 6015 6016 // If we have a !srcloc metadata node associated with it, we want to attach 6017 // this to the ultimately generated inline asm machineinstr. To do this, we 6018 // pass in the third operand as this (potentially null) inline asm MDNode. 6019 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6020 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6021 6022 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6023 // bits as operand 3. 6024 unsigned ExtraInfo = 0; 6025 if (IA->hasSideEffects()) 6026 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6027 if (IA->isAlignStack()) 6028 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6029 // Set the asm dialect. 6030 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6031 6032 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6033 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6034 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6035 6036 // Compute the constraint code and ConstraintType to use. 6037 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6038 6039 // Ideally, we would only check against memory constraints. However, the 6040 // meaning of an other constraint can be target-specific and we can't easily 6041 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6042 // for other constriants as well. 6043 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6044 OpInfo.ConstraintType == TargetLowering::C_Other) { 6045 if (OpInfo.Type == InlineAsm::isInput) 6046 ExtraInfo |= InlineAsm::Extra_MayLoad; 6047 else if (OpInfo.Type == InlineAsm::isOutput) 6048 ExtraInfo |= InlineAsm::Extra_MayStore; 6049 else if (OpInfo.Type == InlineAsm::isClobber) 6050 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6051 } 6052 } 6053 6054 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6055 TLI.getPointerTy())); 6056 6057 // Loop over all of the inputs, copying the operand values into the 6058 // appropriate registers and processing the output regs. 6059 RegsForValue RetValRegs; 6060 6061 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6062 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6063 6064 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6065 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6066 6067 switch (OpInfo.Type) { 6068 case InlineAsm::isOutput: { 6069 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6070 OpInfo.ConstraintType != TargetLowering::C_Register) { 6071 // Memory output, or 'other' output (e.g. 'X' constraint). 6072 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6073 6074 // Add information to the INLINEASM node to know about this output. 6075 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6076 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6077 TLI.getPointerTy())); 6078 AsmNodeOperands.push_back(OpInfo.CallOperand); 6079 break; 6080 } 6081 6082 // Otherwise, this is a register or register class output. 6083 6084 // Copy the output from the appropriate register. Find a register that 6085 // we can use. 6086 if (OpInfo.AssignedRegs.Regs.empty()) { 6087 LLVMContext &Ctx = *DAG.getContext(); 6088 Ctx.emitError(CS.getInstruction(), 6089 "couldn't allocate output register for constraint '" + 6090 Twine(OpInfo.ConstraintCode) + "'"); 6091 break; 6092 } 6093 6094 // If this is an indirect operand, store through the pointer after the 6095 // asm. 6096 if (OpInfo.isIndirect) { 6097 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6098 OpInfo.CallOperandVal)); 6099 } else { 6100 // This is the result value of the call. 6101 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6102 // Concatenate this output onto the outputs list. 6103 RetValRegs.append(OpInfo.AssignedRegs); 6104 } 6105 6106 // Add information to the INLINEASM node to know that this register is 6107 // set. 6108 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6109 InlineAsm::Kind_RegDefEarlyClobber : 6110 InlineAsm::Kind_RegDef, 6111 false, 6112 0, 6113 DAG, 6114 AsmNodeOperands); 6115 break; 6116 } 6117 case InlineAsm::isInput: { 6118 SDValue InOperandVal = OpInfo.CallOperand; 6119 6120 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6121 // If this is required to match an output register we have already set, 6122 // just use its register. 6123 unsigned OperandNo = OpInfo.getMatchedOperand(); 6124 6125 // Scan until we find the definition we already emitted of this operand. 6126 // When we find it, create a RegsForValue operand. 6127 unsigned CurOp = InlineAsm::Op_FirstOperand; 6128 for (; OperandNo; --OperandNo) { 6129 // Advance to the next operand. 6130 unsigned OpFlag = 6131 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6132 assert((InlineAsm::isRegDefKind(OpFlag) || 6133 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6134 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6135 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6136 } 6137 6138 unsigned OpFlag = 6139 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6140 if (InlineAsm::isRegDefKind(OpFlag) || 6141 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6142 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6143 if (OpInfo.isIndirect) { 6144 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6145 LLVMContext &Ctx = *DAG.getContext(); 6146 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6147 " don't know how to handle tied " 6148 "indirect register inputs"); 6149 report_fatal_error("Cannot handle indirect register inputs!"); 6150 } 6151 6152 RegsForValue MatchedRegs; 6153 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6154 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6155 MatchedRegs.RegVTs.push_back(RegVT); 6156 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6157 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6158 i != e; ++i) { 6159 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6160 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6161 else { 6162 LLVMContext &Ctx = *DAG.getContext(); 6163 Ctx.emitError(CS.getInstruction(), "inline asm error: This value" 6164 " type register class is not natively supported!"); 6165 report_fatal_error("inline asm error: This value type register " 6166 "class is not natively supported!"); 6167 } 6168 } 6169 // Use the produced MatchedRegs object to 6170 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6171 Chain, &Flag, CS.getInstruction()); 6172 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6173 true, OpInfo.getMatchedOperand(), 6174 DAG, AsmNodeOperands); 6175 break; 6176 } 6177 6178 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6179 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6180 "Unexpected number of operands"); 6181 // Add information to the INLINEASM node to know about this input. 6182 // See InlineAsm.h isUseOperandTiedToDef. 6183 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6184 OpInfo.getMatchedOperand()); 6185 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6186 TLI.getPointerTy())); 6187 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6188 break; 6189 } 6190 6191 // Treat indirect 'X' constraint as memory. 6192 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6193 OpInfo.isIndirect) 6194 OpInfo.ConstraintType = TargetLowering::C_Memory; 6195 6196 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6197 std::vector<SDValue> Ops; 6198 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6199 Ops, DAG); 6200 if (Ops.empty()) { 6201 LLVMContext &Ctx = *DAG.getContext(); 6202 Ctx.emitError(CS.getInstruction(), 6203 "invalid operand for inline asm constraint '" + 6204 Twine(OpInfo.ConstraintCode) + "'"); 6205 break; 6206 } 6207 6208 // Add information to the INLINEASM node to know about this input. 6209 unsigned ResOpType = 6210 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6211 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6212 TLI.getPointerTy())); 6213 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6214 break; 6215 } 6216 6217 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6218 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6219 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6220 "Memory operands expect pointer values"); 6221 6222 // Add information to the INLINEASM node to know about this input. 6223 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6224 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6225 TLI.getPointerTy())); 6226 AsmNodeOperands.push_back(InOperandVal); 6227 break; 6228 } 6229 6230 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6231 OpInfo.ConstraintType == TargetLowering::C_Register) && 6232 "Unknown constraint type!"); 6233 6234 // TODO: Support this. 6235 if (OpInfo.isIndirect) { 6236 LLVMContext &Ctx = *DAG.getContext(); 6237 Ctx.emitError(CS.getInstruction(), 6238 "Don't know how to handle indirect register inputs yet " 6239 "for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); 6240 break; 6241 } 6242 6243 // Copy the input into the appropriate registers. 6244 if (OpInfo.AssignedRegs.Regs.empty()) { 6245 LLVMContext &Ctx = *DAG.getContext(); 6246 Ctx.emitError(CS.getInstruction(), 6247 "couldn't allocate input reg for constraint '" + 6248 Twine(OpInfo.ConstraintCode) + "'"); 6249 break; 6250 } 6251 6252 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6253 Chain, &Flag, CS.getInstruction()); 6254 6255 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6256 DAG, AsmNodeOperands); 6257 break; 6258 } 6259 case InlineAsm::isClobber: { 6260 // Add the clobbered value to the operand list, so that the register 6261 // allocator is aware that the physreg got clobbered. 6262 if (!OpInfo.AssignedRegs.Regs.empty()) 6263 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6264 false, 0, DAG, 6265 AsmNodeOperands); 6266 break; 6267 } 6268 } 6269 } 6270 6271 // Finish up input operands. Set the input chain and add the flag last. 6272 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6273 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6274 6275 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6276 DAG.getVTList(MVT::Other, MVT::Glue), 6277 &AsmNodeOperands[0], AsmNodeOperands.size()); 6278 Flag = Chain.getValue(1); 6279 6280 // If this asm returns a register value, copy the result from that register 6281 // and set it as the value of the call. 6282 if (!RetValRegs.Regs.empty()) { 6283 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6284 Chain, &Flag, CS.getInstruction()); 6285 6286 // FIXME: Why don't we do this for inline asms with MRVs? 6287 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6288 EVT ResultType = TLI.getValueType(CS.getType()); 6289 6290 // If any of the results of the inline asm is a vector, it may have the 6291 // wrong width/num elts. This can happen for register classes that can 6292 // contain multiple different value types. The preg or vreg allocated may 6293 // not have the same VT as was expected. Convert it to the right type 6294 // with bit_convert. 6295 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6296 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6297 ResultType, Val); 6298 6299 } else if (ResultType != Val.getValueType() && 6300 ResultType.isInteger() && Val.getValueType().isInteger()) { 6301 // If a result value was tied to an input value, the computed result may 6302 // have a wider width than the expected result. Extract the relevant 6303 // portion. 6304 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6305 } 6306 6307 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6308 } 6309 6310 setValue(CS.getInstruction(), Val); 6311 // Don't need to use this as a chain in this case. 6312 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6313 return; 6314 } 6315 6316 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6317 6318 // Process indirect outputs, first output all of the flagged copies out of 6319 // physregs. 6320 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6321 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6322 const Value *Ptr = IndirectStoresToEmit[i].second; 6323 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6324 Chain, &Flag, IA); 6325 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6326 } 6327 6328 // Emit the non-flagged stores from the physregs. 6329 SmallVector<SDValue, 8> OutChains; 6330 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6331 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6332 StoresToEmit[i].first, 6333 getValue(StoresToEmit[i].second), 6334 MachinePointerInfo(StoresToEmit[i].second), 6335 false, false, 0); 6336 OutChains.push_back(Val); 6337 } 6338 6339 if (!OutChains.empty()) 6340 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 6341 &OutChains[0], OutChains.size()); 6342 6343 DAG.setRoot(Chain); 6344 } 6345 6346 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6347 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6348 MVT::Other, getRoot(), 6349 getValue(I.getArgOperand(0)), 6350 DAG.getSrcValue(I.getArgOperand(0)))); 6351 } 6352 6353 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6354 const DataLayout &TD = *TLI.getDataLayout(); 6355 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6356 getRoot(), getValue(I.getOperand(0)), 6357 DAG.getSrcValue(I.getOperand(0)), 6358 TD.getABITypeAlignment(I.getType())); 6359 setValue(&I, V); 6360 DAG.setRoot(V.getValue(1)); 6361 } 6362 6363 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6364 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6365 MVT::Other, getRoot(), 6366 getValue(I.getArgOperand(0)), 6367 DAG.getSrcValue(I.getArgOperand(0)))); 6368 } 6369 6370 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6371 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6372 MVT::Other, getRoot(), 6373 getValue(I.getArgOperand(0)), 6374 getValue(I.getArgOperand(1)), 6375 DAG.getSrcValue(I.getArgOperand(0)), 6376 DAG.getSrcValue(I.getArgOperand(1)))); 6377 } 6378 6379 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6380 /// implementation, which just calls LowerCall. 6381 /// FIXME: When all targets are 6382 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6383 std::pair<SDValue, SDValue> 6384 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6385 // Handle the incoming return values from the call. 6386 CLI.Ins.clear(); 6387 SmallVector<EVT, 4> RetTys; 6388 ComputeValueVTs(*this, CLI.RetTy, RetTys); 6389 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6390 EVT VT = RetTys[I]; 6391 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6392 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6393 for (unsigned i = 0; i != NumRegs; ++i) { 6394 ISD::InputArg MyFlags; 6395 MyFlags.VT = RegisterVT; 6396 MyFlags.Used = CLI.IsReturnValueUsed; 6397 if (CLI.RetSExt) 6398 MyFlags.Flags.setSExt(); 6399 if (CLI.RetZExt) 6400 MyFlags.Flags.setZExt(); 6401 if (CLI.IsInReg) 6402 MyFlags.Flags.setInReg(); 6403 CLI.Ins.push_back(MyFlags); 6404 } 6405 } 6406 6407 // Handle all of the outgoing arguments. 6408 CLI.Outs.clear(); 6409 CLI.OutVals.clear(); 6410 ArgListTy &Args = CLI.Args; 6411 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6412 SmallVector<EVT, 4> ValueVTs; 6413 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6414 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6415 Value != NumValues; ++Value) { 6416 EVT VT = ValueVTs[Value]; 6417 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6418 SDValue Op = SDValue(Args[i].Node.getNode(), 6419 Args[i].Node.getResNo() + Value); 6420 ISD::ArgFlagsTy Flags; 6421 unsigned OriginalAlignment = 6422 getDataLayout()->getABITypeAlignment(ArgTy); 6423 6424 if (Args[i].isZExt) 6425 Flags.setZExt(); 6426 if (Args[i].isSExt) 6427 Flags.setSExt(); 6428 if (Args[i].isInReg) 6429 Flags.setInReg(); 6430 if (Args[i].isSRet) 6431 Flags.setSRet(); 6432 if (Args[i].isByVal) { 6433 Flags.setByVal(); 6434 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6435 Type *ElementTy = Ty->getElementType(); 6436 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6437 // For ByVal, alignment should come from FE. BE will guess if this 6438 // info is not there but there are cases it cannot get right. 6439 unsigned FrameAlign; 6440 if (Args[i].Alignment) 6441 FrameAlign = Args[i].Alignment; 6442 else 6443 FrameAlign = getByValTypeAlignment(ElementTy); 6444 Flags.setByValAlign(FrameAlign); 6445 } 6446 if (Args[i].isNest) 6447 Flags.setNest(); 6448 Flags.setOrigAlign(OriginalAlignment); 6449 6450 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6451 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6452 SmallVector<SDValue, 4> Parts(NumParts); 6453 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6454 6455 if (Args[i].isSExt) 6456 ExtendKind = ISD::SIGN_EXTEND; 6457 else if (Args[i].isZExt) 6458 ExtendKind = ISD::ZERO_EXTEND; 6459 6460 // Conservatively only handle 'returned' on non-vectors for now 6461 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6462 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6463 "unexpected use of 'returned'"); 6464 // Before passing 'returned' to the target lowering code, ensure that 6465 // either the register MVT and the actual EVT are the same size or that 6466 // the return value and argument are extended in the same way; in these 6467 // cases it's safe to pass the argument register value unchanged as the 6468 // return register value (although it's at the target's option whether 6469 // to do so) 6470 // TODO: allow code generation to take advantage of partially preserved 6471 // registers rather than clobbering the entire register when the 6472 // parameter extension method is not compatible with the return 6473 // extension method 6474 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6475 (ExtendKind != ISD::ANY_EXTEND && 6476 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6477 Flags.setReturned(); 6478 } 6479 6480 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 6481 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); 6482 6483 for (unsigned j = 0; j != NumParts; ++j) { 6484 // if it isn't first piece, alignment must be 1 6485 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6486 i < CLI.NumFixedArgs, 6487 i, j*Parts[j].getValueType().getStoreSize()); 6488 if (NumParts > 1 && j == 0) 6489 MyFlags.Flags.setSplit(); 6490 else if (j != 0) 6491 MyFlags.Flags.setOrigAlign(1); 6492 6493 CLI.Outs.push_back(MyFlags); 6494 CLI.OutVals.push_back(Parts[j]); 6495 } 6496 } 6497 } 6498 6499 SmallVector<SDValue, 4> InVals; 6500 CLI.Chain = LowerCall(CLI, InVals); 6501 6502 // Verify that the target's LowerCall behaved as expected. 6503 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6504 "LowerCall didn't return a valid chain!"); 6505 assert((!CLI.IsTailCall || InVals.empty()) && 6506 "LowerCall emitted a return value for a tail call!"); 6507 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6508 "LowerCall didn't emit the correct number of values!"); 6509 6510 // For a tail call, the return value is merely live-out and there aren't 6511 // any nodes in the DAG representing it. Return a special value to 6512 // indicate that a tail call has been emitted and no more Instructions 6513 // should be processed in the current block. 6514 if (CLI.IsTailCall) { 6515 CLI.DAG.setRoot(CLI.Chain); 6516 return std::make_pair(SDValue(), SDValue()); 6517 } 6518 6519 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6520 assert(InVals[i].getNode() && 6521 "LowerCall emitted a null value!"); 6522 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6523 "LowerCall emitted a value with the wrong type!"); 6524 }); 6525 6526 // Collect the legal value parts into potentially illegal values 6527 // that correspond to the original function's return values. 6528 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6529 if (CLI.RetSExt) 6530 AssertOp = ISD::AssertSext; 6531 else if (CLI.RetZExt) 6532 AssertOp = ISD::AssertZext; 6533 SmallVector<SDValue, 4> ReturnValues; 6534 unsigned CurReg = 0; 6535 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6536 EVT VT = RetTys[I]; 6537 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6538 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6539 6540 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6541 NumRegs, RegisterVT, VT, NULL, 6542 AssertOp)); 6543 CurReg += NumRegs; 6544 } 6545 6546 // For a function returning void, there is no return value. We can't create 6547 // such a node, so we just return a null return value in that case. In 6548 // that case, nothing will actually look at the value. 6549 if (ReturnValues.empty()) 6550 return std::make_pair(SDValue(), CLI.Chain); 6551 6552 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6553 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 6554 &ReturnValues[0], ReturnValues.size()); 6555 return std::make_pair(Res, CLI.Chain); 6556 } 6557 6558 void TargetLowering::LowerOperationWrapper(SDNode *N, 6559 SmallVectorImpl<SDValue> &Results, 6560 SelectionDAG &DAG) const { 6561 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6562 if (Res.getNode()) 6563 Results.push_back(Res); 6564 } 6565 6566 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6567 llvm_unreachable("LowerOperation not implemented for this target!"); 6568 } 6569 6570 void 6571 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6572 SDValue Op = getNonRegisterValue(V); 6573 assert((Op.getOpcode() != ISD::CopyFromReg || 6574 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6575 "Copy from a reg to the same reg!"); 6576 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6577 6578 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6579 SDValue Chain = DAG.getEntryNode(); 6580 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V); 6581 PendingExports.push_back(Chain); 6582 } 6583 6584 #include "llvm/CodeGen/SelectionDAGISel.h" 6585 6586 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6587 /// entry block, return true. This includes arguments used by switches, since 6588 /// the switch may expand into multiple basic blocks. 6589 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6590 // With FastISel active, we may be splitting blocks, so force creation 6591 // of virtual registers for all non-dead arguments. 6592 if (FastISel) 6593 return A->use_empty(); 6594 6595 const BasicBlock *Entry = A->getParent()->begin(); 6596 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6597 UI != E; ++UI) { 6598 const User *U = *UI; 6599 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6600 return false; // Use not in entry block. 6601 } 6602 return true; 6603 } 6604 6605 void SelectionDAGISel::LowerArguments(const Function &F) { 6606 SelectionDAG &DAG = SDB->DAG; 6607 SDLoc dl = SDB->getCurSDLoc(); 6608 const DataLayout *TD = TLI->getDataLayout(); 6609 SmallVector<ISD::InputArg, 16> Ins; 6610 6611 if (!FuncInfo->CanLowerReturn) { 6612 // Put in an sret pointer parameter before all the other parameters. 6613 SmallVector<EVT, 1> ValueVTs; 6614 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6615 6616 // NOTE: Assuming that a pointer will never break down to more than one VT 6617 // or one register. 6618 ISD::ArgFlagsTy Flags; 6619 Flags.setSRet(); 6620 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 6621 ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0); 6622 Ins.push_back(RetArg); 6623 } 6624 6625 // Set up the incoming argument description vector. 6626 unsigned Idx = 1; 6627 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6628 I != E; ++I, ++Idx) { 6629 SmallVector<EVT, 4> ValueVTs; 6630 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 6631 bool isArgValueUsed = !I->use_empty(); 6632 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6633 Value != NumValues; ++Value) { 6634 EVT VT = ValueVTs[Value]; 6635 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6636 ISD::ArgFlagsTy Flags; 6637 unsigned OriginalAlignment = 6638 TD->getABITypeAlignment(ArgTy); 6639 6640 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 6641 Flags.setZExt(); 6642 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 6643 Flags.setSExt(); 6644 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 6645 Flags.setInReg(); 6646 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 6647 Flags.setSRet(); 6648 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) { 6649 Flags.setByVal(); 6650 PointerType *Ty = cast<PointerType>(I->getType()); 6651 Type *ElementTy = Ty->getElementType(); 6652 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6653 // For ByVal, alignment should be passed from FE. BE will guess if 6654 // this info is not there but there are cases it cannot get right. 6655 unsigned FrameAlign; 6656 if (F.getParamAlignment(Idx)) 6657 FrameAlign = F.getParamAlignment(Idx); 6658 else 6659 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 6660 Flags.setByValAlign(FrameAlign); 6661 } 6662 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 6663 Flags.setNest(); 6664 Flags.setOrigAlign(OriginalAlignment); 6665 6666 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 6667 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 6668 for (unsigned i = 0; i != NumRegs; ++i) { 6669 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed, 6670 Idx-1, i*RegisterVT.getStoreSize()); 6671 if (NumRegs > 1 && i == 0) 6672 MyFlags.Flags.setSplit(); 6673 // if it isn't first piece, alignment must be 1 6674 else if (i > 0) 6675 MyFlags.Flags.setOrigAlign(1); 6676 Ins.push_back(MyFlags); 6677 } 6678 } 6679 } 6680 6681 // Call the target to set up the argument values. 6682 SmallVector<SDValue, 8> InVals; 6683 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6684 F.isVarArg(), Ins, 6685 dl, DAG, InVals); 6686 6687 // Verify that the target's LowerFormalArguments behaved as expected. 6688 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6689 "LowerFormalArguments didn't return a valid chain!"); 6690 assert(InVals.size() == Ins.size() && 6691 "LowerFormalArguments didn't emit the correct number of values!"); 6692 DEBUG({ 6693 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6694 assert(InVals[i].getNode() && 6695 "LowerFormalArguments emitted a null value!"); 6696 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6697 "LowerFormalArguments emitted a value with the wrong type!"); 6698 } 6699 }); 6700 6701 // Update the DAG with the new chain value resulting from argument lowering. 6702 DAG.setRoot(NewRoot); 6703 6704 // Set up the argument values. 6705 unsigned i = 0; 6706 Idx = 1; 6707 if (!FuncInfo->CanLowerReturn) { 6708 // Create a virtual register for the sret pointer, and put in a copy 6709 // from the sret argument into it. 6710 SmallVector<EVT, 1> ValueVTs; 6711 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6712 MVT VT = ValueVTs[0].getSimpleVT(); 6713 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 6714 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6715 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6716 RegVT, VT, NULL, AssertOp); 6717 6718 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6719 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6720 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 6721 FuncInfo->DemoteRegister = SRetReg; 6722 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 6723 SRetReg, ArgValue); 6724 DAG.setRoot(NewRoot); 6725 6726 // i indexes lowered arguments. Bump it past the hidden sret argument. 6727 // Idx indexes LLVM arguments. Don't touch it. 6728 ++i; 6729 } 6730 6731 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6732 ++I, ++Idx) { 6733 SmallVector<SDValue, 4> ArgValues; 6734 SmallVector<EVT, 4> ValueVTs; 6735 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 6736 unsigned NumValues = ValueVTs.size(); 6737 6738 // If this argument is unused then remember its value. It is used to generate 6739 // debugging information. 6740 if (I->use_empty() && NumValues) { 6741 SDB->setUnusedArgValue(I, InVals[i]); 6742 6743 // Also remember any frame index for use in FastISel. 6744 if (FrameIndexSDNode *FI = 6745 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 6746 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6747 } 6748 6749 for (unsigned Val = 0; Val != NumValues; ++Val) { 6750 EVT VT = ValueVTs[Val]; 6751 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 6752 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 6753 6754 if (!I->use_empty()) { 6755 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6756 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 6757 AssertOp = ISD::AssertSext; 6758 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 6759 AssertOp = ISD::AssertZext; 6760 6761 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6762 NumParts, PartVT, VT, 6763 NULL, AssertOp)); 6764 } 6765 6766 i += NumParts; 6767 } 6768 6769 // We don't need to do anything else for unused arguments. 6770 if (ArgValues.empty()) 6771 continue; 6772 6773 // Note down frame index. 6774 if (FrameIndexSDNode *FI = 6775 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6776 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6777 6778 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6779 SDB->getCurSDLoc()); 6780 6781 SDB->setValue(I, Res); 6782 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6783 if (LoadSDNode *LNode = 6784 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6785 if (FrameIndexSDNode *FI = 6786 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6787 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6788 } 6789 6790 // If this argument is live outside of the entry block, insert a copy from 6791 // wherever we got it to the vreg that other BB's will reference it as. 6792 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6793 // If we can, though, try to skip creating an unnecessary vreg. 6794 // FIXME: This isn't very clean... it would be nice to make this more 6795 // general. It's also subtly incompatible with the hacks FastISel 6796 // uses with vregs. 6797 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6798 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6799 FuncInfo->ValueMap[I] = Reg; 6800 continue; 6801 } 6802 } 6803 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6804 FuncInfo->InitializeRegForValue(I); 6805 SDB->CopyToExportRegsIfNeeded(I); 6806 } 6807 } 6808 6809 assert(i == InVals.size() && "Argument register count mismatch!"); 6810 6811 // Finally, if the target has anything special to do, allow it to do so. 6812 // FIXME: this should insert code into the DAG! 6813 EmitFunctionEntryCode(); 6814 } 6815 6816 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6817 /// ensure constants are generated when needed. Remember the virtual registers 6818 /// that need to be added to the Machine PHI nodes as input. We cannot just 6819 /// directly add them, because expansion might result in multiple MBB's for one 6820 /// BB. As such, the start of the BB might correspond to a different MBB than 6821 /// the end. 6822 /// 6823 void 6824 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6825 const TerminatorInst *TI = LLVMBB->getTerminator(); 6826 6827 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6828 6829 // Check successor nodes' PHI nodes that expect a constant to be available 6830 // from this block. 6831 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6832 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6833 if (!isa<PHINode>(SuccBB->begin())) continue; 6834 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6835 6836 // If this terminator has multiple identical successors (common for 6837 // switches), only handle each succ once. 6838 if (!SuccsHandled.insert(SuccMBB)) continue; 6839 6840 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6841 6842 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6843 // nodes and Machine PHI nodes, but the incoming operands have not been 6844 // emitted yet. 6845 for (BasicBlock::const_iterator I = SuccBB->begin(); 6846 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6847 // Ignore dead phi's. 6848 if (PN->use_empty()) continue; 6849 6850 // Skip empty types 6851 if (PN->getType()->isEmptyTy()) 6852 continue; 6853 6854 unsigned Reg; 6855 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6856 6857 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6858 unsigned &RegOut = ConstantsOut[C]; 6859 if (RegOut == 0) { 6860 RegOut = FuncInfo.CreateRegs(C->getType()); 6861 CopyValueToVirtualRegister(C, RegOut); 6862 } 6863 Reg = RegOut; 6864 } else { 6865 DenseMap<const Value *, unsigned>::iterator I = 6866 FuncInfo.ValueMap.find(PHIOp); 6867 if (I != FuncInfo.ValueMap.end()) 6868 Reg = I->second; 6869 else { 6870 assert(isa<AllocaInst>(PHIOp) && 6871 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6872 "Didn't codegen value into a register!??"); 6873 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6874 CopyValueToVirtualRegister(PHIOp, Reg); 6875 } 6876 } 6877 6878 // Remember that this register needs to added to the machine PHI node as 6879 // the input for this MBB. 6880 SmallVector<EVT, 4> ValueVTs; 6881 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6882 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6883 EVT VT = ValueVTs[vti]; 6884 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6885 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6886 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6887 Reg += NumRegisters; 6888 } 6889 } 6890 } 6891 ConstantsOut.clear(); 6892 } 6893