xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision b4db1420c2637b07d24b9a651b41f0f572966cc8)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/GCMetadata.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/Statepoint.h"
52 #include "llvm/MC/MCSymbol.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetFrameLowering.h"
59 #include "llvm/Target/TargetInstrInfo.h"
60 #include "llvm/Target/TargetIntrinsicInfo.h"
61 #include "llvm/Target/TargetLowering.h"
62 #include "llvm/Target/TargetOptions.h"
63 #include "llvm/Target/TargetSelectionDAGInfo.h"
64 #include "llvm/Target/TargetSubtargetInfo.h"
65 #include <algorithm>
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "isel"
69 
70 /// LimitFloatPrecision - Generate low-precision inline sequences for
71 /// some float libcalls (6, 8 or 12 bits).
72 static unsigned LimitFloatPrecision;
73 
74 static cl::opt<unsigned, true>
75 LimitFPPrecision("limit-float-precision",
76                  cl::desc("Generate low-precision inline sequences "
77                           "for some float libcalls"),
78                  cl::location(LimitFloatPrecision),
79                  cl::init(0));
80 
81 // Limit the width of DAG chains. This is important in general to prevent
82 // prevent DAG-based analysis from blowing up. For example, alias analysis and
83 // load clustering may not complete in reasonable time. It is difficult to
84 // recognize and avoid this situation within each individual analysis, and
85 // future analyses are likely to have the same behavior. Limiting DAG width is
86 // the safe approach, and will be especially important with global DAGs.
87 //
88 // MaxParallelChains default is arbitrarily high to avoid affecting
89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
90 // sequence over this should have been converted to llvm.memcpy by the
91 // frontend. It easy to induce this behavior with .ll code such as:
92 // %buffer = alloca [4096 x i8]
93 // %data = load [4096 x i8]* %argPtr
94 // store [4096 x i8] %data, [4096 x i8]* %buffer
95 static const unsigned MaxParallelChains = 64;
96 
97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
98                                       const SDValue *Parts, unsigned NumParts,
99                                       MVT PartVT, EVT ValueVT, const Value *V);
100 
101 /// getCopyFromParts - Create a value that contains the specified legal parts
102 /// combined into the value they represent.  If the parts combine to a type
103 /// larger then ValueVT then AssertOp can be used to specify whether the extra
104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
105 /// (ISD::AssertSext).
106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
107                                 const SDValue *Parts,
108                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
109                                 const Value *V,
110                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
111   if (ValueVT.isVector())
112     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
113                                   PartVT, ValueVT, V);
114 
115   assert(NumParts > 0 && "No parts to assemble!");
116   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
117   SDValue Val = Parts[0];
118 
119   if (NumParts > 1) {
120     // Assemble the value from multiple parts.
121     if (ValueVT.isInteger()) {
122       unsigned PartBits = PartVT.getSizeInBits();
123       unsigned ValueBits = ValueVT.getSizeInBits();
124 
125       // Assemble the power of 2 part.
126       unsigned RoundParts = NumParts & (NumParts - 1) ?
127         1 << Log2_32(NumParts) : NumParts;
128       unsigned RoundBits = PartBits * RoundParts;
129       EVT RoundVT = RoundBits == ValueBits ?
130         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
131       SDValue Lo, Hi;
132 
133       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
134 
135       if (RoundParts > 2) {
136         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
137                               PartVT, HalfVT, V);
138         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
139                               RoundParts / 2, PartVT, HalfVT, V);
140       } else {
141         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
142         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
143       }
144 
145       if (TLI.isBigEndian())
146         std::swap(Lo, Hi);
147 
148       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
149 
150       if (RoundParts < NumParts) {
151         // Assemble the trailing non-power-of-2 part.
152         unsigned OddParts = NumParts - RoundParts;
153         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
154         Hi = getCopyFromParts(DAG, DL,
155                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
156 
157         // Combine the round and odd parts.
158         Lo = Val;
159         if (TLI.isBigEndian())
160           std::swap(Lo, Hi);
161         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
162         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
163         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
164                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
165                                          TLI.getPointerTy()));
166         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
167         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
168       }
169     } else if (PartVT.isFloatingPoint()) {
170       // FP split into multiple FP parts (for ppcf128)
171       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
172              "Unexpected split");
173       SDValue Lo, Hi;
174       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
175       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
176       if (TLI.hasBigEndianPartOrdering(ValueVT))
177         std::swap(Lo, Hi);
178       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
179     } else {
180       // FP split into integer parts (soft fp)
181       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
182              !PartVT.isVector() && "Unexpected split");
183       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
184       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
185     }
186   }
187 
188   // There is now one part, held in Val.  Correct it to match ValueVT.
189   EVT PartEVT = Val.getValueType();
190 
191   if (PartEVT == ValueVT)
192     return Val;
193 
194   if (PartEVT.isInteger() && ValueVT.isInteger()) {
195     if (ValueVT.bitsLT(PartEVT)) {
196       // For a truncate, see if we have any information to
197       // indicate whether the truncated bits will always be
198       // zero or sign-extension.
199       if (AssertOp != ISD::DELETED_NODE)
200         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
201                           DAG.getValueType(ValueVT));
202       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
203     }
204     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
205   }
206 
207   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
208     // FP_ROUND's are always exact here.
209     if (ValueVT.bitsLT(Val.getValueType()))
210       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
211                          DAG.getTargetConstant(1, TLI.getPointerTy()));
212 
213     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
214   }
215 
216   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
217     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
218 
219   llvm_unreachable("Unknown mismatch!");
220 }
221 
222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
223                                               const Twine &ErrMsg) {
224   const Instruction *I = dyn_cast_or_null<Instruction>(V);
225   if (!V)
226     return Ctx.emitError(ErrMsg);
227 
228   const char *AsmError = ", possible invalid constraint for vector type";
229   if (const CallInst *CI = dyn_cast<CallInst>(I))
230     if (isa<InlineAsm>(CI->getCalledValue()))
231       return Ctx.emitError(I, ErrMsg + AsmError);
232 
233   return Ctx.emitError(I, ErrMsg);
234 }
235 
236 /// getCopyFromPartsVector - Create a value that contains the specified legal
237 /// parts combined into the value they represent.  If the parts combine to a
238 /// type larger then ValueVT then AssertOp can be used to specify whether the
239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
240 /// ValueVT (ISD::AssertSext).
241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
242                                       const SDValue *Parts, unsigned NumParts,
243                                       MVT PartVT, EVT ValueVT, const Value *V) {
244   assert(ValueVT.isVector() && "Not a vector value");
245   assert(NumParts > 0 && "No parts to assemble!");
246   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
247   SDValue Val = Parts[0];
248 
249   // Handle a multi-element vector.
250   if (NumParts > 1) {
251     EVT IntermediateVT;
252     MVT RegisterVT;
253     unsigned NumIntermediates;
254     unsigned NumRegs =
255     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
256                                NumIntermediates, RegisterVT);
257     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
258     NumParts = NumRegs; // Silence a compiler warning.
259     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
260     assert(RegisterVT == Parts[0].getSimpleValueType() &&
261            "Part type doesn't match part!");
262 
263     // Assemble the parts into intermediate operands.
264     SmallVector<SDValue, 8> Ops(NumIntermediates);
265     if (NumIntermediates == NumParts) {
266       // If the register was not expanded, truncate or copy the value,
267       // as appropriate.
268       for (unsigned i = 0; i != NumParts; ++i)
269         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
270                                   PartVT, IntermediateVT, V);
271     } else if (NumParts > 0) {
272       // If the intermediate type was expanded, build the intermediate
273       // operands from the parts.
274       assert(NumParts % NumIntermediates == 0 &&
275              "Must expand into a divisible number of parts!");
276       unsigned Factor = NumParts / NumIntermediates;
277       for (unsigned i = 0; i != NumIntermediates; ++i)
278         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
279                                   PartVT, IntermediateVT, V);
280     }
281 
282     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
283     // intermediate operands.
284     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
285                                                 : ISD::BUILD_VECTOR,
286                       DL, ValueVT, Ops);
287   }
288 
289   // There is now one part, held in Val.  Correct it to match ValueVT.
290   EVT PartEVT = Val.getValueType();
291 
292   if (PartEVT == ValueVT)
293     return Val;
294 
295   if (PartEVT.isVector()) {
296     // If the element type of the source/dest vectors are the same, but the
297     // parts vector has more elements than the value vector, then we have a
298     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
299     // elements we want.
300     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
301       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
302              "Cannot narrow, it would be a lossy transformation");
303       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
304                          DAG.getConstant(0, TLI.getVectorIdxTy()));
305     }
306 
307     // Vector/Vector bitcast.
308     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
309       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
310 
311     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
312       "Cannot handle this kind of promotion");
313     // Promoted vector extract
314     bool Smaller = ValueVT.bitsLE(PartEVT);
315     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
316                        DL, ValueVT, Val);
317 
318   }
319 
320   // Trivial bitcast if the types are the same size and the destination
321   // vector type is legal.
322   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
323       TLI.isTypeLegal(ValueVT))
324     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
325 
326   // Handle cases such as i8 -> <1 x i1>
327   if (ValueVT.getVectorNumElements() != 1) {
328     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
329                                       "non-trivial scalar-to-vector conversion");
330     return DAG.getUNDEF(ValueVT);
331   }
332 
333   if (ValueVT.getVectorNumElements() == 1 &&
334       ValueVT.getVectorElementType() != PartEVT) {
335     bool Smaller = ValueVT.bitsLE(PartEVT);
336     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
337                        DL, ValueVT.getScalarType(), Val);
338   }
339 
340   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
341 }
342 
343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
344                                  SDValue Val, SDValue *Parts, unsigned NumParts,
345                                  MVT PartVT, const Value *V);
346 
347 /// getCopyToParts - Create a series of nodes that contain the specified value
348 /// split into legal parts.  If the parts contain more bits than Val, then, for
349 /// integers, ExtendKind can be used to specify how to generate the extra bits.
350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
351                            SDValue Val, SDValue *Parts, unsigned NumParts,
352                            MVT PartVT, const Value *V,
353                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
354   EVT ValueVT = Val.getValueType();
355 
356   // Handle the vector case separately.
357   if (ValueVT.isVector())
358     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
359 
360   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
361   unsigned PartBits = PartVT.getSizeInBits();
362   unsigned OrigNumParts = NumParts;
363   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
364 
365   if (NumParts == 0)
366     return;
367 
368   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
369   EVT PartEVT = PartVT;
370   if (PartEVT == ValueVT) {
371     assert(NumParts == 1 && "No-op copy with multiple parts!");
372     Parts[0] = Val;
373     return;
374   }
375 
376   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
377     // If the parts cover more bits than the value has, promote the value.
378     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
379       assert(NumParts == 1 && "Do not know what to promote to!");
380       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
381     } else {
382       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
383              ValueVT.isInteger() &&
384              "Unknown mismatch!");
385       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
386       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
387       if (PartVT == MVT::x86mmx)
388         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
389     }
390   } else if (PartBits == ValueVT.getSizeInBits()) {
391     // Different types of the same size.
392     assert(NumParts == 1 && PartEVT != ValueVT);
393     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
394   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
395     // If the parts cover less bits than value has, truncate the value.
396     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
397            ValueVT.isInteger() &&
398            "Unknown mismatch!");
399     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
400     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
401     if (PartVT == MVT::x86mmx)
402       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
403   }
404 
405   // The value may have changed - recompute ValueVT.
406   ValueVT = Val.getValueType();
407   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
408          "Failed to tile the value with PartVT!");
409 
410   if (NumParts == 1) {
411     if (PartEVT != ValueVT)
412       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
413                                         "scalar-to-vector conversion failed");
414 
415     Parts[0] = Val;
416     return;
417   }
418 
419   // Expand the value into multiple parts.
420   if (NumParts & (NumParts - 1)) {
421     // The number of parts is not a power of 2.  Split off and copy the tail.
422     assert(PartVT.isInteger() && ValueVT.isInteger() &&
423            "Do not know what to expand to!");
424     unsigned RoundParts = 1 << Log2_32(NumParts);
425     unsigned RoundBits = RoundParts * PartBits;
426     unsigned OddParts = NumParts - RoundParts;
427     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
428                                  DAG.getIntPtrConstant(RoundBits));
429     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
430 
431     if (TLI.isBigEndian())
432       // The odd parts were reversed by getCopyToParts - unreverse them.
433       std::reverse(Parts + RoundParts, Parts + NumParts);
434 
435     NumParts = RoundParts;
436     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
437     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
438   }
439 
440   // The number of parts is a power of 2.  Repeatedly bisect the value using
441   // EXTRACT_ELEMENT.
442   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
443                          EVT::getIntegerVT(*DAG.getContext(),
444                                            ValueVT.getSizeInBits()),
445                          Val);
446 
447   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
448     for (unsigned i = 0; i < NumParts; i += StepSize) {
449       unsigned ThisBits = StepSize * PartBits / 2;
450       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
451       SDValue &Part0 = Parts[i];
452       SDValue &Part1 = Parts[i+StepSize/2];
453 
454       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
455                           ThisVT, Part0, DAG.getIntPtrConstant(1));
456       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
457                           ThisVT, Part0, DAG.getIntPtrConstant(0));
458 
459       if (ThisBits == PartBits && ThisVT != PartVT) {
460         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
461         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
462       }
463     }
464   }
465 
466   if (TLI.isBigEndian())
467     std::reverse(Parts, Parts + OrigNumParts);
468 }
469 
470 
471 /// getCopyToPartsVector - Create a series of nodes that contain the specified
472 /// value split into legal parts.
473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
474                                  SDValue Val, SDValue *Parts, unsigned NumParts,
475                                  MVT PartVT, const Value *V) {
476   EVT ValueVT = Val.getValueType();
477   assert(ValueVT.isVector() && "Not a vector");
478   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
479 
480   if (NumParts == 1) {
481     EVT PartEVT = PartVT;
482     if (PartEVT == ValueVT) {
483       // Nothing to do.
484     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
485       // Bitconvert vector->vector case.
486       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
487     } else if (PartVT.isVector() &&
488                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
489                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
490       EVT ElementVT = PartVT.getVectorElementType();
491       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
492       // undef elements.
493       SmallVector<SDValue, 16> Ops;
494       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
495         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
496                                   ElementVT, Val, DAG.getConstant(i,
497                                                   TLI.getVectorIdxTy())));
498 
499       for (unsigned i = ValueVT.getVectorNumElements(),
500            e = PartVT.getVectorNumElements(); i != e; ++i)
501         Ops.push_back(DAG.getUNDEF(ElementVT));
502 
503       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
504 
505       // FIXME: Use CONCAT for 2x -> 4x.
506 
507       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
508       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
509     } else if (PartVT.isVector() &&
510                PartEVT.getVectorElementType().bitsGE(
511                  ValueVT.getVectorElementType()) &&
512                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
513 
514       // Promoted vector extract
515       bool Smaller = PartEVT.bitsLE(ValueVT);
516       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
517                         DL, PartVT, Val);
518     } else{
519       // Vector -> scalar conversion.
520       assert(ValueVT.getVectorNumElements() == 1 &&
521              "Only trivial vector-to-scalar conversions should get here!");
522       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
523                         PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
524 
525       bool Smaller = ValueVT.bitsLE(PartVT);
526       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
527                          DL, PartVT, Val);
528     }
529 
530     Parts[0] = Val;
531     return;
532   }
533 
534   // Handle a multi-element vector.
535   EVT IntermediateVT;
536   MVT RegisterVT;
537   unsigned NumIntermediates;
538   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
539                                                 IntermediateVT,
540                                                 NumIntermediates, RegisterVT);
541   unsigned NumElements = ValueVT.getVectorNumElements();
542 
543   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
544   NumParts = NumRegs; // Silence a compiler warning.
545   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
546 
547   // Split the vector into intermediate operands.
548   SmallVector<SDValue, 8> Ops(NumIntermediates);
549   for (unsigned i = 0; i != NumIntermediates; ++i) {
550     if (IntermediateVT.isVector())
551       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
552                            IntermediateVT, Val,
553                    DAG.getConstant(i * (NumElements / NumIntermediates),
554                                    TLI.getVectorIdxTy()));
555     else
556       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
557                            IntermediateVT, Val,
558                            DAG.getConstant(i, TLI.getVectorIdxTy()));
559   }
560 
561   // Split the intermediate operands into legal parts.
562   if (NumParts == NumIntermediates) {
563     // If the register was not expanded, promote or copy the value,
564     // as appropriate.
565     for (unsigned i = 0; i != NumParts; ++i)
566       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
567   } else if (NumParts > 0) {
568     // If the intermediate type was expanded, split each the value into
569     // legal parts.
570     assert(NumIntermediates != 0 && "division by zero");
571     assert(NumParts % NumIntermediates == 0 &&
572            "Must expand into a divisible number of parts!");
573     unsigned Factor = NumParts / NumIntermediates;
574     for (unsigned i = 0; i != NumIntermediates; ++i)
575       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
576   }
577 }
578 
579 namespace {
580   /// RegsForValue - This struct represents the registers (physical or virtual)
581   /// that a particular set of values is assigned, and the type information
582   /// about the value. The most common situation is to represent one value at a
583   /// time, but struct or array values are handled element-wise as multiple
584   /// values.  The splitting of aggregates is performed recursively, so that we
585   /// never have aggregate-typed registers. The values at this point do not
586   /// necessarily have legal types, so each value may require one or more
587   /// registers of some legal type.
588   ///
589   struct RegsForValue {
590     /// ValueVTs - The value types of the values, which may not be legal, and
591     /// may need be promoted or synthesized from one or more registers.
592     ///
593     SmallVector<EVT, 4> ValueVTs;
594 
595     /// RegVTs - The value types of the registers. This is the same size as
596     /// ValueVTs and it records, for each value, what the type of the assigned
597     /// register or registers are. (Individual values are never synthesized
598     /// from more than one type of register.)
599     ///
600     /// With virtual registers, the contents of RegVTs is redundant with TLI's
601     /// getRegisterType member function, however when with physical registers
602     /// it is necessary to have a separate record of the types.
603     ///
604     SmallVector<MVT, 4> RegVTs;
605 
606     /// Regs - This list holds the registers assigned to the values.
607     /// Each legal or promoted value requires one register, and each
608     /// expanded value requires multiple registers.
609     ///
610     SmallVector<unsigned, 4> Regs;
611 
612     RegsForValue() {}
613 
614     RegsForValue(const SmallVector<unsigned, 4> &regs,
615                  MVT regvt, EVT valuevt)
616       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
617 
618     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
619                  unsigned Reg, Type *Ty) {
620       ComputeValueVTs(tli, Ty, ValueVTs);
621 
622       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
623         EVT ValueVT = ValueVTs[Value];
624         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
625         MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
626         for (unsigned i = 0; i != NumRegs; ++i)
627           Regs.push_back(Reg + i);
628         RegVTs.push_back(RegisterVT);
629         Reg += NumRegs;
630       }
631     }
632 
633     /// append - Add the specified values to this one.
634     void append(const RegsForValue &RHS) {
635       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
636       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
637       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
638     }
639 
640     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
641     /// this value and returns the result as a ValueVTs value.  This uses
642     /// Chain/Flag as the input and updates them for the output Chain/Flag.
643     /// If the Flag pointer is NULL, no flag is used.
644     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
645                             SDLoc dl,
646                             SDValue &Chain, SDValue *Flag,
647                             const Value *V = nullptr) const;
648 
649     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
650     /// specified value into the registers specified by this object.  This uses
651     /// Chain/Flag as the input and updates them for the output Chain/Flag.
652     /// If the Flag pointer is NULL, no flag is used.
653     void
654     getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain,
655                   SDValue *Flag, const Value *V,
656                   ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
657 
658     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
659     /// operand list.  This adds the code marker, matching input operand index
660     /// (if applicable), and includes the number of values added into it.
661     void AddInlineAsmOperands(unsigned Kind,
662                               bool HasMatching, unsigned MatchingIdx,
663                               SelectionDAG &DAG,
664                               std::vector<SDValue> &Ops) const;
665   };
666 }
667 
668 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
669 /// this value and returns the result as a ValueVT value.  This uses
670 /// Chain/Flag as the input and updates them for the output Chain/Flag.
671 /// If the Flag pointer is NULL, no flag is used.
672 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
673                                       FunctionLoweringInfo &FuncInfo,
674                                       SDLoc dl,
675                                       SDValue &Chain, SDValue *Flag,
676                                       const Value *V) const {
677   // A Value with type {} or [0 x %t] needs no registers.
678   if (ValueVTs.empty())
679     return SDValue();
680 
681   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
682 
683   // Assemble the legal parts into the final values.
684   SmallVector<SDValue, 4> Values(ValueVTs.size());
685   SmallVector<SDValue, 8> Parts;
686   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
687     // Copy the legal parts from the registers.
688     EVT ValueVT = ValueVTs[Value];
689     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690     MVT RegisterVT = RegVTs[Value];
691 
692     Parts.resize(NumRegs);
693     for (unsigned i = 0; i != NumRegs; ++i) {
694       SDValue P;
695       if (!Flag) {
696         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
697       } else {
698         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
699         *Flag = P.getValue(2);
700       }
701 
702       Chain = P.getValue(1);
703       Parts[i] = P;
704 
705       // If the source register was virtual and if we know something about it,
706       // add an assert node.
707       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
708           !RegisterVT.isInteger() || RegisterVT.isVector())
709         continue;
710 
711       const FunctionLoweringInfo::LiveOutInfo *LOI =
712         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
713       if (!LOI)
714         continue;
715 
716       unsigned RegSize = RegisterVT.getSizeInBits();
717       unsigned NumSignBits = LOI->NumSignBits;
718       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
719 
720       if (NumZeroBits == RegSize) {
721         // The current value is a zero.
722         // Explicitly express that as it would be easier for
723         // optimizations to kick in.
724         Parts[i] = DAG.getConstant(0, RegisterVT);
725         continue;
726       }
727 
728       // FIXME: We capture more information than the dag can represent.  For
729       // now, just use the tightest assertzext/assertsext possible.
730       bool isSExt = true;
731       EVT FromVT(MVT::Other);
732       if (NumSignBits == RegSize)
733         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
734       else if (NumZeroBits >= RegSize-1)
735         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
736       else if (NumSignBits > RegSize-8)
737         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
738       else if (NumZeroBits >= RegSize-8)
739         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
740       else if (NumSignBits > RegSize-16)
741         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
742       else if (NumZeroBits >= RegSize-16)
743         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
744       else if (NumSignBits > RegSize-32)
745         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
746       else if (NumZeroBits >= RegSize-32)
747         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
748       else
749         continue;
750 
751       // Add an assertion node.
752       assert(FromVT != MVT::Other);
753       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
754                              RegisterVT, P, DAG.getValueType(FromVT));
755     }
756 
757     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
758                                      NumRegs, RegisterVT, ValueVT, V);
759     Part += NumRegs;
760     Parts.clear();
761   }
762 
763   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
764 }
765 
766 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
767 /// specified value into the registers specified by this object.  This uses
768 /// Chain/Flag as the input and updates them for the output Chain/Flag.
769 /// If the Flag pointer is NULL, no flag is used.
770 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
771                                  SDValue &Chain, SDValue *Flag, const Value *V,
772                                  ISD::NodeType PreferredExtendType) const {
773   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
774   ISD::NodeType ExtendKind = PreferredExtendType;
775 
776   // Get the list of the values's legal parts.
777   unsigned NumRegs = Regs.size();
778   SmallVector<SDValue, 8> Parts(NumRegs);
779   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
780     EVT ValueVT = ValueVTs[Value];
781     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
782     MVT RegisterVT = RegVTs[Value];
783 
784     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
785       ExtendKind = ISD::ZERO_EXTEND;
786 
787     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
788                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
789     Part += NumParts;
790   }
791 
792   // Copy the parts into the registers.
793   SmallVector<SDValue, 8> Chains(NumRegs);
794   for (unsigned i = 0; i != NumRegs; ++i) {
795     SDValue Part;
796     if (!Flag) {
797       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
798     } else {
799       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
800       *Flag = Part.getValue(1);
801     }
802 
803     Chains[i] = Part.getValue(0);
804   }
805 
806   if (NumRegs == 1 || Flag)
807     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
808     // flagged to it. That is the CopyToReg nodes and the user are considered
809     // a single scheduling unit. If we create a TokenFactor and return it as
810     // chain, then the TokenFactor is both a predecessor (operand) of the
811     // user as well as a successor (the TF operands are flagged to the user).
812     // c1, f1 = CopyToReg
813     // c2, f2 = CopyToReg
814     // c3     = TokenFactor c1, c2
815     // ...
816     //        = op c3, ..., f2
817     Chain = Chains[NumRegs-1];
818   else
819     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
820 }
821 
822 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
823 /// operand list.  This adds the code marker and includes the number of
824 /// values added into it.
825 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
826                                         unsigned MatchingIdx,
827                                         SelectionDAG &DAG,
828                                         std::vector<SDValue> &Ops) const {
829   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
830 
831   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
832   if (HasMatching)
833     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
834   else if (!Regs.empty() &&
835            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
836     // Put the register class of the virtual registers in the flag word.  That
837     // way, later passes can recompute register class constraints for inline
838     // assembly as well as normal instructions.
839     // Don't do this for tied operands that can use the regclass information
840     // from the def.
841     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
842     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
843     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
844   }
845 
846   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
847   Ops.push_back(Res);
848 
849   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
850   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
851     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
852     MVT RegisterVT = RegVTs[Value];
853     for (unsigned i = 0; i != NumRegs; ++i) {
854       assert(Reg < Regs.size() && "Mismatch in # registers expected");
855       unsigned TheReg = Regs[Reg++];
856       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
857 
858       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
859         // If we clobbered the stack pointer, MFI should know about it.
860         assert(DAG.getMachineFunction().getFrameInfo()->
861             hasInlineAsmWithSPAdjust());
862       }
863     }
864   }
865 }
866 
867 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
868                                const TargetLibraryInfo *li) {
869   AA = &aa;
870   GFI = gfi;
871   LibInfo = li;
872   DL = DAG.getTarget().getDataLayout();
873   Context = DAG.getContext();
874   LPadToCallSiteMap.clear();
875 }
876 
877 /// clear - Clear out the current SelectionDAG and the associated
878 /// state and prepare this SelectionDAGBuilder object to be used
879 /// for a new block. This doesn't clear out information about
880 /// additional blocks that are needed to complete switch lowering
881 /// or PHI node updating; that information is cleared out as it is
882 /// consumed.
883 void SelectionDAGBuilder::clear() {
884   NodeMap.clear();
885   UnusedArgNodeMap.clear();
886   PendingLoads.clear();
887   PendingExports.clear();
888   CurInst = nullptr;
889   HasTailCall = false;
890   SDNodeOrder = LowestSDNodeOrder;
891   StatepointLowering.clear();
892 }
893 
894 /// clearDanglingDebugInfo - Clear the dangling debug information
895 /// map. This function is separated from the clear so that debug
896 /// information that is dangling in a basic block can be properly
897 /// resolved in a different basic block. This allows the
898 /// SelectionDAG to resolve dangling debug information attached
899 /// to PHI nodes.
900 void SelectionDAGBuilder::clearDanglingDebugInfo() {
901   DanglingDebugInfoMap.clear();
902 }
903 
904 /// getRoot - Return the current virtual root of the Selection DAG,
905 /// flushing any PendingLoad items. This must be done before emitting
906 /// a store or any other node that may need to be ordered after any
907 /// prior load instructions.
908 ///
909 SDValue SelectionDAGBuilder::getRoot() {
910   if (PendingLoads.empty())
911     return DAG.getRoot();
912 
913   if (PendingLoads.size() == 1) {
914     SDValue Root = PendingLoads[0];
915     DAG.setRoot(Root);
916     PendingLoads.clear();
917     return Root;
918   }
919 
920   // Otherwise, we have to make a token factor node.
921   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
922                              PendingLoads);
923   PendingLoads.clear();
924   DAG.setRoot(Root);
925   return Root;
926 }
927 
928 /// getControlRoot - Similar to getRoot, but instead of flushing all the
929 /// PendingLoad items, flush all the PendingExports items. It is necessary
930 /// to do this before emitting a terminator instruction.
931 ///
932 SDValue SelectionDAGBuilder::getControlRoot() {
933   SDValue Root = DAG.getRoot();
934 
935   if (PendingExports.empty())
936     return Root;
937 
938   // Turn all of the CopyToReg chains into one factored node.
939   if (Root.getOpcode() != ISD::EntryToken) {
940     unsigned i = 0, e = PendingExports.size();
941     for (; i != e; ++i) {
942       assert(PendingExports[i].getNode()->getNumOperands() > 1);
943       if (PendingExports[i].getNode()->getOperand(0) == Root)
944         break;  // Don't add the root if we already indirectly depend on it.
945     }
946 
947     if (i == e)
948       PendingExports.push_back(Root);
949   }
950 
951   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
952                      PendingExports);
953   PendingExports.clear();
954   DAG.setRoot(Root);
955   return Root;
956 }
957 
958 void SelectionDAGBuilder::visit(const Instruction &I) {
959   // Set up outgoing PHI node register values before emitting the terminator.
960   if (isa<TerminatorInst>(&I))
961     HandlePHINodesInSuccessorBlocks(I.getParent());
962 
963   ++SDNodeOrder;
964 
965   CurInst = &I;
966 
967   visit(I.getOpcode(), I);
968 
969   if (!isa<TerminatorInst>(&I) && !HasTailCall)
970     CopyToExportRegsIfNeeded(&I);
971 
972   CurInst = nullptr;
973 }
974 
975 void SelectionDAGBuilder::visitPHI(const PHINode &) {
976   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
977 }
978 
979 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
980   // Note: this doesn't use InstVisitor, because it has to work with
981   // ConstantExpr's in addition to instructions.
982   switch (Opcode) {
983   default: llvm_unreachable("Unknown instruction type encountered!");
984     // Build the switch statement using the Instruction.def file.
985 #define HANDLE_INST(NUM, OPCODE, CLASS) \
986     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
987 #include "llvm/IR/Instruction.def"
988   }
989 }
990 
991 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
992 // generate the debug data structures now that we've seen its definition.
993 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
994                                                    SDValue Val) {
995   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
996   if (DDI.getDI()) {
997     const DbgValueInst *DI = DDI.getDI();
998     DebugLoc dl = DDI.getdl();
999     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1000     MDNode *Variable = DI->getVariable();
1001     MDNode *Expr = DI->getExpression();
1002     uint64_t Offset = DI->getOffset();
1003     // A dbg.value for an alloca is always indirect.
1004     bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
1005     SDDbgValue *SDV;
1006     if (Val.getNode()) {
1007       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect,
1008                                     Val)) {
1009         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1010                               IsIndirect, Offset, dl, DbgSDNodeOrder);
1011         DAG.AddDbgValue(SDV, Val.getNode(), false);
1012       }
1013     } else
1014       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1015     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1016   }
1017 }
1018 
1019 /// getCopyFromRegs - If there was virtual register allocated for the value V
1020 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1021 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1022   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1023   SDValue res;
1024 
1025   if (It != FuncInfo.ValueMap.end()) {
1026     unsigned InReg = It->second;
1027     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg,
1028                      Ty);
1029     SDValue Chain = DAG.getEntryNode();
1030     res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1031     resolveDanglingDebugInfo(V, res);
1032   }
1033 
1034   return res;
1035 }
1036 
1037 /// getValue - Return an SDValue for the given Value.
1038 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1039   // If we already have an SDValue for this value, use it. It's important
1040   // to do this first, so that we don't create a CopyFromReg if we already
1041   // have a regular SDValue.
1042   SDValue &N = NodeMap[V];
1043   if (N.getNode()) return N;
1044 
1045   // If there's a virtual register allocated and initialized for this
1046   // value, use it.
1047   SDValue copyFromReg = getCopyFromRegs(V, V->getType());
1048   if (copyFromReg.getNode()) {
1049     return copyFromReg;
1050   }
1051 
1052   // Otherwise create a new SDValue and remember it.
1053   SDValue Val = getValueImpl(V);
1054   NodeMap[V] = Val;
1055   resolveDanglingDebugInfo(V, Val);
1056   return Val;
1057 }
1058 
1059 /// getNonRegisterValue - Return an SDValue for the given Value, but
1060 /// don't look in FuncInfo.ValueMap for a virtual register.
1061 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1062   // If we already have an SDValue for this value, use it.
1063   SDValue &N = NodeMap[V];
1064   if (N.getNode()) return N;
1065 
1066   // Otherwise create a new SDValue and remember it.
1067   SDValue Val = getValueImpl(V);
1068   NodeMap[V] = Val;
1069   resolveDanglingDebugInfo(V, Val);
1070   return Val;
1071 }
1072 
1073 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1074 /// Create an SDValue for the given value.
1075 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1076   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1077 
1078   if (const Constant *C = dyn_cast<Constant>(V)) {
1079     EVT VT = TLI.getValueType(V->getType(), true);
1080 
1081     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1082       return DAG.getConstant(*CI, VT);
1083 
1084     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1085       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1086 
1087     if (isa<ConstantPointerNull>(C)) {
1088       unsigned AS = V->getType()->getPointerAddressSpace();
1089       return DAG.getConstant(0, TLI.getPointerTy(AS));
1090     }
1091 
1092     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1093       return DAG.getConstantFP(*CFP, VT);
1094 
1095     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1096       return DAG.getUNDEF(VT);
1097 
1098     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1099       visit(CE->getOpcode(), *CE);
1100       SDValue N1 = NodeMap[V];
1101       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1102       return N1;
1103     }
1104 
1105     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1106       SmallVector<SDValue, 4> Constants;
1107       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1108            OI != OE; ++OI) {
1109         SDNode *Val = getValue(*OI).getNode();
1110         // If the operand is an empty aggregate, there are no values.
1111         if (!Val) continue;
1112         // Add each leaf value from the operand to the Constants list
1113         // to form a flattened list of all the values.
1114         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1115           Constants.push_back(SDValue(Val, i));
1116       }
1117 
1118       return DAG.getMergeValues(Constants, getCurSDLoc());
1119     }
1120 
1121     if (const ConstantDataSequential *CDS =
1122           dyn_cast<ConstantDataSequential>(C)) {
1123       SmallVector<SDValue, 4> Ops;
1124       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1125         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1126         // Add each leaf value from the operand to the Constants list
1127         // to form a flattened list of all the values.
1128         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1129           Ops.push_back(SDValue(Val, i));
1130       }
1131 
1132       if (isa<ArrayType>(CDS->getType()))
1133         return DAG.getMergeValues(Ops, getCurSDLoc());
1134       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1135                                       VT, Ops);
1136     }
1137 
1138     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1139       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1140              "Unknown struct or array constant!");
1141 
1142       SmallVector<EVT, 4> ValueVTs;
1143       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1144       unsigned NumElts = ValueVTs.size();
1145       if (NumElts == 0)
1146         return SDValue(); // empty struct
1147       SmallVector<SDValue, 4> Constants(NumElts);
1148       for (unsigned i = 0; i != NumElts; ++i) {
1149         EVT EltVT = ValueVTs[i];
1150         if (isa<UndefValue>(C))
1151           Constants[i] = DAG.getUNDEF(EltVT);
1152         else if (EltVT.isFloatingPoint())
1153           Constants[i] = DAG.getConstantFP(0, EltVT);
1154         else
1155           Constants[i] = DAG.getConstant(0, EltVT);
1156       }
1157 
1158       return DAG.getMergeValues(Constants, getCurSDLoc());
1159     }
1160 
1161     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1162       return DAG.getBlockAddress(BA, VT);
1163 
1164     VectorType *VecTy = cast<VectorType>(V->getType());
1165     unsigned NumElements = VecTy->getNumElements();
1166 
1167     // Now that we know the number and type of the elements, get that number of
1168     // elements into the Ops array based on what kind of constant it is.
1169     SmallVector<SDValue, 16> Ops;
1170     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1171       for (unsigned i = 0; i != NumElements; ++i)
1172         Ops.push_back(getValue(CV->getOperand(i)));
1173     } else {
1174       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1175       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1176 
1177       SDValue Op;
1178       if (EltVT.isFloatingPoint())
1179         Op = DAG.getConstantFP(0, EltVT);
1180       else
1181         Op = DAG.getConstant(0, EltVT);
1182       Ops.assign(NumElements, Op);
1183     }
1184 
1185     // Create a BUILD_VECTOR node.
1186     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1187   }
1188 
1189   // If this is a static alloca, generate it as the frameindex instead of
1190   // computation.
1191   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1192     DenseMap<const AllocaInst*, int>::iterator SI =
1193       FuncInfo.StaticAllocaMap.find(AI);
1194     if (SI != FuncInfo.StaticAllocaMap.end())
1195       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1196   }
1197 
1198   // If this is an instruction which fast-isel has deferred, select it now.
1199   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1200     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1201     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1202     SDValue Chain = DAG.getEntryNode();
1203     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1204   }
1205 
1206   llvm_unreachable("Can't get register for value!");
1207 }
1208 
1209 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1210   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1211   SDValue Chain = getControlRoot();
1212   SmallVector<ISD::OutputArg, 8> Outs;
1213   SmallVector<SDValue, 8> OutVals;
1214 
1215   if (!FuncInfo.CanLowerReturn) {
1216     unsigned DemoteReg = FuncInfo.DemoteRegister;
1217     const Function *F = I.getParent()->getParent();
1218 
1219     // Emit a store of the return value through the virtual register.
1220     // Leave Outs empty so that LowerReturn won't try to load return
1221     // registers the usual way.
1222     SmallVector<EVT, 1> PtrValueVTs;
1223     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1224                     PtrValueVTs);
1225 
1226     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1227     SDValue RetOp = getValue(I.getOperand(0));
1228 
1229     SmallVector<EVT, 4> ValueVTs;
1230     SmallVector<uint64_t, 4> Offsets;
1231     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1232     unsigned NumValues = ValueVTs.size();
1233 
1234     SmallVector<SDValue, 4> Chains(NumValues);
1235     for (unsigned i = 0; i != NumValues; ++i) {
1236       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1237                                 RetPtr.getValueType(), RetPtr,
1238                                 DAG.getIntPtrConstant(Offsets[i]));
1239       Chains[i] =
1240         DAG.getStore(Chain, getCurSDLoc(),
1241                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1242                      // FIXME: better loc info would be nice.
1243                      Add, MachinePointerInfo(), false, false, 0);
1244     }
1245 
1246     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1247                         MVT::Other, Chains);
1248   } else if (I.getNumOperands() != 0) {
1249     SmallVector<EVT, 4> ValueVTs;
1250     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1251     unsigned NumValues = ValueVTs.size();
1252     if (NumValues) {
1253       SDValue RetOp = getValue(I.getOperand(0));
1254 
1255       const Function *F = I.getParent()->getParent();
1256 
1257       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1258       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1259                                           Attribute::SExt))
1260         ExtendKind = ISD::SIGN_EXTEND;
1261       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1262                                                Attribute::ZExt))
1263         ExtendKind = ISD::ZERO_EXTEND;
1264 
1265       LLVMContext &Context = F->getContext();
1266       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1267                                                       Attribute::InReg);
1268 
1269       for (unsigned j = 0; j != NumValues; ++j) {
1270         EVT VT = ValueVTs[j];
1271 
1272         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1273           VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1274 
1275         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1276         MVT PartVT = TLI.getRegisterType(Context, VT);
1277         SmallVector<SDValue, 4> Parts(NumParts);
1278         getCopyToParts(DAG, getCurSDLoc(),
1279                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1280                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1281 
1282         // 'inreg' on function refers to return value
1283         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1284         if (RetInReg)
1285           Flags.setInReg();
1286 
1287         // Propagate extension type if any
1288         if (ExtendKind == ISD::SIGN_EXTEND)
1289           Flags.setSExt();
1290         else if (ExtendKind == ISD::ZERO_EXTEND)
1291           Flags.setZExt();
1292 
1293         for (unsigned i = 0; i < NumParts; ++i) {
1294           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1295                                         VT, /*isfixed=*/true, 0, 0));
1296           OutVals.push_back(Parts[i]);
1297         }
1298       }
1299     }
1300   }
1301 
1302   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1303   CallingConv::ID CallConv =
1304     DAG.getMachineFunction().getFunction()->getCallingConv();
1305   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1306       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1307 
1308   // Verify that the target's LowerReturn behaved as expected.
1309   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1310          "LowerReturn didn't return a valid chain!");
1311 
1312   // Update the DAG with the new chain value resulting from return lowering.
1313   DAG.setRoot(Chain);
1314 }
1315 
1316 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1317 /// created for it, emit nodes to copy the value into the virtual
1318 /// registers.
1319 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1320   // Skip empty types
1321   if (V->getType()->isEmptyTy())
1322     return;
1323 
1324   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1325   if (VMI != FuncInfo.ValueMap.end()) {
1326     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1327     CopyValueToVirtualRegister(V, VMI->second);
1328   }
1329 }
1330 
1331 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1332 /// the current basic block, add it to ValueMap now so that we'll get a
1333 /// CopyTo/FromReg.
1334 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1335   // No need to export constants.
1336   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1337 
1338   // Already exported?
1339   if (FuncInfo.isExportedInst(V)) return;
1340 
1341   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1342   CopyValueToVirtualRegister(V, Reg);
1343 }
1344 
1345 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1346                                                      const BasicBlock *FromBB) {
1347   // The operands of the setcc have to be in this block.  We don't know
1348   // how to export them from some other block.
1349   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1350     // Can export from current BB.
1351     if (VI->getParent() == FromBB)
1352       return true;
1353 
1354     // Is already exported, noop.
1355     return FuncInfo.isExportedInst(V);
1356   }
1357 
1358   // If this is an argument, we can export it if the BB is the entry block or
1359   // if it is already exported.
1360   if (isa<Argument>(V)) {
1361     if (FromBB == &FromBB->getParent()->getEntryBlock())
1362       return true;
1363 
1364     // Otherwise, can only export this if it is already exported.
1365     return FuncInfo.isExportedInst(V);
1366   }
1367 
1368   // Otherwise, constants can always be exported.
1369   return true;
1370 }
1371 
1372 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1373 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1374                                             const MachineBasicBlock *Dst) const {
1375   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1376   if (!BPI)
1377     return 0;
1378   const BasicBlock *SrcBB = Src->getBasicBlock();
1379   const BasicBlock *DstBB = Dst->getBasicBlock();
1380   return BPI->getEdgeWeight(SrcBB, DstBB);
1381 }
1382 
1383 void SelectionDAGBuilder::
1384 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1385                        uint32_t Weight /* = 0 */) {
1386   if (!Weight)
1387     Weight = getEdgeWeight(Src, Dst);
1388   Src->addSuccessor(Dst, Weight);
1389 }
1390 
1391 
1392 static bool InBlock(const Value *V, const BasicBlock *BB) {
1393   if (const Instruction *I = dyn_cast<Instruction>(V))
1394     return I->getParent() == BB;
1395   return true;
1396 }
1397 
1398 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1399 /// This function emits a branch and is used at the leaves of an OR or an
1400 /// AND operator tree.
1401 ///
1402 void
1403 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1404                                                   MachineBasicBlock *TBB,
1405                                                   MachineBasicBlock *FBB,
1406                                                   MachineBasicBlock *CurBB,
1407                                                   MachineBasicBlock *SwitchBB,
1408                                                   uint32_t TWeight,
1409                                                   uint32_t FWeight) {
1410   const BasicBlock *BB = CurBB->getBasicBlock();
1411 
1412   // If the leaf of the tree is a comparison, merge the condition into
1413   // the caseblock.
1414   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1415     // The operands of the cmp have to be in this block.  We don't know
1416     // how to export them from some other block.  If this is the first block
1417     // of the sequence, no exporting is needed.
1418     if (CurBB == SwitchBB ||
1419         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1420          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1421       ISD::CondCode Condition;
1422       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1423         Condition = getICmpCondCode(IC->getPredicate());
1424       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1425         Condition = getFCmpCondCode(FC->getPredicate());
1426         if (TM.Options.NoNaNsFPMath)
1427           Condition = getFCmpCodeWithoutNaN(Condition);
1428       } else {
1429         (void)Condition; // silence warning.
1430         llvm_unreachable("Unknown compare instruction");
1431       }
1432 
1433       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1434                    TBB, FBB, CurBB, TWeight, FWeight);
1435       SwitchCases.push_back(CB);
1436       return;
1437     }
1438   }
1439 
1440   // Create a CaseBlock record representing this branch.
1441   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1442                nullptr, TBB, FBB, CurBB, TWeight, FWeight);
1443   SwitchCases.push_back(CB);
1444 }
1445 
1446 /// Scale down both weights to fit into uint32_t.
1447 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1448   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1449   uint32_t Scale = (NewMax / UINT32_MAX) + 1;
1450   NewTrue = NewTrue / Scale;
1451   NewFalse = NewFalse / Scale;
1452 }
1453 
1454 /// FindMergedConditions - If Cond is an expression like
1455 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1456                                                MachineBasicBlock *TBB,
1457                                                MachineBasicBlock *FBB,
1458                                                MachineBasicBlock *CurBB,
1459                                                MachineBasicBlock *SwitchBB,
1460                                                unsigned Opc, uint32_t TWeight,
1461                                                uint32_t FWeight) {
1462   // If this node is not part of the or/and tree, emit it as a branch.
1463   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1464   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1465       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1466       BOp->getParent() != CurBB->getBasicBlock() ||
1467       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1468       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1469     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1470                                  TWeight, FWeight);
1471     return;
1472   }
1473 
1474   //  Create TmpBB after CurBB.
1475   MachineFunction::iterator BBI = CurBB;
1476   MachineFunction &MF = DAG.getMachineFunction();
1477   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1478   CurBB->getParent()->insert(++BBI, TmpBB);
1479 
1480   if (Opc == Instruction::Or) {
1481     // Codegen X | Y as:
1482     // BB1:
1483     //   jmp_if_X TBB
1484     //   jmp TmpBB
1485     // TmpBB:
1486     //   jmp_if_Y TBB
1487     //   jmp FBB
1488     //
1489 
1490     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1491     // The requirement is that
1492     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1493     //     = TrueProb for orignal BB.
1494     // Assuming the orignal weights are A and B, one choice is to set BB1's
1495     // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1496     // assumes that
1497     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1498     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1499     // TmpBB, but the math is more complicated.
1500 
1501     uint64_t NewTrueWeight = TWeight;
1502     uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1503     ScaleWeights(NewTrueWeight, NewFalseWeight);
1504     // Emit the LHS condition.
1505     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1506                          NewTrueWeight, NewFalseWeight);
1507 
1508     NewTrueWeight = TWeight;
1509     NewFalseWeight = 2 * (uint64_t)FWeight;
1510     ScaleWeights(NewTrueWeight, NewFalseWeight);
1511     // Emit the RHS condition into TmpBB.
1512     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1513                          NewTrueWeight, NewFalseWeight);
1514   } else {
1515     assert(Opc == Instruction::And && "Unknown merge op!");
1516     // Codegen X & Y as:
1517     // BB1:
1518     //   jmp_if_X TmpBB
1519     //   jmp FBB
1520     // TmpBB:
1521     //   jmp_if_Y TBB
1522     //   jmp FBB
1523     //
1524     //  This requires creation of TmpBB after CurBB.
1525 
1526     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1527     // The requirement is that
1528     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1529     //     = FalseProb for orignal BB.
1530     // Assuming the orignal weights are A and B, one choice is to set BB1's
1531     // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1532     // assumes that
1533     //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1534 
1535     uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1536     uint64_t NewFalseWeight = FWeight;
1537     ScaleWeights(NewTrueWeight, NewFalseWeight);
1538     // Emit the LHS condition.
1539     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1540                          NewTrueWeight, NewFalseWeight);
1541 
1542     NewTrueWeight = 2 * (uint64_t)TWeight;
1543     NewFalseWeight = FWeight;
1544     ScaleWeights(NewTrueWeight, NewFalseWeight);
1545     // Emit the RHS condition into TmpBB.
1546     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1547                          NewTrueWeight, NewFalseWeight);
1548   }
1549 }
1550 
1551 /// If the set of cases should be emitted as a series of branches, return true.
1552 /// If we should emit this as a bunch of and/or'd together conditions, return
1553 /// false.
1554 bool
1555 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1556   if (Cases.size() != 2) return true;
1557 
1558   // If this is two comparisons of the same values or'd or and'd together, they
1559   // will get folded into a single comparison, so don't emit two blocks.
1560   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1561        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1562       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1563        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1564     return false;
1565   }
1566 
1567   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1568   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1569   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1570       Cases[0].CC == Cases[1].CC &&
1571       isa<Constant>(Cases[0].CmpRHS) &&
1572       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1573     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1574       return false;
1575     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1576       return false;
1577   }
1578 
1579   return true;
1580 }
1581 
1582 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1583   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1584 
1585   // Update machine-CFG edges.
1586   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1587 
1588   if (I.isUnconditional()) {
1589     // Update machine-CFG edges.
1590     BrMBB->addSuccessor(Succ0MBB);
1591 
1592     // If this is not a fall-through branch or optimizations are switched off,
1593     // emit the branch.
1594     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1595       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1596                               MVT::Other, getControlRoot(),
1597                               DAG.getBasicBlock(Succ0MBB)));
1598 
1599     return;
1600   }
1601 
1602   // If this condition is one of the special cases we handle, do special stuff
1603   // now.
1604   const Value *CondVal = I.getCondition();
1605   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1606 
1607   // If this is a series of conditions that are or'd or and'd together, emit
1608   // this as a sequence of branches instead of setcc's with and/or operations.
1609   // As long as jumps are not expensive, this should improve performance.
1610   // For example, instead of something like:
1611   //     cmp A, B
1612   //     C = seteq
1613   //     cmp D, E
1614   //     F = setle
1615   //     or C, F
1616   //     jnz foo
1617   // Emit:
1618   //     cmp A, B
1619   //     je foo
1620   //     cmp D, E
1621   //     jle foo
1622   //
1623   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1624     if (!DAG.getTargetLoweringInfo().isJumpExpensive() &&
1625         BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And ||
1626                              BOp->getOpcode() == Instruction::Or)) {
1627       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1628                            BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1629                            getEdgeWeight(BrMBB, Succ1MBB));
1630       // If the compares in later blocks need to use values not currently
1631       // exported from this block, export them now.  This block should always
1632       // be the first entry.
1633       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1634 
1635       // Allow some cases to be rejected.
1636       if (ShouldEmitAsBranches(SwitchCases)) {
1637         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1638           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1639           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1640         }
1641 
1642         // Emit the branch for this block.
1643         visitSwitchCase(SwitchCases[0], BrMBB);
1644         SwitchCases.erase(SwitchCases.begin());
1645         return;
1646       }
1647 
1648       // Okay, we decided not to do this, remove any inserted MBB's and clear
1649       // SwitchCases.
1650       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1651         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1652 
1653       SwitchCases.clear();
1654     }
1655   }
1656 
1657   // Create a CaseBlock record representing this branch.
1658   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1659                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1660 
1661   // Use visitSwitchCase to actually insert the fast branch sequence for this
1662   // cond branch.
1663   visitSwitchCase(CB, BrMBB);
1664 }
1665 
1666 /// visitSwitchCase - Emits the necessary code to represent a single node in
1667 /// the binary search tree resulting from lowering a switch instruction.
1668 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1669                                           MachineBasicBlock *SwitchBB) {
1670   SDValue Cond;
1671   SDValue CondLHS = getValue(CB.CmpLHS);
1672   SDLoc dl = getCurSDLoc();
1673 
1674   // Build the setcc now.
1675   if (!CB.CmpMHS) {
1676     // Fold "(X == true)" to X and "(X == false)" to !X to
1677     // handle common cases produced by branch lowering.
1678     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1679         CB.CC == ISD::SETEQ)
1680       Cond = CondLHS;
1681     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1682              CB.CC == ISD::SETEQ) {
1683       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1684       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1685     } else
1686       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1687   } else {
1688     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1689 
1690     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1691     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1692 
1693     SDValue CmpOp = getValue(CB.CmpMHS);
1694     EVT VT = CmpOp.getValueType();
1695 
1696     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1697       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1698                           ISD::SETLE);
1699     } else {
1700       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1701                                 VT, CmpOp, DAG.getConstant(Low, VT));
1702       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1703                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1704     }
1705   }
1706 
1707   // Update successor info
1708   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1709   // TrueBB and FalseBB are always different unless the incoming IR is
1710   // degenerate. This only happens when running llc on weird IR.
1711   if (CB.TrueBB != CB.FalseBB)
1712     addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1713 
1714   // If the lhs block is the next block, invert the condition so that we can
1715   // fall through to the lhs instead of the rhs block.
1716   if (CB.TrueBB == NextBlock(SwitchBB)) {
1717     std::swap(CB.TrueBB, CB.FalseBB);
1718     SDValue True = DAG.getConstant(1, Cond.getValueType());
1719     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1720   }
1721 
1722   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1723                                MVT::Other, getControlRoot(), Cond,
1724                                DAG.getBasicBlock(CB.TrueBB));
1725 
1726   // Insert the false branch. Do this even if it's a fall through branch,
1727   // this makes it easier to do DAG optimizations which require inverting
1728   // the branch condition.
1729   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1730                        DAG.getBasicBlock(CB.FalseBB));
1731 
1732   DAG.setRoot(BrCond);
1733 }
1734 
1735 /// visitJumpTable - Emit JumpTable node in the current MBB
1736 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1737   // Emit the code for the jump table
1738   assert(JT.Reg != -1U && "Should lower JT Header first!");
1739   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy();
1740   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1741                                      JT.Reg, PTy);
1742   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1743   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1744                                     MVT::Other, Index.getValue(1),
1745                                     Table, Index);
1746   DAG.setRoot(BrJumpTable);
1747 }
1748 
1749 /// visitJumpTableHeader - This function emits necessary code to produce index
1750 /// in the JumpTable from switch case.
1751 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1752                                                JumpTableHeader &JTH,
1753                                                MachineBasicBlock *SwitchBB) {
1754   // Subtract the lowest switch case value from the value being switched on and
1755   // conditional branch to default mbb if the result is greater than the
1756   // difference between smallest and largest cases.
1757   SDValue SwitchOp = getValue(JTH.SValue);
1758   EVT VT = SwitchOp.getValueType();
1759   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1760                             DAG.getConstant(JTH.First, VT));
1761 
1762   // The SDNode we just created, which holds the value being switched on minus
1763   // the smallest case value, needs to be copied to a virtual register so it
1764   // can be used as an index into the jump table in a subsequent basic block.
1765   // This value may be smaller or larger than the target's pointer type, and
1766   // therefore require extension or truncating.
1767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1768   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy());
1769 
1770   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1771   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1772                                     JumpTableReg, SwitchOp);
1773   JT.Reg = JumpTableReg;
1774 
1775   // Emit the range check for the jump table, and branch to the default block
1776   // for the switch statement if the value being switched on exceeds the largest
1777   // case in the switch.
1778   SDValue CMP =
1779       DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1780                                                          Sub.getValueType()),
1781                    Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT);
1782 
1783   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1784                                MVT::Other, CopyTo, CMP,
1785                                DAG.getBasicBlock(JT.Default));
1786 
1787   // Avoid emitting unnecessary branches to the next block.
1788   if (JT.MBB != NextBlock(SwitchBB))
1789     BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1790                          DAG.getBasicBlock(JT.MBB));
1791 
1792   DAG.setRoot(BrCond);
1793 }
1794 
1795 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1796 /// tail spliced into a stack protector check success bb.
1797 ///
1798 /// For a high level explanation of how this fits into the stack protector
1799 /// generation see the comment on the declaration of class
1800 /// StackProtectorDescriptor.
1801 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1802                                                   MachineBasicBlock *ParentBB) {
1803 
1804   // First create the loads to the guard/stack slot for the comparison.
1805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1806   EVT PtrTy = TLI.getPointerTy();
1807 
1808   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1809   int FI = MFI->getStackProtectorIndex();
1810 
1811   const Value *IRGuard = SPD.getGuard();
1812   SDValue GuardPtr = getValue(IRGuard);
1813   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1814 
1815   unsigned Align =
1816     TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1817 
1818   SDValue Guard;
1819 
1820   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1821   // guard value from the virtual register holding the value. Otherwise, emit a
1822   // volatile load to retrieve the stack guard value.
1823   unsigned GuardReg = SPD.getGuardReg();
1824 
1825   if (GuardReg && TLI.useLoadStackGuardNode())
1826     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg,
1827                                PtrTy);
1828   else
1829     Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1830                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1831                         true, false, false, Align);
1832 
1833   SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1834                                   StackSlotPtr,
1835                                   MachinePointerInfo::getFixedStack(FI),
1836                                   true, false, false, Align);
1837 
1838   // Perform the comparison via a subtract/getsetcc.
1839   EVT VT = Guard.getValueType();
1840   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1841 
1842   SDValue Cmp =
1843       DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1844                                                          Sub.getValueType()),
1845                    Sub, DAG.getConstant(0, VT), ISD::SETNE);
1846 
1847   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1848   // branch to failure MBB.
1849   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1850                                MVT::Other, StackSlot.getOperand(0),
1851                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1852   // Otherwise branch to success MBB.
1853   SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1854                            MVT::Other, BrCond,
1855                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1856 
1857   DAG.setRoot(Br);
1858 }
1859 
1860 /// Codegen the failure basic block for a stack protector check.
1861 ///
1862 /// A failure stack protector machine basic block consists simply of a call to
1863 /// __stack_chk_fail().
1864 ///
1865 /// For a high level explanation of how this fits into the stack protector
1866 /// generation see the comment on the declaration of class
1867 /// StackProtectorDescriptor.
1868 void
1869 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1871   SDValue Chain =
1872       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1873                       nullptr, 0, false, getCurSDLoc(), false, false).second;
1874   DAG.setRoot(Chain);
1875 }
1876 
1877 /// visitBitTestHeader - This function emits necessary code to produce value
1878 /// suitable for "bit tests"
1879 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1880                                              MachineBasicBlock *SwitchBB) {
1881   // Subtract the minimum value
1882   SDValue SwitchOp = getValue(B.SValue);
1883   EVT VT = SwitchOp.getValueType();
1884   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1885                             DAG.getConstant(B.First, VT));
1886 
1887   // Check range
1888   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1889   SDValue RangeCmp =
1890       DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1891                                                          Sub.getValueType()),
1892                    Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT);
1893 
1894   // Determine the type of the test operands.
1895   bool UsePtrType = false;
1896   if (!TLI.isTypeLegal(VT))
1897     UsePtrType = true;
1898   else {
1899     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1900       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1901         // Switch table case range are encoded into series of masks.
1902         // Just use pointer type, it's guaranteed to fit.
1903         UsePtrType = true;
1904         break;
1905       }
1906   }
1907   if (UsePtrType) {
1908     VT = TLI.getPointerTy();
1909     Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1910   }
1911 
1912   B.RegVT = VT.getSimpleVT();
1913   B.Reg = FuncInfo.CreateReg(B.RegVT);
1914   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1915                                     B.Reg, Sub);
1916 
1917   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1918 
1919   addSuccessorWithWeight(SwitchBB, B.Default);
1920   addSuccessorWithWeight(SwitchBB, MBB);
1921 
1922   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1923                                 MVT::Other, CopyTo, RangeCmp,
1924                                 DAG.getBasicBlock(B.Default));
1925 
1926   // Avoid emitting unnecessary branches to the next block.
1927   if (MBB != NextBlock(SwitchBB))
1928     BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1929                           DAG.getBasicBlock(MBB));
1930 
1931   DAG.setRoot(BrRange);
1932 }
1933 
1934 /// visitBitTestCase - this function produces one "bit test"
1935 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1936                                            MachineBasicBlock* NextMBB,
1937                                            uint32_t BranchWeightToNext,
1938                                            unsigned Reg,
1939                                            BitTestCase &B,
1940                                            MachineBasicBlock *SwitchBB) {
1941   MVT VT = BB.RegVT;
1942   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1943                                        Reg, VT);
1944   SDValue Cmp;
1945   unsigned PopCount = countPopulation(B.Mask);
1946   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1947   if (PopCount == 1) {
1948     // Testing for a single bit; just compare the shift count with what it
1949     // would need to be to shift a 1 bit in that position.
1950     Cmp = DAG.getSetCC(
1951         getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1952         DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ);
1953   } else if (PopCount == BB.Range) {
1954     // There is only one zero bit in the range, test for it directly.
1955     Cmp = DAG.getSetCC(
1956         getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1957         DAG.getConstant(countTrailingOnes(B.Mask), VT), ISD::SETNE);
1958   } else {
1959     // Make desired shift
1960     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1961                                     DAG.getConstant(1, VT), ShiftOp);
1962 
1963     // Emit bit tests and jumps
1964     SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1965                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1966     Cmp = DAG.getSetCC(getCurSDLoc(),
1967                        TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp,
1968                        DAG.getConstant(0, VT), ISD::SETNE);
1969   }
1970 
1971   // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1972   addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1973   // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1974   addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1975 
1976   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1977                               MVT::Other, getControlRoot(),
1978                               Cmp, DAG.getBasicBlock(B.TargetBB));
1979 
1980   // Avoid emitting unnecessary branches to the next block.
1981   if (NextMBB != NextBlock(SwitchBB))
1982     BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1983                         DAG.getBasicBlock(NextMBB));
1984 
1985   DAG.setRoot(BrAnd);
1986 }
1987 
1988 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1989   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1990 
1991   // Retrieve successors.
1992   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1993   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1994 
1995   const Value *Callee(I.getCalledValue());
1996   const Function *Fn = dyn_cast<Function>(Callee);
1997   if (isa<InlineAsm>(Callee))
1998     visitInlineAsm(&I);
1999   else if (Fn && Fn->isIntrinsic()) {
2000     switch (Fn->getIntrinsicID()) {
2001     default:
2002       llvm_unreachable("Cannot invoke this intrinsic");
2003     case Intrinsic::donothing:
2004       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2005       break;
2006     case Intrinsic::experimental_patchpoint_void:
2007     case Intrinsic::experimental_patchpoint_i64:
2008       visitPatchpoint(&I, LandingPad);
2009       break;
2010     case Intrinsic::experimental_gc_statepoint:
2011       LowerStatepoint(ImmutableStatepoint(&I), LandingPad);
2012       break;
2013     }
2014   } else
2015     LowerCallTo(&I, getValue(Callee), false, LandingPad);
2016 
2017   // If the value of the invoke is used outside of its defining block, make it
2018   // available as a virtual register.
2019   // We already took care of the exported value for the statepoint instruction
2020   // during call to the LowerStatepoint.
2021   if (!isStatepoint(I)) {
2022     CopyToExportRegsIfNeeded(&I);
2023   }
2024 
2025   // Update successor info
2026   addSuccessorWithWeight(InvokeMBB, Return);
2027   addSuccessorWithWeight(InvokeMBB, LandingPad);
2028 
2029   // Drop into normal successor.
2030   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2031                           MVT::Other, getControlRoot(),
2032                           DAG.getBasicBlock(Return)));
2033 }
2034 
2035 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2036   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2037 }
2038 
2039 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2040   assert(FuncInfo.MBB->isLandingPad() &&
2041          "Call to landingpad not in landing pad!");
2042 
2043   MachineBasicBlock *MBB = FuncInfo.MBB;
2044   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2045   AddLandingPadInfo(LP, MMI, MBB);
2046 
2047   // If there aren't registers to copy the values into (e.g., during SjLj
2048   // exceptions), then don't bother to create these DAG nodes.
2049   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2050   if (TLI.getExceptionPointerRegister() == 0 &&
2051       TLI.getExceptionSelectorRegister() == 0)
2052     return;
2053 
2054   SmallVector<EVT, 2> ValueVTs;
2055   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
2056   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2057 
2058   // Get the two live-in registers as SDValues. The physregs have already been
2059   // copied into virtual registers.
2060   SDValue Ops[2];
2061   if (FuncInfo.ExceptionPointerVirtReg) {
2062     Ops[0] = DAG.getZExtOrTrunc(
2063         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2064                            FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()),
2065         getCurSDLoc(), ValueVTs[0]);
2066   } else {
2067     Ops[0] = DAG.getConstant(0, TLI.getPointerTy());
2068   }
2069   Ops[1] = DAG.getZExtOrTrunc(
2070       DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2071                          FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()),
2072       getCurSDLoc(), ValueVTs[1]);
2073 
2074   // Merge into one.
2075   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2076                             DAG.getVTList(ValueVTs), Ops);
2077   setValue(&LP, Res);
2078 }
2079 
2080 unsigned
2081 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV,
2082                                              MachineBasicBlock *LPadBB) {
2083   SDValue Chain = getControlRoot();
2084 
2085   // Get the typeid that we will dispatch on later.
2086   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2087   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy());
2088   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
2089   unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV);
2090   SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy());
2091   Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel);
2092 
2093   // Branch to the main landing pad block.
2094   MachineBasicBlock *ClauseMBB = FuncInfo.MBB;
2095   ClauseMBB->addSuccessor(LPadBB);
2096   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain,
2097                           DAG.getBasicBlock(LPadBB)));
2098   return VReg;
2099 }
2100 
2101 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2102 /// small case ranges).
2103 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2104                                                  CaseRecVector& WorkList,
2105                                                  const Value* SV,
2106                                                  MachineBasicBlock *Default,
2107                                                  MachineBasicBlock *SwitchBB) {
2108   // Size is the number of Cases represented by this range.
2109   size_t Size = CR.Range.second - CR.Range.first;
2110   if (Size > 3)
2111     return false;
2112 
2113   // Get the MachineFunction which holds the current MBB.  This is used when
2114   // inserting any additional MBBs necessary to represent the switch.
2115   MachineFunction *CurMF = FuncInfo.MF;
2116 
2117   // Figure out which block is immediately after the current one.
2118   MachineBasicBlock *NextMBB = nullptr;
2119   MachineFunction::iterator BBI = CR.CaseBB;
2120   if (++BBI != FuncInfo.MF->end())
2121     NextMBB = BBI;
2122 
2123   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2124   // If any two of the cases has the same destination, and if one value
2125   // is the same as the other, but has one bit unset that the other has set,
2126   // use bit manipulation to do two compares at once.  For example:
2127   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2128   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2129   // TODO: Handle cases where CR.CaseBB != SwitchBB.
2130   if (Size == 2 && CR.CaseBB == SwitchBB) {
2131     Case &Small = *CR.Range.first;
2132     Case &Big = *(CR.Range.second-1);
2133 
2134     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2135       const APInt& SmallValue = Small.Low->getValue();
2136       const APInt& BigValue = Big.Low->getValue();
2137 
2138       // Check that there is only one bit different.
2139       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2140           (SmallValue | BigValue) == BigValue) {
2141         // Isolate the common bit.
2142         APInt CommonBit = BigValue & ~SmallValue;
2143         assert((SmallValue | CommonBit) == BigValue &&
2144                CommonBit.countPopulation() == 1 && "Not a common bit?");
2145 
2146         SDValue CondLHS = getValue(SV);
2147         EVT VT = CondLHS.getValueType();
2148         SDLoc DL = getCurSDLoc();
2149 
2150         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2151                                  DAG.getConstant(CommonBit, VT));
2152         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2153                                     Or, DAG.getConstant(BigValue, VT),
2154                                     ISD::SETEQ);
2155 
2156         // Update successor info.
2157         // Both Small and Big will jump to Small.BB, so we sum up the weights.
2158         addSuccessorWithWeight(SwitchBB, Small.BB,
2159                                Small.ExtraWeight + Big.ExtraWeight);
2160         addSuccessorWithWeight(SwitchBB, Default,
2161           // The default destination is the first successor in IR.
2162           BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2163 
2164         // Insert the true branch.
2165         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2166                                      getControlRoot(), Cond,
2167                                      DAG.getBasicBlock(Small.BB));
2168 
2169         // Insert the false branch.
2170         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2171                              DAG.getBasicBlock(Default));
2172 
2173         DAG.setRoot(BrCond);
2174         return true;
2175       }
2176     }
2177   }
2178 
2179   // Order cases by weight so the most likely case will be checked first.
2180   uint32_t UnhandledWeights = 0;
2181   if (BPI) {
2182     for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2183       uint32_t IWeight = I->ExtraWeight;
2184       UnhandledWeights += IWeight;
2185       for (CaseItr J = CR.Range.first; J < I; ++J) {
2186         uint32_t JWeight = J->ExtraWeight;
2187         if (IWeight > JWeight)
2188           std::swap(*I, *J);
2189       }
2190     }
2191   }
2192   // Rearrange the case blocks so that the last one falls through if possible.
2193   Case &BackCase = *(CR.Range.second-1);
2194   if (Size > 1 && NextMBB && Default != NextMBB && BackCase.BB != NextMBB) {
2195     // The last case block won't fall through into 'NextMBB' if we emit the
2196     // branches in this order.  See if rearranging a case value would help.
2197     // We start at the bottom as it's the case with the least weight.
2198     for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2199       if (I->BB == NextMBB) {
2200         std::swap(*I, BackCase);
2201         break;
2202       }
2203   }
2204 
2205   // Create a CaseBlock record representing a conditional branch to
2206   // the Case's target mbb if the value being switched on SV is equal
2207   // to C.
2208   MachineBasicBlock *CurBlock = CR.CaseBB;
2209   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2210     MachineBasicBlock *FallThrough;
2211     if (I != E-1) {
2212       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2213       CurMF->insert(BBI, FallThrough);
2214 
2215       // Put SV in a virtual register to make it available from the new blocks.
2216       ExportFromCurrentBlock(SV);
2217     } else {
2218       // If the last case doesn't match, go to the default block.
2219       FallThrough = Default;
2220     }
2221 
2222     const Value *RHS, *LHS, *MHS;
2223     ISD::CondCode CC;
2224     if (I->High == I->Low) {
2225       // This is just small small case range :) containing exactly 1 case
2226       CC = ISD::SETEQ;
2227       LHS = SV; RHS = I->High; MHS = nullptr;
2228     } else {
2229       CC = ISD::SETLE;
2230       LHS = I->Low; MHS = SV; RHS = I->High;
2231     }
2232 
2233     // The false weight should be sum of all un-handled cases.
2234     UnhandledWeights -= I->ExtraWeight;
2235     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2236                  /* me */ CurBlock,
2237                  /* trueweight */ I->ExtraWeight,
2238                  /* falseweight */ UnhandledWeights);
2239 
2240     // If emitting the first comparison, just call visitSwitchCase to emit the
2241     // code into the current block.  Otherwise, push the CaseBlock onto the
2242     // vector to be later processed by SDISel, and insert the node's MBB
2243     // before the next MBB.
2244     if (CurBlock == SwitchBB)
2245       visitSwitchCase(CB, SwitchBB);
2246     else
2247       SwitchCases.push_back(CB);
2248 
2249     CurBlock = FallThrough;
2250   }
2251 
2252   return true;
2253 }
2254 
2255 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2256   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2257          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
2258 }
2259 
2260 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2261   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2262   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2263   return (LastExt - FirstExt + 1ULL);
2264 }
2265 
2266 /// handleJTSwitchCase - Emit jumptable for current switch case range
2267 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2268                                              CaseRecVector &WorkList,
2269                                              const Value *SV,
2270                                              MachineBasicBlock *Default,
2271                                              MachineBasicBlock *SwitchBB) {
2272   Case& FrontCase = *CR.Range.first;
2273   Case& BackCase  = *(CR.Range.second-1);
2274 
2275   const APInt &First = FrontCase.Low->getValue();
2276   const APInt &Last  = BackCase.High->getValue();
2277 
2278   APInt TSize(First.getBitWidth(), 0);
2279   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2280     TSize += I->size();
2281 
2282   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2283   if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2284     return false;
2285 
2286   APInt Range = ComputeRange(First, Last);
2287   // The density is TSize / Range. Require at least 40%.
2288   // It should not be possible for IntTSize to saturate for sane code, but make
2289   // sure we handle Range saturation correctly.
2290   uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2291   uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2292   if (IntTSize * 10 < IntRange * 4)
2293     return false;
2294 
2295   DEBUG(dbgs() << "Lowering jump table\n"
2296                << "First entry: " << First << ". Last entry: " << Last << '\n'
2297                << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2298 
2299   // Get the MachineFunction which holds the current MBB.  This is used when
2300   // inserting any additional MBBs necessary to represent the switch.
2301   MachineFunction *CurMF = FuncInfo.MF;
2302 
2303   // Figure out which block is immediately after the current one.
2304   MachineFunction::iterator BBI = CR.CaseBB;
2305   ++BBI;
2306 
2307   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2308 
2309   // Create a new basic block to hold the code for loading the address
2310   // of the jump table, and jumping to it.  Update successor information;
2311   // we will either branch to the default case for the switch, or the jump
2312   // table.
2313   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2314   CurMF->insert(BBI, JumpTableBB);
2315 
2316   addSuccessorWithWeight(CR.CaseBB, Default);
2317   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2318 
2319   // Build a vector of destination BBs, corresponding to each target
2320   // of the jump table. If the value of the jump table slot corresponds to
2321   // a case statement, push the case's BB onto the vector, otherwise, push
2322   // the default BB.
2323   std::vector<MachineBasicBlock*> DestBBs;
2324   APInt TEI = First;
2325   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2326     const APInt &Low = I->Low->getValue();
2327     const APInt &High = I->High->getValue();
2328 
2329     if (Low.sle(TEI) && TEI.sle(High)) {
2330       DestBBs.push_back(I->BB);
2331       if (TEI==High)
2332         ++I;
2333     } else {
2334       DestBBs.push_back(Default);
2335     }
2336   }
2337 
2338   // Calculate weight for each unique destination in CR.
2339   DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2340   if (FuncInfo.BPI)
2341     for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2342       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2343           DestWeights.find(I->BB);
2344       if (Itr != DestWeights.end())
2345         Itr->second += I->ExtraWeight;
2346       else
2347         DestWeights[I->BB] = I->ExtraWeight;
2348     }
2349 
2350   // Update successor info. Add one edge to each unique successor.
2351   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2352   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2353          E = DestBBs.end(); I != E; ++I) {
2354     if (!SuccsHandled[(*I)->getNumber()]) {
2355       SuccsHandled[(*I)->getNumber()] = true;
2356       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2357           DestWeights.find(*I);
2358       addSuccessorWithWeight(JumpTableBB, *I,
2359                              Itr != DestWeights.end() ? Itr->second : 0);
2360     }
2361   }
2362 
2363   // Create a jump table index for this jump table.
2364   unsigned JTEncoding = TLI.getJumpTableEncoding();
2365   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2366                        ->createJumpTableIndex(DestBBs);
2367 
2368   // Set the jump table information so that we can codegen it as a second
2369   // MachineBasicBlock
2370   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2371   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2372   if (CR.CaseBB == SwitchBB)
2373     visitJumpTableHeader(JT, JTH, SwitchBB);
2374 
2375   JTCases.push_back(JumpTableBlock(JTH, JT));
2376   return true;
2377 }
2378 
2379 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2380 /// 2 subtrees.
2381 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2382                                                   CaseRecVector& WorkList,
2383                                                   const Value* SV,
2384                                                   MachineBasicBlock* SwitchBB) {
2385   Case& FrontCase = *CR.Range.first;
2386   Case& BackCase  = *(CR.Range.second-1);
2387 
2388   // Size is the number of Cases represented by this range.
2389   unsigned Size = CR.Range.second - CR.Range.first;
2390 
2391   const APInt &First = FrontCase.Low->getValue();
2392   const APInt &Last  = BackCase.High->getValue();
2393   double FMetric = 0;
2394   CaseItr Pivot = CR.Range.first + Size/2;
2395 
2396   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2397   // (heuristically) allow us to emit JumpTable's later.
2398   APInt TSize(First.getBitWidth(), 0);
2399   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2400        I!=E; ++I)
2401     TSize += I->size();
2402 
2403   APInt LSize = FrontCase.size();
2404   APInt RSize = TSize-LSize;
2405   DEBUG(dbgs() << "Selecting best pivot: \n"
2406                << "First: " << First << ", Last: " << Last <<'\n'
2407                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2408   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2409   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2410        J!=E; ++I, ++J) {
2411     const APInt &LEnd = I->High->getValue();
2412     const APInt &RBegin = J->Low->getValue();
2413     APInt Range = ComputeRange(LEnd, RBegin);
2414     assert((Range - 2ULL).isNonNegative() &&
2415            "Invalid case distance");
2416     // Use volatile double here to avoid excess precision issues on some hosts,
2417     // e.g. that use 80-bit X87 registers.
2418     // Only consider the density of sub-ranges that actually have sufficient
2419     // entries to be lowered as a jump table.
2420     volatile double LDensity =
2421         LSize.ult(TLI.getMinimumJumpTableEntries())
2422             ? 0.0
2423             : LSize.roundToDouble() / (LEnd - First + 1ULL).roundToDouble();
2424     volatile double RDensity =
2425         RSize.ult(TLI.getMinimumJumpTableEntries())
2426             ? 0.0
2427             : RSize.roundToDouble() / (Last - RBegin + 1ULL).roundToDouble();
2428     volatile double Metric = Range.logBase2() * (LDensity + RDensity);
2429     // Should always split in some non-trivial place
2430     DEBUG(dbgs() <<"=>Step\n"
2431                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2432                  << "LDensity: " << LDensity
2433                  << ", RDensity: " << RDensity << '\n'
2434                  << "Metric: " << Metric << '\n');
2435     if (FMetric < Metric) {
2436       Pivot = J;
2437       FMetric = Metric;
2438       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2439     }
2440 
2441     LSize += J->size();
2442     RSize -= J->size();
2443   }
2444 
2445   if (FMetric == 0 || !areJTsAllowed(TLI))
2446     Pivot = CR.Range.first + Size/2;
2447   splitSwitchCase(CR, Pivot, WorkList, SV, SwitchBB);
2448   return true;
2449 }
2450 
2451 void SelectionDAGBuilder::splitSwitchCase(CaseRec &CR, CaseItr Pivot,
2452                                           CaseRecVector &WorkList,
2453                                           const Value *SV,
2454                                           MachineBasicBlock *SwitchBB) {
2455   // Get the MachineFunction which holds the current MBB.  This is used when
2456   // inserting any additional MBBs necessary to represent the switch.
2457   MachineFunction *CurMF = FuncInfo.MF;
2458 
2459   // Figure out which block is immediately after the current one.
2460   MachineFunction::iterator BBI = CR.CaseBB;
2461   ++BBI;
2462 
2463   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2464 
2465   CaseRange LHSR(CR.Range.first, Pivot);
2466   CaseRange RHSR(Pivot, CR.Range.second);
2467   const ConstantInt *C = Pivot->Low;
2468   MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr;
2469 
2470   // We know that we branch to the LHS if the Value being switched on is
2471   // less than the Pivot value, C.  We use this to optimize our binary
2472   // tree a bit, by recognizing that if SV is greater than or equal to the
2473   // LHS's Case Value, and that Case Value is exactly one less than the
2474   // Pivot's Value, then we can branch directly to the LHS's Target,
2475   // rather than creating a leaf node for it.
2476   if ((LHSR.second - LHSR.first) == 1 && LHSR.first->High == CR.GE &&
2477       C->getValue() == (CR.GE->getValue() + 1LL)) {
2478     TrueBB = LHSR.first->BB;
2479   } else {
2480     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2481     CurMF->insert(BBI, TrueBB);
2482     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2483 
2484     // Put SV in a virtual register to make it available from the new blocks.
2485     ExportFromCurrentBlock(SV);
2486   }
2487 
2488   // Similar to the optimization above, if the Value being switched on is
2489   // known to be less than the Constant CR.LT, and the current Case Value
2490   // is CR.LT - 1, then we can branch directly to the target block for
2491   // the current Case Value, rather than emitting a RHS leaf node for it.
2492   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2493       RHSR.first->Low->getValue() == (CR.LT->getValue() - 1LL)) {
2494     FalseBB = RHSR.first->BB;
2495   } else {
2496     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2497     CurMF->insert(BBI, FalseBB);
2498     WorkList.push_back(CaseRec(FalseBB, CR.LT, C, RHSR));
2499 
2500     // Put SV in a virtual register to make it available from the new blocks.
2501     ExportFromCurrentBlock(SV);
2502   }
2503 
2504   // Create a CaseBlock record representing a conditional branch to
2505   // the LHS node if the value being switched on SV is less than C.
2506   // Otherwise, branch to LHS.
2507   CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB);
2508 
2509   if (CR.CaseBB == SwitchBB)
2510     visitSwitchCase(CB, SwitchBB);
2511   else
2512     SwitchCases.push_back(CB);
2513 }
2514 
2515 /// handleBitTestsSwitchCase - if current case range has few destination and
2516 /// range span less, than machine word bitwidth, encode case range into series
2517 /// of masks and emit bit tests with these masks.
2518 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2519                                                    CaseRecVector& WorkList,
2520                                                    const Value* SV,
2521                                                    MachineBasicBlock* Default,
2522                                                    MachineBasicBlock* SwitchBB) {
2523   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2524   EVT PTy = TLI.getPointerTy();
2525   unsigned IntPtrBits = PTy.getSizeInBits();
2526 
2527   Case& FrontCase = *CR.Range.first;
2528   Case& BackCase  = *(CR.Range.second-1);
2529 
2530   // Get the MachineFunction which holds the current MBB.  This is used when
2531   // inserting any additional MBBs necessary to represent the switch.
2532   MachineFunction *CurMF = FuncInfo.MF;
2533 
2534   // If target does not have legal shift left, do not emit bit tests at all.
2535   if (!TLI.isOperationLegal(ISD::SHL, PTy))
2536     return false;
2537 
2538   size_t numCmps = 0;
2539   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2540     // Single case counts one, case range - two.
2541     numCmps += (I->Low == I->High ? 1 : 2);
2542   }
2543 
2544   // Count unique destinations
2545   SmallSet<MachineBasicBlock*, 4> Dests;
2546   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2547     Dests.insert(I->BB);
2548     if (Dests.size() > 3)
2549       // Don't bother the code below, if there are too much unique destinations
2550       return false;
2551   }
2552   DEBUG(dbgs() << "Total number of unique destinations: "
2553         << Dests.size() << '\n'
2554         << "Total number of comparisons: " << numCmps << '\n');
2555 
2556   // Compute span of values.
2557   const APInt& minValue = FrontCase.Low->getValue();
2558   const APInt& maxValue = BackCase.High->getValue();
2559   APInt cmpRange = maxValue - minValue;
2560 
2561   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2562                << "Low bound: " << minValue << '\n'
2563                << "High bound: " << maxValue << '\n');
2564 
2565   if (cmpRange.uge(IntPtrBits) ||
2566       (!(Dests.size() == 1 && numCmps >= 3) &&
2567        !(Dests.size() == 2 && numCmps >= 5) &&
2568        !(Dests.size() >= 3 && numCmps >= 6)))
2569     return false;
2570 
2571   DEBUG(dbgs() << "Emitting bit tests\n");
2572   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2573 
2574   // Optimize the case where all the case values fit in a
2575   // word without having to subtract minValue. In this case,
2576   // we can optimize away the subtraction.
2577   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2578     cmpRange = maxValue;
2579   } else {
2580     lowBound = minValue;
2581   }
2582 
2583   CaseBitsVector CasesBits;
2584   unsigned i, count = 0;
2585 
2586   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2587     MachineBasicBlock* Dest = I->BB;
2588     for (i = 0; i < count; ++i)
2589       if (Dest == CasesBits[i].BB)
2590         break;
2591 
2592     if (i == count) {
2593       assert((count < 3) && "Too much destinations to test!");
2594       CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2595       count++;
2596     }
2597 
2598     const APInt& lowValue = I->Low->getValue();
2599     const APInt& highValue = I->High->getValue();
2600 
2601     uint64_t lo = (lowValue - lowBound).getZExtValue();
2602     uint64_t hi = (highValue - lowBound).getZExtValue();
2603     CasesBits[i].ExtraWeight += I->ExtraWeight;
2604 
2605     for (uint64_t j = lo; j <= hi; j++) {
2606       CasesBits[i].Mask |=  1ULL << j;
2607       CasesBits[i].Bits++;
2608     }
2609 
2610   }
2611   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2612 
2613   BitTestInfo BTC;
2614 
2615   // Figure out which block is immediately after the current one.
2616   MachineFunction::iterator BBI = CR.CaseBB;
2617   ++BBI;
2618 
2619   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2620 
2621   DEBUG(dbgs() << "Cases:\n");
2622   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2623     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2624                  << ", Bits: " << CasesBits[i].Bits
2625                  << ", BB: " << CasesBits[i].BB << '\n');
2626 
2627     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2628     CurMF->insert(BBI, CaseBB);
2629     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2630                               CaseBB,
2631                               CasesBits[i].BB, CasesBits[i].ExtraWeight));
2632 
2633     // Put SV in a virtual register to make it available from the new blocks.
2634     ExportFromCurrentBlock(SV);
2635   }
2636 
2637   BitTestBlock BTB(lowBound, cmpRange, SV,
2638                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2639                    CR.CaseBB, Default, std::move(BTC));
2640 
2641   if (CR.CaseBB == SwitchBB)
2642     visitBitTestHeader(BTB, SwitchBB);
2643 
2644   BitTestCases.push_back(std::move(BTB));
2645 
2646   return true;
2647 }
2648 
2649 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2650 void SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2651                                      const SwitchInst& SI) {
2652   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2653   // Start with "simple" cases.
2654   for (SwitchInst::ConstCaseIt i : SI.cases()) {
2655     const BasicBlock *SuccBB = i.getCaseSuccessor();
2656     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2657 
2658     uint32_t ExtraWeight =
2659       BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
2660 
2661     Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2662                          SMBB, ExtraWeight));
2663   }
2664   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2665 
2666   // Merge case into clusters
2667   if (Cases.size() >= 2)
2668     // Must recompute end() each iteration because it may be
2669     // invalidated by erase if we hold on to it
2670     for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
2671          J != Cases.end(); ) {
2672       const APInt& nextValue = J->Low->getValue();
2673       const APInt& currentValue = I->High->getValue();
2674       MachineBasicBlock* nextBB = J->BB;
2675       MachineBasicBlock* currentBB = I->BB;
2676 
2677       // If the two neighboring cases go to the same destination, merge them
2678       // into a single case.
2679       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2680         I->High = J->High;
2681         I->ExtraWeight += J->ExtraWeight;
2682         J = Cases.erase(J);
2683       } else {
2684         I = J++;
2685       }
2686     }
2687 
2688   DEBUG({
2689       size_t numCmps = 0;
2690       for (auto &I : Cases)
2691         // A range counts double, since it requires two compares.
2692         numCmps += I.Low != I.High ? 2 : 1;
2693 
2694       dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2695              << ". Total compares: " << numCmps << '\n';
2696     });
2697 }
2698 
2699 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2700                                            MachineBasicBlock *Last) {
2701   // Update JTCases.
2702   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2703     if (JTCases[i].first.HeaderBB == First)
2704       JTCases[i].first.HeaderBB = Last;
2705 
2706   // Update BitTestCases.
2707   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2708     if (BitTestCases[i].Parent == First)
2709       BitTestCases[i].Parent = Last;
2710 }
2711 
2712 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2713   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2714 
2715   // Create a vector of Cases, sorted so that we can efficiently create a binary
2716   // search tree from them.
2717   CaseVector Cases;
2718   Clusterify(Cases, SI);
2719 
2720   // Get the default destination MBB.
2721   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2722 
2723   if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) &&
2724       !Cases.empty()) {
2725     // Replace an unreachable default destination with the most popular case
2726     // destination.
2727     DenseMap<const BasicBlock *, unsigned> Popularity;
2728     unsigned MaxPop = 0;
2729     const BasicBlock *MaxBB = nullptr;
2730     for (auto I : SI.cases()) {
2731       const BasicBlock *BB = I.getCaseSuccessor();
2732       if (++Popularity[BB] > MaxPop) {
2733         MaxPop = Popularity[BB];
2734         MaxBB = BB;
2735       }
2736     }
2737 
2738     // Set new default.
2739     assert(MaxPop > 0);
2740     assert(MaxBB);
2741     Default = FuncInfo.MBBMap[MaxBB];
2742 
2743     // Remove cases that were pointing to the destination that is now the default.
2744     Cases.erase(std::remove_if(Cases.begin(), Cases.end(),
2745                                [&](const Case &C) { return C.BB == Default; }),
2746                 Cases.end());
2747   }
2748 
2749   // If there is only the default destination, go there directly.
2750   if (Cases.empty()) {
2751     // Update machine-CFG edges.
2752     SwitchMBB->addSuccessor(Default);
2753 
2754     // If this is not a fall-through branch, emit the branch.
2755     if (Default != NextBlock(SwitchMBB)) {
2756       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2757                               getControlRoot(), DAG.getBasicBlock(Default)));
2758     }
2759     return;
2760   }
2761 
2762   // Get the Value to be switched on.
2763   const Value *SV = SI.getCondition();
2764 
2765   // Push the initial CaseRec onto the worklist
2766   CaseRecVector WorkList;
2767   WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr,
2768                              CaseRange(Cases.begin(),Cases.end())));
2769 
2770   while (!WorkList.empty()) {
2771     // Grab a record representing a case range to process off the worklist
2772     CaseRec CR = WorkList.back();
2773     WorkList.pop_back();
2774 
2775     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2776       continue;
2777 
2778     // If the range has few cases (two or less) emit a series of specific
2779     // tests.
2780     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2781       continue;
2782 
2783     // If the switch has more than N blocks, and is at least 40% dense, and the
2784     // target supports indirect branches, then emit a jump table rather than
2785     // lowering the switch to a binary tree of conditional branches.
2786     // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2787     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2788       continue;
2789 
2790     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2791     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2792     handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB);
2793   }
2794 }
2795 
2796 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2797   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2798 
2799   // Update machine-CFG edges with unique successors.
2800   SmallSet<BasicBlock*, 32> Done;
2801   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2802     BasicBlock *BB = I.getSuccessor(i);
2803     bool Inserted = Done.insert(BB).second;
2804     if (!Inserted)
2805         continue;
2806 
2807     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2808     addSuccessorWithWeight(IndirectBrMBB, Succ);
2809   }
2810 
2811   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2812                           MVT::Other, getControlRoot(),
2813                           getValue(I.getAddress())));
2814 }
2815 
2816 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2817   if (DAG.getTarget().Options.TrapUnreachable)
2818     DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2819 }
2820 
2821 void SelectionDAGBuilder::visitFSub(const User &I) {
2822   // -0.0 - X --> fneg
2823   Type *Ty = I.getType();
2824   if (isa<Constant>(I.getOperand(0)) &&
2825       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2826     SDValue Op2 = getValue(I.getOperand(1));
2827     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2828                              Op2.getValueType(), Op2));
2829     return;
2830   }
2831 
2832   visitBinary(I, ISD::FSUB);
2833 }
2834 
2835 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2836   SDValue Op1 = getValue(I.getOperand(0));
2837   SDValue Op2 = getValue(I.getOperand(1));
2838 
2839   bool nuw = false;
2840   bool nsw = false;
2841   bool exact = false;
2842   if (const OverflowingBinaryOperator *OFBinOp =
2843           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2844     nuw = OFBinOp->hasNoUnsignedWrap();
2845     nsw = OFBinOp->hasNoSignedWrap();
2846   }
2847   if (const PossiblyExactOperator *ExactOp =
2848           dyn_cast<const PossiblyExactOperator>(&I))
2849     exact = ExactOp->isExact();
2850 
2851   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2852                                      Op1, Op2, nuw, nsw, exact);
2853   setValue(&I, BinNodeValue);
2854 }
2855 
2856 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2857   SDValue Op1 = getValue(I.getOperand(0));
2858   SDValue Op2 = getValue(I.getOperand(1));
2859 
2860   EVT ShiftTy =
2861       DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType());
2862 
2863   // Coerce the shift amount to the right type if we can.
2864   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2865     unsigned ShiftSize = ShiftTy.getSizeInBits();
2866     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2867     SDLoc DL = getCurSDLoc();
2868 
2869     // If the operand is smaller than the shift count type, promote it.
2870     if (ShiftSize > Op2Size)
2871       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2872 
2873     // If the operand is larger than the shift count type but the shift
2874     // count type has enough bits to represent any shift value, truncate
2875     // it now. This is a common case and it exposes the truncate to
2876     // optimization early.
2877     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2878       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2879     // Otherwise we'll need to temporarily settle for some other convenient
2880     // type.  Type legalization will make adjustments once the shiftee is split.
2881     else
2882       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2883   }
2884 
2885   bool nuw = false;
2886   bool nsw = false;
2887   bool exact = false;
2888 
2889   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2890 
2891     if (const OverflowingBinaryOperator *OFBinOp =
2892             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2893       nuw = OFBinOp->hasNoUnsignedWrap();
2894       nsw = OFBinOp->hasNoSignedWrap();
2895     }
2896     if (const PossiblyExactOperator *ExactOp =
2897             dyn_cast<const PossiblyExactOperator>(&I))
2898       exact = ExactOp->isExact();
2899   }
2900 
2901   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2902                             nuw, nsw, exact);
2903   setValue(&I, Res);
2904 }
2905 
2906 void SelectionDAGBuilder::visitSDiv(const User &I) {
2907   SDValue Op1 = getValue(I.getOperand(0));
2908   SDValue Op2 = getValue(I.getOperand(1));
2909 
2910   // Turn exact SDivs into multiplications.
2911   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2912   // exact bit.
2913   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2914       !isa<ConstantSDNode>(Op1) &&
2915       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2916     setValue(&I, DAG.getTargetLoweringInfo()
2917                      .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG));
2918   else
2919     setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2920                              Op1, Op2));
2921 }
2922 
2923 void SelectionDAGBuilder::visitICmp(const User &I) {
2924   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2925   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2926     predicate = IC->getPredicate();
2927   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2928     predicate = ICmpInst::Predicate(IC->getPredicate());
2929   SDValue Op1 = getValue(I.getOperand(0));
2930   SDValue Op2 = getValue(I.getOperand(1));
2931   ISD::CondCode Opcode = getICmpCondCode(predicate);
2932 
2933   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2934   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2935 }
2936 
2937 void SelectionDAGBuilder::visitFCmp(const User &I) {
2938   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2939   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2940     predicate = FC->getPredicate();
2941   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2942     predicate = FCmpInst::Predicate(FC->getPredicate());
2943   SDValue Op1 = getValue(I.getOperand(0));
2944   SDValue Op2 = getValue(I.getOperand(1));
2945   ISD::CondCode Condition = getFCmpCondCode(predicate);
2946   if (TM.Options.NoNaNsFPMath)
2947     Condition = getFCmpCodeWithoutNaN(Condition);
2948   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2949   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2950 }
2951 
2952 void SelectionDAGBuilder::visitSelect(const User &I) {
2953   SmallVector<EVT, 4> ValueVTs;
2954   ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs);
2955   unsigned NumValues = ValueVTs.size();
2956   if (NumValues == 0) return;
2957 
2958   SmallVector<SDValue, 4> Values(NumValues);
2959   SDValue Cond     = getValue(I.getOperand(0));
2960   SDValue TrueVal  = getValue(I.getOperand(1));
2961   SDValue FalseVal = getValue(I.getOperand(2));
2962   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2963     ISD::VSELECT : ISD::SELECT;
2964 
2965   for (unsigned i = 0; i != NumValues; ++i)
2966     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2967                             TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2968                             Cond,
2969                             SDValue(TrueVal.getNode(),
2970                                     TrueVal.getResNo() + i),
2971                             SDValue(FalseVal.getNode(),
2972                                     FalseVal.getResNo() + i));
2973 
2974   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2975                            DAG.getVTList(ValueVTs), Values));
2976 }
2977 
2978 void SelectionDAGBuilder::visitTrunc(const User &I) {
2979   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2980   SDValue N = getValue(I.getOperand(0));
2981   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2982   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2983 }
2984 
2985 void SelectionDAGBuilder::visitZExt(const User &I) {
2986   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2987   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2988   SDValue N = getValue(I.getOperand(0));
2989   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2990   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2991 }
2992 
2993 void SelectionDAGBuilder::visitSExt(const User &I) {
2994   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2995   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2996   SDValue N = getValue(I.getOperand(0));
2997   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2998   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2999 }
3000 
3001 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3002   // FPTrunc is never a no-op cast, no need to check
3003   SDValue N = getValue(I.getOperand(0));
3004   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3005   EVT DestVT = TLI.getValueType(I.getType());
3006   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N,
3007                            DAG.getTargetConstant(0, TLI.getPointerTy())));
3008 }
3009 
3010 void SelectionDAGBuilder::visitFPExt(const User &I) {
3011   // FPExt is never a no-op cast, no need to check
3012   SDValue N = getValue(I.getOperand(0));
3013   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3014   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3015 }
3016 
3017 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3018   // FPToUI is never a no-op cast, no need to check
3019   SDValue N = getValue(I.getOperand(0));
3020   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3021   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3022 }
3023 
3024 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3025   // FPToSI is never a no-op cast, no need to check
3026   SDValue N = getValue(I.getOperand(0));
3027   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3028   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3029 }
3030 
3031 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3032   // UIToFP is never a no-op cast, no need to check
3033   SDValue N = getValue(I.getOperand(0));
3034   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3035   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3036 }
3037 
3038 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3039   // SIToFP is never a no-op cast, no need to check
3040   SDValue N = getValue(I.getOperand(0));
3041   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3042   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3043 }
3044 
3045 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3046   // What to do depends on the size of the integer and the size of the pointer.
3047   // We can either truncate, zero extend, or no-op, accordingly.
3048   SDValue N = getValue(I.getOperand(0));
3049   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3050   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3051 }
3052 
3053 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3054   // What to do depends on the size of the integer and the size of the pointer.
3055   // We can either truncate, zero extend, or no-op, accordingly.
3056   SDValue N = getValue(I.getOperand(0));
3057   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3058   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3059 }
3060 
3061 void SelectionDAGBuilder::visitBitCast(const User &I) {
3062   SDValue N = getValue(I.getOperand(0));
3063   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3064 
3065   // BitCast assures us that source and destination are the same size so this is
3066   // either a BITCAST or a no-op.
3067   if (DestVT != N.getValueType())
3068     setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
3069                              DestVT, N)); // convert types.
3070   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3071   // might fold any kind of constant expression to an integer constant and that
3072   // is not what we are looking for. Only regcognize a bitcast of a genuine
3073   // constant integer as an opaque constant.
3074   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3075     setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false,
3076                                  /*isOpaque*/true));
3077   else
3078     setValue(&I, N);            // noop cast.
3079 }
3080 
3081 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3082   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3083   const Value *SV = I.getOperand(0);
3084   SDValue N = getValue(SV);
3085   EVT DestVT = TLI.getValueType(I.getType());
3086 
3087   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3088   unsigned DestAS = I.getType()->getPointerAddressSpace();
3089 
3090   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3091     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3092 
3093   setValue(&I, N);
3094 }
3095 
3096 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3097   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3098   SDValue InVec = getValue(I.getOperand(0));
3099   SDValue InVal = getValue(I.getOperand(1));
3100   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
3101                                      getCurSDLoc(), TLI.getVectorIdxTy());
3102   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3103                            TLI.getValueType(I.getType()), InVec, InVal, InIdx));
3104 }
3105 
3106 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3107   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3108   SDValue InVec = getValue(I.getOperand(0));
3109   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
3110                                      getCurSDLoc(), TLI.getVectorIdxTy());
3111   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3112                            TLI.getValueType(I.getType()), InVec, InIdx));
3113 }
3114 
3115 // Utility for visitShuffleVector - Return true if every element in Mask,
3116 // beginning from position Pos and ending in Pos+Size, falls within the
3117 // specified sequential range [L, L+Pos). or is undef.
3118 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
3119                                 unsigned Pos, unsigned Size, int Low) {
3120   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3121     if (Mask[i] >= 0 && Mask[i] != Low)
3122       return false;
3123   return true;
3124 }
3125 
3126 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3127   SDValue Src1 = getValue(I.getOperand(0));
3128   SDValue Src2 = getValue(I.getOperand(1));
3129 
3130   SmallVector<int, 8> Mask;
3131   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3132   unsigned MaskNumElts = Mask.size();
3133 
3134   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3135   EVT VT = TLI.getValueType(I.getType());
3136   EVT SrcVT = Src1.getValueType();
3137   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3138 
3139   if (SrcNumElts == MaskNumElts) {
3140     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3141                                       &Mask[0]));
3142     return;
3143   }
3144 
3145   // Normalize the shuffle vector since mask and vector length don't match.
3146   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3147     // Mask is longer than the source vectors and is a multiple of the source
3148     // vectors.  We can use concatenate vector to make the mask and vectors
3149     // lengths match.
3150     if (SrcNumElts*2 == MaskNumElts) {
3151       // First check for Src1 in low and Src2 in high
3152       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3153           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3154         // The shuffle is concatenating two vectors together.
3155         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3156                                  VT, Src1, Src2));
3157         return;
3158       }
3159       // Then check for Src2 in low and Src1 in high
3160       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3161           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3162         // The shuffle is concatenating two vectors together.
3163         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3164                                  VT, Src2, Src1));
3165         return;
3166       }
3167     }
3168 
3169     // Pad both vectors with undefs to make them the same length as the mask.
3170     unsigned NumConcat = MaskNumElts / SrcNumElts;
3171     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3172     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3173     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3174 
3175     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3176     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3177     MOps1[0] = Src1;
3178     MOps2[0] = Src2;
3179 
3180     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3181                                                   getCurSDLoc(), VT, MOps1);
3182     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3183                                                   getCurSDLoc(), VT, MOps2);
3184 
3185     // Readjust mask for new input vector length.
3186     SmallVector<int, 8> MappedOps;
3187     for (unsigned i = 0; i != MaskNumElts; ++i) {
3188       int Idx = Mask[i];
3189       if (Idx >= (int)SrcNumElts)
3190         Idx -= SrcNumElts - MaskNumElts;
3191       MappedOps.push_back(Idx);
3192     }
3193 
3194     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3195                                       &MappedOps[0]));
3196     return;
3197   }
3198 
3199   if (SrcNumElts > MaskNumElts) {
3200     // Analyze the access pattern of the vector to see if we can extract
3201     // two subvectors and do the shuffle. The analysis is done by calculating
3202     // the range of elements the mask access on both vectors.
3203     int MinRange[2] = { static_cast<int>(SrcNumElts),
3204                         static_cast<int>(SrcNumElts)};
3205     int MaxRange[2] = {-1, -1};
3206 
3207     for (unsigned i = 0; i != MaskNumElts; ++i) {
3208       int Idx = Mask[i];
3209       unsigned Input = 0;
3210       if (Idx < 0)
3211         continue;
3212 
3213       if (Idx >= (int)SrcNumElts) {
3214         Input = 1;
3215         Idx -= SrcNumElts;
3216       }
3217       if (Idx > MaxRange[Input])
3218         MaxRange[Input] = Idx;
3219       if (Idx < MinRange[Input])
3220         MinRange[Input] = Idx;
3221     }
3222 
3223     // Check if the access is smaller than the vector size and can we find
3224     // a reasonable extract index.
3225     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3226                                    // Extract.
3227     int StartIdx[2];  // StartIdx to extract from
3228     for (unsigned Input = 0; Input < 2; ++Input) {
3229       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3230         RangeUse[Input] = 0; // Unused
3231         StartIdx[Input] = 0;
3232         continue;
3233       }
3234 
3235       // Find a good start index that is a multiple of the mask length. Then
3236       // see if the rest of the elements are in range.
3237       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3238       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3239           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3240         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3241     }
3242 
3243     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3244       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3245       return;
3246     }
3247     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3248       // Extract appropriate subvector and generate a vector shuffle
3249       for (unsigned Input = 0; Input < 2; ++Input) {
3250         SDValue &Src = Input == 0 ? Src1 : Src2;
3251         if (RangeUse[Input] == 0)
3252           Src = DAG.getUNDEF(VT);
3253         else
3254           Src = DAG.getNode(
3255               ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src,
3256               DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy()));
3257       }
3258 
3259       // Calculate new mask.
3260       SmallVector<int, 8> MappedOps;
3261       for (unsigned i = 0; i != MaskNumElts; ++i) {
3262         int Idx = Mask[i];
3263         if (Idx >= 0) {
3264           if (Idx < (int)SrcNumElts)
3265             Idx -= StartIdx[0];
3266           else
3267             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3268         }
3269         MappedOps.push_back(Idx);
3270       }
3271 
3272       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3273                                         &MappedOps[0]));
3274       return;
3275     }
3276   }
3277 
3278   // We can't use either concat vectors or extract subvectors so fall back to
3279   // replacing the shuffle with extract and build vector.
3280   // to insert and build vector.
3281   EVT EltVT = VT.getVectorElementType();
3282   EVT IdxVT = TLI.getVectorIdxTy();
3283   SmallVector<SDValue,8> Ops;
3284   for (unsigned i = 0; i != MaskNumElts; ++i) {
3285     int Idx = Mask[i];
3286     SDValue Res;
3287 
3288     if (Idx < 0) {
3289       Res = DAG.getUNDEF(EltVT);
3290     } else {
3291       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3292       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3293 
3294       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3295                         EltVT, Src, DAG.getConstant(Idx, IdxVT));
3296     }
3297 
3298     Ops.push_back(Res);
3299   }
3300 
3301   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops));
3302 }
3303 
3304 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3305   const Value *Op0 = I.getOperand(0);
3306   const Value *Op1 = I.getOperand(1);
3307   Type *AggTy = I.getType();
3308   Type *ValTy = Op1->getType();
3309   bool IntoUndef = isa<UndefValue>(Op0);
3310   bool FromUndef = isa<UndefValue>(Op1);
3311 
3312   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3313 
3314   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3315   SmallVector<EVT, 4> AggValueVTs;
3316   ComputeValueVTs(TLI, AggTy, AggValueVTs);
3317   SmallVector<EVT, 4> ValValueVTs;
3318   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3319 
3320   unsigned NumAggValues = AggValueVTs.size();
3321   unsigned NumValValues = ValValueVTs.size();
3322   SmallVector<SDValue, 4> Values(NumAggValues);
3323 
3324   // Ignore an insertvalue that produces an empty object
3325   if (!NumAggValues) {
3326     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3327     return;
3328   }
3329 
3330   SDValue Agg = getValue(Op0);
3331   unsigned i = 0;
3332   // Copy the beginning value(s) from the original aggregate.
3333   for (; i != LinearIndex; ++i)
3334     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3335                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3336   // Copy values from the inserted value(s).
3337   if (NumValValues) {
3338     SDValue Val = getValue(Op1);
3339     for (; i != LinearIndex + NumValValues; ++i)
3340       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3341                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3342   }
3343   // Copy remaining value(s) from the original aggregate.
3344   for (; i != NumAggValues; ++i)
3345     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3346                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3347 
3348   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3349                            DAG.getVTList(AggValueVTs), Values));
3350 }
3351 
3352 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3353   const Value *Op0 = I.getOperand(0);
3354   Type *AggTy = Op0->getType();
3355   Type *ValTy = I.getType();
3356   bool OutOfUndef = isa<UndefValue>(Op0);
3357 
3358   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3359 
3360   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3361   SmallVector<EVT, 4> ValValueVTs;
3362   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3363 
3364   unsigned NumValValues = ValValueVTs.size();
3365 
3366   // Ignore a extractvalue that produces an empty object
3367   if (!NumValValues) {
3368     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3369     return;
3370   }
3371 
3372   SmallVector<SDValue, 4> Values(NumValValues);
3373 
3374   SDValue Agg = getValue(Op0);
3375   // Copy out the selected value(s).
3376   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3377     Values[i - LinearIndex] =
3378       OutOfUndef ?
3379         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3380         SDValue(Agg.getNode(), Agg.getResNo() + i);
3381 
3382   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3383                            DAG.getVTList(ValValueVTs), Values));
3384 }
3385 
3386 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3387   Value *Op0 = I.getOperand(0);
3388   // Note that the pointer operand may be a vector of pointers. Take the scalar
3389   // element which holds a pointer.
3390   Type *Ty = Op0->getType()->getScalarType();
3391   unsigned AS = Ty->getPointerAddressSpace();
3392   SDValue N = getValue(Op0);
3393 
3394   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3395        OI != E; ++OI) {
3396     const Value *Idx = *OI;
3397     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3398       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3399       if (Field) {
3400         // N = N + Offset
3401         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3402         N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3403                         DAG.getConstant(Offset, N.getValueType()));
3404       }
3405 
3406       Ty = StTy->getElementType(Field);
3407     } else {
3408       Ty = cast<SequentialType>(Ty)->getElementType();
3409       MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS);
3410       unsigned PtrSize = PtrTy.getSizeInBits();
3411       APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
3412 
3413       // If this is a constant subscript, handle it quickly.
3414       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
3415         if (CI->isZero())
3416           continue;
3417         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3418         SDValue OffsVal = DAG.getConstant(Offs, PtrTy);
3419         N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal);
3420         continue;
3421       }
3422 
3423       // N = N + Idx * ElementSize;
3424       SDValue IdxN = getValue(Idx);
3425 
3426       // If the index is smaller or larger than intptr_t, truncate or extend
3427       // it.
3428       IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3429 
3430       // If this is a multiply by a power of two, turn it into a shl
3431       // immediately.  This is a very common case.
3432       if (ElementSize != 1) {
3433         if (ElementSize.isPowerOf2()) {
3434           unsigned Amt = ElementSize.logBase2();
3435           IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3436                              N.getValueType(), IdxN,
3437                              DAG.getConstant(Amt, IdxN.getValueType()));
3438         } else {
3439           SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3440           IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3441                              N.getValueType(), IdxN, Scale);
3442         }
3443       }
3444 
3445       N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3446                       N.getValueType(), N, IdxN);
3447     }
3448   }
3449 
3450   setValue(&I, N);
3451 }
3452 
3453 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3454   // If this is a fixed sized alloca in the entry block of the function,
3455   // allocate it statically on the stack.
3456   if (FuncInfo.StaticAllocaMap.count(&I))
3457     return;   // getValue will auto-populate this.
3458 
3459   Type *Ty = I.getAllocatedType();
3460   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3461   uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3462   unsigned Align =
3463       std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3464                I.getAlignment());
3465 
3466   SDValue AllocSize = getValue(I.getArraySize());
3467 
3468   EVT IntPtr = TLI.getPointerTy();
3469   if (AllocSize.getValueType() != IntPtr)
3470     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3471 
3472   AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3473                           AllocSize,
3474                           DAG.getConstant(TySize, IntPtr));
3475 
3476   // Handle alignment.  If the requested alignment is less than or equal to
3477   // the stack alignment, ignore it.  If the size is greater than or equal to
3478   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3479   unsigned StackAlign =
3480       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3481   if (Align <= StackAlign)
3482     Align = 0;
3483 
3484   // Round the size of the allocation up to the stack alignment size
3485   // by add SA-1 to the size.
3486   AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3487                           AllocSize.getValueType(), AllocSize,
3488                           DAG.getIntPtrConstant(StackAlign-1));
3489 
3490   // Mask out the low bits for alignment purposes.
3491   AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3492                           AllocSize.getValueType(), AllocSize,
3493                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3494 
3495   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3496   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3497   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops);
3498   setValue(&I, DSA);
3499   DAG.setRoot(DSA.getValue(1));
3500 
3501   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3502 }
3503 
3504 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3505   if (I.isAtomic())
3506     return visitAtomicLoad(I);
3507 
3508   const Value *SV = I.getOperand(0);
3509   SDValue Ptr = getValue(SV);
3510 
3511   Type *Ty = I.getType();
3512 
3513   bool isVolatile = I.isVolatile();
3514   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3515   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3516   unsigned Alignment = I.getAlignment();
3517 
3518   AAMDNodes AAInfo;
3519   I.getAAMetadata(AAInfo);
3520   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3521 
3522   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3523   SmallVector<EVT, 4> ValueVTs;
3524   SmallVector<uint64_t, 4> Offsets;
3525   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3526   unsigned NumValues = ValueVTs.size();
3527   if (NumValues == 0)
3528     return;
3529 
3530   SDValue Root;
3531   bool ConstantMemory = false;
3532   if (isVolatile || NumValues > MaxParallelChains)
3533     // Serialize volatile loads with other side effects.
3534     Root = getRoot();
3535   else if (AA->pointsToConstantMemory(
3536              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) {
3537     // Do not serialize (non-volatile) loads of constant memory with anything.
3538     Root = DAG.getEntryNode();
3539     ConstantMemory = true;
3540   } else {
3541     // Do not serialize non-volatile loads against each other.
3542     Root = DAG.getRoot();
3543   }
3544 
3545   if (isVolatile)
3546     Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
3547 
3548   SmallVector<SDValue, 4> Values(NumValues);
3549   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3550                                           NumValues));
3551   EVT PtrVT = Ptr.getValueType();
3552   unsigned ChainI = 0;
3553   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3554     // Serializing loads here may result in excessive register pressure, and
3555     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3556     // could recover a bit by hoisting nodes upward in the chain by recognizing
3557     // they are side-effect free or do not alias. The optimizer should really
3558     // avoid this case by converting large object/array copies to llvm.memcpy
3559     // (MaxParallelChains should always remain as failsafe).
3560     if (ChainI == MaxParallelChains) {
3561       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3562       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3563                                   makeArrayRef(Chains.data(), ChainI));
3564       Root = Chain;
3565       ChainI = 0;
3566     }
3567     SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3568                             PtrVT, Ptr,
3569                             DAG.getConstant(Offsets[i], PtrVT));
3570     SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3571                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3572                             isNonTemporal, isInvariant, Alignment, AAInfo,
3573                             Ranges);
3574 
3575     Values[i] = L;
3576     Chains[ChainI] = L.getValue(1);
3577   }
3578 
3579   if (!ConstantMemory) {
3580     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3581                                 makeArrayRef(Chains.data(), ChainI));
3582     if (isVolatile)
3583       DAG.setRoot(Chain);
3584     else
3585       PendingLoads.push_back(Chain);
3586   }
3587 
3588   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3589                            DAG.getVTList(ValueVTs), Values));
3590 }
3591 
3592 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3593   if (I.isAtomic())
3594     return visitAtomicStore(I);
3595 
3596   const Value *SrcV = I.getOperand(0);
3597   const Value *PtrV = I.getOperand(1);
3598 
3599   SmallVector<EVT, 4> ValueVTs;
3600   SmallVector<uint64_t, 4> Offsets;
3601   ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(),
3602                   ValueVTs, &Offsets);
3603   unsigned NumValues = ValueVTs.size();
3604   if (NumValues == 0)
3605     return;
3606 
3607   // Get the lowered operands. Note that we do this after
3608   // checking if NumResults is zero, because with zero results
3609   // the operands won't have values in the map.
3610   SDValue Src = getValue(SrcV);
3611   SDValue Ptr = getValue(PtrV);
3612 
3613   SDValue Root = getRoot();
3614   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3615                                           NumValues));
3616   EVT PtrVT = Ptr.getValueType();
3617   bool isVolatile = I.isVolatile();
3618   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3619   unsigned Alignment = I.getAlignment();
3620 
3621   AAMDNodes AAInfo;
3622   I.getAAMetadata(AAInfo);
3623 
3624   unsigned ChainI = 0;
3625   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3626     // See visitLoad comments.
3627     if (ChainI == MaxParallelChains) {
3628       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3629                                   makeArrayRef(Chains.data(), ChainI));
3630       Root = Chain;
3631       ChainI = 0;
3632     }
3633     SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3634                               DAG.getConstant(Offsets[i], PtrVT));
3635     SDValue St = DAG.getStore(Root, getCurSDLoc(),
3636                               SDValue(Src.getNode(), Src.getResNo() + i),
3637                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3638                               isVolatile, isNonTemporal, Alignment, AAInfo);
3639     Chains[ChainI] = St;
3640   }
3641 
3642   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3643                                   makeArrayRef(Chains.data(), ChainI));
3644   DAG.setRoot(StoreNode);
3645 }
3646 
3647 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3648   SDLoc sdl = getCurSDLoc();
3649 
3650   // llvm.masked.store.*(Src0, Ptr, alignemt, Mask)
3651   Value  *PtrOperand = I.getArgOperand(1);
3652   SDValue Ptr = getValue(PtrOperand);
3653   SDValue Src0 = getValue(I.getArgOperand(0));
3654   SDValue Mask = getValue(I.getArgOperand(3));
3655   EVT VT = Src0.getValueType();
3656   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3657   if (!Alignment)
3658     Alignment = DAG.getEVTAlignment(VT);
3659 
3660   AAMDNodes AAInfo;
3661   I.getAAMetadata(AAInfo);
3662 
3663   MachineMemOperand *MMO =
3664     DAG.getMachineFunction().
3665     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3666                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3667                           Alignment, AAInfo);
3668   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3669                                          MMO, false);
3670   DAG.setRoot(StoreNode);
3671   setValue(&I, StoreNode);
3672 }
3673 
3674 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3675   SDLoc sdl = getCurSDLoc();
3676 
3677   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3678   Value  *PtrOperand = I.getArgOperand(0);
3679   SDValue Ptr = getValue(PtrOperand);
3680   SDValue Src0 = getValue(I.getArgOperand(3));
3681   SDValue Mask = getValue(I.getArgOperand(2));
3682 
3683   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3684   EVT VT = TLI.getValueType(I.getType());
3685   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3686   if (!Alignment)
3687     Alignment = DAG.getEVTAlignment(VT);
3688 
3689   AAMDNodes AAInfo;
3690   I.getAAMetadata(AAInfo);
3691   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3692 
3693   SDValue InChain = DAG.getRoot();
3694   if (AA->pointsToConstantMemory(
3695       AliasAnalysis::Location(PtrOperand,
3696                               AA->getTypeStoreSize(I.getType()),
3697                               AAInfo))) {
3698     // Do not serialize (non-volatile) loads of constant memory with anything.
3699     InChain = DAG.getEntryNode();
3700   }
3701 
3702   MachineMemOperand *MMO =
3703     DAG.getMachineFunction().
3704     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3705                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3706                           Alignment, AAInfo, Ranges);
3707 
3708   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3709                                    ISD::NON_EXTLOAD);
3710   SDValue OutChain = Load.getValue(1);
3711   DAG.setRoot(OutChain);
3712   setValue(&I, Load);
3713 }
3714 
3715 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3716   SDLoc dl = getCurSDLoc();
3717   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3718   AtomicOrdering FailureOrder = I.getFailureOrdering();
3719   SynchronizationScope Scope = I.getSynchScope();
3720 
3721   SDValue InChain = getRoot();
3722 
3723   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3724   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3725   SDValue L = DAG.getAtomicCmpSwap(
3726       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3727       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3728       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3729       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3730 
3731   SDValue OutChain = L.getValue(2);
3732 
3733   setValue(&I, L);
3734   DAG.setRoot(OutChain);
3735 }
3736 
3737 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3738   SDLoc dl = getCurSDLoc();
3739   ISD::NodeType NT;
3740   switch (I.getOperation()) {
3741   default: llvm_unreachable("Unknown atomicrmw operation");
3742   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3743   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3744   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3745   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3746   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3747   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3748   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3749   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3750   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3751   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3752   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3753   }
3754   AtomicOrdering Order = I.getOrdering();
3755   SynchronizationScope Scope = I.getSynchScope();
3756 
3757   SDValue InChain = getRoot();
3758 
3759   SDValue L =
3760     DAG.getAtomic(NT, dl,
3761                   getValue(I.getValOperand()).getSimpleValueType(),
3762                   InChain,
3763                   getValue(I.getPointerOperand()),
3764                   getValue(I.getValOperand()),
3765                   I.getPointerOperand(),
3766                   /* Alignment=*/ 0, Order, Scope);
3767 
3768   SDValue OutChain = L.getValue(1);
3769 
3770   setValue(&I, L);
3771   DAG.setRoot(OutChain);
3772 }
3773 
3774 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3775   SDLoc dl = getCurSDLoc();
3776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3777   SDValue Ops[3];
3778   Ops[0] = getRoot();
3779   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3780   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3781   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3782 }
3783 
3784 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3785   SDLoc dl = getCurSDLoc();
3786   AtomicOrdering Order = I.getOrdering();
3787   SynchronizationScope Scope = I.getSynchScope();
3788 
3789   SDValue InChain = getRoot();
3790 
3791   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3792   EVT VT = TLI.getValueType(I.getType());
3793 
3794   if (I.getAlignment() < VT.getSizeInBits() / 8)
3795     report_fatal_error("Cannot generate unaligned atomic load");
3796 
3797   MachineMemOperand *MMO =
3798       DAG.getMachineFunction().
3799       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3800                            MachineMemOperand::MOVolatile |
3801                            MachineMemOperand::MOLoad,
3802                            VT.getStoreSize(),
3803                            I.getAlignment() ? I.getAlignment() :
3804                                               DAG.getEVTAlignment(VT));
3805 
3806   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3807   SDValue L =
3808       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3809                     getValue(I.getPointerOperand()), MMO,
3810                     Order, Scope);
3811 
3812   SDValue OutChain = L.getValue(1);
3813 
3814   setValue(&I, L);
3815   DAG.setRoot(OutChain);
3816 }
3817 
3818 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3819   SDLoc dl = getCurSDLoc();
3820 
3821   AtomicOrdering Order = I.getOrdering();
3822   SynchronizationScope Scope = I.getSynchScope();
3823 
3824   SDValue InChain = getRoot();
3825 
3826   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3827   EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3828 
3829   if (I.getAlignment() < VT.getSizeInBits() / 8)
3830     report_fatal_error("Cannot generate unaligned atomic store");
3831 
3832   SDValue OutChain =
3833     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3834                   InChain,
3835                   getValue(I.getPointerOperand()),
3836                   getValue(I.getValueOperand()),
3837                   I.getPointerOperand(), I.getAlignment(),
3838                   Order, Scope);
3839 
3840   DAG.setRoot(OutChain);
3841 }
3842 
3843 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3844 /// node.
3845 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3846                                                unsigned Intrinsic) {
3847   bool HasChain = !I.doesNotAccessMemory();
3848   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3849 
3850   // Build the operand list.
3851   SmallVector<SDValue, 8> Ops;
3852   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3853     if (OnlyLoad) {
3854       // We don't need to serialize loads against other loads.
3855       Ops.push_back(DAG.getRoot());
3856     } else {
3857       Ops.push_back(getRoot());
3858     }
3859   }
3860 
3861   // Info is set by getTgtMemInstrinsic
3862   TargetLowering::IntrinsicInfo Info;
3863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3864   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3865 
3866   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3867   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3868       Info.opc == ISD::INTRINSIC_W_CHAIN)
3869     Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3870 
3871   // Add all operands of the call to the operand list.
3872   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3873     SDValue Op = getValue(I.getArgOperand(i));
3874     Ops.push_back(Op);
3875   }
3876 
3877   SmallVector<EVT, 4> ValueVTs;
3878   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3879 
3880   if (HasChain)
3881     ValueVTs.push_back(MVT::Other);
3882 
3883   SDVTList VTs = DAG.getVTList(ValueVTs);
3884 
3885   // Create the node.
3886   SDValue Result;
3887   if (IsTgtIntrinsic) {
3888     // This is target intrinsic that touches memory
3889     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3890                                      VTs, Ops, Info.memVT,
3891                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3892                                      Info.align, Info.vol,
3893                                      Info.readMem, Info.writeMem, Info.size);
3894   } else if (!HasChain) {
3895     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3896   } else if (!I.getType()->isVoidTy()) {
3897     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3898   } else {
3899     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3900   }
3901 
3902   if (HasChain) {
3903     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3904     if (OnlyLoad)
3905       PendingLoads.push_back(Chain);
3906     else
3907       DAG.setRoot(Chain);
3908   }
3909 
3910   if (!I.getType()->isVoidTy()) {
3911     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3912       EVT VT = TLI.getValueType(PTy);
3913       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3914     }
3915 
3916     setValue(&I, Result);
3917   }
3918 }
3919 
3920 /// GetSignificand - Get the significand and build it into a floating-point
3921 /// number with exponent of 1:
3922 ///
3923 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3924 ///
3925 /// where Op is the hexadecimal representation of floating point value.
3926 static SDValue
3927 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3928   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3929                            DAG.getConstant(0x007fffff, MVT::i32));
3930   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3931                            DAG.getConstant(0x3f800000, MVT::i32));
3932   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3933 }
3934 
3935 /// GetExponent - Get the exponent:
3936 ///
3937 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3938 ///
3939 /// where Op is the hexadecimal representation of floating point value.
3940 static SDValue
3941 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3942             SDLoc dl) {
3943   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3944                            DAG.getConstant(0x7f800000, MVT::i32));
3945   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3946                            DAG.getConstant(23, TLI.getPointerTy()));
3947   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3948                            DAG.getConstant(127, MVT::i32));
3949   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3950 }
3951 
3952 /// getF32Constant - Get 32-bit floating point constant.
3953 static SDValue
3954 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3955   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3956                            MVT::f32);
3957 }
3958 
3959 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3960                                        SelectionDAG &DAG) {
3961   //   IntegerPartOfX = ((int32_t)(t0);
3962   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3963 
3964   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3965   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3966   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3967 
3968   //   IntegerPartOfX <<= 23;
3969   IntegerPartOfX = DAG.getNode(
3970       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3971       DAG.getConstant(23, DAG.getTargetLoweringInfo().getPointerTy()));
3972 
3973   SDValue TwoToFractionalPartOfX;
3974   if (LimitFloatPrecision <= 6) {
3975     // For floating-point precision of 6:
3976     //
3977     //   TwoToFractionalPartOfX =
3978     //     0.997535578f +
3979     //       (0.735607626f + 0.252464424f * x) * x;
3980     //
3981     // error 0.0144103317, which is 6 bits
3982     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3983                              getF32Constant(DAG, 0x3e814304));
3984     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3985                              getF32Constant(DAG, 0x3f3c50c8));
3986     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3987     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3988                                          getF32Constant(DAG, 0x3f7f5e7e));
3989   } else if (LimitFloatPrecision <= 12) {
3990     // For floating-point precision of 12:
3991     //
3992     //   TwoToFractionalPartOfX =
3993     //     0.999892986f +
3994     //       (0.696457318f +
3995     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3996     //
3997     // error 0.000107046256, which is 13 to 14 bits
3998     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3999                              getF32Constant(DAG, 0x3da235e3));
4000     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4001                              getF32Constant(DAG, 0x3e65b8f3));
4002     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4003     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4004                              getF32Constant(DAG, 0x3f324b07));
4005     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4006     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4007                                          getF32Constant(DAG, 0x3f7ff8fd));
4008   } else { // LimitFloatPrecision <= 18
4009     // For floating-point precision of 18:
4010     //
4011     //   TwoToFractionalPartOfX =
4012     //     0.999999982f +
4013     //       (0.693148872f +
4014     //         (0.240227044f +
4015     //           (0.554906021e-1f +
4016     //             (0.961591928e-2f +
4017     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4018     // error 2.47208000*10^(-7), which is better than 18 bits
4019     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4020                              getF32Constant(DAG, 0x3924b03e));
4021     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4022                              getF32Constant(DAG, 0x3ab24b87));
4023     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4024     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4025                              getF32Constant(DAG, 0x3c1d8c17));
4026     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4027     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4028                              getF32Constant(DAG, 0x3d634a1d));
4029     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4030     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4031                              getF32Constant(DAG, 0x3e75fe14));
4032     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4033     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4034                               getF32Constant(DAG, 0x3f317234));
4035     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4036     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4037                                          getF32Constant(DAG, 0x3f800000));
4038   }
4039 
4040   // Add the exponent into the result in integer domain.
4041   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4042   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4043                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4044 }
4045 
4046 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4047 /// limited-precision mode.
4048 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4049                          const TargetLowering &TLI) {
4050   if (Op.getValueType() == MVT::f32 &&
4051       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4052 
4053     // Put the exponent in the right bit position for later addition to the
4054     // final result:
4055     //
4056     //   #define LOG2OFe 1.4426950f
4057     //   t0 = Op * LOG2OFe
4058     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4059                              getF32Constant(DAG, 0x3fb8aa3b));
4060     return getLimitedPrecisionExp2(t0, dl, DAG);
4061   }
4062 
4063   // No special expansion.
4064   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4065 }
4066 
4067 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4068 /// limited-precision mode.
4069 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4070                          const TargetLowering &TLI) {
4071   if (Op.getValueType() == MVT::f32 &&
4072       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4073     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4074 
4075     // Scale the exponent by log(2) [0.69314718f].
4076     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4077     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4078                                         getF32Constant(DAG, 0x3f317218));
4079 
4080     // Get the significand and build it into a floating-point number with
4081     // exponent of 1.
4082     SDValue X = GetSignificand(DAG, Op1, dl);
4083 
4084     SDValue LogOfMantissa;
4085     if (LimitFloatPrecision <= 6) {
4086       // For floating-point precision of 6:
4087       //
4088       //   LogofMantissa =
4089       //     -1.1609546f +
4090       //       (1.4034025f - 0.23903021f * x) * x;
4091       //
4092       // error 0.0034276066, which is better than 8 bits
4093       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4094                                getF32Constant(DAG, 0xbe74c456));
4095       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4096                                getF32Constant(DAG, 0x3fb3a2b1));
4097       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4098       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4099                                   getF32Constant(DAG, 0x3f949a29));
4100     } else if (LimitFloatPrecision <= 12) {
4101       // For floating-point precision of 12:
4102       //
4103       //   LogOfMantissa =
4104       //     -1.7417939f +
4105       //       (2.8212026f +
4106       //         (-1.4699568f +
4107       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4108       //
4109       // error 0.000061011436, which is 14 bits
4110       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4111                                getF32Constant(DAG, 0xbd67b6d6));
4112       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4113                                getF32Constant(DAG, 0x3ee4f4b8));
4114       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4115       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4116                                getF32Constant(DAG, 0x3fbc278b));
4117       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4118       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4119                                getF32Constant(DAG, 0x40348e95));
4120       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4121       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4122                                   getF32Constant(DAG, 0x3fdef31a));
4123     } else { // LimitFloatPrecision <= 18
4124       // For floating-point precision of 18:
4125       //
4126       //   LogOfMantissa =
4127       //     -2.1072184f +
4128       //       (4.2372794f +
4129       //         (-3.7029485f +
4130       //           (2.2781945f +
4131       //             (-0.87823314f +
4132       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4133       //
4134       // error 0.0000023660568, which is better than 18 bits
4135       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4136                                getF32Constant(DAG, 0xbc91e5ac));
4137       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4138                                getF32Constant(DAG, 0x3e4350aa));
4139       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4140       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4141                                getF32Constant(DAG, 0x3f60d3e3));
4142       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4143       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4144                                getF32Constant(DAG, 0x4011cdf0));
4145       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4146       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4147                                getF32Constant(DAG, 0x406cfd1c));
4148       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4149       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4150                                getF32Constant(DAG, 0x408797cb));
4151       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4152       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4153                                   getF32Constant(DAG, 0x4006dcab));
4154     }
4155 
4156     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4157   }
4158 
4159   // No special expansion.
4160   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4161 }
4162 
4163 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4164 /// limited-precision mode.
4165 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4166                           const TargetLowering &TLI) {
4167   if (Op.getValueType() == MVT::f32 &&
4168       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4169     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4170 
4171     // Get the exponent.
4172     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4173 
4174     // Get the significand and build it into a floating-point number with
4175     // exponent of 1.
4176     SDValue X = GetSignificand(DAG, Op1, dl);
4177 
4178     // Different possible minimax approximations of significand in
4179     // floating-point for various degrees of accuracy over [1,2].
4180     SDValue Log2ofMantissa;
4181     if (LimitFloatPrecision <= 6) {
4182       // For floating-point precision of 6:
4183       //
4184       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4185       //
4186       // error 0.0049451742, which is more than 7 bits
4187       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4188                                getF32Constant(DAG, 0xbeb08fe0));
4189       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4190                                getF32Constant(DAG, 0x40019463));
4191       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4192       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4193                                    getF32Constant(DAG, 0x3fd6633d));
4194     } else if (LimitFloatPrecision <= 12) {
4195       // For floating-point precision of 12:
4196       //
4197       //   Log2ofMantissa =
4198       //     -2.51285454f +
4199       //       (4.07009056f +
4200       //         (-2.12067489f +
4201       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4202       //
4203       // error 0.0000876136000, which is better than 13 bits
4204       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4205                                getF32Constant(DAG, 0xbda7262e));
4206       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4207                                getF32Constant(DAG, 0x3f25280b));
4208       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4209       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4210                                getF32Constant(DAG, 0x4007b923));
4211       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4212       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4213                                getF32Constant(DAG, 0x40823e2f));
4214       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4215       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4216                                    getF32Constant(DAG, 0x4020d29c));
4217     } else { // LimitFloatPrecision <= 18
4218       // For floating-point precision of 18:
4219       //
4220       //   Log2ofMantissa =
4221       //     -3.0400495f +
4222       //       (6.1129976f +
4223       //         (-5.3420409f +
4224       //           (3.2865683f +
4225       //             (-1.2669343f +
4226       //               (0.27515199f -
4227       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4228       //
4229       // error 0.0000018516, which is better than 18 bits
4230       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4231                                getF32Constant(DAG, 0xbcd2769e));
4232       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4233                                getF32Constant(DAG, 0x3e8ce0b9));
4234       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4235       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4236                                getF32Constant(DAG, 0x3fa22ae7));
4237       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4238       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4239                                getF32Constant(DAG, 0x40525723));
4240       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4241       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4242                                getF32Constant(DAG, 0x40aaf200));
4243       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4244       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4245                                getF32Constant(DAG, 0x40c39dad));
4246       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4247       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4248                                    getF32Constant(DAG, 0x4042902c));
4249     }
4250 
4251     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4252   }
4253 
4254   // No special expansion.
4255   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4256 }
4257 
4258 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4259 /// limited-precision mode.
4260 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4261                            const TargetLowering &TLI) {
4262   if (Op.getValueType() == MVT::f32 &&
4263       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4264     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4265 
4266     // Scale the exponent by log10(2) [0.30102999f].
4267     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4268     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4269                                         getF32Constant(DAG, 0x3e9a209a));
4270 
4271     // Get the significand and build it into a floating-point number with
4272     // exponent of 1.
4273     SDValue X = GetSignificand(DAG, Op1, dl);
4274 
4275     SDValue Log10ofMantissa;
4276     if (LimitFloatPrecision <= 6) {
4277       // For floating-point precision of 6:
4278       //
4279       //   Log10ofMantissa =
4280       //     -0.50419619f +
4281       //       (0.60948995f - 0.10380950f * x) * x;
4282       //
4283       // error 0.0014886165, which is 6 bits
4284       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4285                                getF32Constant(DAG, 0xbdd49a13));
4286       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4287                                getF32Constant(DAG, 0x3f1c0789));
4288       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4289       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4290                                     getF32Constant(DAG, 0x3f011300));
4291     } else if (LimitFloatPrecision <= 12) {
4292       // For floating-point precision of 12:
4293       //
4294       //   Log10ofMantissa =
4295       //     -0.64831180f +
4296       //       (0.91751397f +
4297       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4298       //
4299       // error 0.00019228036, which is better than 12 bits
4300       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4301                                getF32Constant(DAG, 0x3d431f31));
4302       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4303                                getF32Constant(DAG, 0x3ea21fb2));
4304       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4305       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4306                                getF32Constant(DAG, 0x3f6ae232));
4307       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4308       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4309                                     getF32Constant(DAG, 0x3f25f7c3));
4310     } else { // LimitFloatPrecision <= 18
4311       // For floating-point precision of 18:
4312       //
4313       //   Log10ofMantissa =
4314       //     -0.84299375f +
4315       //       (1.5327582f +
4316       //         (-1.0688956f +
4317       //           (0.49102474f +
4318       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4319       //
4320       // error 0.0000037995730, which is better than 18 bits
4321       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4322                                getF32Constant(DAG, 0x3c5d51ce));
4323       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4324                                getF32Constant(DAG, 0x3e00685a));
4325       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4326       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4327                                getF32Constant(DAG, 0x3efb6798));
4328       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4329       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4330                                getF32Constant(DAG, 0x3f88d192));
4331       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4332       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4333                                getF32Constant(DAG, 0x3fc4316c));
4334       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4335       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4336                                     getF32Constant(DAG, 0x3f57ce70));
4337     }
4338 
4339     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4340   }
4341 
4342   // No special expansion.
4343   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4344 }
4345 
4346 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4347 /// limited-precision mode.
4348 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4349                           const TargetLowering &TLI) {
4350   if (Op.getValueType() == MVT::f32 &&
4351       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4352     return getLimitedPrecisionExp2(Op, dl, DAG);
4353 
4354   // No special expansion.
4355   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4356 }
4357 
4358 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4359 /// limited-precision mode with x == 10.0f.
4360 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4361                          SelectionDAG &DAG, const TargetLowering &TLI) {
4362   bool IsExp10 = false;
4363   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4364       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4365     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4366       APFloat Ten(10.0f);
4367       IsExp10 = LHSC->isExactlyValue(Ten);
4368     }
4369   }
4370 
4371   if (IsExp10) {
4372     // Put the exponent in the right bit position for later addition to the
4373     // final result:
4374     //
4375     //   #define LOG2OF10 3.3219281f
4376     //   t0 = Op * LOG2OF10;
4377     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4378                              getF32Constant(DAG, 0x40549a78));
4379     return getLimitedPrecisionExp2(t0, dl, DAG);
4380   }
4381 
4382   // No special expansion.
4383   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4384 }
4385 
4386 
4387 /// ExpandPowI - Expand a llvm.powi intrinsic.
4388 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4389                           SelectionDAG &DAG) {
4390   // If RHS is a constant, we can expand this out to a multiplication tree,
4391   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4392   // optimizing for size, we only want to do this if the expansion would produce
4393   // a small number of multiplies, otherwise we do the full expansion.
4394   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4395     // Get the exponent as a positive value.
4396     unsigned Val = RHSC->getSExtValue();
4397     if ((int)Val < 0) Val = -Val;
4398 
4399     // powi(x, 0) -> 1.0
4400     if (Val == 0)
4401       return DAG.getConstantFP(1.0, LHS.getValueType());
4402 
4403     const Function *F = DAG.getMachineFunction().getFunction();
4404     if (!F->hasFnAttribute(Attribute::OptimizeForSize) ||
4405         // If optimizing for size, don't insert too many multiplies.  This
4406         // inserts up to 5 multiplies.
4407         countPopulation(Val) + Log2_32(Val) < 7) {
4408       // We use the simple binary decomposition method to generate the multiply
4409       // sequence.  There are more optimal ways to do this (for example,
4410       // powi(x,15) generates one more multiply than it should), but this has
4411       // the benefit of being both really simple and much better than a libcall.
4412       SDValue Res;  // Logically starts equal to 1.0
4413       SDValue CurSquare = LHS;
4414       while (Val) {
4415         if (Val & 1) {
4416           if (Res.getNode())
4417             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4418           else
4419             Res = CurSquare;  // 1.0*CurSquare.
4420         }
4421 
4422         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4423                                 CurSquare, CurSquare);
4424         Val >>= 1;
4425       }
4426 
4427       // If the original was negative, invert the result, producing 1/(x*x*x).
4428       if (RHSC->getSExtValue() < 0)
4429         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4430                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4431       return Res;
4432     }
4433   }
4434 
4435   // Otherwise, expand to a libcall.
4436   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4437 }
4438 
4439 // getTruncatedArgReg - Find underlying register used for an truncated
4440 // argument.
4441 static unsigned getTruncatedArgReg(const SDValue &N) {
4442   if (N.getOpcode() != ISD::TRUNCATE)
4443     return 0;
4444 
4445   const SDValue &Ext = N.getOperand(0);
4446   if (Ext.getOpcode() == ISD::AssertZext ||
4447       Ext.getOpcode() == ISD::AssertSext) {
4448     const SDValue &CFR = Ext.getOperand(0);
4449     if (CFR.getOpcode() == ISD::CopyFromReg)
4450       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4451     if (CFR.getOpcode() == ISD::TRUNCATE)
4452       return getTruncatedArgReg(CFR);
4453   }
4454   return 0;
4455 }
4456 
4457 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4458 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4459 /// At the end of instruction selection, they will be inserted to the entry BB.
4460 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V,
4461                                                    MDNode *Variable,
4462                                                    MDNode *Expr, int64_t Offset,
4463                                                    bool IsIndirect,
4464                                                    const SDValue &N) {
4465   const Argument *Arg = dyn_cast<Argument>(V);
4466   if (!Arg)
4467     return false;
4468 
4469   MachineFunction &MF = DAG.getMachineFunction();
4470   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4471 
4472   // Ignore inlined function arguments here.
4473   DIVariable DV(Variable);
4474   if (DV.isInlinedFnArgument(MF.getFunction()))
4475     return false;
4476 
4477   Optional<MachineOperand> Op;
4478   // Some arguments' frame index is recorded during argument lowering.
4479   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4480     Op = MachineOperand::CreateFI(FI);
4481 
4482   if (!Op && N.getNode()) {
4483     unsigned Reg;
4484     if (N.getOpcode() == ISD::CopyFromReg)
4485       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4486     else
4487       Reg = getTruncatedArgReg(N);
4488     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4489       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4490       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4491       if (PR)
4492         Reg = PR;
4493     }
4494     if (Reg)
4495       Op = MachineOperand::CreateReg(Reg, false);
4496   }
4497 
4498   if (!Op) {
4499     // Check if ValueMap has reg number.
4500     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4501     if (VMI != FuncInfo.ValueMap.end())
4502       Op = MachineOperand::CreateReg(VMI->second, false);
4503   }
4504 
4505   if (!Op && N.getNode())
4506     // Check if frame index is available.
4507     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4508       if (FrameIndexSDNode *FINode =
4509           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4510         Op = MachineOperand::CreateFI(FINode->getIndex());
4511 
4512   if (!Op)
4513     return false;
4514 
4515   if (Op->isReg())
4516     FuncInfo.ArgDbgValues.push_back(
4517         BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE),
4518                 IsIndirect, Op->getReg(), Offset, Variable, Expr));
4519   else
4520     FuncInfo.ArgDbgValues.push_back(
4521         BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4522             .addOperand(*Op)
4523             .addImm(Offset)
4524             .addMetadata(Variable)
4525             .addMetadata(Expr));
4526 
4527   return true;
4528 }
4529 
4530 // VisualStudio defines setjmp as _setjmp
4531 #if defined(_MSC_VER) && defined(setjmp) && \
4532                          !defined(setjmp_undefined_for_msvc)
4533 #  pragma push_macro("setjmp")
4534 #  undef setjmp
4535 #  define setjmp_undefined_for_msvc
4536 #endif
4537 
4538 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4539 /// we want to emit this as a call to a named external function, return the name
4540 /// otherwise lower it and return null.
4541 const char *
4542 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4544   SDLoc sdl = getCurSDLoc();
4545   DebugLoc dl = getCurDebugLoc();
4546   SDValue Res;
4547 
4548   switch (Intrinsic) {
4549   default:
4550     // By default, turn this into a target intrinsic node.
4551     visitTargetIntrinsic(I, Intrinsic);
4552     return nullptr;
4553   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4554   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4555   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4556   case Intrinsic::returnaddress:
4557     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(),
4558                              getValue(I.getArgOperand(0))));
4559     return nullptr;
4560   case Intrinsic::frameaddress:
4561     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4562                              getValue(I.getArgOperand(0))));
4563     return nullptr;
4564   case Intrinsic::read_register: {
4565     Value *Reg = I.getArgOperand(0);
4566     SDValue RegName =
4567         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4568     EVT VT = TLI.getValueType(I.getType());
4569     setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName));
4570     return nullptr;
4571   }
4572   case Intrinsic::write_register: {
4573     Value *Reg = I.getArgOperand(0);
4574     Value *RegValue = I.getArgOperand(1);
4575     SDValue Chain = getValue(RegValue).getOperand(0);
4576     SDValue RegName =
4577         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4578     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4579                             RegName, getValue(RegValue)));
4580     return nullptr;
4581   }
4582   case Intrinsic::setjmp:
4583     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4584   case Intrinsic::longjmp:
4585     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4586   case Intrinsic::memcpy: {
4587     // FIXME: this definition of "user defined address space" is x86-specific
4588     // Assert for address < 256 since we support only user defined address
4589     // spaces.
4590     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4591            < 256 &&
4592            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4593            < 256 &&
4594            "Unknown address space");
4595     SDValue Op1 = getValue(I.getArgOperand(0));
4596     SDValue Op2 = getValue(I.getArgOperand(1));
4597     SDValue Op3 = getValue(I.getArgOperand(2));
4598     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4599     if (!Align)
4600       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4601     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4602     DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4603                               MachinePointerInfo(I.getArgOperand(0)),
4604                               MachinePointerInfo(I.getArgOperand(1))));
4605     return nullptr;
4606   }
4607   case Intrinsic::memset: {
4608     // FIXME: this definition of "user defined address space" is x86-specific
4609     // Assert for address < 256 since we support only user defined address
4610     // spaces.
4611     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4612            < 256 &&
4613            "Unknown address space");
4614     SDValue Op1 = getValue(I.getArgOperand(0));
4615     SDValue Op2 = getValue(I.getArgOperand(1));
4616     SDValue Op3 = getValue(I.getArgOperand(2));
4617     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4618     if (!Align)
4619       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4620     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4621     DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4622                               MachinePointerInfo(I.getArgOperand(0))));
4623     return nullptr;
4624   }
4625   case Intrinsic::memmove: {
4626     // FIXME: this definition of "user defined address space" is x86-specific
4627     // Assert for address < 256 since we support only user defined address
4628     // spaces.
4629     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4630            < 256 &&
4631            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4632            < 256 &&
4633            "Unknown address space");
4634     SDValue Op1 = getValue(I.getArgOperand(0));
4635     SDValue Op2 = getValue(I.getArgOperand(1));
4636     SDValue Op3 = getValue(I.getArgOperand(2));
4637     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4638     if (!Align)
4639       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4640     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4641     DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4642                                MachinePointerInfo(I.getArgOperand(0)),
4643                                MachinePointerInfo(I.getArgOperand(1))));
4644     return nullptr;
4645   }
4646   case Intrinsic::dbg_declare: {
4647     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4648     MDNode *Variable = DI.getVariable();
4649     MDNode *Expression = DI.getExpression();
4650     const Value *Address = DI.getAddress();
4651     DIVariable DIVar(Variable);
4652     assert((!DIVar || DIVar.isVariable()) &&
4653       "Variable in DbgDeclareInst should be either null or a DIVariable.");
4654     if (!Address || !DIVar) {
4655       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4656       return nullptr;
4657     }
4658 
4659     // Check if address has undef value.
4660     if (isa<UndefValue>(Address) ||
4661         (Address->use_empty() && !isa<Argument>(Address))) {
4662       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4663       return nullptr;
4664     }
4665 
4666     SDValue &N = NodeMap[Address];
4667     if (!N.getNode() && isa<Argument>(Address))
4668       // Check unused arguments map.
4669       N = UnusedArgNodeMap[Address];
4670     SDDbgValue *SDV;
4671     if (N.getNode()) {
4672       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4673         Address = BCI->getOperand(0);
4674       // Parameters are handled specially.
4675       bool isParameter =
4676         (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4677          isa<Argument>(Address));
4678 
4679       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4680 
4681       if (isParameter && !AI) {
4682         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4683         if (FINode)
4684           // Byval parameter.  We have a frame index at this point.
4685           SDV = DAG.getFrameIndexDbgValue(
4686               Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder);
4687         else {
4688           // Address is an argument, so try to emit its dbg value using
4689           // virtual register info from the FuncInfo.ValueMap.
4690           EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N);
4691           return nullptr;
4692         }
4693       } else if (AI)
4694         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4695                               true, 0, dl, SDNodeOrder);
4696       else {
4697         // Can't do anything with other non-AI cases yet.
4698         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4699         DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4700         DEBUG(Address->dump());
4701         return nullptr;
4702       }
4703       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4704     } else {
4705       // If Address is an argument then try to emit its dbg value using
4706       // virtual register info from the FuncInfo.ValueMap.
4707       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false,
4708                                     N)) {
4709         // If variable is pinned by a alloca in dominating bb then
4710         // use StaticAllocaMap.
4711         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4712           if (AI->getParent() != DI.getParent()) {
4713             DenseMap<const AllocaInst*, int>::iterator SI =
4714               FuncInfo.StaticAllocaMap.find(AI);
4715             if (SI != FuncInfo.StaticAllocaMap.end()) {
4716               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4717                                               0, dl, SDNodeOrder);
4718               DAG.AddDbgValue(SDV, nullptr, false);
4719               return nullptr;
4720             }
4721           }
4722         }
4723         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4724       }
4725     }
4726     return nullptr;
4727   }
4728   case Intrinsic::dbg_value: {
4729     const DbgValueInst &DI = cast<DbgValueInst>(I);
4730     DIVariable DIVar(DI.getVariable());
4731     assert((!DIVar || DIVar.isVariable()) &&
4732       "Variable in DbgValueInst should be either null or a DIVariable.");
4733     if (!DIVar)
4734       return nullptr;
4735 
4736     MDNode *Variable = DI.getVariable();
4737     MDNode *Expression = DI.getExpression();
4738     uint64_t Offset = DI.getOffset();
4739     const Value *V = DI.getValue();
4740     if (!V)
4741       return nullptr;
4742 
4743     SDDbgValue *SDV;
4744     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4745       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4746                                     SDNodeOrder);
4747       DAG.AddDbgValue(SDV, nullptr, false);
4748     } else {
4749       // Do not use getValue() in here; we don't want to generate code at
4750       // this point if it hasn't been done yet.
4751       SDValue N = NodeMap[V];
4752       if (!N.getNode() && isa<Argument>(V))
4753         // Check unused arguments map.
4754         N = UnusedArgNodeMap[V];
4755       if (N.getNode()) {
4756         // A dbg.value for an alloca is always indirect.
4757         bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
4758         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset,
4759                                       IsIndirect, N)) {
4760           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4761                                 IsIndirect, Offset, dl, SDNodeOrder);
4762           DAG.AddDbgValue(SDV, N.getNode(), false);
4763         }
4764       } else if (!V->use_empty() ) {
4765         // Do not call getValue(V) yet, as we don't want to generate code.
4766         // Remember it for later.
4767         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4768         DanglingDebugInfoMap[V] = DDI;
4769       } else {
4770         // We may expand this to cover more cases.  One case where we have no
4771         // data available is an unreferenced parameter.
4772         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4773       }
4774     }
4775 
4776     // Build a debug info table entry.
4777     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4778       V = BCI->getOperand(0);
4779     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4780     // Don't handle byval struct arguments or VLAs, for example.
4781     if (!AI) {
4782       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4783       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4784       return nullptr;
4785     }
4786     DenseMap<const AllocaInst*, int>::iterator SI =
4787       FuncInfo.StaticAllocaMap.find(AI);
4788     if (SI == FuncInfo.StaticAllocaMap.end())
4789       return nullptr; // VLAs.
4790     return nullptr;
4791   }
4792 
4793   case Intrinsic::eh_typeid_for: {
4794     // Find the type id for the given typeinfo.
4795     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4796     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4797     Res = DAG.getConstant(TypeID, MVT::i32);
4798     setValue(&I, Res);
4799     return nullptr;
4800   }
4801 
4802   case Intrinsic::eh_return_i32:
4803   case Intrinsic::eh_return_i64:
4804     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4805     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4806                             MVT::Other,
4807                             getControlRoot(),
4808                             getValue(I.getArgOperand(0)),
4809                             getValue(I.getArgOperand(1))));
4810     return nullptr;
4811   case Intrinsic::eh_unwind_init:
4812     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4813     return nullptr;
4814   case Intrinsic::eh_dwarf_cfa: {
4815     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4816                                         TLI.getPointerTy());
4817     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4818                                  CfaArg.getValueType(),
4819                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4820                                              CfaArg.getValueType()),
4821                                  CfaArg);
4822     SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4823                              DAG.getConstant(0, TLI.getPointerTy()));
4824     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4825                              FA, Offset));
4826     return nullptr;
4827   }
4828   case Intrinsic::eh_sjlj_callsite: {
4829     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4830     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4831     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4832     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4833 
4834     MMI.setCurrentCallSite(CI->getZExtValue());
4835     return nullptr;
4836   }
4837   case Intrinsic::eh_sjlj_functioncontext: {
4838     // Get and store the index of the function context.
4839     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4840     AllocaInst *FnCtx =
4841       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4842     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4843     MFI->setFunctionContextIndex(FI);
4844     return nullptr;
4845   }
4846   case Intrinsic::eh_sjlj_setjmp: {
4847     SDValue Ops[2];
4848     Ops[0] = getRoot();
4849     Ops[1] = getValue(I.getArgOperand(0));
4850     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4851                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4852     setValue(&I, Op.getValue(0));
4853     DAG.setRoot(Op.getValue(1));
4854     return nullptr;
4855   }
4856   case Intrinsic::eh_sjlj_longjmp: {
4857     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4858                             getRoot(), getValue(I.getArgOperand(0))));
4859     return nullptr;
4860   }
4861 
4862   case Intrinsic::masked_load:
4863     visitMaskedLoad(I);
4864     return nullptr;
4865   case Intrinsic::masked_store:
4866     visitMaskedStore(I);
4867     return nullptr;
4868   case Intrinsic::x86_mmx_pslli_w:
4869   case Intrinsic::x86_mmx_pslli_d:
4870   case Intrinsic::x86_mmx_pslli_q:
4871   case Intrinsic::x86_mmx_psrli_w:
4872   case Intrinsic::x86_mmx_psrli_d:
4873   case Intrinsic::x86_mmx_psrli_q:
4874   case Intrinsic::x86_mmx_psrai_w:
4875   case Intrinsic::x86_mmx_psrai_d: {
4876     SDValue ShAmt = getValue(I.getArgOperand(1));
4877     if (isa<ConstantSDNode>(ShAmt)) {
4878       visitTargetIntrinsic(I, Intrinsic);
4879       return nullptr;
4880     }
4881     unsigned NewIntrinsic = 0;
4882     EVT ShAmtVT = MVT::v2i32;
4883     switch (Intrinsic) {
4884     case Intrinsic::x86_mmx_pslli_w:
4885       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4886       break;
4887     case Intrinsic::x86_mmx_pslli_d:
4888       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4889       break;
4890     case Intrinsic::x86_mmx_pslli_q:
4891       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4892       break;
4893     case Intrinsic::x86_mmx_psrli_w:
4894       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4895       break;
4896     case Intrinsic::x86_mmx_psrli_d:
4897       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4898       break;
4899     case Intrinsic::x86_mmx_psrli_q:
4900       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4901       break;
4902     case Intrinsic::x86_mmx_psrai_w:
4903       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4904       break;
4905     case Intrinsic::x86_mmx_psrai_d:
4906       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4907       break;
4908     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4909     }
4910 
4911     // The vector shift intrinsics with scalars uses 32b shift amounts but
4912     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4913     // to be zero.
4914     // We must do this early because v2i32 is not a legal type.
4915     SDValue ShOps[2];
4916     ShOps[0] = ShAmt;
4917     ShOps[1] = DAG.getConstant(0, MVT::i32);
4918     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4919     EVT DestVT = TLI.getValueType(I.getType());
4920     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4921     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4922                        DAG.getConstant(NewIntrinsic, MVT::i32),
4923                        getValue(I.getArgOperand(0)), ShAmt);
4924     setValue(&I, Res);
4925     return nullptr;
4926   }
4927   case Intrinsic::convertff:
4928   case Intrinsic::convertfsi:
4929   case Intrinsic::convertfui:
4930   case Intrinsic::convertsif:
4931   case Intrinsic::convertuif:
4932   case Intrinsic::convertss:
4933   case Intrinsic::convertsu:
4934   case Intrinsic::convertus:
4935   case Intrinsic::convertuu: {
4936     ISD::CvtCode Code = ISD::CVT_INVALID;
4937     switch (Intrinsic) {
4938     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4939     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4940     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4941     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4942     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4943     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4944     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4945     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4946     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4947     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4948     }
4949     EVT DestVT = TLI.getValueType(I.getType());
4950     const Value *Op1 = I.getArgOperand(0);
4951     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4952                                DAG.getValueType(DestVT),
4953                                DAG.getValueType(getValue(Op1).getValueType()),
4954                                getValue(I.getArgOperand(1)),
4955                                getValue(I.getArgOperand(2)),
4956                                Code);
4957     setValue(&I, Res);
4958     return nullptr;
4959   }
4960   case Intrinsic::powi:
4961     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4962                             getValue(I.getArgOperand(1)), DAG));
4963     return nullptr;
4964   case Intrinsic::log:
4965     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4966     return nullptr;
4967   case Intrinsic::log2:
4968     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4969     return nullptr;
4970   case Intrinsic::log10:
4971     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4972     return nullptr;
4973   case Intrinsic::exp:
4974     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4975     return nullptr;
4976   case Intrinsic::exp2:
4977     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4978     return nullptr;
4979   case Intrinsic::pow:
4980     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4981                            getValue(I.getArgOperand(1)), DAG, TLI));
4982     return nullptr;
4983   case Intrinsic::sqrt:
4984   case Intrinsic::fabs:
4985   case Intrinsic::sin:
4986   case Intrinsic::cos:
4987   case Intrinsic::floor:
4988   case Intrinsic::ceil:
4989   case Intrinsic::trunc:
4990   case Intrinsic::rint:
4991   case Intrinsic::nearbyint:
4992   case Intrinsic::round: {
4993     unsigned Opcode;
4994     switch (Intrinsic) {
4995     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4996     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4997     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4998     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4999     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5000     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5001     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5002     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5003     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5004     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5005     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5006     }
5007 
5008     setValue(&I, DAG.getNode(Opcode, sdl,
5009                              getValue(I.getArgOperand(0)).getValueType(),
5010                              getValue(I.getArgOperand(0))));
5011     return nullptr;
5012   }
5013   case Intrinsic::minnum:
5014     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
5015                              getValue(I.getArgOperand(0)).getValueType(),
5016                              getValue(I.getArgOperand(0)),
5017                              getValue(I.getArgOperand(1))));
5018     return nullptr;
5019   case Intrinsic::maxnum:
5020     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
5021                              getValue(I.getArgOperand(0)).getValueType(),
5022                              getValue(I.getArgOperand(0)),
5023                              getValue(I.getArgOperand(1))));
5024     return nullptr;
5025   case Intrinsic::copysign:
5026     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5027                              getValue(I.getArgOperand(0)).getValueType(),
5028                              getValue(I.getArgOperand(0)),
5029                              getValue(I.getArgOperand(1))));
5030     return nullptr;
5031   case Intrinsic::fma:
5032     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5033                              getValue(I.getArgOperand(0)).getValueType(),
5034                              getValue(I.getArgOperand(0)),
5035                              getValue(I.getArgOperand(1)),
5036                              getValue(I.getArgOperand(2))));
5037     return nullptr;
5038   case Intrinsic::fmuladd: {
5039     EVT VT = TLI.getValueType(I.getType());
5040     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5041         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5042       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5043                                getValue(I.getArgOperand(0)).getValueType(),
5044                                getValue(I.getArgOperand(0)),
5045                                getValue(I.getArgOperand(1)),
5046                                getValue(I.getArgOperand(2))));
5047     } else {
5048       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5049                                 getValue(I.getArgOperand(0)).getValueType(),
5050                                 getValue(I.getArgOperand(0)),
5051                                 getValue(I.getArgOperand(1)));
5052       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5053                                 getValue(I.getArgOperand(0)).getValueType(),
5054                                 Mul,
5055                                 getValue(I.getArgOperand(2)));
5056       setValue(&I, Add);
5057     }
5058     return nullptr;
5059   }
5060   case Intrinsic::convert_to_fp16:
5061     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5062                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5063                                          getValue(I.getArgOperand(0)),
5064                                          DAG.getTargetConstant(0, MVT::i32))));
5065     return nullptr;
5066   case Intrinsic::convert_from_fp16:
5067     setValue(&I,
5068              DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()),
5069                          DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5070                                      getValue(I.getArgOperand(0)))));
5071     return nullptr;
5072   case Intrinsic::pcmarker: {
5073     SDValue Tmp = getValue(I.getArgOperand(0));
5074     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5075     return nullptr;
5076   }
5077   case Intrinsic::readcyclecounter: {
5078     SDValue Op = getRoot();
5079     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5080                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5081     setValue(&I, Res);
5082     DAG.setRoot(Res.getValue(1));
5083     return nullptr;
5084   }
5085   case Intrinsic::bswap:
5086     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5087                              getValue(I.getArgOperand(0)).getValueType(),
5088                              getValue(I.getArgOperand(0))));
5089     return nullptr;
5090   case Intrinsic::cttz: {
5091     SDValue Arg = getValue(I.getArgOperand(0));
5092     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5093     EVT Ty = Arg.getValueType();
5094     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5095                              sdl, Ty, Arg));
5096     return nullptr;
5097   }
5098   case Intrinsic::ctlz: {
5099     SDValue Arg = getValue(I.getArgOperand(0));
5100     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5101     EVT Ty = Arg.getValueType();
5102     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5103                              sdl, Ty, Arg));
5104     return nullptr;
5105   }
5106   case Intrinsic::ctpop: {
5107     SDValue Arg = getValue(I.getArgOperand(0));
5108     EVT Ty = Arg.getValueType();
5109     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5110     return nullptr;
5111   }
5112   case Intrinsic::stacksave: {
5113     SDValue Op = getRoot();
5114     Res = DAG.getNode(ISD::STACKSAVE, sdl,
5115                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op);
5116     setValue(&I, Res);
5117     DAG.setRoot(Res.getValue(1));
5118     return nullptr;
5119   }
5120   case Intrinsic::stackrestore: {
5121     Res = getValue(I.getArgOperand(0));
5122     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5123     return nullptr;
5124   }
5125   case Intrinsic::stackprotector: {
5126     // Emit code into the DAG to store the stack guard onto the stack.
5127     MachineFunction &MF = DAG.getMachineFunction();
5128     MachineFrameInfo *MFI = MF.getFrameInfo();
5129     EVT PtrTy = TLI.getPointerTy();
5130     SDValue Src, Chain = getRoot();
5131     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
5132     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
5133 
5134     // See if Ptr is a bitcast. If it is, look through it and see if we can get
5135     // global variable __stack_chk_guard.
5136     if (!GV)
5137       if (const Operator *BC = dyn_cast<Operator>(Ptr))
5138         if (BC->getOpcode() == Instruction::BitCast)
5139           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
5140 
5141     if (GV && TLI.useLoadStackGuardNode()) {
5142       // Emit a LOAD_STACK_GUARD node.
5143       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
5144                                                sdl, PtrTy, Chain);
5145       MachinePointerInfo MPInfo(GV);
5146       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
5147       unsigned Flags = MachineMemOperand::MOLoad |
5148                        MachineMemOperand::MOInvariant;
5149       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
5150                                          PtrTy.getSizeInBits() / 8,
5151                                          DAG.getEVTAlignment(PtrTy));
5152       Node->setMemRefs(MemRefs, MemRefs + 1);
5153 
5154       // Copy the guard value to a virtual register so that it can be
5155       // retrieved in the epilogue.
5156       Src = SDValue(Node, 0);
5157       const TargetRegisterClass *RC =
5158           TLI.getRegClassFor(Src.getSimpleValueType());
5159       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
5160 
5161       SPDescriptor.setGuardReg(Reg);
5162       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
5163     } else {
5164       Src = getValue(I.getArgOperand(0));   // The guard's value.
5165     }
5166 
5167     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5168 
5169     int FI = FuncInfo.StaticAllocaMap[Slot];
5170     MFI->setStackProtectorIndex(FI);
5171 
5172     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5173 
5174     // Store the stack protector onto the stack.
5175     Res = DAG.getStore(Chain, sdl, Src, FIN,
5176                        MachinePointerInfo::getFixedStack(FI),
5177                        true, false, 0);
5178     setValue(&I, Res);
5179     DAG.setRoot(Res);
5180     return nullptr;
5181   }
5182   case Intrinsic::objectsize: {
5183     // If we don't know by now, we're never going to know.
5184     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5185 
5186     assert(CI && "Non-constant type in __builtin_object_size?");
5187 
5188     SDValue Arg = getValue(I.getCalledValue());
5189     EVT Ty = Arg.getValueType();
5190 
5191     if (CI->isZero())
5192       Res = DAG.getConstant(-1ULL, Ty);
5193     else
5194       Res = DAG.getConstant(0, Ty);
5195 
5196     setValue(&I, Res);
5197     return nullptr;
5198   }
5199   case Intrinsic::annotation:
5200   case Intrinsic::ptr_annotation:
5201     // Drop the intrinsic, but forward the value
5202     setValue(&I, getValue(I.getOperand(0)));
5203     return nullptr;
5204   case Intrinsic::assume:
5205   case Intrinsic::var_annotation:
5206     // Discard annotate attributes and assumptions
5207     return nullptr;
5208 
5209   case Intrinsic::init_trampoline: {
5210     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5211 
5212     SDValue Ops[6];
5213     Ops[0] = getRoot();
5214     Ops[1] = getValue(I.getArgOperand(0));
5215     Ops[2] = getValue(I.getArgOperand(1));
5216     Ops[3] = getValue(I.getArgOperand(2));
5217     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5218     Ops[5] = DAG.getSrcValue(F);
5219 
5220     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5221 
5222     DAG.setRoot(Res);
5223     return nullptr;
5224   }
5225   case Intrinsic::adjust_trampoline: {
5226     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5227                              TLI.getPointerTy(),
5228                              getValue(I.getArgOperand(0))));
5229     return nullptr;
5230   }
5231   case Intrinsic::gcroot:
5232     if (GFI) {
5233       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5234       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5235 
5236       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5237       GFI->addStackRoot(FI->getIndex(), TypeMap);
5238     }
5239     return nullptr;
5240   case Intrinsic::gcread:
5241   case Intrinsic::gcwrite:
5242     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5243   case Intrinsic::flt_rounds:
5244     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5245     return nullptr;
5246 
5247   case Intrinsic::expect: {
5248     // Just replace __builtin_expect(exp, c) with EXP.
5249     setValue(&I, getValue(I.getArgOperand(0)));
5250     return nullptr;
5251   }
5252 
5253   case Intrinsic::debugtrap:
5254   case Intrinsic::trap: {
5255     StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5256     if (TrapFuncName.empty()) {
5257       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5258         ISD::TRAP : ISD::DEBUGTRAP;
5259       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5260       return nullptr;
5261     }
5262     TargetLowering::ArgListTy Args;
5263 
5264     TargetLowering::CallLoweringInfo CLI(DAG);
5265     CLI.setDebugLoc(sdl).setChain(getRoot())
5266       .setCallee(CallingConv::C, I.getType(),
5267                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5268                  std::move(Args), 0);
5269 
5270     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5271     DAG.setRoot(Result.second);
5272     return nullptr;
5273   }
5274 
5275   case Intrinsic::uadd_with_overflow:
5276   case Intrinsic::sadd_with_overflow:
5277   case Intrinsic::usub_with_overflow:
5278   case Intrinsic::ssub_with_overflow:
5279   case Intrinsic::umul_with_overflow:
5280   case Intrinsic::smul_with_overflow: {
5281     ISD::NodeType Op;
5282     switch (Intrinsic) {
5283     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5284     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5285     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5286     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5287     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5288     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5289     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5290     }
5291     SDValue Op1 = getValue(I.getArgOperand(0));
5292     SDValue Op2 = getValue(I.getArgOperand(1));
5293 
5294     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5295     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5296     return nullptr;
5297   }
5298   case Intrinsic::prefetch: {
5299     SDValue Ops[5];
5300     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5301     Ops[0] = getRoot();
5302     Ops[1] = getValue(I.getArgOperand(0));
5303     Ops[2] = getValue(I.getArgOperand(1));
5304     Ops[3] = getValue(I.getArgOperand(2));
5305     Ops[4] = getValue(I.getArgOperand(3));
5306     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5307                                         DAG.getVTList(MVT::Other), Ops,
5308                                         EVT::getIntegerVT(*Context, 8),
5309                                         MachinePointerInfo(I.getArgOperand(0)),
5310                                         0, /* align */
5311                                         false, /* volatile */
5312                                         rw==0, /* read */
5313                                         rw==1)); /* write */
5314     return nullptr;
5315   }
5316   case Intrinsic::lifetime_start:
5317   case Intrinsic::lifetime_end: {
5318     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5319     // Stack coloring is not enabled in O0, discard region information.
5320     if (TM.getOptLevel() == CodeGenOpt::None)
5321       return nullptr;
5322 
5323     SmallVector<Value *, 4> Allocas;
5324     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5325 
5326     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5327            E = Allocas.end(); Object != E; ++Object) {
5328       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5329 
5330       // Could not find an Alloca.
5331       if (!LifetimeObject)
5332         continue;
5333 
5334       // First check that the Alloca is static, otherwise it won't have a
5335       // valid frame index.
5336       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5337       if (SI == FuncInfo.StaticAllocaMap.end())
5338         return nullptr;
5339 
5340       int FI = SI->second;
5341 
5342       SDValue Ops[2];
5343       Ops[0] = getRoot();
5344       Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5345       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5346 
5347       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5348       DAG.setRoot(Res);
5349     }
5350     return nullptr;
5351   }
5352   case Intrinsic::invariant_start:
5353     // Discard region information.
5354     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5355     return nullptr;
5356   case Intrinsic::invariant_end:
5357     // Discard region information.
5358     return nullptr;
5359   case Intrinsic::stackprotectorcheck: {
5360     // Do not actually emit anything for this basic block. Instead we initialize
5361     // the stack protector descriptor and export the guard variable so we can
5362     // access it in FinishBasicBlock.
5363     const BasicBlock *BB = I.getParent();
5364     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5365     ExportFromCurrentBlock(SPDescriptor.getGuard());
5366 
5367     // Flush our exports since we are going to process a terminator.
5368     (void)getControlRoot();
5369     return nullptr;
5370   }
5371   case Intrinsic::clear_cache:
5372     return TLI.getClearCacheBuiltinName();
5373   case Intrinsic::donothing:
5374     // ignore
5375     return nullptr;
5376   case Intrinsic::experimental_stackmap: {
5377     visitStackmap(I);
5378     return nullptr;
5379   }
5380   case Intrinsic::experimental_patchpoint_void:
5381   case Intrinsic::experimental_patchpoint_i64: {
5382     visitPatchpoint(&I);
5383     return nullptr;
5384   }
5385   case Intrinsic::experimental_gc_statepoint: {
5386     visitStatepoint(I);
5387     return nullptr;
5388   }
5389   case Intrinsic::experimental_gc_result_int:
5390   case Intrinsic::experimental_gc_result_float:
5391   case Intrinsic::experimental_gc_result_ptr:
5392   case Intrinsic::experimental_gc_result: {
5393     visitGCResult(I);
5394     return nullptr;
5395   }
5396   case Intrinsic::experimental_gc_relocate: {
5397     visitGCRelocate(I);
5398     return nullptr;
5399   }
5400   case Intrinsic::instrprof_increment:
5401     llvm_unreachable("instrprof failed to lower an increment");
5402 
5403   case Intrinsic::frameescape: {
5404     MachineFunction &MF = DAG.getMachineFunction();
5405     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5406 
5407     // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission
5408     // is the same on all targets.
5409     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5410       AllocaInst *Slot =
5411           cast<AllocaInst>(I.getArgOperand(Idx)->stripPointerCasts());
5412       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5413              "can only escape static allocas");
5414       int FI = FuncInfo.StaticAllocaMap[Slot];
5415       MCSymbol *FrameAllocSym =
5416           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(MF.getName(),
5417                                                                Idx);
5418       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5419               TII->get(TargetOpcode::FRAME_ALLOC))
5420           .addSym(FrameAllocSym)
5421           .addFrameIndex(FI);
5422     }
5423 
5424     return nullptr;
5425   }
5426 
5427   case Intrinsic::framerecover: {
5428     // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx)
5429     MachineFunction &MF = DAG.getMachineFunction();
5430     MVT PtrVT = TLI.getPointerTy(0);
5431 
5432     // Get the symbol that defines the frame offset.
5433     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5434     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5435     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5436     MCSymbol *FrameAllocSym =
5437         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(Fn->getName(),
5438                                                              IdxVal);
5439 
5440     // Create a TargetExternalSymbol for the label to avoid any target lowering
5441     // that would make this PC relative.
5442     StringRef Name = FrameAllocSym->getName();
5443     assert(Name.data()[Name.size()] == '\0' && "not null terminated");
5444     SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT);
5445     SDValue OffsetVal =
5446         DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym);
5447 
5448     // Add the offset to the FP.
5449     Value *FP = I.getArgOperand(1);
5450     SDValue FPVal = getValue(FP);
5451     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5452     setValue(&I, Add);
5453 
5454     return nullptr;
5455   }
5456   case Intrinsic::eh_begincatch:
5457   case Intrinsic::eh_endcatch:
5458     llvm_unreachable("begin/end catch intrinsics not lowered in codegen");
5459   }
5460 }
5461 
5462 std::pair<SDValue, SDValue>
5463 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5464                                     MachineBasicBlock *LandingPad) {
5465   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5466   MCSymbol *BeginLabel = nullptr;
5467 
5468   if (LandingPad) {
5469     // Insert a label before the invoke call to mark the try range.  This can be
5470     // used to detect deletion of the invoke via the MachineModuleInfo.
5471     BeginLabel = MMI.getContext().CreateTempSymbol();
5472 
5473     // For SjLj, keep track of which landing pads go with which invokes
5474     // so as to maintain the ordering of pads in the LSDA.
5475     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5476     if (CallSiteIndex) {
5477       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5478       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5479 
5480       // Now that the call site is handled, stop tracking it.
5481       MMI.setCurrentCallSite(0);
5482     }
5483 
5484     // Both PendingLoads and PendingExports must be flushed here;
5485     // this call might not return.
5486     (void)getRoot();
5487     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5488 
5489     CLI.setChain(getRoot());
5490   }
5491   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5492   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5493 
5494   assert((CLI.IsTailCall || Result.second.getNode()) &&
5495          "Non-null chain expected with non-tail call!");
5496   assert((Result.second.getNode() || !Result.first.getNode()) &&
5497          "Null value expected with tail call!");
5498 
5499   if (!Result.second.getNode()) {
5500     // As a special case, a null chain means that a tail call has been emitted
5501     // and the DAG root is already updated.
5502     HasTailCall = true;
5503 
5504     // Since there's no actual continuation from this block, nothing can be
5505     // relying on us setting vregs for them.
5506     PendingExports.clear();
5507   } else {
5508     DAG.setRoot(Result.second);
5509   }
5510 
5511   if (LandingPad) {
5512     // Insert a label at the end of the invoke call to mark the try range.  This
5513     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5514     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5515     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5516 
5517     // Inform MachineModuleInfo of range.
5518     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5519   }
5520 
5521   return Result;
5522 }
5523 
5524 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5525                                       bool isTailCall,
5526                                       MachineBasicBlock *LandingPad) {
5527   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5528   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5529   Type *RetTy = FTy->getReturnType();
5530 
5531   TargetLowering::ArgListTy Args;
5532   TargetLowering::ArgListEntry Entry;
5533   Args.reserve(CS.arg_size());
5534 
5535   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5536        i != e; ++i) {
5537     const Value *V = *i;
5538 
5539     // Skip empty types
5540     if (V->getType()->isEmptyTy())
5541       continue;
5542 
5543     SDValue ArgNode = getValue(V);
5544     Entry.Node = ArgNode; Entry.Ty = V->getType();
5545 
5546     // Skip the first return-type Attribute to get to params.
5547     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5548     Args.push_back(Entry);
5549   }
5550 
5551   // Check if target-independent constraints permit a tail call here.
5552   // Target-dependent constraints are checked within TLI->LowerCallTo.
5553   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5554     isTailCall = false;
5555 
5556   TargetLowering::CallLoweringInfo CLI(DAG);
5557   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5558     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5559     .setTailCall(isTailCall);
5560   std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad);
5561 
5562   if (Result.first.getNode())
5563     setValue(CS.getInstruction(), Result.first);
5564 }
5565 
5566 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5567 /// value is equal or not-equal to zero.
5568 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5569   for (const User *U : V->users()) {
5570     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5571       if (IC->isEquality())
5572         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5573           if (C->isNullValue())
5574             continue;
5575     // Unknown instruction.
5576     return false;
5577   }
5578   return true;
5579 }
5580 
5581 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5582                              Type *LoadTy,
5583                              SelectionDAGBuilder &Builder) {
5584 
5585   // Check to see if this load can be trivially constant folded, e.g. if the
5586   // input is from a string literal.
5587   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5588     // Cast pointer to the type we really want to load.
5589     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5590                                          PointerType::getUnqual(LoadTy));
5591 
5592     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5593             const_cast<Constant *>(LoadInput), *Builder.DL))
5594       return Builder.getValue(LoadCst);
5595   }
5596 
5597   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5598   // still constant memory, the input chain can be the entry node.
5599   SDValue Root;
5600   bool ConstantMemory = false;
5601 
5602   // Do not serialize (non-volatile) loads of constant memory with anything.
5603   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5604     Root = Builder.DAG.getEntryNode();
5605     ConstantMemory = true;
5606   } else {
5607     // Do not serialize non-volatile loads against each other.
5608     Root = Builder.DAG.getRoot();
5609   }
5610 
5611   SDValue Ptr = Builder.getValue(PtrVal);
5612   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5613                                         Ptr, MachinePointerInfo(PtrVal),
5614                                         false /*volatile*/,
5615                                         false /*nontemporal*/,
5616                                         false /*isinvariant*/, 1 /* align=1 */);
5617 
5618   if (!ConstantMemory)
5619     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5620   return LoadVal;
5621 }
5622 
5623 /// processIntegerCallValue - Record the value for an instruction that
5624 /// produces an integer result, converting the type where necessary.
5625 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5626                                                   SDValue Value,
5627                                                   bool IsSigned) {
5628   EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
5629   if (IsSigned)
5630     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5631   else
5632     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5633   setValue(&I, Value);
5634 }
5635 
5636 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5637 /// If so, return true and lower it, otherwise return false and it will be
5638 /// lowered like a normal call.
5639 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5640   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5641   if (I.getNumArgOperands() != 3)
5642     return false;
5643 
5644   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5645   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5646       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5647       !I.getType()->isIntegerTy())
5648     return false;
5649 
5650   const Value *Size = I.getArgOperand(2);
5651   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5652   if (CSize && CSize->getZExtValue() == 0) {
5653     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
5654     setValue(&I, DAG.getConstant(0, CallVT));
5655     return true;
5656   }
5657 
5658   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5659   std::pair<SDValue, SDValue> Res =
5660     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5661                                 getValue(LHS), getValue(RHS), getValue(Size),
5662                                 MachinePointerInfo(LHS),
5663                                 MachinePointerInfo(RHS));
5664   if (Res.first.getNode()) {
5665     processIntegerCallValue(I, Res.first, true);
5666     PendingLoads.push_back(Res.second);
5667     return true;
5668   }
5669 
5670   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5671   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5672   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5673     bool ActuallyDoIt = true;
5674     MVT LoadVT;
5675     Type *LoadTy;
5676     switch (CSize->getZExtValue()) {
5677     default:
5678       LoadVT = MVT::Other;
5679       LoadTy = nullptr;
5680       ActuallyDoIt = false;
5681       break;
5682     case 2:
5683       LoadVT = MVT::i16;
5684       LoadTy = Type::getInt16Ty(CSize->getContext());
5685       break;
5686     case 4:
5687       LoadVT = MVT::i32;
5688       LoadTy = Type::getInt32Ty(CSize->getContext());
5689       break;
5690     case 8:
5691       LoadVT = MVT::i64;
5692       LoadTy = Type::getInt64Ty(CSize->getContext());
5693       break;
5694         /*
5695     case 16:
5696       LoadVT = MVT::v4i32;
5697       LoadTy = Type::getInt32Ty(CSize->getContext());
5698       LoadTy = VectorType::get(LoadTy, 4);
5699       break;
5700          */
5701     }
5702 
5703     // This turns into unaligned loads.  We only do this if the target natively
5704     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5705     // we'll only produce a small number of byte loads.
5706 
5707     // Require that we can find a legal MVT, and only do this if the target
5708     // supports unaligned loads of that type.  Expanding into byte loads would
5709     // bloat the code.
5710     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5711     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5712       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5713       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5714       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5715       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5716       // TODO: Check alignment of src and dest ptrs.
5717       if (!TLI.isTypeLegal(LoadVT) ||
5718           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5719           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5720         ActuallyDoIt = false;
5721     }
5722 
5723     if (ActuallyDoIt) {
5724       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5725       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5726 
5727       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5728                                  ISD::SETNE);
5729       processIntegerCallValue(I, Res, false);
5730       return true;
5731     }
5732   }
5733 
5734 
5735   return false;
5736 }
5737 
5738 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5739 /// form.  If so, return true and lower it, otherwise return false and it
5740 /// will be lowered like a normal call.
5741 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5742   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5743   if (I.getNumArgOperands() != 3)
5744     return false;
5745 
5746   const Value *Src = I.getArgOperand(0);
5747   const Value *Char = I.getArgOperand(1);
5748   const Value *Length = I.getArgOperand(2);
5749   if (!Src->getType()->isPointerTy() ||
5750       !Char->getType()->isIntegerTy() ||
5751       !Length->getType()->isIntegerTy() ||
5752       !I.getType()->isPointerTy())
5753     return false;
5754 
5755   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5756   std::pair<SDValue, SDValue> Res =
5757     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5758                                 getValue(Src), getValue(Char), getValue(Length),
5759                                 MachinePointerInfo(Src));
5760   if (Res.first.getNode()) {
5761     setValue(&I, Res.first);
5762     PendingLoads.push_back(Res.second);
5763     return true;
5764   }
5765 
5766   return false;
5767 }
5768 
5769 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5770 /// optimized form.  If so, return true and lower it, otherwise return false
5771 /// and it will be lowered like a normal call.
5772 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5773   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5774   if (I.getNumArgOperands() != 2)
5775     return false;
5776 
5777   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5778   if (!Arg0->getType()->isPointerTy() ||
5779       !Arg1->getType()->isPointerTy() ||
5780       !I.getType()->isPointerTy())
5781     return false;
5782 
5783   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5784   std::pair<SDValue, SDValue> Res =
5785     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5786                                 getValue(Arg0), getValue(Arg1),
5787                                 MachinePointerInfo(Arg0),
5788                                 MachinePointerInfo(Arg1), isStpcpy);
5789   if (Res.first.getNode()) {
5790     setValue(&I, Res.first);
5791     DAG.setRoot(Res.second);
5792     return true;
5793   }
5794 
5795   return false;
5796 }
5797 
5798 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5799 /// If so, return true and lower it, otherwise return false and it will be
5800 /// lowered like a normal call.
5801 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5802   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5803   if (I.getNumArgOperands() != 2)
5804     return false;
5805 
5806   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5807   if (!Arg0->getType()->isPointerTy() ||
5808       !Arg1->getType()->isPointerTy() ||
5809       !I.getType()->isIntegerTy())
5810     return false;
5811 
5812   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5813   std::pair<SDValue, SDValue> Res =
5814     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5815                                 getValue(Arg0), getValue(Arg1),
5816                                 MachinePointerInfo(Arg0),
5817                                 MachinePointerInfo(Arg1));
5818   if (Res.first.getNode()) {
5819     processIntegerCallValue(I, Res.first, true);
5820     PendingLoads.push_back(Res.second);
5821     return true;
5822   }
5823 
5824   return false;
5825 }
5826 
5827 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5828 /// form.  If so, return true and lower it, otherwise return false and it
5829 /// will be lowered like a normal call.
5830 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5831   // Verify that the prototype makes sense.  size_t strlen(char *)
5832   if (I.getNumArgOperands() != 1)
5833     return false;
5834 
5835   const Value *Arg0 = I.getArgOperand(0);
5836   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5837     return false;
5838 
5839   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5840   std::pair<SDValue, SDValue> Res =
5841     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5842                                 getValue(Arg0), MachinePointerInfo(Arg0));
5843   if (Res.first.getNode()) {
5844     processIntegerCallValue(I, Res.first, false);
5845     PendingLoads.push_back(Res.second);
5846     return true;
5847   }
5848 
5849   return false;
5850 }
5851 
5852 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5853 /// form.  If so, return true and lower it, otherwise return false and it
5854 /// will be lowered like a normal call.
5855 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5856   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5857   if (I.getNumArgOperands() != 2)
5858     return false;
5859 
5860   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5861   if (!Arg0->getType()->isPointerTy() ||
5862       !Arg1->getType()->isIntegerTy() ||
5863       !I.getType()->isIntegerTy())
5864     return false;
5865 
5866   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5867   std::pair<SDValue, SDValue> Res =
5868     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5869                                  getValue(Arg0), getValue(Arg1),
5870                                  MachinePointerInfo(Arg0));
5871   if (Res.first.getNode()) {
5872     processIntegerCallValue(I, Res.first, false);
5873     PendingLoads.push_back(Res.second);
5874     return true;
5875   }
5876 
5877   return false;
5878 }
5879 
5880 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5881 /// operation (as expected), translate it to an SDNode with the specified opcode
5882 /// and return true.
5883 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5884                                               unsigned Opcode) {
5885   // Sanity check that it really is a unary floating-point call.
5886   if (I.getNumArgOperands() != 1 ||
5887       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5888       I.getType() != I.getArgOperand(0)->getType() ||
5889       !I.onlyReadsMemory())
5890     return false;
5891 
5892   SDValue Tmp = getValue(I.getArgOperand(0));
5893   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5894   return true;
5895 }
5896 
5897 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
5898 /// operation (as expected), translate it to an SDNode with the specified opcode
5899 /// and return true.
5900 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5901                                                unsigned Opcode) {
5902   // Sanity check that it really is a binary floating-point call.
5903   if (I.getNumArgOperands() != 2 ||
5904       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5905       I.getType() != I.getArgOperand(0)->getType() ||
5906       I.getType() != I.getArgOperand(1)->getType() ||
5907       !I.onlyReadsMemory())
5908     return false;
5909 
5910   SDValue Tmp0 = getValue(I.getArgOperand(0));
5911   SDValue Tmp1 = getValue(I.getArgOperand(1));
5912   EVT VT = Tmp0.getValueType();
5913   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5914   return true;
5915 }
5916 
5917 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5918   // Handle inline assembly differently.
5919   if (isa<InlineAsm>(I.getCalledValue())) {
5920     visitInlineAsm(&I);
5921     return;
5922   }
5923 
5924   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5925   ComputeUsesVAFloatArgument(I, &MMI);
5926 
5927   const char *RenameFn = nullptr;
5928   if (Function *F = I.getCalledFunction()) {
5929     if (F->isDeclaration()) {
5930       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5931         if (unsigned IID = II->getIntrinsicID(F)) {
5932           RenameFn = visitIntrinsicCall(I, IID);
5933           if (!RenameFn)
5934             return;
5935         }
5936       }
5937       if (unsigned IID = F->getIntrinsicID()) {
5938         RenameFn = visitIntrinsicCall(I, IID);
5939         if (!RenameFn)
5940           return;
5941       }
5942     }
5943 
5944     // Check for well-known libc/libm calls.  If the function is internal, it
5945     // can't be a library call.
5946     LibFunc::Func Func;
5947     if (!F->hasLocalLinkage() && F->hasName() &&
5948         LibInfo->getLibFunc(F->getName(), Func) &&
5949         LibInfo->hasOptimizedCodeGen(Func)) {
5950       switch (Func) {
5951       default: break;
5952       case LibFunc::copysign:
5953       case LibFunc::copysignf:
5954       case LibFunc::copysignl:
5955         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5956             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5957             I.getType() == I.getArgOperand(0)->getType() &&
5958             I.getType() == I.getArgOperand(1)->getType() &&
5959             I.onlyReadsMemory()) {
5960           SDValue LHS = getValue(I.getArgOperand(0));
5961           SDValue RHS = getValue(I.getArgOperand(1));
5962           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5963                                    LHS.getValueType(), LHS, RHS));
5964           return;
5965         }
5966         break;
5967       case LibFunc::fabs:
5968       case LibFunc::fabsf:
5969       case LibFunc::fabsl:
5970         if (visitUnaryFloatCall(I, ISD::FABS))
5971           return;
5972         break;
5973       case LibFunc::fmin:
5974       case LibFunc::fminf:
5975       case LibFunc::fminl:
5976         if (visitBinaryFloatCall(I, ISD::FMINNUM))
5977           return;
5978         break;
5979       case LibFunc::fmax:
5980       case LibFunc::fmaxf:
5981       case LibFunc::fmaxl:
5982         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5983           return;
5984         break;
5985       case LibFunc::sin:
5986       case LibFunc::sinf:
5987       case LibFunc::sinl:
5988         if (visitUnaryFloatCall(I, ISD::FSIN))
5989           return;
5990         break;
5991       case LibFunc::cos:
5992       case LibFunc::cosf:
5993       case LibFunc::cosl:
5994         if (visitUnaryFloatCall(I, ISD::FCOS))
5995           return;
5996         break;
5997       case LibFunc::sqrt:
5998       case LibFunc::sqrtf:
5999       case LibFunc::sqrtl:
6000       case LibFunc::sqrt_finite:
6001       case LibFunc::sqrtf_finite:
6002       case LibFunc::sqrtl_finite:
6003         if (visitUnaryFloatCall(I, ISD::FSQRT))
6004           return;
6005         break;
6006       case LibFunc::floor:
6007       case LibFunc::floorf:
6008       case LibFunc::floorl:
6009         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6010           return;
6011         break;
6012       case LibFunc::nearbyint:
6013       case LibFunc::nearbyintf:
6014       case LibFunc::nearbyintl:
6015         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6016           return;
6017         break;
6018       case LibFunc::ceil:
6019       case LibFunc::ceilf:
6020       case LibFunc::ceill:
6021         if (visitUnaryFloatCall(I, ISD::FCEIL))
6022           return;
6023         break;
6024       case LibFunc::rint:
6025       case LibFunc::rintf:
6026       case LibFunc::rintl:
6027         if (visitUnaryFloatCall(I, ISD::FRINT))
6028           return;
6029         break;
6030       case LibFunc::round:
6031       case LibFunc::roundf:
6032       case LibFunc::roundl:
6033         if (visitUnaryFloatCall(I, ISD::FROUND))
6034           return;
6035         break;
6036       case LibFunc::trunc:
6037       case LibFunc::truncf:
6038       case LibFunc::truncl:
6039         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6040           return;
6041         break;
6042       case LibFunc::log2:
6043       case LibFunc::log2f:
6044       case LibFunc::log2l:
6045         if (visitUnaryFloatCall(I, ISD::FLOG2))
6046           return;
6047         break;
6048       case LibFunc::exp2:
6049       case LibFunc::exp2f:
6050       case LibFunc::exp2l:
6051         if (visitUnaryFloatCall(I, ISD::FEXP2))
6052           return;
6053         break;
6054       case LibFunc::memcmp:
6055         if (visitMemCmpCall(I))
6056           return;
6057         break;
6058       case LibFunc::memchr:
6059         if (visitMemChrCall(I))
6060           return;
6061         break;
6062       case LibFunc::strcpy:
6063         if (visitStrCpyCall(I, false))
6064           return;
6065         break;
6066       case LibFunc::stpcpy:
6067         if (visitStrCpyCall(I, true))
6068           return;
6069         break;
6070       case LibFunc::strcmp:
6071         if (visitStrCmpCall(I))
6072           return;
6073         break;
6074       case LibFunc::strlen:
6075         if (visitStrLenCall(I))
6076           return;
6077         break;
6078       case LibFunc::strnlen:
6079         if (visitStrNLenCall(I))
6080           return;
6081         break;
6082       }
6083     }
6084   }
6085 
6086   SDValue Callee;
6087   if (!RenameFn)
6088     Callee = getValue(I.getCalledValue());
6089   else
6090     Callee = DAG.getExternalSymbol(RenameFn,
6091                                    DAG.getTargetLoweringInfo().getPointerTy());
6092 
6093   // Check if we can potentially perform a tail call. More detailed checking is
6094   // be done within LowerCallTo, after more information about the call is known.
6095   LowerCallTo(&I, Callee, I.isTailCall());
6096 }
6097 
6098 namespace {
6099 
6100 /// AsmOperandInfo - This contains information for each constraint that we are
6101 /// lowering.
6102 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6103 public:
6104   /// CallOperand - If this is the result output operand or a clobber
6105   /// this is null, otherwise it is the incoming operand to the CallInst.
6106   /// This gets modified as the asm is processed.
6107   SDValue CallOperand;
6108 
6109   /// AssignedRegs - If this is a register or register class operand, this
6110   /// contains the set of register corresponding to the operand.
6111   RegsForValue AssignedRegs;
6112 
6113   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6114     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6115   }
6116 
6117   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6118   /// corresponds to.  If there is no Value* for this operand, it returns
6119   /// MVT::Other.
6120   EVT getCallOperandValEVT(LLVMContext &Context,
6121                            const TargetLowering &TLI,
6122                            const DataLayout *DL) const {
6123     if (!CallOperandVal) return MVT::Other;
6124 
6125     if (isa<BasicBlock>(CallOperandVal))
6126       return TLI.getPointerTy();
6127 
6128     llvm::Type *OpTy = CallOperandVal->getType();
6129 
6130     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6131     // If this is an indirect operand, the operand is a pointer to the
6132     // accessed type.
6133     if (isIndirect) {
6134       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6135       if (!PtrTy)
6136         report_fatal_error("Indirect operand for inline asm not a pointer!");
6137       OpTy = PtrTy->getElementType();
6138     }
6139 
6140     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6141     if (StructType *STy = dyn_cast<StructType>(OpTy))
6142       if (STy->getNumElements() == 1)
6143         OpTy = STy->getElementType(0);
6144 
6145     // If OpTy is not a single value, it may be a struct/union that we
6146     // can tile with integers.
6147     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6148       unsigned BitSize = DL->getTypeSizeInBits(OpTy);
6149       switch (BitSize) {
6150       default: break;
6151       case 1:
6152       case 8:
6153       case 16:
6154       case 32:
6155       case 64:
6156       case 128:
6157         OpTy = IntegerType::get(Context, BitSize);
6158         break;
6159       }
6160     }
6161 
6162     return TLI.getValueType(OpTy, true);
6163   }
6164 };
6165 
6166 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6167 
6168 } // end anonymous namespace
6169 
6170 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6171 /// specified operand.  We prefer to assign virtual registers, to allow the
6172 /// register allocator to handle the assignment process.  However, if the asm
6173 /// uses features that we can't model on machineinstrs, we have SDISel do the
6174 /// allocation.  This produces generally horrible, but correct, code.
6175 ///
6176 ///   OpInfo describes the operand.
6177 ///
6178 static void GetRegistersForValue(SelectionDAG &DAG,
6179                                  const TargetLowering &TLI,
6180                                  SDLoc DL,
6181                                  SDISelAsmOperandInfo &OpInfo) {
6182   LLVMContext &Context = *DAG.getContext();
6183 
6184   MachineFunction &MF = DAG.getMachineFunction();
6185   SmallVector<unsigned, 4> Regs;
6186 
6187   // If this is a constraint for a single physreg, or a constraint for a
6188   // register class, find it.
6189   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6190       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6191                                        OpInfo.ConstraintCode,
6192                                        OpInfo.ConstraintVT);
6193 
6194   unsigned NumRegs = 1;
6195   if (OpInfo.ConstraintVT != MVT::Other) {
6196     // If this is a FP input in an integer register (or visa versa) insert a bit
6197     // cast of the input value.  More generally, handle any case where the input
6198     // value disagrees with the register class we plan to stick this in.
6199     if (OpInfo.Type == InlineAsm::isInput &&
6200         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6201       // Try to convert to the first EVT that the reg class contains.  If the
6202       // types are identical size, use a bitcast to convert (e.g. two differing
6203       // vector types).
6204       MVT RegVT = *PhysReg.second->vt_begin();
6205       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6206         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6207                                          RegVT, OpInfo.CallOperand);
6208         OpInfo.ConstraintVT = RegVT;
6209       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6210         // If the input is a FP value and we want it in FP registers, do a
6211         // bitcast to the corresponding integer type.  This turns an f64 value
6212         // into i64, which can be passed with two i32 values on a 32-bit
6213         // machine.
6214         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6215         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6216                                          RegVT, OpInfo.CallOperand);
6217         OpInfo.ConstraintVT = RegVT;
6218       }
6219     }
6220 
6221     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6222   }
6223 
6224   MVT RegVT;
6225   EVT ValueVT = OpInfo.ConstraintVT;
6226 
6227   // If this is a constraint for a specific physical register, like {r17},
6228   // assign it now.
6229   if (unsigned AssignedReg = PhysReg.first) {
6230     const TargetRegisterClass *RC = PhysReg.second;
6231     if (OpInfo.ConstraintVT == MVT::Other)
6232       ValueVT = *RC->vt_begin();
6233 
6234     // Get the actual register value type.  This is important, because the user
6235     // may have asked for (e.g.) the AX register in i32 type.  We need to
6236     // remember that AX is actually i16 to get the right extension.
6237     RegVT = *RC->vt_begin();
6238 
6239     // This is a explicit reference to a physical register.
6240     Regs.push_back(AssignedReg);
6241 
6242     // If this is an expanded reference, add the rest of the regs to Regs.
6243     if (NumRegs != 1) {
6244       TargetRegisterClass::iterator I = RC->begin();
6245       for (; *I != AssignedReg; ++I)
6246         assert(I != RC->end() && "Didn't find reg!");
6247 
6248       // Already added the first reg.
6249       --NumRegs; ++I;
6250       for (; NumRegs; --NumRegs, ++I) {
6251         assert(I != RC->end() && "Ran out of registers to allocate!");
6252         Regs.push_back(*I);
6253       }
6254     }
6255 
6256     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6257     return;
6258   }
6259 
6260   // Otherwise, if this was a reference to an LLVM register class, create vregs
6261   // for this reference.
6262   if (const TargetRegisterClass *RC = PhysReg.second) {
6263     RegVT = *RC->vt_begin();
6264     if (OpInfo.ConstraintVT == MVT::Other)
6265       ValueVT = RegVT;
6266 
6267     // Create the appropriate number of virtual registers.
6268     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6269     for (; NumRegs; --NumRegs)
6270       Regs.push_back(RegInfo.createVirtualRegister(RC));
6271 
6272     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6273     return;
6274   }
6275 
6276   // Otherwise, we couldn't allocate enough registers for this.
6277 }
6278 
6279 /// visitInlineAsm - Handle a call to an InlineAsm object.
6280 ///
6281 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6282   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6283 
6284   /// ConstraintOperands - Information about all of the constraints.
6285   SDISelAsmOperandInfoVector ConstraintOperands;
6286 
6287   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6288   TargetLowering::AsmOperandInfoVector TargetConstraints =
6289       TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS);
6290 
6291   bool hasMemory = false;
6292 
6293   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6294   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6295   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6296     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6297     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6298 
6299     MVT OpVT = MVT::Other;
6300 
6301     // Compute the value type for each operand.
6302     switch (OpInfo.Type) {
6303     case InlineAsm::isOutput:
6304       // Indirect outputs just consume an argument.
6305       if (OpInfo.isIndirect) {
6306         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6307         break;
6308       }
6309 
6310       // The return value of the call is this value.  As such, there is no
6311       // corresponding argument.
6312       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6313       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6314         OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
6315       } else {
6316         assert(ResNo == 0 && "Asm only has one result!");
6317         OpVT = TLI.getSimpleValueType(CS.getType());
6318       }
6319       ++ResNo;
6320       break;
6321     case InlineAsm::isInput:
6322       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6323       break;
6324     case InlineAsm::isClobber:
6325       // Nothing to do.
6326       break;
6327     }
6328 
6329     // If this is an input or an indirect output, process the call argument.
6330     // BasicBlocks are labels, currently appearing only in asm's.
6331     if (OpInfo.CallOperandVal) {
6332       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6333         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6334       } else {
6335         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6336       }
6337 
6338       OpVT =
6339           OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT();
6340     }
6341 
6342     OpInfo.ConstraintVT = OpVT;
6343 
6344     // Indirect operand accesses access memory.
6345     if (OpInfo.isIndirect)
6346       hasMemory = true;
6347     else {
6348       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6349         TargetLowering::ConstraintType
6350           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6351         if (CType == TargetLowering::C_Memory) {
6352           hasMemory = true;
6353           break;
6354         }
6355       }
6356     }
6357   }
6358 
6359   SDValue Chain, Flag;
6360 
6361   // We won't need to flush pending loads if this asm doesn't touch
6362   // memory and is nonvolatile.
6363   if (hasMemory || IA->hasSideEffects())
6364     Chain = getRoot();
6365   else
6366     Chain = DAG.getRoot();
6367 
6368   // Second pass over the constraints: compute which constraint option to use
6369   // and assign registers to constraints that want a specific physreg.
6370   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6371     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6372 
6373     // If this is an output operand with a matching input operand, look up the
6374     // matching input. If their types mismatch, e.g. one is an integer, the
6375     // other is floating point, or their sizes are different, flag it as an
6376     // error.
6377     if (OpInfo.hasMatchingInput()) {
6378       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6379 
6380       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6381 	const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6382         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6383             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6384                                              OpInfo.ConstraintVT);
6385         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6386             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6387                                              Input.ConstraintVT);
6388         if ((OpInfo.ConstraintVT.isInteger() !=
6389              Input.ConstraintVT.isInteger()) ||
6390             (MatchRC.second != InputRC.second)) {
6391           report_fatal_error("Unsupported asm: input constraint"
6392                              " with a matching output constraint of"
6393                              " incompatible type!");
6394         }
6395         Input.ConstraintVT = OpInfo.ConstraintVT;
6396       }
6397     }
6398 
6399     // Compute the constraint code and ConstraintType to use.
6400     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6401 
6402     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6403         OpInfo.Type == InlineAsm::isClobber)
6404       continue;
6405 
6406     // If this is a memory input, and if the operand is not indirect, do what we
6407     // need to to provide an address for the memory input.
6408     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6409         !OpInfo.isIndirect) {
6410       assert((OpInfo.isMultipleAlternative ||
6411               (OpInfo.Type == InlineAsm::isInput)) &&
6412              "Can only indirectify direct input operands!");
6413 
6414       // Memory operands really want the address of the value.  If we don't have
6415       // an indirect input, put it in the constpool if we can, otherwise spill
6416       // it to a stack slot.
6417       // TODO: This isn't quite right. We need to handle these according to
6418       // the addressing mode that the constraint wants. Also, this may take
6419       // an additional register for the computation and we don't want that
6420       // either.
6421 
6422       // If the operand is a float, integer, or vector constant, spill to a
6423       // constant pool entry to get its address.
6424       const Value *OpVal = OpInfo.CallOperandVal;
6425       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6426           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6427         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6428                                                  TLI.getPointerTy());
6429       } else {
6430         // Otherwise, create a stack slot and emit a store to it before the
6431         // asm.
6432         Type *Ty = OpVal->getType();
6433         uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
6434         unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
6435         MachineFunction &MF = DAG.getMachineFunction();
6436         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6437         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6438         Chain = DAG.getStore(Chain, getCurSDLoc(),
6439                              OpInfo.CallOperand, StackSlot,
6440                              MachinePointerInfo::getFixedStack(SSFI),
6441                              false, false, 0);
6442         OpInfo.CallOperand = StackSlot;
6443       }
6444 
6445       // There is no longer a Value* corresponding to this operand.
6446       OpInfo.CallOperandVal = nullptr;
6447 
6448       // It is now an indirect operand.
6449       OpInfo.isIndirect = true;
6450     }
6451 
6452     // If this constraint is for a specific register, allocate it before
6453     // anything else.
6454     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6455       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6456   }
6457 
6458   // Second pass - Loop over all of the operands, assigning virtual or physregs
6459   // to register class operands.
6460   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6461     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6462 
6463     // C_Register operands have already been allocated, Other/Memory don't need
6464     // to be.
6465     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6466       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6467   }
6468 
6469   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6470   std::vector<SDValue> AsmNodeOperands;
6471   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6472   AsmNodeOperands.push_back(
6473           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6474                                       TLI.getPointerTy()));
6475 
6476   // If we have a !srcloc metadata node associated with it, we want to attach
6477   // this to the ultimately generated inline asm machineinstr.  To do this, we
6478   // pass in the third operand as this (potentially null) inline asm MDNode.
6479   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6480   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6481 
6482   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6483   // bits as operand 3.
6484   unsigned ExtraInfo = 0;
6485   if (IA->hasSideEffects())
6486     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6487   if (IA->isAlignStack())
6488     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6489   // Set the asm dialect.
6490   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6491 
6492   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6493   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6494     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6495 
6496     // Compute the constraint code and ConstraintType to use.
6497     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6498 
6499     // Ideally, we would only check against memory constraints.  However, the
6500     // meaning of an other constraint can be target-specific and we can't easily
6501     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6502     // for other constriants as well.
6503     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6504         OpInfo.ConstraintType == TargetLowering::C_Other) {
6505       if (OpInfo.Type == InlineAsm::isInput)
6506         ExtraInfo |= InlineAsm::Extra_MayLoad;
6507       else if (OpInfo.Type == InlineAsm::isOutput)
6508         ExtraInfo |= InlineAsm::Extra_MayStore;
6509       else if (OpInfo.Type == InlineAsm::isClobber)
6510         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6511     }
6512   }
6513 
6514   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6515                                                   TLI.getPointerTy()));
6516 
6517   // Loop over all of the inputs, copying the operand values into the
6518   // appropriate registers and processing the output regs.
6519   RegsForValue RetValRegs;
6520 
6521   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6522   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6523 
6524   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6525     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6526 
6527     switch (OpInfo.Type) {
6528     case InlineAsm::isOutput: {
6529       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6530           OpInfo.ConstraintType != TargetLowering::C_Register) {
6531         // Memory output, or 'other' output (e.g. 'X' constraint).
6532         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6533 
6534         unsigned ConstraintID =
6535             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6536         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6537                "Failed to convert memory constraint code to constraint id.");
6538 
6539         // Add information to the INLINEASM node to know about this output.
6540         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6541         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6542         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, MVT::i32));
6543         AsmNodeOperands.push_back(OpInfo.CallOperand);
6544         break;
6545       }
6546 
6547       // Otherwise, this is a register or register class output.
6548 
6549       // Copy the output from the appropriate register.  Find a register that
6550       // we can use.
6551       if (OpInfo.AssignedRegs.Regs.empty()) {
6552         LLVMContext &Ctx = *DAG.getContext();
6553         Ctx.emitError(CS.getInstruction(),
6554                       "couldn't allocate output register for constraint '" +
6555                           Twine(OpInfo.ConstraintCode) + "'");
6556         return;
6557       }
6558 
6559       // If this is an indirect operand, store through the pointer after the
6560       // asm.
6561       if (OpInfo.isIndirect) {
6562         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6563                                                       OpInfo.CallOperandVal));
6564       } else {
6565         // This is the result value of the call.
6566         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6567         // Concatenate this output onto the outputs list.
6568         RetValRegs.append(OpInfo.AssignedRegs);
6569       }
6570 
6571       // Add information to the INLINEASM node to know that this register is
6572       // set.
6573       OpInfo.AssignedRegs
6574           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6575                                     ? InlineAsm::Kind_RegDefEarlyClobber
6576                                     : InlineAsm::Kind_RegDef,
6577                                 false, 0, DAG, AsmNodeOperands);
6578       break;
6579     }
6580     case InlineAsm::isInput: {
6581       SDValue InOperandVal = OpInfo.CallOperand;
6582 
6583       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6584         // If this is required to match an output register we have already set,
6585         // just use its register.
6586         unsigned OperandNo = OpInfo.getMatchedOperand();
6587 
6588         // Scan until we find the definition we already emitted of this operand.
6589         // When we find it, create a RegsForValue operand.
6590         unsigned CurOp = InlineAsm::Op_FirstOperand;
6591         for (; OperandNo; --OperandNo) {
6592           // Advance to the next operand.
6593           unsigned OpFlag =
6594             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6595           assert((InlineAsm::isRegDefKind(OpFlag) ||
6596                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6597                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6598           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6599         }
6600 
6601         unsigned OpFlag =
6602           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6603         if (InlineAsm::isRegDefKind(OpFlag) ||
6604             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6605           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6606           if (OpInfo.isIndirect) {
6607             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6608             LLVMContext &Ctx = *DAG.getContext();
6609             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6610                                                " don't know how to handle tied "
6611                                                "indirect register inputs");
6612             return;
6613           }
6614 
6615           RegsForValue MatchedRegs;
6616           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6617           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6618           MatchedRegs.RegVTs.push_back(RegVT);
6619           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6620           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6621                i != e; ++i) {
6622             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6623               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6624             else {
6625               LLVMContext &Ctx = *DAG.getContext();
6626               Ctx.emitError(CS.getInstruction(),
6627                             "inline asm error: This value"
6628                             " type register class is not natively supported!");
6629               return;
6630             }
6631           }
6632           // Use the produced MatchedRegs object to
6633           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6634                                     Chain, &Flag, CS.getInstruction());
6635           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6636                                            true, OpInfo.getMatchedOperand(),
6637                                            DAG, AsmNodeOperands);
6638           break;
6639         }
6640 
6641         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6642         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6643                "Unexpected number of operands");
6644         // Add information to the INLINEASM node to know about this input.
6645         // See InlineAsm.h isUseOperandTiedToDef.
6646         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6647         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6648                                                     OpInfo.getMatchedOperand());
6649         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6650                                                         TLI.getPointerTy()));
6651         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6652         break;
6653       }
6654 
6655       // Treat indirect 'X' constraint as memory.
6656       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6657           OpInfo.isIndirect)
6658         OpInfo.ConstraintType = TargetLowering::C_Memory;
6659 
6660       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6661         std::vector<SDValue> Ops;
6662         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6663                                           Ops, DAG);
6664         if (Ops.empty()) {
6665           LLVMContext &Ctx = *DAG.getContext();
6666           Ctx.emitError(CS.getInstruction(),
6667                         "invalid operand for inline asm constraint '" +
6668                             Twine(OpInfo.ConstraintCode) + "'");
6669           return;
6670         }
6671 
6672         // Add information to the INLINEASM node to know about this input.
6673         unsigned ResOpType =
6674           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6675         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6676                                                         TLI.getPointerTy()));
6677         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6678         break;
6679       }
6680 
6681       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6682         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6683         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6684                "Memory operands expect pointer values");
6685 
6686         unsigned ConstraintID =
6687             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6688         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6689                "Failed to convert memory constraint code to constraint id.");
6690 
6691         // Add information to the INLINEASM node to know about this input.
6692         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6693         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6694         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, MVT::i32));
6695         AsmNodeOperands.push_back(InOperandVal);
6696         break;
6697       }
6698 
6699       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6700               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6701              "Unknown constraint type!");
6702 
6703       // TODO: Support this.
6704       if (OpInfo.isIndirect) {
6705         LLVMContext &Ctx = *DAG.getContext();
6706         Ctx.emitError(CS.getInstruction(),
6707                       "Don't know how to handle indirect register inputs yet "
6708                       "for constraint '" +
6709                           Twine(OpInfo.ConstraintCode) + "'");
6710         return;
6711       }
6712 
6713       // Copy the input into the appropriate registers.
6714       if (OpInfo.AssignedRegs.Regs.empty()) {
6715         LLVMContext &Ctx = *DAG.getContext();
6716         Ctx.emitError(CS.getInstruction(),
6717                       "couldn't allocate input reg for constraint '" +
6718                           Twine(OpInfo.ConstraintCode) + "'");
6719         return;
6720       }
6721 
6722       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6723                                         Chain, &Flag, CS.getInstruction());
6724 
6725       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6726                                                DAG, AsmNodeOperands);
6727       break;
6728     }
6729     case InlineAsm::isClobber: {
6730       // Add the clobbered value to the operand list, so that the register
6731       // allocator is aware that the physreg got clobbered.
6732       if (!OpInfo.AssignedRegs.Regs.empty())
6733         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6734                                                  false, 0, DAG,
6735                                                  AsmNodeOperands);
6736       break;
6737     }
6738     }
6739   }
6740 
6741   // Finish up input operands.  Set the input chain and add the flag last.
6742   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6743   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6744 
6745   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6746                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6747   Flag = Chain.getValue(1);
6748 
6749   // If this asm returns a register value, copy the result from that register
6750   // and set it as the value of the call.
6751   if (!RetValRegs.Regs.empty()) {
6752     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6753                                              Chain, &Flag, CS.getInstruction());
6754 
6755     // FIXME: Why don't we do this for inline asms with MRVs?
6756     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6757       EVT ResultType = TLI.getValueType(CS.getType());
6758 
6759       // If any of the results of the inline asm is a vector, it may have the
6760       // wrong width/num elts.  This can happen for register classes that can
6761       // contain multiple different value types.  The preg or vreg allocated may
6762       // not have the same VT as was expected.  Convert it to the right type
6763       // with bit_convert.
6764       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6765         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6766                           ResultType, Val);
6767 
6768       } else if (ResultType != Val.getValueType() &&
6769                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6770         // If a result value was tied to an input value, the computed result may
6771         // have a wider width than the expected result.  Extract the relevant
6772         // portion.
6773         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6774       }
6775 
6776       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6777     }
6778 
6779     setValue(CS.getInstruction(), Val);
6780     // Don't need to use this as a chain in this case.
6781     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6782       return;
6783   }
6784 
6785   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6786 
6787   // Process indirect outputs, first output all of the flagged copies out of
6788   // physregs.
6789   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6790     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6791     const Value *Ptr = IndirectStoresToEmit[i].second;
6792     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6793                                              Chain, &Flag, IA);
6794     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6795   }
6796 
6797   // Emit the non-flagged stores from the physregs.
6798   SmallVector<SDValue, 8> OutChains;
6799   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6800     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6801                                StoresToEmit[i].first,
6802                                getValue(StoresToEmit[i].second),
6803                                MachinePointerInfo(StoresToEmit[i].second),
6804                                false, false, 0);
6805     OutChains.push_back(Val);
6806   }
6807 
6808   if (!OutChains.empty())
6809     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6810 
6811   DAG.setRoot(Chain);
6812 }
6813 
6814 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6815   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6816                           MVT::Other, getRoot(),
6817                           getValue(I.getArgOperand(0)),
6818                           DAG.getSrcValue(I.getArgOperand(0))));
6819 }
6820 
6821 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6823   const DataLayout &DL = *TLI.getDataLayout();
6824   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(),
6825                            getRoot(), getValue(I.getOperand(0)),
6826                            DAG.getSrcValue(I.getOperand(0)),
6827                            DL.getABITypeAlignment(I.getType()));
6828   setValue(&I, V);
6829   DAG.setRoot(V.getValue(1));
6830 }
6831 
6832 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6833   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6834                           MVT::Other, getRoot(),
6835                           getValue(I.getArgOperand(0)),
6836                           DAG.getSrcValue(I.getArgOperand(0))));
6837 }
6838 
6839 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6840   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6841                           MVT::Other, getRoot(),
6842                           getValue(I.getArgOperand(0)),
6843                           getValue(I.getArgOperand(1)),
6844                           DAG.getSrcValue(I.getArgOperand(0)),
6845                           DAG.getSrcValue(I.getArgOperand(1))));
6846 }
6847 
6848 /// \brief Lower an argument list according to the target calling convention.
6849 ///
6850 /// \return A tuple of <return-value, token-chain>
6851 ///
6852 /// This is a helper for lowering intrinsics that follow a target calling
6853 /// convention or require stack pointer adjustment. Only a subset of the
6854 /// intrinsic's operands need to participate in the calling convention.
6855 std::pair<SDValue, SDValue>
6856 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx,
6857                                        unsigned NumArgs, SDValue Callee,
6858                                        bool UseVoidTy,
6859                                        MachineBasicBlock *LandingPad,
6860                                        bool IsPatchPoint) {
6861   TargetLowering::ArgListTy Args;
6862   Args.reserve(NumArgs);
6863 
6864   // Populate the argument list.
6865   // Attributes for args start at offset 1, after the return attribute.
6866   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6867        ArgI != ArgE; ++ArgI) {
6868     const Value *V = CS->getOperand(ArgI);
6869 
6870     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6871 
6872     TargetLowering::ArgListEntry Entry;
6873     Entry.Node = getValue(V);
6874     Entry.Ty = V->getType();
6875     Entry.setAttributes(&CS, AttrI);
6876     Args.push_back(Entry);
6877   }
6878 
6879   Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
6880   TargetLowering::CallLoweringInfo CLI(DAG);
6881   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6882     .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs)
6883     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
6884 
6885   return lowerInvokable(CLI, LandingPad);
6886 }
6887 
6888 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6889 /// or patchpoint target node's operand list.
6890 ///
6891 /// Constants are converted to TargetConstants purely as an optimization to
6892 /// avoid constant materialization and register allocation.
6893 ///
6894 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6895 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6896 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6897 /// address materialization and register allocation, but may also be required
6898 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6899 /// alloca in the entry block, then the runtime may assume that the alloca's
6900 /// StackMap location can be read immediately after compilation and that the
6901 /// location is valid at any point during execution (this is similar to the
6902 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6903 /// only available in a register, then the runtime would need to trap when
6904 /// execution reaches the StackMap in order to read the alloca's location.
6905 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6906                                 SmallVectorImpl<SDValue> &Ops,
6907                                 SelectionDAGBuilder &Builder) {
6908   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6909     SDValue OpVal = Builder.getValue(CS.getArgument(i));
6910     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6911       Ops.push_back(
6912         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
6913       Ops.push_back(
6914         Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
6915     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6916       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6917       Ops.push_back(
6918         Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
6919     } else
6920       Ops.push_back(OpVal);
6921   }
6922 }
6923 
6924 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6925 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6926   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6927   //                                  [live variables...])
6928 
6929   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6930 
6931   SDValue Chain, InFlag, Callee, NullPtr;
6932   SmallVector<SDValue, 32> Ops;
6933 
6934   SDLoc DL = getCurSDLoc();
6935   Callee = getValue(CI.getCalledValue());
6936   NullPtr = DAG.getIntPtrConstant(0, true);
6937 
6938   // The stackmap intrinsic only records the live variables (the arguemnts
6939   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6940   // intrinsic, this won't be lowered to a function call. This means we don't
6941   // have to worry about calling conventions and target specific lowering code.
6942   // Instead we perform the call lowering right here.
6943   //
6944   // chain, flag = CALLSEQ_START(chain, 0)
6945   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6946   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6947   //
6948   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6949   InFlag = Chain.getValue(1);
6950 
6951   // Add the <id> and <numBytes> constants.
6952   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6953   Ops.push_back(DAG.getTargetConstant(
6954                   cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
6955   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6956   Ops.push_back(DAG.getTargetConstant(
6957                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
6958 
6959   // Push live variables for the stack map.
6960   addStackMapLiveVars(&CI, 2, Ops, *this);
6961 
6962   // We are not pushing any register mask info here on the operands list,
6963   // because the stackmap doesn't clobber anything.
6964 
6965   // Push the chain and the glue flag.
6966   Ops.push_back(Chain);
6967   Ops.push_back(InFlag);
6968 
6969   // Create the STACKMAP node.
6970   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6971   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6972   Chain = SDValue(SM, 0);
6973   InFlag = Chain.getValue(1);
6974 
6975   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6976 
6977   // Stackmaps don't generate values, so nothing goes into the NodeMap.
6978 
6979   // Set the root to the target-lowered call chain.
6980   DAG.setRoot(Chain);
6981 
6982   // Inform the Frame Information that we have a stackmap in this function.
6983   FuncInfo.MF->getFrameInfo()->setHasStackMap();
6984 }
6985 
6986 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6987 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
6988                                           MachineBasicBlock *LandingPad) {
6989   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6990   //                                                 i32 <numBytes>,
6991   //                                                 i8* <target>,
6992   //                                                 i32 <numArgs>,
6993   //                                                 [Args...],
6994   //                                                 [live variables...])
6995 
6996   CallingConv::ID CC = CS.getCallingConv();
6997   bool IsAnyRegCC = CC == CallingConv::AnyReg;
6998   bool HasDef = !CS->getType()->isVoidTy();
6999   SDValue Callee = getValue(CS->getOperand(2)); // <target>
7000 
7001   // Get the real number of arguments participating in the call <numArgs>
7002   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7003   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7004 
7005   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7006   // Intrinsics include all meta-operands up to but not including CC.
7007   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7008   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7009          "Not enough arguments provided to the patchpoint intrinsic");
7010 
7011   // For AnyRegCC the arguments are lowered later on manually.
7012   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7013   std::pair<SDValue, SDValue> Result =
7014     lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC,
7015                       LandingPad, true);
7016 
7017   SDNode *CallEnd = Result.second.getNode();
7018   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7019     CallEnd = CallEnd->getOperand(0).getNode();
7020 
7021   /// Get a call instruction from the call sequence chain.
7022   /// Tail calls are not allowed.
7023   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7024          "Expected a callseq node.");
7025   SDNode *Call = CallEnd->getOperand(0).getNode();
7026   bool HasGlue = Call->getGluedNode();
7027 
7028   // Replace the target specific call node with the patchable intrinsic.
7029   SmallVector<SDValue, 8> Ops;
7030 
7031   // Add the <id> and <numBytes> constants.
7032   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7033   Ops.push_back(DAG.getTargetConstant(
7034                   cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
7035   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7036   Ops.push_back(DAG.getTargetConstant(
7037                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
7038 
7039   // Assume that the Callee is a constant address.
7040   // FIXME: handle function symbols in the future.
7041   Ops.push_back(
7042     DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
7043                           /*isTarget=*/true));
7044 
7045   // Adjust <numArgs> to account for any arguments that have been passed on the
7046   // stack instead.
7047   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7048   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7049   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7050   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
7051 
7052   // Add the calling convention
7053   Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
7054 
7055   // Add the arguments we omitted previously. The register allocator should
7056   // place these in any free register.
7057   if (IsAnyRegCC)
7058     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7059       Ops.push_back(getValue(CS.getArgument(i)));
7060 
7061   // Push the arguments from the call instruction up to the register mask.
7062   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7063   Ops.append(Call->op_begin() + 2, e);
7064 
7065   // Push live variables for the stack map.
7066   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this);
7067 
7068   // Push the register mask info.
7069   if (HasGlue)
7070     Ops.push_back(*(Call->op_end()-2));
7071   else
7072     Ops.push_back(*(Call->op_end()-1));
7073 
7074   // Push the chain (this is originally the first operand of the call, but
7075   // becomes now the last or second to last operand).
7076   Ops.push_back(*(Call->op_begin()));
7077 
7078   // Push the glue flag (last operand).
7079   if (HasGlue)
7080     Ops.push_back(*(Call->op_end()-1));
7081 
7082   SDVTList NodeTys;
7083   if (IsAnyRegCC && HasDef) {
7084     // Create the return types based on the intrinsic definition
7085     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7086     SmallVector<EVT, 3> ValueVTs;
7087     ComputeValueVTs(TLI, CS->getType(), ValueVTs);
7088     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7089 
7090     // There is always a chain and a glue type at the end
7091     ValueVTs.push_back(MVT::Other);
7092     ValueVTs.push_back(MVT::Glue);
7093     NodeTys = DAG.getVTList(ValueVTs);
7094   } else
7095     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7096 
7097   // Replace the target specific call node with a PATCHPOINT node.
7098   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7099                                          getCurSDLoc(), NodeTys, Ops);
7100 
7101   // Update the NodeMap.
7102   if (HasDef) {
7103     if (IsAnyRegCC)
7104       setValue(CS.getInstruction(), SDValue(MN, 0));
7105     else
7106       setValue(CS.getInstruction(), Result.first);
7107   }
7108 
7109   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7110   // call sequence. Furthermore the location of the chain and glue can change
7111   // when the AnyReg calling convention is used and the intrinsic returns a
7112   // value.
7113   if (IsAnyRegCC && HasDef) {
7114     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7115     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7116     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7117   } else
7118     DAG.ReplaceAllUsesWith(Call, MN);
7119   DAG.DeleteNode(Call);
7120 
7121   // Inform the Frame Information that we have a patchpoint in this function.
7122   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7123 }
7124 
7125 /// Returns an AttributeSet representing the attributes applied to the return
7126 /// value of the given call.
7127 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7128   SmallVector<Attribute::AttrKind, 2> Attrs;
7129   if (CLI.RetSExt)
7130     Attrs.push_back(Attribute::SExt);
7131   if (CLI.RetZExt)
7132     Attrs.push_back(Attribute::ZExt);
7133   if (CLI.IsInReg)
7134     Attrs.push_back(Attribute::InReg);
7135 
7136   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7137                            Attrs);
7138 }
7139 
7140 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7141 /// implementation, which just calls LowerCall.
7142 /// FIXME: When all targets are
7143 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7144 std::pair<SDValue, SDValue>
7145 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7146   // Handle the incoming return values from the call.
7147   CLI.Ins.clear();
7148   Type *OrigRetTy = CLI.RetTy;
7149   SmallVector<EVT, 4> RetTys;
7150   SmallVector<uint64_t, 4> Offsets;
7151   ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets);
7152 
7153   SmallVector<ISD::OutputArg, 4> Outs;
7154   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this);
7155 
7156   bool CanLowerReturn =
7157       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7158                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7159 
7160   SDValue DemoteStackSlot;
7161   int DemoteStackIdx = -100;
7162   if (!CanLowerReturn) {
7163     // FIXME: equivalent assert?
7164     // assert(!CS.hasInAllocaArgument() &&
7165     //        "sret demotion is incompatible with inalloca");
7166     uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy);
7167     unsigned Align  = getDataLayout()->getPrefTypeAlignment(CLI.RetTy);
7168     MachineFunction &MF = CLI.DAG.getMachineFunction();
7169     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7170     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7171 
7172     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy());
7173     ArgListEntry Entry;
7174     Entry.Node = DemoteStackSlot;
7175     Entry.Ty = StackSlotPtrType;
7176     Entry.isSExt = false;
7177     Entry.isZExt = false;
7178     Entry.isInReg = false;
7179     Entry.isSRet = true;
7180     Entry.isNest = false;
7181     Entry.isByVal = false;
7182     Entry.isReturned = false;
7183     Entry.Alignment = Align;
7184     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7185     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7186   } else {
7187     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7188       EVT VT = RetTys[I];
7189       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7190       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7191       for (unsigned i = 0; i != NumRegs; ++i) {
7192         ISD::InputArg MyFlags;
7193         MyFlags.VT = RegisterVT;
7194         MyFlags.ArgVT = VT;
7195         MyFlags.Used = CLI.IsReturnValueUsed;
7196         if (CLI.RetSExt)
7197           MyFlags.Flags.setSExt();
7198         if (CLI.RetZExt)
7199           MyFlags.Flags.setZExt();
7200         if (CLI.IsInReg)
7201           MyFlags.Flags.setInReg();
7202         CLI.Ins.push_back(MyFlags);
7203       }
7204     }
7205   }
7206 
7207   // Handle all of the outgoing arguments.
7208   CLI.Outs.clear();
7209   CLI.OutVals.clear();
7210   ArgListTy &Args = CLI.getArgs();
7211   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7212     SmallVector<EVT, 4> ValueVTs;
7213     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
7214     Type *FinalType = Args[i].Ty;
7215     if (Args[i].isByVal)
7216       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7217     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7218         FinalType, CLI.CallConv, CLI.IsVarArg);
7219     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7220          ++Value) {
7221       EVT VT = ValueVTs[Value];
7222       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7223       SDValue Op = SDValue(Args[i].Node.getNode(),
7224                            Args[i].Node.getResNo() + Value);
7225       ISD::ArgFlagsTy Flags;
7226       unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy);
7227 
7228       if (Args[i].isZExt)
7229         Flags.setZExt();
7230       if (Args[i].isSExt)
7231         Flags.setSExt();
7232       if (Args[i].isInReg)
7233         Flags.setInReg();
7234       if (Args[i].isSRet)
7235         Flags.setSRet();
7236       if (Args[i].isByVal)
7237         Flags.setByVal();
7238       if (Args[i].isInAlloca) {
7239         Flags.setInAlloca();
7240         // Set the byval flag for CCAssignFn callbacks that don't know about
7241         // inalloca.  This way we can know how many bytes we should've allocated
7242         // and how many bytes a callee cleanup function will pop.  If we port
7243         // inalloca to more targets, we'll have to add custom inalloca handling
7244         // in the various CC lowering callbacks.
7245         Flags.setByVal();
7246       }
7247       if (Args[i].isByVal || Args[i].isInAlloca) {
7248         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7249         Type *ElementTy = Ty->getElementType();
7250         Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
7251         // For ByVal, alignment should come from FE.  BE will guess if this
7252         // info is not there but there are cases it cannot get right.
7253         unsigned FrameAlign;
7254         if (Args[i].Alignment)
7255           FrameAlign = Args[i].Alignment;
7256         else
7257           FrameAlign = getByValTypeAlignment(ElementTy);
7258         Flags.setByValAlign(FrameAlign);
7259       }
7260       if (Args[i].isNest)
7261         Flags.setNest();
7262       if (NeedsRegBlock)
7263         Flags.setInConsecutiveRegs();
7264       Flags.setOrigAlign(OriginalAlignment);
7265 
7266       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7267       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7268       SmallVector<SDValue, 4> Parts(NumParts);
7269       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7270 
7271       if (Args[i].isSExt)
7272         ExtendKind = ISD::SIGN_EXTEND;
7273       else if (Args[i].isZExt)
7274         ExtendKind = ISD::ZERO_EXTEND;
7275 
7276       // Conservatively only handle 'returned' on non-vectors for now
7277       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7278         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7279                "unexpected use of 'returned'");
7280         // Before passing 'returned' to the target lowering code, ensure that
7281         // either the register MVT and the actual EVT are the same size or that
7282         // the return value and argument are extended in the same way; in these
7283         // cases it's safe to pass the argument register value unchanged as the
7284         // return register value (although it's at the target's option whether
7285         // to do so)
7286         // TODO: allow code generation to take advantage of partially preserved
7287         // registers rather than clobbering the entire register when the
7288         // parameter extension method is not compatible with the return
7289         // extension method
7290         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7291             (ExtendKind != ISD::ANY_EXTEND &&
7292              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7293         Flags.setReturned();
7294       }
7295 
7296       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7297                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7298 
7299       for (unsigned j = 0; j != NumParts; ++j) {
7300         // if it isn't first piece, alignment must be 1
7301         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7302                                i < CLI.NumFixedArgs,
7303                                i, j*Parts[j].getValueType().getStoreSize());
7304         if (NumParts > 1 && j == 0)
7305           MyFlags.Flags.setSplit();
7306         else if (j != 0)
7307           MyFlags.Flags.setOrigAlign(1);
7308 
7309         CLI.Outs.push_back(MyFlags);
7310         CLI.OutVals.push_back(Parts[j]);
7311       }
7312 
7313       if (NeedsRegBlock && Value == NumValues - 1)
7314         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7315     }
7316   }
7317 
7318   SmallVector<SDValue, 4> InVals;
7319   CLI.Chain = LowerCall(CLI, InVals);
7320 
7321   // Verify that the target's LowerCall behaved as expected.
7322   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7323          "LowerCall didn't return a valid chain!");
7324   assert((!CLI.IsTailCall || InVals.empty()) &&
7325          "LowerCall emitted a return value for a tail call!");
7326   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7327          "LowerCall didn't emit the correct number of values!");
7328 
7329   // For a tail call, the return value is merely live-out and there aren't
7330   // any nodes in the DAG representing it. Return a special value to
7331   // indicate that a tail call has been emitted and no more Instructions
7332   // should be processed in the current block.
7333   if (CLI.IsTailCall) {
7334     CLI.DAG.setRoot(CLI.Chain);
7335     return std::make_pair(SDValue(), SDValue());
7336   }
7337 
7338   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7339           assert(InVals[i].getNode() &&
7340                  "LowerCall emitted a null value!");
7341           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7342                  "LowerCall emitted a value with the wrong type!");
7343         });
7344 
7345   SmallVector<SDValue, 4> ReturnValues;
7346   if (!CanLowerReturn) {
7347     // The instruction result is the result of loading from the
7348     // hidden sret parameter.
7349     SmallVector<EVT, 1> PVTs;
7350     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7351 
7352     ComputeValueVTs(*this, PtrRetTy, PVTs);
7353     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7354     EVT PtrVT = PVTs[0];
7355 
7356     unsigned NumValues = RetTys.size();
7357     ReturnValues.resize(NumValues);
7358     SmallVector<SDValue, 4> Chains(NumValues);
7359 
7360     for (unsigned i = 0; i < NumValues; ++i) {
7361       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7362                                     CLI.DAG.getConstant(Offsets[i], PtrVT));
7363       SDValue L = CLI.DAG.getLoad(
7364           RetTys[i], CLI.DL, CLI.Chain, Add,
7365           MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false,
7366           false, false, 1);
7367       ReturnValues[i] = L;
7368       Chains[i] = L.getValue(1);
7369     }
7370 
7371     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7372   } else {
7373     // Collect the legal value parts into potentially illegal values
7374     // that correspond to the original function's return values.
7375     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7376     if (CLI.RetSExt)
7377       AssertOp = ISD::AssertSext;
7378     else if (CLI.RetZExt)
7379       AssertOp = ISD::AssertZext;
7380     unsigned CurReg = 0;
7381     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7382       EVT VT = RetTys[I];
7383       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7384       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7385 
7386       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7387                                               NumRegs, RegisterVT, VT, nullptr,
7388                                               AssertOp));
7389       CurReg += NumRegs;
7390     }
7391 
7392     // For a function returning void, there is no return value. We can't create
7393     // such a node, so we just return a null return value in that case. In
7394     // that case, nothing will actually look at the value.
7395     if (ReturnValues.empty())
7396       return std::make_pair(SDValue(), CLI.Chain);
7397   }
7398 
7399   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7400                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7401   return std::make_pair(Res, CLI.Chain);
7402 }
7403 
7404 void TargetLowering::LowerOperationWrapper(SDNode *N,
7405                                            SmallVectorImpl<SDValue> &Results,
7406                                            SelectionDAG &DAG) const {
7407   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7408   if (Res.getNode())
7409     Results.push_back(Res);
7410 }
7411 
7412 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7413   llvm_unreachable("LowerOperation not implemented for this target!");
7414 }
7415 
7416 void
7417 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7418   SDValue Op = getNonRegisterValue(V);
7419   assert((Op.getOpcode() != ISD::CopyFromReg ||
7420           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7421          "Copy from a reg to the same reg!");
7422   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7423 
7424   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7425   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
7426   SDValue Chain = DAG.getEntryNode();
7427 
7428   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7429                               FuncInfo.PreferredExtendType.end())
7430                                  ? ISD::ANY_EXTEND
7431                                  : FuncInfo.PreferredExtendType[V];
7432   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7433   PendingExports.push_back(Chain);
7434 }
7435 
7436 #include "llvm/CodeGen/SelectionDAGISel.h"
7437 
7438 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7439 /// entry block, return true.  This includes arguments used by switches, since
7440 /// the switch may expand into multiple basic blocks.
7441 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7442   // With FastISel active, we may be splitting blocks, so force creation
7443   // of virtual registers for all non-dead arguments.
7444   if (FastISel)
7445     return A->use_empty();
7446 
7447   const BasicBlock *Entry = A->getParent()->begin();
7448   for (const User *U : A->users())
7449     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7450       return false;  // Use not in entry block.
7451 
7452   return true;
7453 }
7454 
7455 void SelectionDAGISel::LowerArguments(const Function &F) {
7456   SelectionDAG &DAG = SDB->DAG;
7457   SDLoc dl = SDB->getCurSDLoc();
7458   const DataLayout *DL = TLI->getDataLayout();
7459   SmallVector<ISD::InputArg, 16> Ins;
7460 
7461   if (!FuncInfo->CanLowerReturn) {
7462     // Put in an sret pointer parameter before all the other parameters.
7463     SmallVector<EVT, 1> ValueVTs;
7464     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7465 
7466     // NOTE: Assuming that a pointer will never break down to more than one VT
7467     // or one register.
7468     ISD::ArgFlagsTy Flags;
7469     Flags.setSRet();
7470     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7471     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7472                          ISD::InputArg::NoArgIndex, 0);
7473     Ins.push_back(RetArg);
7474   }
7475 
7476   // Set up the incoming argument description vector.
7477   unsigned Idx = 1;
7478   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7479        I != E; ++I, ++Idx) {
7480     SmallVector<EVT, 4> ValueVTs;
7481     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7482     bool isArgValueUsed = !I->use_empty();
7483     unsigned PartBase = 0;
7484     Type *FinalType = I->getType();
7485     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7486       FinalType = cast<PointerType>(FinalType)->getElementType();
7487     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7488         FinalType, F.getCallingConv(), F.isVarArg());
7489     for (unsigned Value = 0, NumValues = ValueVTs.size();
7490          Value != NumValues; ++Value) {
7491       EVT VT = ValueVTs[Value];
7492       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7493       ISD::ArgFlagsTy Flags;
7494       unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy);
7495 
7496       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7497         Flags.setZExt();
7498       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7499         Flags.setSExt();
7500       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7501         Flags.setInReg();
7502       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7503         Flags.setSRet();
7504       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7505         Flags.setByVal();
7506       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7507         Flags.setInAlloca();
7508         // Set the byval flag for CCAssignFn callbacks that don't know about
7509         // inalloca.  This way we can know how many bytes we should've allocated
7510         // and how many bytes a callee cleanup function will pop.  If we port
7511         // inalloca to more targets, we'll have to add custom inalloca handling
7512         // in the various CC lowering callbacks.
7513         Flags.setByVal();
7514       }
7515       if (Flags.isByVal() || Flags.isInAlloca()) {
7516         PointerType *Ty = cast<PointerType>(I->getType());
7517         Type *ElementTy = Ty->getElementType();
7518         Flags.setByValSize(DL->getTypeAllocSize(ElementTy));
7519         // For ByVal, alignment should be passed from FE.  BE will guess if
7520         // this info is not there but there are cases it cannot get right.
7521         unsigned FrameAlign;
7522         if (F.getParamAlignment(Idx))
7523           FrameAlign = F.getParamAlignment(Idx);
7524         else
7525           FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7526         Flags.setByValAlign(FrameAlign);
7527       }
7528       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7529         Flags.setNest();
7530       if (NeedsRegBlock)
7531         Flags.setInConsecutiveRegs();
7532       Flags.setOrigAlign(OriginalAlignment);
7533 
7534       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7535       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7536       for (unsigned i = 0; i != NumRegs; ++i) {
7537         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7538                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7539         if (NumRegs > 1 && i == 0)
7540           MyFlags.Flags.setSplit();
7541         // if it isn't first piece, alignment must be 1
7542         else if (i > 0)
7543           MyFlags.Flags.setOrigAlign(1);
7544         Ins.push_back(MyFlags);
7545       }
7546       if (NeedsRegBlock && Value == NumValues - 1)
7547         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7548       PartBase += VT.getStoreSize();
7549     }
7550   }
7551 
7552   // Call the target to set up the argument values.
7553   SmallVector<SDValue, 8> InVals;
7554   SDValue NewRoot = TLI->LowerFormalArguments(
7555       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7556 
7557   // Verify that the target's LowerFormalArguments behaved as expected.
7558   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7559          "LowerFormalArguments didn't return a valid chain!");
7560   assert(InVals.size() == Ins.size() &&
7561          "LowerFormalArguments didn't emit the correct number of values!");
7562   DEBUG({
7563       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7564         assert(InVals[i].getNode() &&
7565                "LowerFormalArguments emitted a null value!");
7566         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7567                "LowerFormalArguments emitted a value with the wrong type!");
7568       }
7569     });
7570 
7571   // Update the DAG with the new chain value resulting from argument lowering.
7572   DAG.setRoot(NewRoot);
7573 
7574   // Set up the argument values.
7575   unsigned i = 0;
7576   Idx = 1;
7577   if (!FuncInfo->CanLowerReturn) {
7578     // Create a virtual register for the sret pointer, and put in a copy
7579     // from the sret argument into it.
7580     SmallVector<EVT, 1> ValueVTs;
7581     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7582     MVT VT = ValueVTs[0].getSimpleVT();
7583     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7584     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7585     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7586                                         RegVT, VT, nullptr, AssertOp);
7587 
7588     MachineFunction& MF = SDB->DAG.getMachineFunction();
7589     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7590     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7591     FuncInfo->DemoteRegister = SRetReg;
7592     NewRoot =
7593         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7594     DAG.setRoot(NewRoot);
7595 
7596     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7597     // Idx indexes LLVM arguments.  Don't touch it.
7598     ++i;
7599   }
7600 
7601   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7602       ++I, ++Idx) {
7603     SmallVector<SDValue, 4> ArgValues;
7604     SmallVector<EVT, 4> ValueVTs;
7605     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7606     unsigned NumValues = ValueVTs.size();
7607 
7608     // If this argument is unused then remember its value. It is used to generate
7609     // debugging information.
7610     if (I->use_empty() && NumValues) {
7611       SDB->setUnusedArgValue(I, InVals[i]);
7612 
7613       // Also remember any frame index for use in FastISel.
7614       if (FrameIndexSDNode *FI =
7615           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7616         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7617     }
7618 
7619     for (unsigned Val = 0; Val != NumValues; ++Val) {
7620       EVT VT = ValueVTs[Val];
7621       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7622       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7623 
7624       if (!I->use_empty()) {
7625         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7626         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7627           AssertOp = ISD::AssertSext;
7628         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7629           AssertOp = ISD::AssertZext;
7630 
7631         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7632                                              NumParts, PartVT, VT,
7633                                              nullptr, AssertOp));
7634       }
7635 
7636       i += NumParts;
7637     }
7638 
7639     // We don't need to do anything else for unused arguments.
7640     if (ArgValues.empty())
7641       continue;
7642 
7643     // Note down frame index.
7644     if (FrameIndexSDNode *FI =
7645         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7646       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7647 
7648     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7649                                      SDB->getCurSDLoc());
7650 
7651     SDB->setValue(I, Res);
7652     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7653       if (LoadSDNode *LNode =
7654           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7655         if (FrameIndexSDNode *FI =
7656             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7657         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7658     }
7659 
7660     // If this argument is live outside of the entry block, insert a copy from
7661     // wherever we got it to the vreg that other BB's will reference it as.
7662     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7663       // If we can, though, try to skip creating an unnecessary vreg.
7664       // FIXME: This isn't very clean... it would be nice to make this more
7665       // general.  It's also subtly incompatible with the hacks FastISel
7666       // uses with vregs.
7667       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7668       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7669         FuncInfo->ValueMap[I] = Reg;
7670         continue;
7671       }
7672     }
7673     if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7674       FuncInfo->InitializeRegForValue(I);
7675       SDB->CopyToExportRegsIfNeeded(I);
7676     }
7677   }
7678 
7679   assert(i == InVals.size() && "Argument register count mismatch!");
7680 
7681   // Finally, if the target has anything special to do, allow it to do so.
7682   EmitFunctionEntryCode();
7683 }
7684 
7685 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7686 /// ensure constants are generated when needed.  Remember the virtual registers
7687 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7688 /// directly add them, because expansion might result in multiple MBB's for one
7689 /// BB.  As such, the start of the BB might correspond to a different MBB than
7690 /// the end.
7691 ///
7692 void
7693 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7694   const TerminatorInst *TI = LLVMBB->getTerminator();
7695 
7696   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7697 
7698   // Check PHI nodes in successors that expect a value to be available from this
7699   // block.
7700   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7701     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7702     if (!isa<PHINode>(SuccBB->begin())) continue;
7703     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7704 
7705     // If this terminator has multiple identical successors (common for
7706     // switches), only handle each succ once.
7707     if (!SuccsHandled.insert(SuccMBB).second)
7708       continue;
7709 
7710     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7711 
7712     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7713     // nodes and Machine PHI nodes, but the incoming operands have not been
7714     // emitted yet.
7715     for (BasicBlock::const_iterator I = SuccBB->begin();
7716          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7717       // Ignore dead phi's.
7718       if (PN->use_empty()) continue;
7719 
7720       // Skip empty types
7721       if (PN->getType()->isEmptyTy())
7722         continue;
7723 
7724       unsigned Reg;
7725       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7726 
7727       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7728         unsigned &RegOut = ConstantsOut[C];
7729         if (RegOut == 0) {
7730           RegOut = FuncInfo.CreateRegs(C->getType());
7731           CopyValueToVirtualRegister(C, RegOut);
7732         }
7733         Reg = RegOut;
7734       } else {
7735         DenseMap<const Value *, unsigned>::iterator I =
7736           FuncInfo.ValueMap.find(PHIOp);
7737         if (I != FuncInfo.ValueMap.end())
7738           Reg = I->second;
7739         else {
7740           assert(isa<AllocaInst>(PHIOp) &&
7741                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7742                  "Didn't codegen value into a register!??");
7743           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7744           CopyValueToVirtualRegister(PHIOp, Reg);
7745         }
7746       }
7747 
7748       // Remember that this register needs to added to the machine PHI node as
7749       // the input for this MBB.
7750       SmallVector<EVT, 4> ValueVTs;
7751       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7752       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
7753       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7754         EVT VT = ValueVTs[vti];
7755         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7756         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7757           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7758         Reg += NumRegisters;
7759       }
7760     }
7761   }
7762 
7763   ConstantsOut.clear();
7764 }
7765 
7766 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7767 /// is 0.
7768 MachineBasicBlock *
7769 SelectionDAGBuilder::StackProtectorDescriptor::
7770 AddSuccessorMBB(const BasicBlock *BB,
7771                 MachineBasicBlock *ParentMBB,
7772                 bool IsLikely,
7773                 MachineBasicBlock *SuccMBB) {
7774   // If SuccBB has not been created yet, create it.
7775   if (!SuccMBB) {
7776     MachineFunction *MF = ParentMBB->getParent();
7777     MachineFunction::iterator BBI = ParentMBB;
7778     SuccMBB = MF->CreateMachineBasicBlock(BB);
7779     MF->insert(++BBI, SuccMBB);
7780   }
7781   // Add it as a successor of ParentMBB.
7782   ParentMBB->addSuccessor(
7783       SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely));
7784   return SuccMBB;
7785 }
7786 
7787 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7788   MachineFunction::iterator I = MBB;
7789   if (++I == FuncInfo.MF->end())
7790     return nullptr;
7791   return I;
7792 }
7793