1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 524 525 bool Smaller = ValueVT.bitsLE(PartVT); 526 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 527 DL, PartVT, Val); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 552 IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), 554 TLI.getVectorIdxTy())); 555 else 556 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 557 IntermediateVT, Val, 558 DAG.getConstant(i, TLI.getVectorIdxTy())); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 namespace { 580 /// RegsForValue - This struct represents the registers (physical or virtual) 581 /// that a particular set of values is assigned, and the type information 582 /// about the value. The most common situation is to represent one value at a 583 /// time, but struct or array values are handled element-wise as multiple 584 /// values. The splitting of aggregates is performed recursively, so that we 585 /// never have aggregate-typed registers. The values at this point do not 586 /// necessarily have legal types, so each value may require one or more 587 /// registers of some legal type. 588 /// 589 struct RegsForValue { 590 /// ValueVTs - The value types of the values, which may not be legal, and 591 /// may need be promoted or synthesized from one or more registers. 592 /// 593 SmallVector<EVT, 4> ValueVTs; 594 595 /// RegVTs - The value types of the registers. This is the same size as 596 /// ValueVTs and it records, for each value, what the type of the assigned 597 /// register or registers are. (Individual values are never synthesized 598 /// from more than one type of register.) 599 /// 600 /// With virtual registers, the contents of RegVTs is redundant with TLI's 601 /// getRegisterType member function, however when with physical registers 602 /// it is necessary to have a separate record of the types. 603 /// 604 SmallVector<MVT, 4> RegVTs; 605 606 /// Regs - This list holds the registers assigned to the values. 607 /// Each legal or promoted value requires one register, and each 608 /// expanded value requires multiple registers. 609 /// 610 SmallVector<unsigned, 4> Regs; 611 612 RegsForValue() {} 613 614 RegsForValue(const SmallVector<unsigned, 4> ®s, 615 MVT regvt, EVT valuevt) 616 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 617 618 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 619 unsigned Reg, Type *Ty) { 620 ComputeValueVTs(tli, Ty, ValueVTs); 621 622 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 623 EVT ValueVT = ValueVTs[Value]; 624 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 625 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 626 for (unsigned i = 0; i != NumRegs; ++i) 627 Regs.push_back(Reg + i); 628 RegVTs.push_back(RegisterVT); 629 Reg += NumRegs; 630 } 631 } 632 633 /// append - Add the specified values to this one. 634 void append(const RegsForValue &RHS) { 635 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 636 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 637 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 638 } 639 640 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 641 /// this value and returns the result as a ValueVTs value. This uses 642 /// Chain/Flag as the input and updates them for the output Chain/Flag. 643 /// If the Flag pointer is NULL, no flag is used. 644 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 645 SDLoc dl, 646 SDValue &Chain, SDValue *Flag, 647 const Value *V = nullptr) const; 648 649 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 650 /// specified value into the registers specified by this object. This uses 651 /// Chain/Flag as the input and updates them for the output Chain/Flag. 652 /// If the Flag pointer is NULL, no flag is used. 653 void 654 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 655 SDValue *Flag, const Value *V, 656 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 657 658 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 659 /// operand list. This adds the code marker, matching input operand index 660 /// (if applicable), and includes the number of values added into it. 661 void AddInlineAsmOperands(unsigned Kind, 662 bool HasMatching, unsigned MatchingIdx, 663 SelectionDAG &DAG, 664 std::vector<SDValue> &Ops) const; 665 }; 666 } 667 668 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 669 /// this value and returns the result as a ValueVT value. This uses 670 /// Chain/Flag as the input and updates them for the output Chain/Flag. 671 /// If the Flag pointer is NULL, no flag is used. 672 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 673 FunctionLoweringInfo &FuncInfo, 674 SDLoc dl, 675 SDValue &Chain, SDValue *Flag, 676 const Value *V) const { 677 // A Value with type {} or [0 x %t] needs no registers. 678 if (ValueVTs.empty()) 679 return SDValue(); 680 681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 682 683 // Assemble the legal parts into the final values. 684 SmallVector<SDValue, 4> Values(ValueVTs.size()); 685 SmallVector<SDValue, 8> Parts; 686 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 687 // Copy the legal parts from the registers. 688 EVT ValueVT = ValueVTs[Value]; 689 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 690 MVT RegisterVT = RegVTs[Value]; 691 692 Parts.resize(NumRegs); 693 for (unsigned i = 0; i != NumRegs; ++i) { 694 SDValue P; 695 if (!Flag) { 696 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 697 } else { 698 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 699 *Flag = P.getValue(2); 700 } 701 702 Chain = P.getValue(1); 703 Parts[i] = P; 704 705 // If the source register was virtual and if we know something about it, 706 // add an assert node. 707 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 708 !RegisterVT.isInteger() || RegisterVT.isVector()) 709 continue; 710 711 const FunctionLoweringInfo::LiveOutInfo *LOI = 712 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 713 if (!LOI) 714 continue; 715 716 unsigned RegSize = RegisterVT.getSizeInBits(); 717 unsigned NumSignBits = LOI->NumSignBits; 718 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 719 720 if (NumZeroBits == RegSize) { 721 // The current value is a zero. 722 // Explicitly express that as it would be easier for 723 // optimizations to kick in. 724 Parts[i] = DAG.getConstant(0, RegisterVT); 725 continue; 726 } 727 728 // FIXME: We capture more information than the dag can represent. For 729 // now, just use the tightest assertzext/assertsext possible. 730 bool isSExt = true; 731 EVT FromVT(MVT::Other); 732 if (NumSignBits == RegSize) 733 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 734 else if (NumZeroBits >= RegSize-1) 735 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 736 else if (NumSignBits > RegSize-8) 737 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 738 else if (NumZeroBits >= RegSize-8) 739 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 740 else if (NumSignBits > RegSize-16) 741 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 742 else if (NumZeroBits >= RegSize-16) 743 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 744 else if (NumSignBits > RegSize-32) 745 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 746 else if (NumZeroBits >= RegSize-32) 747 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 748 else 749 continue; 750 751 // Add an assertion node. 752 assert(FromVT != MVT::Other); 753 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 754 RegisterVT, P, DAG.getValueType(FromVT)); 755 } 756 757 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 758 NumRegs, RegisterVT, ValueVT, V); 759 Part += NumRegs; 760 Parts.clear(); 761 } 762 763 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 764 } 765 766 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 767 /// specified value into the registers specified by this object. This uses 768 /// Chain/Flag as the input and updates them for the output Chain/Flag. 769 /// If the Flag pointer is NULL, no flag is used. 770 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 771 SDValue &Chain, SDValue *Flag, const Value *V, 772 ISD::NodeType PreferredExtendType) const { 773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 774 ISD::NodeType ExtendKind = PreferredExtendType; 775 776 // Get the list of the values's legal parts. 777 unsigned NumRegs = Regs.size(); 778 SmallVector<SDValue, 8> Parts(NumRegs); 779 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 780 EVT ValueVT = ValueVTs[Value]; 781 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 782 MVT RegisterVT = RegVTs[Value]; 783 784 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 785 ExtendKind = ISD::ZERO_EXTEND; 786 787 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 788 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 789 Part += NumParts; 790 } 791 792 // Copy the parts into the registers. 793 SmallVector<SDValue, 8> Chains(NumRegs); 794 for (unsigned i = 0; i != NumRegs; ++i) { 795 SDValue Part; 796 if (!Flag) { 797 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 798 } else { 799 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 800 *Flag = Part.getValue(1); 801 } 802 803 Chains[i] = Part.getValue(0); 804 } 805 806 if (NumRegs == 1 || Flag) 807 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 808 // flagged to it. That is the CopyToReg nodes and the user are considered 809 // a single scheduling unit. If we create a TokenFactor and return it as 810 // chain, then the TokenFactor is both a predecessor (operand) of the 811 // user as well as a successor (the TF operands are flagged to the user). 812 // c1, f1 = CopyToReg 813 // c2, f2 = CopyToReg 814 // c3 = TokenFactor c1, c2 815 // ... 816 // = op c3, ..., f2 817 Chain = Chains[NumRegs-1]; 818 else 819 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 820 } 821 822 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 823 /// operand list. This adds the code marker and includes the number of 824 /// values added into it. 825 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 826 unsigned MatchingIdx, 827 SelectionDAG &DAG, 828 std::vector<SDValue> &Ops) const { 829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 830 831 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 832 if (HasMatching) 833 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 834 else if (!Regs.empty() && 835 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 836 // Put the register class of the virtual registers in the flag word. That 837 // way, later passes can recompute register class constraints for inline 838 // assembly as well as normal instructions. 839 // Don't do this for tied operands that can use the regclass information 840 // from the def. 841 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 842 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 843 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 844 } 845 846 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 847 Ops.push_back(Res); 848 849 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 850 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 851 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 852 MVT RegisterVT = RegVTs[Value]; 853 for (unsigned i = 0; i != NumRegs; ++i) { 854 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 855 unsigned TheReg = Regs[Reg++]; 856 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 857 858 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 859 // If we clobbered the stack pointer, MFI should know about it. 860 assert(DAG.getMachineFunction().getFrameInfo()-> 861 hasInlineAsmWithSPAdjust()); 862 } 863 } 864 } 865 } 866 867 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 868 const TargetLibraryInfo *li) { 869 AA = &aa; 870 GFI = gfi; 871 LibInfo = li; 872 DL = DAG.getTarget().getDataLayout(); 873 Context = DAG.getContext(); 874 LPadToCallSiteMap.clear(); 875 } 876 877 /// clear - Clear out the current SelectionDAG and the associated 878 /// state and prepare this SelectionDAGBuilder object to be used 879 /// for a new block. This doesn't clear out information about 880 /// additional blocks that are needed to complete switch lowering 881 /// or PHI node updating; that information is cleared out as it is 882 /// consumed. 883 void SelectionDAGBuilder::clear() { 884 NodeMap.clear(); 885 UnusedArgNodeMap.clear(); 886 PendingLoads.clear(); 887 PendingExports.clear(); 888 CurInst = nullptr; 889 HasTailCall = false; 890 SDNodeOrder = LowestSDNodeOrder; 891 StatepointLowering.clear(); 892 } 893 894 /// clearDanglingDebugInfo - Clear the dangling debug information 895 /// map. This function is separated from the clear so that debug 896 /// information that is dangling in a basic block can be properly 897 /// resolved in a different basic block. This allows the 898 /// SelectionDAG to resolve dangling debug information attached 899 /// to PHI nodes. 900 void SelectionDAGBuilder::clearDanglingDebugInfo() { 901 DanglingDebugInfoMap.clear(); 902 } 903 904 /// getRoot - Return the current virtual root of the Selection DAG, 905 /// flushing any PendingLoad items. This must be done before emitting 906 /// a store or any other node that may need to be ordered after any 907 /// prior load instructions. 908 /// 909 SDValue SelectionDAGBuilder::getRoot() { 910 if (PendingLoads.empty()) 911 return DAG.getRoot(); 912 913 if (PendingLoads.size() == 1) { 914 SDValue Root = PendingLoads[0]; 915 DAG.setRoot(Root); 916 PendingLoads.clear(); 917 return Root; 918 } 919 920 // Otherwise, we have to make a token factor node. 921 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 922 PendingLoads); 923 PendingLoads.clear(); 924 DAG.setRoot(Root); 925 return Root; 926 } 927 928 /// getControlRoot - Similar to getRoot, but instead of flushing all the 929 /// PendingLoad items, flush all the PendingExports items. It is necessary 930 /// to do this before emitting a terminator instruction. 931 /// 932 SDValue SelectionDAGBuilder::getControlRoot() { 933 SDValue Root = DAG.getRoot(); 934 935 if (PendingExports.empty()) 936 return Root; 937 938 // Turn all of the CopyToReg chains into one factored node. 939 if (Root.getOpcode() != ISD::EntryToken) { 940 unsigned i = 0, e = PendingExports.size(); 941 for (; i != e; ++i) { 942 assert(PendingExports[i].getNode()->getNumOperands() > 1); 943 if (PendingExports[i].getNode()->getOperand(0) == Root) 944 break; // Don't add the root if we already indirectly depend on it. 945 } 946 947 if (i == e) 948 PendingExports.push_back(Root); 949 } 950 951 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 952 PendingExports); 953 PendingExports.clear(); 954 DAG.setRoot(Root); 955 return Root; 956 } 957 958 void SelectionDAGBuilder::visit(const Instruction &I) { 959 // Set up outgoing PHI node register values before emitting the terminator. 960 if (isa<TerminatorInst>(&I)) 961 HandlePHINodesInSuccessorBlocks(I.getParent()); 962 963 ++SDNodeOrder; 964 965 CurInst = &I; 966 967 visit(I.getOpcode(), I); 968 969 if (!isa<TerminatorInst>(&I) && !HasTailCall) 970 CopyToExportRegsIfNeeded(&I); 971 972 CurInst = nullptr; 973 } 974 975 void SelectionDAGBuilder::visitPHI(const PHINode &) { 976 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 977 } 978 979 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 980 // Note: this doesn't use InstVisitor, because it has to work with 981 // ConstantExpr's in addition to instructions. 982 switch (Opcode) { 983 default: llvm_unreachable("Unknown instruction type encountered!"); 984 // Build the switch statement using the Instruction.def file. 985 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 986 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 987 #include "llvm/IR/Instruction.def" 988 } 989 } 990 991 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 992 // generate the debug data structures now that we've seen its definition. 993 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 994 SDValue Val) { 995 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 996 if (DDI.getDI()) { 997 const DbgValueInst *DI = DDI.getDI(); 998 DebugLoc dl = DDI.getdl(); 999 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1000 MDNode *Variable = DI->getVariable(); 1001 MDNode *Expr = DI->getExpression(); 1002 uint64_t Offset = DI->getOffset(); 1003 // A dbg.value for an alloca is always indirect. 1004 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1005 SDDbgValue *SDV; 1006 if (Val.getNode()) { 1007 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1008 Val)) { 1009 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1010 IsIndirect, Offset, dl, DbgSDNodeOrder); 1011 DAG.AddDbgValue(SDV, Val.getNode(), false); 1012 } 1013 } else 1014 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1015 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1016 } 1017 } 1018 1019 /// getCopyFromRegs - If there was virtual register allocated for the value V 1020 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1021 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1022 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1023 SDValue res; 1024 1025 if (It != FuncInfo.ValueMap.end()) { 1026 unsigned InReg = It->second; 1027 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1028 Ty); 1029 SDValue Chain = DAG.getEntryNode(); 1030 res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1031 resolveDanglingDebugInfo(V, res); 1032 } 1033 1034 return res; 1035 } 1036 1037 /// getValue - Return an SDValue for the given Value. 1038 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1039 // If we already have an SDValue for this value, use it. It's important 1040 // to do this first, so that we don't create a CopyFromReg if we already 1041 // have a regular SDValue. 1042 SDValue &N = NodeMap[V]; 1043 if (N.getNode()) return N; 1044 1045 // If there's a virtual register allocated and initialized for this 1046 // value, use it. 1047 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 1048 if (copyFromReg.getNode()) { 1049 return copyFromReg; 1050 } 1051 1052 // Otherwise create a new SDValue and remember it. 1053 SDValue Val = getValueImpl(V); 1054 NodeMap[V] = Val; 1055 resolveDanglingDebugInfo(V, Val); 1056 return Val; 1057 } 1058 1059 /// getNonRegisterValue - Return an SDValue for the given Value, but 1060 /// don't look in FuncInfo.ValueMap for a virtual register. 1061 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1062 // If we already have an SDValue for this value, use it. 1063 SDValue &N = NodeMap[V]; 1064 if (N.getNode()) return N; 1065 1066 // Otherwise create a new SDValue and remember it. 1067 SDValue Val = getValueImpl(V); 1068 NodeMap[V] = Val; 1069 resolveDanglingDebugInfo(V, Val); 1070 return Val; 1071 } 1072 1073 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1074 /// Create an SDValue for the given value. 1075 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1077 1078 if (const Constant *C = dyn_cast<Constant>(V)) { 1079 EVT VT = TLI.getValueType(V->getType(), true); 1080 1081 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1082 return DAG.getConstant(*CI, VT); 1083 1084 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1085 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1086 1087 if (isa<ConstantPointerNull>(C)) { 1088 unsigned AS = V->getType()->getPointerAddressSpace(); 1089 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1090 } 1091 1092 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1093 return DAG.getConstantFP(*CFP, VT); 1094 1095 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1096 return DAG.getUNDEF(VT); 1097 1098 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1099 visit(CE->getOpcode(), *CE); 1100 SDValue N1 = NodeMap[V]; 1101 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1102 return N1; 1103 } 1104 1105 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1106 SmallVector<SDValue, 4> Constants; 1107 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1108 OI != OE; ++OI) { 1109 SDNode *Val = getValue(*OI).getNode(); 1110 // If the operand is an empty aggregate, there are no values. 1111 if (!Val) continue; 1112 // Add each leaf value from the operand to the Constants list 1113 // to form a flattened list of all the values. 1114 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1115 Constants.push_back(SDValue(Val, i)); 1116 } 1117 1118 return DAG.getMergeValues(Constants, getCurSDLoc()); 1119 } 1120 1121 if (const ConstantDataSequential *CDS = 1122 dyn_cast<ConstantDataSequential>(C)) { 1123 SmallVector<SDValue, 4> Ops; 1124 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1125 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1126 // Add each leaf value from the operand to the Constants list 1127 // to form a flattened list of all the values. 1128 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1129 Ops.push_back(SDValue(Val, i)); 1130 } 1131 1132 if (isa<ArrayType>(CDS->getType())) 1133 return DAG.getMergeValues(Ops, getCurSDLoc()); 1134 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1135 VT, Ops); 1136 } 1137 1138 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1139 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1140 "Unknown struct or array constant!"); 1141 1142 SmallVector<EVT, 4> ValueVTs; 1143 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1144 unsigned NumElts = ValueVTs.size(); 1145 if (NumElts == 0) 1146 return SDValue(); // empty struct 1147 SmallVector<SDValue, 4> Constants(NumElts); 1148 for (unsigned i = 0; i != NumElts; ++i) { 1149 EVT EltVT = ValueVTs[i]; 1150 if (isa<UndefValue>(C)) 1151 Constants[i] = DAG.getUNDEF(EltVT); 1152 else if (EltVT.isFloatingPoint()) 1153 Constants[i] = DAG.getConstantFP(0, EltVT); 1154 else 1155 Constants[i] = DAG.getConstant(0, EltVT); 1156 } 1157 1158 return DAG.getMergeValues(Constants, getCurSDLoc()); 1159 } 1160 1161 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1162 return DAG.getBlockAddress(BA, VT); 1163 1164 VectorType *VecTy = cast<VectorType>(V->getType()); 1165 unsigned NumElements = VecTy->getNumElements(); 1166 1167 // Now that we know the number and type of the elements, get that number of 1168 // elements into the Ops array based on what kind of constant it is. 1169 SmallVector<SDValue, 16> Ops; 1170 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1171 for (unsigned i = 0; i != NumElements; ++i) 1172 Ops.push_back(getValue(CV->getOperand(i))); 1173 } else { 1174 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1175 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1176 1177 SDValue Op; 1178 if (EltVT.isFloatingPoint()) 1179 Op = DAG.getConstantFP(0, EltVT); 1180 else 1181 Op = DAG.getConstant(0, EltVT); 1182 Ops.assign(NumElements, Op); 1183 } 1184 1185 // Create a BUILD_VECTOR node. 1186 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1187 } 1188 1189 // If this is a static alloca, generate it as the frameindex instead of 1190 // computation. 1191 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1192 DenseMap<const AllocaInst*, int>::iterator SI = 1193 FuncInfo.StaticAllocaMap.find(AI); 1194 if (SI != FuncInfo.StaticAllocaMap.end()) 1195 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1196 } 1197 1198 // If this is an instruction which fast-isel has deferred, select it now. 1199 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1200 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1201 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1202 SDValue Chain = DAG.getEntryNode(); 1203 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1204 } 1205 1206 llvm_unreachable("Can't get register for value!"); 1207 } 1208 1209 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1211 SDValue Chain = getControlRoot(); 1212 SmallVector<ISD::OutputArg, 8> Outs; 1213 SmallVector<SDValue, 8> OutVals; 1214 1215 if (!FuncInfo.CanLowerReturn) { 1216 unsigned DemoteReg = FuncInfo.DemoteRegister; 1217 const Function *F = I.getParent()->getParent(); 1218 1219 // Emit a store of the return value through the virtual register. 1220 // Leave Outs empty so that LowerReturn won't try to load return 1221 // registers the usual way. 1222 SmallVector<EVT, 1> PtrValueVTs; 1223 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1224 PtrValueVTs); 1225 1226 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1227 SDValue RetOp = getValue(I.getOperand(0)); 1228 1229 SmallVector<EVT, 4> ValueVTs; 1230 SmallVector<uint64_t, 4> Offsets; 1231 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1232 unsigned NumValues = ValueVTs.size(); 1233 1234 SmallVector<SDValue, 4> Chains(NumValues); 1235 for (unsigned i = 0; i != NumValues; ++i) { 1236 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1237 RetPtr.getValueType(), RetPtr, 1238 DAG.getIntPtrConstant(Offsets[i])); 1239 Chains[i] = 1240 DAG.getStore(Chain, getCurSDLoc(), 1241 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1242 // FIXME: better loc info would be nice. 1243 Add, MachinePointerInfo(), false, false, 0); 1244 } 1245 1246 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1247 MVT::Other, Chains); 1248 } else if (I.getNumOperands() != 0) { 1249 SmallVector<EVT, 4> ValueVTs; 1250 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1251 unsigned NumValues = ValueVTs.size(); 1252 if (NumValues) { 1253 SDValue RetOp = getValue(I.getOperand(0)); 1254 1255 const Function *F = I.getParent()->getParent(); 1256 1257 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1258 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1259 Attribute::SExt)) 1260 ExtendKind = ISD::SIGN_EXTEND; 1261 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1262 Attribute::ZExt)) 1263 ExtendKind = ISD::ZERO_EXTEND; 1264 1265 LLVMContext &Context = F->getContext(); 1266 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1267 Attribute::InReg); 1268 1269 for (unsigned j = 0; j != NumValues; ++j) { 1270 EVT VT = ValueVTs[j]; 1271 1272 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1273 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1274 1275 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1276 MVT PartVT = TLI.getRegisterType(Context, VT); 1277 SmallVector<SDValue, 4> Parts(NumParts); 1278 getCopyToParts(DAG, getCurSDLoc(), 1279 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1280 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1281 1282 // 'inreg' on function refers to return value 1283 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1284 if (RetInReg) 1285 Flags.setInReg(); 1286 1287 // Propagate extension type if any 1288 if (ExtendKind == ISD::SIGN_EXTEND) 1289 Flags.setSExt(); 1290 else if (ExtendKind == ISD::ZERO_EXTEND) 1291 Flags.setZExt(); 1292 1293 for (unsigned i = 0; i < NumParts; ++i) { 1294 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1295 VT, /*isfixed=*/true, 0, 0)); 1296 OutVals.push_back(Parts[i]); 1297 } 1298 } 1299 } 1300 } 1301 1302 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1303 CallingConv::ID CallConv = 1304 DAG.getMachineFunction().getFunction()->getCallingConv(); 1305 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1306 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1307 1308 // Verify that the target's LowerReturn behaved as expected. 1309 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1310 "LowerReturn didn't return a valid chain!"); 1311 1312 // Update the DAG with the new chain value resulting from return lowering. 1313 DAG.setRoot(Chain); 1314 } 1315 1316 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1317 /// created for it, emit nodes to copy the value into the virtual 1318 /// registers. 1319 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1320 // Skip empty types 1321 if (V->getType()->isEmptyTy()) 1322 return; 1323 1324 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1325 if (VMI != FuncInfo.ValueMap.end()) { 1326 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1327 CopyValueToVirtualRegister(V, VMI->second); 1328 } 1329 } 1330 1331 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1332 /// the current basic block, add it to ValueMap now so that we'll get a 1333 /// CopyTo/FromReg. 1334 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1335 // No need to export constants. 1336 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1337 1338 // Already exported? 1339 if (FuncInfo.isExportedInst(V)) return; 1340 1341 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1342 CopyValueToVirtualRegister(V, Reg); 1343 } 1344 1345 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1346 const BasicBlock *FromBB) { 1347 // The operands of the setcc have to be in this block. We don't know 1348 // how to export them from some other block. 1349 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1350 // Can export from current BB. 1351 if (VI->getParent() == FromBB) 1352 return true; 1353 1354 // Is already exported, noop. 1355 return FuncInfo.isExportedInst(V); 1356 } 1357 1358 // If this is an argument, we can export it if the BB is the entry block or 1359 // if it is already exported. 1360 if (isa<Argument>(V)) { 1361 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1362 return true; 1363 1364 // Otherwise, can only export this if it is already exported. 1365 return FuncInfo.isExportedInst(V); 1366 } 1367 1368 // Otherwise, constants can always be exported. 1369 return true; 1370 } 1371 1372 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1373 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1374 const MachineBasicBlock *Dst) const { 1375 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1376 if (!BPI) 1377 return 0; 1378 const BasicBlock *SrcBB = Src->getBasicBlock(); 1379 const BasicBlock *DstBB = Dst->getBasicBlock(); 1380 return BPI->getEdgeWeight(SrcBB, DstBB); 1381 } 1382 1383 void SelectionDAGBuilder:: 1384 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1385 uint32_t Weight /* = 0 */) { 1386 if (!Weight) 1387 Weight = getEdgeWeight(Src, Dst); 1388 Src->addSuccessor(Dst, Weight); 1389 } 1390 1391 1392 static bool InBlock(const Value *V, const BasicBlock *BB) { 1393 if (const Instruction *I = dyn_cast<Instruction>(V)) 1394 return I->getParent() == BB; 1395 return true; 1396 } 1397 1398 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1399 /// This function emits a branch and is used at the leaves of an OR or an 1400 /// AND operator tree. 1401 /// 1402 void 1403 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1404 MachineBasicBlock *TBB, 1405 MachineBasicBlock *FBB, 1406 MachineBasicBlock *CurBB, 1407 MachineBasicBlock *SwitchBB, 1408 uint32_t TWeight, 1409 uint32_t FWeight) { 1410 const BasicBlock *BB = CurBB->getBasicBlock(); 1411 1412 // If the leaf of the tree is a comparison, merge the condition into 1413 // the caseblock. 1414 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1415 // The operands of the cmp have to be in this block. We don't know 1416 // how to export them from some other block. If this is the first block 1417 // of the sequence, no exporting is needed. 1418 if (CurBB == SwitchBB || 1419 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1420 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1421 ISD::CondCode Condition; 1422 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1423 Condition = getICmpCondCode(IC->getPredicate()); 1424 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1425 Condition = getFCmpCondCode(FC->getPredicate()); 1426 if (TM.Options.NoNaNsFPMath) 1427 Condition = getFCmpCodeWithoutNaN(Condition); 1428 } else { 1429 (void)Condition; // silence warning. 1430 llvm_unreachable("Unknown compare instruction"); 1431 } 1432 1433 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1434 TBB, FBB, CurBB, TWeight, FWeight); 1435 SwitchCases.push_back(CB); 1436 return; 1437 } 1438 } 1439 1440 // Create a CaseBlock record representing this branch. 1441 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1442 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1443 SwitchCases.push_back(CB); 1444 } 1445 1446 /// Scale down both weights to fit into uint32_t. 1447 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1448 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1449 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1450 NewTrue = NewTrue / Scale; 1451 NewFalse = NewFalse / Scale; 1452 } 1453 1454 /// FindMergedConditions - If Cond is an expression like 1455 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1456 MachineBasicBlock *TBB, 1457 MachineBasicBlock *FBB, 1458 MachineBasicBlock *CurBB, 1459 MachineBasicBlock *SwitchBB, 1460 unsigned Opc, uint32_t TWeight, 1461 uint32_t FWeight) { 1462 // If this node is not part of the or/and tree, emit it as a branch. 1463 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1464 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1465 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1466 BOp->getParent() != CurBB->getBasicBlock() || 1467 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1468 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1469 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1470 TWeight, FWeight); 1471 return; 1472 } 1473 1474 // Create TmpBB after CurBB. 1475 MachineFunction::iterator BBI = CurBB; 1476 MachineFunction &MF = DAG.getMachineFunction(); 1477 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1478 CurBB->getParent()->insert(++BBI, TmpBB); 1479 1480 if (Opc == Instruction::Or) { 1481 // Codegen X | Y as: 1482 // BB1: 1483 // jmp_if_X TBB 1484 // jmp TmpBB 1485 // TmpBB: 1486 // jmp_if_Y TBB 1487 // jmp FBB 1488 // 1489 1490 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1491 // The requirement is that 1492 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1493 // = TrueProb for orignal BB. 1494 // Assuming the orignal weights are A and B, one choice is to set BB1's 1495 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1496 // assumes that 1497 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1498 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1499 // TmpBB, but the math is more complicated. 1500 1501 uint64_t NewTrueWeight = TWeight; 1502 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1503 ScaleWeights(NewTrueWeight, NewFalseWeight); 1504 // Emit the LHS condition. 1505 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1506 NewTrueWeight, NewFalseWeight); 1507 1508 NewTrueWeight = TWeight; 1509 NewFalseWeight = 2 * (uint64_t)FWeight; 1510 ScaleWeights(NewTrueWeight, NewFalseWeight); 1511 // Emit the RHS condition into TmpBB. 1512 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1513 NewTrueWeight, NewFalseWeight); 1514 } else { 1515 assert(Opc == Instruction::And && "Unknown merge op!"); 1516 // Codegen X & Y as: 1517 // BB1: 1518 // jmp_if_X TmpBB 1519 // jmp FBB 1520 // TmpBB: 1521 // jmp_if_Y TBB 1522 // jmp FBB 1523 // 1524 // This requires creation of TmpBB after CurBB. 1525 1526 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1527 // The requirement is that 1528 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1529 // = FalseProb for orignal BB. 1530 // Assuming the orignal weights are A and B, one choice is to set BB1's 1531 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1532 // assumes that 1533 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1534 1535 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1536 uint64_t NewFalseWeight = FWeight; 1537 ScaleWeights(NewTrueWeight, NewFalseWeight); 1538 // Emit the LHS condition. 1539 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1540 NewTrueWeight, NewFalseWeight); 1541 1542 NewTrueWeight = 2 * (uint64_t)TWeight; 1543 NewFalseWeight = FWeight; 1544 ScaleWeights(NewTrueWeight, NewFalseWeight); 1545 // Emit the RHS condition into TmpBB. 1546 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1547 NewTrueWeight, NewFalseWeight); 1548 } 1549 } 1550 1551 /// If the set of cases should be emitted as a series of branches, return true. 1552 /// If we should emit this as a bunch of and/or'd together conditions, return 1553 /// false. 1554 bool 1555 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1556 if (Cases.size() != 2) return true; 1557 1558 // If this is two comparisons of the same values or'd or and'd together, they 1559 // will get folded into a single comparison, so don't emit two blocks. 1560 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1561 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1562 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1563 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1564 return false; 1565 } 1566 1567 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1568 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1569 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1570 Cases[0].CC == Cases[1].CC && 1571 isa<Constant>(Cases[0].CmpRHS) && 1572 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1573 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1574 return false; 1575 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1576 return false; 1577 } 1578 1579 return true; 1580 } 1581 1582 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1583 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1584 1585 // Update machine-CFG edges. 1586 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1587 1588 if (I.isUnconditional()) { 1589 // Update machine-CFG edges. 1590 BrMBB->addSuccessor(Succ0MBB); 1591 1592 // If this is not a fall-through branch or optimizations are switched off, 1593 // emit the branch. 1594 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1595 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1596 MVT::Other, getControlRoot(), 1597 DAG.getBasicBlock(Succ0MBB))); 1598 1599 return; 1600 } 1601 1602 // If this condition is one of the special cases we handle, do special stuff 1603 // now. 1604 const Value *CondVal = I.getCondition(); 1605 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1606 1607 // If this is a series of conditions that are or'd or and'd together, emit 1608 // this as a sequence of branches instead of setcc's with and/or operations. 1609 // As long as jumps are not expensive, this should improve performance. 1610 // For example, instead of something like: 1611 // cmp A, B 1612 // C = seteq 1613 // cmp D, E 1614 // F = setle 1615 // or C, F 1616 // jnz foo 1617 // Emit: 1618 // cmp A, B 1619 // je foo 1620 // cmp D, E 1621 // jle foo 1622 // 1623 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1624 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1625 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1626 BOp->getOpcode() == Instruction::Or)) { 1627 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1628 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1629 getEdgeWeight(BrMBB, Succ1MBB)); 1630 // If the compares in later blocks need to use values not currently 1631 // exported from this block, export them now. This block should always 1632 // be the first entry. 1633 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1634 1635 // Allow some cases to be rejected. 1636 if (ShouldEmitAsBranches(SwitchCases)) { 1637 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1638 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1639 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1640 } 1641 1642 // Emit the branch for this block. 1643 visitSwitchCase(SwitchCases[0], BrMBB); 1644 SwitchCases.erase(SwitchCases.begin()); 1645 return; 1646 } 1647 1648 // Okay, we decided not to do this, remove any inserted MBB's and clear 1649 // SwitchCases. 1650 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1651 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1652 1653 SwitchCases.clear(); 1654 } 1655 } 1656 1657 // Create a CaseBlock record representing this branch. 1658 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1659 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1660 1661 // Use visitSwitchCase to actually insert the fast branch sequence for this 1662 // cond branch. 1663 visitSwitchCase(CB, BrMBB); 1664 } 1665 1666 /// visitSwitchCase - Emits the necessary code to represent a single node in 1667 /// the binary search tree resulting from lowering a switch instruction. 1668 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1669 MachineBasicBlock *SwitchBB) { 1670 SDValue Cond; 1671 SDValue CondLHS = getValue(CB.CmpLHS); 1672 SDLoc dl = getCurSDLoc(); 1673 1674 // Build the setcc now. 1675 if (!CB.CmpMHS) { 1676 // Fold "(X == true)" to X and "(X == false)" to !X to 1677 // handle common cases produced by branch lowering. 1678 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1679 CB.CC == ISD::SETEQ) 1680 Cond = CondLHS; 1681 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1682 CB.CC == ISD::SETEQ) { 1683 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1684 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1685 } else 1686 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1687 } else { 1688 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1689 1690 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1691 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1692 1693 SDValue CmpOp = getValue(CB.CmpMHS); 1694 EVT VT = CmpOp.getValueType(); 1695 1696 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1697 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1698 ISD::SETLE); 1699 } else { 1700 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1701 VT, CmpOp, DAG.getConstant(Low, VT)); 1702 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1703 DAG.getConstant(High-Low, VT), ISD::SETULE); 1704 } 1705 } 1706 1707 // Update successor info 1708 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1709 // TrueBB and FalseBB are always different unless the incoming IR is 1710 // degenerate. This only happens when running llc on weird IR. 1711 if (CB.TrueBB != CB.FalseBB) 1712 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1713 1714 // If the lhs block is the next block, invert the condition so that we can 1715 // fall through to the lhs instead of the rhs block. 1716 if (CB.TrueBB == NextBlock(SwitchBB)) { 1717 std::swap(CB.TrueBB, CB.FalseBB); 1718 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1719 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1720 } 1721 1722 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1723 MVT::Other, getControlRoot(), Cond, 1724 DAG.getBasicBlock(CB.TrueBB)); 1725 1726 // Insert the false branch. Do this even if it's a fall through branch, 1727 // this makes it easier to do DAG optimizations which require inverting 1728 // the branch condition. 1729 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1730 DAG.getBasicBlock(CB.FalseBB)); 1731 1732 DAG.setRoot(BrCond); 1733 } 1734 1735 /// visitJumpTable - Emit JumpTable node in the current MBB 1736 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1737 // Emit the code for the jump table 1738 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1739 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1740 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1741 JT.Reg, PTy); 1742 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1743 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1744 MVT::Other, Index.getValue(1), 1745 Table, Index); 1746 DAG.setRoot(BrJumpTable); 1747 } 1748 1749 /// visitJumpTableHeader - This function emits necessary code to produce index 1750 /// in the JumpTable from switch case. 1751 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1752 JumpTableHeader &JTH, 1753 MachineBasicBlock *SwitchBB) { 1754 // Subtract the lowest switch case value from the value being switched on and 1755 // conditional branch to default mbb if the result is greater than the 1756 // difference between smallest and largest cases. 1757 SDValue SwitchOp = getValue(JTH.SValue); 1758 EVT VT = SwitchOp.getValueType(); 1759 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1760 DAG.getConstant(JTH.First, VT)); 1761 1762 // The SDNode we just created, which holds the value being switched on minus 1763 // the smallest case value, needs to be copied to a virtual register so it 1764 // can be used as an index into the jump table in a subsequent basic block. 1765 // This value may be smaller or larger than the target's pointer type, and 1766 // therefore require extension or truncating. 1767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1768 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1769 1770 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1771 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1772 JumpTableReg, SwitchOp); 1773 JT.Reg = JumpTableReg; 1774 1775 // Emit the range check for the jump table, and branch to the default block 1776 // for the switch statement if the value being switched on exceeds the largest 1777 // case in the switch. 1778 SDValue CMP = 1779 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1780 Sub.getValueType()), 1781 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1782 1783 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1784 MVT::Other, CopyTo, CMP, 1785 DAG.getBasicBlock(JT.Default)); 1786 1787 // Avoid emitting unnecessary branches to the next block. 1788 if (JT.MBB != NextBlock(SwitchBB)) 1789 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1790 DAG.getBasicBlock(JT.MBB)); 1791 1792 DAG.setRoot(BrCond); 1793 } 1794 1795 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1796 /// tail spliced into a stack protector check success bb. 1797 /// 1798 /// For a high level explanation of how this fits into the stack protector 1799 /// generation see the comment on the declaration of class 1800 /// StackProtectorDescriptor. 1801 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1802 MachineBasicBlock *ParentBB) { 1803 1804 // First create the loads to the guard/stack slot for the comparison. 1805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1806 EVT PtrTy = TLI.getPointerTy(); 1807 1808 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1809 int FI = MFI->getStackProtectorIndex(); 1810 1811 const Value *IRGuard = SPD.getGuard(); 1812 SDValue GuardPtr = getValue(IRGuard); 1813 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1814 1815 unsigned Align = 1816 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1817 1818 SDValue Guard; 1819 1820 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1821 // guard value from the virtual register holding the value. Otherwise, emit a 1822 // volatile load to retrieve the stack guard value. 1823 unsigned GuardReg = SPD.getGuardReg(); 1824 1825 if (GuardReg && TLI.useLoadStackGuardNode()) 1826 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1827 PtrTy); 1828 else 1829 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1830 GuardPtr, MachinePointerInfo(IRGuard, 0), 1831 true, false, false, Align); 1832 1833 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1834 StackSlotPtr, 1835 MachinePointerInfo::getFixedStack(FI), 1836 true, false, false, Align); 1837 1838 // Perform the comparison via a subtract/getsetcc. 1839 EVT VT = Guard.getValueType(); 1840 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1841 1842 SDValue Cmp = 1843 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1844 Sub.getValueType()), 1845 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1846 1847 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1848 // branch to failure MBB. 1849 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1850 MVT::Other, StackSlot.getOperand(0), 1851 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1852 // Otherwise branch to success MBB. 1853 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1854 MVT::Other, BrCond, 1855 DAG.getBasicBlock(SPD.getSuccessMBB())); 1856 1857 DAG.setRoot(Br); 1858 } 1859 1860 /// Codegen the failure basic block for a stack protector check. 1861 /// 1862 /// A failure stack protector machine basic block consists simply of a call to 1863 /// __stack_chk_fail(). 1864 /// 1865 /// For a high level explanation of how this fits into the stack protector 1866 /// generation see the comment on the declaration of class 1867 /// StackProtectorDescriptor. 1868 void 1869 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1871 SDValue Chain = 1872 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1873 nullptr, 0, false, getCurSDLoc(), false, false).second; 1874 DAG.setRoot(Chain); 1875 } 1876 1877 /// visitBitTestHeader - This function emits necessary code to produce value 1878 /// suitable for "bit tests" 1879 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1880 MachineBasicBlock *SwitchBB) { 1881 // Subtract the minimum value 1882 SDValue SwitchOp = getValue(B.SValue); 1883 EVT VT = SwitchOp.getValueType(); 1884 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1885 DAG.getConstant(B.First, VT)); 1886 1887 // Check range 1888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1889 SDValue RangeCmp = 1890 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1891 Sub.getValueType()), 1892 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1893 1894 // Determine the type of the test operands. 1895 bool UsePtrType = false; 1896 if (!TLI.isTypeLegal(VT)) 1897 UsePtrType = true; 1898 else { 1899 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1900 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1901 // Switch table case range are encoded into series of masks. 1902 // Just use pointer type, it's guaranteed to fit. 1903 UsePtrType = true; 1904 break; 1905 } 1906 } 1907 if (UsePtrType) { 1908 VT = TLI.getPointerTy(); 1909 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1910 } 1911 1912 B.RegVT = VT.getSimpleVT(); 1913 B.Reg = FuncInfo.CreateReg(B.RegVT); 1914 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1915 B.Reg, Sub); 1916 1917 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1918 1919 addSuccessorWithWeight(SwitchBB, B.Default); 1920 addSuccessorWithWeight(SwitchBB, MBB); 1921 1922 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1923 MVT::Other, CopyTo, RangeCmp, 1924 DAG.getBasicBlock(B.Default)); 1925 1926 // Avoid emitting unnecessary branches to the next block. 1927 if (MBB != NextBlock(SwitchBB)) 1928 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1929 DAG.getBasicBlock(MBB)); 1930 1931 DAG.setRoot(BrRange); 1932 } 1933 1934 /// visitBitTestCase - this function produces one "bit test" 1935 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1936 MachineBasicBlock* NextMBB, 1937 uint32_t BranchWeightToNext, 1938 unsigned Reg, 1939 BitTestCase &B, 1940 MachineBasicBlock *SwitchBB) { 1941 MVT VT = BB.RegVT; 1942 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1943 Reg, VT); 1944 SDValue Cmp; 1945 unsigned PopCount = countPopulation(B.Mask); 1946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1947 if (PopCount == 1) { 1948 // Testing for a single bit; just compare the shift count with what it 1949 // would need to be to shift a 1 bit in that position. 1950 Cmp = DAG.getSetCC( 1951 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1952 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1953 } else if (PopCount == BB.Range) { 1954 // There is only one zero bit in the range, test for it directly. 1955 Cmp = DAG.getSetCC( 1956 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1957 DAG.getConstant(countTrailingOnes(B.Mask), VT), ISD::SETNE); 1958 } else { 1959 // Make desired shift 1960 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1961 DAG.getConstant(1, VT), ShiftOp); 1962 1963 // Emit bit tests and jumps 1964 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1965 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1966 Cmp = DAG.getSetCC(getCurSDLoc(), 1967 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1968 DAG.getConstant(0, VT), ISD::SETNE); 1969 } 1970 1971 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1972 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1973 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1974 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1975 1976 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1977 MVT::Other, getControlRoot(), 1978 Cmp, DAG.getBasicBlock(B.TargetBB)); 1979 1980 // Avoid emitting unnecessary branches to the next block. 1981 if (NextMBB != NextBlock(SwitchBB)) 1982 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1983 DAG.getBasicBlock(NextMBB)); 1984 1985 DAG.setRoot(BrAnd); 1986 } 1987 1988 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1989 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1990 1991 // Retrieve successors. 1992 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1993 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1994 1995 const Value *Callee(I.getCalledValue()); 1996 const Function *Fn = dyn_cast<Function>(Callee); 1997 if (isa<InlineAsm>(Callee)) 1998 visitInlineAsm(&I); 1999 else if (Fn && Fn->isIntrinsic()) { 2000 switch (Fn->getIntrinsicID()) { 2001 default: 2002 llvm_unreachable("Cannot invoke this intrinsic"); 2003 case Intrinsic::donothing: 2004 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2005 break; 2006 case Intrinsic::experimental_patchpoint_void: 2007 case Intrinsic::experimental_patchpoint_i64: 2008 visitPatchpoint(&I, LandingPad); 2009 break; 2010 case Intrinsic::experimental_gc_statepoint: 2011 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 2012 break; 2013 } 2014 } else 2015 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2016 2017 // If the value of the invoke is used outside of its defining block, make it 2018 // available as a virtual register. 2019 // We already took care of the exported value for the statepoint instruction 2020 // during call to the LowerStatepoint. 2021 if (!isStatepoint(I)) { 2022 CopyToExportRegsIfNeeded(&I); 2023 } 2024 2025 // Update successor info 2026 addSuccessorWithWeight(InvokeMBB, Return); 2027 addSuccessorWithWeight(InvokeMBB, LandingPad); 2028 2029 // Drop into normal successor. 2030 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2031 MVT::Other, getControlRoot(), 2032 DAG.getBasicBlock(Return))); 2033 } 2034 2035 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2036 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2037 } 2038 2039 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2040 assert(FuncInfo.MBB->isLandingPad() && 2041 "Call to landingpad not in landing pad!"); 2042 2043 MachineBasicBlock *MBB = FuncInfo.MBB; 2044 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2045 AddLandingPadInfo(LP, MMI, MBB); 2046 2047 // If there aren't registers to copy the values into (e.g., during SjLj 2048 // exceptions), then don't bother to create these DAG nodes. 2049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2050 if (TLI.getExceptionPointerRegister() == 0 && 2051 TLI.getExceptionSelectorRegister() == 0) 2052 return; 2053 2054 SmallVector<EVT, 2> ValueVTs; 2055 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2056 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2057 2058 // Get the two live-in registers as SDValues. The physregs have already been 2059 // copied into virtual registers. 2060 SDValue Ops[2]; 2061 if (FuncInfo.ExceptionPointerVirtReg) { 2062 Ops[0] = DAG.getZExtOrTrunc( 2063 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2064 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2065 getCurSDLoc(), ValueVTs[0]); 2066 } else { 2067 Ops[0] = DAG.getConstant(0, TLI.getPointerTy()); 2068 } 2069 Ops[1] = DAG.getZExtOrTrunc( 2070 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2071 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2072 getCurSDLoc(), ValueVTs[1]); 2073 2074 // Merge into one. 2075 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2076 DAG.getVTList(ValueVTs), Ops); 2077 setValue(&LP, Res); 2078 } 2079 2080 unsigned 2081 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2082 MachineBasicBlock *LPadBB) { 2083 SDValue Chain = getControlRoot(); 2084 2085 // Get the typeid that we will dispatch on later. 2086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2087 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2088 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2089 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2090 SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy()); 2091 Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel); 2092 2093 // Branch to the main landing pad block. 2094 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2095 ClauseMBB->addSuccessor(LPadBB); 2096 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 2097 DAG.getBasicBlock(LPadBB))); 2098 return VReg; 2099 } 2100 2101 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2102 /// small case ranges). 2103 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2104 CaseRecVector& WorkList, 2105 const Value* SV, 2106 MachineBasicBlock *Default, 2107 MachineBasicBlock *SwitchBB) { 2108 // Size is the number of Cases represented by this range. 2109 size_t Size = CR.Range.second - CR.Range.first; 2110 if (Size > 3) 2111 return false; 2112 2113 // Get the MachineFunction which holds the current MBB. This is used when 2114 // inserting any additional MBBs necessary to represent the switch. 2115 MachineFunction *CurMF = FuncInfo.MF; 2116 2117 // Figure out which block is immediately after the current one. 2118 MachineBasicBlock *NextMBB = nullptr; 2119 MachineFunction::iterator BBI = CR.CaseBB; 2120 if (++BBI != FuncInfo.MF->end()) 2121 NextMBB = BBI; 2122 2123 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2124 // If any two of the cases has the same destination, and if one value 2125 // is the same as the other, but has one bit unset that the other has set, 2126 // use bit manipulation to do two compares at once. For example: 2127 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2128 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2129 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2130 if (Size == 2 && CR.CaseBB == SwitchBB) { 2131 Case &Small = *CR.Range.first; 2132 Case &Big = *(CR.Range.second-1); 2133 2134 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2135 const APInt& SmallValue = Small.Low->getValue(); 2136 const APInt& BigValue = Big.Low->getValue(); 2137 2138 // Check that there is only one bit different. 2139 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2140 (SmallValue | BigValue) == BigValue) { 2141 // Isolate the common bit. 2142 APInt CommonBit = BigValue & ~SmallValue; 2143 assert((SmallValue | CommonBit) == BigValue && 2144 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2145 2146 SDValue CondLHS = getValue(SV); 2147 EVT VT = CondLHS.getValueType(); 2148 SDLoc DL = getCurSDLoc(); 2149 2150 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2151 DAG.getConstant(CommonBit, VT)); 2152 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2153 Or, DAG.getConstant(BigValue, VT), 2154 ISD::SETEQ); 2155 2156 // Update successor info. 2157 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2158 addSuccessorWithWeight(SwitchBB, Small.BB, 2159 Small.ExtraWeight + Big.ExtraWeight); 2160 addSuccessorWithWeight(SwitchBB, Default, 2161 // The default destination is the first successor in IR. 2162 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2163 2164 // Insert the true branch. 2165 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2166 getControlRoot(), Cond, 2167 DAG.getBasicBlock(Small.BB)); 2168 2169 // Insert the false branch. 2170 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2171 DAG.getBasicBlock(Default)); 2172 2173 DAG.setRoot(BrCond); 2174 return true; 2175 } 2176 } 2177 } 2178 2179 // Order cases by weight so the most likely case will be checked first. 2180 uint32_t UnhandledWeights = 0; 2181 if (BPI) { 2182 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2183 uint32_t IWeight = I->ExtraWeight; 2184 UnhandledWeights += IWeight; 2185 for (CaseItr J = CR.Range.first; J < I; ++J) { 2186 uint32_t JWeight = J->ExtraWeight; 2187 if (IWeight > JWeight) 2188 std::swap(*I, *J); 2189 } 2190 } 2191 } 2192 // Rearrange the case blocks so that the last one falls through if possible. 2193 Case &BackCase = *(CR.Range.second-1); 2194 if (Size > 1 && NextMBB && Default != NextMBB && BackCase.BB != NextMBB) { 2195 // The last case block won't fall through into 'NextMBB' if we emit the 2196 // branches in this order. See if rearranging a case value would help. 2197 // We start at the bottom as it's the case with the least weight. 2198 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2199 if (I->BB == NextMBB) { 2200 std::swap(*I, BackCase); 2201 break; 2202 } 2203 } 2204 2205 // Create a CaseBlock record representing a conditional branch to 2206 // the Case's target mbb if the value being switched on SV is equal 2207 // to C. 2208 MachineBasicBlock *CurBlock = CR.CaseBB; 2209 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2210 MachineBasicBlock *FallThrough; 2211 if (I != E-1) { 2212 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2213 CurMF->insert(BBI, FallThrough); 2214 2215 // Put SV in a virtual register to make it available from the new blocks. 2216 ExportFromCurrentBlock(SV); 2217 } else { 2218 // If the last case doesn't match, go to the default block. 2219 FallThrough = Default; 2220 } 2221 2222 const Value *RHS, *LHS, *MHS; 2223 ISD::CondCode CC; 2224 if (I->High == I->Low) { 2225 // This is just small small case range :) containing exactly 1 case 2226 CC = ISD::SETEQ; 2227 LHS = SV; RHS = I->High; MHS = nullptr; 2228 } else { 2229 CC = ISD::SETLE; 2230 LHS = I->Low; MHS = SV; RHS = I->High; 2231 } 2232 2233 // The false weight should be sum of all un-handled cases. 2234 UnhandledWeights -= I->ExtraWeight; 2235 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2236 /* me */ CurBlock, 2237 /* trueweight */ I->ExtraWeight, 2238 /* falseweight */ UnhandledWeights); 2239 2240 // If emitting the first comparison, just call visitSwitchCase to emit the 2241 // code into the current block. Otherwise, push the CaseBlock onto the 2242 // vector to be later processed by SDISel, and insert the node's MBB 2243 // before the next MBB. 2244 if (CurBlock == SwitchBB) 2245 visitSwitchCase(CB, SwitchBB); 2246 else 2247 SwitchCases.push_back(CB); 2248 2249 CurBlock = FallThrough; 2250 } 2251 2252 return true; 2253 } 2254 2255 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2256 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2257 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2258 } 2259 2260 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2261 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2262 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2263 return (LastExt - FirstExt + 1ULL); 2264 } 2265 2266 /// handleJTSwitchCase - Emit jumptable for current switch case range 2267 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2268 CaseRecVector &WorkList, 2269 const Value *SV, 2270 MachineBasicBlock *Default, 2271 MachineBasicBlock *SwitchBB) { 2272 Case& FrontCase = *CR.Range.first; 2273 Case& BackCase = *(CR.Range.second-1); 2274 2275 const APInt &First = FrontCase.Low->getValue(); 2276 const APInt &Last = BackCase.High->getValue(); 2277 2278 APInt TSize(First.getBitWidth(), 0); 2279 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2280 TSize += I->size(); 2281 2282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2283 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2284 return false; 2285 2286 APInt Range = ComputeRange(First, Last); 2287 // The density is TSize / Range. Require at least 40%. 2288 // It should not be possible for IntTSize to saturate for sane code, but make 2289 // sure we handle Range saturation correctly. 2290 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2291 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2292 if (IntTSize * 10 < IntRange * 4) 2293 return false; 2294 2295 DEBUG(dbgs() << "Lowering jump table\n" 2296 << "First entry: " << First << ". Last entry: " << Last << '\n' 2297 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2298 2299 // Get the MachineFunction which holds the current MBB. This is used when 2300 // inserting any additional MBBs necessary to represent the switch. 2301 MachineFunction *CurMF = FuncInfo.MF; 2302 2303 // Figure out which block is immediately after the current one. 2304 MachineFunction::iterator BBI = CR.CaseBB; 2305 ++BBI; 2306 2307 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2308 2309 // Create a new basic block to hold the code for loading the address 2310 // of the jump table, and jumping to it. Update successor information; 2311 // we will either branch to the default case for the switch, or the jump 2312 // table. 2313 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2314 CurMF->insert(BBI, JumpTableBB); 2315 2316 addSuccessorWithWeight(CR.CaseBB, Default); 2317 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2318 2319 // Build a vector of destination BBs, corresponding to each target 2320 // of the jump table. If the value of the jump table slot corresponds to 2321 // a case statement, push the case's BB onto the vector, otherwise, push 2322 // the default BB. 2323 std::vector<MachineBasicBlock*> DestBBs; 2324 APInt TEI = First; 2325 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2326 const APInt &Low = I->Low->getValue(); 2327 const APInt &High = I->High->getValue(); 2328 2329 if (Low.sle(TEI) && TEI.sle(High)) { 2330 DestBBs.push_back(I->BB); 2331 if (TEI==High) 2332 ++I; 2333 } else { 2334 DestBBs.push_back(Default); 2335 } 2336 } 2337 2338 // Calculate weight for each unique destination in CR. 2339 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2340 if (FuncInfo.BPI) 2341 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2342 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2343 DestWeights.find(I->BB); 2344 if (Itr != DestWeights.end()) 2345 Itr->second += I->ExtraWeight; 2346 else 2347 DestWeights[I->BB] = I->ExtraWeight; 2348 } 2349 2350 // Update successor info. Add one edge to each unique successor. 2351 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2352 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2353 E = DestBBs.end(); I != E; ++I) { 2354 if (!SuccsHandled[(*I)->getNumber()]) { 2355 SuccsHandled[(*I)->getNumber()] = true; 2356 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2357 DestWeights.find(*I); 2358 addSuccessorWithWeight(JumpTableBB, *I, 2359 Itr != DestWeights.end() ? Itr->second : 0); 2360 } 2361 } 2362 2363 // Create a jump table index for this jump table. 2364 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2365 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2366 ->createJumpTableIndex(DestBBs); 2367 2368 // Set the jump table information so that we can codegen it as a second 2369 // MachineBasicBlock 2370 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2371 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2372 if (CR.CaseBB == SwitchBB) 2373 visitJumpTableHeader(JT, JTH, SwitchBB); 2374 2375 JTCases.push_back(JumpTableBlock(JTH, JT)); 2376 return true; 2377 } 2378 2379 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2380 /// 2 subtrees. 2381 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2382 CaseRecVector& WorkList, 2383 const Value* SV, 2384 MachineBasicBlock* SwitchBB) { 2385 Case& FrontCase = *CR.Range.first; 2386 Case& BackCase = *(CR.Range.second-1); 2387 2388 // Size is the number of Cases represented by this range. 2389 unsigned Size = CR.Range.second - CR.Range.first; 2390 2391 const APInt &First = FrontCase.Low->getValue(); 2392 const APInt &Last = BackCase.High->getValue(); 2393 double FMetric = 0; 2394 CaseItr Pivot = CR.Range.first + Size/2; 2395 2396 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2397 // (heuristically) allow us to emit JumpTable's later. 2398 APInt TSize(First.getBitWidth(), 0); 2399 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2400 I!=E; ++I) 2401 TSize += I->size(); 2402 2403 APInt LSize = FrontCase.size(); 2404 APInt RSize = TSize-LSize; 2405 DEBUG(dbgs() << "Selecting best pivot: \n" 2406 << "First: " << First << ", Last: " << Last <<'\n' 2407 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2408 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2409 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2410 J!=E; ++I, ++J) { 2411 const APInt &LEnd = I->High->getValue(); 2412 const APInt &RBegin = J->Low->getValue(); 2413 APInt Range = ComputeRange(LEnd, RBegin); 2414 assert((Range - 2ULL).isNonNegative() && 2415 "Invalid case distance"); 2416 // Use volatile double here to avoid excess precision issues on some hosts, 2417 // e.g. that use 80-bit X87 registers. 2418 // Only consider the density of sub-ranges that actually have sufficient 2419 // entries to be lowered as a jump table. 2420 volatile double LDensity = 2421 LSize.ult(TLI.getMinimumJumpTableEntries()) 2422 ? 0.0 2423 : LSize.roundToDouble() / (LEnd - First + 1ULL).roundToDouble(); 2424 volatile double RDensity = 2425 RSize.ult(TLI.getMinimumJumpTableEntries()) 2426 ? 0.0 2427 : RSize.roundToDouble() / (Last - RBegin + 1ULL).roundToDouble(); 2428 volatile double Metric = Range.logBase2() * (LDensity + RDensity); 2429 // Should always split in some non-trivial place 2430 DEBUG(dbgs() <<"=>Step\n" 2431 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2432 << "LDensity: " << LDensity 2433 << ", RDensity: " << RDensity << '\n' 2434 << "Metric: " << Metric << '\n'); 2435 if (FMetric < Metric) { 2436 Pivot = J; 2437 FMetric = Metric; 2438 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2439 } 2440 2441 LSize += J->size(); 2442 RSize -= J->size(); 2443 } 2444 2445 if (FMetric == 0 || !areJTsAllowed(TLI)) 2446 Pivot = CR.Range.first + Size/2; 2447 splitSwitchCase(CR, Pivot, WorkList, SV, SwitchBB); 2448 return true; 2449 } 2450 2451 void SelectionDAGBuilder::splitSwitchCase(CaseRec &CR, CaseItr Pivot, 2452 CaseRecVector &WorkList, 2453 const Value *SV, 2454 MachineBasicBlock *SwitchBB) { 2455 // Get the MachineFunction which holds the current MBB. This is used when 2456 // inserting any additional MBBs necessary to represent the switch. 2457 MachineFunction *CurMF = FuncInfo.MF; 2458 2459 // Figure out which block is immediately after the current one. 2460 MachineFunction::iterator BBI = CR.CaseBB; 2461 ++BBI; 2462 2463 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2464 2465 CaseRange LHSR(CR.Range.first, Pivot); 2466 CaseRange RHSR(Pivot, CR.Range.second); 2467 const ConstantInt *C = Pivot->Low; 2468 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2469 2470 // We know that we branch to the LHS if the Value being switched on is 2471 // less than the Pivot value, C. We use this to optimize our binary 2472 // tree a bit, by recognizing that if SV is greater than or equal to the 2473 // LHS's Case Value, and that Case Value is exactly one less than the 2474 // Pivot's Value, then we can branch directly to the LHS's Target, 2475 // rather than creating a leaf node for it. 2476 if ((LHSR.second - LHSR.first) == 1 && LHSR.first->High == CR.GE && 2477 C->getValue() == (CR.GE->getValue() + 1LL)) { 2478 TrueBB = LHSR.first->BB; 2479 } else { 2480 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2481 CurMF->insert(BBI, TrueBB); 2482 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2483 2484 // Put SV in a virtual register to make it available from the new blocks. 2485 ExportFromCurrentBlock(SV); 2486 } 2487 2488 // Similar to the optimization above, if the Value being switched on is 2489 // known to be less than the Constant CR.LT, and the current Case Value 2490 // is CR.LT - 1, then we can branch directly to the target block for 2491 // the current Case Value, rather than emitting a RHS leaf node for it. 2492 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2493 RHSR.first->Low->getValue() == (CR.LT->getValue() - 1LL)) { 2494 FalseBB = RHSR.first->BB; 2495 } else { 2496 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2497 CurMF->insert(BBI, FalseBB); 2498 WorkList.push_back(CaseRec(FalseBB, CR.LT, C, RHSR)); 2499 2500 // Put SV in a virtual register to make it available from the new blocks. 2501 ExportFromCurrentBlock(SV); 2502 } 2503 2504 // Create a CaseBlock record representing a conditional branch to 2505 // the LHS node if the value being switched on SV is less than C. 2506 // Otherwise, branch to LHS. 2507 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2508 2509 if (CR.CaseBB == SwitchBB) 2510 visitSwitchCase(CB, SwitchBB); 2511 else 2512 SwitchCases.push_back(CB); 2513 } 2514 2515 /// handleBitTestsSwitchCase - if current case range has few destination and 2516 /// range span less, than machine word bitwidth, encode case range into series 2517 /// of masks and emit bit tests with these masks. 2518 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2519 CaseRecVector& WorkList, 2520 const Value* SV, 2521 MachineBasicBlock* Default, 2522 MachineBasicBlock* SwitchBB) { 2523 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2524 EVT PTy = TLI.getPointerTy(); 2525 unsigned IntPtrBits = PTy.getSizeInBits(); 2526 2527 Case& FrontCase = *CR.Range.first; 2528 Case& BackCase = *(CR.Range.second-1); 2529 2530 // Get the MachineFunction which holds the current MBB. This is used when 2531 // inserting any additional MBBs necessary to represent the switch. 2532 MachineFunction *CurMF = FuncInfo.MF; 2533 2534 // If target does not have legal shift left, do not emit bit tests at all. 2535 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2536 return false; 2537 2538 size_t numCmps = 0; 2539 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2540 // Single case counts one, case range - two. 2541 numCmps += (I->Low == I->High ? 1 : 2); 2542 } 2543 2544 // Count unique destinations 2545 SmallSet<MachineBasicBlock*, 4> Dests; 2546 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2547 Dests.insert(I->BB); 2548 if (Dests.size() > 3) 2549 // Don't bother the code below, if there are too much unique destinations 2550 return false; 2551 } 2552 DEBUG(dbgs() << "Total number of unique destinations: " 2553 << Dests.size() << '\n' 2554 << "Total number of comparisons: " << numCmps << '\n'); 2555 2556 // Compute span of values. 2557 const APInt& minValue = FrontCase.Low->getValue(); 2558 const APInt& maxValue = BackCase.High->getValue(); 2559 APInt cmpRange = maxValue - minValue; 2560 2561 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2562 << "Low bound: " << minValue << '\n' 2563 << "High bound: " << maxValue << '\n'); 2564 2565 if (cmpRange.uge(IntPtrBits) || 2566 (!(Dests.size() == 1 && numCmps >= 3) && 2567 !(Dests.size() == 2 && numCmps >= 5) && 2568 !(Dests.size() >= 3 && numCmps >= 6))) 2569 return false; 2570 2571 DEBUG(dbgs() << "Emitting bit tests\n"); 2572 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2573 2574 // Optimize the case where all the case values fit in a 2575 // word without having to subtract minValue. In this case, 2576 // we can optimize away the subtraction. 2577 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2578 cmpRange = maxValue; 2579 } else { 2580 lowBound = minValue; 2581 } 2582 2583 CaseBitsVector CasesBits; 2584 unsigned i, count = 0; 2585 2586 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2587 MachineBasicBlock* Dest = I->BB; 2588 for (i = 0; i < count; ++i) 2589 if (Dest == CasesBits[i].BB) 2590 break; 2591 2592 if (i == count) { 2593 assert((count < 3) && "Too much destinations to test!"); 2594 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2595 count++; 2596 } 2597 2598 const APInt& lowValue = I->Low->getValue(); 2599 const APInt& highValue = I->High->getValue(); 2600 2601 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2602 uint64_t hi = (highValue - lowBound).getZExtValue(); 2603 CasesBits[i].ExtraWeight += I->ExtraWeight; 2604 2605 for (uint64_t j = lo; j <= hi; j++) { 2606 CasesBits[i].Mask |= 1ULL << j; 2607 CasesBits[i].Bits++; 2608 } 2609 2610 } 2611 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2612 2613 BitTestInfo BTC; 2614 2615 // Figure out which block is immediately after the current one. 2616 MachineFunction::iterator BBI = CR.CaseBB; 2617 ++BBI; 2618 2619 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2620 2621 DEBUG(dbgs() << "Cases:\n"); 2622 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2623 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2624 << ", Bits: " << CasesBits[i].Bits 2625 << ", BB: " << CasesBits[i].BB << '\n'); 2626 2627 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2628 CurMF->insert(BBI, CaseBB); 2629 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2630 CaseBB, 2631 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2632 2633 // Put SV in a virtual register to make it available from the new blocks. 2634 ExportFromCurrentBlock(SV); 2635 } 2636 2637 BitTestBlock BTB(lowBound, cmpRange, SV, 2638 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2639 CR.CaseBB, Default, std::move(BTC)); 2640 2641 if (CR.CaseBB == SwitchBB) 2642 visitBitTestHeader(BTB, SwitchBB); 2643 2644 BitTestCases.push_back(std::move(BTB)); 2645 2646 return true; 2647 } 2648 2649 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2650 void SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2651 const SwitchInst& SI) { 2652 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2653 // Start with "simple" cases. 2654 for (SwitchInst::ConstCaseIt i : SI.cases()) { 2655 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2656 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2657 2658 uint32_t ExtraWeight = 2659 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2660 2661 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2662 SMBB, ExtraWeight)); 2663 } 2664 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2665 2666 // Merge case into clusters 2667 if (Cases.size() >= 2) 2668 // Must recompute end() each iteration because it may be 2669 // invalidated by erase if we hold on to it 2670 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2671 J != Cases.end(); ) { 2672 const APInt& nextValue = J->Low->getValue(); 2673 const APInt& currentValue = I->High->getValue(); 2674 MachineBasicBlock* nextBB = J->BB; 2675 MachineBasicBlock* currentBB = I->BB; 2676 2677 // If the two neighboring cases go to the same destination, merge them 2678 // into a single case. 2679 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2680 I->High = J->High; 2681 I->ExtraWeight += J->ExtraWeight; 2682 J = Cases.erase(J); 2683 } else { 2684 I = J++; 2685 } 2686 } 2687 2688 DEBUG({ 2689 size_t numCmps = 0; 2690 for (auto &I : Cases) 2691 // A range counts double, since it requires two compares. 2692 numCmps += I.Low != I.High ? 2 : 1; 2693 2694 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2695 << ". Total compares: " << numCmps << '\n'; 2696 }); 2697 } 2698 2699 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2700 MachineBasicBlock *Last) { 2701 // Update JTCases. 2702 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2703 if (JTCases[i].first.HeaderBB == First) 2704 JTCases[i].first.HeaderBB = Last; 2705 2706 // Update BitTestCases. 2707 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2708 if (BitTestCases[i].Parent == First) 2709 BitTestCases[i].Parent = Last; 2710 } 2711 2712 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2713 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2714 2715 // Create a vector of Cases, sorted so that we can efficiently create a binary 2716 // search tree from them. 2717 CaseVector Cases; 2718 Clusterify(Cases, SI); 2719 2720 // Get the default destination MBB. 2721 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2722 2723 if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) && 2724 !Cases.empty()) { 2725 // Replace an unreachable default destination with the most popular case 2726 // destination. 2727 DenseMap<const BasicBlock *, unsigned> Popularity; 2728 unsigned MaxPop = 0; 2729 const BasicBlock *MaxBB = nullptr; 2730 for (auto I : SI.cases()) { 2731 const BasicBlock *BB = I.getCaseSuccessor(); 2732 if (++Popularity[BB] > MaxPop) { 2733 MaxPop = Popularity[BB]; 2734 MaxBB = BB; 2735 } 2736 } 2737 2738 // Set new default. 2739 assert(MaxPop > 0); 2740 assert(MaxBB); 2741 Default = FuncInfo.MBBMap[MaxBB]; 2742 2743 // Remove cases that were pointing to the destination that is now the default. 2744 Cases.erase(std::remove_if(Cases.begin(), Cases.end(), 2745 [&](const Case &C) { return C.BB == Default; }), 2746 Cases.end()); 2747 } 2748 2749 // If there is only the default destination, go there directly. 2750 if (Cases.empty()) { 2751 // Update machine-CFG edges. 2752 SwitchMBB->addSuccessor(Default); 2753 2754 // If this is not a fall-through branch, emit the branch. 2755 if (Default != NextBlock(SwitchMBB)) { 2756 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2757 getControlRoot(), DAG.getBasicBlock(Default))); 2758 } 2759 return; 2760 } 2761 2762 // Get the Value to be switched on. 2763 const Value *SV = SI.getCondition(); 2764 2765 // Push the initial CaseRec onto the worklist 2766 CaseRecVector WorkList; 2767 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2768 CaseRange(Cases.begin(),Cases.end()))); 2769 2770 while (!WorkList.empty()) { 2771 // Grab a record representing a case range to process off the worklist 2772 CaseRec CR = WorkList.back(); 2773 WorkList.pop_back(); 2774 2775 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2776 continue; 2777 2778 // If the range has few cases (two or less) emit a series of specific 2779 // tests. 2780 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2781 continue; 2782 2783 // If the switch has more than N blocks, and is at least 40% dense, and the 2784 // target supports indirect branches, then emit a jump table rather than 2785 // lowering the switch to a binary tree of conditional branches. 2786 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2787 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2788 continue; 2789 2790 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2791 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2792 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2793 } 2794 } 2795 2796 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2797 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2798 2799 // Update machine-CFG edges with unique successors. 2800 SmallSet<BasicBlock*, 32> Done; 2801 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2802 BasicBlock *BB = I.getSuccessor(i); 2803 bool Inserted = Done.insert(BB).second; 2804 if (!Inserted) 2805 continue; 2806 2807 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2808 addSuccessorWithWeight(IndirectBrMBB, Succ); 2809 } 2810 2811 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2812 MVT::Other, getControlRoot(), 2813 getValue(I.getAddress()))); 2814 } 2815 2816 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2817 if (DAG.getTarget().Options.TrapUnreachable) 2818 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2819 } 2820 2821 void SelectionDAGBuilder::visitFSub(const User &I) { 2822 // -0.0 - X --> fneg 2823 Type *Ty = I.getType(); 2824 if (isa<Constant>(I.getOperand(0)) && 2825 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2826 SDValue Op2 = getValue(I.getOperand(1)); 2827 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2828 Op2.getValueType(), Op2)); 2829 return; 2830 } 2831 2832 visitBinary(I, ISD::FSUB); 2833 } 2834 2835 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2836 SDValue Op1 = getValue(I.getOperand(0)); 2837 SDValue Op2 = getValue(I.getOperand(1)); 2838 2839 bool nuw = false; 2840 bool nsw = false; 2841 bool exact = false; 2842 if (const OverflowingBinaryOperator *OFBinOp = 2843 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2844 nuw = OFBinOp->hasNoUnsignedWrap(); 2845 nsw = OFBinOp->hasNoSignedWrap(); 2846 } 2847 if (const PossiblyExactOperator *ExactOp = 2848 dyn_cast<const PossiblyExactOperator>(&I)) 2849 exact = ExactOp->isExact(); 2850 2851 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2852 Op1, Op2, nuw, nsw, exact); 2853 setValue(&I, BinNodeValue); 2854 } 2855 2856 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2857 SDValue Op1 = getValue(I.getOperand(0)); 2858 SDValue Op2 = getValue(I.getOperand(1)); 2859 2860 EVT ShiftTy = 2861 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2862 2863 // Coerce the shift amount to the right type if we can. 2864 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2865 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2866 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2867 SDLoc DL = getCurSDLoc(); 2868 2869 // If the operand is smaller than the shift count type, promote it. 2870 if (ShiftSize > Op2Size) 2871 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2872 2873 // If the operand is larger than the shift count type but the shift 2874 // count type has enough bits to represent any shift value, truncate 2875 // it now. This is a common case and it exposes the truncate to 2876 // optimization early. 2877 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2878 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2879 // Otherwise we'll need to temporarily settle for some other convenient 2880 // type. Type legalization will make adjustments once the shiftee is split. 2881 else 2882 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2883 } 2884 2885 bool nuw = false; 2886 bool nsw = false; 2887 bool exact = false; 2888 2889 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2890 2891 if (const OverflowingBinaryOperator *OFBinOp = 2892 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2893 nuw = OFBinOp->hasNoUnsignedWrap(); 2894 nsw = OFBinOp->hasNoSignedWrap(); 2895 } 2896 if (const PossiblyExactOperator *ExactOp = 2897 dyn_cast<const PossiblyExactOperator>(&I)) 2898 exact = ExactOp->isExact(); 2899 } 2900 2901 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2902 nuw, nsw, exact); 2903 setValue(&I, Res); 2904 } 2905 2906 void SelectionDAGBuilder::visitSDiv(const User &I) { 2907 SDValue Op1 = getValue(I.getOperand(0)); 2908 SDValue Op2 = getValue(I.getOperand(1)); 2909 2910 // Turn exact SDivs into multiplications. 2911 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2912 // exact bit. 2913 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2914 !isa<ConstantSDNode>(Op1) && 2915 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2916 setValue(&I, DAG.getTargetLoweringInfo() 2917 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2918 else 2919 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2920 Op1, Op2)); 2921 } 2922 2923 void SelectionDAGBuilder::visitICmp(const User &I) { 2924 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2925 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2926 predicate = IC->getPredicate(); 2927 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2928 predicate = ICmpInst::Predicate(IC->getPredicate()); 2929 SDValue Op1 = getValue(I.getOperand(0)); 2930 SDValue Op2 = getValue(I.getOperand(1)); 2931 ISD::CondCode Opcode = getICmpCondCode(predicate); 2932 2933 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2934 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2935 } 2936 2937 void SelectionDAGBuilder::visitFCmp(const User &I) { 2938 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2939 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2940 predicate = FC->getPredicate(); 2941 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2942 predicate = FCmpInst::Predicate(FC->getPredicate()); 2943 SDValue Op1 = getValue(I.getOperand(0)); 2944 SDValue Op2 = getValue(I.getOperand(1)); 2945 ISD::CondCode Condition = getFCmpCondCode(predicate); 2946 if (TM.Options.NoNaNsFPMath) 2947 Condition = getFCmpCodeWithoutNaN(Condition); 2948 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2949 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2950 } 2951 2952 void SelectionDAGBuilder::visitSelect(const User &I) { 2953 SmallVector<EVT, 4> ValueVTs; 2954 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2955 unsigned NumValues = ValueVTs.size(); 2956 if (NumValues == 0) return; 2957 2958 SmallVector<SDValue, 4> Values(NumValues); 2959 SDValue Cond = getValue(I.getOperand(0)); 2960 SDValue TrueVal = getValue(I.getOperand(1)); 2961 SDValue FalseVal = getValue(I.getOperand(2)); 2962 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2963 ISD::VSELECT : ISD::SELECT; 2964 2965 for (unsigned i = 0; i != NumValues; ++i) 2966 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2967 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2968 Cond, 2969 SDValue(TrueVal.getNode(), 2970 TrueVal.getResNo() + i), 2971 SDValue(FalseVal.getNode(), 2972 FalseVal.getResNo() + i)); 2973 2974 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2975 DAG.getVTList(ValueVTs), Values)); 2976 } 2977 2978 void SelectionDAGBuilder::visitTrunc(const User &I) { 2979 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2980 SDValue N = getValue(I.getOperand(0)); 2981 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2982 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2983 } 2984 2985 void SelectionDAGBuilder::visitZExt(const User &I) { 2986 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2987 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2988 SDValue N = getValue(I.getOperand(0)); 2989 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2990 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2991 } 2992 2993 void SelectionDAGBuilder::visitSExt(const User &I) { 2994 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2995 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2996 SDValue N = getValue(I.getOperand(0)); 2997 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2998 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2999 } 3000 3001 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3002 // FPTrunc is never a no-op cast, no need to check 3003 SDValue N = getValue(I.getOperand(0)); 3004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3005 EVT DestVT = TLI.getValueType(I.getType()); 3006 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 3007 DAG.getTargetConstant(0, TLI.getPointerTy()))); 3008 } 3009 3010 void SelectionDAGBuilder::visitFPExt(const User &I) { 3011 // FPExt is never a no-op cast, no need to check 3012 SDValue N = getValue(I.getOperand(0)); 3013 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3014 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3015 } 3016 3017 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3018 // FPToUI is never a no-op cast, no need to check 3019 SDValue N = getValue(I.getOperand(0)); 3020 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3021 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3022 } 3023 3024 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3025 // FPToSI is never a no-op cast, no need to check 3026 SDValue N = getValue(I.getOperand(0)); 3027 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3028 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3029 } 3030 3031 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3032 // UIToFP is never a no-op cast, no need to check 3033 SDValue N = getValue(I.getOperand(0)); 3034 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3035 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3036 } 3037 3038 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3039 // SIToFP is never a no-op cast, no need to check 3040 SDValue N = getValue(I.getOperand(0)); 3041 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3042 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3043 } 3044 3045 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3046 // What to do depends on the size of the integer and the size of the pointer. 3047 // We can either truncate, zero extend, or no-op, accordingly. 3048 SDValue N = getValue(I.getOperand(0)); 3049 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3050 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3051 } 3052 3053 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3054 // What to do depends on the size of the integer and the size of the pointer. 3055 // We can either truncate, zero extend, or no-op, accordingly. 3056 SDValue N = getValue(I.getOperand(0)); 3057 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3058 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3059 } 3060 3061 void SelectionDAGBuilder::visitBitCast(const User &I) { 3062 SDValue N = getValue(I.getOperand(0)); 3063 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3064 3065 // BitCast assures us that source and destination are the same size so this is 3066 // either a BITCAST or a no-op. 3067 if (DestVT != N.getValueType()) 3068 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3069 DestVT, N)); // convert types. 3070 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3071 // might fold any kind of constant expression to an integer constant and that 3072 // is not what we are looking for. Only regcognize a bitcast of a genuine 3073 // constant integer as an opaque constant. 3074 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3075 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3076 /*isOpaque*/true)); 3077 else 3078 setValue(&I, N); // noop cast. 3079 } 3080 3081 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3082 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3083 const Value *SV = I.getOperand(0); 3084 SDValue N = getValue(SV); 3085 EVT DestVT = TLI.getValueType(I.getType()); 3086 3087 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3088 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3089 3090 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3091 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3092 3093 setValue(&I, N); 3094 } 3095 3096 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3097 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3098 SDValue InVec = getValue(I.getOperand(0)); 3099 SDValue InVal = getValue(I.getOperand(1)); 3100 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3101 getCurSDLoc(), TLI.getVectorIdxTy()); 3102 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3103 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3104 } 3105 3106 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3107 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3108 SDValue InVec = getValue(I.getOperand(0)); 3109 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3110 getCurSDLoc(), TLI.getVectorIdxTy()); 3111 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3112 TLI.getValueType(I.getType()), InVec, InIdx)); 3113 } 3114 3115 // Utility for visitShuffleVector - Return true if every element in Mask, 3116 // beginning from position Pos and ending in Pos+Size, falls within the 3117 // specified sequential range [L, L+Pos). or is undef. 3118 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3119 unsigned Pos, unsigned Size, int Low) { 3120 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3121 if (Mask[i] >= 0 && Mask[i] != Low) 3122 return false; 3123 return true; 3124 } 3125 3126 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3127 SDValue Src1 = getValue(I.getOperand(0)); 3128 SDValue Src2 = getValue(I.getOperand(1)); 3129 3130 SmallVector<int, 8> Mask; 3131 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3132 unsigned MaskNumElts = Mask.size(); 3133 3134 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3135 EVT VT = TLI.getValueType(I.getType()); 3136 EVT SrcVT = Src1.getValueType(); 3137 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3138 3139 if (SrcNumElts == MaskNumElts) { 3140 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3141 &Mask[0])); 3142 return; 3143 } 3144 3145 // Normalize the shuffle vector since mask and vector length don't match. 3146 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3147 // Mask is longer than the source vectors and is a multiple of the source 3148 // vectors. We can use concatenate vector to make the mask and vectors 3149 // lengths match. 3150 if (SrcNumElts*2 == MaskNumElts) { 3151 // First check for Src1 in low and Src2 in high 3152 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3153 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3154 // The shuffle is concatenating two vectors together. 3155 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3156 VT, Src1, Src2)); 3157 return; 3158 } 3159 // Then check for Src2 in low and Src1 in high 3160 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3161 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3162 // The shuffle is concatenating two vectors together. 3163 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3164 VT, Src2, Src1)); 3165 return; 3166 } 3167 } 3168 3169 // Pad both vectors with undefs to make them the same length as the mask. 3170 unsigned NumConcat = MaskNumElts / SrcNumElts; 3171 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3172 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3173 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3174 3175 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3176 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3177 MOps1[0] = Src1; 3178 MOps2[0] = Src2; 3179 3180 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3181 getCurSDLoc(), VT, MOps1); 3182 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3183 getCurSDLoc(), VT, MOps2); 3184 3185 // Readjust mask for new input vector length. 3186 SmallVector<int, 8> MappedOps; 3187 for (unsigned i = 0; i != MaskNumElts; ++i) { 3188 int Idx = Mask[i]; 3189 if (Idx >= (int)SrcNumElts) 3190 Idx -= SrcNumElts - MaskNumElts; 3191 MappedOps.push_back(Idx); 3192 } 3193 3194 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3195 &MappedOps[0])); 3196 return; 3197 } 3198 3199 if (SrcNumElts > MaskNumElts) { 3200 // Analyze the access pattern of the vector to see if we can extract 3201 // two subvectors and do the shuffle. The analysis is done by calculating 3202 // the range of elements the mask access on both vectors. 3203 int MinRange[2] = { static_cast<int>(SrcNumElts), 3204 static_cast<int>(SrcNumElts)}; 3205 int MaxRange[2] = {-1, -1}; 3206 3207 for (unsigned i = 0; i != MaskNumElts; ++i) { 3208 int Idx = Mask[i]; 3209 unsigned Input = 0; 3210 if (Idx < 0) 3211 continue; 3212 3213 if (Idx >= (int)SrcNumElts) { 3214 Input = 1; 3215 Idx -= SrcNumElts; 3216 } 3217 if (Idx > MaxRange[Input]) 3218 MaxRange[Input] = Idx; 3219 if (Idx < MinRange[Input]) 3220 MinRange[Input] = Idx; 3221 } 3222 3223 // Check if the access is smaller than the vector size and can we find 3224 // a reasonable extract index. 3225 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3226 // Extract. 3227 int StartIdx[2]; // StartIdx to extract from 3228 for (unsigned Input = 0; Input < 2; ++Input) { 3229 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3230 RangeUse[Input] = 0; // Unused 3231 StartIdx[Input] = 0; 3232 continue; 3233 } 3234 3235 // Find a good start index that is a multiple of the mask length. Then 3236 // see if the rest of the elements are in range. 3237 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3238 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3239 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3240 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3241 } 3242 3243 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3244 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3245 return; 3246 } 3247 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3248 // Extract appropriate subvector and generate a vector shuffle 3249 for (unsigned Input = 0; Input < 2; ++Input) { 3250 SDValue &Src = Input == 0 ? Src1 : Src2; 3251 if (RangeUse[Input] == 0) 3252 Src = DAG.getUNDEF(VT); 3253 else 3254 Src = DAG.getNode( 3255 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3256 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3257 } 3258 3259 // Calculate new mask. 3260 SmallVector<int, 8> MappedOps; 3261 for (unsigned i = 0; i != MaskNumElts; ++i) { 3262 int Idx = Mask[i]; 3263 if (Idx >= 0) { 3264 if (Idx < (int)SrcNumElts) 3265 Idx -= StartIdx[0]; 3266 else 3267 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3268 } 3269 MappedOps.push_back(Idx); 3270 } 3271 3272 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3273 &MappedOps[0])); 3274 return; 3275 } 3276 } 3277 3278 // We can't use either concat vectors or extract subvectors so fall back to 3279 // replacing the shuffle with extract and build vector. 3280 // to insert and build vector. 3281 EVT EltVT = VT.getVectorElementType(); 3282 EVT IdxVT = TLI.getVectorIdxTy(); 3283 SmallVector<SDValue,8> Ops; 3284 for (unsigned i = 0; i != MaskNumElts; ++i) { 3285 int Idx = Mask[i]; 3286 SDValue Res; 3287 3288 if (Idx < 0) { 3289 Res = DAG.getUNDEF(EltVT); 3290 } else { 3291 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3292 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3293 3294 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3295 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3296 } 3297 3298 Ops.push_back(Res); 3299 } 3300 3301 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3302 } 3303 3304 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3305 const Value *Op0 = I.getOperand(0); 3306 const Value *Op1 = I.getOperand(1); 3307 Type *AggTy = I.getType(); 3308 Type *ValTy = Op1->getType(); 3309 bool IntoUndef = isa<UndefValue>(Op0); 3310 bool FromUndef = isa<UndefValue>(Op1); 3311 3312 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3313 3314 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3315 SmallVector<EVT, 4> AggValueVTs; 3316 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3317 SmallVector<EVT, 4> ValValueVTs; 3318 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3319 3320 unsigned NumAggValues = AggValueVTs.size(); 3321 unsigned NumValValues = ValValueVTs.size(); 3322 SmallVector<SDValue, 4> Values(NumAggValues); 3323 3324 // Ignore an insertvalue that produces an empty object 3325 if (!NumAggValues) { 3326 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3327 return; 3328 } 3329 3330 SDValue Agg = getValue(Op0); 3331 unsigned i = 0; 3332 // Copy the beginning value(s) from the original aggregate. 3333 for (; i != LinearIndex; ++i) 3334 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3335 SDValue(Agg.getNode(), Agg.getResNo() + i); 3336 // Copy values from the inserted value(s). 3337 if (NumValValues) { 3338 SDValue Val = getValue(Op1); 3339 for (; i != LinearIndex + NumValValues; ++i) 3340 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3341 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3342 } 3343 // Copy remaining value(s) from the original aggregate. 3344 for (; i != NumAggValues; ++i) 3345 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3346 SDValue(Agg.getNode(), Agg.getResNo() + i); 3347 3348 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3349 DAG.getVTList(AggValueVTs), Values)); 3350 } 3351 3352 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3353 const Value *Op0 = I.getOperand(0); 3354 Type *AggTy = Op0->getType(); 3355 Type *ValTy = I.getType(); 3356 bool OutOfUndef = isa<UndefValue>(Op0); 3357 3358 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3359 3360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3361 SmallVector<EVT, 4> ValValueVTs; 3362 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3363 3364 unsigned NumValValues = ValValueVTs.size(); 3365 3366 // Ignore a extractvalue that produces an empty object 3367 if (!NumValValues) { 3368 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3369 return; 3370 } 3371 3372 SmallVector<SDValue, 4> Values(NumValValues); 3373 3374 SDValue Agg = getValue(Op0); 3375 // Copy out the selected value(s). 3376 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3377 Values[i - LinearIndex] = 3378 OutOfUndef ? 3379 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3380 SDValue(Agg.getNode(), Agg.getResNo() + i); 3381 3382 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3383 DAG.getVTList(ValValueVTs), Values)); 3384 } 3385 3386 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3387 Value *Op0 = I.getOperand(0); 3388 // Note that the pointer operand may be a vector of pointers. Take the scalar 3389 // element which holds a pointer. 3390 Type *Ty = Op0->getType()->getScalarType(); 3391 unsigned AS = Ty->getPointerAddressSpace(); 3392 SDValue N = getValue(Op0); 3393 3394 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3395 OI != E; ++OI) { 3396 const Value *Idx = *OI; 3397 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3398 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3399 if (Field) { 3400 // N = N + Offset 3401 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3402 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3403 DAG.getConstant(Offset, N.getValueType())); 3404 } 3405 3406 Ty = StTy->getElementType(Field); 3407 } else { 3408 Ty = cast<SequentialType>(Ty)->getElementType(); 3409 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 3410 unsigned PtrSize = PtrTy.getSizeInBits(); 3411 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3412 3413 // If this is a constant subscript, handle it quickly. 3414 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 3415 if (CI->isZero()) 3416 continue; 3417 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3418 SDValue OffsVal = DAG.getConstant(Offs, PtrTy); 3419 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal); 3420 continue; 3421 } 3422 3423 // N = N + Idx * ElementSize; 3424 SDValue IdxN = getValue(Idx); 3425 3426 // If the index is smaller or larger than intptr_t, truncate or extend 3427 // it. 3428 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3429 3430 // If this is a multiply by a power of two, turn it into a shl 3431 // immediately. This is a very common case. 3432 if (ElementSize != 1) { 3433 if (ElementSize.isPowerOf2()) { 3434 unsigned Amt = ElementSize.logBase2(); 3435 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3436 N.getValueType(), IdxN, 3437 DAG.getConstant(Amt, IdxN.getValueType())); 3438 } else { 3439 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3440 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3441 N.getValueType(), IdxN, Scale); 3442 } 3443 } 3444 3445 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3446 N.getValueType(), N, IdxN); 3447 } 3448 } 3449 3450 setValue(&I, N); 3451 } 3452 3453 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3454 // If this is a fixed sized alloca in the entry block of the function, 3455 // allocate it statically on the stack. 3456 if (FuncInfo.StaticAllocaMap.count(&I)) 3457 return; // getValue will auto-populate this. 3458 3459 Type *Ty = I.getAllocatedType(); 3460 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3461 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3462 unsigned Align = 3463 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3464 I.getAlignment()); 3465 3466 SDValue AllocSize = getValue(I.getArraySize()); 3467 3468 EVT IntPtr = TLI.getPointerTy(); 3469 if (AllocSize.getValueType() != IntPtr) 3470 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3471 3472 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3473 AllocSize, 3474 DAG.getConstant(TySize, IntPtr)); 3475 3476 // Handle alignment. If the requested alignment is less than or equal to 3477 // the stack alignment, ignore it. If the size is greater than or equal to 3478 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3479 unsigned StackAlign = 3480 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3481 if (Align <= StackAlign) 3482 Align = 0; 3483 3484 // Round the size of the allocation up to the stack alignment size 3485 // by add SA-1 to the size. 3486 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3487 AllocSize.getValueType(), AllocSize, 3488 DAG.getIntPtrConstant(StackAlign-1)); 3489 3490 // Mask out the low bits for alignment purposes. 3491 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3492 AllocSize.getValueType(), AllocSize, 3493 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3494 3495 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3496 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3497 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3498 setValue(&I, DSA); 3499 DAG.setRoot(DSA.getValue(1)); 3500 3501 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3502 } 3503 3504 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3505 if (I.isAtomic()) 3506 return visitAtomicLoad(I); 3507 3508 const Value *SV = I.getOperand(0); 3509 SDValue Ptr = getValue(SV); 3510 3511 Type *Ty = I.getType(); 3512 3513 bool isVolatile = I.isVolatile(); 3514 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3515 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3516 unsigned Alignment = I.getAlignment(); 3517 3518 AAMDNodes AAInfo; 3519 I.getAAMetadata(AAInfo); 3520 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3521 3522 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3523 SmallVector<EVT, 4> ValueVTs; 3524 SmallVector<uint64_t, 4> Offsets; 3525 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3526 unsigned NumValues = ValueVTs.size(); 3527 if (NumValues == 0) 3528 return; 3529 3530 SDValue Root; 3531 bool ConstantMemory = false; 3532 if (isVolatile || NumValues > MaxParallelChains) 3533 // Serialize volatile loads with other side effects. 3534 Root = getRoot(); 3535 else if (AA->pointsToConstantMemory( 3536 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3537 // Do not serialize (non-volatile) loads of constant memory with anything. 3538 Root = DAG.getEntryNode(); 3539 ConstantMemory = true; 3540 } else { 3541 // Do not serialize non-volatile loads against each other. 3542 Root = DAG.getRoot(); 3543 } 3544 3545 if (isVolatile) 3546 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3547 3548 SmallVector<SDValue, 4> Values(NumValues); 3549 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3550 NumValues)); 3551 EVT PtrVT = Ptr.getValueType(); 3552 unsigned ChainI = 0; 3553 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3554 // Serializing loads here may result in excessive register pressure, and 3555 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3556 // could recover a bit by hoisting nodes upward in the chain by recognizing 3557 // they are side-effect free or do not alias. The optimizer should really 3558 // avoid this case by converting large object/array copies to llvm.memcpy 3559 // (MaxParallelChains should always remain as failsafe). 3560 if (ChainI == MaxParallelChains) { 3561 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3562 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3563 makeArrayRef(Chains.data(), ChainI)); 3564 Root = Chain; 3565 ChainI = 0; 3566 } 3567 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3568 PtrVT, Ptr, 3569 DAG.getConstant(Offsets[i], PtrVT)); 3570 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3571 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3572 isNonTemporal, isInvariant, Alignment, AAInfo, 3573 Ranges); 3574 3575 Values[i] = L; 3576 Chains[ChainI] = L.getValue(1); 3577 } 3578 3579 if (!ConstantMemory) { 3580 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3581 makeArrayRef(Chains.data(), ChainI)); 3582 if (isVolatile) 3583 DAG.setRoot(Chain); 3584 else 3585 PendingLoads.push_back(Chain); 3586 } 3587 3588 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3589 DAG.getVTList(ValueVTs), Values)); 3590 } 3591 3592 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3593 if (I.isAtomic()) 3594 return visitAtomicStore(I); 3595 3596 const Value *SrcV = I.getOperand(0); 3597 const Value *PtrV = I.getOperand(1); 3598 3599 SmallVector<EVT, 4> ValueVTs; 3600 SmallVector<uint64_t, 4> Offsets; 3601 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3602 ValueVTs, &Offsets); 3603 unsigned NumValues = ValueVTs.size(); 3604 if (NumValues == 0) 3605 return; 3606 3607 // Get the lowered operands. Note that we do this after 3608 // checking if NumResults is zero, because with zero results 3609 // the operands won't have values in the map. 3610 SDValue Src = getValue(SrcV); 3611 SDValue Ptr = getValue(PtrV); 3612 3613 SDValue Root = getRoot(); 3614 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3615 NumValues)); 3616 EVT PtrVT = Ptr.getValueType(); 3617 bool isVolatile = I.isVolatile(); 3618 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3619 unsigned Alignment = I.getAlignment(); 3620 3621 AAMDNodes AAInfo; 3622 I.getAAMetadata(AAInfo); 3623 3624 unsigned ChainI = 0; 3625 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3626 // See visitLoad comments. 3627 if (ChainI == MaxParallelChains) { 3628 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3629 makeArrayRef(Chains.data(), ChainI)); 3630 Root = Chain; 3631 ChainI = 0; 3632 } 3633 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3634 DAG.getConstant(Offsets[i], PtrVT)); 3635 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3636 SDValue(Src.getNode(), Src.getResNo() + i), 3637 Add, MachinePointerInfo(PtrV, Offsets[i]), 3638 isVolatile, isNonTemporal, Alignment, AAInfo); 3639 Chains[ChainI] = St; 3640 } 3641 3642 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3643 makeArrayRef(Chains.data(), ChainI)); 3644 DAG.setRoot(StoreNode); 3645 } 3646 3647 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3648 SDLoc sdl = getCurSDLoc(); 3649 3650 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3651 Value *PtrOperand = I.getArgOperand(1); 3652 SDValue Ptr = getValue(PtrOperand); 3653 SDValue Src0 = getValue(I.getArgOperand(0)); 3654 SDValue Mask = getValue(I.getArgOperand(3)); 3655 EVT VT = Src0.getValueType(); 3656 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3657 if (!Alignment) 3658 Alignment = DAG.getEVTAlignment(VT); 3659 3660 AAMDNodes AAInfo; 3661 I.getAAMetadata(AAInfo); 3662 3663 MachineMemOperand *MMO = 3664 DAG.getMachineFunction(). 3665 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3666 MachineMemOperand::MOStore, VT.getStoreSize(), 3667 Alignment, AAInfo); 3668 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3669 MMO, false); 3670 DAG.setRoot(StoreNode); 3671 setValue(&I, StoreNode); 3672 } 3673 3674 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3675 SDLoc sdl = getCurSDLoc(); 3676 3677 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3678 Value *PtrOperand = I.getArgOperand(0); 3679 SDValue Ptr = getValue(PtrOperand); 3680 SDValue Src0 = getValue(I.getArgOperand(3)); 3681 SDValue Mask = getValue(I.getArgOperand(2)); 3682 3683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3684 EVT VT = TLI.getValueType(I.getType()); 3685 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3686 if (!Alignment) 3687 Alignment = DAG.getEVTAlignment(VT); 3688 3689 AAMDNodes AAInfo; 3690 I.getAAMetadata(AAInfo); 3691 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3692 3693 SDValue InChain = DAG.getRoot(); 3694 if (AA->pointsToConstantMemory( 3695 AliasAnalysis::Location(PtrOperand, 3696 AA->getTypeStoreSize(I.getType()), 3697 AAInfo))) { 3698 // Do not serialize (non-volatile) loads of constant memory with anything. 3699 InChain = DAG.getEntryNode(); 3700 } 3701 3702 MachineMemOperand *MMO = 3703 DAG.getMachineFunction(). 3704 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3705 MachineMemOperand::MOLoad, VT.getStoreSize(), 3706 Alignment, AAInfo, Ranges); 3707 3708 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3709 ISD::NON_EXTLOAD); 3710 SDValue OutChain = Load.getValue(1); 3711 DAG.setRoot(OutChain); 3712 setValue(&I, Load); 3713 } 3714 3715 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3716 SDLoc dl = getCurSDLoc(); 3717 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3718 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3719 SynchronizationScope Scope = I.getSynchScope(); 3720 3721 SDValue InChain = getRoot(); 3722 3723 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3724 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3725 SDValue L = DAG.getAtomicCmpSwap( 3726 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3727 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3728 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3729 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3730 3731 SDValue OutChain = L.getValue(2); 3732 3733 setValue(&I, L); 3734 DAG.setRoot(OutChain); 3735 } 3736 3737 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3738 SDLoc dl = getCurSDLoc(); 3739 ISD::NodeType NT; 3740 switch (I.getOperation()) { 3741 default: llvm_unreachable("Unknown atomicrmw operation"); 3742 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3743 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3744 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3745 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3746 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3747 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3748 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3749 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3750 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3751 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3752 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3753 } 3754 AtomicOrdering Order = I.getOrdering(); 3755 SynchronizationScope Scope = I.getSynchScope(); 3756 3757 SDValue InChain = getRoot(); 3758 3759 SDValue L = 3760 DAG.getAtomic(NT, dl, 3761 getValue(I.getValOperand()).getSimpleValueType(), 3762 InChain, 3763 getValue(I.getPointerOperand()), 3764 getValue(I.getValOperand()), 3765 I.getPointerOperand(), 3766 /* Alignment=*/ 0, Order, Scope); 3767 3768 SDValue OutChain = L.getValue(1); 3769 3770 setValue(&I, L); 3771 DAG.setRoot(OutChain); 3772 } 3773 3774 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3775 SDLoc dl = getCurSDLoc(); 3776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3777 SDValue Ops[3]; 3778 Ops[0] = getRoot(); 3779 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3780 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3781 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3782 } 3783 3784 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3785 SDLoc dl = getCurSDLoc(); 3786 AtomicOrdering Order = I.getOrdering(); 3787 SynchronizationScope Scope = I.getSynchScope(); 3788 3789 SDValue InChain = getRoot(); 3790 3791 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3792 EVT VT = TLI.getValueType(I.getType()); 3793 3794 if (I.getAlignment() < VT.getSizeInBits() / 8) 3795 report_fatal_error("Cannot generate unaligned atomic load"); 3796 3797 MachineMemOperand *MMO = 3798 DAG.getMachineFunction(). 3799 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3800 MachineMemOperand::MOVolatile | 3801 MachineMemOperand::MOLoad, 3802 VT.getStoreSize(), 3803 I.getAlignment() ? I.getAlignment() : 3804 DAG.getEVTAlignment(VT)); 3805 3806 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3807 SDValue L = 3808 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3809 getValue(I.getPointerOperand()), MMO, 3810 Order, Scope); 3811 3812 SDValue OutChain = L.getValue(1); 3813 3814 setValue(&I, L); 3815 DAG.setRoot(OutChain); 3816 } 3817 3818 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3819 SDLoc dl = getCurSDLoc(); 3820 3821 AtomicOrdering Order = I.getOrdering(); 3822 SynchronizationScope Scope = I.getSynchScope(); 3823 3824 SDValue InChain = getRoot(); 3825 3826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3827 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3828 3829 if (I.getAlignment() < VT.getSizeInBits() / 8) 3830 report_fatal_error("Cannot generate unaligned atomic store"); 3831 3832 SDValue OutChain = 3833 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3834 InChain, 3835 getValue(I.getPointerOperand()), 3836 getValue(I.getValueOperand()), 3837 I.getPointerOperand(), I.getAlignment(), 3838 Order, Scope); 3839 3840 DAG.setRoot(OutChain); 3841 } 3842 3843 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3844 /// node. 3845 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3846 unsigned Intrinsic) { 3847 bool HasChain = !I.doesNotAccessMemory(); 3848 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3849 3850 // Build the operand list. 3851 SmallVector<SDValue, 8> Ops; 3852 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3853 if (OnlyLoad) { 3854 // We don't need to serialize loads against other loads. 3855 Ops.push_back(DAG.getRoot()); 3856 } else { 3857 Ops.push_back(getRoot()); 3858 } 3859 } 3860 3861 // Info is set by getTgtMemInstrinsic 3862 TargetLowering::IntrinsicInfo Info; 3863 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3864 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3865 3866 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3867 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3868 Info.opc == ISD::INTRINSIC_W_CHAIN) 3869 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3870 3871 // Add all operands of the call to the operand list. 3872 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3873 SDValue Op = getValue(I.getArgOperand(i)); 3874 Ops.push_back(Op); 3875 } 3876 3877 SmallVector<EVT, 4> ValueVTs; 3878 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3879 3880 if (HasChain) 3881 ValueVTs.push_back(MVT::Other); 3882 3883 SDVTList VTs = DAG.getVTList(ValueVTs); 3884 3885 // Create the node. 3886 SDValue Result; 3887 if (IsTgtIntrinsic) { 3888 // This is target intrinsic that touches memory 3889 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3890 VTs, Ops, Info.memVT, 3891 MachinePointerInfo(Info.ptrVal, Info.offset), 3892 Info.align, Info.vol, 3893 Info.readMem, Info.writeMem, Info.size); 3894 } else if (!HasChain) { 3895 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3896 } else if (!I.getType()->isVoidTy()) { 3897 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3898 } else { 3899 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3900 } 3901 3902 if (HasChain) { 3903 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3904 if (OnlyLoad) 3905 PendingLoads.push_back(Chain); 3906 else 3907 DAG.setRoot(Chain); 3908 } 3909 3910 if (!I.getType()->isVoidTy()) { 3911 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3912 EVT VT = TLI.getValueType(PTy); 3913 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3914 } 3915 3916 setValue(&I, Result); 3917 } 3918 } 3919 3920 /// GetSignificand - Get the significand and build it into a floating-point 3921 /// number with exponent of 1: 3922 /// 3923 /// Op = (Op & 0x007fffff) | 0x3f800000; 3924 /// 3925 /// where Op is the hexadecimal representation of floating point value. 3926 static SDValue 3927 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3928 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3929 DAG.getConstant(0x007fffff, MVT::i32)); 3930 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3931 DAG.getConstant(0x3f800000, MVT::i32)); 3932 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3933 } 3934 3935 /// GetExponent - Get the exponent: 3936 /// 3937 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3938 /// 3939 /// where Op is the hexadecimal representation of floating point value. 3940 static SDValue 3941 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3942 SDLoc dl) { 3943 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3944 DAG.getConstant(0x7f800000, MVT::i32)); 3945 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3946 DAG.getConstant(23, TLI.getPointerTy())); 3947 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3948 DAG.getConstant(127, MVT::i32)); 3949 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3950 } 3951 3952 /// getF32Constant - Get 32-bit floating point constant. 3953 static SDValue 3954 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3955 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3956 MVT::f32); 3957 } 3958 3959 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3960 SelectionDAG &DAG) { 3961 // IntegerPartOfX = ((int32_t)(t0); 3962 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3963 3964 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3965 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3966 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3967 3968 // IntegerPartOfX <<= 23; 3969 IntegerPartOfX = DAG.getNode( 3970 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3971 DAG.getConstant(23, DAG.getTargetLoweringInfo().getPointerTy())); 3972 3973 SDValue TwoToFractionalPartOfX; 3974 if (LimitFloatPrecision <= 6) { 3975 // For floating-point precision of 6: 3976 // 3977 // TwoToFractionalPartOfX = 3978 // 0.997535578f + 3979 // (0.735607626f + 0.252464424f * x) * x; 3980 // 3981 // error 0.0144103317, which is 6 bits 3982 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3983 getF32Constant(DAG, 0x3e814304)); 3984 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3985 getF32Constant(DAG, 0x3f3c50c8)); 3986 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3987 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3988 getF32Constant(DAG, 0x3f7f5e7e)); 3989 } else if (LimitFloatPrecision <= 12) { 3990 // For floating-point precision of 12: 3991 // 3992 // TwoToFractionalPartOfX = 3993 // 0.999892986f + 3994 // (0.696457318f + 3995 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3996 // 3997 // error 0.000107046256, which is 13 to 14 bits 3998 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3999 getF32Constant(DAG, 0x3da235e3)); 4000 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4001 getF32Constant(DAG, 0x3e65b8f3)); 4002 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4003 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4004 getF32Constant(DAG, 0x3f324b07)); 4005 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4006 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4007 getF32Constant(DAG, 0x3f7ff8fd)); 4008 } else { // LimitFloatPrecision <= 18 4009 // For floating-point precision of 18: 4010 // 4011 // TwoToFractionalPartOfX = 4012 // 0.999999982f + 4013 // (0.693148872f + 4014 // (0.240227044f + 4015 // (0.554906021e-1f + 4016 // (0.961591928e-2f + 4017 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4018 // error 2.47208000*10^(-7), which is better than 18 bits 4019 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4020 getF32Constant(DAG, 0x3924b03e)); 4021 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4022 getF32Constant(DAG, 0x3ab24b87)); 4023 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4024 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4025 getF32Constant(DAG, 0x3c1d8c17)); 4026 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4027 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4028 getF32Constant(DAG, 0x3d634a1d)); 4029 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4030 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4031 getF32Constant(DAG, 0x3e75fe14)); 4032 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4033 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4034 getF32Constant(DAG, 0x3f317234)); 4035 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4036 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4037 getF32Constant(DAG, 0x3f800000)); 4038 } 4039 4040 // Add the exponent into the result in integer domain. 4041 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4042 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4043 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4044 } 4045 4046 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4047 /// limited-precision mode. 4048 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4049 const TargetLowering &TLI) { 4050 if (Op.getValueType() == MVT::f32 && 4051 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4052 4053 // Put the exponent in the right bit position for later addition to the 4054 // final result: 4055 // 4056 // #define LOG2OFe 1.4426950f 4057 // t0 = Op * LOG2OFe 4058 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4059 getF32Constant(DAG, 0x3fb8aa3b)); 4060 return getLimitedPrecisionExp2(t0, dl, DAG); 4061 } 4062 4063 // No special expansion. 4064 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4065 } 4066 4067 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4068 /// limited-precision mode. 4069 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4070 const TargetLowering &TLI) { 4071 if (Op.getValueType() == MVT::f32 && 4072 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4073 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4074 4075 // Scale the exponent by log(2) [0.69314718f]. 4076 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4077 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4078 getF32Constant(DAG, 0x3f317218)); 4079 4080 // Get the significand and build it into a floating-point number with 4081 // exponent of 1. 4082 SDValue X = GetSignificand(DAG, Op1, dl); 4083 4084 SDValue LogOfMantissa; 4085 if (LimitFloatPrecision <= 6) { 4086 // For floating-point precision of 6: 4087 // 4088 // LogofMantissa = 4089 // -1.1609546f + 4090 // (1.4034025f - 0.23903021f * x) * x; 4091 // 4092 // error 0.0034276066, which is better than 8 bits 4093 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4094 getF32Constant(DAG, 0xbe74c456)); 4095 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4096 getF32Constant(DAG, 0x3fb3a2b1)); 4097 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4098 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4099 getF32Constant(DAG, 0x3f949a29)); 4100 } else if (LimitFloatPrecision <= 12) { 4101 // For floating-point precision of 12: 4102 // 4103 // LogOfMantissa = 4104 // -1.7417939f + 4105 // (2.8212026f + 4106 // (-1.4699568f + 4107 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4108 // 4109 // error 0.000061011436, which is 14 bits 4110 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4111 getF32Constant(DAG, 0xbd67b6d6)); 4112 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4113 getF32Constant(DAG, 0x3ee4f4b8)); 4114 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4115 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4116 getF32Constant(DAG, 0x3fbc278b)); 4117 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4118 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4119 getF32Constant(DAG, 0x40348e95)); 4120 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4121 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4122 getF32Constant(DAG, 0x3fdef31a)); 4123 } else { // LimitFloatPrecision <= 18 4124 // For floating-point precision of 18: 4125 // 4126 // LogOfMantissa = 4127 // -2.1072184f + 4128 // (4.2372794f + 4129 // (-3.7029485f + 4130 // (2.2781945f + 4131 // (-0.87823314f + 4132 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4133 // 4134 // error 0.0000023660568, which is better than 18 bits 4135 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4136 getF32Constant(DAG, 0xbc91e5ac)); 4137 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4138 getF32Constant(DAG, 0x3e4350aa)); 4139 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4140 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4141 getF32Constant(DAG, 0x3f60d3e3)); 4142 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4143 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4144 getF32Constant(DAG, 0x4011cdf0)); 4145 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4146 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4147 getF32Constant(DAG, 0x406cfd1c)); 4148 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4149 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4150 getF32Constant(DAG, 0x408797cb)); 4151 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4152 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4153 getF32Constant(DAG, 0x4006dcab)); 4154 } 4155 4156 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4157 } 4158 4159 // No special expansion. 4160 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4161 } 4162 4163 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4164 /// limited-precision mode. 4165 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4166 const TargetLowering &TLI) { 4167 if (Op.getValueType() == MVT::f32 && 4168 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4169 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4170 4171 // Get the exponent. 4172 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4173 4174 // Get the significand and build it into a floating-point number with 4175 // exponent of 1. 4176 SDValue X = GetSignificand(DAG, Op1, dl); 4177 4178 // Different possible minimax approximations of significand in 4179 // floating-point for various degrees of accuracy over [1,2]. 4180 SDValue Log2ofMantissa; 4181 if (LimitFloatPrecision <= 6) { 4182 // For floating-point precision of 6: 4183 // 4184 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4185 // 4186 // error 0.0049451742, which is more than 7 bits 4187 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4188 getF32Constant(DAG, 0xbeb08fe0)); 4189 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4190 getF32Constant(DAG, 0x40019463)); 4191 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4192 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4193 getF32Constant(DAG, 0x3fd6633d)); 4194 } else if (LimitFloatPrecision <= 12) { 4195 // For floating-point precision of 12: 4196 // 4197 // Log2ofMantissa = 4198 // -2.51285454f + 4199 // (4.07009056f + 4200 // (-2.12067489f + 4201 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4202 // 4203 // error 0.0000876136000, which is better than 13 bits 4204 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4205 getF32Constant(DAG, 0xbda7262e)); 4206 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4207 getF32Constant(DAG, 0x3f25280b)); 4208 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4209 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4210 getF32Constant(DAG, 0x4007b923)); 4211 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4212 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4213 getF32Constant(DAG, 0x40823e2f)); 4214 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4215 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4216 getF32Constant(DAG, 0x4020d29c)); 4217 } else { // LimitFloatPrecision <= 18 4218 // For floating-point precision of 18: 4219 // 4220 // Log2ofMantissa = 4221 // -3.0400495f + 4222 // (6.1129976f + 4223 // (-5.3420409f + 4224 // (3.2865683f + 4225 // (-1.2669343f + 4226 // (0.27515199f - 4227 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4228 // 4229 // error 0.0000018516, which is better than 18 bits 4230 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4231 getF32Constant(DAG, 0xbcd2769e)); 4232 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4233 getF32Constant(DAG, 0x3e8ce0b9)); 4234 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4235 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4236 getF32Constant(DAG, 0x3fa22ae7)); 4237 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4238 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4239 getF32Constant(DAG, 0x40525723)); 4240 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4241 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4242 getF32Constant(DAG, 0x40aaf200)); 4243 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4244 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4245 getF32Constant(DAG, 0x40c39dad)); 4246 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4247 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4248 getF32Constant(DAG, 0x4042902c)); 4249 } 4250 4251 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4252 } 4253 4254 // No special expansion. 4255 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4256 } 4257 4258 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4259 /// limited-precision mode. 4260 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4261 const TargetLowering &TLI) { 4262 if (Op.getValueType() == MVT::f32 && 4263 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4264 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4265 4266 // Scale the exponent by log10(2) [0.30102999f]. 4267 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4268 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4269 getF32Constant(DAG, 0x3e9a209a)); 4270 4271 // Get the significand and build it into a floating-point number with 4272 // exponent of 1. 4273 SDValue X = GetSignificand(DAG, Op1, dl); 4274 4275 SDValue Log10ofMantissa; 4276 if (LimitFloatPrecision <= 6) { 4277 // For floating-point precision of 6: 4278 // 4279 // Log10ofMantissa = 4280 // -0.50419619f + 4281 // (0.60948995f - 0.10380950f * x) * x; 4282 // 4283 // error 0.0014886165, which is 6 bits 4284 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4285 getF32Constant(DAG, 0xbdd49a13)); 4286 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4287 getF32Constant(DAG, 0x3f1c0789)); 4288 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4289 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4290 getF32Constant(DAG, 0x3f011300)); 4291 } else if (LimitFloatPrecision <= 12) { 4292 // For floating-point precision of 12: 4293 // 4294 // Log10ofMantissa = 4295 // -0.64831180f + 4296 // (0.91751397f + 4297 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4298 // 4299 // error 0.00019228036, which is better than 12 bits 4300 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4301 getF32Constant(DAG, 0x3d431f31)); 4302 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4303 getF32Constant(DAG, 0x3ea21fb2)); 4304 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4305 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4306 getF32Constant(DAG, 0x3f6ae232)); 4307 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4308 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4309 getF32Constant(DAG, 0x3f25f7c3)); 4310 } else { // LimitFloatPrecision <= 18 4311 // For floating-point precision of 18: 4312 // 4313 // Log10ofMantissa = 4314 // -0.84299375f + 4315 // (1.5327582f + 4316 // (-1.0688956f + 4317 // (0.49102474f + 4318 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4319 // 4320 // error 0.0000037995730, which is better than 18 bits 4321 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4322 getF32Constant(DAG, 0x3c5d51ce)); 4323 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4324 getF32Constant(DAG, 0x3e00685a)); 4325 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4326 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4327 getF32Constant(DAG, 0x3efb6798)); 4328 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4329 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4330 getF32Constant(DAG, 0x3f88d192)); 4331 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4332 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4333 getF32Constant(DAG, 0x3fc4316c)); 4334 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4335 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4336 getF32Constant(DAG, 0x3f57ce70)); 4337 } 4338 4339 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4340 } 4341 4342 // No special expansion. 4343 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4344 } 4345 4346 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4347 /// limited-precision mode. 4348 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4349 const TargetLowering &TLI) { 4350 if (Op.getValueType() == MVT::f32 && 4351 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4352 return getLimitedPrecisionExp2(Op, dl, DAG); 4353 4354 // No special expansion. 4355 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4356 } 4357 4358 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4359 /// limited-precision mode with x == 10.0f. 4360 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4361 SelectionDAG &DAG, const TargetLowering &TLI) { 4362 bool IsExp10 = false; 4363 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4364 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4365 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4366 APFloat Ten(10.0f); 4367 IsExp10 = LHSC->isExactlyValue(Ten); 4368 } 4369 } 4370 4371 if (IsExp10) { 4372 // Put the exponent in the right bit position for later addition to the 4373 // final result: 4374 // 4375 // #define LOG2OF10 3.3219281f 4376 // t0 = Op * LOG2OF10; 4377 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4378 getF32Constant(DAG, 0x40549a78)); 4379 return getLimitedPrecisionExp2(t0, dl, DAG); 4380 } 4381 4382 // No special expansion. 4383 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4384 } 4385 4386 4387 /// ExpandPowI - Expand a llvm.powi intrinsic. 4388 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4389 SelectionDAG &DAG) { 4390 // If RHS is a constant, we can expand this out to a multiplication tree, 4391 // otherwise we end up lowering to a call to __powidf2 (for example). When 4392 // optimizing for size, we only want to do this if the expansion would produce 4393 // a small number of multiplies, otherwise we do the full expansion. 4394 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4395 // Get the exponent as a positive value. 4396 unsigned Val = RHSC->getSExtValue(); 4397 if ((int)Val < 0) Val = -Val; 4398 4399 // powi(x, 0) -> 1.0 4400 if (Val == 0) 4401 return DAG.getConstantFP(1.0, LHS.getValueType()); 4402 4403 const Function *F = DAG.getMachineFunction().getFunction(); 4404 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 4405 // If optimizing for size, don't insert too many multiplies. This 4406 // inserts up to 5 multiplies. 4407 countPopulation(Val) + Log2_32(Val) < 7) { 4408 // We use the simple binary decomposition method to generate the multiply 4409 // sequence. There are more optimal ways to do this (for example, 4410 // powi(x,15) generates one more multiply than it should), but this has 4411 // the benefit of being both really simple and much better than a libcall. 4412 SDValue Res; // Logically starts equal to 1.0 4413 SDValue CurSquare = LHS; 4414 while (Val) { 4415 if (Val & 1) { 4416 if (Res.getNode()) 4417 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4418 else 4419 Res = CurSquare; // 1.0*CurSquare. 4420 } 4421 4422 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4423 CurSquare, CurSquare); 4424 Val >>= 1; 4425 } 4426 4427 // If the original was negative, invert the result, producing 1/(x*x*x). 4428 if (RHSC->getSExtValue() < 0) 4429 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4430 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4431 return Res; 4432 } 4433 } 4434 4435 // Otherwise, expand to a libcall. 4436 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4437 } 4438 4439 // getTruncatedArgReg - Find underlying register used for an truncated 4440 // argument. 4441 static unsigned getTruncatedArgReg(const SDValue &N) { 4442 if (N.getOpcode() != ISD::TRUNCATE) 4443 return 0; 4444 4445 const SDValue &Ext = N.getOperand(0); 4446 if (Ext.getOpcode() == ISD::AssertZext || 4447 Ext.getOpcode() == ISD::AssertSext) { 4448 const SDValue &CFR = Ext.getOperand(0); 4449 if (CFR.getOpcode() == ISD::CopyFromReg) 4450 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4451 if (CFR.getOpcode() == ISD::TRUNCATE) 4452 return getTruncatedArgReg(CFR); 4453 } 4454 return 0; 4455 } 4456 4457 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4458 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4459 /// At the end of instruction selection, they will be inserted to the entry BB. 4460 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4461 MDNode *Variable, 4462 MDNode *Expr, int64_t Offset, 4463 bool IsIndirect, 4464 const SDValue &N) { 4465 const Argument *Arg = dyn_cast<Argument>(V); 4466 if (!Arg) 4467 return false; 4468 4469 MachineFunction &MF = DAG.getMachineFunction(); 4470 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4471 4472 // Ignore inlined function arguments here. 4473 DIVariable DV(Variable); 4474 if (DV.isInlinedFnArgument(MF.getFunction())) 4475 return false; 4476 4477 Optional<MachineOperand> Op; 4478 // Some arguments' frame index is recorded during argument lowering. 4479 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4480 Op = MachineOperand::CreateFI(FI); 4481 4482 if (!Op && N.getNode()) { 4483 unsigned Reg; 4484 if (N.getOpcode() == ISD::CopyFromReg) 4485 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4486 else 4487 Reg = getTruncatedArgReg(N); 4488 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4489 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4490 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4491 if (PR) 4492 Reg = PR; 4493 } 4494 if (Reg) 4495 Op = MachineOperand::CreateReg(Reg, false); 4496 } 4497 4498 if (!Op) { 4499 // Check if ValueMap has reg number. 4500 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4501 if (VMI != FuncInfo.ValueMap.end()) 4502 Op = MachineOperand::CreateReg(VMI->second, false); 4503 } 4504 4505 if (!Op && N.getNode()) 4506 // Check if frame index is available. 4507 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4508 if (FrameIndexSDNode *FINode = 4509 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4510 Op = MachineOperand::CreateFI(FINode->getIndex()); 4511 4512 if (!Op) 4513 return false; 4514 4515 if (Op->isReg()) 4516 FuncInfo.ArgDbgValues.push_back( 4517 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4518 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4519 else 4520 FuncInfo.ArgDbgValues.push_back( 4521 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4522 .addOperand(*Op) 4523 .addImm(Offset) 4524 .addMetadata(Variable) 4525 .addMetadata(Expr)); 4526 4527 return true; 4528 } 4529 4530 // VisualStudio defines setjmp as _setjmp 4531 #if defined(_MSC_VER) && defined(setjmp) && \ 4532 !defined(setjmp_undefined_for_msvc) 4533 # pragma push_macro("setjmp") 4534 # undef setjmp 4535 # define setjmp_undefined_for_msvc 4536 #endif 4537 4538 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4539 /// we want to emit this as a call to a named external function, return the name 4540 /// otherwise lower it and return null. 4541 const char * 4542 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4544 SDLoc sdl = getCurSDLoc(); 4545 DebugLoc dl = getCurDebugLoc(); 4546 SDValue Res; 4547 4548 switch (Intrinsic) { 4549 default: 4550 // By default, turn this into a target intrinsic node. 4551 visitTargetIntrinsic(I, Intrinsic); 4552 return nullptr; 4553 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4554 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4555 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4556 case Intrinsic::returnaddress: 4557 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4558 getValue(I.getArgOperand(0)))); 4559 return nullptr; 4560 case Intrinsic::frameaddress: 4561 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4562 getValue(I.getArgOperand(0)))); 4563 return nullptr; 4564 case Intrinsic::read_register: { 4565 Value *Reg = I.getArgOperand(0); 4566 SDValue RegName = 4567 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4568 EVT VT = TLI.getValueType(I.getType()); 4569 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4570 return nullptr; 4571 } 4572 case Intrinsic::write_register: { 4573 Value *Reg = I.getArgOperand(0); 4574 Value *RegValue = I.getArgOperand(1); 4575 SDValue Chain = getValue(RegValue).getOperand(0); 4576 SDValue RegName = 4577 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4578 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4579 RegName, getValue(RegValue))); 4580 return nullptr; 4581 } 4582 case Intrinsic::setjmp: 4583 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4584 case Intrinsic::longjmp: 4585 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4586 case Intrinsic::memcpy: { 4587 // FIXME: this definition of "user defined address space" is x86-specific 4588 // Assert for address < 256 since we support only user defined address 4589 // spaces. 4590 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4591 < 256 && 4592 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4593 < 256 && 4594 "Unknown address space"); 4595 SDValue Op1 = getValue(I.getArgOperand(0)); 4596 SDValue Op2 = getValue(I.getArgOperand(1)); 4597 SDValue Op3 = getValue(I.getArgOperand(2)); 4598 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4599 if (!Align) 4600 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4601 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4602 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4603 MachinePointerInfo(I.getArgOperand(0)), 4604 MachinePointerInfo(I.getArgOperand(1)))); 4605 return nullptr; 4606 } 4607 case Intrinsic::memset: { 4608 // FIXME: this definition of "user defined address space" is x86-specific 4609 // Assert for address < 256 since we support only user defined address 4610 // spaces. 4611 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4612 < 256 && 4613 "Unknown address space"); 4614 SDValue Op1 = getValue(I.getArgOperand(0)); 4615 SDValue Op2 = getValue(I.getArgOperand(1)); 4616 SDValue Op3 = getValue(I.getArgOperand(2)); 4617 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4618 if (!Align) 4619 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4620 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4621 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4622 MachinePointerInfo(I.getArgOperand(0)))); 4623 return nullptr; 4624 } 4625 case Intrinsic::memmove: { 4626 // FIXME: this definition of "user defined address space" is x86-specific 4627 // Assert for address < 256 since we support only user defined address 4628 // spaces. 4629 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4630 < 256 && 4631 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4632 < 256 && 4633 "Unknown address space"); 4634 SDValue Op1 = getValue(I.getArgOperand(0)); 4635 SDValue Op2 = getValue(I.getArgOperand(1)); 4636 SDValue Op3 = getValue(I.getArgOperand(2)); 4637 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4638 if (!Align) 4639 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4640 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4641 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4642 MachinePointerInfo(I.getArgOperand(0)), 4643 MachinePointerInfo(I.getArgOperand(1)))); 4644 return nullptr; 4645 } 4646 case Intrinsic::dbg_declare: { 4647 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4648 MDNode *Variable = DI.getVariable(); 4649 MDNode *Expression = DI.getExpression(); 4650 const Value *Address = DI.getAddress(); 4651 DIVariable DIVar(Variable); 4652 assert((!DIVar || DIVar.isVariable()) && 4653 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4654 if (!Address || !DIVar) { 4655 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4656 return nullptr; 4657 } 4658 4659 // Check if address has undef value. 4660 if (isa<UndefValue>(Address) || 4661 (Address->use_empty() && !isa<Argument>(Address))) { 4662 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4663 return nullptr; 4664 } 4665 4666 SDValue &N = NodeMap[Address]; 4667 if (!N.getNode() && isa<Argument>(Address)) 4668 // Check unused arguments map. 4669 N = UnusedArgNodeMap[Address]; 4670 SDDbgValue *SDV; 4671 if (N.getNode()) { 4672 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4673 Address = BCI->getOperand(0); 4674 // Parameters are handled specially. 4675 bool isParameter = 4676 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4677 isa<Argument>(Address)); 4678 4679 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4680 4681 if (isParameter && !AI) { 4682 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4683 if (FINode) 4684 // Byval parameter. We have a frame index at this point. 4685 SDV = DAG.getFrameIndexDbgValue( 4686 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4687 else { 4688 // Address is an argument, so try to emit its dbg value using 4689 // virtual register info from the FuncInfo.ValueMap. 4690 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4691 return nullptr; 4692 } 4693 } else if (AI) 4694 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4695 true, 0, dl, SDNodeOrder); 4696 else { 4697 // Can't do anything with other non-AI cases yet. 4698 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4699 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4700 DEBUG(Address->dump()); 4701 return nullptr; 4702 } 4703 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4704 } else { 4705 // If Address is an argument then try to emit its dbg value using 4706 // virtual register info from the FuncInfo.ValueMap. 4707 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4708 N)) { 4709 // If variable is pinned by a alloca in dominating bb then 4710 // use StaticAllocaMap. 4711 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4712 if (AI->getParent() != DI.getParent()) { 4713 DenseMap<const AllocaInst*, int>::iterator SI = 4714 FuncInfo.StaticAllocaMap.find(AI); 4715 if (SI != FuncInfo.StaticAllocaMap.end()) { 4716 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4717 0, dl, SDNodeOrder); 4718 DAG.AddDbgValue(SDV, nullptr, false); 4719 return nullptr; 4720 } 4721 } 4722 } 4723 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4724 } 4725 } 4726 return nullptr; 4727 } 4728 case Intrinsic::dbg_value: { 4729 const DbgValueInst &DI = cast<DbgValueInst>(I); 4730 DIVariable DIVar(DI.getVariable()); 4731 assert((!DIVar || DIVar.isVariable()) && 4732 "Variable in DbgValueInst should be either null or a DIVariable."); 4733 if (!DIVar) 4734 return nullptr; 4735 4736 MDNode *Variable = DI.getVariable(); 4737 MDNode *Expression = DI.getExpression(); 4738 uint64_t Offset = DI.getOffset(); 4739 const Value *V = DI.getValue(); 4740 if (!V) 4741 return nullptr; 4742 4743 SDDbgValue *SDV; 4744 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4745 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4746 SDNodeOrder); 4747 DAG.AddDbgValue(SDV, nullptr, false); 4748 } else { 4749 // Do not use getValue() in here; we don't want to generate code at 4750 // this point if it hasn't been done yet. 4751 SDValue N = NodeMap[V]; 4752 if (!N.getNode() && isa<Argument>(V)) 4753 // Check unused arguments map. 4754 N = UnusedArgNodeMap[V]; 4755 if (N.getNode()) { 4756 // A dbg.value for an alloca is always indirect. 4757 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4758 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4759 IsIndirect, N)) { 4760 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4761 IsIndirect, Offset, dl, SDNodeOrder); 4762 DAG.AddDbgValue(SDV, N.getNode(), false); 4763 } 4764 } else if (!V->use_empty() ) { 4765 // Do not call getValue(V) yet, as we don't want to generate code. 4766 // Remember it for later. 4767 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4768 DanglingDebugInfoMap[V] = DDI; 4769 } else { 4770 // We may expand this to cover more cases. One case where we have no 4771 // data available is an unreferenced parameter. 4772 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4773 } 4774 } 4775 4776 // Build a debug info table entry. 4777 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4778 V = BCI->getOperand(0); 4779 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4780 // Don't handle byval struct arguments or VLAs, for example. 4781 if (!AI) { 4782 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4783 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4784 return nullptr; 4785 } 4786 DenseMap<const AllocaInst*, int>::iterator SI = 4787 FuncInfo.StaticAllocaMap.find(AI); 4788 if (SI == FuncInfo.StaticAllocaMap.end()) 4789 return nullptr; // VLAs. 4790 return nullptr; 4791 } 4792 4793 case Intrinsic::eh_typeid_for: { 4794 // Find the type id for the given typeinfo. 4795 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4796 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4797 Res = DAG.getConstant(TypeID, MVT::i32); 4798 setValue(&I, Res); 4799 return nullptr; 4800 } 4801 4802 case Intrinsic::eh_return_i32: 4803 case Intrinsic::eh_return_i64: 4804 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4805 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4806 MVT::Other, 4807 getControlRoot(), 4808 getValue(I.getArgOperand(0)), 4809 getValue(I.getArgOperand(1)))); 4810 return nullptr; 4811 case Intrinsic::eh_unwind_init: 4812 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4813 return nullptr; 4814 case Intrinsic::eh_dwarf_cfa: { 4815 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4816 TLI.getPointerTy()); 4817 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4818 CfaArg.getValueType(), 4819 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4820 CfaArg.getValueType()), 4821 CfaArg); 4822 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4823 DAG.getConstant(0, TLI.getPointerTy())); 4824 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4825 FA, Offset)); 4826 return nullptr; 4827 } 4828 case Intrinsic::eh_sjlj_callsite: { 4829 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4830 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4831 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4832 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4833 4834 MMI.setCurrentCallSite(CI->getZExtValue()); 4835 return nullptr; 4836 } 4837 case Intrinsic::eh_sjlj_functioncontext: { 4838 // Get and store the index of the function context. 4839 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4840 AllocaInst *FnCtx = 4841 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4842 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4843 MFI->setFunctionContextIndex(FI); 4844 return nullptr; 4845 } 4846 case Intrinsic::eh_sjlj_setjmp: { 4847 SDValue Ops[2]; 4848 Ops[0] = getRoot(); 4849 Ops[1] = getValue(I.getArgOperand(0)); 4850 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4851 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4852 setValue(&I, Op.getValue(0)); 4853 DAG.setRoot(Op.getValue(1)); 4854 return nullptr; 4855 } 4856 case Intrinsic::eh_sjlj_longjmp: { 4857 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4858 getRoot(), getValue(I.getArgOperand(0)))); 4859 return nullptr; 4860 } 4861 4862 case Intrinsic::masked_load: 4863 visitMaskedLoad(I); 4864 return nullptr; 4865 case Intrinsic::masked_store: 4866 visitMaskedStore(I); 4867 return nullptr; 4868 case Intrinsic::x86_mmx_pslli_w: 4869 case Intrinsic::x86_mmx_pslli_d: 4870 case Intrinsic::x86_mmx_pslli_q: 4871 case Intrinsic::x86_mmx_psrli_w: 4872 case Intrinsic::x86_mmx_psrli_d: 4873 case Intrinsic::x86_mmx_psrli_q: 4874 case Intrinsic::x86_mmx_psrai_w: 4875 case Intrinsic::x86_mmx_psrai_d: { 4876 SDValue ShAmt = getValue(I.getArgOperand(1)); 4877 if (isa<ConstantSDNode>(ShAmt)) { 4878 visitTargetIntrinsic(I, Intrinsic); 4879 return nullptr; 4880 } 4881 unsigned NewIntrinsic = 0; 4882 EVT ShAmtVT = MVT::v2i32; 4883 switch (Intrinsic) { 4884 case Intrinsic::x86_mmx_pslli_w: 4885 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4886 break; 4887 case Intrinsic::x86_mmx_pslli_d: 4888 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4889 break; 4890 case Intrinsic::x86_mmx_pslli_q: 4891 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4892 break; 4893 case Intrinsic::x86_mmx_psrli_w: 4894 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4895 break; 4896 case Intrinsic::x86_mmx_psrli_d: 4897 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4898 break; 4899 case Intrinsic::x86_mmx_psrli_q: 4900 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4901 break; 4902 case Intrinsic::x86_mmx_psrai_w: 4903 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4904 break; 4905 case Intrinsic::x86_mmx_psrai_d: 4906 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4907 break; 4908 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4909 } 4910 4911 // The vector shift intrinsics with scalars uses 32b shift amounts but 4912 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4913 // to be zero. 4914 // We must do this early because v2i32 is not a legal type. 4915 SDValue ShOps[2]; 4916 ShOps[0] = ShAmt; 4917 ShOps[1] = DAG.getConstant(0, MVT::i32); 4918 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4919 EVT DestVT = TLI.getValueType(I.getType()); 4920 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4921 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4922 DAG.getConstant(NewIntrinsic, MVT::i32), 4923 getValue(I.getArgOperand(0)), ShAmt); 4924 setValue(&I, Res); 4925 return nullptr; 4926 } 4927 case Intrinsic::convertff: 4928 case Intrinsic::convertfsi: 4929 case Intrinsic::convertfui: 4930 case Intrinsic::convertsif: 4931 case Intrinsic::convertuif: 4932 case Intrinsic::convertss: 4933 case Intrinsic::convertsu: 4934 case Intrinsic::convertus: 4935 case Intrinsic::convertuu: { 4936 ISD::CvtCode Code = ISD::CVT_INVALID; 4937 switch (Intrinsic) { 4938 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4939 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4940 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4941 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4942 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4943 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4944 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4945 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4946 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4947 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4948 } 4949 EVT DestVT = TLI.getValueType(I.getType()); 4950 const Value *Op1 = I.getArgOperand(0); 4951 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4952 DAG.getValueType(DestVT), 4953 DAG.getValueType(getValue(Op1).getValueType()), 4954 getValue(I.getArgOperand(1)), 4955 getValue(I.getArgOperand(2)), 4956 Code); 4957 setValue(&I, Res); 4958 return nullptr; 4959 } 4960 case Intrinsic::powi: 4961 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4962 getValue(I.getArgOperand(1)), DAG)); 4963 return nullptr; 4964 case Intrinsic::log: 4965 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4966 return nullptr; 4967 case Intrinsic::log2: 4968 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4969 return nullptr; 4970 case Intrinsic::log10: 4971 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4972 return nullptr; 4973 case Intrinsic::exp: 4974 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4975 return nullptr; 4976 case Intrinsic::exp2: 4977 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4978 return nullptr; 4979 case Intrinsic::pow: 4980 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4981 getValue(I.getArgOperand(1)), DAG, TLI)); 4982 return nullptr; 4983 case Intrinsic::sqrt: 4984 case Intrinsic::fabs: 4985 case Intrinsic::sin: 4986 case Intrinsic::cos: 4987 case Intrinsic::floor: 4988 case Intrinsic::ceil: 4989 case Intrinsic::trunc: 4990 case Intrinsic::rint: 4991 case Intrinsic::nearbyint: 4992 case Intrinsic::round: { 4993 unsigned Opcode; 4994 switch (Intrinsic) { 4995 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4996 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4997 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4998 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4999 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5000 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5001 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5002 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5003 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5004 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5005 case Intrinsic::round: Opcode = ISD::FROUND; break; 5006 } 5007 5008 setValue(&I, DAG.getNode(Opcode, sdl, 5009 getValue(I.getArgOperand(0)).getValueType(), 5010 getValue(I.getArgOperand(0)))); 5011 return nullptr; 5012 } 5013 case Intrinsic::minnum: 5014 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5015 getValue(I.getArgOperand(0)).getValueType(), 5016 getValue(I.getArgOperand(0)), 5017 getValue(I.getArgOperand(1)))); 5018 return nullptr; 5019 case Intrinsic::maxnum: 5020 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5021 getValue(I.getArgOperand(0)).getValueType(), 5022 getValue(I.getArgOperand(0)), 5023 getValue(I.getArgOperand(1)))); 5024 return nullptr; 5025 case Intrinsic::copysign: 5026 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5027 getValue(I.getArgOperand(0)).getValueType(), 5028 getValue(I.getArgOperand(0)), 5029 getValue(I.getArgOperand(1)))); 5030 return nullptr; 5031 case Intrinsic::fma: 5032 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5033 getValue(I.getArgOperand(0)).getValueType(), 5034 getValue(I.getArgOperand(0)), 5035 getValue(I.getArgOperand(1)), 5036 getValue(I.getArgOperand(2)))); 5037 return nullptr; 5038 case Intrinsic::fmuladd: { 5039 EVT VT = TLI.getValueType(I.getType()); 5040 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5041 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5042 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5043 getValue(I.getArgOperand(0)).getValueType(), 5044 getValue(I.getArgOperand(0)), 5045 getValue(I.getArgOperand(1)), 5046 getValue(I.getArgOperand(2)))); 5047 } else { 5048 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5049 getValue(I.getArgOperand(0)).getValueType(), 5050 getValue(I.getArgOperand(0)), 5051 getValue(I.getArgOperand(1))); 5052 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5053 getValue(I.getArgOperand(0)).getValueType(), 5054 Mul, 5055 getValue(I.getArgOperand(2))); 5056 setValue(&I, Add); 5057 } 5058 return nullptr; 5059 } 5060 case Intrinsic::convert_to_fp16: 5061 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5062 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5063 getValue(I.getArgOperand(0)), 5064 DAG.getTargetConstant(0, MVT::i32)))); 5065 return nullptr; 5066 case Intrinsic::convert_from_fp16: 5067 setValue(&I, 5068 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5069 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5070 getValue(I.getArgOperand(0))))); 5071 return nullptr; 5072 case Intrinsic::pcmarker: { 5073 SDValue Tmp = getValue(I.getArgOperand(0)); 5074 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5075 return nullptr; 5076 } 5077 case Intrinsic::readcyclecounter: { 5078 SDValue Op = getRoot(); 5079 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5080 DAG.getVTList(MVT::i64, MVT::Other), Op); 5081 setValue(&I, Res); 5082 DAG.setRoot(Res.getValue(1)); 5083 return nullptr; 5084 } 5085 case Intrinsic::bswap: 5086 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5087 getValue(I.getArgOperand(0)).getValueType(), 5088 getValue(I.getArgOperand(0)))); 5089 return nullptr; 5090 case Intrinsic::cttz: { 5091 SDValue Arg = getValue(I.getArgOperand(0)); 5092 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5093 EVT Ty = Arg.getValueType(); 5094 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5095 sdl, Ty, Arg)); 5096 return nullptr; 5097 } 5098 case Intrinsic::ctlz: { 5099 SDValue Arg = getValue(I.getArgOperand(0)); 5100 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5101 EVT Ty = Arg.getValueType(); 5102 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5103 sdl, Ty, Arg)); 5104 return nullptr; 5105 } 5106 case Intrinsic::ctpop: { 5107 SDValue Arg = getValue(I.getArgOperand(0)); 5108 EVT Ty = Arg.getValueType(); 5109 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5110 return nullptr; 5111 } 5112 case Intrinsic::stacksave: { 5113 SDValue Op = getRoot(); 5114 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5115 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5116 setValue(&I, Res); 5117 DAG.setRoot(Res.getValue(1)); 5118 return nullptr; 5119 } 5120 case Intrinsic::stackrestore: { 5121 Res = getValue(I.getArgOperand(0)); 5122 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5123 return nullptr; 5124 } 5125 case Intrinsic::stackprotector: { 5126 // Emit code into the DAG to store the stack guard onto the stack. 5127 MachineFunction &MF = DAG.getMachineFunction(); 5128 MachineFrameInfo *MFI = MF.getFrameInfo(); 5129 EVT PtrTy = TLI.getPointerTy(); 5130 SDValue Src, Chain = getRoot(); 5131 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5132 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5133 5134 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5135 // global variable __stack_chk_guard. 5136 if (!GV) 5137 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5138 if (BC->getOpcode() == Instruction::BitCast) 5139 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5140 5141 if (GV && TLI.useLoadStackGuardNode()) { 5142 // Emit a LOAD_STACK_GUARD node. 5143 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5144 sdl, PtrTy, Chain); 5145 MachinePointerInfo MPInfo(GV); 5146 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5147 unsigned Flags = MachineMemOperand::MOLoad | 5148 MachineMemOperand::MOInvariant; 5149 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5150 PtrTy.getSizeInBits() / 8, 5151 DAG.getEVTAlignment(PtrTy)); 5152 Node->setMemRefs(MemRefs, MemRefs + 1); 5153 5154 // Copy the guard value to a virtual register so that it can be 5155 // retrieved in the epilogue. 5156 Src = SDValue(Node, 0); 5157 const TargetRegisterClass *RC = 5158 TLI.getRegClassFor(Src.getSimpleValueType()); 5159 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5160 5161 SPDescriptor.setGuardReg(Reg); 5162 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5163 } else { 5164 Src = getValue(I.getArgOperand(0)); // The guard's value. 5165 } 5166 5167 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5168 5169 int FI = FuncInfo.StaticAllocaMap[Slot]; 5170 MFI->setStackProtectorIndex(FI); 5171 5172 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5173 5174 // Store the stack protector onto the stack. 5175 Res = DAG.getStore(Chain, sdl, Src, FIN, 5176 MachinePointerInfo::getFixedStack(FI), 5177 true, false, 0); 5178 setValue(&I, Res); 5179 DAG.setRoot(Res); 5180 return nullptr; 5181 } 5182 case Intrinsic::objectsize: { 5183 // If we don't know by now, we're never going to know. 5184 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5185 5186 assert(CI && "Non-constant type in __builtin_object_size?"); 5187 5188 SDValue Arg = getValue(I.getCalledValue()); 5189 EVT Ty = Arg.getValueType(); 5190 5191 if (CI->isZero()) 5192 Res = DAG.getConstant(-1ULL, Ty); 5193 else 5194 Res = DAG.getConstant(0, Ty); 5195 5196 setValue(&I, Res); 5197 return nullptr; 5198 } 5199 case Intrinsic::annotation: 5200 case Intrinsic::ptr_annotation: 5201 // Drop the intrinsic, but forward the value 5202 setValue(&I, getValue(I.getOperand(0))); 5203 return nullptr; 5204 case Intrinsic::assume: 5205 case Intrinsic::var_annotation: 5206 // Discard annotate attributes and assumptions 5207 return nullptr; 5208 5209 case Intrinsic::init_trampoline: { 5210 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5211 5212 SDValue Ops[6]; 5213 Ops[0] = getRoot(); 5214 Ops[1] = getValue(I.getArgOperand(0)); 5215 Ops[2] = getValue(I.getArgOperand(1)); 5216 Ops[3] = getValue(I.getArgOperand(2)); 5217 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5218 Ops[5] = DAG.getSrcValue(F); 5219 5220 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5221 5222 DAG.setRoot(Res); 5223 return nullptr; 5224 } 5225 case Intrinsic::adjust_trampoline: { 5226 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5227 TLI.getPointerTy(), 5228 getValue(I.getArgOperand(0)))); 5229 return nullptr; 5230 } 5231 case Intrinsic::gcroot: 5232 if (GFI) { 5233 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5234 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5235 5236 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5237 GFI->addStackRoot(FI->getIndex(), TypeMap); 5238 } 5239 return nullptr; 5240 case Intrinsic::gcread: 5241 case Intrinsic::gcwrite: 5242 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5243 case Intrinsic::flt_rounds: 5244 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5245 return nullptr; 5246 5247 case Intrinsic::expect: { 5248 // Just replace __builtin_expect(exp, c) with EXP. 5249 setValue(&I, getValue(I.getArgOperand(0))); 5250 return nullptr; 5251 } 5252 5253 case Intrinsic::debugtrap: 5254 case Intrinsic::trap: { 5255 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5256 if (TrapFuncName.empty()) { 5257 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5258 ISD::TRAP : ISD::DEBUGTRAP; 5259 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5260 return nullptr; 5261 } 5262 TargetLowering::ArgListTy Args; 5263 5264 TargetLowering::CallLoweringInfo CLI(DAG); 5265 CLI.setDebugLoc(sdl).setChain(getRoot()) 5266 .setCallee(CallingConv::C, I.getType(), 5267 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5268 std::move(Args), 0); 5269 5270 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5271 DAG.setRoot(Result.second); 5272 return nullptr; 5273 } 5274 5275 case Intrinsic::uadd_with_overflow: 5276 case Intrinsic::sadd_with_overflow: 5277 case Intrinsic::usub_with_overflow: 5278 case Intrinsic::ssub_with_overflow: 5279 case Intrinsic::umul_with_overflow: 5280 case Intrinsic::smul_with_overflow: { 5281 ISD::NodeType Op; 5282 switch (Intrinsic) { 5283 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5284 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5285 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5286 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5287 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5288 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5289 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5290 } 5291 SDValue Op1 = getValue(I.getArgOperand(0)); 5292 SDValue Op2 = getValue(I.getArgOperand(1)); 5293 5294 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5295 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5296 return nullptr; 5297 } 5298 case Intrinsic::prefetch: { 5299 SDValue Ops[5]; 5300 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5301 Ops[0] = getRoot(); 5302 Ops[1] = getValue(I.getArgOperand(0)); 5303 Ops[2] = getValue(I.getArgOperand(1)); 5304 Ops[3] = getValue(I.getArgOperand(2)); 5305 Ops[4] = getValue(I.getArgOperand(3)); 5306 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5307 DAG.getVTList(MVT::Other), Ops, 5308 EVT::getIntegerVT(*Context, 8), 5309 MachinePointerInfo(I.getArgOperand(0)), 5310 0, /* align */ 5311 false, /* volatile */ 5312 rw==0, /* read */ 5313 rw==1)); /* write */ 5314 return nullptr; 5315 } 5316 case Intrinsic::lifetime_start: 5317 case Intrinsic::lifetime_end: { 5318 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5319 // Stack coloring is not enabled in O0, discard region information. 5320 if (TM.getOptLevel() == CodeGenOpt::None) 5321 return nullptr; 5322 5323 SmallVector<Value *, 4> Allocas; 5324 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5325 5326 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5327 E = Allocas.end(); Object != E; ++Object) { 5328 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5329 5330 // Could not find an Alloca. 5331 if (!LifetimeObject) 5332 continue; 5333 5334 // First check that the Alloca is static, otherwise it won't have a 5335 // valid frame index. 5336 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5337 if (SI == FuncInfo.StaticAllocaMap.end()) 5338 return nullptr; 5339 5340 int FI = SI->second; 5341 5342 SDValue Ops[2]; 5343 Ops[0] = getRoot(); 5344 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5345 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5346 5347 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5348 DAG.setRoot(Res); 5349 } 5350 return nullptr; 5351 } 5352 case Intrinsic::invariant_start: 5353 // Discard region information. 5354 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5355 return nullptr; 5356 case Intrinsic::invariant_end: 5357 // Discard region information. 5358 return nullptr; 5359 case Intrinsic::stackprotectorcheck: { 5360 // Do not actually emit anything for this basic block. Instead we initialize 5361 // the stack protector descriptor and export the guard variable so we can 5362 // access it in FinishBasicBlock. 5363 const BasicBlock *BB = I.getParent(); 5364 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5365 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5366 5367 // Flush our exports since we are going to process a terminator. 5368 (void)getControlRoot(); 5369 return nullptr; 5370 } 5371 case Intrinsic::clear_cache: 5372 return TLI.getClearCacheBuiltinName(); 5373 case Intrinsic::donothing: 5374 // ignore 5375 return nullptr; 5376 case Intrinsic::experimental_stackmap: { 5377 visitStackmap(I); 5378 return nullptr; 5379 } 5380 case Intrinsic::experimental_patchpoint_void: 5381 case Intrinsic::experimental_patchpoint_i64: { 5382 visitPatchpoint(&I); 5383 return nullptr; 5384 } 5385 case Intrinsic::experimental_gc_statepoint: { 5386 visitStatepoint(I); 5387 return nullptr; 5388 } 5389 case Intrinsic::experimental_gc_result_int: 5390 case Intrinsic::experimental_gc_result_float: 5391 case Intrinsic::experimental_gc_result_ptr: 5392 case Intrinsic::experimental_gc_result: { 5393 visitGCResult(I); 5394 return nullptr; 5395 } 5396 case Intrinsic::experimental_gc_relocate: { 5397 visitGCRelocate(I); 5398 return nullptr; 5399 } 5400 case Intrinsic::instrprof_increment: 5401 llvm_unreachable("instrprof failed to lower an increment"); 5402 5403 case Intrinsic::frameescape: { 5404 MachineFunction &MF = DAG.getMachineFunction(); 5405 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5406 5407 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 5408 // is the same on all targets. 5409 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5410 AllocaInst *Slot = 5411 cast<AllocaInst>(I.getArgOperand(Idx)->stripPointerCasts()); 5412 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5413 "can only escape static allocas"); 5414 int FI = FuncInfo.StaticAllocaMap[Slot]; 5415 MCSymbol *FrameAllocSym = 5416 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(MF.getName(), 5417 Idx); 5418 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5419 TII->get(TargetOpcode::FRAME_ALLOC)) 5420 .addSym(FrameAllocSym) 5421 .addFrameIndex(FI); 5422 } 5423 5424 return nullptr; 5425 } 5426 5427 case Intrinsic::framerecover: { 5428 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 5429 MachineFunction &MF = DAG.getMachineFunction(); 5430 MVT PtrVT = TLI.getPointerTy(0); 5431 5432 // Get the symbol that defines the frame offset. 5433 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5434 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5435 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5436 MCSymbol *FrameAllocSym = 5437 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(Fn->getName(), 5438 IdxVal); 5439 5440 // Create a TargetExternalSymbol for the label to avoid any target lowering 5441 // that would make this PC relative. 5442 StringRef Name = FrameAllocSym->getName(); 5443 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 5444 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 5445 SDValue OffsetVal = 5446 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 5447 5448 // Add the offset to the FP. 5449 Value *FP = I.getArgOperand(1); 5450 SDValue FPVal = getValue(FP); 5451 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5452 setValue(&I, Add); 5453 5454 return nullptr; 5455 } 5456 case Intrinsic::eh_begincatch: 5457 case Intrinsic::eh_endcatch: 5458 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5459 } 5460 } 5461 5462 std::pair<SDValue, SDValue> 5463 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5464 MachineBasicBlock *LandingPad) { 5465 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5466 MCSymbol *BeginLabel = nullptr; 5467 5468 if (LandingPad) { 5469 // Insert a label before the invoke call to mark the try range. This can be 5470 // used to detect deletion of the invoke via the MachineModuleInfo. 5471 BeginLabel = MMI.getContext().CreateTempSymbol(); 5472 5473 // For SjLj, keep track of which landing pads go with which invokes 5474 // so as to maintain the ordering of pads in the LSDA. 5475 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5476 if (CallSiteIndex) { 5477 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5478 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5479 5480 // Now that the call site is handled, stop tracking it. 5481 MMI.setCurrentCallSite(0); 5482 } 5483 5484 // Both PendingLoads and PendingExports must be flushed here; 5485 // this call might not return. 5486 (void)getRoot(); 5487 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5488 5489 CLI.setChain(getRoot()); 5490 } 5491 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5492 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5493 5494 assert((CLI.IsTailCall || Result.second.getNode()) && 5495 "Non-null chain expected with non-tail call!"); 5496 assert((Result.second.getNode() || !Result.first.getNode()) && 5497 "Null value expected with tail call!"); 5498 5499 if (!Result.second.getNode()) { 5500 // As a special case, a null chain means that a tail call has been emitted 5501 // and the DAG root is already updated. 5502 HasTailCall = true; 5503 5504 // Since there's no actual continuation from this block, nothing can be 5505 // relying on us setting vregs for them. 5506 PendingExports.clear(); 5507 } else { 5508 DAG.setRoot(Result.second); 5509 } 5510 5511 if (LandingPad) { 5512 // Insert a label at the end of the invoke call to mark the try range. This 5513 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5514 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5515 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5516 5517 // Inform MachineModuleInfo of range. 5518 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5519 } 5520 5521 return Result; 5522 } 5523 5524 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5525 bool isTailCall, 5526 MachineBasicBlock *LandingPad) { 5527 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5528 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5529 Type *RetTy = FTy->getReturnType(); 5530 5531 TargetLowering::ArgListTy Args; 5532 TargetLowering::ArgListEntry Entry; 5533 Args.reserve(CS.arg_size()); 5534 5535 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5536 i != e; ++i) { 5537 const Value *V = *i; 5538 5539 // Skip empty types 5540 if (V->getType()->isEmptyTy()) 5541 continue; 5542 5543 SDValue ArgNode = getValue(V); 5544 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5545 5546 // Skip the first return-type Attribute to get to params. 5547 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5548 Args.push_back(Entry); 5549 } 5550 5551 // Check if target-independent constraints permit a tail call here. 5552 // Target-dependent constraints are checked within TLI->LowerCallTo. 5553 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5554 isTailCall = false; 5555 5556 TargetLowering::CallLoweringInfo CLI(DAG); 5557 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5558 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5559 .setTailCall(isTailCall); 5560 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5561 5562 if (Result.first.getNode()) 5563 setValue(CS.getInstruction(), Result.first); 5564 } 5565 5566 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5567 /// value is equal or not-equal to zero. 5568 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5569 for (const User *U : V->users()) { 5570 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5571 if (IC->isEquality()) 5572 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5573 if (C->isNullValue()) 5574 continue; 5575 // Unknown instruction. 5576 return false; 5577 } 5578 return true; 5579 } 5580 5581 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5582 Type *LoadTy, 5583 SelectionDAGBuilder &Builder) { 5584 5585 // Check to see if this load can be trivially constant folded, e.g. if the 5586 // input is from a string literal. 5587 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5588 // Cast pointer to the type we really want to load. 5589 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5590 PointerType::getUnqual(LoadTy)); 5591 5592 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5593 const_cast<Constant *>(LoadInput), *Builder.DL)) 5594 return Builder.getValue(LoadCst); 5595 } 5596 5597 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5598 // still constant memory, the input chain can be the entry node. 5599 SDValue Root; 5600 bool ConstantMemory = false; 5601 5602 // Do not serialize (non-volatile) loads of constant memory with anything. 5603 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5604 Root = Builder.DAG.getEntryNode(); 5605 ConstantMemory = true; 5606 } else { 5607 // Do not serialize non-volatile loads against each other. 5608 Root = Builder.DAG.getRoot(); 5609 } 5610 5611 SDValue Ptr = Builder.getValue(PtrVal); 5612 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5613 Ptr, MachinePointerInfo(PtrVal), 5614 false /*volatile*/, 5615 false /*nontemporal*/, 5616 false /*isinvariant*/, 1 /* align=1 */); 5617 5618 if (!ConstantMemory) 5619 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5620 return LoadVal; 5621 } 5622 5623 /// processIntegerCallValue - Record the value for an instruction that 5624 /// produces an integer result, converting the type where necessary. 5625 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5626 SDValue Value, 5627 bool IsSigned) { 5628 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5629 if (IsSigned) 5630 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5631 else 5632 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5633 setValue(&I, Value); 5634 } 5635 5636 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5637 /// If so, return true and lower it, otherwise return false and it will be 5638 /// lowered like a normal call. 5639 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5640 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5641 if (I.getNumArgOperands() != 3) 5642 return false; 5643 5644 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5645 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5646 !I.getArgOperand(2)->getType()->isIntegerTy() || 5647 !I.getType()->isIntegerTy()) 5648 return false; 5649 5650 const Value *Size = I.getArgOperand(2); 5651 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5652 if (CSize && CSize->getZExtValue() == 0) { 5653 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5654 setValue(&I, DAG.getConstant(0, CallVT)); 5655 return true; 5656 } 5657 5658 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5659 std::pair<SDValue, SDValue> Res = 5660 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5661 getValue(LHS), getValue(RHS), getValue(Size), 5662 MachinePointerInfo(LHS), 5663 MachinePointerInfo(RHS)); 5664 if (Res.first.getNode()) { 5665 processIntegerCallValue(I, Res.first, true); 5666 PendingLoads.push_back(Res.second); 5667 return true; 5668 } 5669 5670 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5671 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5672 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5673 bool ActuallyDoIt = true; 5674 MVT LoadVT; 5675 Type *LoadTy; 5676 switch (CSize->getZExtValue()) { 5677 default: 5678 LoadVT = MVT::Other; 5679 LoadTy = nullptr; 5680 ActuallyDoIt = false; 5681 break; 5682 case 2: 5683 LoadVT = MVT::i16; 5684 LoadTy = Type::getInt16Ty(CSize->getContext()); 5685 break; 5686 case 4: 5687 LoadVT = MVT::i32; 5688 LoadTy = Type::getInt32Ty(CSize->getContext()); 5689 break; 5690 case 8: 5691 LoadVT = MVT::i64; 5692 LoadTy = Type::getInt64Ty(CSize->getContext()); 5693 break; 5694 /* 5695 case 16: 5696 LoadVT = MVT::v4i32; 5697 LoadTy = Type::getInt32Ty(CSize->getContext()); 5698 LoadTy = VectorType::get(LoadTy, 4); 5699 break; 5700 */ 5701 } 5702 5703 // This turns into unaligned loads. We only do this if the target natively 5704 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5705 // we'll only produce a small number of byte loads. 5706 5707 // Require that we can find a legal MVT, and only do this if the target 5708 // supports unaligned loads of that type. Expanding into byte loads would 5709 // bloat the code. 5710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5711 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5712 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5713 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5714 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5715 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5716 // TODO: Check alignment of src and dest ptrs. 5717 if (!TLI.isTypeLegal(LoadVT) || 5718 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5719 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5720 ActuallyDoIt = false; 5721 } 5722 5723 if (ActuallyDoIt) { 5724 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5725 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5726 5727 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5728 ISD::SETNE); 5729 processIntegerCallValue(I, Res, false); 5730 return true; 5731 } 5732 } 5733 5734 5735 return false; 5736 } 5737 5738 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5739 /// form. If so, return true and lower it, otherwise return false and it 5740 /// will be lowered like a normal call. 5741 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5742 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5743 if (I.getNumArgOperands() != 3) 5744 return false; 5745 5746 const Value *Src = I.getArgOperand(0); 5747 const Value *Char = I.getArgOperand(1); 5748 const Value *Length = I.getArgOperand(2); 5749 if (!Src->getType()->isPointerTy() || 5750 !Char->getType()->isIntegerTy() || 5751 !Length->getType()->isIntegerTy() || 5752 !I.getType()->isPointerTy()) 5753 return false; 5754 5755 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5756 std::pair<SDValue, SDValue> Res = 5757 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5758 getValue(Src), getValue(Char), getValue(Length), 5759 MachinePointerInfo(Src)); 5760 if (Res.first.getNode()) { 5761 setValue(&I, Res.first); 5762 PendingLoads.push_back(Res.second); 5763 return true; 5764 } 5765 5766 return false; 5767 } 5768 5769 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5770 /// optimized form. If so, return true and lower it, otherwise return false 5771 /// and it will be lowered like a normal call. 5772 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5773 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5774 if (I.getNumArgOperands() != 2) 5775 return false; 5776 5777 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5778 if (!Arg0->getType()->isPointerTy() || 5779 !Arg1->getType()->isPointerTy() || 5780 !I.getType()->isPointerTy()) 5781 return false; 5782 5783 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5784 std::pair<SDValue, SDValue> Res = 5785 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5786 getValue(Arg0), getValue(Arg1), 5787 MachinePointerInfo(Arg0), 5788 MachinePointerInfo(Arg1), isStpcpy); 5789 if (Res.first.getNode()) { 5790 setValue(&I, Res.first); 5791 DAG.setRoot(Res.second); 5792 return true; 5793 } 5794 5795 return false; 5796 } 5797 5798 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5799 /// If so, return true and lower it, otherwise return false and it will be 5800 /// lowered like a normal call. 5801 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5802 // Verify that the prototype makes sense. int strcmp(void*,void*) 5803 if (I.getNumArgOperands() != 2) 5804 return false; 5805 5806 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5807 if (!Arg0->getType()->isPointerTy() || 5808 !Arg1->getType()->isPointerTy() || 5809 !I.getType()->isIntegerTy()) 5810 return false; 5811 5812 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5813 std::pair<SDValue, SDValue> Res = 5814 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5815 getValue(Arg0), getValue(Arg1), 5816 MachinePointerInfo(Arg0), 5817 MachinePointerInfo(Arg1)); 5818 if (Res.first.getNode()) { 5819 processIntegerCallValue(I, Res.first, true); 5820 PendingLoads.push_back(Res.second); 5821 return true; 5822 } 5823 5824 return false; 5825 } 5826 5827 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5828 /// form. If so, return true and lower it, otherwise return false and it 5829 /// will be lowered like a normal call. 5830 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5831 // Verify that the prototype makes sense. size_t strlen(char *) 5832 if (I.getNumArgOperands() != 1) 5833 return false; 5834 5835 const Value *Arg0 = I.getArgOperand(0); 5836 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5837 return false; 5838 5839 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5840 std::pair<SDValue, SDValue> Res = 5841 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5842 getValue(Arg0), MachinePointerInfo(Arg0)); 5843 if (Res.first.getNode()) { 5844 processIntegerCallValue(I, Res.first, false); 5845 PendingLoads.push_back(Res.second); 5846 return true; 5847 } 5848 5849 return false; 5850 } 5851 5852 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5853 /// form. If so, return true and lower it, otherwise return false and it 5854 /// will be lowered like a normal call. 5855 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5856 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5857 if (I.getNumArgOperands() != 2) 5858 return false; 5859 5860 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5861 if (!Arg0->getType()->isPointerTy() || 5862 !Arg1->getType()->isIntegerTy() || 5863 !I.getType()->isIntegerTy()) 5864 return false; 5865 5866 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5867 std::pair<SDValue, SDValue> Res = 5868 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5869 getValue(Arg0), getValue(Arg1), 5870 MachinePointerInfo(Arg0)); 5871 if (Res.first.getNode()) { 5872 processIntegerCallValue(I, Res.first, false); 5873 PendingLoads.push_back(Res.second); 5874 return true; 5875 } 5876 5877 return false; 5878 } 5879 5880 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5881 /// operation (as expected), translate it to an SDNode with the specified opcode 5882 /// and return true. 5883 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5884 unsigned Opcode) { 5885 // Sanity check that it really is a unary floating-point call. 5886 if (I.getNumArgOperands() != 1 || 5887 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5888 I.getType() != I.getArgOperand(0)->getType() || 5889 !I.onlyReadsMemory()) 5890 return false; 5891 5892 SDValue Tmp = getValue(I.getArgOperand(0)); 5893 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5894 return true; 5895 } 5896 5897 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5898 /// operation (as expected), translate it to an SDNode with the specified opcode 5899 /// and return true. 5900 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5901 unsigned Opcode) { 5902 // Sanity check that it really is a binary floating-point call. 5903 if (I.getNumArgOperands() != 2 || 5904 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5905 I.getType() != I.getArgOperand(0)->getType() || 5906 I.getType() != I.getArgOperand(1)->getType() || 5907 !I.onlyReadsMemory()) 5908 return false; 5909 5910 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5911 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5912 EVT VT = Tmp0.getValueType(); 5913 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5914 return true; 5915 } 5916 5917 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5918 // Handle inline assembly differently. 5919 if (isa<InlineAsm>(I.getCalledValue())) { 5920 visitInlineAsm(&I); 5921 return; 5922 } 5923 5924 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5925 ComputeUsesVAFloatArgument(I, &MMI); 5926 5927 const char *RenameFn = nullptr; 5928 if (Function *F = I.getCalledFunction()) { 5929 if (F->isDeclaration()) { 5930 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5931 if (unsigned IID = II->getIntrinsicID(F)) { 5932 RenameFn = visitIntrinsicCall(I, IID); 5933 if (!RenameFn) 5934 return; 5935 } 5936 } 5937 if (unsigned IID = F->getIntrinsicID()) { 5938 RenameFn = visitIntrinsicCall(I, IID); 5939 if (!RenameFn) 5940 return; 5941 } 5942 } 5943 5944 // Check for well-known libc/libm calls. If the function is internal, it 5945 // can't be a library call. 5946 LibFunc::Func Func; 5947 if (!F->hasLocalLinkage() && F->hasName() && 5948 LibInfo->getLibFunc(F->getName(), Func) && 5949 LibInfo->hasOptimizedCodeGen(Func)) { 5950 switch (Func) { 5951 default: break; 5952 case LibFunc::copysign: 5953 case LibFunc::copysignf: 5954 case LibFunc::copysignl: 5955 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5956 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5957 I.getType() == I.getArgOperand(0)->getType() && 5958 I.getType() == I.getArgOperand(1)->getType() && 5959 I.onlyReadsMemory()) { 5960 SDValue LHS = getValue(I.getArgOperand(0)); 5961 SDValue RHS = getValue(I.getArgOperand(1)); 5962 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5963 LHS.getValueType(), LHS, RHS)); 5964 return; 5965 } 5966 break; 5967 case LibFunc::fabs: 5968 case LibFunc::fabsf: 5969 case LibFunc::fabsl: 5970 if (visitUnaryFloatCall(I, ISD::FABS)) 5971 return; 5972 break; 5973 case LibFunc::fmin: 5974 case LibFunc::fminf: 5975 case LibFunc::fminl: 5976 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5977 return; 5978 break; 5979 case LibFunc::fmax: 5980 case LibFunc::fmaxf: 5981 case LibFunc::fmaxl: 5982 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5983 return; 5984 break; 5985 case LibFunc::sin: 5986 case LibFunc::sinf: 5987 case LibFunc::sinl: 5988 if (visitUnaryFloatCall(I, ISD::FSIN)) 5989 return; 5990 break; 5991 case LibFunc::cos: 5992 case LibFunc::cosf: 5993 case LibFunc::cosl: 5994 if (visitUnaryFloatCall(I, ISD::FCOS)) 5995 return; 5996 break; 5997 case LibFunc::sqrt: 5998 case LibFunc::sqrtf: 5999 case LibFunc::sqrtl: 6000 case LibFunc::sqrt_finite: 6001 case LibFunc::sqrtf_finite: 6002 case LibFunc::sqrtl_finite: 6003 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6004 return; 6005 break; 6006 case LibFunc::floor: 6007 case LibFunc::floorf: 6008 case LibFunc::floorl: 6009 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6010 return; 6011 break; 6012 case LibFunc::nearbyint: 6013 case LibFunc::nearbyintf: 6014 case LibFunc::nearbyintl: 6015 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6016 return; 6017 break; 6018 case LibFunc::ceil: 6019 case LibFunc::ceilf: 6020 case LibFunc::ceill: 6021 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6022 return; 6023 break; 6024 case LibFunc::rint: 6025 case LibFunc::rintf: 6026 case LibFunc::rintl: 6027 if (visitUnaryFloatCall(I, ISD::FRINT)) 6028 return; 6029 break; 6030 case LibFunc::round: 6031 case LibFunc::roundf: 6032 case LibFunc::roundl: 6033 if (visitUnaryFloatCall(I, ISD::FROUND)) 6034 return; 6035 break; 6036 case LibFunc::trunc: 6037 case LibFunc::truncf: 6038 case LibFunc::truncl: 6039 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6040 return; 6041 break; 6042 case LibFunc::log2: 6043 case LibFunc::log2f: 6044 case LibFunc::log2l: 6045 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6046 return; 6047 break; 6048 case LibFunc::exp2: 6049 case LibFunc::exp2f: 6050 case LibFunc::exp2l: 6051 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6052 return; 6053 break; 6054 case LibFunc::memcmp: 6055 if (visitMemCmpCall(I)) 6056 return; 6057 break; 6058 case LibFunc::memchr: 6059 if (visitMemChrCall(I)) 6060 return; 6061 break; 6062 case LibFunc::strcpy: 6063 if (visitStrCpyCall(I, false)) 6064 return; 6065 break; 6066 case LibFunc::stpcpy: 6067 if (visitStrCpyCall(I, true)) 6068 return; 6069 break; 6070 case LibFunc::strcmp: 6071 if (visitStrCmpCall(I)) 6072 return; 6073 break; 6074 case LibFunc::strlen: 6075 if (visitStrLenCall(I)) 6076 return; 6077 break; 6078 case LibFunc::strnlen: 6079 if (visitStrNLenCall(I)) 6080 return; 6081 break; 6082 } 6083 } 6084 } 6085 6086 SDValue Callee; 6087 if (!RenameFn) 6088 Callee = getValue(I.getCalledValue()); 6089 else 6090 Callee = DAG.getExternalSymbol(RenameFn, 6091 DAG.getTargetLoweringInfo().getPointerTy()); 6092 6093 // Check if we can potentially perform a tail call. More detailed checking is 6094 // be done within LowerCallTo, after more information about the call is known. 6095 LowerCallTo(&I, Callee, I.isTailCall()); 6096 } 6097 6098 namespace { 6099 6100 /// AsmOperandInfo - This contains information for each constraint that we are 6101 /// lowering. 6102 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6103 public: 6104 /// CallOperand - If this is the result output operand or a clobber 6105 /// this is null, otherwise it is the incoming operand to the CallInst. 6106 /// This gets modified as the asm is processed. 6107 SDValue CallOperand; 6108 6109 /// AssignedRegs - If this is a register or register class operand, this 6110 /// contains the set of register corresponding to the operand. 6111 RegsForValue AssignedRegs; 6112 6113 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6114 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6115 } 6116 6117 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6118 /// corresponds to. If there is no Value* for this operand, it returns 6119 /// MVT::Other. 6120 EVT getCallOperandValEVT(LLVMContext &Context, 6121 const TargetLowering &TLI, 6122 const DataLayout *DL) const { 6123 if (!CallOperandVal) return MVT::Other; 6124 6125 if (isa<BasicBlock>(CallOperandVal)) 6126 return TLI.getPointerTy(); 6127 6128 llvm::Type *OpTy = CallOperandVal->getType(); 6129 6130 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6131 // If this is an indirect operand, the operand is a pointer to the 6132 // accessed type. 6133 if (isIndirect) { 6134 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6135 if (!PtrTy) 6136 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6137 OpTy = PtrTy->getElementType(); 6138 } 6139 6140 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6141 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6142 if (STy->getNumElements() == 1) 6143 OpTy = STy->getElementType(0); 6144 6145 // If OpTy is not a single value, it may be a struct/union that we 6146 // can tile with integers. 6147 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6148 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6149 switch (BitSize) { 6150 default: break; 6151 case 1: 6152 case 8: 6153 case 16: 6154 case 32: 6155 case 64: 6156 case 128: 6157 OpTy = IntegerType::get(Context, BitSize); 6158 break; 6159 } 6160 } 6161 6162 return TLI.getValueType(OpTy, true); 6163 } 6164 }; 6165 6166 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6167 6168 } // end anonymous namespace 6169 6170 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6171 /// specified operand. We prefer to assign virtual registers, to allow the 6172 /// register allocator to handle the assignment process. However, if the asm 6173 /// uses features that we can't model on machineinstrs, we have SDISel do the 6174 /// allocation. This produces generally horrible, but correct, code. 6175 /// 6176 /// OpInfo describes the operand. 6177 /// 6178 static void GetRegistersForValue(SelectionDAG &DAG, 6179 const TargetLowering &TLI, 6180 SDLoc DL, 6181 SDISelAsmOperandInfo &OpInfo) { 6182 LLVMContext &Context = *DAG.getContext(); 6183 6184 MachineFunction &MF = DAG.getMachineFunction(); 6185 SmallVector<unsigned, 4> Regs; 6186 6187 // If this is a constraint for a single physreg, or a constraint for a 6188 // register class, find it. 6189 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6190 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6191 OpInfo.ConstraintCode, 6192 OpInfo.ConstraintVT); 6193 6194 unsigned NumRegs = 1; 6195 if (OpInfo.ConstraintVT != MVT::Other) { 6196 // If this is a FP input in an integer register (or visa versa) insert a bit 6197 // cast of the input value. More generally, handle any case where the input 6198 // value disagrees with the register class we plan to stick this in. 6199 if (OpInfo.Type == InlineAsm::isInput && 6200 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6201 // Try to convert to the first EVT that the reg class contains. If the 6202 // types are identical size, use a bitcast to convert (e.g. two differing 6203 // vector types). 6204 MVT RegVT = *PhysReg.second->vt_begin(); 6205 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6206 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6207 RegVT, OpInfo.CallOperand); 6208 OpInfo.ConstraintVT = RegVT; 6209 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6210 // If the input is a FP value and we want it in FP registers, do a 6211 // bitcast to the corresponding integer type. This turns an f64 value 6212 // into i64, which can be passed with two i32 values on a 32-bit 6213 // machine. 6214 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6215 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6216 RegVT, OpInfo.CallOperand); 6217 OpInfo.ConstraintVT = RegVT; 6218 } 6219 } 6220 6221 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6222 } 6223 6224 MVT RegVT; 6225 EVT ValueVT = OpInfo.ConstraintVT; 6226 6227 // If this is a constraint for a specific physical register, like {r17}, 6228 // assign it now. 6229 if (unsigned AssignedReg = PhysReg.first) { 6230 const TargetRegisterClass *RC = PhysReg.second; 6231 if (OpInfo.ConstraintVT == MVT::Other) 6232 ValueVT = *RC->vt_begin(); 6233 6234 // Get the actual register value type. This is important, because the user 6235 // may have asked for (e.g.) the AX register in i32 type. We need to 6236 // remember that AX is actually i16 to get the right extension. 6237 RegVT = *RC->vt_begin(); 6238 6239 // This is a explicit reference to a physical register. 6240 Regs.push_back(AssignedReg); 6241 6242 // If this is an expanded reference, add the rest of the regs to Regs. 6243 if (NumRegs != 1) { 6244 TargetRegisterClass::iterator I = RC->begin(); 6245 for (; *I != AssignedReg; ++I) 6246 assert(I != RC->end() && "Didn't find reg!"); 6247 6248 // Already added the first reg. 6249 --NumRegs; ++I; 6250 for (; NumRegs; --NumRegs, ++I) { 6251 assert(I != RC->end() && "Ran out of registers to allocate!"); 6252 Regs.push_back(*I); 6253 } 6254 } 6255 6256 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6257 return; 6258 } 6259 6260 // Otherwise, if this was a reference to an LLVM register class, create vregs 6261 // for this reference. 6262 if (const TargetRegisterClass *RC = PhysReg.second) { 6263 RegVT = *RC->vt_begin(); 6264 if (OpInfo.ConstraintVT == MVT::Other) 6265 ValueVT = RegVT; 6266 6267 // Create the appropriate number of virtual registers. 6268 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6269 for (; NumRegs; --NumRegs) 6270 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6271 6272 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6273 return; 6274 } 6275 6276 // Otherwise, we couldn't allocate enough registers for this. 6277 } 6278 6279 /// visitInlineAsm - Handle a call to an InlineAsm object. 6280 /// 6281 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6282 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6283 6284 /// ConstraintOperands - Information about all of the constraints. 6285 SDISelAsmOperandInfoVector ConstraintOperands; 6286 6287 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6288 TargetLowering::AsmOperandInfoVector TargetConstraints = 6289 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 6290 6291 bool hasMemory = false; 6292 6293 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6294 unsigned ResNo = 0; // ResNo - The result number of the next output. 6295 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6296 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6297 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6298 6299 MVT OpVT = MVT::Other; 6300 6301 // Compute the value type for each operand. 6302 switch (OpInfo.Type) { 6303 case InlineAsm::isOutput: 6304 // Indirect outputs just consume an argument. 6305 if (OpInfo.isIndirect) { 6306 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6307 break; 6308 } 6309 6310 // The return value of the call is this value. As such, there is no 6311 // corresponding argument. 6312 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6313 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6314 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6315 } else { 6316 assert(ResNo == 0 && "Asm only has one result!"); 6317 OpVT = TLI.getSimpleValueType(CS.getType()); 6318 } 6319 ++ResNo; 6320 break; 6321 case InlineAsm::isInput: 6322 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6323 break; 6324 case InlineAsm::isClobber: 6325 // Nothing to do. 6326 break; 6327 } 6328 6329 // If this is an input or an indirect output, process the call argument. 6330 // BasicBlocks are labels, currently appearing only in asm's. 6331 if (OpInfo.CallOperandVal) { 6332 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6333 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6334 } else { 6335 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6336 } 6337 6338 OpVT = 6339 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6340 } 6341 6342 OpInfo.ConstraintVT = OpVT; 6343 6344 // Indirect operand accesses access memory. 6345 if (OpInfo.isIndirect) 6346 hasMemory = true; 6347 else { 6348 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6349 TargetLowering::ConstraintType 6350 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6351 if (CType == TargetLowering::C_Memory) { 6352 hasMemory = true; 6353 break; 6354 } 6355 } 6356 } 6357 } 6358 6359 SDValue Chain, Flag; 6360 6361 // We won't need to flush pending loads if this asm doesn't touch 6362 // memory and is nonvolatile. 6363 if (hasMemory || IA->hasSideEffects()) 6364 Chain = getRoot(); 6365 else 6366 Chain = DAG.getRoot(); 6367 6368 // Second pass over the constraints: compute which constraint option to use 6369 // and assign registers to constraints that want a specific physreg. 6370 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6371 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6372 6373 // If this is an output operand with a matching input operand, look up the 6374 // matching input. If their types mismatch, e.g. one is an integer, the 6375 // other is floating point, or their sizes are different, flag it as an 6376 // error. 6377 if (OpInfo.hasMatchingInput()) { 6378 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6379 6380 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6381 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6382 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6383 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6384 OpInfo.ConstraintVT); 6385 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6386 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6387 Input.ConstraintVT); 6388 if ((OpInfo.ConstraintVT.isInteger() != 6389 Input.ConstraintVT.isInteger()) || 6390 (MatchRC.second != InputRC.second)) { 6391 report_fatal_error("Unsupported asm: input constraint" 6392 " with a matching output constraint of" 6393 " incompatible type!"); 6394 } 6395 Input.ConstraintVT = OpInfo.ConstraintVT; 6396 } 6397 } 6398 6399 // Compute the constraint code and ConstraintType to use. 6400 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6401 6402 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6403 OpInfo.Type == InlineAsm::isClobber) 6404 continue; 6405 6406 // If this is a memory input, and if the operand is not indirect, do what we 6407 // need to to provide an address for the memory input. 6408 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6409 !OpInfo.isIndirect) { 6410 assert((OpInfo.isMultipleAlternative || 6411 (OpInfo.Type == InlineAsm::isInput)) && 6412 "Can only indirectify direct input operands!"); 6413 6414 // Memory operands really want the address of the value. If we don't have 6415 // an indirect input, put it in the constpool if we can, otherwise spill 6416 // it to a stack slot. 6417 // TODO: This isn't quite right. We need to handle these according to 6418 // the addressing mode that the constraint wants. Also, this may take 6419 // an additional register for the computation and we don't want that 6420 // either. 6421 6422 // If the operand is a float, integer, or vector constant, spill to a 6423 // constant pool entry to get its address. 6424 const Value *OpVal = OpInfo.CallOperandVal; 6425 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6426 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6427 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6428 TLI.getPointerTy()); 6429 } else { 6430 // Otherwise, create a stack slot and emit a store to it before the 6431 // asm. 6432 Type *Ty = OpVal->getType(); 6433 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6434 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6435 MachineFunction &MF = DAG.getMachineFunction(); 6436 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6437 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6438 Chain = DAG.getStore(Chain, getCurSDLoc(), 6439 OpInfo.CallOperand, StackSlot, 6440 MachinePointerInfo::getFixedStack(SSFI), 6441 false, false, 0); 6442 OpInfo.CallOperand = StackSlot; 6443 } 6444 6445 // There is no longer a Value* corresponding to this operand. 6446 OpInfo.CallOperandVal = nullptr; 6447 6448 // It is now an indirect operand. 6449 OpInfo.isIndirect = true; 6450 } 6451 6452 // If this constraint is for a specific register, allocate it before 6453 // anything else. 6454 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6455 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6456 } 6457 6458 // Second pass - Loop over all of the operands, assigning virtual or physregs 6459 // to register class operands. 6460 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6461 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6462 6463 // C_Register operands have already been allocated, Other/Memory don't need 6464 // to be. 6465 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6466 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6467 } 6468 6469 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6470 std::vector<SDValue> AsmNodeOperands; 6471 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6472 AsmNodeOperands.push_back( 6473 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6474 TLI.getPointerTy())); 6475 6476 // If we have a !srcloc metadata node associated with it, we want to attach 6477 // this to the ultimately generated inline asm machineinstr. To do this, we 6478 // pass in the third operand as this (potentially null) inline asm MDNode. 6479 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6480 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6481 6482 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6483 // bits as operand 3. 6484 unsigned ExtraInfo = 0; 6485 if (IA->hasSideEffects()) 6486 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6487 if (IA->isAlignStack()) 6488 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6489 // Set the asm dialect. 6490 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6491 6492 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6493 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6494 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6495 6496 // Compute the constraint code and ConstraintType to use. 6497 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6498 6499 // Ideally, we would only check against memory constraints. However, the 6500 // meaning of an other constraint can be target-specific and we can't easily 6501 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6502 // for other constriants as well. 6503 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6504 OpInfo.ConstraintType == TargetLowering::C_Other) { 6505 if (OpInfo.Type == InlineAsm::isInput) 6506 ExtraInfo |= InlineAsm::Extra_MayLoad; 6507 else if (OpInfo.Type == InlineAsm::isOutput) 6508 ExtraInfo |= InlineAsm::Extra_MayStore; 6509 else if (OpInfo.Type == InlineAsm::isClobber) 6510 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6511 } 6512 } 6513 6514 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6515 TLI.getPointerTy())); 6516 6517 // Loop over all of the inputs, copying the operand values into the 6518 // appropriate registers and processing the output regs. 6519 RegsForValue RetValRegs; 6520 6521 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6522 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6523 6524 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6525 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6526 6527 switch (OpInfo.Type) { 6528 case InlineAsm::isOutput: { 6529 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6530 OpInfo.ConstraintType != TargetLowering::C_Register) { 6531 // Memory output, or 'other' output (e.g. 'X' constraint). 6532 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6533 6534 unsigned ConstraintID = 6535 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6536 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6537 "Failed to convert memory constraint code to constraint id."); 6538 6539 // Add information to the INLINEASM node to know about this output. 6540 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6541 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6542 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, MVT::i32)); 6543 AsmNodeOperands.push_back(OpInfo.CallOperand); 6544 break; 6545 } 6546 6547 // Otherwise, this is a register or register class output. 6548 6549 // Copy the output from the appropriate register. Find a register that 6550 // we can use. 6551 if (OpInfo.AssignedRegs.Regs.empty()) { 6552 LLVMContext &Ctx = *DAG.getContext(); 6553 Ctx.emitError(CS.getInstruction(), 6554 "couldn't allocate output register for constraint '" + 6555 Twine(OpInfo.ConstraintCode) + "'"); 6556 return; 6557 } 6558 6559 // If this is an indirect operand, store through the pointer after the 6560 // asm. 6561 if (OpInfo.isIndirect) { 6562 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6563 OpInfo.CallOperandVal)); 6564 } else { 6565 // This is the result value of the call. 6566 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6567 // Concatenate this output onto the outputs list. 6568 RetValRegs.append(OpInfo.AssignedRegs); 6569 } 6570 6571 // Add information to the INLINEASM node to know that this register is 6572 // set. 6573 OpInfo.AssignedRegs 6574 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6575 ? InlineAsm::Kind_RegDefEarlyClobber 6576 : InlineAsm::Kind_RegDef, 6577 false, 0, DAG, AsmNodeOperands); 6578 break; 6579 } 6580 case InlineAsm::isInput: { 6581 SDValue InOperandVal = OpInfo.CallOperand; 6582 6583 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6584 // If this is required to match an output register we have already set, 6585 // just use its register. 6586 unsigned OperandNo = OpInfo.getMatchedOperand(); 6587 6588 // Scan until we find the definition we already emitted of this operand. 6589 // When we find it, create a RegsForValue operand. 6590 unsigned CurOp = InlineAsm::Op_FirstOperand; 6591 for (; OperandNo; --OperandNo) { 6592 // Advance to the next operand. 6593 unsigned OpFlag = 6594 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6595 assert((InlineAsm::isRegDefKind(OpFlag) || 6596 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6597 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6598 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6599 } 6600 6601 unsigned OpFlag = 6602 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6603 if (InlineAsm::isRegDefKind(OpFlag) || 6604 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6605 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6606 if (OpInfo.isIndirect) { 6607 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6608 LLVMContext &Ctx = *DAG.getContext(); 6609 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6610 " don't know how to handle tied " 6611 "indirect register inputs"); 6612 return; 6613 } 6614 6615 RegsForValue MatchedRegs; 6616 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6617 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6618 MatchedRegs.RegVTs.push_back(RegVT); 6619 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6620 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6621 i != e; ++i) { 6622 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6623 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6624 else { 6625 LLVMContext &Ctx = *DAG.getContext(); 6626 Ctx.emitError(CS.getInstruction(), 6627 "inline asm error: This value" 6628 " type register class is not natively supported!"); 6629 return; 6630 } 6631 } 6632 // Use the produced MatchedRegs object to 6633 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6634 Chain, &Flag, CS.getInstruction()); 6635 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6636 true, OpInfo.getMatchedOperand(), 6637 DAG, AsmNodeOperands); 6638 break; 6639 } 6640 6641 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6642 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6643 "Unexpected number of operands"); 6644 // Add information to the INLINEASM node to know about this input. 6645 // See InlineAsm.h isUseOperandTiedToDef. 6646 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6647 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6648 OpInfo.getMatchedOperand()); 6649 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6650 TLI.getPointerTy())); 6651 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6652 break; 6653 } 6654 6655 // Treat indirect 'X' constraint as memory. 6656 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6657 OpInfo.isIndirect) 6658 OpInfo.ConstraintType = TargetLowering::C_Memory; 6659 6660 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6661 std::vector<SDValue> Ops; 6662 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6663 Ops, DAG); 6664 if (Ops.empty()) { 6665 LLVMContext &Ctx = *DAG.getContext(); 6666 Ctx.emitError(CS.getInstruction(), 6667 "invalid operand for inline asm constraint '" + 6668 Twine(OpInfo.ConstraintCode) + "'"); 6669 return; 6670 } 6671 6672 // Add information to the INLINEASM node to know about this input. 6673 unsigned ResOpType = 6674 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6675 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6676 TLI.getPointerTy())); 6677 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6678 break; 6679 } 6680 6681 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6682 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6683 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6684 "Memory operands expect pointer values"); 6685 6686 unsigned ConstraintID = 6687 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6688 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6689 "Failed to convert memory constraint code to constraint id."); 6690 6691 // Add information to the INLINEASM node to know about this input. 6692 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6693 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6694 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, MVT::i32)); 6695 AsmNodeOperands.push_back(InOperandVal); 6696 break; 6697 } 6698 6699 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6700 OpInfo.ConstraintType == TargetLowering::C_Register) && 6701 "Unknown constraint type!"); 6702 6703 // TODO: Support this. 6704 if (OpInfo.isIndirect) { 6705 LLVMContext &Ctx = *DAG.getContext(); 6706 Ctx.emitError(CS.getInstruction(), 6707 "Don't know how to handle indirect register inputs yet " 6708 "for constraint '" + 6709 Twine(OpInfo.ConstraintCode) + "'"); 6710 return; 6711 } 6712 6713 // Copy the input into the appropriate registers. 6714 if (OpInfo.AssignedRegs.Regs.empty()) { 6715 LLVMContext &Ctx = *DAG.getContext(); 6716 Ctx.emitError(CS.getInstruction(), 6717 "couldn't allocate input reg for constraint '" + 6718 Twine(OpInfo.ConstraintCode) + "'"); 6719 return; 6720 } 6721 6722 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6723 Chain, &Flag, CS.getInstruction()); 6724 6725 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6726 DAG, AsmNodeOperands); 6727 break; 6728 } 6729 case InlineAsm::isClobber: { 6730 // Add the clobbered value to the operand list, so that the register 6731 // allocator is aware that the physreg got clobbered. 6732 if (!OpInfo.AssignedRegs.Regs.empty()) 6733 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6734 false, 0, DAG, 6735 AsmNodeOperands); 6736 break; 6737 } 6738 } 6739 } 6740 6741 // Finish up input operands. Set the input chain and add the flag last. 6742 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6743 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6744 6745 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6746 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6747 Flag = Chain.getValue(1); 6748 6749 // If this asm returns a register value, copy the result from that register 6750 // and set it as the value of the call. 6751 if (!RetValRegs.Regs.empty()) { 6752 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6753 Chain, &Flag, CS.getInstruction()); 6754 6755 // FIXME: Why don't we do this for inline asms with MRVs? 6756 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6757 EVT ResultType = TLI.getValueType(CS.getType()); 6758 6759 // If any of the results of the inline asm is a vector, it may have the 6760 // wrong width/num elts. This can happen for register classes that can 6761 // contain multiple different value types. The preg or vreg allocated may 6762 // not have the same VT as was expected. Convert it to the right type 6763 // with bit_convert. 6764 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6765 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6766 ResultType, Val); 6767 6768 } else if (ResultType != Val.getValueType() && 6769 ResultType.isInteger() && Val.getValueType().isInteger()) { 6770 // If a result value was tied to an input value, the computed result may 6771 // have a wider width than the expected result. Extract the relevant 6772 // portion. 6773 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6774 } 6775 6776 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6777 } 6778 6779 setValue(CS.getInstruction(), Val); 6780 // Don't need to use this as a chain in this case. 6781 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6782 return; 6783 } 6784 6785 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6786 6787 // Process indirect outputs, first output all of the flagged copies out of 6788 // physregs. 6789 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6790 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6791 const Value *Ptr = IndirectStoresToEmit[i].second; 6792 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6793 Chain, &Flag, IA); 6794 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6795 } 6796 6797 // Emit the non-flagged stores from the physregs. 6798 SmallVector<SDValue, 8> OutChains; 6799 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6800 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6801 StoresToEmit[i].first, 6802 getValue(StoresToEmit[i].second), 6803 MachinePointerInfo(StoresToEmit[i].second), 6804 false, false, 0); 6805 OutChains.push_back(Val); 6806 } 6807 6808 if (!OutChains.empty()) 6809 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6810 6811 DAG.setRoot(Chain); 6812 } 6813 6814 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6815 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6816 MVT::Other, getRoot(), 6817 getValue(I.getArgOperand(0)), 6818 DAG.getSrcValue(I.getArgOperand(0)))); 6819 } 6820 6821 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6822 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6823 const DataLayout &DL = *TLI.getDataLayout(); 6824 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6825 getRoot(), getValue(I.getOperand(0)), 6826 DAG.getSrcValue(I.getOperand(0)), 6827 DL.getABITypeAlignment(I.getType())); 6828 setValue(&I, V); 6829 DAG.setRoot(V.getValue(1)); 6830 } 6831 6832 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6833 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6834 MVT::Other, getRoot(), 6835 getValue(I.getArgOperand(0)), 6836 DAG.getSrcValue(I.getArgOperand(0)))); 6837 } 6838 6839 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6840 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6841 MVT::Other, getRoot(), 6842 getValue(I.getArgOperand(0)), 6843 getValue(I.getArgOperand(1)), 6844 DAG.getSrcValue(I.getArgOperand(0)), 6845 DAG.getSrcValue(I.getArgOperand(1)))); 6846 } 6847 6848 /// \brief Lower an argument list according to the target calling convention. 6849 /// 6850 /// \return A tuple of <return-value, token-chain> 6851 /// 6852 /// This is a helper for lowering intrinsics that follow a target calling 6853 /// convention or require stack pointer adjustment. Only a subset of the 6854 /// intrinsic's operands need to participate in the calling convention. 6855 std::pair<SDValue, SDValue> 6856 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6857 unsigned NumArgs, SDValue Callee, 6858 bool UseVoidTy, 6859 MachineBasicBlock *LandingPad, 6860 bool IsPatchPoint) { 6861 TargetLowering::ArgListTy Args; 6862 Args.reserve(NumArgs); 6863 6864 // Populate the argument list. 6865 // Attributes for args start at offset 1, after the return attribute. 6866 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6867 ArgI != ArgE; ++ArgI) { 6868 const Value *V = CS->getOperand(ArgI); 6869 6870 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6871 6872 TargetLowering::ArgListEntry Entry; 6873 Entry.Node = getValue(V); 6874 Entry.Ty = V->getType(); 6875 Entry.setAttributes(&CS, AttrI); 6876 Args.push_back(Entry); 6877 } 6878 6879 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6880 TargetLowering::CallLoweringInfo CLI(DAG); 6881 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6882 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6883 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6884 6885 return lowerInvokable(CLI, LandingPad); 6886 } 6887 6888 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6889 /// or patchpoint target node's operand list. 6890 /// 6891 /// Constants are converted to TargetConstants purely as an optimization to 6892 /// avoid constant materialization and register allocation. 6893 /// 6894 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6895 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6896 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6897 /// address materialization and register allocation, but may also be required 6898 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6899 /// alloca in the entry block, then the runtime may assume that the alloca's 6900 /// StackMap location can be read immediately after compilation and that the 6901 /// location is valid at any point during execution (this is similar to the 6902 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6903 /// only available in a register, then the runtime would need to trap when 6904 /// execution reaches the StackMap in order to read the alloca's location. 6905 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6906 SmallVectorImpl<SDValue> &Ops, 6907 SelectionDAGBuilder &Builder) { 6908 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6909 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6910 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6911 Ops.push_back( 6912 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6913 Ops.push_back( 6914 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6915 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6916 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6917 Ops.push_back( 6918 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6919 } else 6920 Ops.push_back(OpVal); 6921 } 6922 } 6923 6924 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6925 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6926 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6927 // [live variables...]) 6928 6929 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6930 6931 SDValue Chain, InFlag, Callee, NullPtr; 6932 SmallVector<SDValue, 32> Ops; 6933 6934 SDLoc DL = getCurSDLoc(); 6935 Callee = getValue(CI.getCalledValue()); 6936 NullPtr = DAG.getIntPtrConstant(0, true); 6937 6938 // The stackmap intrinsic only records the live variables (the arguemnts 6939 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6940 // intrinsic, this won't be lowered to a function call. This means we don't 6941 // have to worry about calling conventions and target specific lowering code. 6942 // Instead we perform the call lowering right here. 6943 // 6944 // chain, flag = CALLSEQ_START(chain, 0) 6945 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6946 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6947 // 6948 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6949 InFlag = Chain.getValue(1); 6950 6951 // Add the <id> and <numBytes> constants. 6952 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6953 Ops.push_back(DAG.getTargetConstant( 6954 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6955 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6956 Ops.push_back(DAG.getTargetConstant( 6957 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6958 6959 // Push live variables for the stack map. 6960 addStackMapLiveVars(&CI, 2, Ops, *this); 6961 6962 // We are not pushing any register mask info here on the operands list, 6963 // because the stackmap doesn't clobber anything. 6964 6965 // Push the chain and the glue flag. 6966 Ops.push_back(Chain); 6967 Ops.push_back(InFlag); 6968 6969 // Create the STACKMAP node. 6970 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6971 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6972 Chain = SDValue(SM, 0); 6973 InFlag = Chain.getValue(1); 6974 6975 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6976 6977 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6978 6979 // Set the root to the target-lowered call chain. 6980 DAG.setRoot(Chain); 6981 6982 // Inform the Frame Information that we have a stackmap in this function. 6983 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6984 } 6985 6986 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6987 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6988 MachineBasicBlock *LandingPad) { 6989 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6990 // i32 <numBytes>, 6991 // i8* <target>, 6992 // i32 <numArgs>, 6993 // [Args...], 6994 // [live variables...]) 6995 6996 CallingConv::ID CC = CS.getCallingConv(); 6997 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6998 bool HasDef = !CS->getType()->isVoidTy(); 6999 SDValue Callee = getValue(CS->getOperand(2)); // <target> 7000 7001 // Get the real number of arguments participating in the call <numArgs> 7002 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7003 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7004 7005 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7006 // Intrinsics include all meta-operands up to but not including CC. 7007 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7008 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7009 "Not enough arguments provided to the patchpoint intrinsic"); 7010 7011 // For AnyRegCC the arguments are lowered later on manually. 7012 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7013 std::pair<SDValue, SDValue> Result = 7014 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 7015 LandingPad, true); 7016 7017 SDNode *CallEnd = Result.second.getNode(); 7018 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7019 CallEnd = CallEnd->getOperand(0).getNode(); 7020 7021 /// Get a call instruction from the call sequence chain. 7022 /// Tail calls are not allowed. 7023 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7024 "Expected a callseq node."); 7025 SDNode *Call = CallEnd->getOperand(0).getNode(); 7026 bool HasGlue = Call->getGluedNode(); 7027 7028 // Replace the target specific call node with the patchable intrinsic. 7029 SmallVector<SDValue, 8> Ops; 7030 7031 // Add the <id> and <numBytes> constants. 7032 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7033 Ops.push_back(DAG.getTargetConstant( 7034 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7035 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7036 Ops.push_back(DAG.getTargetConstant( 7037 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7038 7039 // Assume that the Callee is a constant address. 7040 // FIXME: handle function symbols in the future. 7041 Ops.push_back( 7042 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7043 /*isTarget=*/true)); 7044 7045 // Adjust <numArgs> to account for any arguments that have been passed on the 7046 // stack instead. 7047 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7048 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7049 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7050 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7051 7052 // Add the calling convention 7053 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7054 7055 // Add the arguments we omitted previously. The register allocator should 7056 // place these in any free register. 7057 if (IsAnyRegCC) 7058 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7059 Ops.push_back(getValue(CS.getArgument(i))); 7060 7061 // Push the arguments from the call instruction up to the register mask. 7062 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7063 Ops.append(Call->op_begin() + 2, e); 7064 7065 // Push live variables for the stack map. 7066 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7067 7068 // Push the register mask info. 7069 if (HasGlue) 7070 Ops.push_back(*(Call->op_end()-2)); 7071 else 7072 Ops.push_back(*(Call->op_end()-1)); 7073 7074 // Push the chain (this is originally the first operand of the call, but 7075 // becomes now the last or second to last operand). 7076 Ops.push_back(*(Call->op_begin())); 7077 7078 // Push the glue flag (last operand). 7079 if (HasGlue) 7080 Ops.push_back(*(Call->op_end()-1)); 7081 7082 SDVTList NodeTys; 7083 if (IsAnyRegCC && HasDef) { 7084 // Create the return types based on the intrinsic definition 7085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7086 SmallVector<EVT, 3> ValueVTs; 7087 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7088 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7089 7090 // There is always a chain and a glue type at the end 7091 ValueVTs.push_back(MVT::Other); 7092 ValueVTs.push_back(MVT::Glue); 7093 NodeTys = DAG.getVTList(ValueVTs); 7094 } else 7095 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7096 7097 // Replace the target specific call node with a PATCHPOINT node. 7098 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7099 getCurSDLoc(), NodeTys, Ops); 7100 7101 // Update the NodeMap. 7102 if (HasDef) { 7103 if (IsAnyRegCC) 7104 setValue(CS.getInstruction(), SDValue(MN, 0)); 7105 else 7106 setValue(CS.getInstruction(), Result.first); 7107 } 7108 7109 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7110 // call sequence. Furthermore the location of the chain and glue can change 7111 // when the AnyReg calling convention is used and the intrinsic returns a 7112 // value. 7113 if (IsAnyRegCC && HasDef) { 7114 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7115 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7116 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7117 } else 7118 DAG.ReplaceAllUsesWith(Call, MN); 7119 DAG.DeleteNode(Call); 7120 7121 // Inform the Frame Information that we have a patchpoint in this function. 7122 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7123 } 7124 7125 /// Returns an AttributeSet representing the attributes applied to the return 7126 /// value of the given call. 7127 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7128 SmallVector<Attribute::AttrKind, 2> Attrs; 7129 if (CLI.RetSExt) 7130 Attrs.push_back(Attribute::SExt); 7131 if (CLI.RetZExt) 7132 Attrs.push_back(Attribute::ZExt); 7133 if (CLI.IsInReg) 7134 Attrs.push_back(Attribute::InReg); 7135 7136 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7137 Attrs); 7138 } 7139 7140 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7141 /// implementation, which just calls LowerCall. 7142 /// FIXME: When all targets are 7143 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7144 std::pair<SDValue, SDValue> 7145 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7146 // Handle the incoming return values from the call. 7147 CLI.Ins.clear(); 7148 Type *OrigRetTy = CLI.RetTy; 7149 SmallVector<EVT, 4> RetTys; 7150 SmallVector<uint64_t, 4> Offsets; 7151 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7152 7153 SmallVector<ISD::OutputArg, 4> Outs; 7154 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7155 7156 bool CanLowerReturn = 7157 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7158 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7159 7160 SDValue DemoteStackSlot; 7161 int DemoteStackIdx = -100; 7162 if (!CanLowerReturn) { 7163 // FIXME: equivalent assert? 7164 // assert(!CS.hasInAllocaArgument() && 7165 // "sret demotion is incompatible with inalloca"); 7166 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7167 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7168 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7169 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7170 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7171 7172 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7173 ArgListEntry Entry; 7174 Entry.Node = DemoteStackSlot; 7175 Entry.Ty = StackSlotPtrType; 7176 Entry.isSExt = false; 7177 Entry.isZExt = false; 7178 Entry.isInReg = false; 7179 Entry.isSRet = true; 7180 Entry.isNest = false; 7181 Entry.isByVal = false; 7182 Entry.isReturned = false; 7183 Entry.Alignment = Align; 7184 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7185 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7186 } else { 7187 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7188 EVT VT = RetTys[I]; 7189 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7190 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7191 for (unsigned i = 0; i != NumRegs; ++i) { 7192 ISD::InputArg MyFlags; 7193 MyFlags.VT = RegisterVT; 7194 MyFlags.ArgVT = VT; 7195 MyFlags.Used = CLI.IsReturnValueUsed; 7196 if (CLI.RetSExt) 7197 MyFlags.Flags.setSExt(); 7198 if (CLI.RetZExt) 7199 MyFlags.Flags.setZExt(); 7200 if (CLI.IsInReg) 7201 MyFlags.Flags.setInReg(); 7202 CLI.Ins.push_back(MyFlags); 7203 } 7204 } 7205 } 7206 7207 // Handle all of the outgoing arguments. 7208 CLI.Outs.clear(); 7209 CLI.OutVals.clear(); 7210 ArgListTy &Args = CLI.getArgs(); 7211 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7212 SmallVector<EVT, 4> ValueVTs; 7213 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7214 Type *FinalType = Args[i].Ty; 7215 if (Args[i].isByVal) 7216 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7217 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7218 FinalType, CLI.CallConv, CLI.IsVarArg); 7219 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7220 ++Value) { 7221 EVT VT = ValueVTs[Value]; 7222 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7223 SDValue Op = SDValue(Args[i].Node.getNode(), 7224 Args[i].Node.getResNo() + Value); 7225 ISD::ArgFlagsTy Flags; 7226 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7227 7228 if (Args[i].isZExt) 7229 Flags.setZExt(); 7230 if (Args[i].isSExt) 7231 Flags.setSExt(); 7232 if (Args[i].isInReg) 7233 Flags.setInReg(); 7234 if (Args[i].isSRet) 7235 Flags.setSRet(); 7236 if (Args[i].isByVal) 7237 Flags.setByVal(); 7238 if (Args[i].isInAlloca) { 7239 Flags.setInAlloca(); 7240 // Set the byval flag for CCAssignFn callbacks that don't know about 7241 // inalloca. This way we can know how many bytes we should've allocated 7242 // and how many bytes a callee cleanup function will pop. If we port 7243 // inalloca to more targets, we'll have to add custom inalloca handling 7244 // in the various CC lowering callbacks. 7245 Flags.setByVal(); 7246 } 7247 if (Args[i].isByVal || Args[i].isInAlloca) { 7248 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7249 Type *ElementTy = Ty->getElementType(); 7250 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7251 // For ByVal, alignment should come from FE. BE will guess if this 7252 // info is not there but there are cases it cannot get right. 7253 unsigned FrameAlign; 7254 if (Args[i].Alignment) 7255 FrameAlign = Args[i].Alignment; 7256 else 7257 FrameAlign = getByValTypeAlignment(ElementTy); 7258 Flags.setByValAlign(FrameAlign); 7259 } 7260 if (Args[i].isNest) 7261 Flags.setNest(); 7262 if (NeedsRegBlock) 7263 Flags.setInConsecutiveRegs(); 7264 Flags.setOrigAlign(OriginalAlignment); 7265 7266 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7267 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7268 SmallVector<SDValue, 4> Parts(NumParts); 7269 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7270 7271 if (Args[i].isSExt) 7272 ExtendKind = ISD::SIGN_EXTEND; 7273 else if (Args[i].isZExt) 7274 ExtendKind = ISD::ZERO_EXTEND; 7275 7276 // Conservatively only handle 'returned' on non-vectors for now 7277 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7278 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7279 "unexpected use of 'returned'"); 7280 // Before passing 'returned' to the target lowering code, ensure that 7281 // either the register MVT and the actual EVT are the same size or that 7282 // the return value and argument are extended in the same way; in these 7283 // cases it's safe to pass the argument register value unchanged as the 7284 // return register value (although it's at the target's option whether 7285 // to do so) 7286 // TODO: allow code generation to take advantage of partially preserved 7287 // registers rather than clobbering the entire register when the 7288 // parameter extension method is not compatible with the return 7289 // extension method 7290 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7291 (ExtendKind != ISD::ANY_EXTEND && 7292 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7293 Flags.setReturned(); 7294 } 7295 7296 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7297 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7298 7299 for (unsigned j = 0; j != NumParts; ++j) { 7300 // if it isn't first piece, alignment must be 1 7301 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7302 i < CLI.NumFixedArgs, 7303 i, j*Parts[j].getValueType().getStoreSize()); 7304 if (NumParts > 1 && j == 0) 7305 MyFlags.Flags.setSplit(); 7306 else if (j != 0) 7307 MyFlags.Flags.setOrigAlign(1); 7308 7309 CLI.Outs.push_back(MyFlags); 7310 CLI.OutVals.push_back(Parts[j]); 7311 } 7312 7313 if (NeedsRegBlock && Value == NumValues - 1) 7314 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7315 } 7316 } 7317 7318 SmallVector<SDValue, 4> InVals; 7319 CLI.Chain = LowerCall(CLI, InVals); 7320 7321 // Verify that the target's LowerCall behaved as expected. 7322 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7323 "LowerCall didn't return a valid chain!"); 7324 assert((!CLI.IsTailCall || InVals.empty()) && 7325 "LowerCall emitted a return value for a tail call!"); 7326 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7327 "LowerCall didn't emit the correct number of values!"); 7328 7329 // For a tail call, the return value is merely live-out and there aren't 7330 // any nodes in the DAG representing it. Return a special value to 7331 // indicate that a tail call has been emitted and no more Instructions 7332 // should be processed in the current block. 7333 if (CLI.IsTailCall) { 7334 CLI.DAG.setRoot(CLI.Chain); 7335 return std::make_pair(SDValue(), SDValue()); 7336 } 7337 7338 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7339 assert(InVals[i].getNode() && 7340 "LowerCall emitted a null value!"); 7341 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7342 "LowerCall emitted a value with the wrong type!"); 7343 }); 7344 7345 SmallVector<SDValue, 4> ReturnValues; 7346 if (!CanLowerReturn) { 7347 // The instruction result is the result of loading from the 7348 // hidden sret parameter. 7349 SmallVector<EVT, 1> PVTs; 7350 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7351 7352 ComputeValueVTs(*this, PtrRetTy, PVTs); 7353 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7354 EVT PtrVT = PVTs[0]; 7355 7356 unsigned NumValues = RetTys.size(); 7357 ReturnValues.resize(NumValues); 7358 SmallVector<SDValue, 4> Chains(NumValues); 7359 7360 for (unsigned i = 0; i < NumValues; ++i) { 7361 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7362 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7363 SDValue L = CLI.DAG.getLoad( 7364 RetTys[i], CLI.DL, CLI.Chain, Add, 7365 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7366 false, false, 1); 7367 ReturnValues[i] = L; 7368 Chains[i] = L.getValue(1); 7369 } 7370 7371 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7372 } else { 7373 // Collect the legal value parts into potentially illegal values 7374 // that correspond to the original function's return values. 7375 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7376 if (CLI.RetSExt) 7377 AssertOp = ISD::AssertSext; 7378 else if (CLI.RetZExt) 7379 AssertOp = ISD::AssertZext; 7380 unsigned CurReg = 0; 7381 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7382 EVT VT = RetTys[I]; 7383 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7384 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7385 7386 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7387 NumRegs, RegisterVT, VT, nullptr, 7388 AssertOp)); 7389 CurReg += NumRegs; 7390 } 7391 7392 // For a function returning void, there is no return value. We can't create 7393 // such a node, so we just return a null return value in that case. In 7394 // that case, nothing will actually look at the value. 7395 if (ReturnValues.empty()) 7396 return std::make_pair(SDValue(), CLI.Chain); 7397 } 7398 7399 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7400 CLI.DAG.getVTList(RetTys), ReturnValues); 7401 return std::make_pair(Res, CLI.Chain); 7402 } 7403 7404 void TargetLowering::LowerOperationWrapper(SDNode *N, 7405 SmallVectorImpl<SDValue> &Results, 7406 SelectionDAG &DAG) const { 7407 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7408 if (Res.getNode()) 7409 Results.push_back(Res); 7410 } 7411 7412 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7413 llvm_unreachable("LowerOperation not implemented for this target!"); 7414 } 7415 7416 void 7417 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7418 SDValue Op = getNonRegisterValue(V); 7419 assert((Op.getOpcode() != ISD::CopyFromReg || 7420 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7421 "Copy from a reg to the same reg!"); 7422 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7423 7424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7425 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7426 SDValue Chain = DAG.getEntryNode(); 7427 7428 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7429 FuncInfo.PreferredExtendType.end()) 7430 ? ISD::ANY_EXTEND 7431 : FuncInfo.PreferredExtendType[V]; 7432 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7433 PendingExports.push_back(Chain); 7434 } 7435 7436 #include "llvm/CodeGen/SelectionDAGISel.h" 7437 7438 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7439 /// entry block, return true. This includes arguments used by switches, since 7440 /// the switch may expand into multiple basic blocks. 7441 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7442 // With FastISel active, we may be splitting blocks, so force creation 7443 // of virtual registers for all non-dead arguments. 7444 if (FastISel) 7445 return A->use_empty(); 7446 7447 const BasicBlock *Entry = A->getParent()->begin(); 7448 for (const User *U : A->users()) 7449 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7450 return false; // Use not in entry block. 7451 7452 return true; 7453 } 7454 7455 void SelectionDAGISel::LowerArguments(const Function &F) { 7456 SelectionDAG &DAG = SDB->DAG; 7457 SDLoc dl = SDB->getCurSDLoc(); 7458 const DataLayout *DL = TLI->getDataLayout(); 7459 SmallVector<ISD::InputArg, 16> Ins; 7460 7461 if (!FuncInfo->CanLowerReturn) { 7462 // Put in an sret pointer parameter before all the other parameters. 7463 SmallVector<EVT, 1> ValueVTs; 7464 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7465 7466 // NOTE: Assuming that a pointer will never break down to more than one VT 7467 // or one register. 7468 ISD::ArgFlagsTy Flags; 7469 Flags.setSRet(); 7470 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7471 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7472 ISD::InputArg::NoArgIndex, 0); 7473 Ins.push_back(RetArg); 7474 } 7475 7476 // Set up the incoming argument description vector. 7477 unsigned Idx = 1; 7478 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7479 I != E; ++I, ++Idx) { 7480 SmallVector<EVT, 4> ValueVTs; 7481 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7482 bool isArgValueUsed = !I->use_empty(); 7483 unsigned PartBase = 0; 7484 Type *FinalType = I->getType(); 7485 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7486 FinalType = cast<PointerType>(FinalType)->getElementType(); 7487 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7488 FinalType, F.getCallingConv(), F.isVarArg()); 7489 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7490 Value != NumValues; ++Value) { 7491 EVT VT = ValueVTs[Value]; 7492 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7493 ISD::ArgFlagsTy Flags; 7494 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7495 7496 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7497 Flags.setZExt(); 7498 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7499 Flags.setSExt(); 7500 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7501 Flags.setInReg(); 7502 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7503 Flags.setSRet(); 7504 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7505 Flags.setByVal(); 7506 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7507 Flags.setInAlloca(); 7508 // Set the byval flag for CCAssignFn callbacks that don't know about 7509 // inalloca. This way we can know how many bytes we should've allocated 7510 // and how many bytes a callee cleanup function will pop. If we port 7511 // inalloca to more targets, we'll have to add custom inalloca handling 7512 // in the various CC lowering callbacks. 7513 Flags.setByVal(); 7514 } 7515 if (Flags.isByVal() || Flags.isInAlloca()) { 7516 PointerType *Ty = cast<PointerType>(I->getType()); 7517 Type *ElementTy = Ty->getElementType(); 7518 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7519 // For ByVal, alignment should be passed from FE. BE will guess if 7520 // this info is not there but there are cases it cannot get right. 7521 unsigned FrameAlign; 7522 if (F.getParamAlignment(Idx)) 7523 FrameAlign = F.getParamAlignment(Idx); 7524 else 7525 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7526 Flags.setByValAlign(FrameAlign); 7527 } 7528 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7529 Flags.setNest(); 7530 if (NeedsRegBlock) 7531 Flags.setInConsecutiveRegs(); 7532 Flags.setOrigAlign(OriginalAlignment); 7533 7534 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7535 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7536 for (unsigned i = 0; i != NumRegs; ++i) { 7537 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7538 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7539 if (NumRegs > 1 && i == 0) 7540 MyFlags.Flags.setSplit(); 7541 // if it isn't first piece, alignment must be 1 7542 else if (i > 0) 7543 MyFlags.Flags.setOrigAlign(1); 7544 Ins.push_back(MyFlags); 7545 } 7546 if (NeedsRegBlock && Value == NumValues - 1) 7547 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7548 PartBase += VT.getStoreSize(); 7549 } 7550 } 7551 7552 // Call the target to set up the argument values. 7553 SmallVector<SDValue, 8> InVals; 7554 SDValue NewRoot = TLI->LowerFormalArguments( 7555 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7556 7557 // Verify that the target's LowerFormalArguments behaved as expected. 7558 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7559 "LowerFormalArguments didn't return a valid chain!"); 7560 assert(InVals.size() == Ins.size() && 7561 "LowerFormalArguments didn't emit the correct number of values!"); 7562 DEBUG({ 7563 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7564 assert(InVals[i].getNode() && 7565 "LowerFormalArguments emitted a null value!"); 7566 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7567 "LowerFormalArguments emitted a value with the wrong type!"); 7568 } 7569 }); 7570 7571 // Update the DAG with the new chain value resulting from argument lowering. 7572 DAG.setRoot(NewRoot); 7573 7574 // Set up the argument values. 7575 unsigned i = 0; 7576 Idx = 1; 7577 if (!FuncInfo->CanLowerReturn) { 7578 // Create a virtual register for the sret pointer, and put in a copy 7579 // from the sret argument into it. 7580 SmallVector<EVT, 1> ValueVTs; 7581 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7582 MVT VT = ValueVTs[0].getSimpleVT(); 7583 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7584 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7585 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7586 RegVT, VT, nullptr, AssertOp); 7587 7588 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7589 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7590 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7591 FuncInfo->DemoteRegister = SRetReg; 7592 NewRoot = 7593 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7594 DAG.setRoot(NewRoot); 7595 7596 // i indexes lowered arguments. Bump it past the hidden sret argument. 7597 // Idx indexes LLVM arguments. Don't touch it. 7598 ++i; 7599 } 7600 7601 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7602 ++I, ++Idx) { 7603 SmallVector<SDValue, 4> ArgValues; 7604 SmallVector<EVT, 4> ValueVTs; 7605 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7606 unsigned NumValues = ValueVTs.size(); 7607 7608 // If this argument is unused then remember its value. It is used to generate 7609 // debugging information. 7610 if (I->use_empty() && NumValues) { 7611 SDB->setUnusedArgValue(I, InVals[i]); 7612 7613 // Also remember any frame index for use in FastISel. 7614 if (FrameIndexSDNode *FI = 7615 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7616 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7617 } 7618 7619 for (unsigned Val = 0; Val != NumValues; ++Val) { 7620 EVT VT = ValueVTs[Val]; 7621 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7622 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7623 7624 if (!I->use_empty()) { 7625 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7626 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7627 AssertOp = ISD::AssertSext; 7628 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7629 AssertOp = ISD::AssertZext; 7630 7631 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7632 NumParts, PartVT, VT, 7633 nullptr, AssertOp)); 7634 } 7635 7636 i += NumParts; 7637 } 7638 7639 // We don't need to do anything else for unused arguments. 7640 if (ArgValues.empty()) 7641 continue; 7642 7643 // Note down frame index. 7644 if (FrameIndexSDNode *FI = 7645 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7646 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7647 7648 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7649 SDB->getCurSDLoc()); 7650 7651 SDB->setValue(I, Res); 7652 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7653 if (LoadSDNode *LNode = 7654 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7655 if (FrameIndexSDNode *FI = 7656 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7657 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7658 } 7659 7660 // If this argument is live outside of the entry block, insert a copy from 7661 // wherever we got it to the vreg that other BB's will reference it as. 7662 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7663 // If we can, though, try to skip creating an unnecessary vreg. 7664 // FIXME: This isn't very clean... it would be nice to make this more 7665 // general. It's also subtly incompatible with the hacks FastISel 7666 // uses with vregs. 7667 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7668 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7669 FuncInfo->ValueMap[I] = Reg; 7670 continue; 7671 } 7672 } 7673 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7674 FuncInfo->InitializeRegForValue(I); 7675 SDB->CopyToExportRegsIfNeeded(I); 7676 } 7677 } 7678 7679 assert(i == InVals.size() && "Argument register count mismatch!"); 7680 7681 // Finally, if the target has anything special to do, allow it to do so. 7682 EmitFunctionEntryCode(); 7683 } 7684 7685 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7686 /// ensure constants are generated when needed. Remember the virtual registers 7687 /// that need to be added to the Machine PHI nodes as input. We cannot just 7688 /// directly add them, because expansion might result in multiple MBB's for one 7689 /// BB. As such, the start of the BB might correspond to a different MBB than 7690 /// the end. 7691 /// 7692 void 7693 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7694 const TerminatorInst *TI = LLVMBB->getTerminator(); 7695 7696 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7697 7698 // Check PHI nodes in successors that expect a value to be available from this 7699 // block. 7700 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7701 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7702 if (!isa<PHINode>(SuccBB->begin())) continue; 7703 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7704 7705 // If this terminator has multiple identical successors (common for 7706 // switches), only handle each succ once. 7707 if (!SuccsHandled.insert(SuccMBB).second) 7708 continue; 7709 7710 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7711 7712 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7713 // nodes and Machine PHI nodes, but the incoming operands have not been 7714 // emitted yet. 7715 for (BasicBlock::const_iterator I = SuccBB->begin(); 7716 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7717 // Ignore dead phi's. 7718 if (PN->use_empty()) continue; 7719 7720 // Skip empty types 7721 if (PN->getType()->isEmptyTy()) 7722 continue; 7723 7724 unsigned Reg; 7725 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7726 7727 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7728 unsigned &RegOut = ConstantsOut[C]; 7729 if (RegOut == 0) { 7730 RegOut = FuncInfo.CreateRegs(C->getType()); 7731 CopyValueToVirtualRegister(C, RegOut); 7732 } 7733 Reg = RegOut; 7734 } else { 7735 DenseMap<const Value *, unsigned>::iterator I = 7736 FuncInfo.ValueMap.find(PHIOp); 7737 if (I != FuncInfo.ValueMap.end()) 7738 Reg = I->second; 7739 else { 7740 assert(isa<AllocaInst>(PHIOp) && 7741 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7742 "Didn't codegen value into a register!??"); 7743 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7744 CopyValueToVirtualRegister(PHIOp, Reg); 7745 } 7746 } 7747 7748 // Remember that this register needs to added to the machine PHI node as 7749 // the input for this MBB. 7750 SmallVector<EVT, 4> ValueVTs; 7751 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7752 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7753 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7754 EVT VT = ValueVTs[vti]; 7755 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7756 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7757 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7758 Reg += NumRegisters; 7759 } 7760 } 7761 } 7762 7763 ConstantsOut.clear(); 7764 } 7765 7766 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7767 /// is 0. 7768 MachineBasicBlock * 7769 SelectionDAGBuilder::StackProtectorDescriptor:: 7770 AddSuccessorMBB(const BasicBlock *BB, 7771 MachineBasicBlock *ParentMBB, 7772 bool IsLikely, 7773 MachineBasicBlock *SuccMBB) { 7774 // If SuccBB has not been created yet, create it. 7775 if (!SuccMBB) { 7776 MachineFunction *MF = ParentMBB->getParent(); 7777 MachineFunction::iterator BBI = ParentMBB; 7778 SuccMBB = MF->CreateMachineBasicBlock(BB); 7779 MF->insert(++BBI, SuccMBB); 7780 } 7781 // Add it as a successor of ParentMBB. 7782 ParentMBB->addSuccessor( 7783 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7784 return SuccMBB; 7785 } 7786 7787 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7788 MachineFunction::iterator I = MBB; 7789 if (++I == FuncInfo.MF->end()) 7790 return nullptr; 7791 return I; 7792 } 7793