1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/MachineValueType.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include "llvm/Target/TargetIntrinsicInfo.h" 108 #include "llvm/Target/TargetMachine.h" 109 #include "llvm/Target/TargetOptions.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <cstring> 115 #include <iterator> 116 #include <limits> 117 #include <numeric> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "isel" 125 126 /// LimitFloatPrecision - Generate low-precision inline sequences for 127 /// some float libcalls (6, 8 or 12 bits). 128 static unsigned LimitFloatPrecision; 129 130 static cl::opt<unsigned, true> 131 LimitFPPrecision("limit-float-precision", 132 cl::desc("Generate low-precision inline sequences " 133 "for some float libcalls"), 134 cl::location(LimitFloatPrecision), cl::Hidden, 135 cl::init(0)); 136 137 static cl::opt<unsigned> SwitchPeelThreshold( 138 "switch-peel-threshold", cl::Hidden, cl::init(66), 139 cl::desc("Set the case probability threshold for peeling the case from a " 140 "switch statement. A value greater than 100 will void this " 141 "optimization")); 142 143 // Limit the width of DAG chains. This is important in general to prevent 144 // DAG-based analysis from blowing up. For example, alias analysis and 145 // load clustering may not complete in reasonable time. It is difficult to 146 // recognize and avoid this situation within each individual analysis, and 147 // future analyses are likely to have the same behavior. Limiting DAG width is 148 // the safe approach and will be especially important with global DAGs. 149 // 150 // MaxParallelChains default is arbitrarily high to avoid affecting 151 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 152 // sequence over this should have been converted to llvm.memcpy by the 153 // frontend. It is easy to induce this behavior with .ll code such as: 154 // %buffer = alloca [4096 x i8] 155 // %data = load [4096 x i8]* %argPtr 156 // store [4096 x i8] %data, [4096 x i8]* %buffer 157 static const unsigned MaxParallelChains = 64; 158 159 // True if the Value passed requires ABI mangling as it is a parameter to a 160 // function or a return value from a function which is not an intrinsic. 161 static bool isABIRegCopy(const Value *V) { 162 const bool IsRetInst = V && isa<ReturnInst>(V); 163 const bool IsCallInst = V && isa<CallInst>(V); 164 const bool IsInLineAsm = 165 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 166 const bool IsIndirectFunctionCall = 167 IsCallInst && !IsInLineAsm && 168 !static_cast<const CallInst *>(V)->getCalledFunction(); 169 // It is possible that the call instruction is an inline asm statement or an 170 // indirect function call in which case the return value of 171 // getCalledFunction() would be nullptr. 172 const bool IsInstrinsicCall = 173 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 174 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 175 Intrinsic::not_intrinsic; 176 177 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 178 } 179 180 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 181 const SDValue *Parts, unsigned NumParts, 182 MVT PartVT, EVT ValueVT, const Value *V, 183 bool IsABIRegCopy); 184 185 /// getCopyFromParts - Create a value that contains the specified legal parts 186 /// combined into the value they represent. If the parts combine to a type 187 /// larger than ValueVT then AssertOp can be used to specify whether the extra 188 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 189 /// (ISD::AssertSext). 190 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 191 const SDValue *Parts, unsigned NumParts, 192 MVT PartVT, EVT ValueVT, const Value *V, 193 Optional<ISD::NodeType> AssertOp = None, 194 bool IsABIRegCopy = false) { 195 if (ValueVT.isVector()) 196 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 197 PartVT, ValueVT, V, IsABIRegCopy); 198 199 assert(NumParts > 0 && "No parts to assemble!"); 200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 201 SDValue Val = Parts[0]; 202 203 if (NumParts > 1) { 204 // Assemble the value from multiple parts. 205 if (ValueVT.isInteger()) { 206 unsigned PartBits = PartVT.getSizeInBits(); 207 unsigned ValueBits = ValueVT.getSizeInBits(); 208 209 // Assemble the power of 2 part. 210 unsigned RoundParts = NumParts & (NumParts - 1) ? 211 1 << Log2_32(NumParts) : NumParts; 212 unsigned RoundBits = PartBits * RoundParts; 213 EVT RoundVT = RoundBits == ValueBits ? 214 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 215 SDValue Lo, Hi; 216 217 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 218 219 if (RoundParts > 2) { 220 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 221 PartVT, HalfVT, V); 222 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 223 RoundParts / 2, PartVT, HalfVT, V); 224 } else { 225 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 226 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 227 } 228 229 if (DAG.getDataLayout().isBigEndian()) 230 std::swap(Lo, Hi); 231 232 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 233 234 if (RoundParts < NumParts) { 235 // Assemble the trailing non-power-of-2 part. 236 unsigned OddParts = NumParts - RoundParts; 237 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 238 Hi = getCopyFromParts(DAG, DL, 239 Parts + RoundParts, OddParts, PartVT, OddVT, V); 240 241 // Combine the round and odd parts. 242 Lo = Val; 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 246 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 247 Hi = 248 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 249 DAG.getConstant(Lo.getValueSizeInBits(), DL, 250 TLI.getPointerTy(DAG.getDataLayout()))); 251 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 252 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 253 } 254 } else if (PartVT.isFloatingPoint()) { 255 // FP split into multiple FP parts (for ppcf128) 256 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 257 "Unexpected split"); 258 SDValue Lo, Hi; 259 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 260 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 261 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 262 std::swap(Lo, Hi); 263 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 264 } else { 265 // FP split into integer parts (soft fp) 266 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 267 !PartVT.isVector() && "Unexpected split"); 268 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 269 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 270 } 271 } 272 273 // There is now one part, held in Val. Correct it to match ValueVT. 274 // PartEVT is the type of the register class that holds the value. 275 // ValueVT is the type of the inline asm operation. 276 EVT PartEVT = Val.getValueType(); 277 278 if (PartEVT == ValueVT) 279 return Val; 280 281 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 282 ValueVT.bitsLT(PartEVT)) { 283 // For an FP value in an integer part, we need to truncate to the right 284 // width first. 285 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 286 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 287 } 288 289 // Handle types that have the same size. 290 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 291 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 292 293 // Handle types with different sizes. 294 if (PartEVT.isInteger() && ValueVT.isInteger()) { 295 if (ValueVT.bitsLT(PartEVT)) { 296 // For a truncate, see if we have any information to 297 // indicate whether the truncated bits will always be 298 // zero or sign-extension. 299 if (AssertOp.hasValue()) 300 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 301 DAG.getValueType(ValueVT)); 302 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 303 } 304 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 305 } 306 307 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 308 // FP_ROUND's are always exact here. 309 if (ValueVT.bitsLT(Val.getValueType())) 310 return DAG.getNode( 311 ISD::FP_ROUND, DL, ValueVT, Val, 312 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 313 314 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 315 } 316 317 llvm_unreachable("Unknown mismatch!"); 318 } 319 320 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 321 const Twine &ErrMsg) { 322 const Instruction *I = dyn_cast_or_null<Instruction>(V); 323 if (!V) 324 return Ctx.emitError(ErrMsg); 325 326 const char *AsmError = ", possible invalid constraint for vector type"; 327 if (const CallInst *CI = dyn_cast<CallInst>(I)) 328 if (isa<InlineAsm>(CI->getCalledValue())) 329 return Ctx.emitError(I, ErrMsg + AsmError); 330 331 return Ctx.emitError(I, ErrMsg); 332 } 333 334 /// getCopyFromPartsVector - Create a value that contains the specified legal 335 /// parts combined into the value they represent. If the parts combine to a 336 /// type larger than ValueVT then AssertOp can be used to specify whether the 337 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 338 /// ValueVT (ISD::AssertSext). 339 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 340 const SDValue *Parts, unsigned NumParts, 341 MVT PartVT, EVT ValueVT, const Value *V, 342 bool IsABIRegCopy) { 343 assert(ValueVT.isVector() && "Not a vector value"); 344 assert(NumParts > 0 && "No parts to assemble!"); 345 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 346 SDValue Val = Parts[0]; 347 348 // Handle a multi-element vector. 349 if (NumParts > 1) { 350 EVT IntermediateVT; 351 MVT RegisterVT; 352 unsigned NumIntermediates; 353 unsigned NumRegs; 354 355 if (IsABIRegCopy) { 356 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 357 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 358 RegisterVT); 359 } else { 360 NumRegs = 361 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 362 NumIntermediates, RegisterVT); 363 } 364 365 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 366 NumParts = NumRegs; // Silence a compiler warning. 367 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 368 assert(RegisterVT.getSizeInBits() == 369 Parts[0].getSimpleValueType().getSizeInBits() && 370 "Part type sizes don't match!"); 371 372 // Assemble the parts into intermediate operands. 373 SmallVector<SDValue, 8> Ops(NumIntermediates); 374 if (NumIntermediates == NumParts) { 375 // If the register was not expanded, truncate or copy the value, 376 // as appropriate. 377 for (unsigned i = 0; i != NumParts; ++i) 378 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 379 PartVT, IntermediateVT, V); 380 } else if (NumParts > 0) { 381 // If the intermediate type was expanded, build the intermediate 382 // operands from the parts. 383 assert(NumParts % NumIntermediates == 0 && 384 "Must expand into a divisible number of parts!"); 385 unsigned Factor = NumParts / NumIntermediates; 386 for (unsigned i = 0; i != NumIntermediates; ++i) 387 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 388 PartVT, IntermediateVT, V); 389 } 390 391 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 392 // intermediate operands. 393 EVT BuiltVectorTy = 394 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 395 (IntermediateVT.isVector() 396 ? IntermediateVT.getVectorNumElements() * NumParts 397 : NumIntermediates)); 398 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 399 : ISD::BUILD_VECTOR, 400 DL, BuiltVectorTy, Ops); 401 } 402 403 // There is now one part, held in Val. Correct it to match ValueVT. 404 EVT PartEVT = Val.getValueType(); 405 406 if (PartEVT == ValueVT) 407 return Val; 408 409 if (PartEVT.isVector()) { 410 // If the element type of the source/dest vectors are the same, but the 411 // parts vector has more elements than the value vector, then we have a 412 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 413 // elements we want. 414 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 415 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 416 "Cannot narrow, it would be a lossy transformation"); 417 return DAG.getNode( 418 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 419 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 420 } 421 422 // Vector/Vector bitcast. 423 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 424 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 425 426 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 427 "Cannot handle this kind of promotion"); 428 // Promoted vector extract 429 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 430 431 } 432 433 // Trivial bitcast if the types are the same size and the destination 434 // vector type is legal. 435 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 436 TLI.isTypeLegal(ValueVT)) 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 439 if (ValueVT.getVectorNumElements() != 1) { 440 // Certain ABIs require that vectors are passed as integers. For vectors 441 // are the same size, this is an obvious bitcast. 442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 444 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 445 // Bitcast Val back the original type and extract the corresponding 446 // vector we want. 447 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 448 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 449 ValueVT.getVectorElementType(), Elts); 450 Val = DAG.getBitcast(WiderVecType, Val); 451 return DAG.getNode( 452 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 453 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 454 } 455 456 diagnosePossiblyInvalidConstraint( 457 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 458 return DAG.getUNDEF(ValueVT); 459 } 460 461 // Handle cases such as i8 -> <1 x i1> 462 EVT ValueSVT = ValueVT.getVectorElementType(); 463 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 464 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 465 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 466 467 return DAG.getBuildVector(ValueVT, DL, Val); 468 } 469 470 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V, bool IsABIRegCopy); 473 474 /// getCopyToParts - Create a series of nodes that contain the specified value 475 /// split into legal parts. If the parts contain more bits than Val, then, for 476 /// integers, ExtendKind can be used to specify how to generate the extra bits. 477 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 478 SDValue *Parts, unsigned NumParts, MVT PartVT, 479 const Value *V, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 481 bool IsABIRegCopy = false) { 482 EVT ValueVT = Val.getValueType(); 483 484 // Handle the vector case separately. 485 if (ValueVT.isVector()) 486 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 487 IsABIRegCopy); 488 489 unsigned PartBits = PartVT.getSizeInBits(); 490 unsigned OrigNumParts = NumParts; 491 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 492 "Copying to an illegal type!"); 493 494 if (NumParts == 0) 495 return; 496 497 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 498 EVT PartEVT = PartVT; 499 if (PartEVT == ValueVT) { 500 assert(NumParts == 1 && "No-op copy with multiple parts!"); 501 Parts[0] = Val; 502 return; 503 } 504 505 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 506 // If the parts cover more bits than the value has, promote the value. 507 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 508 assert(NumParts == 1 && "Do not know what to promote to!"); 509 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 510 } else { 511 if (ValueVT.isFloatingPoint()) { 512 // FP values need to be bitcast, then extended if they are being put 513 // into a larger container. 514 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 515 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 516 } 517 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 518 ValueVT.isInteger() && 519 "Unknown mismatch!"); 520 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 521 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 522 if (PartVT == MVT::x86mmx) 523 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 524 } 525 } else if (PartBits == ValueVT.getSizeInBits()) { 526 // Different types of the same size. 527 assert(NumParts == 1 && PartEVT != ValueVT); 528 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 529 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 530 // If the parts cover less bits than value has, truncate the value. 531 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 532 ValueVT.isInteger() && 533 "Unknown mismatch!"); 534 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 535 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 536 if (PartVT == MVT::x86mmx) 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } 539 540 // The value may have changed - recompute ValueVT. 541 ValueVT = Val.getValueType(); 542 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 543 "Failed to tile the value with PartVT!"); 544 545 if (NumParts == 1) { 546 if (PartEVT != ValueVT) { 547 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 548 "scalar-to-vector conversion failed"); 549 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 550 } 551 552 Parts[0] = Val; 553 return; 554 } 555 556 // Expand the value into multiple parts. 557 if (NumParts & (NumParts - 1)) { 558 // The number of parts is not a power of 2. Split off and copy the tail. 559 assert(PartVT.isInteger() && ValueVT.isInteger() && 560 "Do not know what to expand to!"); 561 unsigned RoundParts = 1 << Log2_32(NumParts); 562 unsigned RoundBits = RoundParts * PartBits; 563 unsigned OddParts = NumParts - RoundParts; 564 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 565 DAG.getIntPtrConstant(RoundBits, DL)); 566 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 567 568 if (DAG.getDataLayout().isBigEndian()) 569 // The odd parts were reversed by getCopyToParts - unreverse them. 570 std::reverse(Parts + RoundParts, Parts + NumParts); 571 572 NumParts = RoundParts; 573 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 574 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 575 } 576 577 // The number of parts is a power of 2. Repeatedly bisect the value using 578 // EXTRACT_ELEMENT. 579 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 580 EVT::getIntegerVT(*DAG.getContext(), 581 ValueVT.getSizeInBits()), 582 Val); 583 584 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 585 for (unsigned i = 0; i < NumParts; i += StepSize) { 586 unsigned ThisBits = StepSize * PartBits / 2; 587 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 588 SDValue &Part0 = Parts[i]; 589 SDValue &Part1 = Parts[i+StepSize/2]; 590 591 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 592 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 593 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 594 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 595 596 if (ThisBits == PartBits && ThisVT != PartVT) { 597 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 598 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 599 } 600 } 601 } 602 603 if (DAG.getDataLayout().isBigEndian()) 604 std::reverse(Parts, Parts + OrigNumParts); 605 } 606 607 608 /// getCopyToPartsVector - Create a series of nodes that contain the specified 609 /// value split into legal parts. 610 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 611 SDValue Val, SDValue *Parts, unsigned NumParts, 612 MVT PartVT, const Value *V, 613 bool IsABIRegCopy) { 614 EVT ValueVT = Val.getValueType(); 615 assert(ValueVT.isVector() && "Not a vector"); 616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 617 618 if (NumParts == 1) { 619 EVT PartEVT = PartVT; 620 if (PartEVT == ValueVT) { 621 // Nothing to do. 622 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 623 // Bitconvert vector->vector case. 624 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 625 } else if (PartVT.isVector() && 626 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 627 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 628 EVT ElementVT = PartVT.getVectorElementType(); 629 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 630 // undef elements. 631 SmallVector<SDValue, 16> Ops; 632 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 633 Ops.push_back(DAG.getNode( 634 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 635 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 636 637 for (unsigned i = ValueVT.getVectorNumElements(), 638 e = PartVT.getVectorNumElements(); i != e; ++i) 639 Ops.push_back(DAG.getUNDEF(ElementVT)); 640 641 Val = DAG.getBuildVector(PartVT, DL, Ops); 642 643 // FIXME: Use CONCAT for 2x -> 4x. 644 645 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 646 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 647 } else if (PartVT.isVector() && 648 PartEVT.getVectorElementType().bitsGE( 649 ValueVT.getVectorElementType()) && 650 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 651 652 // Promoted vector extract 653 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 654 } else { 655 if (ValueVT.getVectorNumElements() == 1) { 656 Val = DAG.getNode( 657 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 658 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 659 } else { 660 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 661 "lossy conversion of vector to scalar type"); 662 EVT IntermediateType = 663 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 664 Val = DAG.getBitcast(IntermediateType, Val); 665 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 666 } 667 } 668 669 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 670 Parts[0] = Val; 671 return; 672 } 673 674 // Handle a multi-element vector. 675 EVT IntermediateVT; 676 MVT RegisterVT; 677 unsigned NumIntermediates; 678 unsigned NumRegs; 679 if (IsABIRegCopy) { 680 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 681 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 682 RegisterVT); 683 } else { 684 NumRegs = 685 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 686 NumIntermediates, RegisterVT); 687 } 688 unsigned NumElements = ValueVT.getVectorNumElements(); 689 690 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 691 NumParts = NumRegs; // Silence a compiler warning. 692 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 693 694 // Convert the vector to the appropiate type if necessary. 695 unsigned DestVectorNoElts = 696 NumIntermediates * 697 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 698 EVT BuiltVectorTy = EVT::getVectorVT( 699 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 700 if (Val.getValueType() != BuiltVectorTy) 701 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 702 703 // Split the vector into intermediate operands. 704 SmallVector<SDValue, 8> Ops(NumIntermediates); 705 for (unsigned i = 0; i != NumIntermediates; ++i) { 706 if (IntermediateVT.isVector()) 707 Ops[i] = 708 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 709 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 710 TLI.getVectorIdxTy(DAG.getDataLayout()))); 711 else 712 Ops[i] = DAG.getNode( 713 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 714 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 715 } 716 717 // Split the intermediate operands into legal parts. 718 if (NumParts == NumIntermediates) { 719 // If the register was not expanded, promote or copy the value, 720 // as appropriate. 721 for (unsigned i = 0; i != NumParts; ++i) 722 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 723 } else if (NumParts > 0) { 724 // If the intermediate type was expanded, split each the value into 725 // legal parts. 726 assert(NumIntermediates != 0 && "division by zero"); 727 assert(NumParts % NumIntermediates == 0 && 728 "Must expand into a divisible number of parts!"); 729 unsigned Factor = NumParts / NumIntermediates; 730 for (unsigned i = 0; i != NumIntermediates; ++i) 731 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 732 } 733 } 734 735 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 736 EVT valuevt, bool IsABIMangledValue) 737 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 738 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 739 740 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 741 const DataLayout &DL, unsigned Reg, Type *Ty, 742 bool IsABIMangledValue) { 743 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 744 745 IsABIMangled = IsABIMangledValue; 746 747 for (EVT ValueVT : ValueVTs) { 748 unsigned NumRegs = IsABIMangledValue 749 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 750 : TLI.getNumRegisters(Context, ValueVT); 751 MVT RegisterVT = IsABIMangledValue 752 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 753 : TLI.getRegisterType(Context, ValueVT); 754 for (unsigned i = 0; i != NumRegs; ++i) 755 Regs.push_back(Reg + i); 756 RegVTs.push_back(RegisterVT); 757 RegCount.push_back(NumRegs); 758 Reg += NumRegs; 759 } 760 } 761 762 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 763 FunctionLoweringInfo &FuncInfo, 764 const SDLoc &dl, SDValue &Chain, 765 SDValue *Flag, const Value *V) const { 766 // A Value with type {} or [0 x %t] needs no registers. 767 if (ValueVTs.empty()) 768 return SDValue(); 769 770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 771 772 // Assemble the legal parts into the final values. 773 SmallVector<SDValue, 4> Values(ValueVTs.size()); 774 SmallVector<SDValue, 8> Parts; 775 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 776 // Copy the legal parts from the registers. 777 EVT ValueVT = ValueVTs[Value]; 778 unsigned NumRegs = RegCount[Value]; 779 MVT RegisterVT = IsABIMangled 780 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 781 : RegVTs[Value]; 782 783 Parts.resize(NumRegs); 784 for (unsigned i = 0; i != NumRegs; ++i) { 785 SDValue P; 786 if (!Flag) { 787 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 788 } else { 789 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 790 *Flag = P.getValue(2); 791 } 792 793 Chain = P.getValue(1); 794 Parts[i] = P; 795 796 // If the source register was virtual and if we know something about it, 797 // add an assert node. 798 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 799 !RegisterVT.isInteger() || RegisterVT.isVector()) 800 continue; 801 802 const FunctionLoweringInfo::LiveOutInfo *LOI = 803 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 804 if (!LOI) 805 continue; 806 807 unsigned RegSize = RegisterVT.getSizeInBits(); 808 unsigned NumSignBits = LOI->NumSignBits; 809 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 810 811 if (NumZeroBits == RegSize) { 812 // The current value is a zero. 813 // Explicitly express that as it would be easier for 814 // optimizations to kick in. 815 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 816 continue; 817 } 818 819 // FIXME: We capture more information than the dag can represent. For 820 // now, just use the tightest assertzext/assertsext possible. 821 bool isSExt = true; 822 EVT FromVT(MVT::Other); 823 if (NumSignBits == RegSize) { 824 isSExt = true; // ASSERT SEXT 1 825 FromVT = MVT::i1; 826 } else if (NumZeroBits >= RegSize - 1) { 827 isSExt = false; // ASSERT ZEXT 1 828 FromVT = MVT::i1; 829 } else if (NumSignBits > RegSize - 8) { 830 isSExt = true; // ASSERT SEXT 8 831 FromVT = MVT::i8; 832 } else if (NumZeroBits >= RegSize - 8) { 833 isSExt = false; // ASSERT ZEXT 8 834 FromVT = MVT::i8; 835 } else if (NumSignBits > RegSize - 16) { 836 isSExt = true; // ASSERT SEXT 16 837 FromVT = MVT::i16; 838 } else if (NumZeroBits >= RegSize - 16) { 839 isSExt = false; // ASSERT ZEXT 16 840 FromVT = MVT::i16; 841 } else if (NumSignBits > RegSize - 32) { 842 isSExt = true; // ASSERT SEXT 32 843 FromVT = MVT::i32; 844 } else if (NumZeroBits >= RegSize - 32) { 845 isSExt = false; // ASSERT ZEXT 32 846 FromVT = MVT::i32; 847 } else { 848 continue; 849 } 850 // Add an assertion node. 851 assert(FromVT != MVT::Other); 852 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 853 RegisterVT, P, DAG.getValueType(FromVT)); 854 } 855 856 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 857 NumRegs, RegisterVT, ValueVT, V); 858 Part += NumRegs; 859 Parts.clear(); 860 } 861 862 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 863 } 864 865 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 866 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 867 const Value *V, 868 ISD::NodeType PreferredExtendType) const { 869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 870 ISD::NodeType ExtendKind = PreferredExtendType; 871 872 // Get the list of the values's legal parts. 873 unsigned NumRegs = Regs.size(); 874 SmallVector<SDValue, 8> Parts(NumRegs); 875 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 876 unsigned NumParts = RegCount[Value]; 877 878 MVT RegisterVT = IsABIMangled 879 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 880 : RegVTs[Value]; 881 882 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 883 ExtendKind = ISD::ZERO_EXTEND; 884 885 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 886 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 887 Part += NumParts; 888 } 889 890 // Copy the parts into the registers. 891 SmallVector<SDValue, 8> Chains(NumRegs); 892 for (unsigned i = 0; i != NumRegs; ++i) { 893 SDValue Part; 894 if (!Flag) { 895 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 896 } else { 897 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 898 *Flag = Part.getValue(1); 899 } 900 901 Chains[i] = Part.getValue(0); 902 } 903 904 if (NumRegs == 1 || Flag) 905 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 906 // flagged to it. That is the CopyToReg nodes and the user are considered 907 // a single scheduling unit. If we create a TokenFactor and return it as 908 // chain, then the TokenFactor is both a predecessor (operand) of the 909 // user as well as a successor (the TF operands are flagged to the user). 910 // c1, f1 = CopyToReg 911 // c2, f2 = CopyToReg 912 // c3 = TokenFactor c1, c2 913 // ... 914 // = op c3, ..., f2 915 Chain = Chains[NumRegs-1]; 916 else 917 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 918 } 919 920 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 921 unsigned MatchingIdx, const SDLoc &dl, 922 SelectionDAG &DAG, 923 std::vector<SDValue> &Ops) const { 924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 925 926 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 927 if (HasMatching) 928 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 929 else if (!Regs.empty() && 930 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 931 // Put the register class of the virtual registers in the flag word. That 932 // way, later passes can recompute register class constraints for inline 933 // assembly as well as normal instructions. 934 // Don't do this for tied operands that can use the regclass information 935 // from the def. 936 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 937 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 938 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 939 } 940 941 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 942 Ops.push_back(Res); 943 944 if (Code == InlineAsm::Kind_Clobber) { 945 // Clobbers should always have a 1:1 mapping with registers, and may 946 // reference registers that have illegal (e.g. vector) types. Hence, we 947 // shouldn't try to apply any sort of splitting logic to them. 948 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 949 "No 1:1 mapping from clobbers to regs?"); 950 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 951 (void)SP; 952 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 953 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 954 assert( 955 (Regs[I] != SP || 956 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 957 "If we clobbered the stack pointer, MFI should know about it."); 958 } 959 return; 960 } 961 962 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 963 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 964 MVT RegisterVT = RegVTs[Value]; 965 for (unsigned i = 0; i != NumRegs; ++i) { 966 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 967 unsigned TheReg = Regs[Reg++]; 968 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 969 } 970 } 971 } 972 973 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 974 const TargetLibraryInfo *li) { 975 AA = aa; 976 GFI = gfi; 977 LibInfo = li; 978 DL = &DAG.getDataLayout(); 979 Context = DAG.getContext(); 980 LPadToCallSiteMap.clear(); 981 } 982 983 void SelectionDAGBuilder::clear() { 984 NodeMap.clear(); 985 UnusedArgNodeMap.clear(); 986 PendingLoads.clear(); 987 PendingExports.clear(); 988 CurInst = nullptr; 989 HasTailCall = false; 990 SDNodeOrder = LowestSDNodeOrder; 991 StatepointLowering.clear(); 992 } 993 994 void SelectionDAGBuilder::clearDanglingDebugInfo() { 995 DanglingDebugInfoMap.clear(); 996 } 997 998 SDValue SelectionDAGBuilder::getRoot() { 999 if (PendingLoads.empty()) 1000 return DAG.getRoot(); 1001 1002 if (PendingLoads.size() == 1) { 1003 SDValue Root = PendingLoads[0]; 1004 DAG.setRoot(Root); 1005 PendingLoads.clear(); 1006 return Root; 1007 } 1008 1009 // Otherwise, we have to make a token factor node. 1010 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1011 PendingLoads); 1012 PendingLoads.clear(); 1013 DAG.setRoot(Root); 1014 return Root; 1015 } 1016 1017 SDValue SelectionDAGBuilder::getControlRoot() { 1018 SDValue Root = DAG.getRoot(); 1019 1020 if (PendingExports.empty()) 1021 return Root; 1022 1023 // Turn all of the CopyToReg chains into one factored node. 1024 if (Root.getOpcode() != ISD::EntryToken) { 1025 unsigned i = 0, e = PendingExports.size(); 1026 for (; i != e; ++i) { 1027 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1028 if (PendingExports[i].getNode()->getOperand(0) == Root) 1029 break; // Don't add the root if we already indirectly depend on it. 1030 } 1031 1032 if (i == e) 1033 PendingExports.push_back(Root); 1034 } 1035 1036 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1037 PendingExports); 1038 PendingExports.clear(); 1039 DAG.setRoot(Root); 1040 return Root; 1041 } 1042 1043 void SelectionDAGBuilder::visit(const Instruction &I) { 1044 // Set up outgoing PHI node register values before emitting the terminator. 1045 if (isa<TerminatorInst>(&I)) { 1046 HandlePHINodesInSuccessorBlocks(I.getParent()); 1047 } 1048 1049 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1050 if (!isa<DbgInfoIntrinsic>(I)) 1051 ++SDNodeOrder; 1052 1053 CurInst = &I; 1054 1055 visit(I.getOpcode(), I); 1056 1057 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1058 !isStatepoint(&I)) // statepoints handle their exports internally 1059 CopyToExportRegsIfNeeded(&I); 1060 1061 CurInst = nullptr; 1062 } 1063 1064 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1065 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1066 } 1067 1068 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1069 // Note: this doesn't use InstVisitor, because it has to work with 1070 // ConstantExpr's in addition to instructions. 1071 switch (Opcode) { 1072 default: llvm_unreachable("Unknown instruction type encountered!"); 1073 // Build the switch statement using the Instruction.def file. 1074 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1075 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1076 #include "llvm/IR/Instruction.def" 1077 } 1078 } 1079 1080 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1081 // generate the debug data structures now that we've seen its definition. 1082 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1083 SDValue Val) { 1084 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1085 if (DDI.getDI()) { 1086 const DbgValueInst *DI = DDI.getDI(); 1087 DebugLoc dl = DDI.getdl(); 1088 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1089 DILocalVariable *Variable = DI->getVariable(); 1090 DIExpression *Expr = DI->getExpression(); 1091 assert(Variable->isValidLocationForIntrinsic(dl) && 1092 "Expected inlined-at fields to agree"); 1093 SDDbgValue *SDV; 1094 if (Val.getNode()) { 1095 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1096 SDV = getDbgValue(Val, Variable, Expr, dl, DbgSDNodeOrder); 1097 DAG.AddDbgValue(SDV, Val.getNode(), false); 1098 } 1099 } else 1100 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1101 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1102 } 1103 } 1104 1105 /// getCopyFromRegs - If there was virtual register allocated for the value V 1106 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1107 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1108 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1109 SDValue Result; 1110 1111 if (It != FuncInfo.ValueMap.end()) { 1112 unsigned InReg = It->second; 1113 1114 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1115 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1116 SDValue Chain = DAG.getEntryNode(); 1117 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1118 V); 1119 resolveDanglingDebugInfo(V, Result); 1120 } 1121 1122 return Result; 1123 } 1124 1125 /// getValue - Return an SDValue for the given Value. 1126 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1127 // If we already have an SDValue for this value, use it. It's important 1128 // to do this first, so that we don't create a CopyFromReg if we already 1129 // have a regular SDValue. 1130 SDValue &N = NodeMap[V]; 1131 if (N.getNode()) return N; 1132 1133 // If there's a virtual register allocated and initialized for this 1134 // value, use it. 1135 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1136 return copyFromReg; 1137 1138 // Otherwise create a new SDValue and remember it. 1139 SDValue Val = getValueImpl(V); 1140 NodeMap[V] = Val; 1141 resolveDanglingDebugInfo(V, Val); 1142 return Val; 1143 } 1144 1145 // Return true if SDValue exists for the given Value 1146 bool SelectionDAGBuilder::findValue(const Value *V) const { 1147 return (NodeMap.find(V) != NodeMap.end()) || 1148 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1149 } 1150 1151 /// getNonRegisterValue - Return an SDValue for the given Value, but 1152 /// don't look in FuncInfo.ValueMap for a virtual register. 1153 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1154 // If we already have an SDValue for this value, use it. 1155 SDValue &N = NodeMap[V]; 1156 if (N.getNode()) { 1157 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1158 // Remove the debug location from the node as the node is about to be used 1159 // in a location which may differ from the original debug location. This 1160 // is relevant to Constant and ConstantFP nodes because they can appear 1161 // as constant expressions inside PHI nodes. 1162 N->setDebugLoc(DebugLoc()); 1163 } 1164 return N; 1165 } 1166 1167 // Otherwise create a new SDValue and remember it. 1168 SDValue Val = getValueImpl(V); 1169 NodeMap[V] = Val; 1170 resolveDanglingDebugInfo(V, Val); 1171 return Val; 1172 } 1173 1174 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1175 /// Create an SDValue for the given value. 1176 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1177 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1178 1179 if (const Constant *C = dyn_cast<Constant>(V)) { 1180 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1181 1182 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1183 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1184 1185 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1186 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1187 1188 if (isa<ConstantPointerNull>(C)) { 1189 unsigned AS = V->getType()->getPointerAddressSpace(); 1190 return DAG.getConstant(0, getCurSDLoc(), 1191 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1192 } 1193 1194 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1195 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1196 1197 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1198 return DAG.getUNDEF(VT); 1199 1200 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1201 visit(CE->getOpcode(), *CE); 1202 SDValue N1 = NodeMap[V]; 1203 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1204 return N1; 1205 } 1206 1207 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1208 SmallVector<SDValue, 4> Constants; 1209 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1210 OI != OE; ++OI) { 1211 SDNode *Val = getValue(*OI).getNode(); 1212 // If the operand is an empty aggregate, there are no values. 1213 if (!Val) continue; 1214 // Add each leaf value from the operand to the Constants list 1215 // to form a flattened list of all the values. 1216 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1217 Constants.push_back(SDValue(Val, i)); 1218 } 1219 1220 return DAG.getMergeValues(Constants, getCurSDLoc()); 1221 } 1222 1223 if (const ConstantDataSequential *CDS = 1224 dyn_cast<ConstantDataSequential>(C)) { 1225 SmallVector<SDValue, 4> Ops; 1226 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1227 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1228 // Add each leaf value from the operand to the Constants list 1229 // to form a flattened list of all the values. 1230 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1231 Ops.push_back(SDValue(Val, i)); 1232 } 1233 1234 if (isa<ArrayType>(CDS->getType())) 1235 return DAG.getMergeValues(Ops, getCurSDLoc()); 1236 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1237 } 1238 1239 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1240 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1241 "Unknown struct or array constant!"); 1242 1243 SmallVector<EVT, 4> ValueVTs; 1244 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1245 unsigned NumElts = ValueVTs.size(); 1246 if (NumElts == 0) 1247 return SDValue(); // empty struct 1248 SmallVector<SDValue, 4> Constants(NumElts); 1249 for (unsigned i = 0; i != NumElts; ++i) { 1250 EVT EltVT = ValueVTs[i]; 1251 if (isa<UndefValue>(C)) 1252 Constants[i] = DAG.getUNDEF(EltVT); 1253 else if (EltVT.isFloatingPoint()) 1254 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1255 else 1256 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1257 } 1258 1259 return DAG.getMergeValues(Constants, getCurSDLoc()); 1260 } 1261 1262 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1263 return DAG.getBlockAddress(BA, VT); 1264 1265 VectorType *VecTy = cast<VectorType>(V->getType()); 1266 unsigned NumElements = VecTy->getNumElements(); 1267 1268 // Now that we know the number and type of the elements, get that number of 1269 // elements into the Ops array based on what kind of constant it is. 1270 SmallVector<SDValue, 16> Ops; 1271 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1272 for (unsigned i = 0; i != NumElements; ++i) 1273 Ops.push_back(getValue(CV->getOperand(i))); 1274 } else { 1275 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1276 EVT EltVT = 1277 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1278 1279 SDValue Op; 1280 if (EltVT.isFloatingPoint()) 1281 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1282 else 1283 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1284 Ops.assign(NumElements, Op); 1285 } 1286 1287 // Create a BUILD_VECTOR node. 1288 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1289 } 1290 1291 // If this is a static alloca, generate it as the frameindex instead of 1292 // computation. 1293 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1294 DenseMap<const AllocaInst*, int>::iterator SI = 1295 FuncInfo.StaticAllocaMap.find(AI); 1296 if (SI != FuncInfo.StaticAllocaMap.end()) 1297 return DAG.getFrameIndex(SI->second, 1298 TLI.getFrameIndexTy(DAG.getDataLayout())); 1299 } 1300 1301 // If this is an instruction which fast-isel has deferred, select it now. 1302 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1303 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1304 1305 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1306 Inst->getType(), isABIRegCopy(V)); 1307 SDValue Chain = DAG.getEntryNode(); 1308 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1309 } 1310 1311 llvm_unreachable("Can't get register for value!"); 1312 } 1313 1314 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1315 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1316 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1317 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1318 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1319 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1320 if (IsMSVCCXX || IsCoreCLR) 1321 CatchPadMBB->setIsEHFuncletEntry(); 1322 1323 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1324 } 1325 1326 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1327 // Update machine-CFG edge. 1328 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1329 FuncInfo.MBB->addSuccessor(TargetMBB); 1330 1331 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1332 bool IsSEH = isAsynchronousEHPersonality(Pers); 1333 if (IsSEH) { 1334 // If this is not a fall-through branch or optimizations are switched off, 1335 // emit the branch. 1336 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1337 TM.getOptLevel() == CodeGenOpt::None) 1338 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1339 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1340 return; 1341 } 1342 1343 // Figure out the funclet membership for the catchret's successor. 1344 // This will be used by the FuncletLayout pass to determine how to order the 1345 // BB's. 1346 // A 'catchret' returns to the outer scope's color. 1347 Value *ParentPad = I.getCatchSwitchParentPad(); 1348 const BasicBlock *SuccessorColor; 1349 if (isa<ConstantTokenNone>(ParentPad)) 1350 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1351 else 1352 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1353 assert(SuccessorColor && "No parent funclet for catchret!"); 1354 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1355 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1356 1357 // Create the terminator node. 1358 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1359 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1360 DAG.getBasicBlock(SuccessorColorMBB)); 1361 DAG.setRoot(Ret); 1362 } 1363 1364 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1365 // Don't emit any special code for the cleanuppad instruction. It just marks 1366 // the start of a funclet. 1367 FuncInfo.MBB->setIsEHFuncletEntry(); 1368 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1369 } 1370 1371 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1372 /// many places it could ultimately go. In the IR, we have a single unwind 1373 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1374 /// This function skips over imaginary basic blocks that hold catchswitch 1375 /// instructions, and finds all the "real" machine 1376 /// basic block destinations. As those destinations may not be successors of 1377 /// EHPadBB, here we also calculate the edge probability to those destinations. 1378 /// The passed-in Prob is the edge probability to EHPadBB. 1379 static void findUnwindDestinations( 1380 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1381 BranchProbability Prob, 1382 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1383 &UnwindDests) { 1384 EHPersonality Personality = 1385 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1386 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1387 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1388 1389 while (EHPadBB) { 1390 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1391 BasicBlock *NewEHPadBB = nullptr; 1392 if (isa<LandingPadInst>(Pad)) { 1393 // Stop on landingpads. They are not funclets. 1394 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1395 break; 1396 } else if (isa<CleanupPadInst>(Pad)) { 1397 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1398 // personalities. 1399 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1400 UnwindDests.back().first->setIsEHFuncletEntry(); 1401 break; 1402 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1403 // Add the catchpad handlers to the possible destinations. 1404 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1405 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1406 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1407 if (IsMSVCCXX || IsCoreCLR) 1408 UnwindDests.back().first->setIsEHFuncletEntry(); 1409 } 1410 NewEHPadBB = CatchSwitch->getUnwindDest(); 1411 } else { 1412 continue; 1413 } 1414 1415 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1416 if (BPI && NewEHPadBB) 1417 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1418 EHPadBB = NewEHPadBB; 1419 } 1420 } 1421 1422 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1423 // Update successor info. 1424 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1425 auto UnwindDest = I.getUnwindDest(); 1426 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1427 BranchProbability UnwindDestProb = 1428 (BPI && UnwindDest) 1429 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1430 : BranchProbability::getZero(); 1431 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1432 for (auto &UnwindDest : UnwindDests) { 1433 UnwindDest.first->setIsEHPad(); 1434 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1435 } 1436 FuncInfo.MBB->normalizeSuccProbs(); 1437 1438 // Create the terminator node. 1439 SDValue Ret = 1440 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1441 DAG.setRoot(Ret); 1442 } 1443 1444 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1445 report_fatal_error("visitCatchSwitch not yet implemented!"); 1446 } 1447 1448 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1450 auto &DL = DAG.getDataLayout(); 1451 SDValue Chain = getControlRoot(); 1452 SmallVector<ISD::OutputArg, 8> Outs; 1453 SmallVector<SDValue, 8> OutVals; 1454 1455 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1456 // lower 1457 // 1458 // %val = call <ty> @llvm.experimental.deoptimize() 1459 // ret <ty> %val 1460 // 1461 // differently. 1462 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1463 LowerDeoptimizingReturn(); 1464 return; 1465 } 1466 1467 if (!FuncInfo.CanLowerReturn) { 1468 unsigned DemoteReg = FuncInfo.DemoteRegister; 1469 const Function *F = I.getParent()->getParent(); 1470 1471 // Emit a store of the return value through the virtual register. 1472 // Leave Outs empty so that LowerReturn won't try to load return 1473 // registers the usual way. 1474 SmallVector<EVT, 1> PtrValueVTs; 1475 ComputeValueVTs(TLI, DL, 1476 F->getReturnType()->getPointerTo( 1477 DAG.getDataLayout().getAllocaAddrSpace()), 1478 PtrValueVTs); 1479 1480 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1481 DemoteReg, PtrValueVTs[0]); 1482 SDValue RetOp = getValue(I.getOperand(0)); 1483 1484 SmallVector<EVT, 4> ValueVTs; 1485 SmallVector<uint64_t, 4> Offsets; 1486 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1487 unsigned NumValues = ValueVTs.size(); 1488 1489 SmallVector<SDValue, 4> Chains(NumValues); 1490 for (unsigned i = 0; i != NumValues; ++i) { 1491 // An aggregate return value cannot wrap around the address space, so 1492 // offsets to its parts don't wrap either. 1493 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1494 Chains[i] = DAG.getStore( 1495 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1496 // FIXME: better loc info would be nice. 1497 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1498 } 1499 1500 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1501 MVT::Other, Chains); 1502 } else if (I.getNumOperands() != 0) { 1503 SmallVector<EVT, 4> ValueVTs; 1504 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1505 unsigned NumValues = ValueVTs.size(); 1506 if (NumValues) { 1507 SDValue RetOp = getValue(I.getOperand(0)); 1508 1509 const Function *F = I.getParent()->getParent(); 1510 1511 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1512 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1513 Attribute::SExt)) 1514 ExtendKind = ISD::SIGN_EXTEND; 1515 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1516 Attribute::ZExt)) 1517 ExtendKind = ISD::ZERO_EXTEND; 1518 1519 LLVMContext &Context = F->getContext(); 1520 bool RetInReg = F->getAttributes().hasAttribute( 1521 AttributeList::ReturnIndex, Attribute::InReg); 1522 1523 for (unsigned j = 0; j != NumValues; ++j) { 1524 EVT VT = ValueVTs[j]; 1525 1526 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1527 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1528 1529 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1530 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1531 SmallVector<SDValue, 4> Parts(NumParts); 1532 getCopyToParts(DAG, getCurSDLoc(), 1533 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1534 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1535 1536 // 'inreg' on function refers to return value 1537 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1538 if (RetInReg) 1539 Flags.setInReg(); 1540 1541 // Propagate extension type if any 1542 if (ExtendKind == ISD::SIGN_EXTEND) 1543 Flags.setSExt(); 1544 else if (ExtendKind == ISD::ZERO_EXTEND) 1545 Flags.setZExt(); 1546 1547 for (unsigned i = 0; i < NumParts; ++i) { 1548 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1549 VT, /*isfixed=*/true, 0, 0)); 1550 OutVals.push_back(Parts[i]); 1551 } 1552 } 1553 } 1554 } 1555 1556 // Push in swifterror virtual register as the last element of Outs. This makes 1557 // sure swifterror virtual register will be returned in the swifterror 1558 // physical register. 1559 const Function *F = I.getParent()->getParent(); 1560 if (TLI.supportSwiftError() && 1561 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1562 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1563 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1564 Flags.setSwiftError(); 1565 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1566 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1567 true /*isfixed*/, 1 /*origidx*/, 1568 0 /*partOffs*/)); 1569 // Create SDNode for the swifterror virtual register. 1570 OutVals.push_back( 1571 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1572 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1573 EVT(TLI.getPointerTy(DL)))); 1574 } 1575 1576 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1577 CallingConv::ID CallConv = 1578 DAG.getMachineFunction().getFunction().getCallingConv(); 1579 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1580 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1581 1582 // Verify that the target's LowerReturn behaved as expected. 1583 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1584 "LowerReturn didn't return a valid chain!"); 1585 1586 // Update the DAG with the new chain value resulting from return lowering. 1587 DAG.setRoot(Chain); 1588 } 1589 1590 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1591 /// created for it, emit nodes to copy the value into the virtual 1592 /// registers. 1593 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1594 // Skip empty types 1595 if (V->getType()->isEmptyTy()) 1596 return; 1597 1598 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1599 if (VMI != FuncInfo.ValueMap.end()) { 1600 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1601 CopyValueToVirtualRegister(V, VMI->second); 1602 } 1603 } 1604 1605 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1606 /// the current basic block, add it to ValueMap now so that we'll get a 1607 /// CopyTo/FromReg. 1608 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1609 // No need to export constants. 1610 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1611 1612 // Already exported? 1613 if (FuncInfo.isExportedInst(V)) return; 1614 1615 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1616 CopyValueToVirtualRegister(V, Reg); 1617 } 1618 1619 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1620 const BasicBlock *FromBB) { 1621 // The operands of the setcc have to be in this block. We don't know 1622 // how to export them from some other block. 1623 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1624 // Can export from current BB. 1625 if (VI->getParent() == FromBB) 1626 return true; 1627 1628 // Is already exported, noop. 1629 return FuncInfo.isExportedInst(V); 1630 } 1631 1632 // If this is an argument, we can export it if the BB is the entry block or 1633 // if it is already exported. 1634 if (isa<Argument>(V)) { 1635 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1636 return true; 1637 1638 // Otherwise, can only export this if it is already exported. 1639 return FuncInfo.isExportedInst(V); 1640 } 1641 1642 // Otherwise, constants can always be exported. 1643 return true; 1644 } 1645 1646 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1647 BranchProbability 1648 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1649 const MachineBasicBlock *Dst) const { 1650 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1651 const BasicBlock *SrcBB = Src->getBasicBlock(); 1652 const BasicBlock *DstBB = Dst->getBasicBlock(); 1653 if (!BPI) { 1654 // If BPI is not available, set the default probability as 1 / N, where N is 1655 // the number of successors. 1656 auto SuccSize = std::max<uint32_t>( 1657 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1658 return BranchProbability(1, SuccSize); 1659 } 1660 return BPI->getEdgeProbability(SrcBB, DstBB); 1661 } 1662 1663 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1664 MachineBasicBlock *Dst, 1665 BranchProbability Prob) { 1666 if (!FuncInfo.BPI) 1667 Src->addSuccessorWithoutProb(Dst); 1668 else { 1669 if (Prob.isUnknown()) 1670 Prob = getEdgeProbability(Src, Dst); 1671 Src->addSuccessor(Dst, Prob); 1672 } 1673 } 1674 1675 static bool InBlock(const Value *V, const BasicBlock *BB) { 1676 if (const Instruction *I = dyn_cast<Instruction>(V)) 1677 return I->getParent() == BB; 1678 return true; 1679 } 1680 1681 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1682 /// This function emits a branch and is used at the leaves of an OR or an 1683 /// AND operator tree. 1684 void 1685 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1686 MachineBasicBlock *TBB, 1687 MachineBasicBlock *FBB, 1688 MachineBasicBlock *CurBB, 1689 MachineBasicBlock *SwitchBB, 1690 BranchProbability TProb, 1691 BranchProbability FProb, 1692 bool InvertCond) { 1693 const BasicBlock *BB = CurBB->getBasicBlock(); 1694 1695 // If the leaf of the tree is a comparison, merge the condition into 1696 // the caseblock. 1697 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1698 // The operands of the cmp have to be in this block. We don't know 1699 // how to export them from some other block. If this is the first block 1700 // of the sequence, no exporting is needed. 1701 if (CurBB == SwitchBB || 1702 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1703 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1704 ISD::CondCode Condition; 1705 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1706 ICmpInst::Predicate Pred = 1707 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1708 Condition = getICmpCondCode(Pred); 1709 } else { 1710 const FCmpInst *FC = cast<FCmpInst>(Cond); 1711 FCmpInst::Predicate Pred = 1712 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1713 Condition = getFCmpCondCode(Pred); 1714 if (TM.Options.NoNaNsFPMath) 1715 Condition = getFCmpCodeWithoutNaN(Condition); 1716 } 1717 1718 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1719 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1720 SwitchCases.push_back(CB); 1721 return; 1722 } 1723 } 1724 1725 // Create a CaseBlock record representing this branch. 1726 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1727 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1728 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1729 SwitchCases.push_back(CB); 1730 } 1731 1732 /// FindMergedConditions - If Cond is an expression like 1733 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1734 MachineBasicBlock *TBB, 1735 MachineBasicBlock *FBB, 1736 MachineBasicBlock *CurBB, 1737 MachineBasicBlock *SwitchBB, 1738 Instruction::BinaryOps Opc, 1739 BranchProbability TProb, 1740 BranchProbability FProb, 1741 bool InvertCond) { 1742 // Skip over not part of the tree and remember to invert op and operands at 1743 // next level. 1744 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1745 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1746 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1747 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1748 !InvertCond); 1749 return; 1750 } 1751 } 1752 1753 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1754 // Compute the effective opcode for Cond, taking into account whether it needs 1755 // to be inverted, e.g. 1756 // and (not (or A, B)), C 1757 // gets lowered as 1758 // and (and (not A, not B), C) 1759 unsigned BOpc = 0; 1760 if (BOp) { 1761 BOpc = BOp->getOpcode(); 1762 if (InvertCond) { 1763 if (BOpc == Instruction::And) 1764 BOpc = Instruction::Or; 1765 else if (BOpc == Instruction::Or) 1766 BOpc = Instruction::And; 1767 } 1768 } 1769 1770 // If this node is not part of the or/and tree, emit it as a branch. 1771 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1772 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1773 BOp->getParent() != CurBB->getBasicBlock() || 1774 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1775 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1776 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1777 TProb, FProb, InvertCond); 1778 return; 1779 } 1780 1781 // Create TmpBB after CurBB. 1782 MachineFunction::iterator BBI(CurBB); 1783 MachineFunction &MF = DAG.getMachineFunction(); 1784 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1785 CurBB->getParent()->insert(++BBI, TmpBB); 1786 1787 if (Opc == Instruction::Or) { 1788 // Codegen X | Y as: 1789 // BB1: 1790 // jmp_if_X TBB 1791 // jmp TmpBB 1792 // TmpBB: 1793 // jmp_if_Y TBB 1794 // jmp FBB 1795 // 1796 1797 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1798 // The requirement is that 1799 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1800 // = TrueProb for original BB. 1801 // Assuming the original probabilities are A and B, one choice is to set 1802 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1803 // A/(1+B) and 2B/(1+B). This choice assumes that 1804 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1805 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1806 // TmpBB, but the math is more complicated. 1807 1808 auto NewTrueProb = TProb / 2; 1809 auto NewFalseProb = TProb / 2 + FProb; 1810 // Emit the LHS condition. 1811 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1812 NewTrueProb, NewFalseProb, InvertCond); 1813 1814 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1815 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1816 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1817 // Emit the RHS condition into TmpBB. 1818 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1819 Probs[0], Probs[1], InvertCond); 1820 } else { 1821 assert(Opc == Instruction::And && "Unknown merge op!"); 1822 // Codegen X & Y as: 1823 // BB1: 1824 // jmp_if_X TmpBB 1825 // jmp FBB 1826 // TmpBB: 1827 // jmp_if_Y TBB 1828 // jmp FBB 1829 // 1830 // This requires creation of TmpBB after CurBB. 1831 1832 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1833 // The requirement is that 1834 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1835 // = FalseProb for original BB. 1836 // Assuming the original probabilities are A and B, one choice is to set 1837 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1838 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1839 // TrueProb for BB1 * FalseProb for TmpBB. 1840 1841 auto NewTrueProb = TProb + FProb / 2; 1842 auto NewFalseProb = FProb / 2; 1843 // Emit the LHS condition. 1844 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1845 NewTrueProb, NewFalseProb, InvertCond); 1846 1847 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1848 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1849 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1850 // Emit the RHS condition into TmpBB. 1851 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1852 Probs[0], Probs[1], InvertCond); 1853 } 1854 } 1855 1856 /// If the set of cases should be emitted as a series of branches, return true. 1857 /// If we should emit this as a bunch of and/or'd together conditions, return 1858 /// false. 1859 bool 1860 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1861 if (Cases.size() != 2) return true; 1862 1863 // If this is two comparisons of the same values or'd or and'd together, they 1864 // will get folded into a single comparison, so don't emit two blocks. 1865 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1866 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1867 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1868 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1869 return false; 1870 } 1871 1872 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1873 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1874 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1875 Cases[0].CC == Cases[1].CC && 1876 isa<Constant>(Cases[0].CmpRHS) && 1877 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1878 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1879 return false; 1880 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1881 return false; 1882 } 1883 1884 return true; 1885 } 1886 1887 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1888 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1889 1890 // Update machine-CFG edges. 1891 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1892 1893 if (I.isUnconditional()) { 1894 // Update machine-CFG edges. 1895 BrMBB->addSuccessor(Succ0MBB); 1896 1897 // If this is not a fall-through branch or optimizations are switched off, 1898 // emit the branch. 1899 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1900 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1901 MVT::Other, getControlRoot(), 1902 DAG.getBasicBlock(Succ0MBB))); 1903 1904 return; 1905 } 1906 1907 // If this condition is one of the special cases we handle, do special stuff 1908 // now. 1909 const Value *CondVal = I.getCondition(); 1910 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1911 1912 // If this is a series of conditions that are or'd or and'd together, emit 1913 // this as a sequence of branches instead of setcc's with and/or operations. 1914 // As long as jumps are not expensive, this should improve performance. 1915 // For example, instead of something like: 1916 // cmp A, B 1917 // C = seteq 1918 // cmp D, E 1919 // F = setle 1920 // or C, F 1921 // jnz foo 1922 // Emit: 1923 // cmp A, B 1924 // je foo 1925 // cmp D, E 1926 // jle foo 1927 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1928 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1929 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1930 !I.getMetadata(LLVMContext::MD_unpredictable) && 1931 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1932 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1933 Opcode, 1934 getEdgeProbability(BrMBB, Succ0MBB), 1935 getEdgeProbability(BrMBB, Succ1MBB), 1936 /*InvertCond=*/false); 1937 // If the compares in later blocks need to use values not currently 1938 // exported from this block, export them now. This block should always 1939 // be the first entry. 1940 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1941 1942 // Allow some cases to be rejected. 1943 if (ShouldEmitAsBranches(SwitchCases)) { 1944 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1945 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1946 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1947 } 1948 1949 // Emit the branch for this block. 1950 visitSwitchCase(SwitchCases[0], BrMBB); 1951 SwitchCases.erase(SwitchCases.begin()); 1952 return; 1953 } 1954 1955 // Okay, we decided not to do this, remove any inserted MBB's and clear 1956 // SwitchCases. 1957 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1958 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1959 1960 SwitchCases.clear(); 1961 } 1962 } 1963 1964 // Create a CaseBlock record representing this branch. 1965 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1966 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 1967 1968 // Use visitSwitchCase to actually insert the fast branch sequence for this 1969 // cond branch. 1970 visitSwitchCase(CB, BrMBB); 1971 } 1972 1973 /// visitSwitchCase - Emits the necessary code to represent a single node in 1974 /// the binary search tree resulting from lowering a switch instruction. 1975 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1976 MachineBasicBlock *SwitchBB) { 1977 SDValue Cond; 1978 SDValue CondLHS = getValue(CB.CmpLHS); 1979 SDLoc dl = CB.DL; 1980 1981 // Build the setcc now. 1982 if (!CB.CmpMHS) { 1983 // Fold "(X == true)" to X and "(X == false)" to !X to 1984 // handle common cases produced by branch lowering. 1985 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1986 CB.CC == ISD::SETEQ) 1987 Cond = CondLHS; 1988 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1989 CB.CC == ISD::SETEQ) { 1990 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1991 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1992 } else 1993 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1994 } else { 1995 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1996 1997 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1998 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1999 2000 SDValue CmpOp = getValue(CB.CmpMHS); 2001 EVT VT = CmpOp.getValueType(); 2002 2003 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2004 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2005 ISD::SETLE); 2006 } else { 2007 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2008 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2009 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2010 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2011 } 2012 } 2013 2014 // Update successor info 2015 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2016 // TrueBB and FalseBB are always different unless the incoming IR is 2017 // degenerate. This only happens when running llc on weird IR. 2018 if (CB.TrueBB != CB.FalseBB) 2019 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2020 SwitchBB->normalizeSuccProbs(); 2021 2022 // If the lhs block is the next block, invert the condition so that we can 2023 // fall through to the lhs instead of the rhs block. 2024 if (CB.TrueBB == NextBlock(SwitchBB)) { 2025 std::swap(CB.TrueBB, CB.FalseBB); 2026 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2027 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2028 } 2029 2030 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2031 MVT::Other, getControlRoot(), Cond, 2032 DAG.getBasicBlock(CB.TrueBB)); 2033 2034 // Insert the false branch. Do this even if it's a fall through branch, 2035 // this makes it easier to do DAG optimizations which require inverting 2036 // the branch condition. 2037 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2038 DAG.getBasicBlock(CB.FalseBB)); 2039 2040 DAG.setRoot(BrCond); 2041 } 2042 2043 /// visitJumpTable - Emit JumpTable node in the current MBB 2044 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2045 // Emit the code for the jump table 2046 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2047 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2048 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2049 JT.Reg, PTy); 2050 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2051 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2052 MVT::Other, Index.getValue(1), 2053 Table, Index); 2054 DAG.setRoot(BrJumpTable); 2055 } 2056 2057 /// visitJumpTableHeader - This function emits necessary code to produce index 2058 /// in the JumpTable from switch case. 2059 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2060 JumpTableHeader &JTH, 2061 MachineBasicBlock *SwitchBB) { 2062 SDLoc dl = getCurSDLoc(); 2063 2064 // Subtract the lowest switch case value from the value being switched on and 2065 // conditional branch to default mbb if the result is greater than the 2066 // difference between smallest and largest cases. 2067 SDValue SwitchOp = getValue(JTH.SValue); 2068 EVT VT = SwitchOp.getValueType(); 2069 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2070 DAG.getConstant(JTH.First, dl, VT)); 2071 2072 // The SDNode we just created, which holds the value being switched on minus 2073 // the smallest case value, needs to be copied to a virtual register so it 2074 // can be used as an index into the jump table in a subsequent basic block. 2075 // This value may be smaller or larger than the target's pointer type, and 2076 // therefore require extension or truncating. 2077 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2078 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2079 2080 unsigned JumpTableReg = 2081 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2082 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2083 JumpTableReg, SwitchOp); 2084 JT.Reg = JumpTableReg; 2085 2086 // Emit the range check for the jump table, and branch to the default block 2087 // for the switch statement if the value being switched on exceeds the largest 2088 // case in the switch. 2089 SDValue CMP = DAG.getSetCC( 2090 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2091 Sub.getValueType()), 2092 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2093 2094 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2095 MVT::Other, CopyTo, CMP, 2096 DAG.getBasicBlock(JT.Default)); 2097 2098 // Avoid emitting unnecessary branches to the next block. 2099 if (JT.MBB != NextBlock(SwitchBB)) 2100 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2101 DAG.getBasicBlock(JT.MBB)); 2102 2103 DAG.setRoot(BrCond); 2104 } 2105 2106 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2107 /// variable if there exists one. 2108 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2109 SDValue &Chain) { 2110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2111 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2112 MachineFunction &MF = DAG.getMachineFunction(); 2113 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2114 MachineSDNode *Node = 2115 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2116 if (Global) { 2117 MachinePointerInfo MPInfo(Global); 2118 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2119 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2120 MachineMemOperand::MODereferenceable; 2121 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2122 DAG.getEVTAlignment(PtrTy)); 2123 Node->setMemRefs(MemRefs, MemRefs + 1); 2124 } 2125 return SDValue(Node, 0); 2126 } 2127 2128 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2129 /// tail spliced into a stack protector check success bb. 2130 /// 2131 /// For a high level explanation of how this fits into the stack protector 2132 /// generation see the comment on the declaration of class 2133 /// StackProtectorDescriptor. 2134 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2135 MachineBasicBlock *ParentBB) { 2136 2137 // First create the loads to the guard/stack slot for the comparison. 2138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2139 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2140 2141 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2142 int FI = MFI.getStackProtectorIndex(); 2143 2144 SDValue Guard; 2145 SDLoc dl = getCurSDLoc(); 2146 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2147 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2148 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2149 2150 // Generate code to load the content of the guard slot. 2151 SDValue GuardVal = DAG.getLoad( 2152 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2153 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2154 MachineMemOperand::MOVolatile); 2155 2156 if (TLI.useStackGuardXorFP()) 2157 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2158 2159 // Retrieve guard check function, nullptr if instrumentation is inlined. 2160 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2161 // The target provides a guard check function to validate the guard value. 2162 // Generate a call to that function with the content of the guard slot as 2163 // argument. 2164 auto *Fn = cast<Function>(GuardCheck); 2165 FunctionType *FnTy = Fn->getFunctionType(); 2166 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2167 2168 TargetLowering::ArgListTy Args; 2169 TargetLowering::ArgListEntry Entry; 2170 Entry.Node = GuardVal; 2171 Entry.Ty = FnTy->getParamType(0); 2172 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2173 Entry.IsInReg = true; 2174 Args.push_back(Entry); 2175 2176 TargetLowering::CallLoweringInfo CLI(DAG); 2177 CLI.setDebugLoc(getCurSDLoc()) 2178 .setChain(DAG.getEntryNode()) 2179 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2180 getValue(GuardCheck), std::move(Args)); 2181 2182 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2183 DAG.setRoot(Result.second); 2184 return; 2185 } 2186 2187 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2188 // Otherwise, emit a volatile load to retrieve the stack guard value. 2189 SDValue Chain = DAG.getEntryNode(); 2190 if (TLI.useLoadStackGuardNode()) { 2191 Guard = getLoadStackGuard(DAG, dl, Chain); 2192 } else { 2193 const Value *IRGuard = TLI.getSDagStackGuard(M); 2194 SDValue GuardPtr = getValue(IRGuard); 2195 2196 Guard = 2197 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2198 Align, MachineMemOperand::MOVolatile); 2199 } 2200 2201 // Perform the comparison via a subtract/getsetcc. 2202 EVT VT = Guard.getValueType(); 2203 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2204 2205 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2206 *DAG.getContext(), 2207 Sub.getValueType()), 2208 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2209 2210 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2211 // branch to failure MBB. 2212 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2213 MVT::Other, GuardVal.getOperand(0), 2214 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2215 // Otherwise branch to success MBB. 2216 SDValue Br = DAG.getNode(ISD::BR, dl, 2217 MVT::Other, BrCond, 2218 DAG.getBasicBlock(SPD.getSuccessMBB())); 2219 2220 DAG.setRoot(Br); 2221 } 2222 2223 /// Codegen the failure basic block for a stack protector check. 2224 /// 2225 /// A failure stack protector machine basic block consists simply of a call to 2226 /// __stack_chk_fail(). 2227 /// 2228 /// For a high level explanation of how this fits into the stack protector 2229 /// generation see the comment on the declaration of class 2230 /// StackProtectorDescriptor. 2231 void 2232 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2234 SDValue Chain = 2235 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2236 None, false, getCurSDLoc(), false, false).second; 2237 DAG.setRoot(Chain); 2238 } 2239 2240 /// visitBitTestHeader - This function emits necessary code to produce value 2241 /// suitable for "bit tests" 2242 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2243 MachineBasicBlock *SwitchBB) { 2244 SDLoc dl = getCurSDLoc(); 2245 2246 // Subtract the minimum value 2247 SDValue SwitchOp = getValue(B.SValue); 2248 EVT VT = SwitchOp.getValueType(); 2249 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2250 DAG.getConstant(B.First, dl, VT)); 2251 2252 // Check range 2253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2254 SDValue RangeCmp = DAG.getSetCC( 2255 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2256 Sub.getValueType()), 2257 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2258 2259 // Determine the type of the test operands. 2260 bool UsePtrType = false; 2261 if (!TLI.isTypeLegal(VT)) 2262 UsePtrType = true; 2263 else { 2264 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2265 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2266 // Switch table case range are encoded into series of masks. 2267 // Just use pointer type, it's guaranteed to fit. 2268 UsePtrType = true; 2269 break; 2270 } 2271 } 2272 if (UsePtrType) { 2273 VT = TLI.getPointerTy(DAG.getDataLayout()); 2274 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2275 } 2276 2277 B.RegVT = VT.getSimpleVT(); 2278 B.Reg = FuncInfo.CreateReg(B.RegVT); 2279 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2280 2281 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2282 2283 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2284 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2285 SwitchBB->normalizeSuccProbs(); 2286 2287 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2288 MVT::Other, CopyTo, RangeCmp, 2289 DAG.getBasicBlock(B.Default)); 2290 2291 // Avoid emitting unnecessary branches to the next block. 2292 if (MBB != NextBlock(SwitchBB)) 2293 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2294 DAG.getBasicBlock(MBB)); 2295 2296 DAG.setRoot(BrRange); 2297 } 2298 2299 /// visitBitTestCase - this function produces one "bit test" 2300 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2301 MachineBasicBlock* NextMBB, 2302 BranchProbability BranchProbToNext, 2303 unsigned Reg, 2304 BitTestCase &B, 2305 MachineBasicBlock *SwitchBB) { 2306 SDLoc dl = getCurSDLoc(); 2307 MVT VT = BB.RegVT; 2308 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2309 SDValue Cmp; 2310 unsigned PopCount = countPopulation(B.Mask); 2311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2312 if (PopCount == 1) { 2313 // Testing for a single bit; just compare the shift count with what it 2314 // would need to be to shift a 1 bit in that position. 2315 Cmp = DAG.getSetCC( 2316 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2317 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2318 ISD::SETEQ); 2319 } else if (PopCount == BB.Range) { 2320 // There is only one zero bit in the range, test for it directly. 2321 Cmp = DAG.getSetCC( 2322 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2323 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2324 ISD::SETNE); 2325 } else { 2326 // Make desired shift 2327 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2328 DAG.getConstant(1, dl, VT), ShiftOp); 2329 2330 // Emit bit tests and jumps 2331 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2332 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2333 Cmp = DAG.getSetCC( 2334 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2335 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2336 } 2337 2338 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2339 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2340 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2341 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2342 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2343 // one as they are relative probabilities (and thus work more like weights), 2344 // and hence we need to normalize them to let the sum of them become one. 2345 SwitchBB->normalizeSuccProbs(); 2346 2347 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2348 MVT::Other, getControlRoot(), 2349 Cmp, DAG.getBasicBlock(B.TargetBB)); 2350 2351 // Avoid emitting unnecessary branches to the next block. 2352 if (NextMBB != NextBlock(SwitchBB)) 2353 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2354 DAG.getBasicBlock(NextMBB)); 2355 2356 DAG.setRoot(BrAnd); 2357 } 2358 2359 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2360 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2361 2362 // Retrieve successors. Look through artificial IR level blocks like 2363 // catchswitch for successors. 2364 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2365 const BasicBlock *EHPadBB = I.getSuccessor(1); 2366 2367 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2368 // have to do anything here to lower funclet bundles. 2369 assert(!I.hasOperandBundlesOtherThan( 2370 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2371 "Cannot lower invokes with arbitrary operand bundles yet!"); 2372 2373 const Value *Callee(I.getCalledValue()); 2374 const Function *Fn = dyn_cast<Function>(Callee); 2375 if (isa<InlineAsm>(Callee)) 2376 visitInlineAsm(&I); 2377 else if (Fn && Fn->isIntrinsic()) { 2378 switch (Fn->getIntrinsicID()) { 2379 default: 2380 llvm_unreachable("Cannot invoke this intrinsic"); 2381 case Intrinsic::donothing: 2382 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2383 break; 2384 case Intrinsic::experimental_patchpoint_void: 2385 case Intrinsic::experimental_patchpoint_i64: 2386 visitPatchpoint(&I, EHPadBB); 2387 break; 2388 case Intrinsic::experimental_gc_statepoint: 2389 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2390 break; 2391 } 2392 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2393 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2394 // Eventually we will support lowering the @llvm.experimental.deoptimize 2395 // intrinsic, and right now there are no plans to support other intrinsics 2396 // with deopt state. 2397 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2398 } else { 2399 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2400 } 2401 2402 // If the value of the invoke is used outside of its defining block, make it 2403 // available as a virtual register. 2404 // We already took care of the exported value for the statepoint instruction 2405 // during call to the LowerStatepoint. 2406 if (!isStatepoint(I)) { 2407 CopyToExportRegsIfNeeded(&I); 2408 } 2409 2410 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2411 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2412 BranchProbability EHPadBBProb = 2413 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2414 : BranchProbability::getZero(); 2415 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2416 2417 // Update successor info. 2418 addSuccessorWithProb(InvokeMBB, Return); 2419 for (auto &UnwindDest : UnwindDests) { 2420 UnwindDest.first->setIsEHPad(); 2421 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2422 } 2423 InvokeMBB->normalizeSuccProbs(); 2424 2425 // Drop into normal successor. 2426 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2427 MVT::Other, getControlRoot(), 2428 DAG.getBasicBlock(Return))); 2429 } 2430 2431 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2432 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2433 } 2434 2435 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2436 assert(FuncInfo.MBB->isEHPad() && 2437 "Call to landingpad not in landing pad!"); 2438 2439 MachineBasicBlock *MBB = FuncInfo.MBB; 2440 addLandingPadInfo(LP, *MBB); 2441 2442 // If there aren't registers to copy the values into (e.g., during SjLj 2443 // exceptions), then don't bother to create these DAG nodes. 2444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2445 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2446 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2447 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2448 return; 2449 2450 // If landingpad's return type is token type, we don't create DAG nodes 2451 // for its exception pointer and selector value. The extraction of exception 2452 // pointer or selector value from token type landingpads is not currently 2453 // supported. 2454 if (LP.getType()->isTokenTy()) 2455 return; 2456 2457 SmallVector<EVT, 2> ValueVTs; 2458 SDLoc dl = getCurSDLoc(); 2459 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2460 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2461 2462 // Get the two live-in registers as SDValues. The physregs have already been 2463 // copied into virtual registers. 2464 SDValue Ops[2]; 2465 if (FuncInfo.ExceptionPointerVirtReg) { 2466 Ops[0] = DAG.getZExtOrTrunc( 2467 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2468 FuncInfo.ExceptionPointerVirtReg, 2469 TLI.getPointerTy(DAG.getDataLayout())), 2470 dl, ValueVTs[0]); 2471 } else { 2472 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2473 } 2474 Ops[1] = DAG.getZExtOrTrunc( 2475 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2476 FuncInfo.ExceptionSelectorVirtReg, 2477 TLI.getPointerTy(DAG.getDataLayout())), 2478 dl, ValueVTs[1]); 2479 2480 // Merge into one. 2481 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2482 DAG.getVTList(ValueVTs), Ops); 2483 setValue(&LP, Res); 2484 } 2485 2486 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2487 #ifndef NDEBUG 2488 for (const CaseCluster &CC : Clusters) 2489 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2490 #endif 2491 2492 std::sort(Clusters.begin(), Clusters.end(), 2493 [](const CaseCluster &a, const CaseCluster &b) { 2494 return a.Low->getValue().slt(b.Low->getValue()); 2495 }); 2496 2497 // Merge adjacent clusters with the same destination. 2498 const unsigned N = Clusters.size(); 2499 unsigned DstIndex = 0; 2500 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2501 CaseCluster &CC = Clusters[SrcIndex]; 2502 const ConstantInt *CaseVal = CC.Low; 2503 MachineBasicBlock *Succ = CC.MBB; 2504 2505 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2506 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2507 // If this case has the same successor and is a neighbour, merge it into 2508 // the previous cluster. 2509 Clusters[DstIndex - 1].High = CaseVal; 2510 Clusters[DstIndex - 1].Prob += CC.Prob; 2511 } else { 2512 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2513 sizeof(Clusters[SrcIndex])); 2514 } 2515 } 2516 Clusters.resize(DstIndex); 2517 } 2518 2519 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2520 MachineBasicBlock *Last) { 2521 // Update JTCases. 2522 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2523 if (JTCases[i].first.HeaderBB == First) 2524 JTCases[i].first.HeaderBB = Last; 2525 2526 // Update BitTestCases. 2527 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2528 if (BitTestCases[i].Parent == First) 2529 BitTestCases[i].Parent = Last; 2530 } 2531 2532 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2533 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2534 2535 // Update machine-CFG edges with unique successors. 2536 SmallSet<BasicBlock*, 32> Done; 2537 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2538 BasicBlock *BB = I.getSuccessor(i); 2539 bool Inserted = Done.insert(BB).second; 2540 if (!Inserted) 2541 continue; 2542 2543 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2544 addSuccessorWithProb(IndirectBrMBB, Succ); 2545 } 2546 IndirectBrMBB->normalizeSuccProbs(); 2547 2548 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2549 MVT::Other, getControlRoot(), 2550 getValue(I.getAddress()))); 2551 } 2552 2553 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2554 if (DAG.getTarget().Options.TrapUnreachable) 2555 DAG.setRoot( 2556 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2557 } 2558 2559 void SelectionDAGBuilder::visitFSub(const User &I) { 2560 // -0.0 - X --> fneg 2561 Type *Ty = I.getType(); 2562 if (isa<Constant>(I.getOperand(0)) && 2563 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2564 SDValue Op2 = getValue(I.getOperand(1)); 2565 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2566 Op2.getValueType(), Op2)); 2567 return; 2568 } 2569 2570 visitBinary(I, ISD::FSUB); 2571 } 2572 2573 /// Checks if the given instruction performs a vector reduction, in which case 2574 /// we have the freedom to alter the elements in the result as long as the 2575 /// reduction of them stays unchanged. 2576 static bool isVectorReductionOp(const User *I) { 2577 const Instruction *Inst = dyn_cast<Instruction>(I); 2578 if (!Inst || !Inst->getType()->isVectorTy()) 2579 return false; 2580 2581 auto OpCode = Inst->getOpcode(); 2582 switch (OpCode) { 2583 case Instruction::Add: 2584 case Instruction::Mul: 2585 case Instruction::And: 2586 case Instruction::Or: 2587 case Instruction::Xor: 2588 break; 2589 case Instruction::FAdd: 2590 case Instruction::FMul: 2591 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2592 if (FPOp->getFastMathFlags().isFast()) 2593 break; 2594 LLVM_FALLTHROUGH; 2595 default: 2596 return false; 2597 } 2598 2599 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2600 unsigned ElemNumToReduce = ElemNum; 2601 2602 // Do DFS search on the def-use chain from the given instruction. We only 2603 // allow four kinds of operations during the search until we reach the 2604 // instruction that extracts the first element from the vector: 2605 // 2606 // 1. The reduction operation of the same opcode as the given instruction. 2607 // 2608 // 2. PHI node. 2609 // 2610 // 3. ShuffleVector instruction together with a reduction operation that 2611 // does a partial reduction. 2612 // 2613 // 4. ExtractElement that extracts the first element from the vector, and we 2614 // stop searching the def-use chain here. 2615 // 2616 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2617 // from 1-3 to the stack to continue the DFS. The given instruction is not 2618 // a reduction operation if we meet any other instructions other than those 2619 // listed above. 2620 2621 SmallVector<const User *, 16> UsersToVisit{Inst}; 2622 SmallPtrSet<const User *, 16> Visited; 2623 bool ReduxExtracted = false; 2624 2625 while (!UsersToVisit.empty()) { 2626 auto User = UsersToVisit.back(); 2627 UsersToVisit.pop_back(); 2628 if (!Visited.insert(User).second) 2629 continue; 2630 2631 for (const auto &U : User->users()) { 2632 auto Inst = dyn_cast<Instruction>(U); 2633 if (!Inst) 2634 return false; 2635 2636 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2637 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2638 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2639 return false; 2640 UsersToVisit.push_back(U); 2641 } else if (const ShuffleVectorInst *ShufInst = 2642 dyn_cast<ShuffleVectorInst>(U)) { 2643 // Detect the following pattern: A ShuffleVector instruction together 2644 // with a reduction that do partial reduction on the first and second 2645 // ElemNumToReduce / 2 elements, and store the result in 2646 // ElemNumToReduce / 2 elements in another vector. 2647 2648 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2649 if (ResultElements < ElemNum) 2650 return false; 2651 2652 if (ElemNumToReduce == 1) 2653 return false; 2654 if (!isa<UndefValue>(U->getOperand(1))) 2655 return false; 2656 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2657 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2658 return false; 2659 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2660 if (ShufInst->getMaskValue(i) != -1) 2661 return false; 2662 2663 // There is only one user of this ShuffleVector instruction, which 2664 // must be a reduction operation. 2665 if (!U->hasOneUse()) 2666 return false; 2667 2668 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2669 if (!U2 || U2->getOpcode() != OpCode) 2670 return false; 2671 2672 // Check operands of the reduction operation. 2673 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2674 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2675 UsersToVisit.push_back(U2); 2676 ElemNumToReduce /= 2; 2677 } else 2678 return false; 2679 } else if (isa<ExtractElementInst>(U)) { 2680 // At this moment we should have reduced all elements in the vector. 2681 if (ElemNumToReduce != 1) 2682 return false; 2683 2684 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2685 if (!Val || Val->getZExtValue() != 0) 2686 return false; 2687 2688 ReduxExtracted = true; 2689 } else 2690 return false; 2691 } 2692 } 2693 return ReduxExtracted; 2694 } 2695 2696 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2697 SDValue Op1 = getValue(I.getOperand(0)); 2698 SDValue Op2 = getValue(I.getOperand(1)); 2699 2700 bool nuw = false; 2701 bool nsw = false; 2702 bool exact = false; 2703 bool vec_redux = false; 2704 FastMathFlags FMF; 2705 2706 if (const OverflowingBinaryOperator *OFBinOp = 2707 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2708 nuw = OFBinOp->hasNoUnsignedWrap(); 2709 nsw = OFBinOp->hasNoSignedWrap(); 2710 } 2711 if (const PossiblyExactOperator *ExactOp = 2712 dyn_cast<const PossiblyExactOperator>(&I)) 2713 exact = ExactOp->isExact(); 2714 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2715 FMF = FPOp->getFastMathFlags(); 2716 2717 if (isVectorReductionOp(&I)) { 2718 vec_redux = true; 2719 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2720 } 2721 2722 SDNodeFlags Flags; 2723 Flags.setExact(exact); 2724 Flags.setNoSignedWrap(nsw); 2725 Flags.setNoUnsignedWrap(nuw); 2726 Flags.setVectorReduction(vec_redux); 2727 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2728 Flags.setAllowContract(FMF.allowContract()); 2729 Flags.setNoInfs(FMF.noInfs()); 2730 Flags.setNoNaNs(FMF.noNaNs()); 2731 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2732 Flags.setUnsafeAlgebra(FMF.isFast()); 2733 2734 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2735 Op1, Op2, Flags); 2736 setValue(&I, BinNodeValue); 2737 } 2738 2739 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2740 SDValue Op1 = getValue(I.getOperand(0)); 2741 SDValue Op2 = getValue(I.getOperand(1)); 2742 2743 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2744 Op2.getValueType(), DAG.getDataLayout()); 2745 2746 // Coerce the shift amount to the right type if we can. 2747 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2748 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2749 unsigned Op2Size = Op2.getValueSizeInBits(); 2750 SDLoc DL = getCurSDLoc(); 2751 2752 // If the operand is smaller than the shift count type, promote it. 2753 if (ShiftSize > Op2Size) 2754 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2755 2756 // If the operand is larger than the shift count type but the shift 2757 // count type has enough bits to represent any shift value, truncate 2758 // it now. This is a common case and it exposes the truncate to 2759 // optimization early. 2760 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2761 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2762 // Otherwise we'll need to temporarily settle for some other convenient 2763 // type. Type legalization will make adjustments once the shiftee is split. 2764 else 2765 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2766 } 2767 2768 bool nuw = false; 2769 bool nsw = false; 2770 bool exact = false; 2771 2772 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2773 2774 if (const OverflowingBinaryOperator *OFBinOp = 2775 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2776 nuw = OFBinOp->hasNoUnsignedWrap(); 2777 nsw = OFBinOp->hasNoSignedWrap(); 2778 } 2779 if (const PossiblyExactOperator *ExactOp = 2780 dyn_cast<const PossiblyExactOperator>(&I)) 2781 exact = ExactOp->isExact(); 2782 } 2783 SDNodeFlags Flags; 2784 Flags.setExact(exact); 2785 Flags.setNoSignedWrap(nsw); 2786 Flags.setNoUnsignedWrap(nuw); 2787 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2788 Flags); 2789 setValue(&I, Res); 2790 } 2791 2792 void SelectionDAGBuilder::visitSDiv(const User &I) { 2793 SDValue Op1 = getValue(I.getOperand(0)); 2794 SDValue Op2 = getValue(I.getOperand(1)); 2795 2796 SDNodeFlags Flags; 2797 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2798 cast<PossiblyExactOperator>(&I)->isExact()); 2799 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2800 Op2, Flags)); 2801 } 2802 2803 void SelectionDAGBuilder::visitICmp(const User &I) { 2804 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2805 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2806 predicate = IC->getPredicate(); 2807 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2808 predicate = ICmpInst::Predicate(IC->getPredicate()); 2809 SDValue Op1 = getValue(I.getOperand(0)); 2810 SDValue Op2 = getValue(I.getOperand(1)); 2811 ISD::CondCode Opcode = getICmpCondCode(predicate); 2812 2813 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2814 I.getType()); 2815 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2816 } 2817 2818 void SelectionDAGBuilder::visitFCmp(const User &I) { 2819 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2820 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2821 predicate = FC->getPredicate(); 2822 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2823 predicate = FCmpInst::Predicate(FC->getPredicate()); 2824 SDValue Op1 = getValue(I.getOperand(0)); 2825 SDValue Op2 = getValue(I.getOperand(1)); 2826 ISD::CondCode Condition = getFCmpCondCode(predicate); 2827 2828 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2829 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2830 // further optimization, but currently FMF is only applicable to binary nodes. 2831 if (TM.Options.NoNaNsFPMath) 2832 Condition = getFCmpCodeWithoutNaN(Condition); 2833 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2834 I.getType()); 2835 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2836 } 2837 2838 // Check if the condition of the select has one use or two users that are both 2839 // selects with the same condition. 2840 static bool hasOnlySelectUsers(const Value *Cond) { 2841 return llvm::all_of(Cond->users(), [](const Value *V) { 2842 return isa<SelectInst>(V); 2843 }); 2844 } 2845 2846 void SelectionDAGBuilder::visitSelect(const User &I) { 2847 SmallVector<EVT, 4> ValueVTs; 2848 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2849 ValueVTs); 2850 unsigned NumValues = ValueVTs.size(); 2851 if (NumValues == 0) return; 2852 2853 SmallVector<SDValue, 4> Values(NumValues); 2854 SDValue Cond = getValue(I.getOperand(0)); 2855 SDValue LHSVal = getValue(I.getOperand(1)); 2856 SDValue RHSVal = getValue(I.getOperand(2)); 2857 auto BaseOps = {Cond}; 2858 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2859 ISD::VSELECT : ISD::SELECT; 2860 2861 // Min/max matching is only viable if all output VTs are the same. 2862 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2863 EVT VT = ValueVTs[0]; 2864 LLVMContext &Ctx = *DAG.getContext(); 2865 auto &TLI = DAG.getTargetLoweringInfo(); 2866 2867 // We care about the legality of the operation after it has been type 2868 // legalized. 2869 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2870 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2871 VT = TLI.getTypeToTransformTo(Ctx, VT); 2872 2873 // If the vselect is legal, assume we want to leave this as a vector setcc + 2874 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2875 // min/max is legal on the scalar type. 2876 bool UseScalarMinMax = VT.isVector() && 2877 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2878 2879 Value *LHS, *RHS; 2880 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2881 ISD::NodeType Opc = ISD::DELETED_NODE; 2882 switch (SPR.Flavor) { 2883 case SPF_UMAX: Opc = ISD::UMAX; break; 2884 case SPF_UMIN: Opc = ISD::UMIN; break; 2885 case SPF_SMAX: Opc = ISD::SMAX; break; 2886 case SPF_SMIN: Opc = ISD::SMIN; break; 2887 case SPF_FMINNUM: 2888 switch (SPR.NaNBehavior) { 2889 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2890 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2891 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2892 case SPNB_RETURNS_ANY: { 2893 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2894 Opc = ISD::FMINNUM; 2895 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2896 Opc = ISD::FMINNAN; 2897 else if (UseScalarMinMax) 2898 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2899 ISD::FMINNUM : ISD::FMINNAN; 2900 break; 2901 } 2902 } 2903 break; 2904 case SPF_FMAXNUM: 2905 switch (SPR.NaNBehavior) { 2906 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2907 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2908 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2909 case SPNB_RETURNS_ANY: 2910 2911 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2912 Opc = ISD::FMAXNUM; 2913 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2914 Opc = ISD::FMAXNAN; 2915 else if (UseScalarMinMax) 2916 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2917 ISD::FMAXNUM : ISD::FMAXNAN; 2918 break; 2919 } 2920 break; 2921 default: break; 2922 } 2923 2924 if (Opc != ISD::DELETED_NODE && 2925 (TLI.isOperationLegalOrCustom(Opc, VT) || 2926 (UseScalarMinMax && 2927 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2928 // If the underlying comparison instruction is used by any other 2929 // instruction, the consumed instructions won't be destroyed, so it is 2930 // not profitable to convert to a min/max. 2931 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2932 OpCode = Opc; 2933 LHSVal = getValue(LHS); 2934 RHSVal = getValue(RHS); 2935 BaseOps = {}; 2936 } 2937 } 2938 2939 for (unsigned i = 0; i != NumValues; ++i) { 2940 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2941 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2942 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2943 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2944 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2945 Ops); 2946 } 2947 2948 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2949 DAG.getVTList(ValueVTs), Values)); 2950 } 2951 2952 void SelectionDAGBuilder::visitTrunc(const User &I) { 2953 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2954 SDValue N = getValue(I.getOperand(0)); 2955 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2956 I.getType()); 2957 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2958 } 2959 2960 void SelectionDAGBuilder::visitZExt(const User &I) { 2961 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2962 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2963 SDValue N = getValue(I.getOperand(0)); 2964 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2965 I.getType()); 2966 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2967 } 2968 2969 void SelectionDAGBuilder::visitSExt(const User &I) { 2970 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2971 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2972 SDValue N = getValue(I.getOperand(0)); 2973 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2974 I.getType()); 2975 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2976 } 2977 2978 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2979 // FPTrunc is never a no-op cast, no need to check 2980 SDValue N = getValue(I.getOperand(0)); 2981 SDLoc dl = getCurSDLoc(); 2982 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2983 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2984 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2985 DAG.getTargetConstant( 2986 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2987 } 2988 2989 void SelectionDAGBuilder::visitFPExt(const User &I) { 2990 // FPExt is never a no-op cast, no need to check 2991 SDValue N = getValue(I.getOperand(0)); 2992 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2993 I.getType()); 2994 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2995 } 2996 2997 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2998 // FPToUI is never a no-op cast, no need to check 2999 SDValue N = getValue(I.getOperand(0)); 3000 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3001 I.getType()); 3002 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3003 } 3004 3005 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3006 // FPToSI is never a no-op cast, no need to check 3007 SDValue N = getValue(I.getOperand(0)); 3008 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3009 I.getType()); 3010 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3011 } 3012 3013 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3014 // UIToFP is never a no-op cast, no need to check 3015 SDValue N = getValue(I.getOperand(0)); 3016 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3017 I.getType()); 3018 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3019 } 3020 3021 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3022 // SIToFP is never a no-op cast, no need to check 3023 SDValue N = getValue(I.getOperand(0)); 3024 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3025 I.getType()); 3026 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3027 } 3028 3029 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3030 // What to do depends on the size of the integer and the size of the pointer. 3031 // We can either truncate, zero extend, or no-op, accordingly. 3032 SDValue N = getValue(I.getOperand(0)); 3033 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3034 I.getType()); 3035 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3036 } 3037 3038 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3039 // What to do depends on the size of the integer and the size of the pointer. 3040 // We can either truncate, zero extend, or no-op, accordingly. 3041 SDValue N = getValue(I.getOperand(0)); 3042 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3043 I.getType()); 3044 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3045 } 3046 3047 void SelectionDAGBuilder::visitBitCast(const User &I) { 3048 SDValue N = getValue(I.getOperand(0)); 3049 SDLoc dl = getCurSDLoc(); 3050 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3051 I.getType()); 3052 3053 // BitCast assures us that source and destination are the same size so this is 3054 // either a BITCAST or a no-op. 3055 if (DestVT != N.getValueType()) 3056 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3057 DestVT, N)); // convert types. 3058 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3059 // might fold any kind of constant expression to an integer constant and that 3060 // is not what we are looking for. Only recognize a bitcast of a genuine 3061 // constant integer as an opaque constant. 3062 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3063 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3064 /*isOpaque*/true)); 3065 else 3066 setValue(&I, N); // noop cast. 3067 } 3068 3069 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3071 const Value *SV = I.getOperand(0); 3072 SDValue N = getValue(SV); 3073 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3074 3075 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3076 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3077 3078 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3079 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3080 3081 setValue(&I, N); 3082 } 3083 3084 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3086 SDValue InVec = getValue(I.getOperand(0)); 3087 SDValue InVal = getValue(I.getOperand(1)); 3088 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3089 TLI.getVectorIdxTy(DAG.getDataLayout())); 3090 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3091 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3092 InVec, InVal, InIdx)); 3093 } 3094 3095 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3096 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3097 SDValue InVec = getValue(I.getOperand(0)); 3098 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3099 TLI.getVectorIdxTy(DAG.getDataLayout())); 3100 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3101 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3102 InVec, InIdx)); 3103 } 3104 3105 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3106 SDValue Src1 = getValue(I.getOperand(0)); 3107 SDValue Src2 = getValue(I.getOperand(1)); 3108 SDLoc DL = getCurSDLoc(); 3109 3110 SmallVector<int, 8> Mask; 3111 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3112 unsigned MaskNumElts = Mask.size(); 3113 3114 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3115 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3116 EVT SrcVT = Src1.getValueType(); 3117 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3118 3119 if (SrcNumElts == MaskNumElts) { 3120 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3121 return; 3122 } 3123 3124 // Normalize the shuffle vector since mask and vector length don't match. 3125 if (SrcNumElts < MaskNumElts) { 3126 // Mask is longer than the source vectors. We can use concatenate vector to 3127 // make the mask and vectors lengths match. 3128 3129 if (MaskNumElts % SrcNumElts == 0) { 3130 // Mask length is a multiple of the source vector length. 3131 // Check if the shuffle is some kind of concatenation of the input 3132 // vectors. 3133 unsigned NumConcat = MaskNumElts / SrcNumElts; 3134 bool IsConcat = true; 3135 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3136 for (unsigned i = 0; i != MaskNumElts; ++i) { 3137 int Idx = Mask[i]; 3138 if (Idx < 0) 3139 continue; 3140 // Ensure the indices in each SrcVT sized piece are sequential and that 3141 // the same source is used for the whole piece. 3142 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3143 (ConcatSrcs[i / SrcNumElts] >= 0 && 3144 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3145 IsConcat = false; 3146 break; 3147 } 3148 // Remember which source this index came from. 3149 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3150 } 3151 3152 // The shuffle is concatenating multiple vectors together. Just emit 3153 // a CONCAT_VECTORS operation. 3154 if (IsConcat) { 3155 SmallVector<SDValue, 8> ConcatOps; 3156 for (auto Src : ConcatSrcs) { 3157 if (Src < 0) 3158 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3159 else if (Src == 0) 3160 ConcatOps.push_back(Src1); 3161 else 3162 ConcatOps.push_back(Src2); 3163 } 3164 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3165 return; 3166 } 3167 } 3168 3169 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3170 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3171 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3172 PaddedMaskNumElts); 3173 3174 // Pad both vectors with undefs to make them the same length as the mask. 3175 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3176 3177 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3178 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3179 MOps1[0] = Src1; 3180 MOps2[0] = Src2; 3181 3182 Src1 = Src1.isUndef() 3183 ? DAG.getUNDEF(PaddedVT) 3184 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3185 Src2 = Src2.isUndef() 3186 ? DAG.getUNDEF(PaddedVT) 3187 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3188 3189 // Readjust mask for new input vector length. 3190 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3191 for (unsigned i = 0; i != MaskNumElts; ++i) { 3192 int Idx = Mask[i]; 3193 if (Idx >= (int)SrcNumElts) 3194 Idx -= SrcNumElts - PaddedMaskNumElts; 3195 MappedOps[i] = Idx; 3196 } 3197 3198 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3199 3200 // If the concatenated vector was padded, extract a subvector with the 3201 // correct number of elements. 3202 if (MaskNumElts != PaddedMaskNumElts) 3203 Result = DAG.getNode( 3204 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3205 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3206 3207 setValue(&I, Result); 3208 return; 3209 } 3210 3211 if (SrcNumElts > MaskNumElts) { 3212 // Analyze the access pattern of the vector to see if we can extract 3213 // two subvectors and do the shuffle. 3214 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3215 bool CanExtract = true; 3216 for (int Idx : Mask) { 3217 unsigned Input = 0; 3218 if (Idx < 0) 3219 continue; 3220 3221 if (Idx >= (int)SrcNumElts) { 3222 Input = 1; 3223 Idx -= SrcNumElts; 3224 } 3225 3226 // If all the indices come from the same MaskNumElts sized portion of 3227 // the sources we can use extract. Also make sure the extract wouldn't 3228 // extract past the end of the source. 3229 int NewStartIdx = alignDown(Idx, MaskNumElts); 3230 if (NewStartIdx + MaskNumElts > SrcNumElts || 3231 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3232 CanExtract = false; 3233 // Make sure we always update StartIdx as we use it to track if all 3234 // elements are undef. 3235 StartIdx[Input] = NewStartIdx; 3236 } 3237 3238 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3239 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3240 return; 3241 } 3242 if (CanExtract) { 3243 // Extract appropriate subvector and generate a vector shuffle 3244 for (unsigned Input = 0; Input < 2; ++Input) { 3245 SDValue &Src = Input == 0 ? Src1 : Src2; 3246 if (StartIdx[Input] < 0) 3247 Src = DAG.getUNDEF(VT); 3248 else { 3249 Src = DAG.getNode( 3250 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3251 DAG.getConstant(StartIdx[Input], DL, 3252 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3253 } 3254 } 3255 3256 // Calculate new mask. 3257 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3258 for (int &Idx : MappedOps) { 3259 if (Idx >= (int)SrcNumElts) 3260 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3261 else if (Idx >= 0) 3262 Idx -= StartIdx[0]; 3263 } 3264 3265 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3266 return; 3267 } 3268 } 3269 3270 // We can't use either concat vectors or extract subvectors so fall back to 3271 // replacing the shuffle with extract and build vector. 3272 // to insert and build vector. 3273 EVT EltVT = VT.getVectorElementType(); 3274 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3275 SmallVector<SDValue,8> Ops; 3276 for (int Idx : Mask) { 3277 SDValue Res; 3278 3279 if (Idx < 0) { 3280 Res = DAG.getUNDEF(EltVT); 3281 } else { 3282 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3283 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3284 3285 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3286 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3287 } 3288 3289 Ops.push_back(Res); 3290 } 3291 3292 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3293 } 3294 3295 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3296 ArrayRef<unsigned> Indices; 3297 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3298 Indices = IV->getIndices(); 3299 else 3300 Indices = cast<ConstantExpr>(&I)->getIndices(); 3301 3302 const Value *Op0 = I.getOperand(0); 3303 const Value *Op1 = I.getOperand(1); 3304 Type *AggTy = I.getType(); 3305 Type *ValTy = Op1->getType(); 3306 bool IntoUndef = isa<UndefValue>(Op0); 3307 bool FromUndef = isa<UndefValue>(Op1); 3308 3309 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3310 3311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3312 SmallVector<EVT, 4> AggValueVTs; 3313 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3314 SmallVector<EVT, 4> ValValueVTs; 3315 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3316 3317 unsigned NumAggValues = AggValueVTs.size(); 3318 unsigned NumValValues = ValValueVTs.size(); 3319 SmallVector<SDValue, 4> Values(NumAggValues); 3320 3321 // Ignore an insertvalue that produces an empty object 3322 if (!NumAggValues) { 3323 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3324 return; 3325 } 3326 3327 SDValue Agg = getValue(Op0); 3328 unsigned i = 0; 3329 // Copy the beginning value(s) from the original aggregate. 3330 for (; i != LinearIndex; ++i) 3331 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3332 SDValue(Agg.getNode(), Agg.getResNo() + i); 3333 // Copy values from the inserted value(s). 3334 if (NumValValues) { 3335 SDValue Val = getValue(Op1); 3336 for (; i != LinearIndex + NumValValues; ++i) 3337 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3338 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3339 } 3340 // Copy remaining value(s) from the original aggregate. 3341 for (; i != NumAggValues; ++i) 3342 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3343 SDValue(Agg.getNode(), Agg.getResNo() + i); 3344 3345 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3346 DAG.getVTList(AggValueVTs), Values)); 3347 } 3348 3349 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3350 ArrayRef<unsigned> Indices; 3351 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3352 Indices = EV->getIndices(); 3353 else 3354 Indices = cast<ConstantExpr>(&I)->getIndices(); 3355 3356 const Value *Op0 = I.getOperand(0); 3357 Type *AggTy = Op0->getType(); 3358 Type *ValTy = I.getType(); 3359 bool OutOfUndef = isa<UndefValue>(Op0); 3360 3361 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3362 3363 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3364 SmallVector<EVT, 4> ValValueVTs; 3365 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3366 3367 unsigned NumValValues = ValValueVTs.size(); 3368 3369 // Ignore a extractvalue that produces an empty object 3370 if (!NumValValues) { 3371 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3372 return; 3373 } 3374 3375 SmallVector<SDValue, 4> Values(NumValValues); 3376 3377 SDValue Agg = getValue(Op0); 3378 // Copy out the selected value(s). 3379 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3380 Values[i - LinearIndex] = 3381 OutOfUndef ? 3382 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3383 SDValue(Agg.getNode(), Agg.getResNo() + i); 3384 3385 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3386 DAG.getVTList(ValValueVTs), Values)); 3387 } 3388 3389 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3390 Value *Op0 = I.getOperand(0); 3391 // Note that the pointer operand may be a vector of pointers. Take the scalar 3392 // element which holds a pointer. 3393 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3394 SDValue N = getValue(Op0); 3395 SDLoc dl = getCurSDLoc(); 3396 3397 // Normalize Vector GEP - all scalar operands should be converted to the 3398 // splat vector. 3399 unsigned VectorWidth = I.getType()->isVectorTy() ? 3400 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3401 3402 if (VectorWidth && !N.getValueType().isVector()) { 3403 LLVMContext &Context = *DAG.getContext(); 3404 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3405 N = DAG.getSplatBuildVector(VT, dl, N); 3406 } 3407 3408 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3409 GTI != E; ++GTI) { 3410 const Value *Idx = GTI.getOperand(); 3411 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3412 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3413 if (Field) { 3414 // N = N + Offset 3415 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3416 3417 // In an inbounds GEP with an offset that is nonnegative even when 3418 // interpreted as signed, assume there is no unsigned overflow. 3419 SDNodeFlags Flags; 3420 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3421 Flags.setNoUnsignedWrap(true); 3422 3423 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3424 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3425 } 3426 } else { 3427 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3428 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3429 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3430 3431 // If this is a scalar constant or a splat vector of constants, 3432 // handle it quickly. 3433 const auto *CI = dyn_cast<ConstantInt>(Idx); 3434 if (!CI && isa<ConstantDataVector>(Idx) && 3435 cast<ConstantDataVector>(Idx)->getSplatValue()) 3436 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3437 3438 if (CI) { 3439 if (CI->isZero()) 3440 continue; 3441 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3442 LLVMContext &Context = *DAG.getContext(); 3443 SDValue OffsVal = VectorWidth ? 3444 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3445 DAG.getConstant(Offs, dl, IdxTy); 3446 3447 // In an inbouds GEP with an offset that is nonnegative even when 3448 // interpreted as signed, assume there is no unsigned overflow. 3449 SDNodeFlags Flags; 3450 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3451 Flags.setNoUnsignedWrap(true); 3452 3453 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3454 continue; 3455 } 3456 3457 // N = N + Idx * ElementSize; 3458 SDValue IdxN = getValue(Idx); 3459 3460 if (!IdxN.getValueType().isVector() && VectorWidth) { 3461 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3462 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3463 } 3464 3465 // If the index is smaller or larger than intptr_t, truncate or extend 3466 // it. 3467 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3468 3469 // If this is a multiply by a power of two, turn it into a shl 3470 // immediately. This is a very common case. 3471 if (ElementSize != 1) { 3472 if (ElementSize.isPowerOf2()) { 3473 unsigned Amt = ElementSize.logBase2(); 3474 IdxN = DAG.getNode(ISD::SHL, dl, 3475 N.getValueType(), IdxN, 3476 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3477 } else { 3478 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3479 IdxN = DAG.getNode(ISD::MUL, dl, 3480 N.getValueType(), IdxN, Scale); 3481 } 3482 } 3483 3484 N = DAG.getNode(ISD::ADD, dl, 3485 N.getValueType(), N, IdxN); 3486 } 3487 } 3488 3489 setValue(&I, N); 3490 } 3491 3492 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3493 // If this is a fixed sized alloca in the entry block of the function, 3494 // allocate it statically on the stack. 3495 if (FuncInfo.StaticAllocaMap.count(&I)) 3496 return; // getValue will auto-populate this. 3497 3498 SDLoc dl = getCurSDLoc(); 3499 Type *Ty = I.getAllocatedType(); 3500 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3501 auto &DL = DAG.getDataLayout(); 3502 uint64_t TySize = DL.getTypeAllocSize(Ty); 3503 unsigned Align = 3504 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3505 3506 SDValue AllocSize = getValue(I.getArraySize()); 3507 3508 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3509 if (AllocSize.getValueType() != IntPtr) 3510 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3511 3512 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3513 AllocSize, 3514 DAG.getConstant(TySize, dl, IntPtr)); 3515 3516 // Handle alignment. If the requested alignment is less than or equal to 3517 // the stack alignment, ignore it. If the size is greater than or equal to 3518 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3519 unsigned StackAlign = 3520 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3521 if (Align <= StackAlign) 3522 Align = 0; 3523 3524 // Round the size of the allocation up to the stack alignment size 3525 // by add SA-1 to the size. This doesn't overflow because we're computing 3526 // an address inside an alloca. 3527 SDNodeFlags Flags; 3528 Flags.setNoUnsignedWrap(true); 3529 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3530 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3531 3532 // Mask out the low bits for alignment purposes. 3533 AllocSize = 3534 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3535 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3536 3537 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3538 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3539 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3540 setValue(&I, DSA); 3541 DAG.setRoot(DSA.getValue(1)); 3542 3543 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3544 } 3545 3546 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3547 if (I.isAtomic()) 3548 return visitAtomicLoad(I); 3549 3550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3551 const Value *SV = I.getOperand(0); 3552 if (TLI.supportSwiftError()) { 3553 // Swifterror values can come from either a function parameter with 3554 // swifterror attribute or an alloca with swifterror attribute. 3555 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3556 if (Arg->hasSwiftErrorAttr()) 3557 return visitLoadFromSwiftError(I); 3558 } 3559 3560 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3561 if (Alloca->isSwiftError()) 3562 return visitLoadFromSwiftError(I); 3563 } 3564 } 3565 3566 SDValue Ptr = getValue(SV); 3567 3568 Type *Ty = I.getType(); 3569 3570 bool isVolatile = I.isVolatile(); 3571 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3572 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3573 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3574 unsigned Alignment = I.getAlignment(); 3575 3576 AAMDNodes AAInfo; 3577 I.getAAMetadata(AAInfo); 3578 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3579 3580 SmallVector<EVT, 4> ValueVTs; 3581 SmallVector<uint64_t, 4> Offsets; 3582 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3583 unsigned NumValues = ValueVTs.size(); 3584 if (NumValues == 0) 3585 return; 3586 3587 SDValue Root; 3588 bool ConstantMemory = false; 3589 if (isVolatile || NumValues > MaxParallelChains) 3590 // Serialize volatile loads with other side effects. 3591 Root = getRoot(); 3592 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3593 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3594 // Do not serialize (non-volatile) loads of constant memory with anything. 3595 Root = DAG.getEntryNode(); 3596 ConstantMemory = true; 3597 } else { 3598 // Do not serialize non-volatile loads against each other. 3599 Root = DAG.getRoot(); 3600 } 3601 3602 SDLoc dl = getCurSDLoc(); 3603 3604 if (isVolatile) 3605 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3606 3607 // An aggregate load cannot wrap around the address space, so offsets to its 3608 // parts don't wrap either. 3609 SDNodeFlags Flags; 3610 Flags.setNoUnsignedWrap(true); 3611 3612 SmallVector<SDValue, 4> Values(NumValues); 3613 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3614 EVT PtrVT = Ptr.getValueType(); 3615 unsigned ChainI = 0; 3616 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3617 // Serializing loads here may result in excessive register pressure, and 3618 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3619 // could recover a bit by hoisting nodes upward in the chain by recognizing 3620 // they are side-effect free or do not alias. The optimizer should really 3621 // avoid this case by converting large object/array copies to llvm.memcpy 3622 // (MaxParallelChains should always remain as failsafe). 3623 if (ChainI == MaxParallelChains) { 3624 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3625 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3626 makeArrayRef(Chains.data(), ChainI)); 3627 Root = Chain; 3628 ChainI = 0; 3629 } 3630 SDValue A = DAG.getNode(ISD::ADD, dl, 3631 PtrVT, Ptr, 3632 DAG.getConstant(Offsets[i], dl, PtrVT), 3633 Flags); 3634 auto MMOFlags = MachineMemOperand::MONone; 3635 if (isVolatile) 3636 MMOFlags |= MachineMemOperand::MOVolatile; 3637 if (isNonTemporal) 3638 MMOFlags |= MachineMemOperand::MONonTemporal; 3639 if (isInvariant) 3640 MMOFlags |= MachineMemOperand::MOInvariant; 3641 if (isDereferenceable) 3642 MMOFlags |= MachineMemOperand::MODereferenceable; 3643 MMOFlags |= TLI.getMMOFlags(I); 3644 3645 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3646 MachinePointerInfo(SV, Offsets[i]), Alignment, 3647 MMOFlags, AAInfo, Ranges); 3648 3649 Values[i] = L; 3650 Chains[ChainI] = L.getValue(1); 3651 } 3652 3653 if (!ConstantMemory) { 3654 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3655 makeArrayRef(Chains.data(), ChainI)); 3656 if (isVolatile) 3657 DAG.setRoot(Chain); 3658 else 3659 PendingLoads.push_back(Chain); 3660 } 3661 3662 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3663 DAG.getVTList(ValueVTs), Values)); 3664 } 3665 3666 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3667 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3668 "call visitStoreToSwiftError when backend supports swifterror"); 3669 3670 SmallVector<EVT, 4> ValueVTs; 3671 SmallVector<uint64_t, 4> Offsets; 3672 const Value *SrcV = I.getOperand(0); 3673 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3674 SrcV->getType(), ValueVTs, &Offsets); 3675 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3676 "expect a single EVT for swifterror"); 3677 3678 SDValue Src = getValue(SrcV); 3679 // Create a virtual register, then update the virtual register. 3680 unsigned VReg; bool CreatedVReg; 3681 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3682 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3683 // Chain can be getRoot or getControlRoot. 3684 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3685 SDValue(Src.getNode(), Src.getResNo())); 3686 DAG.setRoot(CopyNode); 3687 if (CreatedVReg) 3688 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3689 } 3690 3691 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3692 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3693 "call visitLoadFromSwiftError when backend supports swifterror"); 3694 3695 assert(!I.isVolatile() && 3696 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3697 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3698 "Support volatile, non temporal, invariant for load_from_swift_error"); 3699 3700 const Value *SV = I.getOperand(0); 3701 Type *Ty = I.getType(); 3702 AAMDNodes AAInfo; 3703 I.getAAMetadata(AAInfo); 3704 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3705 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3706 "load_from_swift_error should not be constant memory"); 3707 3708 SmallVector<EVT, 4> ValueVTs; 3709 SmallVector<uint64_t, 4> Offsets; 3710 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3711 ValueVTs, &Offsets); 3712 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3713 "expect a single EVT for swifterror"); 3714 3715 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3716 SDValue L = DAG.getCopyFromReg( 3717 getRoot(), getCurSDLoc(), 3718 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3719 ValueVTs[0]); 3720 3721 setValue(&I, L); 3722 } 3723 3724 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3725 if (I.isAtomic()) 3726 return visitAtomicStore(I); 3727 3728 const Value *SrcV = I.getOperand(0); 3729 const Value *PtrV = I.getOperand(1); 3730 3731 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3732 if (TLI.supportSwiftError()) { 3733 // Swifterror values can come from either a function parameter with 3734 // swifterror attribute or an alloca with swifterror attribute. 3735 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3736 if (Arg->hasSwiftErrorAttr()) 3737 return visitStoreToSwiftError(I); 3738 } 3739 3740 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3741 if (Alloca->isSwiftError()) 3742 return visitStoreToSwiftError(I); 3743 } 3744 } 3745 3746 SmallVector<EVT, 4> ValueVTs; 3747 SmallVector<uint64_t, 4> Offsets; 3748 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3749 SrcV->getType(), ValueVTs, &Offsets); 3750 unsigned NumValues = ValueVTs.size(); 3751 if (NumValues == 0) 3752 return; 3753 3754 // Get the lowered operands. Note that we do this after 3755 // checking if NumResults is zero, because with zero results 3756 // the operands won't have values in the map. 3757 SDValue Src = getValue(SrcV); 3758 SDValue Ptr = getValue(PtrV); 3759 3760 SDValue Root = getRoot(); 3761 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3762 SDLoc dl = getCurSDLoc(); 3763 EVT PtrVT = Ptr.getValueType(); 3764 unsigned Alignment = I.getAlignment(); 3765 AAMDNodes AAInfo; 3766 I.getAAMetadata(AAInfo); 3767 3768 auto MMOFlags = MachineMemOperand::MONone; 3769 if (I.isVolatile()) 3770 MMOFlags |= MachineMemOperand::MOVolatile; 3771 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3772 MMOFlags |= MachineMemOperand::MONonTemporal; 3773 MMOFlags |= TLI.getMMOFlags(I); 3774 3775 // An aggregate load cannot wrap around the address space, so offsets to its 3776 // parts don't wrap either. 3777 SDNodeFlags Flags; 3778 Flags.setNoUnsignedWrap(true); 3779 3780 unsigned ChainI = 0; 3781 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3782 // See visitLoad comments. 3783 if (ChainI == MaxParallelChains) { 3784 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3785 makeArrayRef(Chains.data(), ChainI)); 3786 Root = Chain; 3787 ChainI = 0; 3788 } 3789 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3790 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3791 SDValue St = DAG.getStore( 3792 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3793 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3794 Chains[ChainI] = St; 3795 } 3796 3797 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3798 makeArrayRef(Chains.data(), ChainI)); 3799 DAG.setRoot(StoreNode); 3800 } 3801 3802 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3803 bool IsCompressing) { 3804 SDLoc sdl = getCurSDLoc(); 3805 3806 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3807 unsigned& Alignment) { 3808 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3809 Src0 = I.getArgOperand(0); 3810 Ptr = I.getArgOperand(1); 3811 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3812 Mask = I.getArgOperand(3); 3813 }; 3814 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3815 unsigned& Alignment) { 3816 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3817 Src0 = I.getArgOperand(0); 3818 Ptr = I.getArgOperand(1); 3819 Mask = I.getArgOperand(2); 3820 Alignment = 0; 3821 }; 3822 3823 Value *PtrOperand, *MaskOperand, *Src0Operand; 3824 unsigned Alignment; 3825 if (IsCompressing) 3826 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3827 else 3828 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3829 3830 SDValue Ptr = getValue(PtrOperand); 3831 SDValue Src0 = getValue(Src0Operand); 3832 SDValue Mask = getValue(MaskOperand); 3833 3834 EVT VT = Src0.getValueType(); 3835 if (!Alignment) 3836 Alignment = DAG.getEVTAlignment(VT); 3837 3838 AAMDNodes AAInfo; 3839 I.getAAMetadata(AAInfo); 3840 3841 MachineMemOperand *MMO = 3842 DAG.getMachineFunction(). 3843 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3844 MachineMemOperand::MOStore, VT.getStoreSize(), 3845 Alignment, AAInfo); 3846 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3847 MMO, false /* Truncating */, 3848 IsCompressing); 3849 DAG.setRoot(StoreNode); 3850 setValue(&I, StoreNode); 3851 } 3852 3853 // Get a uniform base for the Gather/Scatter intrinsic. 3854 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3855 // We try to represent it as a base pointer + vector of indices. 3856 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3857 // The first operand of the GEP may be a single pointer or a vector of pointers 3858 // Example: 3859 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3860 // or 3861 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3862 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3863 // 3864 // When the first GEP operand is a single pointer - it is the uniform base we 3865 // are looking for. If first operand of the GEP is a splat vector - we 3866 // extract the splat value and use it as a uniform base. 3867 // In all other cases the function returns 'false'. 3868 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3869 SDValue &Scale, SelectionDAGBuilder* SDB) { 3870 SelectionDAG& DAG = SDB->DAG; 3871 LLVMContext &Context = *DAG.getContext(); 3872 3873 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3874 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3875 if (!GEP) 3876 return false; 3877 3878 const Value *GEPPtr = GEP->getPointerOperand(); 3879 if (!GEPPtr->getType()->isVectorTy()) 3880 Ptr = GEPPtr; 3881 else if (!(Ptr = getSplatValue(GEPPtr))) 3882 return false; 3883 3884 unsigned FinalIndex = GEP->getNumOperands() - 1; 3885 Value *IndexVal = GEP->getOperand(FinalIndex); 3886 3887 // Ensure all the other indices are 0. 3888 for (unsigned i = 1; i < FinalIndex; ++i) { 3889 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3890 if (!C || !C->isZero()) 3891 return false; 3892 } 3893 3894 // The operands of the GEP may be defined in another basic block. 3895 // In this case we'll not find nodes for the operands. 3896 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3897 return false; 3898 3899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3900 const DataLayout &DL = DAG.getDataLayout(); 3901 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3902 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3903 Base = SDB->getValue(Ptr); 3904 Index = SDB->getValue(IndexVal); 3905 3906 if (!Index.getValueType().isVector()) { 3907 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3908 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3909 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3910 } 3911 return true; 3912 } 3913 3914 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3915 SDLoc sdl = getCurSDLoc(); 3916 3917 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3918 const Value *Ptr = I.getArgOperand(1); 3919 SDValue Src0 = getValue(I.getArgOperand(0)); 3920 SDValue Mask = getValue(I.getArgOperand(3)); 3921 EVT VT = Src0.getValueType(); 3922 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3923 if (!Alignment) 3924 Alignment = DAG.getEVTAlignment(VT); 3925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3926 3927 AAMDNodes AAInfo; 3928 I.getAAMetadata(AAInfo); 3929 3930 SDValue Base; 3931 SDValue Index; 3932 SDValue Scale; 3933 const Value *BasePtr = Ptr; 3934 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 3935 3936 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3937 MachineMemOperand *MMO = DAG.getMachineFunction(). 3938 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3939 MachineMemOperand::MOStore, VT.getStoreSize(), 3940 Alignment, AAInfo); 3941 if (!UniformBase) { 3942 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3943 Index = getValue(Ptr); 3944 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3945 } 3946 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 3947 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3948 Ops, MMO); 3949 DAG.setRoot(Scatter); 3950 setValue(&I, Scatter); 3951 } 3952 3953 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3954 SDLoc sdl = getCurSDLoc(); 3955 3956 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3957 unsigned& Alignment) { 3958 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3959 Ptr = I.getArgOperand(0); 3960 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3961 Mask = I.getArgOperand(2); 3962 Src0 = I.getArgOperand(3); 3963 }; 3964 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3965 unsigned& Alignment) { 3966 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3967 Ptr = I.getArgOperand(0); 3968 Alignment = 0; 3969 Mask = I.getArgOperand(1); 3970 Src0 = I.getArgOperand(2); 3971 }; 3972 3973 Value *PtrOperand, *MaskOperand, *Src0Operand; 3974 unsigned Alignment; 3975 if (IsExpanding) 3976 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3977 else 3978 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3979 3980 SDValue Ptr = getValue(PtrOperand); 3981 SDValue Src0 = getValue(Src0Operand); 3982 SDValue Mask = getValue(MaskOperand); 3983 3984 EVT VT = Src0.getValueType(); 3985 if (!Alignment) 3986 Alignment = DAG.getEVTAlignment(VT); 3987 3988 AAMDNodes AAInfo; 3989 I.getAAMetadata(AAInfo); 3990 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3991 3992 // Do not serialize masked loads of constant memory with anything. 3993 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 3994 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3995 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3996 3997 MachineMemOperand *MMO = 3998 DAG.getMachineFunction(). 3999 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4000 MachineMemOperand::MOLoad, VT.getStoreSize(), 4001 Alignment, AAInfo, Ranges); 4002 4003 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4004 ISD::NON_EXTLOAD, IsExpanding); 4005 if (AddToChain) { 4006 SDValue OutChain = Load.getValue(1); 4007 DAG.setRoot(OutChain); 4008 } 4009 setValue(&I, Load); 4010 } 4011 4012 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4013 SDLoc sdl = getCurSDLoc(); 4014 4015 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4016 const Value *Ptr = I.getArgOperand(0); 4017 SDValue Src0 = getValue(I.getArgOperand(3)); 4018 SDValue Mask = getValue(I.getArgOperand(2)); 4019 4020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4021 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4022 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4023 if (!Alignment) 4024 Alignment = DAG.getEVTAlignment(VT); 4025 4026 AAMDNodes AAInfo; 4027 I.getAAMetadata(AAInfo); 4028 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4029 4030 SDValue Root = DAG.getRoot(); 4031 SDValue Base; 4032 SDValue Index; 4033 SDValue Scale; 4034 const Value *BasePtr = Ptr; 4035 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4036 bool ConstantMemory = false; 4037 if (UniformBase && 4038 AA && AA->pointsToConstantMemory(MemoryLocation( 4039 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4040 AAInfo))) { 4041 // Do not serialize (non-volatile) loads of constant memory with anything. 4042 Root = DAG.getEntryNode(); 4043 ConstantMemory = true; 4044 } 4045 4046 MachineMemOperand *MMO = 4047 DAG.getMachineFunction(). 4048 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4049 MachineMemOperand::MOLoad, VT.getStoreSize(), 4050 Alignment, AAInfo, Ranges); 4051 4052 if (!UniformBase) { 4053 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4054 Index = getValue(Ptr); 4055 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4056 } 4057 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4058 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4059 Ops, MMO); 4060 4061 SDValue OutChain = Gather.getValue(1); 4062 if (!ConstantMemory) 4063 PendingLoads.push_back(OutChain); 4064 setValue(&I, Gather); 4065 } 4066 4067 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4068 SDLoc dl = getCurSDLoc(); 4069 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4070 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4071 SyncScope::ID SSID = I.getSyncScopeID(); 4072 4073 SDValue InChain = getRoot(); 4074 4075 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4076 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4077 SDValue L = DAG.getAtomicCmpSwap( 4078 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4079 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4080 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4081 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4082 4083 SDValue OutChain = L.getValue(2); 4084 4085 setValue(&I, L); 4086 DAG.setRoot(OutChain); 4087 } 4088 4089 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4090 SDLoc dl = getCurSDLoc(); 4091 ISD::NodeType NT; 4092 switch (I.getOperation()) { 4093 default: llvm_unreachable("Unknown atomicrmw operation"); 4094 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4095 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4096 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4097 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4098 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4099 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4100 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4101 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4102 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4103 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4104 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4105 } 4106 AtomicOrdering Order = I.getOrdering(); 4107 SyncScope::ID SSID = I.getSyncScopeID(); 4108 4109 SDValue InChain = getRoot(); 4110 4111 SDValue L = 4112 DAG.getAtomic(NT, dl, 4113 getValue(I.getValOperand()).getSimpleValueType(), 4114 InChain, 4115 getValue(I.getPointerOperand()), 4116 getValue(I.getValOperand()), 4117 I.getPointerOperand(), 4118 /* Alignment=*/ 0, Order, SSID); 4119 4120 SDValue OutChain = L.getValue(1); 4121 4122 setValue(&I, L); 4123 DAG.setRoot(OutChain); 4124 } 4125 4126 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4127 SDLoc dl = getCurSDLoc(); 4128 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4129 SDValue Ops[3]; 4130 Ops[0] = getRoot(); 4131 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4132 TLI.getFenceOperandTy(DAG.getDataLayout())); 4133 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4134 TLI.getFenceOperandTy(DAG.getDataLayout())); 4135 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4136 } 4137 4138 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4139 SDLoc dl = getCurSDLoc(); 4140 AtomicOrdering Order = I.getOrdering(); 4141 SyncScope::ID SSID = I.getSyncScopeID(); 4142 4143 SDValue InChain = getRoot(); 4144 4145 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4146 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4147 4148 if (!TLI.supportsUnalignedAtomics() && 4149 I.getAlignment() < VT.getStoreSize()) 4150 report_fatal_error("Cannot generate unaligned atomic load"); 4151 4152 MachineMemOperand *MMO = 4153 DAG.getMachineFunction(). 4154 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4155 MachineMemOperand::MOVolatile | 4156 MachineMemOperand::MOLoad, 4157 VT.getStoreSize(), 4158 I.getAlignment() ? I.getAlignment() : 4159 DAG.getEVTAlignment(VT), 4160 AAMDNodes(), nullptr, SSID, Order); 4161 4162 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4163 SDValue L = 4164 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4165 getValue(I.getPointerOperand()), MMO); 4166 4167 SDValue OutChain = L.getValue(1); 4168 4169 setValue(&I, L); 4170 DAG.setRoot(OutChain); 4171 } 4172 4173 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4174 SDLoc dl = getCurSDLoc(); 4175 4176 AtomicOrdering Order = I.getOrdering(); 4177 SyncScope::ID SSID = I.getSyncScopeID(); 4178 4179 SDValue InChain = getRoot(); 4180 4181 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4182 EVT VT = 4183 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4184 4185 if (I.getAlignment() < VT.getStoreSize()) 4186 report_fatal_error("Cannot generate unaligned atomic store"); 4187 4188 SDValue OutChain = 4189 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4190 InChain, 4191 getValue(I.getPointerOperand()), 4192 getValue(I.getValueOperand()), 4193 I.getPointerOperand(), I.getAlignment(), 4194 Order, SSID); 4195 4196 DAG.setRoot(OutChain); 4197 } 4198 4199 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4200 /// node. 4201 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4202 unsigned Intrinsic) { 4203 // Ignore the callsite's attributes. A specific call site may be marked with 4204 // readnone, but the lowering code will expect the chain based on the 4205 // definition. 4206 const Function *F = I.getCalledFunction(); 4207 bool HasChain = !F->doesNotAccessMemory(); 4208 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4209 4210 // Build the operand list. 4211 SmallVector<SDValue, 8> Ops; 4212 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4213 if (OnlyLoad) { 4214 // We don't need to serialize loads against other loads. 4215 Ops.push_back(DAG.getRoot()); 4216 } else { 4217 Ops.push_back(getRoot()); 4218 } 4219 } 4220 4221 // Info is set by getTgtMemInstrinsic 4222 TargetLowering::IntrinsicInfo Info; 4223 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4224 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4225 DAG.getMachineFunction(), 4226 Intrinsic); 4227 4228 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4229 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4230 Info.opc == ISD::INTRINSIC_W_CHAIN) 4231 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4232 TLI.getPointerTy(DAG.getDataLayout()))); 4233 4234 // Add all operands of the call to the operand list. 4235 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4236 SDValue Op = getValue(I.getArgOperand(i)); 4237 Ops.push_back(Op); 4238 } 4239 4240 SmallVector<EVT, 4> ValueVTs; 4241 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4242 4243 if (HasChain) 4244 ValueVTs.push_back(MVT::Other); 4245 4246 SDVTList VTs = DAG.getVTList(ValueVTs); 4247 4248 // Create the node. 4249 SDValue Result; 4250 if (IsTgtIntrinsic) { 4251 // This is target intrinsic that touches memory 4252 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4253 Ops, Info.memVT, 4254 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4255 Info.flags, Info.size); 4256 } else if (!HasChain) { 4257 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4258 } else if (!I.getType()->isVoidTy()) { 4259 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4260 } else { 4261 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4262 } 4263 4264 if (HasChain) { 4265 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4266 if (OnlyLoad) 4267 PendingLoads.push_back(Chain); 4268 else 4269 DAG.setRoot(Chain); 4270 } 4271 4272 if (!I.getType()->isVoidTy()) { 4273 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4274 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4275 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4276 } else 4277 Result = lowerRangeToAssertZExt(DAG, I, Result); 4278 4279 setValue(&I, Result); 4280 } 4281 } 4282 4283 /// GetSignificand - Get the significand and build it into a floating-point 4284 /// number with exponent of 1: 4285 /// 4286 /// Op = (Op & 0x007fffff) | 0x3f800000; 4287 /// 4288 /// where Op is the hexadecimal representation of floating point value. 4289 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4290 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4291 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4292 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4293 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4294 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4295 } 4296 4297 /// GetExponent - Get the exponent: 4298 /// 4299 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4300 /// 4301 /// where Op is the hexadecimal representation of floating point value. 4302 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4303 const TargetLowering &TLI, const SDLoc &dl) { 4304 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4305 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4306 SDValue t1 = DAG.getNode( 4307 ISD::SRL, dl, MVT::i32, t0, 4308 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4309 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4310 DAG.getConstant(127, dl, MVT::i32)); 4311 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4312 } 4313 4314 /// getF32Constant - Get 32-bit floating point constant. 4315 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4316 const SDLoc &dl) { 4317 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4318 MVT::f32); 4319 } 4320 4321 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4322 SelectionDAG &DAG) { 4323 // TODO: What fast-math-flags should be set on the floating-point nodes? 4324 4325 // IntegerPartOfX = ((int32_t)(t0); 4326 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4327 4328 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4329 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4330 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4331 4332 // IntegerPartOfX <<= 23; 4333 IntegerPartOfX = DAG.getNode( 4334 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4335 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4336 DAG.getDataLayout()))); 4337 4338 SDValue TwoToFractionalPartOfX; 4339 if (LimitFloatPrecision <= 6) { 4340 // For floating-point precision of 6: 4341 // 4342 // TwoToFractionalPartOfX = 4343 // 0.997535578f + 4344 // (0.735607626f + 0.252464424f * x) * x; 4345 // 4346 // error 0.0144103317, which is 6 bits 4347 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4348 getF32Constant(DAG, 0x3e814304, dl)); 4349 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4350 getF32Constant(DAG, 0x3f3c50c8, dl)); 4351 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4352 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4353 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4354 } else if (LimitFloatPrecision <= 12) { 4355 // For floating-point precision of 12: 4356 // 4357 // TwoToFractionalPartOfX = 4358 // 0.999892986f + 4359 // (0.696457318f + 4360 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4361 // 4362 // error 0.000107046256, which is 13 to 14 bits 4363 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4364 getF32Constant(DAG, 0x3da235e3, dl)); 4365 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4366 getF32Constant(DAG, 0x3e65b8f3, dl)); 4367 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4368 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4369 getF32Constant(DAG, 0x3f324b07, dl)); 4370 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4371 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4372 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4373 } else { // LimitFloatPrecision <= 18 4374 // For floating-point precision of 18: 4375 // 4376 // TwoToFractionalPartOfX = 4377 // 0.999999982f + 4378 // (0.693148872f + 4379 // (0.240227044f + 4380 // (0.554906021e-1f + 4381 // (0.961591928e-2f + 4382 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4383 // error 2.47208000*10^(-7), which is better than 18 bits 4384 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4385 getF32Constant(DAG, 0x3924b03e, dl)); 4386 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4387 getF32Constant(DAG, 0x3ab24b87, dl)); 4388 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4389 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4390 getF32Constant(DAG, 0x3c1d8c17, dl)); 4391 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4392 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4393 getF32Constant(DAG, 0x3d634a1d, dl)); 4394 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4395 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4396 getF32Constant(DAG, 0x3e75fe14, dl)); 4397 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4398 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4399 getF32Constant(DAG, 0x3f317234, dl)); 4400 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4401 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4402 getF32Constant(DAG, 0x3f800000, dl)); 4403 } 4404 4405 // Add the exponent into the result in integer domain. 4406 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4407 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4408 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4409 } 4410 4411 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4412 /// limited-precision mode. 4413 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4414 const TargetLowering &TLI) { 4415 if (Op.getValueType() == MVT::f32 && 4416 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4417 4418 // Put the exponent in the right bit position for later addition to the 4419 // final result: 4420 // 4421 // #define LOG2OFe 1.4426950f 4422 // t0 = Op * LOG2OFe 4423 4424 // TODO: What fast-math-flags should be set here? 4425 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4426 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4427 return getLimitedPrecisionExp2(t0, dl, DAG); 4428 } 4429 4430 // No special expansion. 4431 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4432 } 4433 4434 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4435 /// limited-precision mode. 4436 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4437 const TargetLowering &TLI) { 4438 // TODO: What fast-math-flags should be set on the floating-point nodes? 4439 4440 if (Op.getValueType() == MVT::f32 && 4441 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4442 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4443 4444 // Scale the exponent by log(2) [0.69314718f]. 4445 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4446 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4447 getF32Constant(DAG, 0x3f317218, dl)); 4448 4449 // Get the significand and build it into a floating-point number with 4450 // exponent of 1. 4451 SDValue X = GetSignificand(DAG, Op1, dl); 4452 4453 SDValue LogOfMantissa; 4454 if (LimitFloatPrecision <= 6) { 4455 // For floating-point precision of 6: 4456 // 4457 // LogofMantissa = 4458 // -1.1609546f + 4459 // (1.4034025f - 0.23903021f * x) * x; 4460 // 4461 // error 0.0034276066, which is better than 8 bits 4462 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4463 getF32Constant(DAG, 0xbe74c456, dl)); 4464 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4465 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4466 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4467 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4468 getF32Constant(DAG, 0x3f949a29, dl)); 4469 } else if (LimitFloatPrecision <= 12) { 4470 // For floating-point precision of 12: 4471 // 4472 // LogOfMantissa = 4473 // -1.7417939f + 4474 // (2.8212026f + 4475 // (-1.4699568f + 4476 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4477 // 4478 // error 0.000061011436, which is 14 bits 4479 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4480 getF32Constant(DAG, 0xbd67b6d6, dl)); 4481 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4482 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4483 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4484 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4485 getF32Constant(DAG, 0x3fbc278b, dl)); 4486 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4487 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4488 getF32Constant(DAG, 0x40348e95, dl)); 4489 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4490 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4491 getF32Constant(DAG, 0x3fdef31a, dl)); 4492 } else { // LimitFloatPrecision <= 18 4493 // For floating-point precision of 18: 4494 // 4495 // LogOfMantissa = 4496 // -2.1072184f + 4497 // (4.2372794f + 4498 // (-3.7029485f + 4499 // (2.2781945f + 4500 // (-0.87823314f + 4501 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4502 // 4503 // error 0.0000023660568, which is better than 18 bits 4504 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4505 getF32Constant(DAG, 0xbc91e5ac, dl)); 4506 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4507 getF32Constant(DAG, 0x3e4350aa, dl)); 4508 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4509 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4510 getF32Constant(DAG, 0x3f60d3e3, dl)); 4511 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4512 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4513 getF32Constant(DAG, 0x4011cdf0, dl)); 4514 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4515 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4516 getF32Constant(DAG, 0x406cfd1c, dl)); 4517 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4518 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4519 getF32Constant(DAG, 0x408797cb, dl)); 4520 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4521 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4522 getF32Constant(DAG, 0x4006dcab, dl)); 4523 } 4524 4525 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4526 } 4527 4528 // No special expansion. 4529 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4530 } 4531 4532 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4533 /// limited-precision mode. 4534 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4535 const TargetLowering &TLI) { 4536 // TODO: What fast-math-flags should be set on the floating-point nodes? 4537 4538 if (Op.getValueType() == MVT::f32 && 4539 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4540 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4541 4542 // Get the exponent. 4543 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4544 4545 // Get the significand and build it into a floating-point number with 4546 // exponent of 1. 4547 SDValue X = GetSignificand(DAG, Op1, dl); 4548 4549 // Different possible minimax approximations of significand in 4550 // floating-point for various degrees of accuracy over [1,2]. 4551 SDValue Log2ofMantissa; 4552 if (LimitFloatPrecision <= 6) { 4553 // For floating-point precision of 6: 4554 // 4555 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4556 // 4557 // error 0.0049451742, which is more than 7 bits 4558 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4559 getF32Constant(DAG, 0xbeb08fe0, dl)); 4560 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4561 getF32Constant(DAG, 0x40019463, dl)); 4562 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4563 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4564 getF32Constant(DAG, 0x3fd6633d, dl)); 4565 } else if (LimitFloatPrecision <= 12) { 4566 // For floating-point precision of 12: 4567 // 4568 // Log2ofMantissa = 4569 // -2.51285454f + 4570 // (4.07009056f + 4571 // (-2.12067489f + 4572 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4573 // 4574 // error 0.0000876136000, which is better than 13 bits 4575 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4576 getF32Constant(DAG, 0xbda7262e, dl)); 4577 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4578 getF32Constant(DAG, 0x3f25280b, dl)); 4579 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4580 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4581 getF32Constant(DAG, 0x4007b923, dl)); 4582 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4583 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4584 getF32Constant(DAG, 0x40823e2f, dl)); 4585 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4586 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4587 getF32Constant(DAG, 0x4020d29c, dl)); 4588 } else { // LimitFloatPrecision <= 18 4589 // For floating-point precision of 18: 4590 // 4591 // Log2ofMantissa = 4592 // -3.0400495f + 4593 // (6.1129976f + 4594 // (-5.3420409f + 4595 // (3.2865683f + 4596 // (-1.2669343f + 4597 // (0.27515199f - 4598 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4599 // 4600 // error 0.0000018516, which is better than 18 bits 4601 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4602 getF32Constant(DAG, 0xbcd2769e, dl)); 4603 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4604 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4605 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4606 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4607 getF32Constant(DAG, 0x3fa22ae7, dl)); 4608 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4609 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4610 getF32Constant(DAG, 0x40525723, dl)); 4611 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4612 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4613 getF32Constant(DAG, 0x40aaf200, dl)); 4614 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4615 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4616 getF32Constant(DAG, 0x40c39dad, dl)); 4617 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4618 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4619 getF32Constant(DAG, 0x4042902c, dl)); 4620 } 4621 4622 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4623 } 4624 4625 // No special expansion. 4626 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4627 } 4628 4629 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4630 /// limited-precision mode. 4631 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4632 const TargetLowering &TLI) { 4633 // TODO: What fast-math-flags should be set on the floating-point nodes? 4634 4635 if (Op.getValueType() == MVT::f32 && 4636 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4637 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4638 4639 // Scale the exponent by log10(2) [0.30102999f]. 4640 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4641 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4642 getF32Constant(DAG, 0x3e9a209a, dl)); 4643 4644 // Get the significand and build it into a floating-point number with 4645 // exponent of 1. 4646 SDValue X = GetSignificand(DAG, Op1, dl); 4647 4648 SDValue Log10ofMantissa; 4649 if (LimitFloatPrecision <= 6) { 4650 // For floating-point precision of 6: 4651 // 4652 // Log10ofMantissa = 4653 // -0.50419619f + 4654 // (0.60948995f - 0.10380950f * x) * x; 4655 // 4656 // error 0.0014886165, which is 6 bits 4657 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4658 getF32Constant(DAG, 0xbdd49a13, dl)); 4659 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4660 getF32Constant(DAG, 0x3f1c0789, dl)); 4661 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4662 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4663 getF32Constant(DAG, 0x3f011300, dl)); 4664 } else if (LimitFloatPrecision <= 12) { 4665 // For floating-point precision of 12: 4666 // 4667 // Log10ofMantissa = 4668 // -0.64831180f + 4669 // (0.91751397f + 4670 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4671 // 4672 // error 0.00019228036, which is better than 12 bits 4673 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4674 getF32Constant(DAG, 0x3d431f31, dl)); 4675 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4676 getF32Constant(DAG, 0x3ea21fb2, dl)); 4677 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4678 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4679 getF32Constant(DAG, 0x3f6ae232, dl)); 4680 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4681 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4682 getF32Constant(DAG, 0x3f25f7c3, dl)); 4683 } else { // LimitFloatPrecision <= 18 4684 // For floating-point precision of 18: 4685 // 4686 // Log10ofMantissa = 4687 // -0.84299375f + 4688 // (1.5327582f + 4689 // (-1.0688956f + 4690 // (0.49102474f + 4691 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4692 // 4693 // error 0.0000037995730, which is better than 18 bits 4694 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4695 getF32Constant(DAG, 0x3c5d51ce, dl)); 4696 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4697 getF32Constant(DAG, 0x3e00685a, dl)); 4698 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4699 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4700 getF32Constant(DAG, 0x3efb6798, dl)); 4701 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4702 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4703 getF32Constant(DAG, 0x3f88d192, dl)); 4704 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4705 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4706 getF32Constant(DAG, 0x3fc4316c, dl)); 4707 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4708 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4709 getF32Constant(DAG, 0x3f57ce70, dl)); 4710 } 4711 4712 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4713 } 4714 4715 // No special expansion. 4716 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4717 } 4718 4719 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4720 /// limited-precision mode. 4721 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4722 const TargetLowering &TLI) { 4723 if (Op.getValueType() == MVT::f32 && 4724 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4725 return getLimitedPrecisionExp2(Op, dl, DAG); 4726 4727 // No special expansion. 4728 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4729 } 4730 4731 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4732 /// limited-precision mode with x == 10.0f. 4733 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4734 SelectionDAG &DAG, const TargetLowering &TLI) { 4735 bool IsExp10 = false; 4736 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4737 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4738 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4739 APFloat Ten(10.0f); 4740 IsExp10 = LHSC->isExactlyValue(Ten); 4741 } 4742 } 4743 4744 // TODO: What fast-math-flags should be set on the FMUL node? 4745 if (IsExp10) { 4746 // Put the exponent in the right bit position for later addition to the 4747 // final result: 4748 // 4749 // #define LOG2OF10 3.3219281f 4750 // t0 = Op * LOG2OF10; 4751 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4752 getF32Constant(DAG, 0x40549a78, dl)); 4753 return getLimitedPrecisionExp2(t0, dl, DAG); 4754 } 4755 4756 // No special expansion. 4757 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4758 } 4759 4760 /// ExpandPowI - Expand a llvm.powi intrinsic. 4761 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4762 SelectionDAG &DAG) { 4763 // If RHS is a constant, we can expand this out to a multiplication tree, 4764 // otherwise we end up lowering to a call to __powidf2 (for example). When 4765 // optimizing for size, we only want to do this if the expansion would produce 4766 // a small number of multiplies, otherwise we do the full expansion. 4767 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4768 // Get the exponent as a positive value. 4769 unsigned Val = RHSC->getSExtValue(); 4770 if ((int)Val < 0) Val = -Val; 4771 4772 // powi(x, 0) -> 1.0 4773 if (Val == 0) 4774 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4775 4776 const Function &F = DAG.getMachineFunction().getFunction(); 4777 if (!F.optForSize() || 4778 // If optimizing for size, don't insert too many multiplies. 4779 // This inserts up to 5 multiplies. 4780 countPopulation(Val) + Log2_32(Val) < 7) { 4781 // We use the simple binary decomposition method to generate the multiply 4782 // sequence. There are more optimal ways to do this (for example, 4783 // powi(x,15) generates one more multiply than it should), but this has 4784 // the benefit of being both really simple and much better than a libcall. 4785 SDValue Res; // Logically starts equal to 1.0 4786 SDValue CurSquare = LHS; 4787 // TODO: Intrinsics should have fast-math-flags that propagate to these 4788 // nodes. 4789 while (Val) { 4790 if (Val & 1) { 4791 if (Res.getNode()) 4792 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4793 else 4794 Res = CurSquare; // 1.0*CurSquare. 4795 } 4796 4797 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4798 CurSquare, CurSquare); 4799 Val >>= 1; 4800 } 4801 4802 // If the original was negative, invert the result, producing 1/(x*x*x). 4803 if (RHSC->getSExtValue() < 0) 4804 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4805 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4806 return Res; 4807 } 4808 } 4809 4810 // Otherwise, expand to a libcall. 4811 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4812 } 4813 4814 // getUnderlyingArgReg - Find underlying register used for a truncated or 4815 // bitcasted argument. 4816 static unsigned getUnderlyingArgReg(const SDValue &N) { 4817 switch (N.getOpcode()) { 4818 case ISD::CopyFromReg: 4819 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4820 case ISD::BITCAST: 4821 case ISD::AssertZext: 4822 case ISD::AssertSext: 4823 case ISD::TRUNCATE: 4824 return getUnderlyingArgReg(N.getOperand(0)); 4825 default: 4826 return 0; 4827 } 4828 } 4829 4830 /// If the DbgValueInst is a dbg_value of a function argument, create the 4831 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4832 /// instruction selection, they will be inserted to the entry BB. 4833 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4834 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4835 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4836 const Argument *Arg = dyn_cast<Argument>(V); 4837 if (!Arg) 4838 return false; 4839 4840 MachineFunction &MF = DAG.getMachineFunction(); 4841 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4842 4843 bool IsIndirect = false; 4844 Optional<MachineOperand> Op; 4845 // Some arguments' frame index is recorded during argument lowering. 4846 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4847 if (FI != std::numeric_limits<int>::max()) 4848 Op = MachineOperand::CreateFI(FI); 4849 4850 if (!Op && N.getNode()) { 4851 unsigned Reg = getUnderlyingArgReg(N); 4852 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4853 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4854 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4855 if (PR) 4856 Reg = PR; 4857 } 4858 if (Reg) { 4859 Op = MachineOperand::CreateReg(Reg, false); 4860 IsIndirect = IsDbgDeclare; 4861 } 4862 } 4863 4864 if (!Op && N.getNode()) 4865 // Check if frame index is available. 4866 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4867 if (FrameIndexSDNode *FINode = 4868 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4869 Op = MachineOperand::CreateFI(FINode->getIndex()); 4870 4871 if (!Op) { 4872 // Check if ValueMap has reg number. 4873 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4874 if (VMI != FuncInfo.ValueMap.end()) { 4875 const auto &TLI = DAG.getTargetLoweringInfo(); 4876 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4877 V->getType(), isABIRegCopy(V)); 4878 unsigned NumRegs = 4879 std::accumulate(RFV.RegCount.begin(), RFV.RegCount.end(), 0); 4880 if (NumRegs > 1) { 4881 unsigned I = 0; 4882 unsigned Offset = 0; 4883 auto RegisterVT = RFV.RegVTs.begin(); 4884 for (auto RegCount : RFV.RegCount) { 4885 unsigned RegisterSize = (RegisterVT++)->getSizeInBits(); 4886 for (unsigned E = I + RegCount; I != E; ++I) { 4887 // The vregs are guaranteed to be allocated in sequence. 4888 Op = MachineOperand::CreateReg(VMI->second + I, false); 4889 auto FragmentExpr = DIExpression::createFragmentExpression( 4890 Expr, Offset, RegisterSize); 4891 if (!FragmentExpr) 4892 continue; 4893 FuncInfo.ArgDbgValues.push_back( 4894 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4895 Op->getReg(), Variable, *FragmentExpr)); 4896 Offset += RegisterSize; 4897 } 4898 } 4899 return true; 4900 } 4901 Op = MachineOperand::CreateReg(VMI->second, false); 4902 IsIndirect = IsDbgDeclare; 4903 } 4904 } 4905 4906 if (!Op) 4907 return false; 4908 4909 assert(Variable->isValidLocationForIntrinsic(DL) && 4910 "Expected inlined-at fields to agree"); 4911 if (Op->isReg()) 4912 FuncInfo.ArgDbgValues.push_back( 4913 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4914 Op->getReg(), Variable, Expr)); 4915 else 4916 FuncInfo.ArgDbgValues.push_back( 4917 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4918 .add(*Op) 4919 .addImm(0) 4920 .addMetadata(Variable) 4921 .addMetadata(Expr)); 4922 4923 return true; 4924 } 4925 4926 /// Return the appropriate SDDbgValue based on N. 4927 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4928 DILocalVariable *Variable, 4929 DIExpression *Expr, 4930 const DebugLoc &dl, 4931 unsigned DbgSDNodeOrder) { 4932 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4933 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4934 // stack slot locations as such instead of as indirectly addressed 4935 // locations. 4936 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4937 DbgSDNodeOrder); 4938 } 4939 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4940 DbgSDNodeOrder); 4941 } 4942 4943 // VisualStudio defines setjmp as _setjmp 4944 #if defined(_MSC_VER) && defined(setjmp) && \ 4945 !defined(setjmp_undefined_for_msvc) 4946 # pragma push_macro("setjmp") 4947 # undef setjmp 4948 # define setjmp_undefined_for_msvc 4949 #endif 4950 4951 /// Lower the call to the specified intrinsic function. If we want to emit this 4952 /// as a call to a named external function, return the name. Otherwise, lower it 4953 /// and return null. 4954 const char * 4955 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4956 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4957 SDLoc sdl = getCurSDLoc(); 4958 DebugLoc dl = getCurDebugLoc(); 4959 SDValue Res; 4960 4961 switch (Intrinsic) { 4962 default: 4963 // By default, turn this into a target intrinsic node. 4964 visitTargetIntrinsic(I, Intrinsic); 4965 return nullptr; 4966 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4967 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4968 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4969 case Intrinsic::returnaddress: 4970 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4971 TLI.getPointerTy(DAG.getDataLayout()), 4972 getValue(I.getArgOperand(0)))); 4973 return nullptr; 4974 case Intrinsic::addressofreturnaddress: 4975 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4976 TLI.getPointerTy(DAG.getDataLayout()))); 4977 return nullptr; 4978 case Intrinsic::frameaddress: 4979 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4980 TLI.getPointerTy(DAG.getDataLayout()), 4981 getValue(I.getArgOperand(0)))); 4982 return nullptr; 4983 case Intrinsic::read_register: { 4984 Value *Reg = I.getArgOperand(0); 4985 SDValue Chain = getRoot(); 4986 SDValue RegName = 4987 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4988 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4989 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4990 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4991 setValue(&I, Res); 4992 DAG.setRoot(Res.getValue(1)); 4993 return nullptr; 4994 } 4995 case Intrinsic::write_register: { 4996 Value *Reg = I.getArgOperand(0); 4997 Value *RegValue = I.getArgOperand(1); 4998 SDValue Chain = getRoot(); 4999 SDValue RegName = 5000 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5001 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5002 RegName, getValue(RegValue))); 5003 return nullptr; 5004 } 5005 case Intrinsic::setjmp: 5006 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5007 case Intrinsic::longjmp: 5008 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5009 case Intrinsic::memcpy: { 5010 const auto &MCI = cast<MemCpyInst>(I); 5011 SDValue Op1 = getValue(I.getArgOperand(0)); 5012 SDValue Op2 = getValue(I.getArgOperand(1)); 5013 SDValue Op3 = getValue(I.getArgOperand(2)); 5014 unsigned Align = MCI.getAlignment(); 5015 if (!Align) 5016 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5017 bool isVol = MCI.isVolatile(); 5018 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5019 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5020 // node. 5021 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5022 false, isTC, 5023 MachinePointerInfo(I.getArgOperand(0)), 5024 MachinePointerInfo(I.getArgOperand(1))); 5025 updateDAGForMaybeTailCall(MC); 5026 return nullptr; 5027 } 5028 case Intrinsic::memset: { 5029 const auto &MSI = cast<MemSetInst>(I); 5030 SDValue Op1 = getValue(I.getArgOperand(0)); 5031 SDValue Op2 = getValue(I.getArgOperand(1)); 5032 SDValue Op3 = getValue(I.getArgOperand(2)); 5033 unsigned Align = MSI.getAlignment(); 5034 if (!Align) 5035 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 5036 bool isVol = MSI.isVolatile(); 5037 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5038 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5039 isTC, MachinePointerInfo(I.getArgOperand(0))); 5040 updateDAGForMaybeTailCall(MS); 5041 return nullptr; 5042 } 5043 case Intrinsic::memmove: { 5044 const auto &MMI = cast<MemMoveInst>(I); 5045 SDValue Op1 = getValue(I.getArgOperand(0)); 5046 SDValue Op2 = getValue(I.getArgOperand(1)); 5047 SDValue Op3 = getValue(I.getArgOperand(2)); 5048 unsigned Align = MMI.getAlignment(); 5049 if (!Align) 5050 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 5051 bool isVol = MMI.isVolatile(); 5052 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5053 // FIXME: Support passing different dest/src alignments to the memmove DAG 5054 // node. 5055 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5056 isTC, MachinePointerInfo(I.getArgOperand(0)), 5057 MachinePointerInfo(I.getArgOperand(1))); 5058 updateDAGForMaybeTailCall(MM); 5059 return nullptr; 5060 } 5061 case Intrinsic::memcpy_element_unordered_atomic: { 5062 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5063 SDValue Dst = getValue(MI.getRawDest()); 5064 SDValue Src = getValue(MI.getRawSource()); 5065 SDValue Length = getValue(MI.getLength()); 5066 5067 // Emit a library call. 5068 TargetLowering::ArgListTy Args; 5069 TargetLowering::ArgListEntry Entry; 5070 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5071 Entry.Node = Dst; 5072 Args.push_back(Entry); 5073 5074 Entry.Node = Src; 5075 Args.push_back(Entry); 5076 5077 Entry.Ty = MI.getLength()->getType(); 5078 Entry.Node = Length; 5079 Args.push_back(Entry); 5080 5081 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5082 RTLIB::Libcall LibraryCall = 5083 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5084 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5085 report_fatal_error("Unsupported element size"); 5086 5087 TargetLowering::CallLoweringInfo CLI(DAG); 5088 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5089 TLI.getLibcallCallingConv(LibraryCall), 5090 Type::getVoidTy(*DAG.getContext()), 5091 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5092 TLI.getPointerTy(DAG.getDataLayout())), 5093 std::move(Args)); 5094 5095 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5096 DAG.setRoot(CallResult.second); 5097 return nullptr; 5098 } 5099 case Intrinsic::memmove_element_unordered_atomic: { 5100 auto &MI = cast<AtomicMemMoveInst>(I); 5101 SDValue Dst = getValue(MI.getRawDest()); 5102 SDValue Src = getValue(MI.getRawSource()); 5103 SDValue Length = getValue(MI.getLength()); 5104 5105 // Emit a library call. 5106 TargetLowering::ArgListTy Args; 5107 TargetLowering::ArgListEntry Entry; 5108 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5109 Entry.Node = Dst; 5110 Args.push_back(Entry); 5111 5112 Entry.Node = Src; 5113 Args.push_back(Entry); 5114 5115 Entry.Ty = MI.getLength()->getType(); 5116 Entry.Node = Length; 5117 Args.push_back(Entry); 5118 5119 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5120 RTLIB::Libcall LibraryCall = 5121 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5122 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5123 report_fatal_error("Unsupported element size"); 5124 5125 TargetLowering::CallLoweringInfo CLI(DAG); 5126 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5127 TLI.getLibcallCallingConv(LibraryCall), 5128 Type::getVoidTy(*DAG.getContext()), 5129 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5130 TLI.getPointerTy(DAG.getDataLayout())), 5131 std::move(Args)); 5132 5133 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5134 DAG.setRoot(CallResult.second); 5135 return nullptr; 5136 } 5137 case Intrinsic::memset_element_unordered_atomic: { 5138 auto &MI = cast<AtomicMemSetInst>(I); 5139 SDValue Dst = getValue(MI.getRawDest()); 5140 SDValue Val = getValue(MI.getValue()); 5141 SDValue Length = getValue(MI.getLength()); 5142 5143 // Emit a library call. 5144 TargetLowering::ArgListTy Args; 5145 TargetLowering::ArgListEntry Entry; 5146 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5147 Entry.Node = Dst; 5148 Args.push_back(Entry); 5149 5150 Entry.Ty = Type::getInt8Ty(*DAG.getContext()); 5151 Entry.Node = Val; 5152 Args.push_back(Entry); 5153 5154 Entry.Ty = MI.getLength()->getType(); 5155 Entry.Node = Length; 5156 Args.push_back(Entry); 5157 5158 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5159 RTLIB::Libcall LibraryCall = 5160 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5161 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5162 report_fatal_error("Unsupported element size"); 5163 5164 TargetLowering::CallLoweringInfo CLI(DAG); 5165 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5166 TLI.getLibcallCallingConv(LibraryCall), 5167 Type::getVoidTy(*DAG.getContext()), 5168 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5169 TLI.getPointerTy(DAG.getDataLayout())), 5170 std::move(Args)); 5171 5172 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5173 DAG.setRoot(CallResult.second); 5174 return nullptr; 5175 } 5176 case Intrinsic::dbg_addr: 5177 case Intrinsic::dbg_declare: { 5178 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5179 DILocalVariable *Variable = DI.getVariable(); 5180 DIExpression *Expression = DI.getExpression(); 5181 assert(Variable && "Missing variable"); 5182 5183 // Check if address has undef value. 5184 const Value *Address = DI.getVariableLocation(); 5185 if (!Address || isa<UndefValue>(Address) || 5186 (Address->use_empty() && !isa<Argument>(Address))) { 5187 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5188 return nullptr; 5189 } 5190 5191 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5192 5193 // Check if this variable can be described by a frame index, typically 5194 // either as a static alloca or a byval parameter. 5195 int FI = std::numeric_limits<int>::max(); 5196 if (const auto *AI = 5197 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5198 if (AI->isStaticAlloca()) { 5199 auto I = FuncInfo.StaticAllocaMap.find(AI); 5200 if (I != FuncInfo.StaticAllocaMap.end()) 5201 FI = I->second; 5202 } 5203 } else if (const auto *Arg = dyn_cast<Argument>( 5204 Address->stripInBoundsConstantOffsets())) { 5205 FI = FuncInfo.getArgumentFrameIndex(Arg); 5206 } 5207 5208 // llvm.dbg.addr is control dependent and always generates indirect 5209 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5210 // the MachineFunction variable table. 5211 if (FI != std::numeric_limits<int>::max()) { 5212 if (Intrinsic == Intrinsic::dbg_addr) 5213 DAG.AddDbgValue(DAG.getFrameIndexDbgValue(Variable, Expression, FI, dl, 5214 SDNodeOrder), 5215 getRoot().getNode(), isParameter); 5216 return nullptr; 5217 } 5218 5219 SDValue &N = NodeMap[Address]; 5220 if (!N.getNode() && isa<Argument>(Address)) 5221 // Check unused arguments map. 5222 N = UnusedArgNodeMap[Address]; 5223 SDDbgValue *SDV; 5224 if (N.getNode()) { 5225 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5226 Address = BCI->getOperand(0); 5227 // Parameters are handled specially. 5228 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5229 if (isParameter && FINode) { 5230 // Byval parameter. We have a frame index at this point. 5231 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5232 FINode->getIndex(), dl, SDNodeOrder); 5233 } else if (isa<Argument>(Address)) { 5234 // Address is an argument, so try to emit its dbg value using 5235 // virtual register info from the FuncInfo.ValueMap. 5236 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5237 return nullptr; 5238 } else { 5239 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5240 true, dl, SDNodeOrder); 5241 } 5242 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5243 } else { 5244 // If Address is an argument then try to emit its dbg value using 5245 // virtual register info from the FuncInfo.ValueMap. 5246 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5247 N)) { 5248 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5249 } 5250 } 5251 return nullptr; 5252 } 5253 case Intrinsic::dbg_value: { 5254 const DbgValueInst &DI = cast<DbgValueInst>(I); 5255 assert(DI.getVariable() && "Missing variable"); 5256 5257 DILocalVariable *Variable = DI.getVariable(); 5258 DIExpression *Expression = DI.getExpression(); 5259 const Value *V = DI.getValue(); 5260 if (!V) 5261 return nullptr; 5262 5263 SDDbgValue *SDV; 5264 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5265 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5266 DAG.AddDbgValue(SDV, nullptr, false); 5267 return nullptr; 5268 } 5269 5270 // Do not use getValue() in here; we don't want to generate code at 5271 // this point if it hasn't been done yet. 5272 SDValue N = NodeMap[V]; 5273 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5274 N = UnusedArgNodeMap[V]; 5275 if (N.getNode()) { 5276 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5277 return nullptr; 5278 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5279 DAG.AddDbgValue(SDV, N.getNode(), false); 5280 return nullptr; 5281 } 5282 5283 if (!V->use_empty() ) { 5284 // Do not call getValue(V) yet, as we don't want to generate code. 5285 // Remember it for later. 5286 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5287 DanglingDebugInfoMap[V] = DDI; 5288 return nullptr; 5289 } 5290 5291 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5292 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5293 return nullptr; 5294 } 5295 5296 case Intrinsic::eh_typeid_for: { 5297 // Find the type id for the given typeinfo. 5298 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5299 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5300 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5301 setValue(&I, Res); 5302 return nullptr; 5303 } 5304 5305 case Intrinsic::eh_return_i32: 5306 case Intrinsic::eh_return_i64: 5307 DAG.getMachineFunction().setCallsEHReturn(true); 5308 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5309 MVT::Other, 5310 getControlRoot(), 5311 getValue(I.getArgOperand(0)), 5312 getValue(I.getArgOperand(1)))); 5313 return nullptr; 5314 case Intrinsic::eh_unwind_init: 5315 DAG.getMachineFunction().setCallsUnwindInit(true); 5316 return nullptr; 5317 case Intrinsic::eh_dwarf_cfa: 5318 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5319 TLI.getPointerTy(DAG.getDataLayout()), 5320 getValue(I.getArgOperand(0)))); 5321 return nullptr; 5322 case Intrinsic::eh_sjlj_callsite: { 5323 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5324 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5325 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5326 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5327 5328 MMI.setCurrentCallSite(CI->getZExtValue()); 5329 return nullptr; 5330 } 5331 case Intrinsic::eh_sjlj_functioncontext: { 5332 // Get and store the index of the function context. 5333 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5334 AllocaInst *FnCtx = 5335 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5336 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5337 MFI.setFunctionContextIndex(FI); 5338 return nullptr; 5339 } 5340 case Intrinsic::eh_sjlj_setjmp: { 5341 SDValue Ops[2]; 5342 Ops[0] = getRoot(); 5343 Ops[1] = getValue(I.getArgOperand(0)); 5344 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5345 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5346 setValue(&I, Op.getValue(0)); 5347 DAG.setRoot(Op.getValue(1)); 5348 return nullptr; 5349 } 5350 case Intrinsic::eh_sjlj_longjmp: 5351 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5352 getRoot(), getValue(I.getArgOperand(0)))); 5353 return nullptr; 5354 case Intrinsic::eh_sjlj_setup_dispatch: 5355 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5356 getRoot())); 5357 return nullptr; 5358 case Intrinsic::masked_gather: 5359 visitMaskedGather(I); 5360 return nullptr; 5361 case Intrinsic::masked_load: 5362 visitMaskedLoad(I); 5363 return nullptr; 5364 case Intrinsic::masked_scatter: 5365 visitMaskedScatter(I); 5366 return nullptr; 5367 case Intrinsic::masked_store: 5368 visitMaskedStore(I); 5369 return nullptr; 5370 case Intrinsic::masked_expandload: 5371 visitMaskedLoad(I, true /* IsExpanding */); 5372 return nullptr; 5373 case Intrinsic::masked_compressstore: 5374 visitMaskedStore(I, true /* IsCompressing */); 5375 return nullptr; 5376 case Intrinsic::x86_mmx_pslli_w: 5377 case Intrinsic::x86_mmx_pslli_d: 5378 case Intrinsic::x86_mmx_pslli_q: 5379 case Intrinsic::x86_mmx_psrli_w: 5380 case Intrinsic::x86_mmx_psrli_d: 5381 case Intrinsic::x86_mmx_psrli_q: 5382 case Intrinsic::x86_mmx_psrai_w: 5383 case Intrinsic::x86_mmx_psrai_d: { 5384 SDValue ShAmt = getValue(I.getArgOperand(1)); 5385 if (isa<ConstantSDNode>(ShAmt)) { 5386 visitTargetIntrinsic(I, Intrinsic); 5387 return nullptr; 5388 } 5389 unsigned NewIntrinsic = 0; 5390 EVT ShAmtVT = MVT::v2i32; 5391 switch (Intrinsic) { 5392 case Intrinsic::x86_mmx_pslli_w: 5393 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5394 break; 5395 case Intrinsic::x86_mmx_pslli_d: 5396 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5397 break; 5398 case Intrinsic::x86_mmx_pslli_q: 5399 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5400 break; 5401 case Intrinsic::x86_mmx_psrli_w: 5402 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5403 break; 5404 case Intrinsic::x86_mmx_psrli_d: 5405 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5406 break; 5407 case Intrinsic::x86_mmx_psrli_q: 5408 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5409 break; 5410 case Intrinsic::x86_mmx_psrai_w: 5411 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5412 break; 5413 case Intrinsic::x86_mmx_psrai_d: 5414 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5415 break; 5416 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5417 } 5418 5419 // The vector shift intrinsics with scalars uses 32b shift amounts but 5420 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5421 // to be zero. 5422 // We must do this early because v2i32 is not a legal type. 5423 SDValue ShOps[2]; 5424 ShOps[0] = ShAmt; 5425 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5426 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5427 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5428 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5429 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5430 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5431 getValue(I.getArgOperand(0)), ShAmt); 5432 setValue(&I, Res); 5433 return nullptr; 5434 } 5435 case Intrinsic::powi: 5436 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5437 getValue(I.getArgOperand(1)), DAG)); 5438 return nullptr; 5439 case Intrinsic::log: 5440 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5441 return nullptr; 5442 case Intrinsic::log2: 5443 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5444 return nullptr; 5445 case Intrinsic::log10: 5446 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5447 return nullptr; 5448 case Intrinsic::exp: 5449 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5450 return nullptr; 5451 case Intrinsic::exp2: 5452 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5453 return nullptr; 5454 case Intrinsic::pow: 5455 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5456 getValue(I.getArgOperand(1)), DAG, TLI)); 5457 return nullptr; 5458 case Intrinsic::sqrt: 5459 case Intrinsic::fabs: 5460 case Intrinsic::sin: 5461 case Intrinsic::cos: 5462 case Intrinsic::floor: 5463 case Intrinsic::ceil: 5464 case Intrinsic::trunc: 5465 case Intrinsic::rint: 5466 case Intrinsic::nearbyint: 5467 case Intrinsic::round: 5468 case Intrinsic::canonicalize: { 5469 unsigned Opcode; 5470 switch (Intrinsic) { 5471 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5472 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5473 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5474 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5475 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5476 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5477 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5478 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5479 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5480 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5481 case Intrinsic::round: Opcode = ISD::FROUND; break; 5482 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5483 } 5484 5485 setValue(&I, DAG.getNode(Opcode, sdl, 5486 getValue(I.getArgOperand(0)).getValueType(), 5487 getValue(I.getArgOperand(0)))); 5488 return nullptr; 5489 } 5490 case Intrinsic::minnum: { 5491 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5492 unsigned Opc = 5493 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5494 ? ISD::FMINNAN 5495 : ISD::FMINNUM; 5496 setValue(&I, DAG.getNode(Opc, sdl, VT, 5497 getValue(I.getArgOperand(0)), 5498 getValue(I.getArgOperand(1)))); 5499 return nullptr; 5500 } 5501 case Intrinsic::maxnum: { 5502 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5503 unsigned Opc = 5504 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5505 ? ISD::FMAXNAN 5506 : ISD::FMAXNUM; 5507 setValue(&I, DAG.getNode(Opc, sdl, VT, 5508 getValue(I.getArgOperand(0)), 5509 getValue(I.getArgOperand(1)))); 5510 return nullptr; 5511 } 5512 case Intrinsic::copysign: 5513 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5514 getValue(I.getArgOperand(0)).getValueType(), 5515 getValue(I.getArgOperand(0)), 5516 getValue(I.getArgOperand(1)))); 5517 return nullptr; 5518 case Intrinsic::fma: 5519 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5520 getValue(I.getArgOperand(0)).getValueType(), 5521 getValue(I.getArgOperand(0)), 5522 getValue(I.getArgOperand(1)), 5523 getValue(I.getArgOperand(2)))); 5524 return nullptr; 5525 case Intrinsic::experimental_constrained_fadd: 5526 case Intrinsic::experimental_constrained_fsub: 5527 case Intrinsic::experimental_constrained_fmul: 5528 case Intrinsic::experimental_constrained_fdiv: 5529 case Intrinsic::experimental_constrained_frem: 5530 case Intrinsic::experimental_constrained_fma: 5531 case Intrinsic::experimental_constrained_sqrt: 5532 case Intrinsic::experimental_constrained_pow: 5533 case Intrinsic::experimental_constrained_powi: 5534 case Intrinsic::experimental_constrained_sin: 5535 case Intrinsic::experimental_constrained_cos: 5536 case Intrinsic::experimental_constrained_exp: 5537 case Intrinsic::experimental_constrained_exp2: 5538 case Intrinsic::experimental_constrained_log: 5539 case Intrinsic::experimental_constrained_log10: 5540 case Intrinsic::experimental_constrained_log2: 5541 case Intrinsic::experimental_constrained_rint: 5542 case Intrinsic::experimental_constrained_nearbyint: 5543 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5544 return nullptr; 5545 case Intrinsic::fmuladd: { 5546 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5547 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5548 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5549 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5550 getValue(I.getArgOperand(0)).getValueType(), 5551 getValue(I.getArgOperand(0)), 5552 getValue(I.getArgOperand(1)), 5553 getValue(I.getArgOperand(2)))); 5554 } else { 5555 // TODO: Intrinsic calls should have fast-math-flags. 5556 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5557 getValue(I.getArgOperand(0)).getValueType(), 5558 getValue(I.getArgOperand(0)), 5559 getValue(I.getArgOperand(1))); 5560 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5561 getValue(I.getArgOperand(0)).getValueType(), 5562 Mul, 5563 getValue(I.getArgOperand(2))); 5564 setValue(&I, Add); 5565 } 5566 return nullptr; 5567 } 5568 case Intrinsic::convert_to_fp16: 5569 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5570 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5571 getValue(I.getArgOperand(0)), 5572 DAG.getTargetConstant(0, sdl, 5573 MVT::i32)))); 5574 return nullptr; 5575 case Intrinsic::convert_from_fp16: 5576 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5577 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5578 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5579 getValue(I.getArgOperand(0))))); 5580 return nullptr; 5581 case Intrinsic::pcmarker: { 5582 SDValue Tmp = getValue(I.getArgOperand(0)); 5583 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5584 return nullptr; 5585 } 5586 case Intrinsic::readcyclecounter: { 5587 SDValue Op = getRoot(); 5588 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5589 DAG.getVTList(MVT::i64, MVT::Other), Op); 5590 setValue(&I, Res); 5591 DAG.setRoot(Res.getValue(1)); 5592 return nullptr; 5593 } 5594 case Intrinsic::bitreverse: 5595 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5596 getValue(I.getArgOperand(0)).getValueType(), 5597 getValue(I.getArgOperand(0)))); 5598 return nullptr; 5599 case Intrinsic::bswap: 5600 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5601 getValue(I.getArgOperand(0)).getValueType(), 5602 getValue(I.getArgOperand(0)))); 5603 return nullptr; 5604 case Intrinsic::cttz: { 5605 SDValue Arg = getValue(I.getArgOperand(0)); 5606 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5607 EVT Ty = Arg.getValueType(); 5608 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5609 sdl, Ty, Arg)); 5610 return nullptr; 5611 } 5612 case Intrinsic::ctlz: { 5613 SDValue Arg = getValue(I.getArgOperand(0)); 5614 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5615 EVT Ty = Arg.getValueType(); 5616 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5617 sdl, Ty, Arg)); 5618 return nullptr; 5619 } 5620 case Intrinsic::ctpop: { 5621 SDValue Arg = getValue(I.getArgOperand(0)); 5622 EVT Ty = Arg.getValueType(); 5623 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5624 return nullptr; 5625 } 5626 case Intrinsic::stacksave: { 5627 SDValue Op = getRoot(); 5628 Res = DAG.getNode( 5629 ISD::STACKSAVE, sdl, 5630 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5631 setValue(&I, Res); 5632 DAG.setRoot(Res.getValue(1)); 5633 return nullptr; 5634 } 5635 case Intrinsic::stackrestore: 5636 Res = getValue(I.getArgOperand(0)); 5637 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5638 return nullptr; 5639 case Intrinsic::get_dynamic_area_offset: { 5640 SDValue Op = getRoot(); 5641 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5642 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5643 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5644 // target. 5645 if (PtrTy != ResTy) 5646 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5647 " intrinsic!"); 5648 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5649 Op); 5650 DAG.setRoot(Op); 5651 setValue(&I, Res); 5652 return nullptr; 5653 } 5654 case Intrinsic::stackguard: { 5655 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5656 MachineFunction &MF = DAG.getMachineFunction(); 5657 const Module &M = *MF.getFunction().getParent(); 5658 SDValue Chain = getRoot(); 5659 if (TLI.useLoadStackGuardNode()) { 5660 Res = getLoadStackGuard(DAG, sdl, Chain); 5661 } else { 5662 const Value *Global = TLI.getSDagStackGuard(M); 5663 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5664 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5665 MachinePointerInfo(Global, 0), Align, 5666 MachineMemOperand::MOVolatile); 5667 } 5668 if (TLI.useStackGuardXorFP()) 5669 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5670 DAG.setRoot(Chain); 5671 setValue(&I, Res); 5672 return nullptr; 5673 } 5674 case Intrinsic::stackprotector: { 5675 // Emit code into the DAG to store the stack guard onto the stack. 5676 MachineFunction &MF = DAG.getMachineFunction(); 5677 MachineFrameInfo &MFI = MF.getFrameInfo(); 5678 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5679 SDValue Src, Chain = getRoot(); 5680 5681 if (TLI.useLoadStackGuardNode()) 5682 Src = getLoadStackGuard(DAG, sdl, Chain); 5683 else 5684 Src = getValue(I.getArgOperand(0)); // The guard's value. 5685 5686 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5687 5688 int FI = FuncInfo.StaticAllocaMap[Slot]; 5689 MFI.setStackProtectorIndex(FI); 5690 5691 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5692 5693 // Store the stack protector onto the stack. 5694 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5695 DAG.getMachineFunction(), FI), 5696 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5697 setValue(&I, Res); 5698 DAG.setRoot(Res); 5699 return nullptr; 5700 } 5701 case Intrinsic::objectsize: { 5702 // If we don't know by now, we're never going to know. 5703 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5704 5705 assert(CI && "Non-constant type in __builtin_object_size?"); 5706 5707 SDValue Arg = getValue(I.getCalledValue()); 5708 EVT Ty = Arg.getValueType(); 5709 5710 if (CI->isZero()) 5711 Res = DAG.getConstant(-1ULL, sdl, Ty); 5712 else 5713 Res = DAG.getConstant(0, sdl, Ty); 5714 5715 setValue(&I, Res); 5716 return nullptr; 5717 } 5718 case Intrinsic::annotation: 5719 case Intrinsic::ptr_annotation: 5720 case Intrinsic::invariant_group_barrier: 5721 // Drop the intrinsic, but forward the value 5722 setValue(&I, getValue(I.getOperand(0))); 5723 return nullptr; 5724 case Intrinsic::assume: 5725 case Intrinsic::var_annotation: 5726 case Intrinsic::sideeffect: 5727 // Discard annotate attributes, assumptions, and artificial side-effects. 5728 return nullptr; 5729 5730 case Intrinsic::codeview_annotation: { 5731 // Emit a label associated with this metadata. 5732 MachineFunction &MF = DAG.getMachineFunction(); 5733 MCSymbol *Label = 5734 MF.getMMI().getContext().createTempSymbol("annotation", true); 5735 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5736 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5737 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5738 DAG.setRoot(Res); 5739 return nullptr; 5740 } 5741 5742 case Intrinsic::init_trampoline: { 5743 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5744 5745 SDValue Ops[6]; 5746 Ops[0] = getRoot(); 5747 Ops[1] = getValue(I.getArgOperand(0)); 5748 Ops[2] = getValue(I.getArgOperand(1)); 5749 Ops[3] = getValue(I.getArgOperand(2)); 5750 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5751 Ops[5] = DAG.getSrcValue(F); 5752 5753 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5754 5755 DAG.setRoot(Res); 5756 return nullptr; 5757 } 5758 case Intrinsic::adjust_trampoline: 5759 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5760 TLI.getPointerTy(DAG.getDataLayout()), 5761 getValue(I.getArgOperand(0)))); 5762 return nullptr; 5763 case Intrinsic::gcroot: { 5764 assert(DAG.getMachineFunction().getFunction().hasGC() && 5765 "only valid in functions with gc specified, enforced by Verifier"); 5766 assert(GFI && "implied by previous"); 5767 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5768 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5769 5770 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5771 GFI->addStackRoot(FI->getIndex(), TypeMap); 5772 return nullptr; 5773 } 5774 case Intrinsic::gcread: 5775 case Intrinsic::gcwrite: 5776 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5777 case Intrinsic::flt_rounds: 5778 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5779 return nullptr; 5780 5781 case Intrinsic::expect: 5782 // Just replace __builtin_expect(exp, c) with EXP. 5783 setValue(&I, getValue(I.getArgOperand(0))); 5784 return nullptr; 5785 5786 case Intrinsic::debugtrap: 5787 case Intrinsic::trap: { 5788 StringRef TrapFuncName = 5789 I.getAttributes() 5790 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5791 .getValueAsString(); 5792 if (TrapFuncName.empty()) { 5793 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5794 ISD::TRAP : ISD::DEBUGTRAP; 5795 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5796 return nullptr; 5797 } 5798 TargetLowering::ArgListTy Args; 5799 5800 TargetLowering::CallLoweringInfo CLI(DAG); 5801 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5802 CallingConv::C, I.getType(), 5803 DAG.getExternalSymbol(TrapFuncName.data(), 5804 TLI.getPointerTy(DAG.getDataLayout())), 5805 std::move(Args)); 5806 5807 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5808 DAG.setRoot(Result.second); 5809 return nullptr; 5810 } 5811 5812 case Intrinsic::uadd_with_overflow: 5813 case Intrinsic::sadd_with_overflow: 5814 case Intrinsic::usub_with_overflow: 5815 case Intrinsic::ssub_with_overflow: 5816 case Intrinsic::umul_with_overflow: 5817 case Intrinsic::smul_with_overflow: { 5818 ISD::NodeType Op; 5819 switch (Intrinsic) { 5820 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5821 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5822 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5823 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5824 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5825 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5826 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5827 } 5828 SDValue Op1 = getValue(I.getArgOperand(0)); 5829 SDValue Op2 = getValue(I.getArgOperand(1)); 5830 5831 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5832 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5833 return nullptr; 5834 } 5835 case Intrinsic::prefetch: { 5836 SDValue Ops[5]; 5837 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5838 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5839 Ops[0] = DAG.getRoot(); 5840 Ops[1] = getValue(I.getArgOperand(0)); 5841 Ops[2] = getValue(I.getArgOperand(1)); 5842 Ops[3] = getValue(I.getArgOperand(2)); 5843 Ops[4] = getValue(I.getArgOperand(3)); 5844 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5845 DAG.getVTList(MVT::Other), Ops, 5846 EVT::getIntegerVT(*Context, 8), 5847 MachinePointerInfo(I.getArgOperand(0)), 5848 0, /* align */ 5849 Flags); 5850 5851 // Chain the prefetch in parallell with any pending loads, to stay out of 5852 // the way of later optimizations. 5853 PendingLoads.push_back(Result); 5854 Result = getRoot(); 5855 DAG.setRoot(Result); 5856 return nullptr; 5857 } 5858 case Intrinsic::lifetime_start: 5859 case Intrinsic::lifetime_end: { 5860 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5861 // Stack coloring is not enabled in O0, discard region information. 5862 if (TM.getOptLevel() == CodeGenOpt::None) 5863 return nullptr; 5864 5865 SmallVector<Value *, 4> Allocas; 5866 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5867 5868 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5869 E = Allocas.end(); Object != E; ++Object) { 5870 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5871 5872 // Could not find an Alloca. 5873 if (!LifetimeObject) 5874 continue; 5875 5876 // First check that the Alloca is static, otherwise it won't have a 5877 // valid frame index. 5878 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5879 if (SI == FuncInfo.StaticAllocaMap.end()) 5880 return nullptr; 5881 5882 int FI = SI->second; 5883 5884 SDValue Ops[2]; 5885 Ops[0] = getRoot(); 5886 Ops[1] = 5887 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5888 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5889 5890 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5891 DAG.setRoot(Res); 5892 } 5893 return nullptr; 5894 } 5895 case Intrinsic::invariant_start: 5896 // Discard region information. 5897 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5898 return nullptr; 5899 case Intrinsic::invariant_end: 5900 // Discard region information. 5901 return nullptr; 5902 case Intrinsic::clear_cache: 5903 return TLI.getClearCacheBuiltinName(); 5904 case Intrinsic::donothing: 5905 // ignore 5906 return nullptr; 5907 case Intrinsic::experimental_stackmap: 5908 visitStackmap(I); 5909 return nullptr; 5910 case Intrinsic::experimental_patchpoint_void: 5911 case Intrinsic::experimental_patchpoint_i64: 5912 visitPatchpoint(&I); 5913 return nullptr; 5914 case Intrinsic::experimental_gc_statepoint: 5915 LowerStatepoint(ImmutableStatepoint(&I)); 5916 return nullptr; 5917 case Intrinsic::experimental_gc_result: 5918 visitGCResult(cast<GCResultInst>(I)); 5919 return nullptr; 5920 case Intrinsic::experimental_gc_relocate: 5921 visitGCRelocate(cast<GCRelocateInst>(I)); 5922 return nullptr; 5923 case Intrinsic::instrprof_increment: 5924 llvm_unreachable("instrprof failed to lower an increment"); 5925 case Intrinsic::instrprof_value_profile: 5926 llvm_unreachable("instrprof failed to lower a value profiling call"); 5927 case Intrinsic::localescape: { 5928 MachineFunction &MF = DAG.getMachineFunction(); 5929 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5930 5931 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5932 // is the same on all targets. 5933 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5934 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5935 if (isa<ConstantPointerNull>(Arg)) 5936 continue; // Skip null pointers. They represent a hole in index space. 5937 AllocaInst *Slot = cast<AllocaInst>(Arg); 5938 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5939 "can only escape static allocas"); 5940 int FI = FuncInfo.StaticAllocaMap[Slot]; 5941 MCSymbol *FrameAllocSym = 5942 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5943 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5944 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5945 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5946 .addSym(FrameAllocSym) 5947 .addFrameIndex(FI); 5948 } 5949 5950 return nullptr; 5951 } 5952 5953 case Intrinsic::localrecover: { 5954 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5955 MachineFunction &MF = DAG.getMachineFunction(); 5956 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5957 5958 // Get the symbol that defines the frame offset. 5959 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5960 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5961 unsigned IdxVal = 5962 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 5963 MCSymbol *FrameAllocSym = 5964 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5965 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 5966 5967 // Create a MCSymbol for the label to avoid any target lowering 5968 // that would make this PC relative. 5969 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5970 SDValue OffsetVal = 5971 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5972 5973 // Add the offset to the FP. 5974 Value *FP = I.getArgOperand(1); 5975 SDValue FPVal = getValue(FP); 5976 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5977 setValue(&I, Add); 5978 5979 return nullptr; 5980 } 5981 5982 case Intrinsic::eh_exceptionpointer: 5983 case Intrinsic::eh_exceptioncode: { 5984 // Get the exception pointer vreg, copy from it, and resize it to fit. 5985 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5986 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5987 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5988 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5989 SDValue N = 5990 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5991 if (Intrinsic == Intrinsic::eh_exceptioncode) 5992 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5993 setValue(&I, N); 5994 return nullptr; 5995 } 5996 case Intrinsic::xray_customevent: { 5997 // Here we want to make sure that the intrinsic behaves as if it has a 5998 // specific calling convention, and only for x86_64. 5999 // FIXME: Support other platforms later. 6000 const auto &Triple = DAG.getTarget().getTargetTriple(); 6001 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6002 return nullptr; 6003 6004 SDLoc DL = getCurSDLoc(); 6005 SmallVector<SDValue, 8> Ops; 6006 6007 // We want to say that we always want the arguments in registers. 6008 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6009 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6010 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6011 SDValue Chain = getRoot(); 6012 Ops.push_back(LogEntryVal); 6013 Ops.push_back(StrSizeVal); 6014 Ops.push_back(Chain); 6015 6016 // We need to enforce the calling convention for the callsite, so that 6017 // argument ordering is enforced correctly, and that register allocation can 6018 // see that some registers may be assumed clobbered and have to preserve 6019 // them across calls to the intrinsic. 6020 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6021 DL, NodeTys, Ops); 6022 SDValue patchableNode = SDValue(MN, 0); 6023 DAG.setRoot(patchableNode); 6024 setValue(&I, patchableNode); 6025 return nullptr; 6026 } 6027 case Intrinsic::experimental_deoptimize: 6028 LowerDeoptimizeCall(&I); 6029 return nullptr; 6030 6031 case Intrinsic::experimental_vector_reduce_fadd: 6032 case Intrinsic::experimental_vector_reduce_fmul: 6033 case Intrinsic::experimental_vector_reduce_add: 6034 case Intrinsic::experimental_vector_reduce_mul: 6035 case Intrinsic::experimental_vector_reduce_and: 6036 case Intrinsic::experimental_vector_reduce_or: 6037 case Intrinsic::experimental_vector_reduce_xor: 6038 case Intrinsic::experimental_vector_reduce_smax: 6039 case Intrinsic::experimental_vector_reduce_smin: 6040 case Intrinsic::experimental_vector_reduce_umax: 6041 case Intrinsic::experimental_vector_reduce_umin: 6042 case Intrinsic::experimental_vector_reduce_fmax: 6043 case Intrinsic::experimental_vector_reduce_fmin: 6044 visitVectorReduce(I, Intrinsic); 6045 return nullptr; 6046 } 6047 } 6048 6049 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6050 const ConstrainedFPIntrinsic &FPI) { 6051 SDLoc sdl = getCurSDLoc(); 6052 unsigned Opcode; 6053 switch (FPI.getIntrinsicID()) { 6054 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6055 case Intrinsic::experimental_constrained_fadd: 6056 Opcode = ISD::STRICT_FADD; 6057 break; 6058 case Intrinsic::experimental_constrained_fsub: 6059 Opcode = ISD::STRICT_FSUB; 6060 break; 6061 case Intrinsic::experimental_constrained_fmul: 6062 Opcode = ISD::STRICT_FMUL; 6063 break; 6064 case Intrinsic::experimental_constrained_fdiv: 6065 Opcode = ISD::STRICT_FDIV; 6066 break; 6067 case Intrinsic::experimental_constrained_frem: 6068 Opcode = ISD::STRICT_FREM; 6069 break; 6070 case Intrinsic::experimental_constrained_fma: 6071 Opcode = ISD::STRICT_FMA; 6072 break; 6073 case Intrinsic::experimental_constrained_sqrt: 6074 Opcode = ISD::STRICT_FSQRT; 6075 break; 6076 case Intrinsic::experimental_constrained_pow: 6077 Opcode = ISD::STRICT_FPOW; 6078 break; 6079 case Intrinsic::experimental_constrained_powi: 6080 Opcode = ISD::STRICT_FPOWI; 6081 break; 6082 case Intrinsic::experimental_constrained_sin: 6083 Opcode = ISD::STRICT_FSIN; 6084 break; 6085 case Intrinsic::experimental_constrained_cos: 6086 Opcode = ISD::STRICT_FCOS; 6087 break; 6088 case Intrinsic::experimental_constrained_exp: 6089 Opcode = ISD::STRICT_FEXP; 6090 break; 6091 case Intrinsic::experimental_constrained_exp2: 6092 Opcode = ISD::STRICT_FEXP2; 6093 break; 6094 case Intrinsic::experimental_constrained_log: 6095 Opcode = ISD::STRICT_FLOG; 6096 break; 6097 case Intrinsic::experimental_constrained_log10: 6098 Opcode = ISD::STRICT_FLOG10; 6099 break; 6100 case Intrinsic::experimental_constrained_log2: 6101 Opcode = ISD::STRICT_FLOG2; 6102 break; 6103 case Intrinsic::experimental_constrained_rint: 6104 Opcode = ISD::STRICT_FRINT; 6105 break; 6106 case Intrinsic::experimental_constrained_nearbyint: 6107 Opcode = ISD::STRICT_FNEARBYINT; 6108 break; 6109 } 6110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6111 SDValue Chain = getRoot(); 6112 SmallVector<EVT, 4> ValueVTs; 6113 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6114 ValueVTs.push_back(MVT::Other); // Out chain 6115 6116 SDVTList VTs = DAG.getVTList(ValueVTs); 6117 SDValue Result; 6118 if (FPI.isUnaryOp()) 6119 Result = DAG.getNode(Opcode, sdl, VTs, 6120 { Chain, getValue(FPI.getArgOperand(0)) }); 6121 else if (FPI.isTernaryOp()) 6122 Result = DAG.getNode(Opcode, sdl, VTs, 6123 { Chain, getValue(FPI.getArgOperand(0)), 6124 getValue(FPI.getArgOperand(1)), 6125 getValue(FPI.getArgOperand(2)) }); 6126 else 6127 Result = DAG.getNode(Opcode, sdl, VTs, 6128 { Chain, getValue(FPI.getArgOperand(0)), 6129 getValue(FPI.getArgOperand(1)) }); 6130 6131 assert(Result.getNode()->getNumValues() == 2); 6132 SDValue OutChain = Result.getValue(1); 6133 DAG.setRoot(OutChain); 6134 SDValue FPResult = Result.getValue(0); 6135 setValue(&FPI, FPResult); 6136 } 6137 6138 std::pair<SDValue, SDValue> 6139 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6140 const BasicBlock *EHPadBB) { 6141 MachineFunction &MF = DAG.getMachineFunction(); 6142 MachineModuleInfo &MMI = MF.getMMI(); 6143 MCSymbol *BeginLabel = nullptr; 6144 6145 if (EHPadBB) { 6146 // Insert a label before the invoke call to mark the try range. This can be 6147 // used to detect deletion of the invoke via the MachineModuleInfo. 6148 BeginLabel = MMI.getContext().createTempSymbol(); 6149 6150 // For SjLj, keep track of which landing pads go with which invokes 6151 // so as to maintain the ordering of pads in the LSDA. 6152 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6153 if (CallSiteIndex) { 6154 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6155 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6156 6157 // Now that the call site is handled, stop tracking it. 6158 MMI.setCurrentCallSite(0); 6159 } 6160 6161 // Both PendingLoads and PendingExports must be flushed here; 6162 // this call might not return. 6163 (void)getRoot(); 6164 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6165 6166 CLI.setChain(getRoot()); 6167 } 6168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6169 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6170 6171 assert((CLI.IsTailCall || Result.second.getNode()) && 6172 "Non-null chain expected with non-tail call!"); 6173 assert((Result.second.getNode() || !Result.first.getNode()) && 6174 "Null value expected with tail call!"); 6175 6176 if (!Result.second.getNode()) { 6177 // As a special case, a null chain means that a tail call has been emitted 6178 // and the DAG root is already updated. 6179 HasTailCall = true; 6180 6181 // Since there's no actual continuation from this block, nothing can be 6182 // relying on us setting vregs for them. 6183 PendingExports.clear(); 6184 } else { 6185 DAG.setRoot(Result.second); 6186 } 6187 6188 if (EHPadBB) { 6189 // Insert a label at the end of the invoke call to mark the try range. This 6190 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6191 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6192 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6193 6194 // Inform MachineModuleInfo of range. 6195 if (MF.hasEHFunclets()) { 6196 assert(CLI.CS); 6197 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6198 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6199 BeginLabel, EndLabel); 6200 } else { 6201 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6202 } 6203 } 6204 6205 return Result; 6206 } 6207 6208 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6209 bool isTailCall, 6210 const BasicBlock *EHPadBB) { 6211 auto &DL = DAG.getDataLayout(); 6212 FunctionType *FTy = CS.getFunctionType(); 6213 Type *RetTy = CS.getType(); 6214 6215 TargetLowering::ArgListTy Args; 6216 Args.reserve(CS.arg_size()); 6217 6218 const Value *SwiftErrorVal = nullptr; 6219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6220 6221 // We can't tail call inside a function with a swifterror argument. Lowering 6222 // does not support this yet. It would have to move into the swifterror 6223 // register before the call. 6224 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6225 if (TLI.supportSwiftError() && 6226 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6227 isTailCall = false; 6228 6229 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6230 i != e; ++i) { 6231 TargetLowering::ArgListEntry Entry; 6232 const Value *V = *i; 6233 6234 // Skip empty types 6235 if (V->getType()->isEmptyTy()) 6236 continue; 6237 6238 SDValue ArgNode = getValue(V); 6239 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6240 6241 Entry.setAttributes(&CS, i - CS.arg_begin()); 6242 6243 // Use swifterror virtual register as input to the call. 6244 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6245 SwiftErrorVal = V; 6246 // We find the virtual register for the actual swifterror argument. 6247 // Instead of using the Value, we use the virtual register instead. 6248 Entry.Node = DAG.getRegister(FuncInfo 6249 .getOrCreateSwiftErrorVRegUseAt( 6250 CS.getInstruction(), FuncInfo.MBB, V) 6251 .first, 6252 EVT(TLI.getPointerTy(DL))); 6253 } 6254 6255 Args.push_back(Entry); 6256 6257 // If we have an explicit sret argument that is an Instruction, (i.e., it 6258 // might point to function-local memory), we can't meaningfully tail-call. 6259 if (Entry.IsSRet && isa<Instruction>(V)) 6260 isTailCall = false; 6261 } 6262 6263 // Check if target-independent constraints permit a tail call here. 6264 // Target-dependent constraints are checked within TLI->LowerCallTo. 6265 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6266 isTailCall = false; 6267 6268 // Disable tail calls if there is an swifterror argument. Targets have not 6269 // been updated to support tail calls. 6270 if (TLI.supportSwiftError() && SwiftErrorVal) 6271 isTailCall = false; 6272 6273 TargetLowering::CallLoweringInfo CLI(DAG); 6274 CLI.setDebugLoc(getCurSDLoc()) 6275 .setChain(getRoot()) 6276 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6277 .setTailCall(isTailCall) 6278 .setConvergent(CS.isConvergent()); 6279 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6280 6281 if (Result.first.getNode()) { 6282 const Instruction *Inst = CS.getInstruction(); 6283 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6284 setValue(Inst, Result.first); 6285 } 6286 6287 // The last element of CLI.InVals has the SDValue for swifterror return. 6288 // Here we copy it to a virtual register and update SwiftErrorMap for 6289 // book-keeping. 6290 if (SwiftErrorVal && TLI.supportSwiftError()) { 6291 // Get the last element of InVals. 6292 SDValue Src = CLI.InVals.back(); 6293 unsigned VReg; bool CreatedVReg; 6294 std::tie(VReg, CreatedVReg) = 6295 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6296 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6297 // We update the virtual register for the actual swifterror argument. 6298 if (CreatedVReg) 6299 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6300 DAG.setRoot(CopyNode); 6301 } 6302 } 6303 6304 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6305 SelectionDAGBuilder &Builder) { 6306 // Check to see if this load can be trivially constant folded, e.g. if the 6307 // input is from a string literal. 6308 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6309 // Cast pointer to the type we really want to load. 6310 Type *LoadTy = 6311 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6312 if (LoadVT.isVector()) 6313 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6314 6315 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6316 PointerType::getUnqual(LoadTy)); 6317 6318 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6319 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6320 return Builder.getValue(LoadCst); 6321 } 6322 6323 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6324 // still constant memory, the input chain can be the entry node. 6325 SDValue Root; 6326 bool ConstantMemory = false; 6327 6328 // Do not serialize (non-volatile) loads of constant memory with anything. 6329 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6330 Root = Builder.DAG.getEntryNode(); 6331 ConstantMemory = true; 6332 } else { 6333 // Do not serialize non-volatile loads against each other. 6334 Root = Builder.DAG.getRoot(); 6335 } 6336 6337 SDValue Ptr = Builder.getValue(PtrVal); 6338 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6339 Ptr, MachinePointerInfo(PtrVal), 6340 /* Alignment = */ 1); 6341 6342 if (!ConstantMemory) 6343 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6344 return LoadVal; 6345 } 6346 6347 /// Record the value for an instruction that produces an integer result, 6348 /// converting the type where necessary. 6349 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6350 SDValue Value, 6351 bool IsSigned) { 6352 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6353 I.getType(), true); 6354 if (IsSigned) 6355 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6356 else 6357 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6358 setValue(&I, Value); 6359 } 6360 6361 /// See if we can lower a memcmp call into an optimized form. If so, return 6362 /// true and lower it. Otherwise return false, and it will be lowered like a 6363 /// normal call. 6364 /// The caller already checked that \p I calls the appropriate LibFunc with a 6365 /// correct prototype. 6366 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6367 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6368 const Value *Size = I.getArgOperand(2); 6369 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6370 if (CSize && CSize->getZExtValue() == 0) { 6371 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6372 I.getType(), true); 6373 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6374 return true; 6375 } 6376 6377 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6378 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6379 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6380 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6381 if (Res.first.getNode()) { 6382 processIntegerCallValue(I, Res.first, true); 6383 PendingLoads.push_back(Res.second); 6384 return true; 6385 } 6386 6387 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6388 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6389 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6390 return false; 6391 6392 // If the target has a fast compare for the given size, it will return a 6393 // preferred load type for that size. Require that the load VT is legal and 6394 // that the target supports unaligned loads of that type. Otherwise, return 6395 // INVALID. 6396 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6398 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6399 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6400 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6401 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6402 // TODO: Check alignment of src and dest ptrs. 6403 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6404 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6405 if (!TLI.isTypeLegal(LVT) || 6406 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6407 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6408 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6409 } 6410 6411 return LVT; 6412 }; 6413 6414 // This turns into unaligned loads. We only do this if the target natively 6415 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6416 // we'll only produce a small number of byte loads. 6417 MVT LoadVT; 6418 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6419 switch (NumBitsToCompare) { 6420 default: 6421 return false; 6422 case 16: 6423 LoadVT = MVT::i16; 6424 break; 6425 case 32: 6426 LoadVT = MVT::i32; 6427 break; 6428 case 64: 6429 case 128: 6430 case 256: 6431 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6432 break; 6433 } 6434 6435 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6436 return false; 6437 6438 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6439 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6440 6441 // Bitcast to a wide integer type if the loads are vectors. 6442 if (LoadVT.isVector()) { 6443 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6444 LoadL = DAG.getBitcast(CmpVT, LoadL); 6445 LoadR = DAG.getBitcast(CmpVT, LoadR); 6446 } 6447 6448 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6449 processIntegerCallValue(I, Cmp, false); 6450 return true; 6451 } 6452 6453 /// See if we can lower a memchr call into an optimized form. If so, return 6454 /// true and lower it. Otherwise return false, and it will be lowered like a 6455 /// normal call. 6456 /// The caller already checked that \p I calls the appropriate LibFunc with a 6457 /// correct prototype. 6458 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6459 const Value *Src = I.getArgOperand(0); 6460 const Value *Char = I.getArgOperand(1); 6461 const Value *Length = I.getArgOperand(2); 6462 6463 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6464 std::pair<SDValue, SDValue> Res = 6465 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6466 getValue(Src), getValue(Char), getValue(Length), 6467 MachinePointerInfo(Src)); 6468 if (Res.first.getNode()) { 6469 setValue(&I, Res.first); 6470 PendingLoads.push_back(Res.second); 6471 return true; 6472 } 6473 6474 return false; 6475 } 6476 6477 /// See if we can lower a mempcpy call into an optimized form. If so, return 6478 /// true and lower it. Otherwise return false, and it will be lowered like a 6479 /// normal call. 6480 /// The caller already checked that \p I calls the appropriate LibFunc with a 6481 /// correct prototype. 6482 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6483 SDValue Dst = getValue(I.getArgOperand(0)); 6484 SDValue Src = getValue(I.getArgOperand(1)); 6485 SDValue Size = getValue(I.getArgOperand(2)); 6486 6487 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6488 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6489 unsigned Align = std::min(DstAlign, SrcAlign); 6490 if (Align == 0) // Alignment of one or both could not be inferred. 6491 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6492 6493 bool isVol = false; 6494 SDLoc sdl = getCurSDLoc(); 6495 6496 // In the mempcpy context we need to pass in a false value for isTailCall 6497 // because the return pointer needs to be adjusted by the size of 6498 // the copied memory. 6499 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6500 false, /*isTailCall=*/false, 6501 MachinePointerInfo(I.getArgOperand(0)), 6502 MachinePointerInfo(I.getArgOperand(1))); 6503 assert(MC.getNode() != nullptr && 6504 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6505 DAG.setRoot(MC); 6506 6507 // Check if Size needs to be truncated or extended. 6508 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6509 6510 // Adjust return pointer to point just past the last dst byte. 6511 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6512 Dst, Size); 6513 setValue(&I, DstPlusSize); 6514 return true; 6515 } 6516 6517 /// See if we can lower a strcpy call into an optimized form. If so, return 6518 /// true and lower it, otherwise return false and it will be lowered like a 6519 /// normal call. 6520 /// The caller already checked that \p I calls the appropriate LibFunc with a 6521 /// correct prototype. 6522 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6523 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6524 6525 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6526 std::pair<SDValue, SDValue> Res = 6527 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6528 getValue(Arg0), getValue(Arg1), 6529 MachinePointerInfo(Arg0), 6530 MachinePointerInfo(Arg1), isStpcpy); 6531 if (Res.first.getNode()) { 6532 setValue(&I, Res.first); 6533 DAG.setRoot(Res.second); 6534 return true; 6535 } 6536 6537 return false; 6538 } 6539 6540 /// See if we can lower a strcmp call into an optimized form. If so, return 6541 /// true and lower it, otherwise return false and it will be lowered like a 6542 /// normal call. 6543 /// The caller already checked that \p I calls the appropriate LibFunc with a 6544 /// correct prototype. 6545 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6546 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6547 6548 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6549 std::pair<SDValue, SDValue> Res = 6550 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6551 getValue(Arg0), getValue(Arg1), 6552 MachinePointerInfo(Arg0), 6553 MachinePointerInfo(Arg1)); 6554 if (Res.first.getNode()) { 6555 processIntegerCallValue(I, Res.first, true); 6556 PendingLoads.push_back(Res.second); 6557 return true; 6558 } 6559 6560 return false; 6561 } 6562 6563 /// See if we can lower a strlen call into an optimized form. If so, return 6564 /// true and lower it, otherwise return false and it will be lowered like a 6565 /// normal call. 6566 /// The caller already checked that \p I calls the appropriate LibFunc with a 6567 /// correct prototype. 6568 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6569 const Value *Arg0 = I.getArgOperand(0); 6570 6571 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6572 std::pair<SDValue, SDValue> Res = 6573 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6574 getValue(Arg0), MachinePointerInfo(Arg0)); 6575 if (Res.first.getNode()) { 6576 processIntegerCallValue(I, Res.first, false); 6577 PendingLoads.push_back(Res.second); 6578 return true; 6579 } 6580 6581 return false; 6582 } 6583 6584 /// See if we can lower a strnlen call into an optimized form. If so, return 6585 /// true and lower it, otherwise return false and it will be lowered like a 6586 /// normal call. 6587 /// The caller already checked that \p I calls the appropriate LibFunc with a 6588 /// correct prototype. 6589 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6590 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6591 6592 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6593 std::pair<SDValue, SDValue> Res = 6594 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6595 getValue(Arg0), getValue(Arg1), 6596 MachinePointerInfo(Arg0)); 6597 if (Res.first.getNode()) { 6598 processIntegerCallValue(I, Res.first, false); 6599 PendingLoads.push_back(Res.second); 6600 return true; 6601 } 6602 6603 return false; 6604 } 6605 6606 /// See if we can lower a unary floating-point operation into an SDNode with 6607 /// the specified Opcode. If so, return true and lower it, otherwise return 6608 /// false and it will be lowered like a normal call. 6609 /// The caller already checked that \p I calls the appropriate LibFunc with a 6610 /// correct prototype. 6611 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6612 unsigned Opcode) { 6613 // We already checked this call's prototype; verify it doesn't modify errno. 6614 if (!I.onlyReadsMemory()) 6615 return false; 6616 6617 SDValue Tmp = getValue(I.getArgOperand(0)); 6618 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6619 return true; 6620 } 6621 6622 /// See if we can lower a binary floating-point operation into an SDNode with 6623 /// the specified Opcode. If so, return true and lower it. Otherwise return 6624 /// false, and it will be lowered like a normal call. 6625 /// The caller already checked that \p I calls the appropriate LibFunc with a 6626 /// correct prototype. 6627 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6628 unsigned Opcode) { 6629 // We already checked this call's prototype; verify it doesn't modify errno. 6630 if (!I.onlyReadsMemory()) 6631 return false; 6632 6633 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6634 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6635 EVT VT = Tmp0.getValueType(); 6636 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6637 return true; 6638 } 6639 6640 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6641 // Handle inline assembly differently. 6642 if (isa<InlineAsm>(I.getCalledValue())) { 6643 visitInlineAsm(&I); 6644 return; 6645 } 6646 6647 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6648 computeUsesVAFloatArgument(I, MMI); 6649 6650 const char *RenameFn = nullptr; 6651 if (Function *F = I.getCalledFunction()) { 6652 if (F->isDeclaration()) { 6653 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6654 if (unsigned IID = II->getIntrinsicID(F)) { 6655 RenameFn = visitIntrinsicCall(I, IID); 6656 if (!RenameFn) 6657 return; 6658 } 6659 } 6660 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6661 RenameFn = visitIntrinsicCall(I, IID); 6662 if (!RenameFn) 6663 return; 6664 } 6665 } 6666 6667 // Check for well-known libc/libm calls. If the function is internal, it 6668 // can't be a library call. Don't do the check if marked as nobuiltin for 6669 // some reason or the call site requires strict floating point semantics. 6670 LibFunc Func; 6671 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6672 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6673 LibInfo->hasOptimizedCodeGen(Func)) { 6674 switch (Func) { 6675 default: break; 6676 case LibFunc_copysign: 6677 case LibFunc_copysignf: 6678 case LibFunc_copysignl: 6679 // We already checked this call's prototype; verify it doesn't modify 6680 // errno. 6681 if (I.onlyReadsMemory()) { 6682 SDValue LHS = getValue(I.getArgOperand(0)); 6683 SDValue RHS = getValue(I.getArgOperand(1)); 6684 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6685 LHS.getValueType(), LHS, RHS)); 6686 return; 6687 } 6688 break; 6689 case LibFunc_fabs: 6690 case LibFunc_fabsf: 6691 case LibFunc_fabsl: 6692 if (visitUnaryFloatCall(I, ISD::FABS)) 6693 return; 6694 break; 6695 case LibFunc_fmin: 6696 case LibFunc_fminf: 6697 case LibFunc_fminl: 6698 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6699 return; 6700 break; 6701 case LibFunc_fmax: 6702 case LibFunc_fmaxf: 6703 case LibFunc_fmaxl: 6704 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6705 return; 6706 break; 6707 case LibFunc_sin: 6708 case LibFunc_sinf: 6709 case LibFunc_sinl: 6710 if (visitUnaryFloatCall(I, ISD::FSIN)) 6711 return; 6712 break; 6713 case LibFunc_cos: 6714 case LibFunc_cosf: 6715 case LibFunc_cosl: 6716 if (visitUnaryFloatCall(I, ISD::FCOS)) 6717 return; 6718 break; 6719 case LibFunc_sqrt: 6720 case LibFunc_sqrtf: 6721 case LibFunc_sqrtl: 6722 case LibFunc_sqrt_finite: 6723 case LibFunc_sqrtf_finite: 6724 case LibFunc_sqrtl_finite: 6725 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6726 return; 6727 break; 6728 case LibFunc_floor: 6729 case LibFunc_floorf: 6730 case LibFunc_floorl: 6731 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6732 return; 6733 break; 6734 case LibFunc_nearbyint: 6735 case LibFunc_nearbyintf: 6736 case LibFunc_nearbyintl: 6737 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6738 return; 6739 break; 6740 case LibFunc_ceil: 6741 case LibFunc_ceilf: 6742 case LibFunc_ceill: 6743 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6744 return; 6745 break; 6746 case LibFunc_rint: 6747 case LibFunc_rintf: 6748 case LibFunc_rintl: 6749 if (visitUnaryFloatCall(I, ISD::FRINT)) 6750 return; 6751 break; 6752 case LibFunc_round: 6753 case LibFunc_roundf: 6754 case LibFunc_roundl: 6755 if (visitUnaryFloatCall(I, ISD::FROUND)) 6756 return; 6757 break; 6758 case LibFunc_trunc: 6759 case LibFunc_truncf: 6760 case LibFunc_truncl: 6761 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6762 return; 6763 break; 6764 case LibFunc_log2: 6765 case LibFunc_log2f: 6766 case LibFunc_log2l: 6767 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6768 return; 6769 break; 6770 case LibFunc_exp2: 6771 case LibFunc_exp2f: 6772 case LibFunc_exp2l: 6773 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6774 return; 6775 break; 6776 case LibFunc_memcmp: 6777 if (visitMemCmpCall(I)) 6778 return; 6779 break; 6780 case LibFunc_mempcpy: 6781 if (visitMemPCpyCall(I)) 6782 return; 6783 break; 6784 case LibFunc_memchr: 6785 if (visitMemChrCall(I)) 6786 return; 6787 break; 6788 case LibFunc_strcpy: 6789 if (visitStrCpyCall(I, false)) 6790 return; 6791 break; 6792 case LibFunc_stpcpy: 6793 if (visitStrCpyCall(I, true)) 6794 return; 6795 break; 6796 case LibFunc_strcmp: 6797 if (visitStrCmpCall(I)) 6798 return; 6799 break; 6800 case LibFunc_strlen: 6801 if (visitStrLenCall(I)) 6802 return; 6803 break; 6804 case LibFunc_strnlen: 6805 if (visitStrNLenCall(I)) 6806 return; 6807 break; 6808 } 6809 } 6810 } 6811 6812 SDValue Callee; 6813 if (!RenameFn) 6814 Callee = getValue(I.getCalledValue()); 6815 else 6816 Callee = DAG.getExternalSymbol( 6817 RenameFn, 6818 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6819 6820 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6821 // have to do anything here to lower funclet bundles. 6822 assert(!I.hasOperandBundlesOtherThan( 6823 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6824 "Cannot lower calls with arbitrary operand bundles!"); 6825 6826 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6827 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6828 else 6829 // Check if we can potentially perform a tail call. More detailed checking 6830 // is be done within LowerCallTo, after more information about the call is 6831 // known. 6832 LowerCallTo(&I, Callee, I.isTailCall()); 6833 } 6834 6835 namespace { 6836 6837 /// AsmOperandInfo - This contains information for each constraint that we are 6838 /// lowering. 6839 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6840 public: 6841 /// CallOperand - If this is the result output operand or a clobber 6842 /// this is null, otherwise it is the incoming operand to the CallInst. 6843 /// This gets modified as the asm is processed. 6844 SDValue CallOperand; 6845 6846 /// AssignedRegs - If this is a register or register class operand, this 6847 /// contains the set of register corresponding to the operand. 6848 RegsForValue AssignedRegs; 6849 6850 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6851 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 6852 } 6853 6854 /// Whether or not this operand accesses memory 6855 bool hasMemory(const TargetLowering &TLI) const { 6856 // Indirect operand accesses access memory. 6857 if (isIndirect) 6858 return true; 6859 6860 for (const auto &Code : Codes) 6861 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6862 return true; 6863 6864 return false; 6865 } 6866 6867 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6868 /// corresponds to. If there is no Value* for this operand, it returns 6869 /// MVT::Other. 6870 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6871 const DataLayout &DL) const { 6872 if (!CallOperandVal) return MVT::Other; 6873 6874 if (isa<BasicBlock>(CallOperandVal)) 6875 return TLI.getPointerTy(DL); 6876 6877 llvm::Type *OpTy = CallOperandVal->getType(); 6878 6879 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6880 // If this is an indirect operand, the operand is a pointer to the 6881 // accessed type. 6882 if (isIndirect) { 6883 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6884 if (!PtrTy) 6885 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6886 OpTy = PtrTy->getElementType(); 6887 } 6888 6889 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6890 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6891 if (STy->getNumElements() == 1) 6892 OpTy = STy->getElementType(0); 6893 6894 // If OpTy is not a single value, it may be a struct/union that we 6895 // can tile with integers. 6896 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6897 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6898 switch (BitSize) { 6899 default: break; 6900 case 1: 6901 case 8: 6902 case 16: 6903 case 32: 6904 case 64: 6905 case 128: 6906 OpTy = IntegerType::get(Context, BitSize); 6907 break; 6908 } 6909 } 6910 6911 return TLI.getValueType(DL, OpTy, true); 6912 } 6913 }; 6914 6915 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 6916 6917 } // end anonymous namespace 6918 6919 /// Make sure that the output operand \p OpInfo and its corresponding input 6920 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6921 /// out). 6922 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6923 SDISelAsmOperandInfo &MatchingOpInfo, 6924 SelectionDAG &DAG) { 6925 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6926 return; 6927 6928 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6929 const auto &TLI = DAG.getTargetLoweringInfo(); 6930 6931 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6932 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6933 OpInfo.ConstraintVT); 6934 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6935 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6936 MatchingOpInfo.ConstraintVT); 6937 if ((OpInfo.ConstraintVT.isInteger() != 6938 MatchingOpInfo.ConstraintVT.isInteger()) || 6939 (MatchRC.second != InputRC.second)) { 6940 // FIXME: error out in a more elegant fashion 6941 report_fatal_error("Unsupported asm: input constraint" 6942 " with a matching output constraint of" 6943 " incompatible type!"); 6944 } 6945 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6946 } 6947 6948 /// Get a direct memory input to behave well as an indirect operand. 6949 /// This may introduce stores, hence the need for a \p Chain. 6950 /// \return The (possibly updated) chain. 6951 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6952 SDISelAsmOperandInfo &OpInfo, 6953 SelectionDAG &DAG) { 6954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6955 6956 // If we don't have an indirect input, put it in the constpool if we can, 6957 // otherwise spill it to a stack slot. 6958 // TODO: This isn't quite right. We need to handle these according to 6959 // the addressing mode that the constraint wants. Also, this may take 6960 // an additional register for the computation and we don't want that 6961 // either. 6962 6963 // If the operand is a float, integer, or vector constant, spill to a 6964 // constant pool entry to get its address. 6965 const Value *OpVal = OpInfo.CallOperandVal; 6966 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6967 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6968 OpInfo.CallOperand = DAG.getConstantPool( 6969 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6970 return Chain; 6971 } 6972 6973 // Otherwise, create a stack slot and emit a store to it before the asm. 6974 Type *Ty = OpVal->getType(); 6975 auto &DL = DAG.getDataLayout(); 6976 uint64_t TySize = DL.getTypeAllocSize(Ty); 6977 unsigned Align = DL.getPrefTypeAlignment(Ty); 6978 MachineFunction &MF = DAG.getMachineFunction(); 6979 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6980 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 6981 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6982 MachinePointerInfo::getFixedStack(MF, SSFI)); 6983 OpInfo.CallOperand = StackSlot; 6984 6985 return Chain; 6986 } 6987 6988 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6989 /// specified operand. We prefer to assign virtual registers, to allow the 6990 /// register allocator to handle the assignment process. However, if the asm 6991 /// uses features that we can't model on machineinstrs, we have SDISel do the 6992 /// allocation. This produces generally horrible, but correct, code. 6993 /// 6994 /// OpInfo describes the operand. 6995 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6996 const SDLoc &DL, 6997 SDISelAsmOperandInfo &OpInfo) { 6998 LLVMContext &Context = *DAG.getContext(); 6999 7000 MachineFunction &MF = DAG.getMachineFunction(); 7001 SmallVector<unsigned, 4> Regs; 7002 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7003 7004 // If this is a constraint for a single physreg, or a constraint for a 7005 // register class, find it. 7006 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7007 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 7008 OpInfo.ConstraintVT); 7009 7010 unsigned NumRegs = 1; 7011 if (OpInfo.ConstraintVT != MVT::Other) { 7012 // If this is a FP input in an integer register (or visa versa) insert a bit 7013 // cast of the input value. More generally, handle any case where the input 7014 // value disagrees with the register class we plan to stick this in. 7015 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 7016 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7017 // Try to convert to the first EVT that the reg class contains. If the 7018 // types are identical size, use a bitcast to convert (e.g. two differing 7019 // vector types). 7020 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7021 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 7022 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7023 RegVT, OpInfo.CallOperand); 7024 OpInfo.ConstraintVT = RegVT; 7025 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7026 // If the input is a FP value and we want it in FP registers, do a 7027 // bitcast to the corresponding integer type. This turns an f64 value 7028 // into i64, which can be passed with two i32 values on a 32-bit 7029 // machine. 7030 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7031 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7032 RegVT, OpInfo.CallOperand); 7033 OpInfo.ConstraintVT = RegVT; 7034 } 7035 } 7036 7037 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7038 } 7039 7040 MVT RegVT; 7041 EVT ValueVT = OpInfo.ConstraintVT; 7042 7043 // If this is a constraint for a specific physical register, like {r17}, 7044 // assign it now. 7045 if (unsigned AssignedReg = PhysReg.first) { 7046 const TargetRegisterClass *RC = PhysReg.second; 7047 if (OpInfo.ConstraintVT == MVT::Other) 7048 ValueVT = *TRI.legalclasstypes_begin(*RC); 7049 7050 // Get the actual register value type. This is important, because the user 7051 // may have asked for (e.g.) the AX register in i32 type. We need to 7052 // remember that AX is actually i16 to get the right extension. 7053 RegVT = *TRI.legalclasstypes_begin(*RC); 7054 7055 // This is a explicit reference to a physical register. 7056 Regs.push_back(AssignedReg); 7057 7058 // If this is an expanded reference, add the rest of the regs to Regs. 7059 if (NumRegs != 1) { 7060 TargetRegisterClass::iterator I = RC->begin(); 7061 for (; *I != AssignedReg; ++I) 7062 assert(I != RC->end() && "Didn't find reg!"); 7063 7064 // Already added the first reg. 7065 --NumRegs; ++I; 7066 for (; NumRegs; --NumRegs, ++I) { 7067 assert(I != RC->end() && "Ran out of registers to allocate!"); 7068 Regs.push_back(*I); 7069 } 7070 } 7071 7072 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7073 return; 7074 } 7075 7076 // Otherwise, if this was a reference to an LLVM register class, create vregs 7077 // for this reference. 7078 if (const TargetRegisterClass *RC = PhysReg.second) { 7079 RegVT = *TRI.legalclasstypes_begin(*RC); 7080 if (OpInfo.ConstraintVT == MVT::Other) 7081 ValueVT = RegVT; 7082 7083 // Create the appropriate number of virtual registers. 7084 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7085 for (; NumRegs; --NumRegs) 7086 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7087 7088 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7089 return; 7090 } 7091 7092 // Otherwise, we couldn't allocate enough registers for this. 7093 } 7094 7095 static unsigned 7096 findMatchingInlineAsmOperand(unsigned OperandNo, 7097 const std::vector<SDValue> &AsmNodeOperands) { 7098 // Scan until we find the definition we already emitted of this operand. 7099 unsigned CurOp = InlineAsm::Op_FirstOperand; 7100 for (; OperandNo; --OperandNo) { 7101 // Advance to the next operand. 7102 unsigned OpFlag = 7103 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7104 assert((InlineAsm::isRegDefKind(OpFlag) || 7105 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7106 InlineAsm::isMemKind(OpFlag)) && 7107 "Skipped past definitions?"); 7108 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7109 } 7110 return CurOp; 7111 } 7112 7113 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7114 /// \return true if it has succeeded, false otherwise 7115 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7116 MVT RegVT, SelectionDAG &DAG) { 7117 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7118 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7119 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7120 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7121 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7122 else 7123 return false; 7124 } 7125 return true; 7126 } 7127 7128 namespace { 7129 7130 class ExtraFlags { 7131 unsigned Flags = 0; 7132 7133 public: 7134 explicit ExtraFlags(ImmutableCallSite CS) { 7135 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7136 if (IA->hasSideEffects()) 7137 Flags |= InlineAsm::Extra_HasSideEffects; 7138 if (IA->isAlignStack()) 7139 Flags |= InlineAsm::Extra_IsAlignStack; 7140 if (CS.isConvergent()) 7141 Flags |= InlineAsm::Extra_IsConvergent; 7142 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7143 } 7144 7145 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7146 // Ideally, we would only check against memory constraints. However, the 7147 // meaning of an Other constraint can be target-specific and we can't easily 7148 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7149 // for Other constraints as well. 7150 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7151 OpInfo.ConstraintType == TargetLowering::C_Other) { 7152 if (OpInfo.Type == InlineAsm::isInput) 7153 Flags |= InlineAsm::Extra_MayLoad; 7154 else if (OpInfo.Type == InlineAsm::isOutput) 7155 Flags |= InlineAsm::Extra_MayStore; 7156 else if (OpInfo.Type == InlineAsm::isClobber) 7157 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7158 } 7159 } 7160 7161 unsigned get() const { return Flags; } 7162 }; 7163 7164 } // end anonymous namespace 7165 7166 /// visitInlineAsm - Handle a call to an InlineAsm object. 7167 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7168 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7169 7170 /// ConstraintOperands - Information about all of the constraints. 7171 SDISelAsmOperandInfoVector ConstraintOperands; 7172 7173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7174 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7175 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7176 7177 bool hasMemory = false; 7178 7179 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7180 ExtraFlags ExtraInfo(CS); 7181 7182 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7183 unsigned ResNo = 0; // ResNo - The result number of the next output. 7184 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7185 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7186 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7187 7188 MVT OpVT = MVT::Other; 7189 7190 // Compute the value type for each operand. 7191 if (OpInfo.Type == InlineAsm::isInput || 7192 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7193 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7194 7195 // Process the call argument. BasicBlocks are labels, currently appearing 7196 // only in asm's. 7197 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7198 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7199 } else { 7200 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7201 } 7202 7203 OpVT = 7204 OpInfo 7205 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7206 .getSimpleVT(); 7207 } 7208 7209 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7210 // The return value of the call is this value. As such, there is no 7211 // corresponding argument. 7212 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7213 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7214 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7215 STy->getElementType(ResNo)); 7216 } else { 7217 assert(ResNo == 0 && "Asm only has one result!"); 7218 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7219 } 7220 ++ResNo; 7221 } 7222 7223 OpInfo.ConstraintVT = OpVT; 7224 7225 if (!hasMemory) 7226 hasMemory = OpInfo.hasMemory(TLI); 7227 7228 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7229 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7230 auto TargetConstraint = TargetConstraints[i]; 7231 7232 // Compute the constraint code and ConstraintType to use. 7233 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7234 7235 ExtraInfo.update(TargetConstraint); 7236 } 7237 7238 SDValue Chain, Flag; 7239 7240 // We won't need to flush pending loads if this asm doesn't touch 7241 // memory and is nonvolatile. 7242 if (hasMemory || IA->hasSideEffects()) 7243 Chain = getRoot(); 7244 else 7245 Chain = DAG.getRoot(); 7246 7247 // Second pass over the constraints: compute which constraint option to use 7248 // and assign registers to constraints that want a specific physreg. 7249 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7250 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7251 7252 // If this is an output operand with a matching input operand, look up the 7253 // matching input. If their types mismatch, e.g. one is an integer, the 7254 // other is floating point, or their sizes are different, flag it as an 7255 // error. 7256 if (OpInfo.hasMatchingInput()) { 7257 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7258 patchMatchingInput(OpInfo, Input, DAG); 7259 } 7260 7261 // Compute the constraint code and ConstraintType to use. 7262 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7263 7264 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7265 OpInfo.Type == InlineAsm::isClobber) 7266 continue; 7267 7268 // If this is a memory input, and if the operand is not indirect, do what we 7269 // need to provide an address for the memory input. 7270 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7271 !OpInfo.isIndirect) { 7272 assert((OpInfo.isMultipleAlternative || 7273 (OpInfo.Type == InlineAsm::isInput)) && 7274 "Can only indirectify direct input operands!"); 7275 7276 // Memory operands really want the address of the value. 7277 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7278 7279 // There is no longer a Value* corresponding to this operand. 7280 OpInfo.CallOperandVal = nullptr; 7281 7282 // It is now an indirect operand. 7283 OpInfo.isIndirect = true; 7284 } 7285 7286 // If this constraint is for a specific register, allocate it before 7287 // anything else. 7288 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7289 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7290 } 7291 7292 // Third pass - Loop over all of the operands, assigning virtual or physregs 7293 // to register class operands. 7294 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7295 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7296 7297 // C_Register operands have already been allocated, Other/Memory don't need 7298 // to be. 7299 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7300 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7301 } 7302 7303 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7304 std::vector<SDValue> AsmNodeOperands; 7305 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7306 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7307 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7308 7309 // If we have a !srcloc metadata node associated with it, we want to attach 7310 // this to the ultimately generated inline asm machineinstr. To do this, we 7311 // pass in the third operand as this (potentially null) inline asm MDNode. 7312 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7313 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7314 7315 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7316 // bits as operand 3. 7317 AsmNodeOperands.push_back(DAG.getTargetConstant( 7318 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7319 7320 // Loop over all of the inputs, copying the operand values into the 7321 // appropriate registers and processing the output regs. 7322 RegsForValue RetValRegs; 7323 7324 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7325 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7326 7327 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7328 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7329 7330 switch (OpInfo.Type) { 7331 case InlineAsm::isOutput: 7332 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7333 OpInfo.ConstraintType != TargetLowering::C_Register) { 7334 // Memory output, or 'other' output (e.g. 'X' constraint). 7335 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7336 7337 unsigned ConstraintID = 7338 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7339 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7340 "Failed to convert memory constraint code to constraint id."); 7341 7342 // Add information to the INLINEASM node to know about this output. 7343 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7344 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7345 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7346 MVT::i32)); 7347 AsmNodeOperands.push_back(OpInfo.CallOperand); 7348 break; 7349 } 7350 7351 // Otherwise, this is a register or register class output. 7352 7353 // Copy the output from the appropriate register. Find a register that 7354 // we can use. 7355 if (OpInfo.AssignedRegs.Regs.empty()) { 7356 emitInlineAsmError( 7357 CS, "couldn't allocate output register for constraint '" + 7358 Twine(OpInfo.ConstraintCode) + "'"); 7359 return; 7360 } 7361 7362 // If this is an indirect operand, store through the pointer after the 7363 // asm. 7364 if (OpInfo.isIndirect) { 7365 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7366 OpInfo.CallOperandVal)); 7367 } else { 7368 // This is the result value of the call. 7369 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7370 // Concatenate this output onto the outputs list. 7371 RetValRegs.append(OpInfo.AssignedRegs); 7372 } 7373 7374 // Add information to the INLINEASM node to know that this register is 7375 // set. 7376 OpInfo.AssignedRegs 7377 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7378 ? InlineAsm::Kind_RegDefEarlyClobber 7379 : InlineAsm::Kind_RegDef, 7380 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7381 break; 7382 7383 case InlineAsm::isInput: { 7384 SDValue InOperandVal = OpInfo.CallOperand; 7385 7386 if (OpInfo.isMatchingInputConstraint()) { 7387 // If this is required to match an output register we have already set, 7388 // just use its register. 7389 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7390 AsmNodeOperands); 7391 unsigned OpFlag = 7392 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7393 if (InlineAsm::isRegDefKind(OpFlag) || 7394 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7395 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7396 if (OpInfo.isIndirect) { 7397 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7398 emitInlineAsmError(CS, "inline asm not supported yet:" 7399 " don't know how to handle tied " 7400 "indirect register inputs"); 7401 return; 7402 } 7403 7404 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7405 SmallVector<unsigned, 4> Regs; 7406 7407 if (!createVirtualRegs(Regs, 7408 InlineAsm::getNumOperandRegisters(OpFlag), 7409 RegVT, DAG)) { 7410 emitInlineAsmError(CS, "inline asm error: This value type register " 7411 "class is not natively supported!"); 7412 return; 7413 } 7414 7415 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7416 7417 SDLoc dl = getCurSDLoc(); 7418 // Use the produced MatchedRegs object to 7419 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7420 CS.getInstruction()); 7421 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7422 true, OpInfo.getMatchedOperand(), dl, 7423 DAG, AsmNodeOperands); 7424 break; 7425 } 7426 7427 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7428 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7429 "Unexpected number of operands"); 7430 // Add information to the INLINEASM node to know about this input. 7431 // See InlineAsm.h isUseOperandTiedToDef. 7432 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7433 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7434 OpInfo.getMatchedOperand()); 7435 AsmNodeOperands.push_back(DAG.getTargetConstant( 7436 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7437 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7438 break; 7439 } 7440 7441 // Treat indirect 'X' constraint as memory. 7442 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7443 OpInfo.isIndirect) 7444 OpInfo.ConstraintType = TargetLowering::C_Memory; 7445 7446 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7447 std::vector<SDValue> Ops; 7448 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7449 Ops, DAG); 7450 if (Ops.empty()) { 7451 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7452 Twine(OpInfo.ConstraintCode) + "'"); 7453 return; 7454 } 7455 7456 // Add information to the INLINEASM node to know about this input. 7457 unsigned ResOpType = 7458 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7459 AsmNodeOperands.push_back(DAG.getTargetConstant( 7460 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7461 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7462 break; 7463 } 7464 7465 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7466 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7467 assert(InOperandVal.getValueType() == 7468 TLI.getPointerTy(DAG.getDataLayout()) && 7469 "Memory operands expect pointer values"); 7470 7471 unsigned ConstraintID = 7472 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7473 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7474 "Failed to convert memory constraint code to constraint id."); 7475 7476 // Add information to the INLINEASM node to know about this input. 7477 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7478 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7479 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7480 getCurSDLoc(), 7481 MVT::i32)); 7482 AsmNodeOperands.push_back(InOperandVal); 7483 break; 7484 } 7485 7486 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7487 OpInfo.ConstraintType == TargetLowering::C_Register) && 7488 "Unknown constraint type!"); 7489 7490 // TODO: Support this. 7491 if (OpInfo.isIndirect) { 7492 emitInlineAsmError( 7493 CS, "Don't know how to handle indirect register inputs yet " 7494 "for constraint '" + 7495 Twine(OpInfo.ConstraintCode) + "'"); 7496 return; 7497 } 7498 7499 // Copy the input into the appropriate registers. 7500 if (OpInfo.AssignedRegs.Regs.empty()) { 7501 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7502 Twine(OpInfo.ConstraintCode) + "'"); 7503 return; 7504 } 7505 7506 SDLoc dl = getCurSDLoc(); 7507 7508 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7509 Chain, &Flag, CS.getInstruction()); 7510 7511 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7512 dl, DAG, AsmNodeOperands); 7513 break; 7514 } 7515 case InlineAsm::isClobber: 7516 // Add the clobbered value to the operand list, so that the register 7517 // allocator is aware that the physreg got clobbered. 7518 if (!OpInfo.AssignedRegs.Regs.empty()) 7519 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7520 false, 0, getCurSDLoc(), DAG, 7521 AsmNodeOperands); 7522 break; 7523 } 7524 } 7525 7526 // Finish up input operands. Set the input chain and add the flag last. 7527 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7528 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7529 7530 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7531 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7532 Flag = Chain.getValue(1); 7533 7534 // If this asm returns a register value, copy the result from that register 7535 // and set it as the value of the call. 7536 if (!RetValRegs.Regs.empty()) { 7537 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7538 Chain, &Flag, CS.getInstruction()); 7539 7540 // FIXME: Why don't we do this for inline asms with MRVs? 7541 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7542 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7543 7544 // If any of the results of the inline asm is a vector, it may have the 7545 // wrong width/num elts. This can happen for register classes that can 7546 // contain multiple different value types. The preg or vreg allocated may 7547 // not have the same VT as was expected. Convert it to the right type 7548 // with bit_convert. 7549 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7550 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7551 ResultType, Val); 7552 7553 } else if (ResultType != Val.getValueType() && 7554 ResultType.isInteger() && Val.getValueType().isInteger()) { 7555 // If a result value was tied to an input value, the computed result may 7556 // have a wider width than the expected result. Extract the relevant 7557 // portion. 7558 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7559 } 7560 7561 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7562 } 7563 7564 setValue(CS.getInstruction(), Val); 7565 // Don't need to use this as a chain in this case. 7566 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7567 return; 7568 } 7569 7570 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7571 7572 // Process indirect outputs, first output all of the flagged copies out of 7573 // physregs. 7574 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7575 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7576 const Value *Ptr = IndirectStoresToEmit[i].second; 7577 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7578 Chain, &Flag, IA); 7579 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7580 } 7581 7582 // Emit the non-flagged stores from the physregs. 7583 SmallVector<SDValue, 8> OutChains; 7584 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7585 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7586 getValue(StoresToEmit[i].second), 7587 MachinePointerInfo(StoresToEmit[i].second)); 7588 OutChains.push_back(Val); 7589 } 7590 7591 if (!OutChains.empty()) 7592 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7593 7594 DAG.setRoot(Chain); 7595 } 7596 7597 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7598 const Twine &Message) { 7599 LLVMContext &Ctx = *DAG.getContext(); 7600 Ctx.emitError(CS.getInstruction(), Message); 7601 7602 // Make sure we leave the DAG in a valid state 7603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7604 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7605 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7606 } 7607 7608 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7609 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7610 MVT::Other, getRoot(), 7611 getValue(I.getArgOperand(0)), 7612 DAG.getSrcValue(I.getArgOperand(0)))); 7613 } 7614 7615 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7617 const DataLayout &DL = DAG.getDataLayout(); 7618 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7619 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7620 DAG.getSrcValue(I.getOperand(0)), 7621 DL.getABITypeAlignment(I.getType())); 7622 setValue(&I, V); 7623 DAG.setRoot(V.getValue(1)); 7624 } 7625 7626 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7627 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7628 MVT::Other, getRoot(), 7629 getValue(I.getArgOperand(0)), 7630 DAG.getSrcValue(I.getArgOperand(0)))); 7631 } 7632 7633 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7634 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7635 MVT::Other, getRoot(), 7636 getValue(I.getArgOperand(0)), 7637 getValue(I.getArgOperand(1)), 7638 DAG.getSrcValue(I.getArgOperand(0)), 7639 DAG.getSrcValue(I.getArgOperand(1)))); 7640 } 7641 7642 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7643 const Instruction &I, 7644 SDValue Op) { 7645 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7646 if (!Range) 7647 return Op; 7648 7649 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7650 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7651 return Op; 7652 7653 APInt Lo = CR.getUnsignedMin(); 7654 if (!Lo.isMinValue()) 7655 return Op; 7656 7657 APInt Hi = CR.getUnsignedMax(); 7658 unsigned Bits = Hi.getActiveBits(); 7659 7660 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7661 7662 SDLoc SL = getCurSDLoc(); 7663 7664 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7665 DAG.getValueType(SmallVT)); 7666 unsigned NumVals = Op.getNode()->getNumValues(); 7667 if (NumVals == 1) 7668 return ZExt; 7669 7670 SmallVector<SDValue, 4> Ops; 7671 7672 Ops.push_back(ZExt); 7673 for (unsigned I = 1; I != NumVals; ++I) 7674 Ops.push_back(Op.getValue(I)); 7675 7676 return DAG.getMergeValues(Ops, SL); 7677 } 7678 7679 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7680 /// the call being lowered. 7681 /// 7682 /// This is a helper for lowering intrinsics that follow a target calling 7683 /// convention or require stack pointer adjustment. Only a subset of the 7684 /// intrinsic's operands need to participate in the calling convention. 7685 void SelectionDAGBuilder::populateCallLoweringInfo( 7686 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7687 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7688 bool IsPatchPoint) { 7689 TargetLowering::ArgListTy Args; 7690 Args.reserve(NumArgs); 7691 7692 // Populate the argument list. 7693 // Attributes for args start at offset 1, after the return attribute. 7694 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7695 ArgI != ArgE; ++ArgI) { 7696 const Value *V = CS->getOperand(ArgI); 7697 7698 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7699 7700 TargetLowering::ArgListEntry Entry; 7701 Entry.Node = getValue(V); 7702 Entry.Ty = V->getType(); 7703 Entry.setAttributes(&CS, ArgI); 7704 Args.push_back(Entry); 7705 } 7706 7707 CLI.setDebugLoc(getCurSDLoc()) 7708 .setChain(getRoot()) 7709 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7710 .setDiscardResult(CS->use_empty()) 7711 .setIsPatchPoint(IsPatchPoint); 7712 } 7713 7714 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7715 /// or patchpoint target node's operand list. 7716 /// 7717 /// Constants are converted to TargetConstants purely as an optimization to 7718 /// avoid constant materialization and register allocation. 7719 /// 7720 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7721 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7722 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7723 /// address materialization and register allocation, but may also be required 7724 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7725 /// alloca in the entry block, then the runtime may assume that the alloca's 7726 /// StackMap location can be read immediately after compilation and that the 7727 /// location is valid at any point during execution (this is similar to the 7728 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7729 /// only available in a register, then the runtime would need to trap when 7730 /// execution reaches the StackMap in order to read the alloca's location. 7731 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7732 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7733 SelectionDAGBuilder &Builder) { 7734 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7735 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7736 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7737 Ops.push_back( 7738 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7739 Ops.push_back( 7740 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7741 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7742 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7743 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7744 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7745 } else 7746 Ops.push_back(OpVal); 7747 } 7748 } 7749 7750 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7751 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7752 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7753 // [live variables...]) 7754 7755 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7756 7757 SDValue Chain, InFlag, Callee, NullPtr; 7758 SmallVector<SDValue, 32> Ops; 7759 7760 SDLoc DL = getCurSDLoc(); 7761 Callee = getValue(CI.getCalledValue()); 7762 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7763 7764 // The stackmap intrinsic only records the live variables (the arguemnts 7765 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7766 // intrinsic, this won't be lowered to a function call. This means we don't 7767 // have to worry about calling conventions and target specific lowering code. 7768 // Instead we perform the call lowering right here. 7769 // 7770 // chain, flag = CALLSEQ_START(chain, 0, 0) 7771 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7772 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7773 // 7774 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7775 InFlag = Chain.getValue(1); 7776 7777 // Add the <id> and <numBytes> constants. 7778 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7779 Ops.push_back(DAG.getTargetConstant( 7780 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7781 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7782 Ops.push_back(DAG.getTargetConstant( 7783 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7784 MVT::i32)); 7785 7786 // Push live variables for the stack map. 7787 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7788 7789 // We are not pushing any register mask info here on the operands list, 7790 // because the stackmap doesn't clobber anything. 7791 7792 // Push the chain and the glue flag. 7793 Ops.push_back(Chain); 7794 Ops.push_back(InFlag); 7795 7796 // Create the STACKMAP node. 7797 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7798 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7799 Chain = SDValue(SM, 0); 7800 InFlag = Chain.getValue(1); 7801 7802 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7803 7804 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7805 7806 // Set the root to the target-lowered call chain. 7807 DAG.setRoot(Chain); 7808 7809 // Inform the Frame Information that we have a stackmap in this function. 7810 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7811 } 7812 7813 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7814 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7815 const BasicBlock *EHPadBB) { 7816 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7817 // i32 <numBytes>, 7818 // i8* <target>, 7819 // i32 <numArgs>, 7820 // [Args...], 7821 // [live variables...]) 7822 7823 CallingConv::ID CC = CS.getCallingConv(); 7824 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7825 bool HasDef = !CS->getType()->isVoidTy(); 7826 SDLoc dl = getCurSDLoc(); 7827 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7828 7829 // Handle immediate and symbolic callees. 7830 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7831 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7832 /*isTarget=*/true); 7833 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7834 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7835 SDLoc(SymbolicCallee), 7836 SymbolicCallee->getValueType(0)); 7837 7838 // Get the real number of arguments participating in the call <numArgs> 7839 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7840 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7841 7842 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7843 // Intrinsics include all meta-operands up to but not including CC. 7844 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7845 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7846 "Not enough arguments provided to the patchpoint intrinsic"); 7847 7848 // For AnyRegCC the arguments are lowered later on manually. 7849 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7850 Type *ReturnTy = 7851 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7852 7853 TargetLowering::CallLoweringInfo CLI(DAG); 7854 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7855 true); 7856 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7857 7858 SDNode *CallEnd = Result.second.getNode(); 7859 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7860 CallEnd = CallEnd->getOperand(0).getNode(); 7861 7862 /// Get a call instruction from the call sequence chain. 7863 /// Tail calls are not allowed. 7864 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7865 "Expected a callseq node."); 7866 SDNode *Call = CallEnd->getOperand(0).getNode(); 7867 bool HasGlue = Call->getGluedNode(); 7868 7869 // Replace the target specific call node with the patchable intrinsic. 7870 SmallVector<SDValue, 8> Ops; 7871 7872 // Add the <id> and <numBytes> constants. 7873 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7874 Ops.push_back(DAG.getTargetConstant( 7875 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7876 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7877 Ops.push_back(DAG.getTargetConstant( 7878 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7879 MVT::i32)); 7880 7881 // Add the callee. 7882 Ops.push_back(Callee); 7883 7884 // Adjust <numArgs> to account for any arguments that have been passed on the 7885 // stack instead. 7886 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7887 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7888 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7889 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7890 7891 // Add the calling convention 7892 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7893 7894 // Add the arguments we omitted previously. The register allocator should 7895 // place these in any free register. 7896 if (IsAnyRegCC) 7897 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7898 Ops.push_back(getValue(CS.getArgument(i))); 7899 7900 // Push the arguments from the call instruction up to the register mask. 7901 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7902 Ops.append(Call->op_begin() + 2, e); 7903 7904 // Push live variables for the stack map. 7905 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7906 7907 // Push the register mask info. 7908 if (HasGlue) 7909 Ops.push_back(*(Call->op_end()-2)); 7910 else 7911 Ops.push_back(*(Call->op_end()-1)); 7912 7913 // Push the chain (this is originally the first operand of the call, but 7914 // becomes now the last or second to last operand). 7915 Ops.push_back(*(Call->op_begin())); 7916 7917 // Push the glue flag (last operand). 7918 if (HasGlue) 7919 Ops.push_back(*(Call->op_end()-1)); 7920 7921 SDVTList NodeTys; 7922 if (IsAnyRegCC && HasDef) { 7923 // Create the return types based on the intrinsic definition 7924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7925 SmallVector<EVT, 3> ValueVTs; 7926 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7927 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7928 7929 // There is always a chain and a glue type at the end 7930 ValueVTs.push_back(MVT::Other); 7931 ValueVTs.push_back(MVT::Glue); 7932 NodeTys = DAG.getVTList(ValueVTs); 7933 } else 7934 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7935 7936 // Replace the target specific call node with a PATCHPOINT node. 7937 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7938 dl, NodeTys, Ops); 7939 7940 // Update the NodeMap. 7941 if (HasDef) { 7942 if (IsAnyRegCC) 7943 setValue(CS.getInstruction(), SDValue(MN, 0)); 7944 else 7945 setValue(CS.getInstruction(), Result.first); 7946 } 7947 7948 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7949 // call sequence. Furthermore the location of the chain and glue can change 7950 // when the AnyReg calling convention is used and the intrinsic returns a 7951 // value. 7952 if (IsAnyRegCC && HasDef) { 7953 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7954 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7955 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7956 } else 7957 DAG.ReplaceAllUsesWith(Call, MN); 7958 DAG.DeleteNode(Call); 7959 7960 // Inform the Frame Information that we have a patchpoint in this function. 7961 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7962 } 7963 7964 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 7965 unsigned Intrinsic) { 7966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7967 SDValue Op1 = getValue(I.getArgOperand(0)); 7968 SDValue Op2; 7969 if (I.getNumArgOperands() > 1) 7970 Op2 = getValue(I.getArgOperand(1)); 7971 SDLoc dl = getCurSDLoc(); 7972 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7973 SDValue Res; 7974 FastMathFlags FMF; 7975 if (isa<FPMathOperator>(I)) 7976 FMF = I.getFastMathFlags(); 7977 SDNodeFlags SDFlags; 7978 SDFlags.setNoNaNs(FMF.noNaNs()); 7979 7980 switch (Intrinsic) { 7981 case Intrinsic::experimental_vector_reduce_fadd: 7982 if (FMF.isFast()) 7983 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 7984 else 7985 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 7986 break; 7987 case Intrinsic::experimental_vector_reduce_fmul: 7988 if (FMF.isFast()) 7989 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 7990 else 7991 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 7992 break; 7993 case Intrinsic::experimental_vector_reduce_add: 7994 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 7995 break; 7996 case Intrinsic::experimental_vector_reduce_mul: 7997 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 7998 break; 7999 case Intrinsic::experimental_vector_reduce_and: 8000 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8001 break; 8002 case Intrinsic::experimental_vector_reduce_or: 8003 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8004 break; 8005 case Intrinsic::experimental_vector_reduce_xor: 8006 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8007 break; 8008 case Intrinsic::experimental_vector_reduce_smax: 8009 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8010 break; 8011 case Intrinsic::experimental_vector_reduce_smin: 8012 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8013 break; 8014 case Intrinsic::experimental_vector_reduce_umax: 8015 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8016 break; 8017 case Intrinsic::experimental_vector_reduce_umin: 8018 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8019 break; 8020 case Intrinsic::experimental_vector_reduce_fmax: 8021 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 8022 break; 8023 case Intrinsic::experimental_vector_reduce_fmin: 8024 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 8025 break; 8026 default: 8027 llvm_unreachable("Unhandled vector reduce intrinsic"); 8028 } 8029 setValue(&I, Res); 8030 } 8031 8032 /// Returns an AttributeList representing the attributes applied to the return 8033 /// value of the given call. 8034 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8035 SmallVector<Attribute::AttrKind, 2> Attrs; 8036 if (CLI.RetSExt) 8037 Attrs.push_back(Attribute::SExt); 8038 if (CLI.RetZExt) 8039 Attrs.push_back(Attribute::ZExt); 8040 if (CLI.IsInReg) 8041 Attrs.push_back(Attribute::InReg); 8042 8043 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8044 Attrs); 8045 } 8046 8047 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8048 /// implementation, which just calls LowerCall. 8049 /// FIXME: When all targets are 8050 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8051 std::pair<SDValue, SDValue> 8052 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8053 // Handle the incoming return values from the call. 8054 CLI.Ins.clear(); 8055 Type *OrigRetTy = CLI.RetTy; 8056 SmallVector<EVT, 4> RetTys; 8057 SmallVector<uint64_t, 4> Offsets; 8058 auto &DL = CLI.DAG.getDataLayout(); 8059 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8060 8061 if (CLI.IsPostTypeLegalization) { 8062 // If we are lowering a libcall after legalization, split the return type. 8063 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8064 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8065 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8066 EVT RetVT = OldRetTys[i]; 8067 uint64_t Offset = OldOffsets[i]; 8068 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8069 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8070 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8071 RetTys.append(NumRegs, RegisterVT); 8072 for (unsigned j = 0; j != NumRegs; ++j) 8073 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8074 } 8075 } 8076 8077 SmallVector<ISD::OutputArg, 4> Outs; 8078 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8079 8080 bool CanLowerReturn = 8081 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8082 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8083 8084 SDValue DemoteStackSlot; 8085 int DemoteStackIdx = -100; 8086 if (!CanLowerReturn) { 8087 // FIXME: equivalent assert? 8088 // assert(!CS.hasInAllocaArgument() && 8089 // "sret demotion is incompatible with inalloca"); 8090 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8091 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8092 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8093 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8094 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8095 8096 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8097 ArgListEntry Entry; 8098 Entry.Node = DemoteStackSlot; 8099 Entry.Ty = StackSlotPtrType; 8100 Entry.IsSExt = false; 8101 Entry.IsZExt = false; 8102 Entry.IsInReg = false; 8103 Entry.IsSRet = true; 8104 Entry.IsNest = false; 8105 Entry.IsByVal = false; 8106 Entry.IsReturned = false; 8107 Entry.IsSwiftSelf = false; 8108 Entry.IsSwiftError = false; 8109 Entry.Alignment = Align; 8110 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8111 CLI.NumFixedArgs += 1; 8112 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8113 8114 // sret demotion isn't compatible with tail-calls, since the sret argument 8115 // points into the callers stack frame. 8116 CLI.IsTailCall = false; 8117 } else { 8118 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8119 EVT VT = RetTys[I]; 8120 MVT RegisterVT = 8121 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8122 unsigned NumRegs = 8123 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8124 for (unsigned i = 0; i != NumRegs; ++i) { 8125 ISD::InputArg MyFlags; 8126 MyFlags.VT = RegisterVT; 8127 MyFlags.ArgVT = VT; 8128 MyFlags.Used = CLI.IsReturnValueUsed; 8129 if (CLI.RetSExt) 8130 MyFlags.Flags.setSExt(); 8131 if (CLI.RetZExt) 8132 MyFlags.Flags.setZExt(); 8133 if (CLI.IsInReg) 8134 MyFlags.Flags.setInReg(); 8135 CLI.Ins.push_back(MyFlags); 8136 } 8137 } 8138 } 8139 8140 // We push in swifterror return as the last element of CLI.Ins. 8141 ArgListTy &Args = CLI.getArgs(); 8142 if (supportSwiftError()) { 8143 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8144 if (Args[i].IsSwiftError) { 8145 ISD::InputArg MyFlags; 8146 MyFlags.VT = getPointerTy(DL); 8147 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8148 MyFlags.Flags.setSwiftError(); 8149 CLI.Ins.push_back(MyFlags); 8150 } 8151 } 8152 } 8153 8154 // Handle all of the outgoing arguments. 8155 CLI.Outs.clear(); 8156 CLI.OutVals.clear(); 8157 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8158 SmallVector<EVT, 4> ValueVTs; 8159 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8160 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8161 Type *FinalType = Args[i].Ty; 8162 if (Args[i].IsByVal) 8163 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8164 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8165 FinalType, CLI.CallConv, CLI.IsVarArg); 8166 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8167 ++Value) { 8168 EVT VT = ValueVTs[Value]; 8169 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8170 SDValue Op = SDValue(Args[i].Node.getNode(), 8171 Args[i].Node.getResNo() + Value); 8172 ISD::ArgFlagsTy Flags; 8173 8174 // Certain targets (such as MIPS), may have a different ABI alignment 8175 // for a type depending on the context. Give the target a chance to 8176 // specify the alignment it wants. 8177 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8178 8179 if (Args[i].IsZExt) 8180 Flags.setZExt(); 8181 if (Args[i].IsSExt) 8182 Flags.setSExt(); 8183 if (Args[i].IsInReg) { 8184 // If we are using vectorcall calling convention, a structure that is 8185 // passed InReg - is surely an HVA 8186 if (CLI.CallConv == CallingConv::X86_VectorCall && 8187 isa<StructType>(FinalType)) { 8188 // The first value of a structure is marked 8189 if (0 == Value) 8190 Flags.setHvaStart(); 8191 Flags.setHva(); 8192 } 8193 // Set InReg Flag 8194 Flags.setInReg(); 8195 } 8196 if (Args[i].IsSRet) 8197 Flags.setSRet(); 8198 if (Args[i].IsSwiftSelf) 8199 Flags.setSwiftSelf(); 8200 if (Args[i].IsSwiftError) 8201 Flags.setSwiftError(); 8202 if (Args[i].IsByVal) 8203 Flags.setByVal(); 8204 if (Args[i].IsInAlloca) { 8205 Flags.setInAlloca(); 8206 // Set the byval flag for CCAssignFn callbacks that don't know about 8207 // inalloca. This way we can know how many bytes we should've allocated 8208 // and how many bytes a callee cleanup function will pop. If we port 8209 // inalloca to more targets, we'll have to add custom inalloca handling 8210 // in the various CC lowering callbacks. 8211 Flags.setByVal(); 8212 } 8213 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8214 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8215 Type *ElementTy = Ty->getElementType(); 8216 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8217 // For ByVal, alignment should come from FE. BE will guess if this 8218 // info is not there but there are cases it cannot get right. 8219 unsigned FrameAlign; 8220 if (Args[i].Alignment) 8221 FrameAlign = Args[i].Alignment; 8222 else 8223 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8224 Flags.setByValAlign(FrameAlign); 8225 } 8226 if (Args[i].IsNest) 8227 Flags.setNest(); 8228 if (NeedsRegBlock) 8229 Flags.setInConsecutiveRegs(); 8230 Flags.setOrigAlign(OriginalAlignment); 8231 8232 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8233 unsigned NumParts = 8234 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8235 SmallVector<SDValue, 4> Parts(NumParts); 8236 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8237 8238 if (Args[i].IsSExt) 8239 ExtendKind = ISD::SIGN_EXTEND; 8240 else if (Args[i].IsZExt) 8241 ExtendKind = ISD::ZERO_EXTEND; 8242 8243 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8244 // for now. 8245 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8246 CanLowerReturn) { 8247 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8248 "unexpected use of 'returned'"); 8249 // Before passing 'returned' to the target lowering code, ensure that 8250 // either the register MVT and the actual EVT are the same size or that 8251 // the return value and argument are extended in the same way; in these 8252 // cases it's safe to pass the argument register value unchanged as the 8253 // return register value (although it's at the target's option whether 8254 // to do so) 8255 // TODO: allow code generation to take advantage of partially preserved 8256 // registers rather than clobbering the entire register when the 8257 // parameter extension method is not compatible with the return 8258 // extension method 8259 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8260 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8261 CLI.RetZExt == Args[i].IsZExt)) 8262 Flags.setReturned(); 8263 } 8264 8265 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8266 CLI.CS.getInstruction(), ExtendKind, true); 8267 8268 for (unsigned j = 0; j != NumParts; ++j) { 8269 // if it isn't first piece, alignment must be 1 8270 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8271 i < CLI.NumFixedArgs, 8272 i, j*Parts[j].getValueType().getStoreSize()); 8273 if (NumParts > 1 && j == 0) 8274 MyFlags.Flags.setSplit(); 8275 else if (j != 0) { 8276 MyFlags.Flags.setOrigAlign(1); 8277 if (j == NumParts - 1) 8278 MyFlags.Flags.setSplitEnd(); 8279 } 8280 8281 CLI.Outs.push_back(MyFlags); 8282 CLI.OutVals.push_back(Parts[j]); 8283 } 8284 8285 if (NeedsRegBlock && Value == NumValues - 1) 8286 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8287 } 8288 } 8289 8290 SmallVector<SDValue, 4> InVals; 8291 CLI.Chain = LowerCall(CLI, InVals); 8292 8293 // Update CLI.InVals to use outside of this function. 8294 CLI.InVals = InVals; 8295 8296 // Verify that the target's LowerCall behaved as expected. 8297 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8298 "LowerCall didn't return a valid chain!"); 8299 assert((!CLI.IsTailCall || InVals.empty()) && 8300 "LowerCall emitted a return value for a tail call!"); 8301 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8302 "LowerCall didn't emit the correct number of values!"); 8303 8304 // For a tail call, the return value is merely live-out and there aren't 8305 // any nodes in the DAG representing it. Return a special value to 8306 // indicate that a tail call has been emitted and no more Instructions 8307 // should be processed in the current block. 8308 if (CLI.IsTailCall) { 8309 CLI.DAG.setRoot(CLI.Chain); 8310 return std::make_pair(SDValue(), SDValue()); 8311 } 8312 8313 #ifndef NDEBUG 8314 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8315 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8316 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8317 "LowerCall emitted a value with the wrong type!"); 8318 } 8319 #endif 8320 8321 SmallVector<SDValue, 4> ReturnValues; 8322 if (!CanLowerReturn) { 8323 // The instruction result is the result of loading from the 8324 // hidden sret parameter. 8325 SmallVector<EVT, 1> PVTs; 8326 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8327 8328 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8329 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8330 EVT PtrVT = PVTs[0]; 8331 8332 unsigned NumValues = RetTys.size(); 8333 ReturnValues.resize(NumValues); 8334 SmallVector<SDValue, 4> Chains(NumValues); 8335 8336 // An aggregate return value cannot wrap around the address space, so 8337 // offsets to its parts don't wrap either. 8338 SDNodeFlags Flags; 8339 Flags.setNoUnsignedWrap(true); 8340 8341 for (unsigned i = 0; i < NumValues; ++i) { 8342 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8343 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8344 PtrVT), Flags); 8345 SDValue L = CLI.DAG.getLoad( 8346 RetTys[i], CLI.DL, CLI.Chain, Add, 8347 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8348 DemoteStackIdx, Offsets[i]), 8349 /* Alignment = */ 1); 8350 ReturnValues[i] = L; 8351 Chains[i] = L.getValue(1); 8352 } 8353 8354 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8355 } else { 8356 // Collect the legal value parts into potentially illegal values 8357 // that correspond to the original function's return values. 8358 Optional<ISD::NodeType> AssertOp; 8359 if (CLI.RetSExt) 8360 AssertOp = ISD::AssertSext; 8361 else if (CLI.RetZExt) 8362 AssertOp = ISD::AssertZext; 8363 unsigned CurReg = 0; 8364 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8365 EVT VT = RetTys[I]; 8366 MVT RegisterVT = 8367 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8368 unsigned NumRegs = 8369 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8370 8371 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8372 NumRegs, RegisterVT, VT, nullptr, 8373 AssertOp, true)); 8374 CurReg += NumRegs; 8375 } 8376 8377 // For a function returning void, there is no return value. We can't create 8378 // such a node, so we just return a null return value in that case. In 8379 // that case, nothing will actually look at the value. 8380 if (ReturnValues.empty()) 8381 return std::make_pair(SDValue(), CLI.Chain); 8382 } 8383 8384 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8385 CLI.DAG.getVTList(RetTys), ReturnValues); 8386 return std::make_pair(Res, CLI.Chain); 8387 } 8388 8389 void TargetLowering::LowerOperationWrapper(SDNode *N, 8390 SmallVectorImpl<SDValue> &Results, 8391 SelectionDAG &DAG) const { 8392 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8393 Results.push_back(Res); 8394 } 8395 8396 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8397 llvm_unreachable("LowerOperation not implemented for this target!"); 8398 } 8399 8400 void 8401 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8402 SDValue Op = getNonRegisterValue(V); 8403 assert((Op.getOpcode() != ISD::CopyFromReg || 8404 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8405 "Copy from a reg to the same reg!"); 8406 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8407 8408 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8409 // If this is an InlineAsm we have to match the registers required, not the 8410 // notional registers required by the type. 8411 8412 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8413 V->getType(), isABIRegCopy(V)); 8414 SDValue Chain = DAG.getEntryNode(); 8415 8416 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8417 FuncInfo.PreferredExtendType.end()) 8418 ? ISD::ANY_EXTEND 8419 : FuncInfo.PreferredExtendType[V]; 8420 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8421 PendingExports.push_back(Chain); 8422 } 8423 8424 #include "llvm/CodeGen/SelectionDAGISel.h" 8425 8426 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8427 /// entry block, return true. This includes arguments used by switches, since 8428 /// the switch may expand into multiple basic blocks. 8429 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8430 // With FastISel active, we may be splitting blocks, so force creation 8431 // of virtual registers for all non-dead arguments. 8432 if (FastISel) 8433 return A->use_empty(); 8434 8435 const BasicBlock &Entry = A->getParent()->front(); 8436 for (const User *U : A->users()) 8437 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8438 return false; // Use not in entry block. 8439 8440 return true; 8441 } 8442 8443 using ArgCopyElisionMapTy = 8444 DenseMap<const Argument *, 8445 std::pair<const AllocaInst *, const StoreInst *>>; 8446 8447 /// Scan the entry block of the function in FuncInfo for arguments that look 8448 /// like copies into a local alloca. Record any copied arguments in 8449 /// ArgCopyElisionCandidates. 8450 static void 8451 findArgumentCopyElisionCandidates(const DataLayout &DL, 8452 FunctionLoweringInfo *FuncInfo, 8453 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8454 // Record the state of every static alloca used in the entry block. Argument 8455 // allocas are all used in the entry block, so we need approximately as many 8456 // entries as we have arguments. 8457 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8458 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8459 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8460 StaticAllocas.reserve(NumArgs * 2); 8461 8462 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8463 if (!V) 8464 return nullptr; 8465 V = V->stripPointerCasts(); 8466 const auto *AI = dyn_cast<AllocaInst>(V); 8467 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8468 return nullptr; 8469 auto Iter = StaticAllocas.insert({AI, Unknown}); 8470 return &Iter.first->second; 8471 }; 8472 8473 // Look for stores of arguments to static allocas. Look through bitcasts and 8474 // GEPs to handle type coercions, as long as the alloca is fully initialized 8475 // by the store. Any non-store use of an alloca escapes it and any subsequent 8476 // unanalyzed store might write it. 8477 // FIXME: Handle structs initialized with multiple stores. 8478 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8479 // Look for stores, and handle non-store uses conservatively. 8480 const auto *SI = dyn_cast<StoreInst>(&I); 8481 if (!SI) { 8482 // We will look through cast uses, so ignore them completely. 8483 if (I.isCast()) 8484 continue; 8485 // Ignore debug info intrinsics, they don't escape or store to allocas. 8486 if (isa<DbgInfoIntrinsic>(I)) 8487 continue; 8488 // This is an unknown instruction. Assume it escapes or writes to all 8489 // static alloca operands. 8490 for (const Use &U : I.operands()) { 8491 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8492 *Info = StaticAllocaInfo::Clobbered; 8493 } 8494 continue; 8495 } 8496 8497 // If the stored value is a static alloca, mark it as escaped. 8498 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8499 *Info = StaticAllocaInfo::Clobbered; 8500 8501 // Check if the destination is a static alloca. 8502 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8503 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8504 if (!Info) 8505 continue; 8506 const AllocaInst *AI = cast<AllocaInst>(Dst); 8507 8508 // Skip allocas that have been initialized or clobbered. 8509 if (*Info != StaticAllocaInfo::Unknown) 8510 continue; 8511 8512 // Check if the stored value is an argument, and that this store fully 8513 // initializes the alloca. Don't elide copies from the same argument twice. 8514 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8515 const auto *Arg = dyn_cast<Argument>(Val); 8516 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8517 Arg->getType()->isEmptyTy() || 8518 DL.getTypeStoreSize(Arg->getType()) != 8519 DL.getTypeAllocSize(AI->getAllocatedType()) || 8520 ArgCopyElisionCandidates.count(Arg)) { 8521 *Info = StaticAllocaInfo::Clobbered; 8522 continue; 8523 } 8524 8525 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8526 8527 // Mark this alloca and store for argument copy elision. 8528 *Info = StaticAllocaInfo::Elidable; 8529 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8530 8531 // Stop scanning if we've seen all arguments. This will happen early in -O0 8532 // builds, which is useful, because -O0 builds have large entry blocks and 8533 // many allocas. 8534 if (ArgCopyElisionCandidates.size() == NumArgs) 8535 break; 8536 } 8537 } 8538 8539 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8540 /// ArgVal is a load from a suitable fixed stack object. 8541 static void tryToElideArgumentCopy( 8542 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8543 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8544 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8545 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8546 SDValue ArgVal, bool &ArgHasUses) { 8547 // Check if this is a load from a fixed stack object. 8548 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8549 if (!LNode) 8550 return; 8551 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8552 if (!FINode) 8553 return; 8554 8555 // Check that the fixed stack object is the right size and alignment. 8556 // Look at the alignment that the user wrote on the alloca instead of looking 8557 // at the stack object. 8558 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8559 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8560 const AllocaInst *AI = ArgCopyIter->second.first; 8561 int FixedIndex = FINode->getIndex(); 8562 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8563 int OldIndex = AllocaIndex; 8564 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8565 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8566 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8567 "object size\n"); 8568 return; 8569 } 8570 unsigned RequiredAlignment = AI->getAlignment(); 8571 if (!RequiredAlignment) { 8572 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8573 AI->getAllocatedType()); 8574 } 8575 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8576 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8577 "greater than stack argument alignment (" 8578 << RequiredAlignment << " vs " 8579 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8580 return; 8581 } 8582 8583 // Perform the elision. Delete the old stack object and replace its only use 8584 // in the variable info map. Mark the stack object as mutable. 8585 DEBUG({ 8586 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8587 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8588 << '\n'; 8589 }); 8590 MFI.RemoveStackObject(OldIndex); 8591 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8592 AllocaIndex = FixedIndex; 8593 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8594 Chains.push_back(ArgVal.getValue(1)); 8595 8596 // Avoid emitting code for the store implementing the copy. 8597 const StoreInst *SI = ArgCopyIter->second.second; 8598 ElidedArgCopyInstrs.insert(SI); 8599 8600 // Check for uses of the argument again so that we can avoid exporting ArgVal 8601 // if it is't used by anything other than the store. 8602 for (const Value *U : Arg.users()) { 8603 if (U != SI) { 8604 ArgHasUses = true; 8605 break; 8606 } 8607 } 8608 } 8609 8610 void SelectionDAGISel::LowerArguments(const Function &F) { 8611 SelectionDAG &DAG = SDB->DAG; 8612 SDLoc dl = SDB->getCurSDLoc(); 8613 const DataLayout &DL = DAG.getDataLayout(); 8614 SmallVector<ISD::InputArg, 16> Ins; 8615 8616 if (!FuncInfo->CanLowerReturn) { 8617 // Put in an sret pointer parameter before all the other parameters. 8618 SmallVector<EVT, 1> ValueVTs; 8619 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8620 F.getReturnType()->getPointerTo( 8621 DAG.getDataLayout().getAllocaAddrSpace()), 8622 ValueVTs); 8623 8624 // NOTE: Assuming that a pointer will never break down to more than one VT 8625 // or one register. 8626 ISD::ArgFlagsTy Flags; 8627 Flags.setSRet(); 8628 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8629 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8630 ISD::InputArg::NoArgIndex, 0); 8631 Ins.push_back(RetArg); 8632 } 8633 8634 // Look for stores of arguments to static allocas. Mark such arguments with a 8635 // flag to ask the target to give us the memory location of that argument if 8636 // available. 8637 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8638 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8639 8640 // Set up the incoming argument description vector. 8641 for (const Argument &Arg : F.args()) { 8642 unsigned ArgNo = Arg.getArgNo(); 8643 SmallVector<EVT, 4> ValueVTs; 8644 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8645 bool isArgValueUsed = !Arg.use_empty(); 8646 unsigned PartBase = 0; 8647 Type *FinalType = Arg.getType(); 8648 if (Arg.hasAttribute(Attribute::ByVal)) 8649 FinalType = cast<PointerType>(FinalType)->getElementType(); 8650 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8651 FinalType, F.getCallingConv(), F.isVarArg()); 8652 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8653 Value != NumValues; ++Value) { 8654 EVT VT = ValueVTs[Value]; 8655 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8656 ISD::ArgFlagsTy Flags; 8657 8658 // Certain targets (such as MIPS), may have a different ABI alignment 8659 // for a type depending on the context. Give the target a chance to 8660 // specify the alignment it wants. 8661 unsigned OriginalAlignment = 8662 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8663 8664 if (Arg.hasAttribute(Attribute::ZExt)) 8665 Flags.setZExt(); 8666 if (Arg.hasAttribute(Attribute::SExt)) 8667 Flags.setSExt(); 8668 if (Arg.hasAttribute(Attribute::InReg)) { 8669 // If we are using vectorcall calling convention, a structure that is 8670 // passed InReg - is surely an HVA 8671 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8672 isa<StructType>(Arg.getType())) { 8673 // The first value of a structure is marked 8674 if (0 == Value) 8675 Flags.setHvaStart(); 8676 Flags.setHva(); 8677 } 8678 // Set InReg Flag 8679 Flags.setInReg(); 8680 } 8681 if (Arg.hasAttribute(Attribute::StructRet)) 8682 Flags.setSRet(); 8683 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8684 Flags.setSwiftSelf(); 8685 if (Arg.hasAttribute(Attribute::SwiftError)) 8686 Flags.setSwiftError(); 8687 if (Arg.hasAttribute(Attribute::ByVal)) 8688 Flags.setByVal(); 8689 if (Arg.hasAttribute(Attribute::InAlloca)) { 8690 Flags.setInAlloca(); 8691 // Set the byval flag for CCAssignFn callbacks that don't know about 8692 // inalloca. This way we can know how many bytes we should've allocated 8693 // and how many bytes a callee cleanup function will pop. If we port 8694 // inalloca to more targets, we'll have to add custom inalloca handling 8695 // in the various CC lowering callbacks. 8696 Flags.setByVal(); 8697 } 8698 if (F.getCallingConv() == CallingConv::X86_INTR) { 8699 // IA Interrupt passes frame (1st parameter) by value in the stack. 8700 if (ArgNo == 0) 8701 Flags.setByVal(); 8702 } 8703 if (Flags.isByVal() || Flags.isInAlloca()) { 8704 PointerType *Ty = cast<PointerType>(Arg.getType()); 8705 Type *ElementTy = Ty->getElementType(); 8706 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8707 // For ByVal, alignment should be passed from FE. BE will guess if 8708 // this info is not there but there are cases it cannot get right. 8709 unsigned FrameAlign; 8710 if (Arg.getParamAlignment()) 8711 FrameAlign = Arg.getParamAlignment(); 8712 else 8713 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8714 Flags.setByValAlign(FrameAlign); 8715 } 8716 if (Arg.hasAttribute(Attribute::Nest)) 8717 Flags.setNest(); 8718 if (NeedsRegBlock) 8719 Flags.setInConsecutiveRegs(); 8720 Flags.setOrigAlign(OriginalAlignment); 8721 if (ArgCopyElisionCandidates.count(&Arg)) 8722 Flags.setCopyElisionCandidate(); 8723 8724 MVT RegisterVT = 8725 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8726 unsigned NumRegs = 8727 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8728 for (unsigned i = 0; i != NumRegs; ++i) { 8729 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8730 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8731 if (NumRegs > 1 && i == 0) 8732 MyFlags.Flags.setSplit(); 8733 // if it isn't first piece, alignment must be 1 8734 else if (i > 0) { 8735 MyFlags.Flags.setOrigAlign(1); 8736 if (i == NumRegs - 1) 8737 MyFlags.Flags.setSplitEnd(); 8738 } 8739 Ins.push_back(MyFlags); 8740 } 8741 if (NeedsRegBlock && Value == NumValues - 1) 8742 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8743 PartBase += VT.getStoreSize(); 8744 } 8745 } 8746 8747 // Call the target to set up the argument values. 8748 SmallVector<SDValue, 8> InVals; 8749 SDValue NewRoot = TLI->LowerFormalArguments( 8750 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8751 8752 // Verify that the target's LowerFormalArguments behaved as expected. 8753 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8754 "LowerFormalArguments didn't return a valid chain!"); 8755 assert(InVals.size() == Ins.size() && 8756 "LowerFormalArguments didn't emit the correct number of values!"); 8757 DEBUG({ 8758 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8759 assert(InVals[i].getNode() && 8760 "LowerFormalArguments emitted a null value!"); 8761 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8762 "LowerFormalArguments emitted a value with the wrong type!"); 8763 } 8764 }); 8765 8766 // Update the DAG with the new chain value resulting from argument lowering. 8767 DAG.setRoot(NewRoot); 8768 8769 // Set up the argument values. 8770 unsigned i = 0; 8771 if (!FuncInfo->CanLowerReturn) { 8772 // Create a virtual register for the sret pointer, and put in a copy 8773 // from the sret argument into it. 8774 SmallVector<EVT, 1> ValueVTs; 8775 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8776 F.getReturnType()->getPointerTo( 8777 DAG.getDataLayout().getAllocaAddrSpace()), 8778 ValueVTs); 8779 MVT VT = ValueVTs[0].getSimpleVT(); 8780 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8781 Optional<ISD::NodeType> AssertOp = None; 8782 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8783 RegVT, VT, nullptr, AssertOp); 8784 8785 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8786 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8787 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8788 FuncInfo->DemoteRegister = SRetReg; 8789 NewRoot = 8790 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8791 DAG.setRoot(NewRoot); 8792 8793 // i indexes lowered arguments. Bump it past the hidden sret argument. 8794 ++i; 8795 } 8796 8797 SmallVector<SDValue, 4> Chains; 8798 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8799 for (const Argument &Arg : F.args()) { 8800 SmallVector<SDValue, 4> ArgValues; 8801 SmallVector<EVT, 4> ValueVTs; 8802 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8803 unsigned NumValues = ValueVTs.size(); 8804 if (NumValues == 0) 8805 continue; 8806 8807 bool ArgHasUses = !Arg.use_empty(); 8808 8809 // Elide the copying store if the target loaded this argument from a 8810 // suitable fixed stack object. 8811 if (Ins[i].Flags.isCopyElisionCandidate()) { 8812 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8813 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8814 InVals[i], ArgHasUses); 8815 } 8816 8817 // If this argument is unused then remember its value. It is used to generate 8818 // debugging information. 8819 bool isSwiftErrorArg = 8820 TLI->supportSwiftError() && 8821 Arg.hasAttribute(Attribute::SwiftError); 8822 if (!ArgHasUses && !isSwiftErrorArg) { 8823 SDB->setUnusedArgValue(&Arg, InVals[i]); 8824 8825 // Also remember any frame index for use in FastISel. 8826 if (FrameIndexSDNode *FI = 8827 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8828 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8829 } 8830 8831 for (unsigned Val = 0; Val != NumValues; ++Val) { 8832 EVT VT = ValueVTs[Val]; 8833 MVT PartVT = 8834 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8835 unsigned NumParts = 8836 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8837 8838 // Even an apparant 'unused' swifterror argument needs to be returned. So 8839 // we do generate a copy for it that can be used on return from the 8840 // function. 8841 if (ArgHasUses || isSwiftErrorArg) { 8842 Optional<ISD::NodeType> AssertOp; 8843 if (Arg.hasAttribute(Attribute::SExt)) 8844 AssertOp = ISD::AssertSext; 8845 else if (Arg.hasAttribute(Attribute::ZExt)) 8846 AssertOp = ISD::AssertZext; 8847 8848 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8849 PartVT, VT, nullptr, AssertOp, 8850 true)); 8851 } 8852 8853 i += NumParts; 8854 } 8855 8856 // We don't need to do anything else for unused arguments. 8857 if (ArgValues.empty()) 8858 continue; 8859 8860 // Note down frame index. 8861 if (FrameIndexSDNode *FI = 8862 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8863 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8864 8865 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8866 SDB->getCurSDLoc()); 8867 8868 SDB->setValue(&Arg, Res); 8869 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8870 // We want to associate the argument with the frame index, among 8871 // involved operands, that correspond to the lowest address. The 8872 // getCopyFromParts function, called earlier, is swapping the order of 8873 // the operands to BUILD_PAIR depending on endianness. The result of 8874 // that swapping is that the least significant bits of the argument will 8875 // be in the first operand of the BUILD_PAIR node, and the most 8876 // significant bits will be in the second operand. 8877 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 8878 if (LoadSDNode *LNode = 8879 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 8880 if (FrameIndexSDNode *FI = 8881 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8882 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8883 } 8884 8885 // Update the SwiftErrorVRegDefMap. 8886 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8887 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8888 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8889 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8890 FuncInfo->SwiftErrorArg, Reg); 8891 } 8892 8893 // If this argument is live outside of the entry block, insert a copy from 8894 // wherever we got it to the vreg that other BB's will reference it as. 8895 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8896 // If we can, though, try to skip creating an unnecessary vreg. 8897 // FIXME: This isn't very clean... it would be nice to make this more 8898 // general. It's also subtly incompatible with the hacks FastISel 8899 // uses with vregs. 8900 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8901 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8902 FuncInfo->ValueMap[&Arg] = Reg; 8903 continue; 8904 } 8905 } 8906 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8907 FuncInfo->InitializeRegForValue(&Arg); 8908 SDB->CopyToExportRegsIfNeeded(&Arg); 8909 } 8910 } 8911 8912 if (!Chains.empty()) { 8913 Chains.push_back(NewRoot); 8914 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8915 } 8916 8917 DAG.setRoot(NewRoot); 8918 8919 assert(i == InVals.size() && "Argument register count mismatch!"); 8920 8921 // If any argument copy elisions occurred and we have debug info, update the 8922 // stale frame indices used in the dbg.declare variable info table. 8923 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8924 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8925 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8926 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8927 if (I != ArgCopyElisionFrameIndexMap.end()) 8928 VI.Slot = I->second; 8929 } 8930 } 8931 8932 // Finally, if the target has anything special to do, allow it to do so. 8933 EmitFunctionEntryCode(); 8934 } 8935 8936 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8937 /// ensure constants are generated when needed. Remember the virtual registers 8938 /// that need to be added to the Machine PHI nodes as input. We cannot just 8939 /// directly add them, because expansion might result in multiple MBB's for one 8940 /// BB. As such, the start of the BB might correspond to a different MBB than 8941 /// the end. 8942 void 8943 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8944 const TerminatorInst *TI = LLVMBB->getTerminator(); 8945 8946 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8947 8948 // Check PHI nodes in successors that expect a value to be available from this 8949 // block. 8950 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8951 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8952 if (!isa<PHINode>(SuccBB->begin())) continue; 8953 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8954 8955 // If this terminator has multiple identical successors (common for 8956 // switches), only handle each succ once. 8957 if (!SuccsHandled.insert(SuccMBB).second) 8958 continue; 8959 8960 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8961 8962 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8963 // nodes and Machine PHI nodes, but the incoming operands have not been 8964 // emitted yet. 8965 for (const PHINode &PN : SuccBB->phis()) { 8966 // Ignore dead phi's. 8967 if (PN.use_empty()) 8968 continue; 8969 8970 // Skip empty types 8971 if (PN.getType()->isEmptyTy()) 8972 continue; 8973 8974 unsigned Reg; 8975 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 8976 8977 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8978 unsigned &RegOut = ConstantsOut[C]; 8979 if (RegOut == 0) { 8980 RegOut = FuncInfo.CreateRegs(C->getType()); 8981 CopyValueToVirtualRegister(C, RegOut); 8982 } 8983 Reg = RegOut; 8984 } else { 8985 DenseMap<const Value *, unsigned>::iterator I = 8986 FuncInfo.ValueMap.find(PHIOp); 8987 if (I != FuncInfo.ValueMap.end()) 8988 Reg = I->second; 8989 else { 8990 assert(isa<AllocaInst>(PHIOp) && 8991 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8992 "Didn't codegen value into a register!??"); 8993 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8994 CopyValueToVirtualRegister(PHIOp, Reg); 8995 } 8996 } 8997 8998 // Remember that this register needs to added to the machine PHI node as 8999 // the input for this MBB. 9000 SmallVector<EVT, 4> ValueVTs; 9001 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9002 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9003 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9004 EVT VT = ValueVTs[vti]; 9005 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9006 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9007 FuncInfo.PHINodesToUpdate.push_back( 9008 std::make_pair(&*MBBI++, Reg + i)); 9009 Reg += NumRegisters; 9010 } 9011 } 9012 } 9013 9014 ConstantsOut.clear(); 9015 } 9016 9017 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9018 /// is 0. 9019 MachineBasicBlock * 9020 SelectionDAGBuilder::StackProtectorDescriptor:: 9021 AddSuccessorMBB(const BasicBlock *BB, 9022 MachineBasicBlock *ParentMBB, 9023 bool IsLikely, 9024 MachineBasicBlock *SuccMBB) { 9025 // If SuccBB has not been created yet, create it. 9026 if (!SuccMBB) { 9027 MachineFunction *MF = ParentMBB->getParent(); 9028 MachineFunction::iterator BBI(ParentMBB); 9029 SuccMBB = MF->CreateMachineBasicBlock(BB); 9030 MF->insert(++BBI, SuccMBB); 9031 } 9032 // Add it as a successor of ParentMBB. 9033 ParentMBB->addSuccessor( 9034 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9035 return SuccMBB; 9036 } 9037 9038 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9039 MachineFunction::iterator I(MBB); 9040 if (++I == FuncInfo.MF->end()) 9041 return nullptr; 9042 return &*I; 9043 } 9044 9045 /// During lowering new call nodes can be created (such as memset, etc.). 9046 /// Those will become new roots of the current DAG, but complications arise 9047 /// when they are tail calls. In such cases, the call lowering will update 9048 /// the root, but the builder still needs to know that a tail call has been 9049 /// lowered in order to avoid generating an additional return. 9050 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9051 // If the node is null, we do have a tail call. 9052 if (MaybeTC.getNode() != nullptr) 9053 DAG.setRoot(MaybeTC); 9054 else 9055 HasTailCall = true; 9056 } 9057 9058 uint64_t 9059 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9060 unsigned First, unsigned Last) const { 9061 assert(Last >= First); 9062 const APInt &LowCase = Clusters[First].Low->getValue(); 9063 const APInt &HighCase = Clusters[Last].High->getValue(); 9064 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9065 9066 // FIXME: A range of consecutive cases has 100% density, but only requires one 9067 // comparison to lower. We should discriminate against such consecutive ranges 9068 // in jump tables. 9069 9070 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9071 } 9072 9073 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9074 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9075 unsigned Last) const { 9076 assert(Last >= First); 9077 assert(TotalCases[Last] >= TotalCases[First]); 9078 uint64_t NumCases = 9079 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9080 return NumCases; 9081 } 9082 9083 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9084 unsigned First, unsigned Last, 9085 const SwitchInst *SI, 9086 MachineBasicBlock *DefaultMBB, 9087 CaseCluster &JTCluster) { 9088 assert(First <= Last); 9089 9090 auto Prob = BranchProbability::getZero(); 9091 unsigned NumCmps = 0; 9092 std::vector<MachineBasicBlock*> Table; 9093 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9094 9095 // Initialize probabilities in JTProbs. 9096 for (unsigned I = First; I <= Last; ++I) 9097 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9098 9099 for (unsigned I = First; I <= Last; ++I) { 9100 assert(Clusters[I].Kind == CC_Range); 9101 Prob += Clusters[I].Prob; 9102 const APInt &Low = Clusters[I].Low->getValue(); 9103 const APInt &High = Clusters[I].High->getValue(); 9104 NumCmps += (Low == High) ? 1 : 2; 9105 if (I != First) { 9106 // Fill the gap between this and the previous cluster. 9107 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9108 assert(PreviousHigh.slt(Low)); 9109 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9110 for (uint64_t J = 0; J < Gap; J++) 9111 Table.push_back(DefaultMBB); 9112 } 9113 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9114 for (uint64_t J = 0; J < ClusterSize; ++J) 9115 Table.push_back(Clusters[I].MBB); 9116 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9117 } 9118 9119 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9120 unsigned NumDests = JTProbs.size(); 9121 if (TLI.isSuitableForBitTests( 9122 NumDests, NumCmps, Clusters[First].Low->getValue(), 9123 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9124 // Clusters[First..Last] should be lowered as bit tests instead. 9125 return false; 9126 } 9127 9128 // Create the MBB that will load from and jump through the table. 9129 // Note: We create it here, but it's not inserted into the function yet. 9130 MachineFunction *CurMF = FuncInfo.MF; 9131 MachineBasicBlock *JumpTableMBB = 9132 CurMF->CreateMachineBasicBlock(SI->getParent()); 9133 9134 // Add successors. Note: use table order for determinism. 9135 SmallPtrSet<MachineBasicBlock *, 8> Done; 9136 for (MachineBasicBlock *Succ : Table) { 9137 if (Done.count(Succ)) 9138 continue; 9139 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9140 Done.insert(Succ); 9141 } 9142 JumpTableMBB->normalizeSuccProbs(); 9143 9144 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9145 ->createJumpTableIndex(Table); 9146 9147 // Set up the jump table info. 9148 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9149 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9150 Clusters[Last].High->getValue(), SI->getCondition(), 9151 nullptr, false); 9152 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9153 9154 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9155 JTCases.size() - 1, Prob); 9156 return true; 9157 } 9158 9159 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9160 const SwitchInst *SI, 9161 MachineBasicBlock *DefaultMBB) { 9162 #ifndef NDEBUG 9163 // Clusters must be non-empty, sorted, and only contain Range clusters. 9164 assert(!Clusters.empty()); 9165 for (CaseCluster &C : Clusters) 9166 assert(C.Kind == CC_Range); 9167 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9168 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9169 #endif 9170 9171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9172 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9173 return; 9174 9175 const int64_t N = Clusters.size(); 9176 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9177 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9178 9179 if (N < 2 || N < MinJumpTableEntries) 9180 return; 9181 9182 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9183 SmallVector<unsigned, 8> TotalCases(N); 9184 for (unsigned i = 0; i < N; ++i) { 9185 const APInt &Hi = Clusters[i].High->getValue(); 9186 const APInt &Lo = Clusters[i].Low->getValue(); 9187 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9188 if (i != 0) 9189 TotalCases[i] += TotalCases[i - 1]; 9190 } 9191 9192 // Cheap case: the whole range may be suitable for jump table. 9193 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9194 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9195 assert(NumCases < UINT64_MAX / 100); 9196 assert(Range >= NumCases); 9197 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9198 CaseCluster JTCluster; 9199 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9200 Clusters[0] = JTCluster; 9201 Clusters.resize(1); 9202 return; 9203 } 9204 } 9205 9206 // The algorithm below is not suitable for -O0. 9207 if (TM.getOptLevel() == CodeGenOpt::None) 9208 return; 9209 9210 // Split Clusters into minimum number of dense partitions. The algorithm uses 9211 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9212 // for the Case Statement'" (1994), but builds the MinPartitions array in 9213 // reverse order to make it easier to reconstruct the partitions in ascending 9214 // order. In the choice between two optimal partitionings, it picks the one 9215 // which yields more jump tables. 9216 9217 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9218 SmallVector<unsigned, 8> MinPartitions(N); 9219 // LastElement[i] is the last element of the partition starting at i. 9220 SmallVector<unsigned, 8> LastElement(N); 9221 // PartitionsScore[i] is used to break ties when choosing between two 9222 // partitionings resulting in the same number of partitions. 9223 SmallVector<unsigned, 8> PartitionsScore(N); 9224 // For PartitionsScore, a small number of comparisons is considered as good as 9225 // a jump table and a single comparison is considered better than a jump 9226 // table. 9227 enum PartitionScores : unsigned { 9228 NoTable = 0, 9229 Table = 1, 9230 FewCases = 1, 9231 SingleCase = 2 9232 }; 9233 9234 // Base case: There is only one way to partition Clusters[N-1]. 9235 MinPartitions[N - 1] = 1; 9236 LastElement[N - 1] = N - 1; 9237 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9238 9239 // Note: loop indexes are signed to avoid underflow. 9240 for (int64_t i = N - 2; i >= 0; i--) { 9241 // Find optimal partitioning of Clusters[i..N-1]. 9242 // Baseline: Put Clusters[i] into a partition on its own. 9243 MinPartitions[i] = MinPartitions[i + 1] + 1; 9244 LastElement[i] = i; 9245 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9246 9247 // Search for a solution that results in fewer partitions. 9248 for (int64_t j = N - 1; j > i; j--) { 9249 // Try building a partition from Clusters[i..j]. 9250 uint64_t Range = getJumpTableRange(Clusters, i, j); 9251 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9252 assert(NumCases < UINT64_MAX / 100); 9253 assert(Range >= NumCases); 9254 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9255 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9256 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9257 int64_t NumEntries = j - i + 1; 9258 9259 if (NumEntries == 1) 9260 Score += PartitionScores::SingleCase; 9261 else if (NumEntries <= SmallNumberOfEntries) 9262 Score += PartitionScores::FewCases; 9263 else if (NumEntries >= MinJumpTableEntries) 9264 Score += PartitionScores::Table; 9265 9266 // If this leads to fewer partitions, or to the same number of 9267 // partitions with better score, it is a better partitioning. 9268 if (NumPartitions < MinPartitions[i] || 9269 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9270 MinPartitions[i] = NumPartitions; 9271 LastElement[i] = j; 9272 PartitionsScore[i] = Score; 9273 } 9274 } 9275 } 9276 } 9277 9278 // Iterate over the partitions, replacing some with jump tables in-place. 9279 unsigned DstIndex = 0; 9280 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9281 Last = LastElement[First]; 9282 assert(Last >= First); 9283 assert(DstIndex <= First); 9284 unsigned NumClusters = Last - First + 1; 9285 9286 CaseCluster JTCluster; 9287 if (NumClusters >= MinJumpTableEntries && 9288 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9289 Clusters[DstIndex++] = JTCluster; 9290 } else { 9291 for (unsigned I = First; I <= Last; ++I) 9292 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9293 } 9294 } 9295 Clusters.resize(DstIndex); 9296 } 9297 9298 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9299 unsigned First, unsigned Last, 9300 const SwitchInst *SI, 9301 CaseCluster &BTCluster) { 9302 assert(First <= Last); 9303 if (First == Last) 9304 return false; 9305 9306 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9307 unsigned NumCmps = 0; 9308 for (int64_t I = First; I <= Last; ++I) { 9309 assert(Clusters[I].Kind == CC_Range); 9310 Dests.set(Clusters[I].MBB->getNumber()); 9311 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9312 } 9313 unsigned NumDests = Dests.count(); 9314 9315 APInt Low = Clusters[First].Low->getValue(); 9316 APInt High = Clusters[Last].High->getValue(); 9317 assert(Low.slt(High)); 9318 9319 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9320 const DataLayout &DL = DAG.getDataLayout(); 9321 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9322 return false; 9323 9324 APInt LowBound; 9325 APInt CmpRange; 9326 9327 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9328 assert(TLI.rangeFitsInWord(Low, High, DL) && 9329 "Case range must fit in bit mask!"); 9330 9331 // Check if the clusters cover a contiguous range such that no value in the 9332 // range will jump to the default statement. 9333 bool ContiguousRange = true; 9334 for (int64_t I = First + 1; I <= Last; ++I) { 9335 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9336 ContiguousRange = false; 9337 break; 9338 } 9339 } 9340 9341 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9342 // Optimize the case where all the case values fit in a word without having 9343 // to subtract minValue. In this case, we can optimize away the subtraction. 9344 LowBound = APInt::getNullValue(Low.getBitWidth()); 9345 CmpRange = High; 9346 ContiguousRange = false; 9347 } else { 9348 LowBound = Low; 9349 CmpRange = High - Low; 9350 } 9351 9352 CaseBitsVector CBV; 9353 auto TotalProb = BranchProbability::getZero(); 9354 for (unsigned i = First; i <= Last; ++i) { 9355 // Find the CaseBits for this destination. 9356 unsigned j; 9357 for (j = 0; j < CBV.size(); ++j) 9358 if (CBV[j].BB == Clusters[i].MBB) 9359 break; 9360 if (j == CBV.size()) 9361 CBV.push_back( 9362 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9363 CaseBits *CB = &CBV[j]; 9364 9365 // Update Mask, Bits and ExtraProb. 9366 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9367 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9368 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9369 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9370 CB->Bits += Hi - Lo + 1; 9371 CB->ExtraProb += Clusters[i].Prob; 9372 TotalProb += Clusters[i].Prob; 9373 } 9374 9375 BitTestInfo BTI; 9376 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9377 // Sort by probability first, number of bits second, bit mask third. 9378 if (a.ExtraProb != b.ExtraProb) 9379 return a.ExtraProb > b.ExtraProb; 9380 if (a.Bits != b.Bits) 9381 return a.Bits > b.Bits; 9382 return a.Mask < b.Mask; 9383 }); 9384 9385 for (auto &CB : CBV) { 9386 MachineBasicBlock *BitTestBB = 9387 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9388 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9389 } 9390 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9391 SI->getCondition(), -1U, MVT::Other, false, 9392 ContiguousRange, nullptr, nullptr, std::move(BTI), 9393 TotalProb); 9394 9395 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9396 BitTestCases.size() - 1, TotalProb); 9397 return true; 9398 } 9399 9400 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9401 const SwitchInst *SI) { 9402 // Partition Clusters into as few subsets as possible, where each subset has a 9403 // range that fits in a machine word and has <= 3 unique destinations. 9404 9405 #ifndef NDEBUG 9406 // Clusters must be sorted and contain Range or JumpTable clusters. 9407 assert(!Clusters.empty()); 9408 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9409 for (const CaseCluster &C : Clusters) 9410 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9411 for (unsigned i = 1; i < Clusters.size(); ++i) 9412 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9413 #endif 9414 9415 // The algorithm below is not suitable for -O0. 9416 if (TM.getOptLevel() == CodeGenOpt::None) 9417 return; 9418 9419 // If target does not have legal shift left, do not emit bit tests at all. 9420 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9421 const DataLayout &DL = DAG.getDataLayout(); 9422 9423 EVT PTy = TLI.getPointerTy(DL); 9424 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9425 return; 9426 9427 int BitWidth = PTy.getSizeInBits(); 9428 const int64_t N = Clusters.size(); 9429 9430 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9431 SmallVector<unsigned, 8> MinPartitions(N); 9432 // LastElement[i] is the last element of the partition starting at i. 9433 SmallVector<unsigned, 8> LastElement(N); 9434 9435 // FIXME: This might not be the best algorithm for finding bit test clusters. 9436 9437 // Base case: There is only one way to partition Clusters[N-1]. 9438 MinPartitions[N - 1] = 1; 9439 LastElement[N - 1] = N - 1; 9440 9441 // Note: loop indexes are signed to avoid underflow. 9442 for (int64_t i = N - 2; i >= 0; --i) { 9443 // Find optimal partitioning of Clusters[i..N-1]. 9444 // Baseline: Put Clusters[i] into a partition on its own. 9445 MinPartitions[i] = MinPartitions[i + 1] + 1; 9446 LastElement[i] = i; 9447 9448 // Search for a solution that results in fewer partitions. 9449 // Note: the search is limited by BitWidth, reducing time complexity. 9450 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9451 // Try building a partition from Clusters[i..j]. 9452 9453 // Check the range. 9454 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9455 Clusters[j].High->getValue(), DL)) 9456 continue; 9457 9458 // Check nbr of destinations and cluster types. 9459 // FIXME: This works, but doesn't seem very efficient. 9460 bool RangesOnly = true; 9461 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9462 for (int64_t k = i; k <= j; k++) { 9463 if (Clusters[k].Kind != CC_Range) { 9464 RangesOnly = false; 9465 break; 9466 } 9467 Dests.set(Clusters[k].MBB->getNumber()); 9468 } 9469 if (!RangesOnly || Dests.count() > 3) 9470 break; 9471 9472 // Check if it's a better partition. 9473 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9474 if (NumPartitions < MinPartitions[i]) { 9475 // Found a better partition. 9476 MinPartitions[i] = NumPartitions; 9477 LastElement[i] = j; 9478 } 9479 } 9480 } 9481 9482 // Iterate over the partitions, replacing with bit-test clusters in-place. 9483 unsigned DstIndex = 0; 9484 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9485 Last = LastElement[First]; 9486 assert(First <= Last); 9487 assert(DstIndex <= First); 9488 9489 CaseCluster BitTestCluster; 9490 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9491 Clusters[DstIndex++] = BitTestCluster; 9492 } else { 9493 size_t NumClusters = Last - First + 1; 9494 std::memmove(&Clusters[DstIndex], &Clusters[First], 9495 sizeof(Clusters[0]) * NumClusters); 9496 DstIndex += NumClusters; 9497 } 9498 } 9499 Clusters.resize(DstIndex); 9500 } 9501 9502 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9503 MachineBasicBlock *SwitchMBB, 9504 MachineBasicBlock *DefaultMBB) { 9505 MachineFunction *CurMF = FuncInfo.MF; 9506 MachineBasicBlock *NextMBB = nullptr; 9507 MachineFunction::iterator BBI(W.MBB); 9508 if (++BBI != FuncInfo.MF->end()) 9509 NextMBB = &*BBI; 9510 9511 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9512 9513 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9514 9515 if (Size == 2 && W.MBB == SwitchMBB) { 9516 // If any two of the cases has the same destination, and if one value 9517 // is the same as the other, but has one bit unset that the other has set, 9518 // use bit manipulation to do two compares at once. For example: 9519 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9520 // TODO: This could be extended to merge any 2 cases in switches with 3 9521 // cases. 9522 // TODO: Handle cases where W.CaseBB != SwitchBB. 9523 CaseCluster &Small = *W.FirstCluster; 9524 CaseCluster &Big = *W.LastCluster; 9525 9526 if (Small.Low == Small.High && Big.Low == Big.High && 9527 Small.MBB == Big.MBB) { 9528 const APInt &SmallValue = Small.Low->getValue(); 9529 const APInt &BigValue = Big.Low->getValue(); 9530 9531 // Check that there is only one bit different. 9532 APInt CommonBit = BigValue ^ SmallValue; 9533 if (CommonBit.isPowerOf2()) { 9534 SDValue CondLHS = getValue(Cond); 9535 EVT VT = CondLHS.getValueType(); 9536 SDLoc DL = getCurSDLoc(); 9537 9538 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9539 DAG.getConstant(CommonBit, DL, VT)); 9540 SDValue Cond = DAG.getSetCC( 9541 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9542 ISD::SETEQ); 9543 9544 // Update successor info. 9545 // Both Small and Big will jump to Small.BB, so we sum up the 9546 // probabilities. 9547 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9548 if (BPI) 9549 addSuccessorWithProb( 9550 SwitchMBB, DefaultMBB, 9551 // The default destination is the first successor in IR. 9552 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9553 else 9554 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9555 9556 // Insert the true branch. 9557 SDValue BrCond = 9558 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9559 DAG.getBasicBlock(Small.MBB)); 9560 // Insert the false branch. 9561 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9562 DAG.getBasicBlock(DefaultMBB)); 9563 9564 DAG.setRoot(BrCond); 9565 return; 9566 } 9567 } 9568 } 9569 9570 if (TM.getOptLevel() != CodeGenOpt::None) { 9571 // Here, we order cases by probability so the most likely case will be 9572 // checked first. However, two clusters can have the same probability in 9573 // which case their relative ordering is non-deterministic. So we use Low 9574 // as a tie-breaker as clusters are guaranteed to never overlap. 9575 std::sort(W.FirstCluster, W.LastCluster + 1, 9576 [](const CaseCluster &a, const CaseCluster &b) { 9577 return a.Prob != b.Prob ? 9578 a.Prob > b.Prob : 9579 a.Low->getValue().slt(b.Low->getValue()); 9580 }); 9581 9582 // Rearrange the case blocks so that the last one falls through if possible 9583 // without without changing the order of probabilities. 9584 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9585 --I; 9586 if (I->Prob > W.LastCluster->Prob) 9587 break; 9588 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9589 std::swap(*I, *W.LastCluster); 9590 break; 9591 } 9592 } 9593 } 9594 9595 // Compute total probability. 9596 BranchProbability DefaultProb = W.DefaultProb; 9597 BranchProbability UnhandledProbs = DefaultProb; 9598 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9599 UnhandledProbs += I->Prob; 9600 9601 MachineBasicBlock *CurMBB = W.MBB; 9602 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9603 MachineBasicBlock *Fallthrough; 9604 if (I == W.LastCluster) { 9605 // For the last cluster, fall through to the default destination. 9606 Fallthrough = DefaultMBB; 9607 } else { 9608 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9609 CurMF->insert(BBI, Fallthrough); 9610 // Put Cond in a virtual register to make it available from the new blocks. 9611 ExportFromCurrentBlock(Cond); 9612 } 9613 UnhandledProbs -= I->Prob; 9614 9615 switch (I->Kind) { 9616 case CC_JumpTable: { 9617 // FIXME: Optimize away range check based on pivot comparisons. 9618 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9619 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9620 9621 // The jump block hasn't been inserted yet; insert it here. 9622 MachineBasicBlock *JumpMBB = JT->MBB; 9623 CurMF->insert(BBI, JumpMBB); 9624 9625 auto JumpProb = I->Prob; 9626 auto FallthroughProb = UnhandledProbs; 9627 9628 // If the default statement is a target of the jump table, we evenly 9629 // distribute the default probability to successors of CurMBB. Also 9630 // update the probability on the edge from JumpMBB to Fallthrough. 9631 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9632 SE = JumpMBB->succ_end(); 9633 SI != SE; ++SI) { 9634 if (*SI == DefaultMBB) { 9635 JumpProb += DefaultProb / 2; 9636 FallthroughProb -= DefaultProb / 2; 9637 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9638 JumpMBB->normalizeSuccProbs(); 9639 break; 9640 } 9641 } 9642 9643 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9644 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9645 CurMBB->normalizeSuccProbs(); 9646 9647 // The jump table header will be inserted in our current block, do the 9648 // range check, and fall through to our fallthrough block. 9649 JTH->HeaderBB = CurMBB; 9650 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9651 9652 // If we're in the right place, emit the jump table header right now. 9653 if (CurMBB == SwitchMBB) { 9654 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9655 JTH->Emitted = true; 9656 } 9657 break; 9658 } 9659 case CC_BitTests: { 9660 // FIXME: Optimize away range check based on pivot comparisons. 9661 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9662 9663 // The bit test blocks haven't been inserted yet; insert them here. 9664 for (BitTestCase &BTC : BTB->Cases) 9665 CurMF->insert(BBI, BTC.ThisBB); 9666 9667 // Fill in fields of the BitTestBlock. 9668 BTB->Parent = CurMBB; 9669 BTB->Default = Fallthrough; 9670 9671 BTB->DefaultProb = UnhandledProbs; 9672 // If the cases in bit test don't form a contiguous range, we evenly 9673 // distribute the probability on the edge to Fallthrough to two 9674 // successors of CurMBB. 9675 if (!BTB->ContiguousRange) { 9676 BTB->Prob += DefaultProb / 2; 9677 BTB->DefaultProb -= DefaultProb / 2; 9678 } 9679 9680 // If we're in the right place, emit the bit test header right now. 9681 if (CurMBB == SwitchMBB) { 9682 visitBitTestHeader(*BTB, SwitchMBB); 9683 BTB->Emitted = true; 9684 } 9685 break; 9686 } 9687 case CC_Range: { 9688 const Value *RHS, *LHS, *MHS; 9689 ISD::CondCode CC; 9690 if (I->Low == I->High) { 9691 // Check Cond == I->Low. 9692 CC = ISD::SETEQ; 9693 LHS = Cond; 9694 RHS=I->Low; 9695 MHS = nullptr; 9696 } else { 9697 // Check I->Low <= Cond <= I->High. 9698 CC = ISD::SETLE; 9699 LHS = I->Low; 9700 MHS = Cond; 9701 RHS = I->High; 9702 } 9703 9704 // The false probability is the sum of all unhandled cases. 9705 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9706 getCurSDLoc(), I->Prob, UnhandledProbs); 9707 9708 if (CurMBB == SwitchMBB) 9709 visitSwitchCase(CB, SwitchMBB); 9710 else 9711 SwitchCases.push_back(CB); 9712 9713 break; 9714 } 9715 } 9716 CurMBB = Fallthrough; 9717 } 9718 } 9719 9720 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9721 CaseClusterIt First, 9722 CaseClusterIt Last) { 9723 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9724 if (X.Prob != CC.Prob) 9725 return X.Prob > CC.Prob; 9726 9727 // Ties are broken by comparing the case value. 9728 return X.Low->getValue().slt(CC.Low->getValue()); 9729 }); 9730 } 9731 9732 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9733 const SwitchWorkListItem &W, 9734 Value *Cond, 9735 MachineBasicBlock *SwitchMBB) { 9736 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9737 "Clusters not sorted?"); 9738 9739 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9740 9741 // Balance the tree based on branch probabilities to create a near-optimal (in 9742 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9743 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9744 CaseClusterIt LastLeft = W.FirstCluster; 9745 CaseClusterIt FirstRight = W.LastCluster; 9746 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9747 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9748 9749 // Move LastLeft and FirstRight towards each other from opposite directions to 9750 // find a partitioning of the clusters which balances the probability on both 9751 // sides. If LeftProb and RightProb are equal, alternate which side is 9752 // taken to ensure 0-probability nodes are distributed evenly. 9753 unsigned I = 0; 9754 while (LastLeft + 1 < FirstRight) { 9755 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9756 LeftProb += (++LastLeft)->Prob; 9757 else 9758 RightProb += (--FirstRight)->Prob; 9759 I++; 9760 } 9761 9762 while (true) { 9763 // Our binary search tree differs from a typical BST in that ours can have up 9764 // to three values in each leaf. The pivot selection above doesn't take that 9765 // into account, which means the tree might require more nodes and be less 9766 // efficient. We compensate for this here. 9767 9768 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9769 unsigned NumRight = W.LastCluster - FirstRight + 1; 9770 9771 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9772 // If one side has less than 3 clusters, and the other has more than 3, 9773 // consider taking a cluster from the other side. 9774 9775 if (NumLeft < NumRight) { 9776 // Consider moving the first cluster on the right to the left side. 9777 CaseCluster &CC = *FirstRight; 9778 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9779 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9780 if (LeftSideRank <= RightSideRank) { 9781 // Moving the cluster to the left does not demote it. 9782 ++LastLeft; 9783 ++FirstRight; 9784 continue; 9785 } 9786 } else { 9787 assert(NumRight < NumLeft); 9788 // Consider moving the last element on the left to the right side. 9789 CaseCluster &CC = *LastLeft; 9790 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9791 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9792 if (RightSideRank <= LeftSideRank) { 9793 // Moving the cluster to the right does not demot it. 9794 --LastLeft; 9795 --FirstRight; 9796 continue; 9797 } 9798 } 9799 } 9800 break; 9801 } 9802 9803 assert(LastLeft + 1 == FirstRight); 9804 assert(LastLeft >= W.FirstCluster); 9805 assert(FirstRight <= W.LastCluster); 9806 9807 // Use the first element on the right as pivot since we will make less-than 9808 // comparisons against it. 9809 CaseClusterIt PivotCluster = FirstRight; 9810 assert(PivotCluster > W.FirstCluster); 9811 assert(PivotCluster <= W.LastCluster); 9812 9813 CaseClusterIt FirstLeft = W.FirstCluster; 9814 CaseClusterIt LastRight = W.LastCluster; 9815 9816 const ConstantInt *Pivot = PivotCluster->Low; 9817 9818 // New blocks will be inserted immediately after the current one. 9819 MachineFunction::iterator BBI(W.MBB); 9820 ++BBI; 9821 9822 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9823 // we can branch to its destination directly if it's squeezed exactly in 9824 // between the known lower bound and Pivot - 1. 9825 MachineBasicBlock *LeftMBB; 9826 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9827 FirstLeft->Low == W.GE && 9828 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9829 LeftMBB = FirstLeft->MBB; 9830 } else { 9831 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9832 FuncInfo.MF->insert(BBI, LeftMBB); 9833 WorkList.push_back( 9834 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9835 // Put Cond in a virtual register to make it available from the new blocks. 9836 ExportFromCurrentBlock(Cond); 9837 } 9838 9839 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9840 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9841 // directly if RHS.High equals the current upper bound. 9842 MachineBasicBlock *RightMBB; 9843 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9844 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9845 RightMBB = FirstRight->MBB; 9846 } else { 9847 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9848 FuncInfo.MF->insert(BBI, RightMBB); 9849 WorkList.push_back( 9850 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9851 // Put Cond in a virtual register to make it available from the new blocks. 9852 ExportFromCurrentBlock(Cond); 9853 } 9854 9855 // Create the CaseBlock record that will be used to lower the branch. 9856 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9857 getCurSDLoc(), LeftProb, RightProb); 9858 9859 if (W.MBB == SwitchMBB) 9860 visitSwitchCase(CB, SwitchMBB); 9861 else 9862 SwitchCases.push_back(CB); 9863 } 9864 9865 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 9866 // from the swith statement. 9867 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 9868 BranchProbability PeeledCaseProb) { 9869 if (PeeledCaseProb == BranchProbability::getOne()) 9870 return BranchProbability::getZero(); 9871 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 9872 9873 uint32_t Numerator = CaseProb.getNumerator(); 9874 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 9875 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 9876 } 9877 9878 // Try to peel the top probability case if it exceeds the threshold. 9879 // Return current MachineBasicBlock for the switch statement if the peeling 9880 // does not occur. 9881 // If the peeling is performed, return the newly created MachineBasicBlock 9882 // for the peeled switch statement. Also update Clusters to remove the peeled 9883 // case. PeeledCaseProb is the BranchProbability for the peeled case. 9884 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 9885 const SwitchInst &SI, CaseClusterVector &Clusters, 9886 BranchProbability &PeeledCaseProb) { 9887 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9888 // Don't perform if there is only one cluster or optimizing for size. 9889 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 9890 TM.getOptLevel() == CodeGenOpt::None || 9891 SwitchMBB->getParent()->getFunction().optForMinSize()) 9892 return SwitchMBB; 9893 9894 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 9895 unsigned PeeledCaseIndex = 0; 9896 bool SwitchPeeled = false; 9897 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 9898 CaseCluster &CC = Clusters[Index]; 9899 if (CC.Prob < TopCaseProb) 9900 continue; 9901 TopCaseProb = CC.Prob; 9902 PeeledCaseIndex = Index; 9903 SwitchPeeled = true; 9904 } 9905 if (!SwitchPeeled) 9906 return SwitchMBB; 9907 9908 DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " << TopCaseProb 9909 << "\n"); 9910 9911 // Record the MBB for the peeled switch statement. 9912 MachineFunction::iterator BBI(SwitchMBB); 9913 ++BBI; 9914 MachineBasicBlock *PeeledSwitchMBB = 9915 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 9916 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 9917 9918 ExportFromCurrentBlock(SI.getCondition()); 9919 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 9920 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 9921 nullptr, nullptr, TopCaseProb.getCompl()}; 9922 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 9923 9924 Clusters.erase(PeeledCaseIt); 9925 for (CaseCluster &CC : Clusters) { 9926 DEBUG(dbgs() << "Scale the probablity for one cluster, before scaling: " 9927 << CC.Prob << "\n"); 9928 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 9929 DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 9930 } 9931 PeeledCaseProb = TopCaseProb; 9932 return PeeledSwitchMBB; 9933 } 9934 9935 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9936 // Extract cases from the switch. 9937 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9938 CaseClusterVector Clusters; 9939 Clusters.reserve(SI.getNumCases()); 9940 for (auto I : SI.cases()) { 9941 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9942 const ConstantInt *CaseVal = I.getCaseValue(); 9943 BranchProbability Prob = 9944 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9945 : BranchProbability(1, SI.getNumCases() + 1); 9946 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9947 } 9948 9949 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9950 9951 // Cluster adjacent cases with the same destination. We do this at all 9952 // optimization levels because it's cheap to do and will make codegen faster 9953 // if there are many clusters. 9954 sortAndRangeify(Clusters); 9955 9956 if (TM.getOptLevel() != CodeGenOpt::None) { 9957 // Replace an unreachable default with the most popular destination. 9958 // FIXME: Exploit unreachable default more aggressively. 9959 bool UnreachableDefault = 9960 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9961 if (UnreachableDefault && !Clusters.empty()) { 9962 DenseMap<const BasicBlock *, unsigned> Popularity; 9963 unsigned MaxPop = 0; 9964 const BasicBlock *MaxBB = nullptr; 9965 for (auto I : SI.cases()) { 9966 const BasicBlock *BB = I.getCaseSuccessor(); 9967 if (++Popularity[BB] > MaxPop) { 9968 MaxPop = Popularity[BB]; 9969 MaxBB = BB; 9970 } 9971 } 9972 // Set new default. 9973 assert(MaxPop > 0 && MaxBB); 9974 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9975 9976 // Remove cases that were pointing to the destination that is now the 9977 // default. 9978 CaseClusterVector New; 9979 New.reserve(Clusters.size()); 9980 for (CaseCluster &CC : Clusters) { 9981 if (CC.MBB != DefaultMBB) 9982 New.push_back(CC); 9983 } 9984 Clusters = std::move(New); 9985 } 9986 } 9987 9988 // The branch probablity of the peeled case. 9989 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 9990 MachineBasicBlock *PeeledSwitchMBB = 9991 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 9992 9993 // If there is only the default destination, jump there directly. 9994 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9995 if (Clusters.empty()) { 9996 assert(PeeledSwitchMBB == SwitchMBB); 9997 SwitchMBB->addSuccessor(DefaultMBB); 9998 if (DefaultMBB != NextBlock(SwitchMBB)) { 9999 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10000 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10001 } 10002 return; 10003 } 10004 10005 findJumpTables(Clusters, &SI, DefaultMBB); 10006 findBitTestClusters(Clusters, &SI); 10007 10008 DEBUG({ 10009 dbgs() << "Case clusters: "; 10010 for (const CaseCluster &C : Clusters) { 10011 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 10012 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 10013 10014 C.Low->getValue().print(dbgs(), true); 10015 if (C.Low != C.High) { 10016 dbgs() << '-'; 10017 C.High->getValue().print(dbgs(), true); 10018 } 10019 dbgs() << ' '; 10020 } 10021 dbgs() << '\n'; 10022 }); 10023 10024 assert(!Clusters.empty()); 10025 SwitchWorkList WorkList; 10026 CaseClusterIt First = Clusters.begin(); 10027 CaseClusterIt Last = Clusters.end() - 1; 10028 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10029 // Scale the branchprobability for DefaultMBB if the peel occurs and 10030 // DefaultMBB is not replaced. 10031 if (PeeledCaseProb != BranchProbability::getZero() && 10032 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10033 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10034 WorkList.push_back( 10035 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10036 10037 while (!WorkList.empty()) { 10038 SwitchWorkListItem W = WorkList.back(); 10039 WorkList.pop_back(); 10040 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10041 10042 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10043 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10044 // For optimized builds, lower large range as a balanced binary tree. 10045 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10046 continue; 10047 } 10048 10049 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10050 } 10051 } 10052