xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision b30d2aca5838c931f04c3de15d33fc15fb87df77)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfo.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetFrameLowering.h"
64 #include "llvm/Target/TargetInstrInfo.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetLowering.h"
67 #include "llvm/Target/TargetOptions.h"
68 #include "llvm/Target/TargetSubtargetInfo.h"
69 #include <algorithm>
70 #include <utility>
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "isel"
74 
75 /// LimitFloatPrecision - Generate low-precision inline sequences for
76 /// some float libcalls (6, 8 or 12 bits).
77 static unsigned LimitFloatPrecision;
78 
79 static cl::opt<unsigned, true>
80 LimitFPPrecision("limit-float-precision",
81                  cl::desc("Generate low-precision inline sequences "
82                           "for some float libcalls"),
83                  cl::location(LimitFloatPrecision),
84                  cl::init(0));
85 
86 static cl::opt<bool>
87 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
88                 cl::desc("Enable fast-math-flags for DAG nodes"));
89 
90 /// Minimum jump table density for normal functions.
91 static cl::opt<unsigned>
92 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
93                  cl::desc("Minimum density for building a jump table in "
94                           "a normal function"));
95 
96 /// Minimum jump table density for -Os or -Oz functions.
97 static cl::opt<unsigned>
98 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
99                         cl::desc("Minimum density for building a jump table in "
100                                  "an optsize function"));
101 
102 
103 // Limit the width of DAG chains. This is important in general to prevent
104 // DAG-based analysis from blowing up. For example, alias analysis and
105 // load clustering may not complete in reasonable time. It is difficult to
106 // recognize and avoid this situation within each individual analysis, and
107 // future analyses are likely to have the same behavior. Limiting DAG width is
108 // the safe approach and will be especially important with global DAGs.
109 //
110 // MaxParallelChains default is arbitrarily high to avoid affecting
111 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
112 // sequence over this should have been converted to llvm.memcpy by the
113 // frontend. It is easy to induce this behavior with .ll code such as:
114 // %buffer = alloca [4096 x i8]
115 // %data = load [4096 x i8]* %argPtr
116 // store [4096 x i8] %data, [4096 x i8]* %buffer
117 static const unsigned MaxParallelChains = 64;
118 
119 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
120                                       const SDValue *Parts, unsigned NumParts,
121                                       MVT PartVT, EVT ValueVT, const Value *V);
122 
123 /// getCopyFromParts - Create a value that contains the specified legal parts
124 /// combined into the value they represent.  If the parts combine to a type
125 /// larger than ValueVT then AssertOp can be used to specify whether the extra
126 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
127 /// (ISD::AssertSext).
128 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
129                                 const SDValue *Parts, unsigned NumParts,
130                                 MVT PartVT, EVT ValueVT, const Value *V,
131                                 Optional<ISD::NodeType> AssertOp = None) {
132   if (ValueVT.isVector())
133     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134                                   PartVT, ValueVT, V);
135 
136   assert(NumParts > 0 && "No parts to assemble!");
137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138   SDValue Val = Parts[0];
139 
140   if (NumParts > 1) {
141     // Assemble the value from multiple parts.
142     if (ValueVT.isInteger()) {
143       unsigned PartBits = PartVT.getSizeInBits();
144       unsigned ValueBits = ValueVT.getSizeInBits();
145 
146       // Assemble the power of 2 part.
147       unsigned RoundParts = NumParts & (NumParts - 1) ?
148         1 << Log2_32(NumParts) : NumParts;
149       unsigned RoundBits = PartBits * RoundParts;
150       EVT RoundVT = RoundBits == ValueBits ?
151         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152       SDValue Lo, Hi;
153 
154       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155 
156       if (RoundParts > 2) {
157         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158                               PartVT, HalfVT, V);
159         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160                               RoundParts / 2, PartVT, HalfVT, V);
161       } else {
162         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164       }
165 
166       if (DAG.getDataLayout().isBigEndian())
167         std::swap(Lo, Hi);
168 
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170 
171       if (RoundParts < NumParts) {
172         // Assemble the trailing non-power-of-2 part.
173         unsigned OddParts = NumParts - RoundParts;
174         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175         Hi = getCopyFromParts(DAG, DL,
176                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
177 
178         // Combine the round and odd parts.
179         Lo = Val;
180         if (DAG.getDataLayout().isBigEndian())
181           std::swap(Lo, Hi);
182         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184         Hi =
185             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
187                                         TLI.getPointerTy(DAG.getDataLayout())));
188         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190       }
191     } else if (PartVT.isFloatingPoint()) {
192       // FP split into multiple FP parts (for ppcf128)
193       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194              "Unexpected split");
195       SDValue Lo, Hi;
196       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199         std::swap(Lo, Hi);
200       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201     } else {
202       // FP split into integer parts (soft fp)
203       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204              !PartVT.isVector() && "Unexpected split");
205       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207     }
208   }
209 
210   // There is now one part, held in Val.  Correct it to match ValueVT.
211   // PartEVT is the type of the register class that holds the value.
212   // ValueVT is the type of the inline asm operation.
213   EVT PartEVT = Val.getValueType();
214 
215   if (PartEVT == ValueVT)
216     return Val;
217 
218   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219       ValueVT.bitsLT(PartEVT)) {
220     // For an FP value in an integer part, we need to truncate to the right
221     // width first.
222     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
223     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224   }
225 
226   // Handle types that have the same size.
227   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229 
230   // Handle types with different sizes.
231   if (PartEVT.isInteger() && ValueVT.isInteger()) {
232     if (ValueVT.bitsLT(PartEVT)) {
233       // For a truncate, see if we have any information to
234       // indicate whether the truncated bits will always be
235       // zero or sign-extension.
236       if (AssertOp.hasValue())
237         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
238                           DAG.getValueType(ValueVT));
239       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240     }
241     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242   }
243 
244   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245     // FP_ROUND's are always exact here.
246     if (ValueVT.bitsLT(Val.getValueType()))
247       return DAG.getNode(
248           ISD::FP_ROUND, DL, ValueVT, Val,
249           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250 
251     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252   }
253 
254   llvm_unreachable("Unknown mismatch!");
255 }
256 
257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258                                               const Twine &ErrMsg) {
259   const Instruction *I = dyn_cast_or_null<Instruction>(V);
260   if (!V)
261     return Ctx.emitError(ErrMsg);
262 
263   const char *AsmError = ", possible invalid constraint for vector type";
264   if (const CallInst *CI = dyn_cast<CallInst>(I))
265     if (isa<InlineAsm>(CI->getCalledValue()))
266       return Ctx.emitError(I, ErrMsg + AsmError);
267 
268   return Ctx.emitError(I, ErrMsg);
269 }
270 
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent.  If the parts combine to a
273 /// type larger than ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
277                                       const SDValue *Parts, unsigned NumParts,
278                                       MVT PartVT, EVT ValueVT, const Value *V) {
279   assert(ValueVT.isVector() && "Not a vector value");
280   assert(NumParts > 0 && "No parts to assemble!");
281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282   SDValue Val = Parts[0];
283 
284   // Handle a multi-element vector.
285   if (NumParts > 1) {
286     EVT IntermediateVT;
287     MVT RegisterVT;
288     unsigned NumIntermediates;
289     unsigned NumRegs =
290     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291                                NumIntermediates, RegisterVT);
292     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293     NumParts = NumRegs; // Silence a compiler warning.
294     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295     assert(RegisterVT.getSizeInBits() ==
296            Parts[0].getSimpleValueType().getSizeInBits() &&
297            "Part type sizes don't match!");
298 
299     // Assemble the parts into intermediate operands.
300     SmallVector<SDValue, 8> Ops(NumIntermediates);
301     if (NumIntermediates == NumParts) {
302       // If the register was not expanded, truncate or copy the value,
303       // as appropriate.
304       for (unsigned i = 0; i != NumParts; ++i)
305         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306                                   PartVT, IntermediateVT, V);
307     } else if (NumParts > 0) {
308       // If the intermediate type was expanded, build the intermediate
309       // operands from the parts.
310       assert(NumParts % NumIntermediates == 0 &&
311              "Must expand into a divisible number of parts!");
312       unsigned Factor = NumParts / NumIntermediates;
313       for (unsigned i = 0; i != NumIntermediates; ++i)
314         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315                                   PartVT, IntermediateVT, V);
316     }
317 
318     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319     // intermediate operands.
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, ValueVT, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   // Handle cases such as i8 -> <1 x i1>
362   if (ValueVT.getVectorNumElements() != 1) {
363     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364                                       "non-trivial scalar-to-vector conversion");
365     return DAG.getUNDEF(ValueVT);
366   }
367 
368   if (ValueVT.getVectorNumElements() == 1 &&
369       ValueVT.getVectorElementType() != PartEVT)
370     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371 
372   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374 
375 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
376                                  SDValue Val, SDValue *Parts, unsigned NumParts,
377                                  MVT PartVT, const Value *V);
378 
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts.  If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
382 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
383                            SDValue *Parts, unsigned NumParts, MVT PartVT,
384                            const Value *V,
385                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386   EVT ValueVT = Val.getValueType();
387 
388   // Handle the vector case separately.
389   if (ValueVT.isVector())
390     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391 
392   unsigned PartBits = PartVT.getSizeInBits();
393   unsigned OrigNumParts = NumParts;
394   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395          "Copying to an illegal type!");
396 
397   if (NumParts == 0)
398     return;
399 
400   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401   EVT PartEVT = PartVT;
402   if (PartEVT == ValueVT) {
403     assert(NumParts == 1 && "No-op copy with multiple parts!");
404     Parts[0] = Val;
405     return;
406   }
407 
408   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409     // If the parts cover more bits than the value has, promote the value.
410     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411       assert(NumParts == 1 && "Do not know what to promote to!");
412       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413     } else {
414       if (ValueVT.isFloatingPoint()) {
415         // FP values need to be bitcast, then extended if they are being put
416         // into a larger container.
417         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
418         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419       }
420       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421              ValueVT.isInteger() &&
422              "Unknown mismatch!");
423       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425       if (PartVT == MVT::x86mmx)
426         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427     }
428   } else if (PartBits == ValueVT.getSizeInBits()) {
429     // Different types of the same size.
430     assert(NumParts == 1 && PartEVT != ValueVT);
431     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433     // If the parts cover less bits than value has, truncate the value.
434     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435            ValueVT.isInteger() &&
436            "Unknown mismatch!");
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439     if (PartVT == MVT::x86mmx)
440       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441   }
442 
443   // The value may have changed - recompute ValueVT.
444   ValueVT = Val.getValueType();
445   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446          "Failed to tile the value with PartVT!");
447 
448   if (NumParts == 1) {
449     if (PartEVT != ValueVT) {
450       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451                                         "scalar-to-vector conversion failed");
452       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
453     }
454 
455     Parts[0] = Val;
456     return;
457   }
458 
459   // Expand the value into multiple parts.
460   if (NumParts & (NumParts - 1)) {
461     // The number of parts is not a power of 2.  Split off and copy the tail.
462     assert(PartVT.isInteger() && ValueVT.isInteger() &&
463            "Do not know what to expand to!");
464     unsigned RoundParts = 1 << Log2_32(NumParts);
465     unsigned RoundBits = RoundParts * PartBits;
466     unsigned OddParts = NumParts - RoundParts;
467     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
468                                  DAG.getIntPtrConstant(RoundBits, DL));
469     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
470 
471     if (DAG.getDataLayout().isBigEndian())
472       // The odd parts were reversed by getCopyToParts - unreverse them.
473       std::reverse(Parts + RoundParts, Parts + NumParts);
474 
475     NumParts = RoundParts;
476     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
477     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
478   }
479 
480   // The number of parts is a power of 2.  Repeatedly bisect the value using
481   // EXTRACT_ELEMENT.
482   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
483                          EVT::getIntegerVT(*DAG.getContext(),
484                                            ValueVT.getSizeInBits()),
485                          Val);
486 
487   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
488     for (unsigned i = 0; i < NumParts; i += StepSize) {
489       unsigned ThisBits = StepSize * PartBits / 2;
490       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
491       SDValue &Part0 = Parts[i];
492       SDValue &Part1 = Parts[i+StepSize/2];
493 
494       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
496       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
497                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
498 
499       if (ThisBits == PartBits && ThisVT != PartVT) {
500         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
501         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
502       }
503     }
504   }
505 
506   if (DAG.getDataLayout().isBigEndian())
507     std::reverse(Parts, Parts + OrigNumParts);
508 }
509 
510 
511 /// getCopyToPartsVector - Create a series of nodes that contain the specified
512 /// value split into legal parts.
513 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
514                                  SDValue Val, SDValue *Parts, unsigned NumParts,
515                                  MVT PartVT, const Value *V) {
516   EVT ValueVT = Val.getValueType();
517   assert(ValueVT.isVector() && "Not a vector");
518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
519 
520   if (NumParts == 1) {
521     EVT PartEVT = PartVT;
522     if (PartEVT == ValueVT) {
523       // Nothing to do.
524     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
525       // Bitconvert vector->vector case.
526       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527     } else if (PartVT.isVector() &&
528                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
529                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
530       EVT ElementVT = PartVT.getVectorElementType();
531       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
532       // undef elements.
533       SmallVector<SDValue, 16> Ops;
534       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
535         Ops.push_back(DAG.getNode(
536             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
537             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
538 
539       for (unsigned i = ValueVT.getVectorNumElements(),
540            e = PartVT.getVectorNumElements(); i != e; ++i)
541         Ops.push_back(DAG.getUNDEF(ElementVT));
542 
543       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
544 
545       // FIXME: Use CONCAT for 2x -> 4x.
546 
547       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
548       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
549     } else if (PartVT.isVector() &&
550                PartEVT.getVectorElementType().bitsGE(
551                  ValueVT.getVectorElementType()) &&
552                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
553 
554       // Promoted vector extract
555       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
556     } else{
557       // Vector -> scalar conversion.
558       assert(ValueVT.getVectorNumElements() == 1 &&
559              "Only trivial vector-to-scalar conversions should get here!");
560       Val = DAG.getNode(
561           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
562           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
563 
564       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Handle a multi-element vector.
572   EVT IntermediateVT;
573   MVT RegisterVT;
574   unsigned NumIntermediates;
575   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
576                                                 IntermediateVT,
577                                                 NumIntermediates, RegisterVT);
578   unsigned NumElements = ValueVT.getVectorNumElements();
579 
580   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
581   NumParts = NumRegs; // Silence a compiler warning.
582   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
583 
584   // Split the vector into intermediate operands.
585   SmallVector<SDValue, 8> Ops(NumIntermediates);
586   for (unsigned i = 0; i != NumIntermediates; ++i) {
587     if (IntermediateVT.isVector())
588       Ops[i] =
589           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
590                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
591                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
592     else
593       Ops[i] = DAG.getNode(
594           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
595           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
596   }
597 
598   // Split the intermediate operands into legal parts.
599   if (NumParts == NumIntermediates) {
600     // If the register was not expanded, promote or copy the value,
601     // as appropriate.
602     for (unsigned i = 0; i != NumParts; ++i)
603       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
604   } else if (NumParts > 0) {
605     // If the intermediate type was expanded, split each the value into
606     // legal parts.
607     assert(NumIntermediates != 0 && "division by zero");
608     assert(NumParts % NumIntermediates == 0 &&
609            "Must expand into a divisible number of parts!");
610     unsigned Factor = NumParts / NumIntermediates;
611     for (unsigned i = 0; i != NumIntermediates; ++i)
612       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
613   }
614 }
615 
616 RegsForValue::RegsForValue() {}
617 
618 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
619                            EVT valuevt)
620     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
621 
622 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
623                            const DataLayout &DL, unsigned Reg, Type *Ty) {
624   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
625 
626   for (EVT ValueVT : ValueVTs) {
627     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
628     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
629     for (unsigned i = 0; i != NumRegs; ++i)
630       Regs.push_back(Reg + i);
631     RegVTs.push_back(RegisterVT);
632     Reg += NumRegs;
633   }
634 }
635 
636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
637 /// this value and returns the result as a ValueVT value.  This uses
638 /// Chain/Flag as the input and updates them for the output Chain/Flag.
639 /// If the Flag pointer is NULL, no flag is used.
640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
641                                       FunctionLoweringInfo &FuncInfo,
642                                       const SDLoc &dl, SDValue &Chain,
643                                       SDValue *Flag, const Value *V) const {
644   // A Value with type {} or [0 x %t] needs no registers.
645   if (ValueVTs.empty())
646     return SDValue();
647 
648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649 
650   // Assemble the legal parts into the final values.
651   SmallVector<SDValue, 4> Values(ValueVTs.size());
652   SmallVector<SDValue, 8> Parts;
653   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
654     // Copy the legal parts from the registers.
655     EVT ValueVT = ValueVTs[Value];
656     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
657     MVT RegisterVT = RegVTs[Value];
658 
659     Parts.resize(NumRegs);
660     for (unsigned i = 0; i != NumRegs; ++i) {
661       SDValue P;
662       if (!Flag) {
663         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
664       } else {
665         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
666         *Flag = P.getValue(2);
667       }
668 
669       Chain = P.getValue(1);
670       Parts[i] = P;
671 
672       // If the source register was virtual and if we know something about it,
673       // add an assert node.
674       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
675           !RegisterVT.isInteger() || RegisterVT.isVector())
676         continue;
677 
678       const FunctionLoweringInfo::LiveOutInfo *LOI =
679         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
680       if (!LOI)
681         continue;
682 
683       unsigned RegSize = RegisterVT.getSizeInBits();
684       unsigned NumSignBits = LOI->NumSignBits;
685       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
686 
687       if (NumZeroBits == RegSize) {
688         // The current value is a zero.
689         // Explicitly express that as it would be easier for
690         // optimizations to kick in.
691         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
692         continue;
693       }
694 
695       // FIXME: We capture more information than the dag can represent.  For
696       // now, just use the tightest assertzext/assertsext possible.
697       bool isSExt = true;
698       EVT FromVT(MVT::Other);
699       if (NumSignBits == RegSize) {
700         isSExt = true;   // ASSERT SEXT 1
701         FromVT = MVT::i1;
702       } else if (NumZeroBits >= RegSize - 1) {
703         isSExt = false;  // ASSERT ZEXT 1
704         FromVT = MVT::i1;
705       } else if (NumSignBits > RegSize - 8) {
706         isSExt = true;   // ASSERT SEXT 8
707         FromVT = MVT::i8;
708       } else if (NumZeroBits >= RegSize - 8) {
709         isSExt = false;  // ASSERT ZEXT 8
710         FromVT = MVT::i8;
711       } else if (NumSignBits > RegSize - 16) {
712         isSExt = true;   // ASSERT SEXT 16
713         FromVT = MVT::i16;
714       } else if (NumZeroBits >= RegSize - 16) {
715         isSExt = false;  // ASSERT ZEXT 16
716         FromVT = MVT::i16;
717       } else if (NumSignBits > RegSize - 32) {
718         isSExt = true;   // ASSERT SEXT 32
719         FromVT = MVT::i32;
720       } else if (NumZeroBits >= RegSize - 32) {
721         isSExt = false;  // ASSERT ZEXT 32
722         FromVT = MVT::i32;
723       } else {
724         continue;
725       }
726       // Add an assertion node.
727       assert(FromVT != MVT::Other);
728       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
729                              RegisterVT, P, DAG.getValueType(FromVT));
730     }
731 
732     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
733                                      NumRegs, RegisterVT, ValueVT, V);
734     Part += NumRegs;
735     Parts.clear();
736   }
737 
738   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
739 }
740 
741 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
742 /// specified value into the registers specified by this object.  This uses
743 /// Chain/Flag as the input and updates them for the output Chain/Flag.
744 /// If the Flag pointer is NULL, no flag is used.
745 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
746                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
747                                  const Value *V,
748                                  ISD::NodeType PreferredExtendType) const {
749   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
750   ISD::NodeType ExtendKind = PreferredExtendType;
751 
752   // Get the list of the values's legal parts.
753   unsigned NumRegs = Regs.size();
754   SmallVector<SDValue, 8> Parts(NumRegs);
755   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
756     EVT ValueVT = ValueVTs[Value];
757     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
758     MVT RegisterVT = RegVTs[Value];
759 
760     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
761       ExtendKind = ISD::ZERO_EXTEND;
762 
763     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
764                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
765     Part += NumParts;
766   }
767 
768   // Copy the parts into the registers.
769   SmallVector<SDValue, 8> Chains(NumRegs);
770   for (unsigned i = 0; i != NumRegs; ++i) {
771     SDValue Part;
772     if (!Flag) {
773       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
774     } else {
775       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
776       *Flag = Part.getValue(1);
777     }
778 
779     Chains[i] = Part.getValue(0);
780   }
781 
782   if (NumRegs == 1 || Flag)
783     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
784     // flagged to it. That is the CopyToReg nodes and the user are considered
785     // a single scheduling unit. If we create a TokenFactor and return it as
786     // chain, then the TokenFactor is both a predecessor (operand) of the
787     // user as well as a successor (the TF operands are flagged to the user).
788     // c1, f1 = CopyToReg
789     // c2, f2 = CopyToReg
790     // c3     = TokenFactor c1, c2
791     // ...
792     //        = op c3, ..., f2
793     Chain = Chains[NumRegs-1];
794   else
795     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
796 }
797 
798 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
799 /// operand list.  This adds the code marker and includes the number of
800 /// values added into it.
801 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
802                                         unsigned MatchingIdx, const SDLoc &dl,
803                                         SelectionDAG &DAG,
804                                         std::vector<SDValue> &Ops) const {
805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806 
807   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
808   if (HasMatching)
809     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
810   else if (!Regs.empty() &&
811            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
812     // Put the register class of the virtual registers in the flag word.  That
813     // way, later passes can recompute register class constraints for inline
814     // assembly as well as normal instructions.
815     // Don't do this for tied operands that can use the regclass information
816     // from the def.
817     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
818     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
819     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
820   }
821 
822   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
823   Ops.push_back(Res);
824 
825   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
826   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
827     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
828     MVT RegisterVT = RegVTs[Value];
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       assert(Reg < Regs.size() && "Mismatch in # registers expected");
831       unsigned TheReg = Regs[Reg++];
832       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
833 
834       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
835         // If we clobbered the stack pointer, MFI should know about it.
836         assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment());
837       }
838     }
839   }
840 }
841 
842 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
843                                const TargetLibraryInfo *li) {
844   AA = &aa;
845   GFI = gfi;
846   LibInfo = li;
847   DL = &DAG.getDataLayout();
848   Context = DAG.getContext();
849   LPadToCallSiteMap.clear();
850 }
851 
852 /// clear - Clear out the current SelectionDAG and the associated
853 /// state and prepare this SelectionDAGBuilder object to be used
854 /// for a new block. This doesn't clear out information about
855 /// additional blocks that are needed to complete switch lowering
856 /// or PHI node updating; that information is cleared out as it is
857 /// consumed.
858 void SelectionDAGBuilder::clear() {
859   NodeMap.clear();
860   UnusedArgNodeMap.clear();
861   PendingLoads.clear();
862   PendingExports.clear();
863   CurInst = nullptr;
864   HasTailCall = false;
865   SDNodeOrder = LowestSDNodeOrder;
866   StatepointLowering.clear();
867 }
868 
869 /// clearDanglingDebugInfo - Clear the dangling debug information
870 /// map. This function is separated from the clear so that debug
871 /// information that is dangling in a basic block can be properly
872 /// resolved in a different basic block. This allows the
873 /// SelectionDAG to resolve dangling debug information attached
874 /// to PHI nodes.
875 void SelectionDAGBuilder::clearDanglingDebugInfo() {
876   DanglingDebugInfoMap.clear();
877 }
878 
879 /// getRoot - Return the current virtual root of the Selection DAG,
880 /// flushing any PendingLoad items. This must be done before emitting
881 /// a store or any other node that may need to be ordered after any
882 /// prior load instructions.
883 ///
884 SDValue SelectionDAGBuilder::getRoot() {
885   if (PendingLoads.empty())
886     return DAG.getRoot();
887 
888   if (PendingLoads.size() == 1) {
889     SDValue Root = PendingLoads[0];
890     DAG.setRoot(Root);
891     PendingLoads.clear();
892     return Root;
893   }
894 
895   // Otherwise, we have to make a token factor node.
896   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
897                              PendingLoads);
898   PendingLoads.clear();
899   DAG.setRoot(Root);
900   return Root;
901 }
902 
903 /// getControlRoot - Similar to getRoot, but instead of flushing all the
904 /// PendingLoad items, flush all the PendingExports items. It is necessary
905 /// to do this before emitting a terminator instruction.
906 ///
907 SDValue SelectionDAGBuilder::getControlRoot() {
908   SDValue Root = DAG.getRoot();
909 
910   if (PendingExports.empty())
911     return Root;
912 
913   // Turn all of the CopyToReg chains into one factored node.
914   if (Root.getOpcode() != ISD::EntryToken) {
915     unsigned i = 0, e = PendingExports.size();
916     for (; i != e; ++i) {
917       assert(PendingExports[i].getNode()->getNumOperands() > 1);
918       if (PendingExports[i].getNode()->getOperand(0) == Root)
919         break;  // Don't add the root if we already indirectly depend on it.
920     }
921 
922     if (i == e)
923       PendingExports.push_back(Root);
924   }
925 
926   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
927                      PendingExports);
928   PendingExports.clear();
929   DAG.setRoot(Root);
930   return Root;
931 }
932 
933 void SelectionDAGBuilder::visit(const Instruction &I) {
934   // Set up outgoing PHI node register values before emitting the terminator.
935   if (isa<TerminatorInst>(&I)) {
936     HandlePHINodesInSuccessorBlocks(I.getParent());
937   }
938 
939   ++SDNodeOrder;
940 
941   CurInst = &I;
942 
943   visit(I.getOpcode(), I);
944 
945   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
946       !isStatepoint(&I)) // statepoints handle their exports internally
947     CopyToExportRegsIfNeeded(&I);
948 
949   CurInst = nullptr;
950 }
951 
952 void SelectionDAGBuilder::visitPHI(const PHINode &) {
953   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
954 }
955 
956 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
957   // Note: this doesn't use InstVisitor, because it has to work with
958   // ConstantExpr's in addition to instructions.
959   switch (Opcode) {
960   default: llvm_unreachable("Unknown instruction type encountered!");
961     // Build the switch statement using the Instruction.def file.
962 #define HANDLE_INST(NUM, OPCODE, CLASS) \
963     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
964 #include "llvm/IR/Instruction.def"
965   }
966 }
967 
968 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
969 // generate the debug data structures now that we've seen its definition.
970 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
971                                                    SDValue Val) {
972   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
973   if (DDI.getDI()) {
974     const DbgValueInst *DI = DDI.getDI();
975     DebugLoc dl = DDI.getdl();
976     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
977     DILocalVariable *Variable = DI->getVariable();
978     DIExpression *Expr = DI->getExpression();
979     assert(Variable->isValidLocationForIntrinsic(dl) &&
980            "Expected inlined-at fields to agree");
981     uint64_t Offset = DI->getOffset();
982     SDDbgValue *SDV;
983     if (Val.getNode()) {
984       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
985                                     Val)) {
986         SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder);
987         DAG.AddDbgValue(SDV, Val.getNode(), false);
988       }
989     } else
990       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
991     DanglingDebugInfoMap[V] = DanglingDebugInfo();
992   }
993 }
994 
995 /// getCopyFromRegs - If there was virtual register allocated for the value V
996 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
997 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
998   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
999   SDValue Result;
1000 
1001   if (It != FuncInfo.ValueMap.end()) {
1002     unsigned InReg = It->second;
1003     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1004                      DAG.getDataLayout(), InReg, Ty);
1005     SDValue Chain = DAG.getEntryNode();
1006     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1007     resolveDanglingDebugInfo(V, Result);
1008   }
1009 
1010   return Result;
1011 }
1012 
1013 /// getValue - Return an SDValue for the given Value.
1014 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1015   // If we already have an SDValue for this value, use it. It's important
1016   // to do this first, so that we don't create a CopyFromReg if we already
1017   // have a regular SDValue.
1018   SDValue &N = NodeMap[V];
1019   if (N.getNode()) return N;
1020 
1021   // If there's a virtual register allocated and initialized for this
1022   // value, use it.
1023   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1024     return copyFromReg;
1025 
1026   // Otherwise create a new SDValue and remember it.
1027   SDValue Val = getValueImpl(V);
1028   NodeMap[V] = Val;
1029   resolveDanglingDebugInfo(V, Val);
1030   return Val;
1031 }
1032 
1033 // Return true if SDValue exists for the given Value
1034 bool SelectionDAGBuilder::findValue(const Value *V) const {
1035   return (NodeMap.find(V) != NodeMap.end()) ||
1036     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1037 }
1038 
1039 /// getNonRegisterValue - Return an SDValue for the given Value, but
1040 /// don't look in FuncInfo.ValueMap for a virtual register.
1041 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1042   // If we already have an SDValue for this value, use it.
1043   SDValue &N = NodeMap[V];
1044   if (N.getNode()) {
1045     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1046       // Remove the debug location from the node as the node is about to be used
1047       // in a location which may differ from the original debug location.  This
1048       // is relevant to Constant and ConstantFP nodes because they can appear
1049       // as constant expressions inside PHI nodes.
1050       N->setDebugLoc(DebugLoc());
1051     }
1052     return N;
1053   }
1054 
1055   // Otherwise create a new SDValue and remember it.
1056   SDValue Val = getValueImpl(V);
1057   NodeMap[V] = Val;
1058   resolveDanglingDebugInfo(V, Val);
1059   return Val;
1060 }
1061 
1062 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1063 /// Create an SDValue for the given value.
1064 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1066 
1067   if (const Constant *C = dyn_cast<Constant>(V)) {
1068     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1069 
1070     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1071       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1072 
1073     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1074       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1075 
1076     if (isa<ConstantPointerNull>(C)) {
1077       unsigned AS = V->getType()->getPointerAddressSpace();
1078       return DAG.getConstant(0, getCurSDLoc(),
1079                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1080     }
1081 
1082     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1083       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1084 
1085     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1086       return DAG.getUNDEF(VT);
1087 
1088     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1089       visit(CE->getOpcode(), *CE);
1090       SDValue N1 = NodeMap[V];
1091       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1092       return N1;
1093     }
1094 
1095     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1096       SmallVector<SDValue, 4> Constants;
1097       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1098            OI != OE; ++OI) {
1099         SDNode *Val = getValue(*OI).getNode();
1100         // If the operand is an empty aggregate, there are no values.
1101         if (!Val) continue;
1102         // Add each leaf value from the operand to the Constants list
1103         // to form a flattened list of all the values.
1104         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1105           Constants.push_back(SDValue(Val, i));
1106       }
1107 
1108       return DAG.getMergeValues(Constants, getCurSDLoc());
1109     }
1110 
1111     if (const ConstantDataSequential *CDS =
1112           dyn_cast<ConstantDataSequential>(C)) {
1113       SmallVector<SDValue, 4> Ops;
1114       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1115         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1116         // Add each leaf value from the operand to the Constants list
1117         // to form a flattened list of all the values.
1118         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1119           Ops.push_back(SDValue(Val, i));
1120       }
1121 
1122       if (isa<ArrayType>(CDS->getType()))
1123         return DAG.getMergeValues(Ops, getCurSDLoc());
1124       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1125                                       VT, Ops);
1126     }
1127 
1128     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1129       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1130              "Unknown struct or array constant!");
1131 
1132       SmallVector<EVT, 4> ValueVTs;
1133       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1134       unsigned NumElts = ValueVTs.size();
1135       if (NumElts == 0)
1136         return SDValue(); // empty struct
1137       SmallVector<SDValue, 4> Constants(NumElts);
1138       for (unsigned i = 0; i != NumElts; ++i) {
1139         EVT EltVT = ValueVTs[i];
1140         if (isa<UndefValue>(C))
1141           Constants[i] = DAG.getUNDEF(EltVT);
1142         else if (EltVT.isFloatingPoint())
1143           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1144         else
1145           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1146       }
1147 
1148       return DAG.getMergeValues(Constants, getCurSDLoc());
1149     }
1150 
1151     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1152       return DAG.getBlockAddress(BA, VT);
1153 
1154     VectorType *VecTy = cast<VectorType>(V->getType());
1155     unsigned NumElements = VecTy->getNumElements();
1156 
1157     // Now that we know the number and type of the elements, get that number of
1158     // elements into the Ops array based on what kind of constant it is.
1159     SmallVector<SDValue, 16> Ops;
1160     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1161       for (unsigned i = 0; i != NumElements; ++i)
1162         Ops.push_back(getValue(CV->getOperand(i)));
1163     } else {
1164       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1165       EVT EltVT =
1166           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1167 
1168       SDValue Op;
1169       if (EltVT.isFloatingPoint())
1170         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1171       else
1172         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1173       Ops.assign(NumElements, Op);
1174     }
1175 
1176     // Create a BUILD_VECTOR node.
1177     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1178   }
1179 
1180   // If this is a static alloca, generate it as the frameindex instead of
1181   // computation.
1182   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1183     DenseMap<const AllocaInst*, int>::iterator SI =
1184       FuncInfo.StaticAllocaMap.find(AI);
1185     if (SI != FuncInfo.StaticAllocaMap.end())
1186       return DAG.getFrameIndex(SI->second,
1187                                TLI.getPointerTy(DAG.getDataLayout()));
1188   }
1189 
1190   // If this is an instruction which fast-isel has deferred, select it now.
1191   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1192     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1193     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1194                      Inst->getType());
1195     SDValue Chain = DAG.getEntryNode();
1196     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1197   }
1198 
1199   llvm_unreachable("Can't get register for value!");
1200 }
1201 
1202 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1203   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1204   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1205   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1206   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1207   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1208   if (IsMSVCCXX || IsCoreCLR)
1209     CatchPadMBB->setIsEHFuncletEntry();
1210 
1211   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1212 }
1213 
1214 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1215   // Update machine-CFG edge.
1216   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1217   FuncInfo.MBB->addSuccessor(TargetMBB);
1218 
1219   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1220   bool IsSEH = isAsynchronousEHPersonality(Pers);
1221   if (IsSEH) {
1222     // If this is not a fall-through branch or optimizations are switched off,
1223     // emit the branch.
1224     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1225         TM.getOptLevel() == CodeGenOpt::None)
1226       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1227                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1228     return;
1229   }
1230 
1231   // Figure out the funclet membership for the catchret's successor.
1232   // This will be used by the FuncletLayout pass to determine how to order the
1233   // BB's.
1234   // A 'catchret' returns to the outer scope's color.
1235   Value *ParentPad = I.getCatchSwitchParentPad();
1236   const BasicBlock *SuccessorColor;
1237   if (isa<ConstantTokenNone>(ParentPad))
1238     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1239   else
1240     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1241   assert(SuccessorColor && "No parent funclet for catchret!");
1242   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1243   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1244 
1245   // Create the terminator node.
1246   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1247                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1248                             DAG.getBasicBlock(SuccessorColorMBB));
1249   DAG.setRoot(Ret);
1250 }
1251 
1252 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1253   // Don't emit any special code for the cleanuppad instruction. It just marks
1254   // the start of a funclet.
1255   FuncInfo.MBB->setIsEHFuncletEntry();
1256   FuncInfo.MBB->setIsCleanupFuncletEntry();
1257 }
1258 
1259 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1260 /// many places it could ultimately go. In the IR, we have a single unwind
1261 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1262 /// This function skips over imaginary basic blocks that hold catchswitch
1263 /// instructions, and finds all the "real" machine
1264 /// basic block destinations. As those destinations may not be successors of
1265 /// EHPadBB, here we also calculate the edge probability to those destinations.
1266 /// The passed-in Prob is the edge probability to EHPadBB.
1267 static void findUnwindDestinations(
1268     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1269     BranchProbability Prob,
1270     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1271         &UnwindDests) {
1272   EHPersonality Personality =
1273     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1274   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1275   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1276 
1277   while (EHPadBB) {
1278     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1279     BasicBlock *NewEHPadBB = nullptr;
1280     if (isa<LandingPadInst>(Pad)) {
1281       // Stop on landingpads. They are not funclets.
1282       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1283       break;
1284     } else if (isa<CleanupPadInst>(Pad)) {
1285       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1286       // personalities.
1287       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1288       UnwindDests.back().first->setIsEHFuncletEntry();
1289       break;
1290     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1291       // Add the catchpad handlers to the possible destinations.
1292       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1293         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1294         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1295         if (IsMSVCCXX || IsCoreCLR)
1296           UnwindDests.back().first->setIsEHFuncletEntry();
1297       }
1298       NewEHPadBB = CatchSwitch->getUnwindDest();
1299     } else {
1300       continue;
1301     }
1302 
1303     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1304     if (BPI && NewEHPadBB)
1305       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1306     EHPadBB = NewEHPadBB;
1307   }
1308 }
1309 
1310 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1311   // Update successor info.
1312   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1313   auto UnwindDest = I.getUnwindDest();
1314   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1315   BranchProbability UnwindDestProb =
1316       (BPI && UnwindDest)
1317           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1318           : BranchProbability::getZero();
1319   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1320   for (auto &UnwindDest : UnwindDests) {
1321     UnwindDest.first->setIsEHPad();
1322     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1323   }
1324   FuncInfo.MBB->normalizeSuccProbs();
1325 
1326   // Create the terminator node.
1327   SDValue Ret =
1328       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1329   DAG.setRoot(Ret);
1330 }
1331 
1332 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1333   report_fatal_error("visitCatchSwitch not yet implemented!");
1334 }
1335 
1336 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1337   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1338   auto &DL = DAG.getDataLayout();
1339   SDValue Chain = getControlRoot();
1340   SmallVector<ISD::OutputArg, 8> Outs;
1341   SmallVector<SDValue, 8> OutVals;
1342 
1343   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1344   // lower
1345   //
1346   //   %val = call <ty> @llvm.experimental.deoptimize()
1347   //   ret <ty> %val
1348   //
1349   // differently.
1350   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1351     LowerDeoptimizingReturn();
1352     return;
1353   }
1354 
1355   if (!FuncInfo.CanLowerReturn) {
1356     unsigned DemoteReg = FuncInfo.DemoteRegister;
1357     const Function *F = I.getParent()->getParent();
1358 
1359     // Emit a store of the return value through the virtual register.
1360     // Leave Outs empty so that LowerReturn won't try to load return
1361     // registers the usual way.
1362     SmallVector<EVT, 1> PtrValueVTs;
1363     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1364                     PtrValueVTs);
1365 
1366     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1367                                         DemoteReg, PtrValueVTs[0]);
1368     SDValue RetOp = getValue(I.getOperand(0));
1369 
1370     SmallVector<EVT, 4> ValueVTs;
1371     SmallVector<uint64_t, 4> Offsets;
1372     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1373     unsigned NumValues = ValueVTs.size();
1374 
1375     // An aggregate return value cannot wrap around the address space, so
1376     // offsets to its parts don't wrap either.
1377     SDNodeFlags Flags;
1378     Flags.setNoUnsignedWrap(true);
1379 
1380     SmallVector<SDValue, 4> Chains(NumValues);
1381     for (unsigned i = 0; i != NumValues; ++i) {
1382       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1383                                 RetPtr.getValueType(), RetPtr,
1384                                 DAG.getIntPtrConstant(Offsets[i],
1385                                                       getCurSDLoc()),
1386                                 &Flags);
1387       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1388                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1389                                // FIXME: better loc info would be nice.
1390                                Add, MachinePointerInfo());
1391     }
1392 
1393     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1394                         MVT::Other, Chains);
1395   } else if (I.getNumOperands() != 0) {
1396     SmallVector<EVT, 4> ValueVTs;
1397     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1398     unsigned NumValues = ValueVTs.size();
1399     if (NumValues) {
1400       SDValue RetOp = getValue(I.getOperand(0));
1401 
1402       const Function *F = I.getParent()->getParent();
1403 
1404       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1405       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1406                                           Attribute::SExt))
1407         ExtendKind = ISD::SIGN_EXTEND;
1408       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1409                                                Attribute::ZExt))
1410         ExtendKind = ISD::ZERO_EXTEND;
1411 
1412       LLVMContext &Context = F->getContext();
1413       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1414                                                       Attribute::InReg);
1415 
1416       for (unsigned j = 0; j != NumValues; ++j) {
1417         EVT VT = ValueVTs[j];
1418 
1419         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1420           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1421 
1422         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1423         MVT PartVT = TLI.getRegisterType(Context, VT);
1424         SmallVector<SDValue, 4> Parts(NumParts);
1425         getCopyToParts(DAG, getCurSDLoc(),
1426                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1427                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1428 
1429         // 'inreg' on function refers to return value
1430         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1431         if (RetInReg)
1432           Flags.setInReg();
1433 
1434         // Propagate extension type if any
1435         if (ExtendKind == ISD::SIGN_EXTEND)
1436           Flags.setSExt();
1437         else if (ExtendKind == ISD::ZERO_EXTEND)
1438           Flags.setZExt();
1439 
1440         for (unsigned i = 0; i < NumParts; ++i) {
1441           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1442                                         VT, /*isfixed=*/true, 0, 0));
1443           OutVals.push_back(Parts[i]);
1444         }
1445       }
1446     }
1447   }
1448 
1449   // Push in swifterror virtual register as the last element of Outs. This makes
1450   // sure swifterror virtual register will be returned in the swifterror
1451   // physical register.
1452   const Function *F = I.getParent()->getParent();
1453   if (TLI.supportSwiftError() &&
1454       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1455     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1456     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1457     Flags.setSwiftError();
1458     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1459                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1460                                   true /*isfixed*/, 1 /*origidx*/,
1461                                   0 /*partOffs*/));
1462     // Create SDNode for the swifterror virtual register.
1463     OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(
1464                                           FuncInfo.MBB, FuncInfo.SwiftErrorArg),
1465                                       EVT(TLI.getPointerTy(DL))));
1466   }
1467 
1468   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1469   CallingConv::ID CallConv =
1470     DAG.getMachineFunction().getFunction()->getCallingConv();
1471   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1472       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1473 
1474   // Verify that the target's LowerReturn behaved as expected.
1475   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1476          "LowerReturn didn't return a valid chain!");
1477 
1478   // Update the DAG with the new chain value resulting from return lowering.
1479   DAG.setRoot(Chain);
1480 }
1481 
1482 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1483 /// created for it, emit nodes to copy the value into the virtual
1484 /// registers.
1485 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1486   // Skip empty types
1487   if (V->getType()->isEmptyTy())
1488     return;
1489 
1490   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1491   if (VMI != FuncInfo.ValueMap.end()) {
1492     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1493     CopyValueToVirtualRegister(V, VMI->second);
1494   }
1495 }
1496 
1497 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1498 /// the current basic block, add it to ValueMap now so that we'll get a
1499 /// CopyTo/FromReg.
1500 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1501   // No need to export constants.
1502   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1503 
1504   // Already exported?
1505   if (FuncInfo.isExportedInst(V)) return;
1506 
1507   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1508   CopyValueToVirtualRegister(V, Reg);
1509 }
1510 
1511 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1512                                                      const BasicBlock *FromBB) {
1513   // The operands of the setcc have to be in this block.  We don't know
1514   // how to export them from some other block.
1515   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1516     // Can export from current BB.
1517     if (VI->getParent() == FromBB)
1518       return true;
1519 
1520     // Is already exported, noop.
1521     return FuncInfo.isExportedInst(V);
1522   }
1523 
1524   // If this is an argument, we can export it if the BB is the entry block or
1525   // if it is already exported.
1526   if (isa<Argument>(V)) {
1527     if (FromBB == &FromBB->getParent()->getEntryBlock())
1528       return true;
1529 
1530     // Otherwise, can only export this if it is already exported.
1531     return FuncInfo.isExportedInst(V);
1532   }
1533 
1534   // Otherwise, constants can always be exported.
1535   return true;
1536 }
1537 
1538 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1539 BranchProbability
1540 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1541                                         const MachineBasicBlock *Dst) const {
1542   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1543   const BasicBlock *SrcBB = Src->getBasicBlock();
1544   const BasicBlock *DstBB = Dst->getBasicBlock();
1545   if (!BPI) {
1546     // If BPI is not available, set the default probability as 1 / N, where N is
1547     // the number of successors.
1548     auto SuccSize = std::max<uint32_t>(
1549         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1550     return BranchProbability(1, SuccSize);
1551   }
1552   return BPI->getEdgeProbability(SrcBB, DstBB);
1553 }
1554 
1555 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1556                                                MachineBasicBlock *Dst,
1557                                                BranchProbability Prob) {
1558   if (!FuncInfo.BPI)
1559     Src->addSuccessorWithoutProb(Dst);
1560   else {
1561     if (Prob.isUnknown())
1562       Prob = getEdgeProbability(Src, Dst);
1563     Src->addSuccessor(Dst, Prob);
1564   }
1565 }
1566 
1567 static bool InBlock(const Value *V, const BasicBlock *BB) {
1568   if (const Instruction *I = dyn_cast<Instruction>(V))
1569     return I->getParent() == BB;
1570   return true;
1571 }
1572 
1573 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1574 /// This function emits a branch and is used at the leaves of an OR or an
1575 /// AND operator tree.
1576 ///
1577 void
1578 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1579                                                   MachineBasicBlock *TBB,
1580                                                   MachineBasicBlock *FBB,
1581                                                   MachineBasicBlock *CurBB,
1582                                                   MachineBasicBlock *SwitchBB,
1583                                                   BranchProbability TProb,
1584                                                   BranchProbability FProb) {
1585   const BasicBlock *BB = CurBB->getBasicBlock();
1586 
1587   // If the leaf of the tree is a comparison, merge the condition into
1588   // the caseblock.
1589   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1590     // The operands of the cmp have to be in this block.  We don't know
1591     // how to export them from some other block.  If this is the first block
1592     // of the sequence, no exporting is needed.
1593     if (CurBB == SwitchBB ||
1594         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1595          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1596       ISD::CondCode Condition;
1597       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1598         Condition = getICmpCondCode(IC->getPredicate());
1599       } else {
1600         const FCmpInst *FC = cast<FCmpInst>(Cond);
1601         Condition = getFCmpCondCode(FC->getPredicate());
1602         if (TM.Options.NoNaNsFPMath)
1603           Condition = getFCmpCodeWithoutNaN(Condition);
1604       }
1605 
1606       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1607                    TBB, FBB, CurBB, TProb, FProb);
1608       SwitchCases.push_back(CB);
1609       return;
1610     }
1611   }
1612 
1613   // Create a CaseBlock record representing this branch.
1614   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1615                nullptr, TBB, FBB, CurBB, TProb, FProb);
1616   SwitchCases.push_back(CB);
1617 }
1618 
1619 /// FindMergedConditions - If Cond is an expression like
1620 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1621                                                MachineBasicBlock *TBB,
1622                                                MachineBasicBlock *FBB,
1623                                                MachineBasicBlock *CurBB,
1624                                                MachineBasicBlock *SwitchBB,
1625                                                Instruction::BinaryOps Opc,
1626                                                BranchProbability TProb,
1627                                                BranchProbability FProb) {
1628   // If this node is not part of the or/and tree, emit it as a branch.
1629   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1630   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1631       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1632       BOp->getParent() != CurBB->getBasicBlock() ||
1633       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1634       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1635     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1636                                  TProb, FProb);
1637     return;
1638   }
1639 
1640   //  Create TmpBB after CurBB.
1641   MachineFunction::iterator BBI(CurBB);
1642   MachineFunction &MF = DAG.getMachineFunction();
1643   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1644   CurBB->getParent()->insert(++BBI, TmpBB);
1645 
1646   if (Opc == Instruction::Or) {
1647     // Codegen X | Y as:
1648     // BB1:
1649     //   jmp_if_X TBB
1650     //   jmp TmpBB
1651     // TmpBB:
1652     //   jmp_if_Y TBB
1653     //   jmp FBB
1654     //
1655 
1656     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1657     // The requirement is that
1658     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1659     //     = TrueProb for original BB.
1660     // Assuming the original probabilities are A and B, one choice is to set
1661     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1662     // A/(1+B) and 2B/(1+B). This choice assumes that
1663     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1664     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1665     // TmpBB, but the math is more complicated.
1666 
1667     auto NewTrueProb = TProb / 2;
1668     auto NewFalseProb = TProb / 2 + FProb;
1669     // Emit the LHS condition.
1670     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1671                          NewTrueProb, NewFalseProb);
1672 
1673     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1674     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1675     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1676     // Emit the RHS condition into TmpBB.
1677     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1678                          Probs[0], Probs[1]);
1679   } else {
1680     assert(Opc == Instruction::And && "Unknown merge op!");
1681     // Codegen X & Y as:
1682     // BB1:
1683     //   jmp_if_X TmpBB
1684     //   jmp FBB
1685     // TmpBB:
1686     //   jmp_if_Y TBB
1687     //   jmp FBB
1688     //
1689     //  This requires creation of TmpBB after CurBB.
1690 
1691     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1692     // The requirement is that
1693     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1694     //     = FalseProb for original BB.
1695     // Assuming the original probabilities are A and B, one choice is to set
1696     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1697     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1698     // TrueProb for BB1 * FalseProb for TmpBB.
1699 
1700     auto NewTrueProb = TProb + FProb / 2;
1701     auto NewFalseProb = FProb / 2;
1702     // Emit the LHS condition.
1703     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1704                          NewTrueProb, NewFalseProb);
1705 
1706     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1707     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1708     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1709     // Emit the RHS condition into TmpBB.
1710     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1711                          Probs[0], Probs[1]);
1712   }
1713 }
1714 
1715 /// If the set of cases should be emitted as a series of branches, return true.
1716 /// If we should emit this as a bunch of and/or'd together conditions, return
1717 /// false.
1718 bool
1719 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1720   if (Cases.size() != 2) return true;
1721 
1722   // If this is two comparisons of the same values or'd or and'd together, they
1723   // will get folded into a single comparison, so don't emit two blocks.
1724   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1725        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1726       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1727        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1728     return false;
1729   }
1730 
1731   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1732   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1733   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1734       Cases[0].CC == Cases[1].CC &&
1735       isa<Constant>(Cases[0].CmpRHS) &&
1736       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1737     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1738       return false;
1739     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1740       return false;
1741   }
1742 
1743   return true;
1744 }
1745 
1746 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1747   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1748 
1749   // Update machine-CFG edges.
1750   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1751 
1752   if (I.isUnconditional()) {
1753     // Update machine-CFG edges.
1754     BrMBB->addSuccessor(Succ0MBB);
1755 
1756     // If this is not a fall-through branch or optimizations are switched off,
1757     // emit the branch.
1758     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1759       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1760                               MVT::Other, getControlRoot(),
1761                               DAG.getBasicBlock(Succ0MBB)));
1762 
1763     return;
1764   }
1765 
1766   // If this condition is one of the special cases we handle, do special stuff
1767   // now.
1768   const Value *CondVal = I.getCondition();
1769   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1770 
1771   // If this is a series of conditions that are or'd or and'd together, emit
1772   // this as a sequence of branches instead of setcc's with and/or operations.
1773   // As long as jumps are not expensive, this should improve performance.
1774   // For example, instead of something like:
1775   //     cmp A, B
1776   //     C = seteq
1777   //     cmp D, E
1778   //     F = setle
1779   //     or C, F
1780   //     jnz foo
1781   // Emit:
1782   //     cmp A, B
1783   //     je foo
1784   //     cmp D, E
1785   //     jle foo
1786   //
1787   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1788     Instruction::BinaryOps Opcode = BOp->getOpcode();
1789     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1790         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1791         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1792       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1793                            Opcode,
1794                            getEdgeProbability(BrMBB, Succ0MBB),
1795                            getEdgeProbability(BrMBB, Succ1MBB));
1796       // If the compares in later blocks need to use values not currently
1797       // exported from this block, export them now.  This block should always
1798       // be the first entry.
1799       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1800 
1801       // Allow some cases to be rejected.
1802       if (ShouldEmitAsBranches(SwitchCases)) {
1803         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1804           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1805           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1806         }
1807 
1808         // Emit the branch for this block.
1809         visitSwitchCase(SwitchCases[0], BrMBB);
1810         SwitchCases.erase(SwitchCases.begin());
1811         return;
1812       }
1813 
1814       // Okay, we decided not to do this, remove any inserted MBB's and clear
1815       // SwitchCases.
1816       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1817         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1818 
1819       SwitchCases.clear();
1820     }
1821   }
1822 
1823   // Create a CaseBlock record representing this branch.
1824   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1825                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1826 
1827   // Use visitSwitchCase to actually insert the fast branch sequence for this
1828   // cond branch.
1829   visitSwitchCase(CB, BrMBB);
1830 }
1831 
1832 /// visitSwitchCase - Emits the necessary code to represent a single node in
1833 /// the binary search tree resulting from lowering a switch instruction.
1834 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1835                                           MachineBasicBlock *SwitchBB) {
1836   SDValue Cond;
1837   SDValue CondLHS = getValue(CB.CmpLHS);
1838   SDLoc dl = getCurSDLoc();
1839 
1840   // Build the setcc now.
1841   if (!CB.CmpMHS) {
1842     // Fold "(X == true)" to X and "(X == false)" to !X to
1843     // handle common cases produced by branch lowering.
1844     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1845         CB.CC == ISD::SETEQ)
1846       Cond = CondLHS;
1847     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1848              CB.CC == ISD::SETEQ) {
1849       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1850       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1851     } else
1852       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1853   } else {
1854     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1855 
1856     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1857     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1858 
1859     SDValue CmpOp = getValue(CB.CmpMHS);
1860     EVT VT = CmpOp.getValueType();
1861 
1862     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1863       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1864                           ISD::SETLE);
1865     } else {
1866       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1867                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1868       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1869                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1870     }
1871   }
1872 
1873   // Update successor info
1874   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1875   // TrueBB and FalseBB are always different unless the incoming IR is
1876   // degenerate. This only happens when running llc on weird IR.
1877   if (CB.TrueBB != CB.FalseBB)
1878     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1879   SwitchBB->normalizeSuccProbs();
1880 
1881   // If the lhs block is the next block, invert the condition so that we can
1882   // fall through to the lhs instead of the rhs block.
1883   if (CB.TrueBB == NextBlock(SwitchBB)) {
1884     std::swap(CB.TrueBB, CB.FalseBB);
1885     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1886     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1887   }
1888 
1889   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1890                                MVT::Other, getControlRoot(), Cond,
1891                                DAG.getBasicBlock(CB.TrueBB));
1892 
1893   // Insert the false branch. Do this even if it's a fall through branch,
1894   // this makes it easier to do DAG optimizations which require inverting
1895   // the branch condition.
1896   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1897                        DAG.getBasicBlock(CB.FalseBB));
1898 
1899   DAG.setRoot(BrCond);
1900 }
1901 
1902 /// visitJumpTable - Emit JumpTable node in the current MBB
1903 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1904   // Emit the code for the jump table
1905   assert(JT.Reg != -1U && "Should lower JT Header first!");
1906   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1907   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1908                                      JT.Reg, PTy);
1909   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1910   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1911                                     MVT::Other, Index.getValue(1),
1912                                     Table, Index);
1913   DAG.setRoot(BrJumpTable);
1914 }
1915 
1916 /// visitJumpTableHeader - This function emits necessary code to produce index
1917 /// in the JumpTable from switch case.
1918 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1919                                                JumpTableHeader &JTH,
1920                                                MachineBasicBlock *SwitchBB) {
1921   SDLoc dl = getCurSDLoc();
1922 
1923   // Subtract the lowest switch case value from the value being switched on and
1924   // conditional branch to default mbb if the result is greater than the
1925   // difference between smallest and largest cases.
1926   SDValue SwitchOp = getValue(JTH.SValue);
1927   EVT VT = SwitchOp.getValueType();
1928   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1929                             DAG.getConstant(JTH.First, dl, VT));
1930 
1931   // The SDNode we just created, which holds the value being switched on minus
1932   // the smallest case value, needs to be copied to a virtual register so it
1933   // can be used as an index into the jump table in a subsequent basic block.
1934   // This value may be smaller or larger than the target's pointer type, and
1935   // therefore require extension or truncating.
1936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1937   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1938 
1939   unsigned JumpTableReg =
1940       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1941   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1942                                     JumpTableReg, SwitchOp);
1943   JT.Reg = JumpTableReg;
1944 
1945   // Emit the range check for the jump table, and branch to the default block
1946   // for the switch statement if the value being switched on exceeds the largest
1947   // case in the switch.
1948   SDValue CMP = DAG.getSetCC(
1949       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1950                                  Sub.getValueType()),
1951       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1952 
1953   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1954                                MVT::Other, CopyTo, CMP,
1955                                DAG.getBasicBlock(JT.Default));
1956 
1957   // Avoid emitting unnecessary branches to the next block.
1958   if (JT.MBB != NextBlock(SwitchBB))
1959     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1960                          DAG.getBasicBlock(JT.MBB));
1961 
1962   DAG.setRoot(BrCond);
1963 }
1964 
1965 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
1966 /// variable if there exists one.
1967 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
1968                                  SDValue &Chain) {
1969   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1970   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1971   MachineFunction &MF = DAG.getMachineFunction();
1972   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
1973   MachineSDNode *Node =
1974       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
1975   if (Global) {
1976     MachinePointerInfo MPInfo(Global);
1977     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
1978     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1979                  MachineMemOperand::MODereferenceable;
1980     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
1981                                        DAG.getEVTAlignment(PtrTy));
1982     Node->setMemRefs(MemRefs, MemRefs + 1);
1983   }
1984   return SDValue(Node, 0);
1985 }
1986 
1987 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1988 /// tail spliced into a stack protector check success bb.
1989 ///
1990 /// For a high level explanation of how this fits into the stack protector
1991 /// generation see the comment on the declaration of class
1992 /// StackProtectorDescriptor.
1993 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1994                                                   MachineBasicBlock *ParentBB) {
1995 
1996   // First create the loads to the guard/stack slot for the comparison.
1997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1998   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1999 
2000   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2001   int FI = MFI.getStackProtectorIndex();
2002 
2003   SDValue Guard;
2004   SDLoc dl = getCurSDLoc();
2005   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2006   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2007   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2008 
2009   // Generate code to load the content of the guard slot.
2010   SDValue StackSlot = DAG.getLoad(
2011       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2012       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2013       MachineMemOperand::MOVolatile);
2014 
2015   // Retrieve guard check function, nullptr if instrumentation is inlined.
2016   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2017     // The target provides a guard check function to validate the guard value.
2018     // Generate a call to that function with the content of the guard slot as
2019     // argument.
2020     auto *Fn = cast<Function>(GuardCheck);
2021     FunctionType *FnTy = Fn->getFunctionType();
2022     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2023 
2024     TargetLowering::ArgListTy Args;
2025     TargetLowering::ArgListEntry Entry;
2026     Entry.Node = StackSlot;
2027     Entry.Ty = FnTy->getParamType(0);
2028     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2029       Entry.isInReg = true;
2030     Args.push_back(Entry);
2031 
2032     TargetLowering::CallLoweringInfo CLI(DAG);
2033     CLI.setDebugLoc(getCurSDLoc())
2034       .setChain(DAG.getEntryNode())
2035       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2036                  getValue(GuardCheck), std::move(Args));
2037 
2038     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2039     DAG.setRoot(Result.second);
2040     return;
2041   }
2042 
2043   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2044   // Otherwise, emit a volatile load to retrieve the stack guard value.
2045   SDValue Chain = DAG.getEntryNode();
2046   if (TLI.useLoadStackGuardNode()) {
2047     Guard = getLoadStackGuard(DAG, dl, Chain);
2048   } else {
2049     const Value *IRGuard = TLI.getSDagStackGuard(M);
2050     SDValue GuardPtr = getValue(IRGuard);
2051 
2052     Guard =
2053         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2054                     Align, MachineMemOperand::MOVolatile);
2055   }
2056 
2057   // Perform the comparison via a subtract/getsetcc.
2058   EVT VT = Guard.getValueType();
2059   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2060 
2061   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2062                                                         *DAG.getContext(),
2063                                                         Sub.getValueType()),
2064                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2065 
2066   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2067   // branch to failure MBB.
2068   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2069                                MVT::Other, StackSlot.getOperand(0),
2070                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2071   // Otherwise branch to success MBB.
2072   SDValue Br = DAG.getNode(ISD::BR, dl,
2073                            MVT::Other, BrCond,
2074                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2075 
2076   DAG.setRoot(Br);
2077 }
2078 
2079 /// Codegen the failure basic block for a stack protector check.
2080 ///
2081 /// A failure stack protector machine basic block consists simply of a call to
2082 /// __stack_chk_fail().
2083 ///
2084 /// For a high level explanation of how this fits into the stack protector
2085 /// generation see the comment on the declaration of class
2086 /// StackProtectorDescriptor.
2087 void
2088 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2089   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2090   SDValue Chain =
2091       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2092                       None, false, getCurSDLoc(), false, false).second;
2093   DAG.setRoot(Chain);
2094 }
2095 
2096 /// visitBitTestHeader - This function emits necessary code to produce value
2097 /// suitable for "bit tests"
2098 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2099                                              MachineBasicBlock *SwitchBB) {
2100   SDLoc dl = getCurSDLoc();
2101 
2102   // Subtract the minimum value
2103   SDValue SwitchOp = getValue(B.SValue);
2104   EVT VT = SwitchOp.getValueType();
2105   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2106                             DAG.getConstant(B.First, dl, VT));
2107 
2108   // Check range
2109   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2110   SDValue RangeCmp = DAG.getSetCC(
2111       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2112                                  Sub.getValueType()),
2113       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2114 
2115   // Determine the type of the test operands.
2116   bool UsePtrType = false;
2117   if (!TLI.isTypeLegal(VT))
2118     UsePtrType = true;
2119   else {
2120     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2121       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2122         // Switch table case range are encoded into series of masks.
2123         // Just use pointer type, it's guaranteed to fit.
2124         UsePtrType = true;
2125         break;
2126       }
2127   }
2128   if (UsePtrType) {
2129     VT = TLI.getPointerTy(DAG.getDataLayout());
2130     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2131   }
2132 
2133   B.RegVT = VT.getSimpleVT();
2134   B.Reg = FuncInfo.CreateReg(B.RegVT);
2135   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2136 
2137   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2138 
2139   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2140   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2141   SwitchBB->normalizeSuccProbs();
2142 
2143   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2144                                 MVT::Other, CopyTo, RangeCmp,
2145                                 DAG.getBasicBlock(B.Default));
2146 
2147   // Avoid emitting unnecessary branches to the next block.
2148   if (MBB != NextBlock(SwitchBB))
2149     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2150                           DAG.getBasicBlock(MBB));
2151 
2152   DAG.setRoot(BrRange);
2153 }
2154 
2155 /// visitBitTestCase - this function produces one "bit test"
2156 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2157                                            MachineBasicBlock* NextMBB,
2158                                            BranchProbability BranchProbToNext,
2159                                            unsigned Reg,
2160                                            BitTestCase &B,
2161                                            MachineBasicBlock *SwitchBB) {
2162   SDLoc dl = getCurSDLoc();
2163   MVT VT = BB.RegVT;
2164   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2165   SDValue Cmp;
2166   unsigned PopCount = countPopulation(B.Mask);
2167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2168   if (PopCount == 1) {
2169     // Testing for a single bit; just compare the shift count with what it
2170     // would need to be to shift a 1 bit in that position.
2171     Cmp = DAG.getSetCC(
2172         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2173         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2174         ISD::SETEQ);
2175   } else if (PopCount == BB.Range) {
2176     // There is only one zero bit in the range, test for it directly.
2177     Cmp = DAG.getSetCC(
2178         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2179         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2180         ISD::SETNE);
2181   } else {
2182     // Make desired shift
2183     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2184                                     DAG.getConstant(1, dl, VT), ShiftOp);
2185 
2186     // Emit bit tests and jumps
2187     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2188                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2189     Cmp = DAG.getSetCC(
2190         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2191         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2192   }
2193 
2194   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2195   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2196   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2197   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2198   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2199   // one as they are relative probabilities (and thus work more like weights),
2200   // and hence we need to normalize them to let the sum of them become one.
2201   SwitchBB->normalizeSuccProbs();
2202 
2203   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2204                               MVT::Other, getControlRoot(),
2205                               Cmp, DAG.getBasicBlock(B.TargetBB));
2206 
2207   // Avoid emitting unnecessary branches to the next block.
2208   if (NextMBB != NextBlock(SwitchBB))
2209     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2210                         DAG.getBasicBlock(NextMBB));
2211 
2212   DAG.setRoot(BrAnd);
2213 }
2214 
2215 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2216   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2217 
2218   // Retrieve successors. Look through artificial IR level blocks like
2219   // catchswitch for successors.
2220   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2221   const BasicBlock *EHPadBB = I.getSuccessor(1);
2222 
2223   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2224   // have to do anything here to lower funclet bundles.
2225   assert(!I.hasOperandBundlesOtherThan(
2226              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2227          "Cannot lower invokes with arbitrary operand bundles yet!");
2228 
2229   const Value *Callee(I.getCalledValue());
2230   const Function *Fn = dyn_cast<Function>(Callee);
2231   if (isa<InlineAsm>(Callee))
2232     visitInlineAsm(&I);
2233   else if (Fn && Fn->isIntrinsic()) {
2234     switch (Fn->getIntrinsicID()) {
2235     default:
2236       llvm_unreachable("Cannot invoke this intrinsic");
2237     case Intrinsic::donothing:
2238       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2239       break;
2240     case Intrinsic::experimental_patchpoint_void:
2241     case Intrinsic::experimental_patchpoint_i64:
2242       visitPatchpoint(&I, EHPadBB);
2243       break;
2244     case Intrinsic::experimental_gc_statepoint:
2245       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2246       break;
2247     }
2248   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2249     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2250     // Eventually we will support lowering the @llvm.experimental.deoptimize
2251     // intrinsic, and right now there are no plans to support other intrinsics
2252     // with deopt state.
2253     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2254   } else {
2255     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2256   }
2257 
2258   // If the value of the invoke is used outside of its defining block, make it
2259   // available as a virtual register.
2260   // We already took care of the exported value for the statepoint instruction
2261   // during call to the LowerStatepoint.
2262   if (!isStatepoint(I)) {
2263     CopyToExportRegsIfNeeded(&I);
2264   }
2265 
2266   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2267   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2268   BranchProbability EHPadBBProb =
2269       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2270           : BranchProbability::getZero();
2271   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2272 
2273   // Update successor info.
2274   addSuccessorWithProb(InvokeMBB, Return);
2275   for (auto &UnwindDest : UnwindDests) {
2276     UnwindDest.first->setIsEHPad();
2277     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2278   }
2279   InvokeMBB->normalizeSuccProbs();
2280 
2281   // Drop into normal successor.
2282   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2283                           MVT::Other, getControlRoot(),
2284                           DAG.getBasicBlock(Return)));
2285 }
2286 
2287 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2288   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2289 }
2290 
2291 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2292   assert(FuncInfo.MBB->isEHPad() &&
2293          "Call to landingpad not in landing pad!");
2294 
2295   MachineBasicBlock *MBB = FuncInfo.MBB;
2296   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2297   addLandingPadInfo(LP, MMI, *MBB);
2298 
2299   // If there aren't registers to copy the values into (e.g., during SjLj
2300   // exceptions), then don't bother to create these DAG nodes.
2301   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2302   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2303   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2304       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2305     return;
2306 
2307   // If landingpad's return type is token type, we don't create DAG nodes
2308   // for its exception pointer and selector value. The extraction of exception
2309   // pointer or selector value from token type landingpads is not currently
2310   // supported.
2311   if (LP.getType()->isTokenTy())
2312     return;
2313 
2314   SmallVector<EVT, 2> ValueVTs;
2315   SDLoc dl = getCurSDLoc();
2316   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2317   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2318 
2319   // Get the two live-in registers as SDValues. The physregs have already been
2320   // copied into virtual registers.
2321   SDValue Ops[2];
2322   if (FuncInfo.ExceptionPointerVirtReg) {
2323     Ops[0] = DAG.getZExtOrTrunc(
2324         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2325                            FuncInfo.ExceptionPointerVirtReg,
2326                            TLI.getPointerTy(DAG.getDataLayout())),
2327         dl, ValueVTs[0]);
2328   } else {
2329     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2330   }
2331   Ops[1] = DAG.getZExtOrTrunc(
2332       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2333                          FuncInfo.ExceptionSelectorVirtReg,
2334                          TLI.getPointerTy(DAG.getDataLayout())),
2335       dl, ValueVTs[1]);
2336 
2337   // Merge into one.
2338   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2339                             DAG.getVTList(ValueVTs), Ops);
2340   setValue(&LP, Res);
2341 }
2342 
2343 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2344 #ifndef NDEBUG
2345   for (const CaseCluster &CC : Clusters)
2346     assert(CC.Low == CC.High && "Input clusters must be single-case");
2347 #endif
2348 
2349   std::sort(Clusters.begin(), Clusters.end(),
2350             [](const CaseCluster &a, const CaseCluster &b) {
2351     return a.Low->getValue().slt(b.Low->getValue());
2352   });
2353 
2354   // Merge adjacent clusters with the same destination.
2355   const unsigned N = Clusters.size();
2356   unsigned DstIndex = 0;
2357   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2358     CaseCluster &CC = Clusters[SrcIndex];
2359     const ConstantInt *CaseVal = CC.Low;
2360     MachineBasicBlock *Succ = CC.MBB;
2361 
2362     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2363         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2364       // If this case has the same successor and is a neighbour, merge it into
2365       // the previous cluster.
2366       Clusters[DstIndex - 1].High = CaseVal;
2367       Clusters[DstIndex - 1].Prob += CC.Prob;
2368     } else {
2369       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2370                    sizeof(Clusters[SrcIndex]));
2371     }
2372   }
2373   Clusters.resize(DstIndex);
2374 }
2375 
2376 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2377                                            MachineBasicBlock *Last) {
2378   // Update JTCases.
2379   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2380     if (JTCases[i].first.HeaderBB == First)
2381       JTCases[i].first.HeaderBB = Last;
2382 
2383   // Update BitTestCases.
2384   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2385     if (BitTestCases[i].Parent == First)
2386       BitTestCases[i].Parent = Last;
2387 }
2388 
2389 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2390   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2391 
2392   // Update machine-CFG edges with unique successors.
2393   SmallSet<BasicBlock*, 32> Done;
2394   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2395     BasicBlock *BB = I.getSuccessor(i);
2396     bool Inserted = Done.insert(BB).second;
2397     if (!Inserted)
2398         continue;
2399 
2400     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2401     addSuccessorWithProb(IndirectBrMBB, Succ);
2402   }
2403   IndirectBrMBB->normalizeSuccProbs();
2404 
2405   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2406                           MVT::Other, getControlRoot(),
2407                           getValue(I.getAddress())));
2408 }
2409 
2410 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2411   if (DAG.getTarget().Options.TrapUnreachable)
2412     DAG.setRoot(
2413         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2414 }
2415 
2416 void SelectionDAGBuilder::visitFSub(const User &I) {
2417   // -0.0 - X --> fneg
2418   Type *Ty = I.getType();
2419   if (isa<Constant>(I.getOperand(0)) &&
2420       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2421     SDValue Op2 = getValue(I.getOperand(1));
2422     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2423                              Op2.getValueType(), Op2));
2424     return;
2425   }
2426 
2427   visitBinary(I, ISD::FSUB);
2428 }
2429 
2430 /// Checks if the given instruction performs a vector reduction, in which case
2431 /// we have the freedom to alter the elements in the result as long as the
2432 /// reduction of them stays unchanged.
2433 static bool isVectorReductionOp(const User *I) {
2434   const Instruction *Inst = dyn_cast<Instruction>(I);
2435   if (!Inst || !Inst->getType()->isVectorTy())
2436     return false;
2437 
2438   auto OpCode = Inst->getOpcode();
2439   switch (OpCode) {
2440   case Instruction::Add:
2441   case Instruction::Mul:
2442   case Instruction::And:
2443   case Instruction::Or:
2444   case Instruction::Xor:
2445     break;
2446   case Instruction::FAdd:
2447   case Instruction::FMul:
2448     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2449       if (FPOp->getFastMathFlags().unsafeAlgebra())
2450         break;
2451     LLVM_FALLTHROUGH;
2452   default:
2453     return false;
2454   }
2455 
2456   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2457   unsigned ElemNumToReduce = ElemNum;
2458 
2459   // Do DFS search on the def-use chain from the given instruction. We only
2460   // allow four kinds of operations during the search until we reach the
2461   // instruction that extracts the first element from the vector:
2462   //
2463   //   1. The reduction operation of the same opcode as the given instruction.
2464   //
2465   //   2. PHI node.
2466   //
2467   //   3. ShuffleVector instruction together with a reduction operation that
2468   //      does a partial reduction.
2469   //
2470   //   4. ExtractElement that extracts the first element from the vector, and we
2471   //      stop searching the def-use chain here.
2472   //
2473   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2474   // from 1-3 to the stack to continue the DFS. The given instruction is not
2475   // a reduction operation if we meet any other instructions other than those
2476   // listed above.
2477 
2478   SmallVector<const User *, 16> UsersToVisit{Inst};
2479   SmallPtrSet<const User *, 16> Visited;
2480   bool ReduxExtracted = false;
2481 
2482   while (!UsersToVisit.empty()) {
2483     auto User = UsersToVisit.back();
2484     UsersToVisit.pop_back();
2485     if (!Visited.insert(User).second)
2486       continue;
2487 
2488     for (const auto &U : User->users()) {
2489       auto Inst = dyn_cast<Instruction>(U);
2490       if (!Inst)
2491         return false;
2492 
2493       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2494         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2495           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2496             return false;
2497         UsersToVisit.push_back(U);
2498       } else if (const ShuffleVectorInst *ShufInst =
2499                      dyn_cast<ShuffleVectorInst>(U)) {
2500         // Detect the following pattern: A ShuffleVector instruction together
2501         // with a reduction that do partial reduction on the first and second
2502         // ElemNumToReduce / 2 elements, and store the result in
2503         // ElemNumToReduce / 2 elements in another vector.
2504 
2505         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2506         if (ResultElements < ElemNum)
2507           return false;
2508 
2509         if (ElemNumToReduce == 1)
2510           return false;
2511         if (!isa<UndefValue>(U->getOperand(1)))
2512           return false;
2513         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2514           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2515             return false;
2516         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2517           if (ShufInst->getMaskValue(i) != -1)
2518             return false;
2519 
2520         // There is only one user of this ShuffleVector instruction, which
2521         // must be a reduction operation.
2522         if (!U->hasOneUse())
2523           return false;
2524 
2525         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2526         if (!U2 || U2->getOpcode() != OpCode)
2527           return false;
2528 
2529         // Check operands of the reduction operation.
2530         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2531             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2532           UsersToVisit.push_back(U2);
2533           ElemNumToReduce /= 2;
2534         } else
2535           return false;
2536       } else if (isa<ExtractElementInst>(U)) {
2537         // At this moment we should have reduced all elements in the vector.
2538         if (ElemNumToReduce != 1)
2539           return false;
2540 
2541         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2542         if (!Val || Val->getZExtValue() != 0)
2543           return false;
2544 
2545         ReduxExtracted = true;
2546       } else
2547         return false;
2548     }
2549   }
2550   return ReduxExtracted;
2551 }
2552 
2553 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2554   SDValue Op1 = getValue(I.getOperand(0));
2555   SDValue Op2 = getValue(I.getOperand(1));
2556 
2557   bool nuw = false;
2558   bool nsw = false;
2559   bool exact = false;
2560   bool vec_redux = false;
2561   FastMathFlags FMF;
2562 
2563   if (const OverflowingBinaryOperator *OFBinOp =
2564           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2565     nuw = OFBinOp->hasNoUnsignedWrap();
2566     nsw = OFBinOp->hasNoSignedWrap();
2567   }
2568   if (const PossiblyExactOperator *ExactOp =
2569           dyn_cast<const PossiblyExactOperator>(&I))
2570     exact = ExactOp->isExact();
2571   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2572     FMF = FPOp->getFastMathFlags();
2573 
2574   if (isVectorReductionOp(&I)) {
2575     vec_redux = true;
2576     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2577   }
2578 
2579   SDNodeFlags Flags;
2580   Flags.setExact(exact);
2581   Flags.setNoSignedWrap(nsw);
2582   Flags.setNoUnsignedWrap(nuw);
2583   Flags.setVectorReduction(vec_redux);
2584   if (EnableFMFInDAG) {
2585     Flags.setAllowReciprocal(FMF.allowReciprocal());
2586     Flags.setNoInfs(FMF.noInfs());
2587     Flags.setNoNaNs(FMF.noNaNs());
2588     Flags.setNoSignedZeros(FMF.noSignedZeros());
2589     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2590   }
2591   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2592                                      Op1, Op2, &Flags);
2593   setValue(&I, BinNodeValue);
2594 }
2595 
2596 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2597   SDValue Op1 = getValue(I.getOperand(0));
2598   SDValue Op2 = getValue(I.getOperand(1));
2599 
2600   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2601       Op2.getValueType(), DAG.getDataLayout());
2602 
2603   // Coerce the shift amount to the right type if we can.
2604   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2605     unsigned ShiftSize = ShiftTy.getSizeInBits();
2606     unsigned Op2Size = Op2.getValueSizeInBits();
2607     SDLoc DL = getCurSDLoc();
2608 
2609     // If the operand is smaller than the shift count type, promote it.
2610     if (ShiftSize > Op2Size)
2611       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2612 
2613     // If the operand is larger than the shift count type but the shift
2614     // count type has enough bits to represent any shift value, truncate
2615     // it now. This is a common case and it exposes the truncate to
2616     // optimization early.
2617     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2618       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2619     // Otherwise we'll need to temporarily settle for some other convenient
2620     // type.  Type legalization will make adjustments once the shiftee is split.
2621     else
2622       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2623   }
2624 
2625   bool nuw = false;
2626   bool nsw = false;
2627   bool exact = false;
2628 
2629   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2630 
2631     if (const OverflowingBinaryOperator *OFBinOp =
2632             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2633       nuw = OFBinOp->hasNoUnsignedWrap();
2634       nsw = OFBinOp->hasNoSignedWrap();
2635     }
2636     if (const PossiblyExactOperator *ExactOp =
2637             dyn_cast<const PossiblyExactOperator>(&I))
2638       exact = ExactOp->isExact();
2639   }
2640   SDNodeFlags Flags;
2641   Flags.setExact(exact);
2642   Flags.setNoSignedWrap(nsw);
2643   Flags.setNoUnsignedWrap(nuw);
2644   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2645                             &Flags);
2646   setValue(&I, Res);
2647 }
2648 
2649 void SelectionDAGBuilder::visitSDiv(const User &I) {
2650   SDValue Op1 = getValue(I.getOperand(0));
2651   SDValue Op2 = getValue(I.getOperand(1));
2652 
2653   SDNodeFlags Flags;
2654   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2655                  cast<PossiblyExactOperator>(&I)->isExact());
2656   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2657                            Op2, &Flags));
2658 }
2659 
2660 void SelectionDAGBuilder::visitICmp(const User &I) {
2661   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2662   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2663     predicate = IC->getPredicate();
2664   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2665     predicate = ICmpInst::Predicate(IC->getPredicate());
2666   SDValue Op1 = getValue(I.getOperand(0));
2667   SDValue Op2 = getValue(I.getOperand(1));
2668   ISD::CondCode Opcode = getICmpCondCode(predicate);
2669 
2670   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2671                                                         I.getType());
2672   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2673 }
2674 
2675 void SelectionDAGBuilder::visitFCmp(const User &I) {
2676   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2677   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2678     predicate = FC->getPredicate();
2679   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2680     predicate = FCmpInst::Predicate(FC->getPredicate());
2681   SDValue Op1 = getValue(I.getOperand(0));
2682   SDValue Op2 = getValue(I.getOperand(1));
2683   ISD::CondCode Condition = getFCmpCondCode(predicate);
2684 
2685   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2686   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2687   // further optimization, but currently FMF is only applicable to binary nodes.
2688   if (TM.Options.NoNaNsFPMath)
2689     Condition = getFCmpCodeWithoutNaN(Condition);
2690   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2691                                                         I.getType());
2692   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2693 }
2694 
2695 // Check if the condition of the select has one use or two users that are both
2696 // selects with the same condition.
2697 static bool hasOnlySelectUsers(const Value *Cond) {
2698   return all_of(Cond->users(), [](const Value *V) {
2699     return isa<SelectInst>(V);
2700   });
2701 }
2702 
2703 void SelectionDAGBuilder::visitSelect(const User &I) {
2704   SmallVector<EVT, 4> ValueVTs;
2705   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2706                   ValueVTs);
2707   unsigned NumValues = ValueVTs.size();
2708   if (NumValues == 0) return;
2709 
2710   SmallVector<SDValue, 4> Values(NumValues);
2711   SDValue Cond     = getValue(I.getOperand(0));
2712   SDValue LHSVal   = getValue(I.getOperand(1));
2713   SDValue RHSVal   = getValue(I.getOperand(2));
2714   auto BaseOps = {Cond};
2715   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2716     ISD::VSELECT : ISD::SELECT;
2717 
2718   // Min/max matching is only viable if all output VTs are the same.
2719   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2720     EVT VT = ValueVTs[0];
2721     LLVMContext &Ctx = *DAG.getContext();
2722     auto &TLI = DAG.getTargetLoweringInfo();
2723 
2724     // We care about the legality of the operation after it has been type
2725     // legalized.
2726     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2727            VT != TLI.getTypeToTransformTo(Ctx, VT))
2728       VT = TLI.getTypeToTransformTo(Ctx, VT);
2729 
2730     // If the vselect is legal, assume we want to leave this as a vector setcc +
2731     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2732     // min/max is legal on the scalar type.
2733     bool UseScalarMinMax = VT.isVector() &&
2734       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2735 
2736     Value *LHS, *RHS;
2737     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2738     ISD::NodeType Opc = ISD::DELETED_NODE;
2739     switch (SPR.Flavor) {
2740     case SPF_UMAX:    Opc = ISD::UMAX; break;
2741     case SPF_UMIN:    Opc = ISD::UMIN; break;
2742     case SPF_SMAX:    Opc = ISD::SMAX; break;
2743     case SPF_SMIN:    Opc = ISD::SMIN; break;
2744     case SPF_FMINNUM:
2745       switch (SPR.NaNBehavior) {
2746       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2747       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2748       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2749       case SPNB_RETURNS_ANY: {
2750         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2751           Opc = ISD::FMINNUM;
2752         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2753           Opc = ISD::FMINNAN;
2754         else if (UseScalarMinMax)
2755           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2756             ISD::FMINNUM : ISD::FMINNAN;
2757         break;
2758       }
2759       }
2760       break;
2761     case SPF_FMAXNUM:
2762       switch (SPR.NaNBehavior) {
2763       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2764       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2765       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2766       case SPNB_RETURNS_ANY:
2767 
2768         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2769           Opc = ISD::FMAXNUM;
2770         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2771           Opc = ISD::FMAXNAN;
2772         else if (UseScalarMinMax)
2773           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2774             ISD::FMAXNUM : ISD::FMAXNAN;
2775         break;
2776       }
2777       break;
2778     default: break;
2779     }
2780 
2781     if (Opc != ISD::DELETED_NODE &&
2782         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2783          (UseScalarMinMax &&
2784           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2785         // If the underlying comparison instruction is used by any other
2786         // instruction, the consumed instructions won't be destroyed, so it is
2787         // not profitable to convert to a min/max.
2788         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2789       OpCode = Opc;
2790       LHSVal = getValue(LHS);
2791       RHSVal = getValue(RHS);
2792       BaseOps = {};
2793     }
2794   }
2795 
2796   for (unsigned i = 0; i != NumValues; ++i) {
2797     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2798     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2799     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2800     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2801                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2802                             Ops);
2803   }
2804 
2805   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2806                            DAG.getVTList(ValueVTs), Values));
2807 }
2808 
2809 void SelectionDAGBuilder::visitTrunc(const User &I) {
2810   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2811   SDValue N = getValue(I.getOperand(0));
2812   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2813                                                         I.getType());
2814   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2815 }
2816 
2817 void SelectionDAGBuilder::visitZExt(const User &I) {
2818   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2819   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2820   SDValue N = getValue(I.getOperand(0));
2821   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2822                                                         I.getType());
2823   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2824 }
2825 
2826 void SelectionDAGBuilder::visitSExt(const User &I) {
2827   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2828   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2829   SDValue N = getValue(I.getOperand(0));
2830   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2831                                                         I.getType());
2832   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2833 }
2834 
2835 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2836   // FPTrunc is never a no-op cast, no need to check
2837   SDValue N = getValue(I.getOperand(0));
2838   SDLoc dl = getCurSDLoc();
2839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2840   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2841   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2842                            DAG.getTargetConstant(
2843                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2844 }
2845 
2846 void SelectionDAGBuilder::visitFPExt(const User &I) {
2847   // FPExt is never a no-op cast, no need to check
2848   SDValue N = getValue(I.getOperand(0));
2849   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2850                                                         I.getType());
2851   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2852 }
2853 
2854 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2855   // FPToUI is never a no-op cast, no need to check
2856   SDValue N = getValue(I.getOperand(0));
2857   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2858                                                         I.getType());
2859   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2860 }
2861 
2862 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2863   // FPToSI is never a no-op cast, no need to check
2864   SDValue N = getValue(I.getOperand(0));
2865   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2866                                                         I.getType());
2867   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2868 }
2869 
2870 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2871   // UIToFP is never a no-op cast, no need to check
2872   SDValue N = getValue(I.getOperand(0));
2873   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2874                                                         I.getType());
2875   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2876 }
2877 
2878 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2879   // SIToFP is never a no-op cast, no need to check
2880   SDValue N = getValue(I.getOperand(0));
2881   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2882                                                         I.getType());
2883   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2884 }
2885 
2886 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2887   // What to do depends on the size of the integer and the size of the pointer.
2888   // We can either truncate, zero extend, or no-op, accordingly.
2889   SDValue N = getValue(I.getOperand(0));
2890   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2891                                                         I.getType());
2892   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2893 }
2894 
2895 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2896   // What to do depends on the size of the integer and the size of the pointer.
2897   // We can either truncate, zero extend, or no-op, accordingly.
2898   SDValue N = getValue(I.getOperand(0));
2899   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2900                                                         I.getType());
2901   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2902 }
2903 
2904 void SelectionDAGBuilder::visitBitCast(const User &I) {
2905   SDValue N = getValue(I.getOperand(0));
2906   SDLoc dl = getCurSDLoc();
2907   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2908                                                         I.getType());
2909 
2910   // BitCast assures us that source and destination are the same size so this is
2911   // either a BITCAST or a no-op.
2912   if (DestVT != N.getValueType())
2913     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2914                              DestVT, N)); // convert types.
2915   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2916   // might fold any kind of constant expression to an integer constant and that
2917   // is not what we are looking for. Only regcognize a bitcast of a genuine
2918   // constant integer as an opaque constant.
2919   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2920     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2921                                  /*isOpaque*/true));
2922   else
2923     setValue(&I, N);            // noop cast.
2924 }
2925 
2926 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2927   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2928   const Value *SV = I.getOperand(0);
2929   SDValue N = getValue(SV);
2930   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2931 
2932   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2933   unsigned DestAS = I.getType()->getPointerAddressSpace();
2934 
2935   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2936     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2937 
2938   setValue(&I, N);
2939 }
2940 
2941 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2942   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2943   SDValue InVec = getValue(I.getOperand(0));
2944   SDValue InVal = getValue(I.getOperand(1));
2945   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2946                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2947   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2948                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2949                            InVec, InVal, InIdx));
2950 }
2951 
2952 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2954   SDValue InVec = getValue(I.getOperand(0));
2955   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2956                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2957   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2958                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2959                            InVec, InIdx));
2960 }
2961 
2962 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2963   SDValue Src1 = getValue(I.getOperand(0));
2964   SDValue Src2 = getValue(I.getOperand(1));
2965   SDLoc DL = getCurSDLoc();
2966 
2967   SmallVector<int, 8> Mask;
2968   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2969   unsigned MaskNumElts = Mask.size();
2970 
2971   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2972   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2973   EVT SrcVT = Src1.getValueType();
2974   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2975 
2976   if (SrcNumElts == MaskNumElts) {
2977     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
2978     return;
2979   }
2980 
2981   // Normalize the shuffle vector since mask and vector length don't match.
2982   if (SrcNumElts < MaskNumElts) {
2983     // Mask is longer than the source vectors. We can use concatenate vector to
2984     // make the mask and vectors lengths match.
2985 
2986     if (MaskNumElts % SrcNumElts == 0) {
2987       // Mask length is a multiple of the source vector length.
2988       // Check if the shuffle is some kind of concatenation of the input
2989       // vectors.
2990       unsigned NumConcat = MaskNumElts / SrcNumElts;
2991       bool IsConcat = true;
2992       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
2993       for (unsigned i = 0; i != MaskNumElts; ++i) {
2994         int Idx = Mask[i];
2995         if (Idx < 0)
2996           continue;
2997         // Ensure the indices in each SrcVT sized piece are sequential and that
2998         // the same source is used for the whole piece.
2999         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3000             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3001              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3002           IsConcat = false;
3003           break;
3004         }
3005         // Remember which source this index came from.
3006         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3007       }
3008 
3009       // The shuffle is concatenating multiple vectors together. Just emit
3010       // a CONCAT_VECTORS operation.
3011       if (IsConcat) {
3012         SmallVector<SDValue, 8> ConcatOps;
3013         for (auto Src : ConcatSrcs) {
3014           if (Src < 0)
3015             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3016           else if (Src == 0)
3017             ConcatOps.push_back(Src1);
3018           else
3019             ConcatOps.push_back(Src2);
3020         }
3021         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3022         return;
3023       }
3024     }
3025 
3026     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3027     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3028     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3029                                     PaddedMaskNumElts);
3030 
3031     // Pad both vectors with undefs to make them the same length as the mask.
3032     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3033 
3034     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3035     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3036     MOps1[0] = Src1;
3037     MOps2[0] = Src2;
3038 
3039     Src1 = Src1.isUndef()
3040                ? DAG.getUNDEF(PaddedVT)
3041                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3042     Src2 = Src2.isUndef()
3043                ? DAG.getUNDEF(PaddedVT)
3044                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3045 
3046     // Readjust mask for new input vector length.
3047     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3048     for (unsigned i = 0; i != MaskNumElts; ++i) {
3049       int Idx = Mask[i];
3050       if (Idx >= (int)SrcNumElts)
3051         Idx -= SrcNumElts - PaddedMaskNumElts;
3052       MappedOps[i] = Idx;
3053     }
3054 
3055     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3056 
3057     // If the concatenated vector was padded, extract a subvector with the
3058     // correct number of elements.
3059     if (MaskNumElts != PaddedMaskNumElts)
3060       Result = DAG.getNode(
3061           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3062           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3063 
3064     setValue(&I, Result);
3065     return;
3066   }
3067 
3068   if (SrcNumElts > MaskNumElts) {
3069     // Analyze the access pattern of the vector to see if we can extract
3070     // two subvectors and do the shuffle. The analysis is done by calculating
3071     // the range of elements the mask access on both vectors.
3072     int MinRange[2] = { static_cast<int>(SrcNumElts),
3073                         static_cast<int>(SrcNumElts)};
3074     int MaxRange[2] = {-1, -1};
3075 
3076     for (unsigned i = 0; i != MaskNumElts; ++i) {
3077       int Idx = Mask[i];
3078       unsigned Input = 0;
3079       if (Idx < 0)
3080         continue;
3081 
3082       if (Idx >= (int)SrcNumElts) {
3083         Input = 1;
3084         Idx -= SrcNumElts;
3085       }
3086       if (Idx > MaxRange[Input])
3087         MaxRange[Input] = Idx;
3088       if (Idx < MinRange[Input])
3089         MinRange[Input] = Idx;
3090     }
3091 
3092     // Check if the access is smaller than the vector size and can we find
3093     // a reasonable extract index.
3094     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3095                                    // Extract.
3096     int StartIdx[2];  // StartIdx to extract from
3097     for (unsigned Input = 0; Input < 2; ++Input) {
3098       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3099         RangeUse[Input] = 0; // Unused
3100         StartIdx[Input] = 0;
3101         continue;
3102       }
3103 
3104       // Find a good start index that is a multiple of the mask length. Then
3105       // see if the rest of the elements are in range.
3106       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3107       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3108           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3109         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3110     }
3111 
3112     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3113       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3114       return;
3115     }
3116     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3117       // Extract appropriate subvector and generate a vector shuffle
3118       for (unsigned Input = 0; Input < 2; ++Input) {
3119         SDValue &Src = Input == 0 ? Src1 : Src2;
3120         if (RangeUse[Input] == 0)
3121           Src = DAG.getUNDEF(VT);
3122         else {
3123           Src = DAG.getNode(
3124               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3125               DAG.getConstant(StartIdx[Input], DL,
3126                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3127         }
3128       }
3129 
3130       // Calculate new mask.
3131       SmallVector<int, 8> MappedOps;
3132       for (unsigned i = 0; i != MaskNumElts; ++i) {
3133         int Idx = Mask[i];
3134         if (Idx >= 0) {
3135           if (Idx < (int)SrcNumElts)
3136             Idx -= StartIdx[0];
3137           else
3138             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3139         }
3140         MappedOps.push_back(Idx);
3141       }
3142 
3143       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3144       return;
3145     }
3146   }
3147 
3148   // We can't use either concat vectors or extract subvectors so fall back to
3149   // replacing the shuffle with extract and build vector.
3150   // to insert and build vector.
3151   EVT EltVT = VT.getVectorElementType();
3152   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3153   SmallVector<SDValue,8> Ops;
3154   for (unsigned i = 0; i != MaskNumElts; ++i) {
3155     int Idx = Mask[i];
3156     SDValue Res;
3157 
3158     if (Idx < 0) {
3159       Res = DAG.getUNDEF(EltVT);
3160     } else {
3161       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3162       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3163 
3164       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3165                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3166     }
3167 
3168     Ops.push_back(Res);
3169   }
3170 
3171   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops));
3172 }
3173 
3174 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3175   const Value *Op0 = I.getOperand(0);
3176   const Value *Op1 = I.getOperand(1);
3177   Type *AggTy = I.getType();
3178   Type *ValTy = Op1->getType();
3179   bool IntoUndef = isa<UndefValue>(Op0);
3180   bool FromUndef = isa<UndefValue>(Op1);
3181 
3182   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3183 
3184   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3185   SmallVector<EVT, 4> AggValueVTs;
3186   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3187   SmallVector<EVT, 4> ValValueVTs;
3188   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3189 
3190   unsigned NumAggValues = AggValueVTs.size();
3191   unsigned NumValValues = ValValueVTs.size();
3192   SmallVector<SDValue, 4> Values(NumAggValues);
3193 
3194   // Ignore an insertvalue that produces an empty object
3195   if (!NumAggValues) {
3196     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3197     return;
3198   }
3199 
3200   SDValue Agg = getValue(Op0);
3201   unsigned i = 0;
3202   // Copy the beginning value(s) from the original aggregate.
3203   for (; i != LinearIndex; ++i)
3204     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3205                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3206   // Copy values from the inserted value(s).
3207   if (NumValValues) {
3208     SDValue Val = getValue(Op1);
3209     for (; i != LinearIndex + NumValValues; ++i)
3210       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3211                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3212   }
3213   // Copy remaining value(s) from the original aggregate.
3214   for (; i != NumAggValues; ++i)
3215     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3216                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3217 
3218   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3219                            DAG.getVTList(AggValueVTs), Values));
3220 }
3221 
3222 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3223   const Value *Op0 = I.getOperand(0);
3224   Type *AggTy = Op0->getType();
3225   Type *ValTy = I.getType();
3226   bool OutOfUndef = isa<UndefValue>(Op0);
3227 
3228   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3229 
3230   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3231   SmallVector<EVT, 4> ValValueVTs;
3232   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3233 
3234   unsigned NumValValues = ValValueVTs.size();
3235 
3236   // Ignore a extractvalue that produces an empty object
3237   if (!NumValValues) {
3238     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3239     return;
3240   }
3241 
3242   SmallVector<SDValue, 4> Values(NumValValues);
3243 
3244   SDValue Agg = getValue(Op0);
3245   // Copy out the selected value(s).
3246   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3247     Values[i - LinearIndex] =
3248       OutOfUndef ?
3249         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3250         SDValue(Agg.getNode(), Agg.getResNo() + i);
3251 
3252   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3253                            DAG.getVTList(ValValueVTs), Values));
3254 }
3255 
3256 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3257   Value *Op0 = I.getOperand(0);
3258   // Note that the pointer operand may be a vector of pointers. Take the scalar
3259   // element which holds a pointer.
3260   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3261   SDValue N = getValue(Op0);
3262   SDLoc dl = getCurSDLoc();
3263 
3264   // Normalize Vector GEP - all scalar operands should be converted to the
3265   // splat vector.
3266   unsigned VectorWidth = I.getType()->isVectorTy() ?
3267     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3268 
3269   if (VectorWidth && !N.getValueType().isVector()) {
3270     LLVMContext &Context = *DAG.getContext();
3271     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3272     SmallVector<SDValue, 16> Ops(VectorWidth, N);
3273     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3274   }
3275   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3276        GTI != E; ++GTI) {
3277     const Value *Idx = GTI.getOperand();
3278     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3279       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3280       if (Field) {
3281         // N = N + Offset
3282         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3283 
3284         // In an inbouds GEP with an offset that is nonnegative even when
3285         // interpreted as signed, assume there is no unsigned overflow.
3286         SDNodeFlags Flags;
3287         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3288           Flags.setNoUnsignedWrap(true);
3289 
3290         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3291                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3292       }
3293     } else {
3294       MVT PtrTy =
3295           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3296       unsigned PtrSize = PtrTy.getSizeInBits();
3297       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3298 
3299       // If this is a scalar constant or a splat vector of constants,
3300       // handle it quickly.
3301       const auto *CI = dyn_cast<ConstantInt>(Idx);
3302       if (!CI && isa<ConstantDataVector>(Idx) &&
3303           cast<ConstantDataVector>(Idx)->getSplatValue())
3304         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3305 
3306       if (CI) {
3307         if (CI->isZero())
3308           continue;
3309         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3310         LLVMContext &Context = *DAG.getContext();
3311         SDValue OffsVal = VectorWidth ?
3312           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3313           DAG.getConstant(Offs, dl, PtrTy);
3314 
3315         // In an inbouds GEP with an offset that is nonnegative even when
3316         // interpreted as signed, assume there is no unsigned overflow.
3317         SDNodeFlags Flags;
3318         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3319           Flags.setNoUnsignedWrap(true);
3320 
3321         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3322         continue;
3323       }
3324 
3325       // N = N + Idx * ElementSize;
3326       SDValue IdxN = getValue(Idx);
3327 
3328       if (!IdxN.getValueType().isVector() && VectorWidth) {
3329         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3330         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3331         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3332       }
3333       // If the index is smaller or larger than intptr_t, truncate or extend
3334       // it.
3335       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3336 
3337       // If this is a multiply by a power of two, turn it into a shl
3338       // immediately.  This is a very common case.
3339       if (ElementSize != 1) {
3340         if (ElementSize.isPowerOf2()) {
3341           unsigned Amt = ElementSize.logBase2();
3342           IdxN = DAG.getNode(ISD::SHL, dl,
3343                              N.getValueType(), IdxN,
3344                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3345         } else {
3346           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3347           IdxN = DAG.getNode(ISD::MUL, dl,
3348                              N.getValueType(), IdxN, Scale);
3349         }
3350       }
3351 
3352       N = DAG.getNode(ISD::ADD, dl,
3353                       N.getValueType(), N, IdxN);
3354     }
3355   }
3356 
3357   setValue(&I, N);
3358 }
3359 
3360 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3361   // If this is a fixed sized alloca in the entry block of the function,
3362   // allocate it statically on the stack.
3363   if (FuncInfo.StaticAllocaMap.count(&I))
3364     return;   // getValue will auto-populate this.
3365 
3366   SDLoc dl = getCurSDLoc();
3367   Type *Ty = I.getAllocatedType();
3368   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3369   auto &DL = DAG.getDataLayout();
3370   uint64_t TySize = DL.getTypeAllocSize(Ty);
3371   unsigned Align =
3372       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3373 
3374   SDValue AllocSize = getValue(I.getArraySize());
3375 
3376   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3377   if (AllocSize.getValueType() != IntPtr)
3378     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3379 
3380   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3381                           AllocSize,
3382                           DAG.getConstant(TySize, dl, IntPtr));
3383 
3384   // Handle alignment.  If the requested alignment is less than or equal to
3385   // the stack alignment, ignore it.  If the size is greater than or equal to
3386   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3387   unsigned StackAlign =
3388       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3389   if (Align <= StackAlign)
3390     Align = 0;
3391 
3392   // Round the size of the allocation up to the stack alignment size
3393   // by add SA-1 to the size. This doesn't overflow because we're computing
3394   // an address inside an alloca.
3395   SDNodeFlags Flags;
3396   Flags.setNoUnsignedWrap(true);
3397   AllocSize = DAG.getNode(ISD::ADD, dl,
3398                           AllocSize.getValueType(), AllocSize,
3399                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3400 
3401   // Mask out the low bits for alignment purposes.
3402   AllocSize = DAG.getNode(ISD::AND, dl,
3403                           AllocSize.getValueType(), AllocSize,
3404                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3405                                                 dl));
3406 
3407   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3408   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3409   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3410   setValue(&I, DSA);
3411   DAG.setRoot(DSA.getValue(1));
3412 
3413   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3414 }
3415 
3416 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3417   if (I.isAtomic())
3418     return visitAtomicLoad(I);
3419 
3420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3421   const Value *SV = I.getOperand(0);
3422   if (TLI.supportSwiftError()) {
3423     // Swifterror values can come from either a function parameter with
3424     // swifterror attribute or an alloca with swifterror attribute.
3425     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3426       if (Arg->hasSwiftErrorAttr())
3427         return visitLoadFromSwiftError(I);
3428     }
3429 
3430     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3431       if (Alloca->isSwiftError())
3432         return visitLoadFromSwiftError(I);
3433     }
3434   }
3435 
3436   SDValue Ptr = getValue(SV);
3437 
3438   Type *Ty = I.getType();
3439 
3440   bool isVolatile = I.isVolatile();
3441   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3442   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3443   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3444   unsigned Alignment = I.getAlignment();
3445 
3446   AAMDNodes AAInfo;
3447   I.getAAMetadata(AAInfo);
3448   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3449 
3450   SmallVector<EVT, 4> ValueVTs;
3451   SmallVector<uint64_t, 4> Offsets;
3452   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3453   unsigned NumValues = ValueVTs.size();
3454   if (NumValues == 0)
3455     return;
3456 
3457   SDValue Root;
3458   bool ConstantMemory = false;
3459   if (isVolatile || NumValues > MaxParallelChains)
3460     // Serialize volatile loads with other side effects.
3461     Root = getRoot();
3462   else if (AA->pointsToConstantMemory(MemoryLocation(
3463                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3464     // Do not serialize (non-volatile) loads of constant memory with anything.
3465     Root = DAG.getEntryNode();
3466     ConstantMemory = true;
3467   } else {
3468     // Do not serialize non-volatile loads against each other.
3469     Root = DAG.getRoot();
3470   }
3471 
3472   SDLoc dl = getCurSDLoc();
3473 
3474   if (isVolatile)
3475     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3476 
3477   // An aggregate load cannot wrap around the address space, so offsets to its
3478   // parts don't wrap either.
3479   SDNodeFlags Flags;
3480   Flags.setNoUnsignedWrap(true);
3481 
3482   SmallVector<SDValue, 4> Values(NumValues);
3483   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3484   EVT PtrVT = Ptr.getValueType();
3485   unsigned ChainI = 0;
3486   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3487     // Serializing loads here may result in excessive register pressure, and
3488     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3489     // could recover a bit by hoisting nodes upward in the chain by recognizing
3490     // they are side-effect free or do not alias. The optimizer should really
3491     // avoid this case by converting large object/array copies to llvm.memcpy
3492     // (MaxParallelChains should always remain as failsafe).
3493     if (ChainI == MaxParallelChains) {
3494       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3495       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3496                                   makeArrayRef(Chains.data(), ChainI));
3497       Root = Chain;
3498       ChainI = 0;
3499     }
3500     SDValue A = DAG.getNode(ISD::ADD, dl,
3501                             PtrVT, Ptr,
3502                             DAG.getConstant(Offsets[i], dl, PtrVT),
3503                             &Flags);
3504     auto MMOFlags = MachineMemOperand::MONone;
3505     if (isVolatile)
3506       MMOFlags |= MachineMemOperand::MOVolatile;
3507     if (isNonTemporal)
3508       MMOFlags |= MachineMemOperand::MONonTemporal;
3509     if (isInvariant)
3510       MMOFlags |= MachineMemOperand::MOInvariant;
3511     if (isDereferenceable)
3512       MMOFlags |= MachineMemOperand::MODereferenceable;
3513 
3514     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3515                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3516                             MMOFlags, AAInfo, Ranges);
3517 
3518     Values[i] = L;
3519     Chains[ChainI] = L.getValue(1);
3520   }
3521 
3522   if (!ConstantMemory) {
3523     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3524                                 makeArrayRef(Chains.data(), ChainI));
3525     if (isVolatile)
3526       DAG.setRoot(Chain);
3527     else
3528       PendingLoads.push_back(Chain);
3529   }
3530 
3531   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3532                            DAG.getVTList(ValueVTs), Values));
3533 }
3534 
3535 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3536   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3537   assert(TLI.supportSwiftError() &&
3538          "call visitStoreToSwiftError when backend supports swifterror");
3539 
3540   SmallVector<EVT, 4> ValueVTs;
3541   SmallVector<uint64_t, 4> Offsets;
3542   const Value *SrcV = I.getOperand(0);
3543   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3544                   SrcV->getType(), ValueVTs, &Offsets);
3545   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3546          "expect a single EVT for swifterror");
3547 
3548   SDValue Src = getValue(SrcV);
3549   // Create a virtual register, then update the virtual register.
3550   auto &DL = DAG.getDataLayout();
3551   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3552   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3553   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3554   // Chain can be getRoot or getControlRoot.
3555   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3556                                       SDValue(Src.getNode(), Src.getResNo()));
3557   DAG.setRoot(CopyNode);
3558   FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3559 }
3560 
3561 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3562   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3563          "call visitLoadFromSwiftError when backend supports swifterror");
3564 
3565   assert(!I.isVolatile() &&
3566          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3567          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3568          "Support volatile, non temporal, invariant for load_from_swift_error");
3569 
3570   const Value *SV = I.getOperand(0);
3571   Type *Ty = I.getType();
3572   AAMDNodes AAInfo;
3573   I.getAAMetadata(AAInfo);
3574   assert(!AA->pointsToConstantMemory(MemoryLocation(
3575              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3576          "load_from_swift_error should not be constant memory");
3577 
3578   SmallVector<EVT, 4> ValueVTs;
3579   SmallVector<uint64_t, 4> Offsets;
3580   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3581                   ValueVTs, &Offsets);
3582   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3583          "expect a single EVT for swifterror");
3584 
3585   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3586   SDValue L = DAG.getCopyFromReg(
3587       getRoot(), getCurSDLoc(),
3588       FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]);
3589 
3590   setValue(&I, L);
3591 }
3592 
3593 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3594   if (I.isAtomic())
3595     return visitAtomicStore(I);
3596 
3597   const Value *SrcV = I.getOperand(0);
3598   const Value *PtrV = I.getOperand(1);
3599 
3600   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3601   if (TLI.supportSwiftError()) {
3602     // Swifterror values can come from either a function parameter with
3603     // swifterror attribute or an alloca with swifterror attribute.
3604     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3605       if (Arg->hasSwiftErrorAttr())
3606         return visitStoreToSwiftError(I);
3607     }
3608 
3609     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3610       if (Alloca->isSwiftError())
3611         return visitStoreToSwiftError(I);
3612     }
3613   }
3614 
3615   SmallVector<EVT, 4> ValueVTs;
3616   SmallVector<uint64_t, 4> Offsets;
3617   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3618                   SrcV->getType(), ValueVTs, &Offsets);
3619   unsigned NumValues = ValueVTs.size();
3620   if (NumValues == 0)
3621     return;
3622 
3623   // Get the lowered operands. Note that we do this after
3624   // checking if NumResults is zero, because with zero results
3625   // the operands won't have values in the map.
3626   SDValue Src = getValue(SrcV);
3627   SDValue Ptr = getValue(PtrV);
3628 
3629   SDValue Root = getRoot();
3630   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3631   SDLoc dl = getCurSDLoc();
3632   EVT PtrVT = Ptr.getValueType();
3633   unsigned Alignment = I.getAlignment();
3634   AAMDNodes AAInfo;
3635   I.getAAMetadata(AAInfo);
3636 
3637   auto MMOFlags = MachineMemOperand::MONone;
3638   if (I.isVolatile())
3639     MMOFlags |= MachineMemOperand::MOVolatile;
3640   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3641     MMOFlags |= MachineMemOperand::MONonTemporal;
3642 
3643   // An aggregate load cannot wrap around the address space, so offsets to its
3644   // parts don't wrap either.
3645   SDNodeFlags Flags;
3646   Flags.setNoUnsignedWrap(true);
3647 
3648   unsigned ChainI = 0;
3649   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3650     // See visitLoad comments.
3651     if (ChainI == MaxParallelChains) {
3652       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3653                                   makeArrayRef(Chains.data(), ChainI));
3654       Root = Chain;
3655       ChainI = 0;
3656     }
3657     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3658                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3659     SDValue St = DAG.getStore(
3660         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3661         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3662     Chains[ChainI] = St;
3663   }
3664 
3665   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3666                                   makeArrayRef(Chains.data(), ChainI));
3667   DAG.setRoot(StoreNode);
3668 }
3669 
3670 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3671                                            bool IsCompressing) {
3672   SDLoc sdl = getCurSDLoc();
3673 
3674   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3675                            unsigned& Alignment) {
3676     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3677     Src0 = I.getArgOperand(0);
3678     Ptr = I.getArgOperand(1);
3679     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3680     Mask = I.getArgOperand(3);
3681   };
3682   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3683                            unsigned& Alignment) {
3684     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3685     Src0 = I.getArgOperand(0);
3686     Ptr = I.getArgOperand(1);
3687     Mask = I.getArgOperand(2);
3688     Alignment = 0;
3689   };
3690 
3691   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3692   unsigned Alignment;
3693   if (IsCompressing)
3694     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3695   else
3696     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3697 
3698   SDValue Ptr = getValue(PtrOperand);
3699   SDValue Src0 = getValue(Src0Operand);
3700   SDValue Mask = getValue(MaskOperand);
3701 
3702   EVT VT = Src0.getValueType();
3703   if (!Alignment)
3704     Alignment = DAG.getEVTAlignment(VT);
3705 
3706   AAMDNodes AAInfo;
3707   I.getAAMetadata(AAInfo);
3708 
3709   MachineMemOperand *MMO =
3710     DAG.getMachineFunction().
3711     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3712                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3713                           Alignment, AAInfo);
3714   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3715                                          MMO, false /* Truncating */,
3716                                          IsCompressing);
3717   DAG.setRoot(StoreNode);
3718   setValue(&I, StoreNode);
3719 }
3720 
3721 // Get a uniform base for the Gather/Scatter intrinsic.
3722 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3723 // We try to represent it as a base pointer + vector of indices.
3724 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3725 // The first operand of the GEP may be a single pointer or a vector of pointers
3726 // Example:
3727 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3728 //  or
3729 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3730 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3731 //
3732 // When the first GEP operand is a single pointer - it is the uniform base we
3733 // are looking for. If first operand of the GEP is a splat vector - we
3734 // extract the spalt value and use it as a uniform base.
3735 // In all other cases the function returns 'false'.
3736 //
3737 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3738                            SelectionDAGBuilder* SDB) {
3739 
3740   SelectionDAG& DAG = SDB->DAG;
3741   LLVMContext &Context = *DAG.getContext();
3742 
3743   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3744   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3745   if (!GEP || GEP->getNumOperands() > 2)
3746     return false;
3747 
3748   const Value *GEPPtr = GEP->getPointerOperand();
3749   if (!GEPPtr->getType()->isVectorTy())
3750     Ptr = GEPPtr;
3751   else if (!(Ptr = getSplatValue(GEPPtr)))
3752     return false;
3753 
3754   Value *IndexVal = GEP->getOperand(1);
3755 
3756   // The operands of the GEP may be defined in another basic block.
3757   // In this case we'll not find nodes for the operands.
3758   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3759     return false;
3760 
3761   Base = SDB->getValue(Ptr);
3762   Index = SDB->getValue(IndexVal);
3763 
3764   // Suppress sign extension.
3765   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3766     if (SDB->findValue(Sext->getOperand(0))) {
3767       IndexVal = Sext->getOperand(0);
3768       Index = SDB->getValue(IndexVal);
3769     }
3770   }
3771   if (!Index.getValueType().isVector()) {
3772     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3773     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3774     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3775     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3776   }
3777   return true;
3778 }
3779 
3780 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3781   SDLoc sdl = getCurSDLoc();
3782 
3783   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3784   const Value *Ptr = I.getArgOperand(1);
3785   SDValue Src0 = getValue(I.getArgOperand(0));
3786   SDValue Mask = getValue(I.getArgOperand(3));
3787   EVT VT = Src0.getValueType();
3788   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3789   if (!Alignment)
3790     Alignment = DAG.getEVTAlignment(VT);
3791   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3792 
3793   AAMDNodes AAInfo;
3794   I.getAAMetadata(AAInfo);
3795 
3796   SDValue Base;
3797   SDValue Index;
3798   const Value *BasePtr = Ptr;
3799   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3800 
3801   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3802   MachineMemOperand *MMO = DAG.getMachineFunction().
3803     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3804                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3805                          Alignment, AAInfo);
3806   if (!UniformBase) {
3807     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3808     Index = getValue(Ptr);
3809   }
3810   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3811   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3812                                          Ops, MMO);
3813   DAG.setRoot(Scatter);
3814   setValue(&I, Scatter);
3815 }
3816 
3817 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3818   SDLoc sdl = getCurSDLoc();
3819 
3820   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3821                            unsigned& Alignment) {
3822     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3823     Ptr = I.getArgOperand(0);
3824     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3825     Mask = I.getArgOperand(2);
3826     Src0 = I.getArgOperand(3);
3827   };
3828   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3829                            unsigned& Alignment) {
3830     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
3831     Ptr = I.getArgOperand(0);
3832     Alignment = 0;
3833     Mask = I.getArgOperand(1);
3834     Src0 = I.getArgOperand(2);
3835   };
3836 
3837   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3838   unsigned Alignment;
3839   if (IsExpanding)
3840     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3841   else
3842     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3843 
3844   SDValue Ptr = getValue(PtrOperand);
3845   SDValue Src0 = getValue(Src0Operand);
3846   SDValue Mask = getValue(MaskOperand);
3847 
3848   EVT VT = Src0.getValueType();
3849   if (!Alignment)
3850     Alignment = DAG.getEVTAlignment(VT);
3851 
3852   AAMDNodes AAInfo;
3853   I.getAAMetadata(AAInfo);
3854   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3855 
3856   // Do not serialize masked loads of constant memory with anything.
3857   bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation(
3858       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3859   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3860 
3861   MachineMemOperand *MMO =
3862     DAG.getMachineFunction().
3863     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3864                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3865                           Alignment, AAInfo, Ranges);
3866 
3867   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3868                                    ISD::NON_EXTLOAD, IsExpanding);
3869   if (AddToChain) {
3870     SDValue OutChain = Load.getValue(1);
3871     DAG.setRoot(OutChain);
3872   }
3873   setValue(&I, Load);
3874 }
3875 
3876 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3877   SDLoc sdl = getCurSDLoc();
3878 
3879   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3880   const Value *Ptr = I.getArgOperand(0);
3881   SDValue Src0 = getValue(I.getArgOperand(3));
3882   SDValue Mask = getValue(I.getArgOperand(2));
3883 
3884   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3885   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3886   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3887   if (!Alignment)
3888     Alignment = DAG.getEVTAlignment(VT);
3889 
3890   AAMDNodes AAInfo;
3891   I.getAAMetadata(AAInfo);
3892   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3893 
3894   SDValue Root = DAG.getRoot();
3895   SDValue Base;
3896   SDValue Index;
3897   const Value *BasePtr = Ptr;
3898   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3899   bool ConstantMemory = false;
3900   if (UniformBase &&
3901       AA->pointsToConstantMemory(MemoryLocation(
3902           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3903           AAInfo))) {
3904     // Do not serialize (non-volatile) loads of constant memory with anything.
3905     Root = DAG.getEntryNode();
3906     ConstantMemory = true;
3907   }
3908 
3909   MachineMemOperand *MMO =
3910     DAG.getMachineFunction().
3911     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3912                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3913                          Alignment, AAInfo, Ranges);
3914 
3915   if (!UniformBase) {
3916     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3917     Index = getValue(Ptr);
3918   }
3919   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3920   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3921                                        Ops, MMO);
3922 
3923   SDValue OutChain = Gather.getValue(1);
3924   if (!ConstantMemory)
3925     PendingLoads.push_back(OutChain);
3926   setValue(&I, Gather);
3927 }
3928 
3929 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3930   SDLoc dl = getCurSDLoc();
3931   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3932   AtomicOrdering FailureOrder = I.getFailureOrdering();
3933   SynchronizationScope Scope = I.getSynchScope();
3934 
3935   SDValue InChain = getRoot();
3936 
3937   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3938   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3939   SDValue L = DAG.getAtomicCmpSwap(
3940       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3941       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3942       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3943       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3944 
3945   SDValue OutChain = L.getValue(2);
3946 
3947   setValue(&I, L);
3948   DAG.setRoot(OutChain);
3949 }
3950 
3951 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3952   SDLoc dl = getCurSDLoc();
3953   ISD::NodeType NT;
3954   switch (I.getOperation()) {
3955   default: llvm_unreachable("Unknown atomicrmw operation");
3956   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3957   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3958   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3959   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3960   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3961   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3962   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3963   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3964   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3965   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3966   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3967   }
3968   AtomicOrdering Order = I.getOrdering();
3969   SynchronizationScope Scope = I.getSynchScope();
3970 
3971   SDValue InChain = getRoot();
3972 
3973   SDValue L =
3974     DAG.getAtomic(NT, dl,
3975                   getValue(I.getValOperand()).getSimpleValueType(),
3976                   InChain,
3977                   getValue(I.getPointerOperand()),
3978                   getValue(I.getValOperand()),
3979                   I.getPointerOperand(),
3980                   /* Alignment=*/ 0, Order, Scope);
3981 
3982   SDValue OutChain = L.getValue(1);
3983 
3984   setValue(&I, L);
3985   DAG.setRoot(OutChain);
3986 }
3987 
3988 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3989   SDLoc dl = getCurSDLoc();
3990   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3991   SDValue Ops[3];
3992   Ops[0] = getRoot();
3993   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3994                            TLI.getPointerTy(DAG.getDataLayout()));
3995   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3996                            TLI.getPointerTy(DAG.getDataLayout()));
3997   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3998 }
3999 
4000 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4001   SDLoc dl = getCurSDLoc();
4002   AtomicOrdering Order = I.getOrdering();
4003   SynchronizationScope Scope = I.getSynchScope();
4004 
4005   SDValue InChain = getRoot();
4006 
4007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4008   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4009 
4010   if (I.getAlignment() < VT.getSizeInBits() / 8)
4011     report_fatal_error("Cannot generate unaligned atomic load");
4012 
4013   MachineMemOperand *MMO =
4014       DAG.getMachineFunction().
4015       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4016                            MachineMemOperand::MOVolatile |
4017                            MachineMemOperand::MOLoad,
4018                            VT.getStoreSize(),
4019                            I.getAlignment() ? I.getAlignment() :
4020                                               DAG.getEVTAlignment(VT),
4021                            AAMDNodes(), nullptr, Scope, Order);
4022 
4023   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4024   SDValue L =
4025       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4026                     getValue(I.getPointerOperand()), MMO);
4027 
4028   SDValue OutChain = L.getValue(1);
4029 
4030   setValue(&I, L);
4031   DAG.setRoot(OutChain);
4032 }
4033 
4034 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4035   SDLoc dl = getCurSDLoc();
4036 
4037   AtomicOrdering Order = I.getOrdering();
4038   SynchronizationScope Scope = I.getSynchScope();
4039 
4040   SDValue InChain = getRoot();
4041 
4042   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4043   EVT VT =
4044       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4045 
4046   if (I.getAlignment() < VT.getSizeInBits() / 8)
4047     report_fatal_error("Cannot generate unaligned atomic store");
4048 
4049   SDValue OutChain =
4050     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4051                   InChain,
4052                   getValue(I.getPointerOperand()),
4053                   getValue(I.getValueOperand()),
4054                   I.getPointerOperand(), I.getAlignment(),
4055                   Order, Scope);
4056 
4057   DAG.setRoot(OutChain);
4058 }
4059 
4060 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4061 /// node.
4062 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4063                                                unsigned Intrinsic) {
4064   // Ignore the callsite's attributes. A specific call site may be marked with
4065   // readnone, but the lowering code will expect the chain based on the
4066   // definition.
4067   const Function *F = I.getCalledFunction();
4068   bool HasChain = !F->doesNotAccessMemory();
4069   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4070 
4071   // Build the operand list.
4072   SmallVector<SDValue, 8> Ops;
4073   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4074     if (OnlyLoad) {
4075       // We don't need to serialize loads against other loads.
4076       Ops.push_back(DAG.getRoot());
4077     } else {
4078       Ops.push_back(getRoot());
4079     }
4080   }
4081 
4082   // Info is set by getTgtMemInstrinsic
4083   TargetLowering::IntrinsicInfo Info;
4084   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4085   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4086 
4087   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4088   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4089       Info.opc == ISD::INTRINSIC_W_CHAIN)
4090     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4091                                         TLI.getPointerTy(DAG.getDataLayout())));
4092 
4093   // Add all operands of the call to the operand list.
4094   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4095     SDValue Op = getValue(I.getArgOperand(i));
4096     Ops.push_back(Op);
4097   }
4098 
4099   SmallVector<EVT, 4> ValueVTs;
4100   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4101 
4102   if (HasChain)
4103     ValueVTs.push_back(MVT::Other);
4104 
4105   SDVTList VTs = DAG.getVTList(ValueVTs);
4106 
4107   // Create the node.
4108   SDValue Result;
4109   if (IsTgtIntrinsic) {
4110     // This is target intrinsic that touches memory
4111     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4112                                      VTs, Ops, Info.memVT,
4113                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4114                                      Info.align, Info.vol,
4115                                      Info.readMem, Info.writeMem, Info.size);
4116   } else if (!HasChain) {
4117     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4118   } else if (!I.getType()->isVoidTy()) {
4119     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4120   } else {
4121     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4122   }
4123 
4124   if (HasChain) {
4125     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4126     if (OnlyLoad)
4127       PendingLoads.push_back(Chain);
4128     else
4129       DAG.setRoot(Chain);
4130   }
4131 
4132   if (!I.getType()->isVoidTy()) {
4133     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4134       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4135       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4136     } else
4137       Result = lowerRangeToAssertZExt(DAG, I, Result);
4138 
4139     setValue(&I, Result);
4140   }
4141 }
4142 
4143 /// GetSignificand - Get the significand and build it into a floating-point
4144 /// number with exponent of 1:
4145 ///
4146 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4147 ///
4148 /// where Op is the hexadecimal representation of floating point value.
4149 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4150   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4151                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4152   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4153                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4154   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4155 }
4156 
4157 /// GetExponent - Get the exponent:
4158 ///
4159 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4160 ///
4161 /// where Op is the hexadecimal representation of floating point value.
4162 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4163                            const TargetLowering &TLI, const SDLoc &dl) {
4164   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4165                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4166   SDValue t1 = DAG.getNode(
4167       ISD::SRL, dl, MVT::i32, t0,
4168       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4169   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4170                            DAG.getConstant(127, dl, MVT::i32));
4171   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4172 }
4173 
4174 /// getF32Constant - Get 32-bit floating point constant.
4175 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4176                               const SDLoc &dl) {
4177   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
4178                            MVT::f32);
4179 }
4180 
4181 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4182                                        SelectionDAG &DAG) {
4183   // TODO: What fast-math-flags should be set on the floating-point nodes?
4184 
4185   //   IntegerPartOfX = ((int32_t)(t0);
4186   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4187 
4188   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4189   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4190   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4191 
4192   //   IntegerPartOfX <<= 23;
4193   IntegerPartOfX = DAG.getNode(
4194       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4195       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4196                                   DAG.getDataLayout())));
4197 
4198   SDValue TwoToFractionalPartOfX;
4199   if (LimitFloatPrecision <= 6) {
4200     // For floating-point precision of 6:
4201     //
4202     //   TwoToFractionalPartOfX =
4203     //     0.997535578f +
4204     //       (0.735607626f + 0.252464424f * x) * x;
4205     //
4206     // error 0.0144103317, which is 6 bits
4207     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4208                              getF32Constant(DAG, 0x3e814304, dl));
4209     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4210                              getF32Constant(DAG, 0x3f3c50c8, dl));
4211     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4212     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4213                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4214   } else if (LimitFloatPrecision <= 12) {
4215     // For floating-point precision of 12:
4216     //
4217     //   TwoToFractionalPartOfX =
4218     //     0.999892986f +
4219     //       (0.696457318f +
4220     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4221     //
4222     // error 0.000107046256, which is 13 to 14 bits
4223     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4224                              getF32Constant(DAG, 0x3da235e3, dl));
4225     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4226                              getF32Constant(DAG, 0x3e65b8f3, dl));
4227     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4228     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4229                              getF32Constant(DAG, 0x3f324b07, dl));
4230     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4231     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4232                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4233   } else { // LimitFloatPrecision <= 18
4234     // For floating-point precision of 18:
4235     //
4236     //   TwoToFractionalPartOfX =
4237     //     0.999999982f +
4238     //       (0.693148872f +
4239     //         (0.240227044f +
4240     //           (0.554906021e-1f +
4241     //             (0.961591928e-2f +
4242     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4243     // error 2.47208000*10^(-7), which is better than 18 bits
4244     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4245                              getF32Constant(DAG, 0x3924b03e, dl));
4246     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4247                              getF32Constant(DAG, 0x3ab24b87, dl));
4248     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4249     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4250                              getF32Constant(DAG, 0x3c1d8c17, dl));
4251     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4252     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4253                              getF32Constant(DAG, 0x3d634a1d, dl));
4254     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4255     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4256                              getF32Constant(DAG, 0x3e75fe14, dl));
4257     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4258     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4259                               getF32Constant(DAG, 0x3f317234, dl));
4260     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4261     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4262                                          getF32Constant(DAG, 0x3f800000, dl));
4263   }
4264 
4265   // Add the exponent into the result in integer domain.
4266   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4267   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4268                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4269 }
4270 
4271 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4272 /// limited-precision mode.
4273 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4274                          const TargetLowering &TLI) {
4275   if (Op.getValueType() == MVT::f32 &&
4276       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4277 
4278     // Put the exponent in the right bit position for later addition to the
4279     // final result:
4280     //
4281     //   #define LOG2OFe 1.4426950f
4282     //   t0 = Op * LOG2OFe
4283 
4284     // TODO: What fast-math-flags should be set here?
4285     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4286                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4287     return getLimitedPrecisionExp2(t0, dl, DAG);
4288   }
4289 
4290   // No special expansion.
4291   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4292 }
4293 
4294 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4295 /// limited-precision mode.
4296 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4297                          const TargetLowering &TLI) {
4298 
4299   // TODO: What fast-math-flags should be set on the floating-point nodes?
4300 
4301   if (Op.getValueType() == MVT::f32 &&
4302       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4303     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4304 
4305     // Scale the exponent by log(2) [0.69314718f].
4306     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4307     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4308                                         getF32Constant(DAG, 0x3f317218, dl));
4309 
4310     // Get the significand and build it into a floating-point number with
4311     // exponent of 1.
4312     SDValue X = GetSignificand(DAG, Op1, dl);
4313 
4314     SDValue LogOfMantissa;
4315     if (LimitFloatPrecision <= 6) {
4316       // For floating-point precision of 6:
4317       //
4318       //   LogofMantissa =
4319       //     -1.1609546f +
4320       //       (1.4034025f - 0.23903021f * x) * x;
4321       //
4322       // error 0.0034276066, which is better than 8 bits
4323       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4324                                getF32Constant(DAG, 0xbe74c456, dl));
4325       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4326                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4327       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4328       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4329                                   getF32Constant(DAG, 0x3f949a29, dl));
4330     } else if (LimitFloatPrecision <= 12) {
4331       // For floating-point precision of 12:
4332       //
4333       //   LogOfMantissa =
4334       //     -1.7417939f +
4335       //       (2.8212026f +
4336       //         (-1.4699568f +
4337       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4338       //
4339       // error 0.000061011436, which is 14 bits
4340       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4341                                getF32Constant(DAG, 0xbd67b6d6, dl));
4342       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4343                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4344       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4345       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4346                                getF32Constant(DAG, 0x3fbc278b, dl));
4347       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4348       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4349                                getF32Constant(DAG, 0x40348e95, dl));
4350       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4351       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4352                                   getF32Constant(DAG, 0x3fdef31a, dl));
4353     } else { // LimitFloatPrecision <= 18
4354       // For floating-point precision of 18:
4355       //
4356       //   LogOfMantissa =
4357       //     -2.1072184f +
4358       //       (4.2372794f +
4359       //         (-3.7029485f +
4360       //           (2.2781945f +
4361       //             (-0.87823314f +
4362       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4363       //
4364       // error 0.0000023660568, which is better than 18 bits
4365       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4366                                getF32Constant(DAG, 0xbc91e5ac, dl));
4367       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4368                                getF32Constant(DAG, 0x3e4350aa, dl));
4369       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4370       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4371                                getF32Constant(DAG, 0x3f60d3e3, dl));
4372       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4373       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4374                                getF32Constant(DAG, 0x4011cdf0, dl));
4375       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4376       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4377                                getF32Constant(DAG, 0x406cfd1c, dl));
4378       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4379       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4380                                getF32Constant(DAG, 0x408797cb, dl));
4381       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4382       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4383                                   getF32Constant(DAG, 0x4006dcab, dl));
4384     }
4385 
4386     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4387   }
4388 
4389   // No special expansion.
4390   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4391 }
4392 
4393 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4394 /// limited-precision mode.
4395 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4396                           const TargetLowering &TLI) {
4397 
4398   // TODO: What fast-math-flags should be set on the floating-point nodes?
4399 
4400   if (Op.getValueType() == MVT::f32 &&
4401       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4402     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4403 
4404     // Get the exponent.
4405     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4406 
4407     // Get the significand and build it into a floating-point number with
4408     // exponent of 1.
4409     SDValue X = GetSignificand(DAG, Op1, dl);
4410 
4411     // Different possible minimax approximations of significand in
4412     // floating-point for various degrees of accuracy over [1,2].
4413     SDValue Log2ofMantissa;
4414     if (LimitFloatPrecision <= 6) {
4415       // For floating-point precision of 6:
4416       //
4417       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4418       //
4419       // error 0.0049451742, which is more than 7 bits
4420       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4421                                getF32Constant(DAG, 0xbeb08fe0, dl));
4422       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4423                                getF32Constant(DAG, 0x40019463, dl));
4424       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4425       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4426                                    getF32Constant(DAG, 0x3fd6633d, dl));
4427     } else if (LimitFloatPrecision <= 12) {
4428       // For floating-point precision of 12:
4429       //
4430       //   Log2ofMantissa =
4431       //     -2.51285454f +
4432       //       (4.07009056f +
4433       //         (-2.12067489f +
4434       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4435       //
4436       // error 0.0000876136000, which is better than 13 bits
4437       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4438                                getF32Constant(DAG, 0xbda7262e, dl));
4439       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4440                                getF32Constant(DAG, 0x3f25280b, dl));
4441       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4442       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4443                                getF32Constant(DAG, 0x4007b923, dl));
4444       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4445       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4446                                getF32Constant(DAG, 0x40823e2f, dl));
4447       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4448       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4449                                    getF32Constant(DAG, 0x4020d29c, dl));
4450     } else { // LimitFloatPrecision <= 18
4451       // For floating-point precision of 18:
4452       //
4453       //   Log2ofMantissa =
4454       //     -3.0400495f +
4455       //       (6.1129976f +
4456       //         (-5.3420409f +
4457       //           (3.2865683f +
4458       //             (-1.2669343f +
4459       //               (0.27515199f -
4460       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4461       //
4462       // error 0.0000018516, which is better than 18 bits
4463       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4464                                getF32Constant(DAG, 0xbcd2769e, dl));
4465       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4466                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4467       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4468       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4469                                getF32Constant(DAG, 0x3fa22ae7, dl));
4470       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4471       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4472                                getF32Constant(DAG, 0x40525723, dl));
4473       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4474       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4475                                getF32Constant(DAG, 0x40aaf200, dl));
4476       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4477       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4478                                getF32Constant(DAG, 0x40c39dad, dl));
4479       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4480       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4481                                    getF32Constant(DAG, 0x4042902c, dl));
4482     }
4483 
4484     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4485   }
4486 
4487   // No special expansion.
4488   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4489 }
4490 
4491 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4492 /// limited-precision mode.
4493 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4494                            const TargetLowering &TLI) {
4495 
4496   // TODO: What fast-math-flags should be set on the floating-point nodes?
4497 
4498   if (Op.getValueType() == MVT::f32 &&
4499       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4500     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4501 
4502     // Scale the exponent by log10(2) [0.30102999f].
4503     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4504     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4505                                         getF32Constant(DAG, 0x3e9a209a, dl));
4506 
4507     // Get the significand and build it into a floating-point number with
4508     // exponent of 1.
4509     SDValue X = GetSignificand(DAG, Op1, dl);
4510 
4511     SDValue Log10ofMantissa;
4512     if (LimitFloatPrecision <= 6) {
4513       // For floating-point precision of 6:
4514       //
4515       //   Log10ofMantissa =
4516       //     -0.50419619f +
4517       //       (0.60948995f - 0.10380950f * x) * x;
4518       //
4519       // error 0.0014886165, which is 6 bits
4520       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4521                                getF32Constant(DAG, 0xbdd49a13, dl));
4522       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4523                                getF32Constant(DAG, 0x3f1c0789, dl));
4524       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4525       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4526                                     getF32Constant(DAG, 0x3f011300, dl));
4527     } else if (LimitFloatPrecision <= 12) {
4528       // For floating-point precision of 12:
4529       //
4530       //   Log10ofMantissa =
4531       //     -0.64831180f +
4532       //       (0.91751397f +
4533       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4534       //
4535       // error 0.00019228036, which is better than 12 bits
4536       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4537                                getF32Constant(DAG, 0x3d431f31, dl));
4538       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4539                                getF32Constant(DAG, 0x3ea21fb2, dl));
4540       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4541       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4542                                getF32Constant(DAG, 0x3f6ae232, dl));
4543       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4544       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4545                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4546     } else { // LimitFloatPrecision <= 18
4547       // For floating-point precision of 18:
4548       //
4549       //   Log10ofMantissa =
4550       //     -0.84299375f +
4551       //       (1.5327582f +
4552       //         (-1.0688956f +
4553       //           (0.49102474f +
4554       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4555       //
4556       // error 0.0000037995730, which is better than 18 bits
4557       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4558                                getF32Constant(DAG, 0x3c5d51ce, dl));
4559       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4560                                getF32Constant(DAG, 0x3e00685a, dl));
4561       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4562       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4563                                getF32Constant(DAG, 0x3efb6798, dl));
4564       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4565       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4566                                getF32Constant(DAG, 0x3f88d192, dl));
4567       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4568       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4569                                getF32Constant(DAG, 0x3fc4316c, dl));
4570       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4571       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4572                                     getF32Constant(DAG, 0x3f57ce70, dl));
4573     }
4574 
4575     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4576   }
4577 
4578   // No special expansion.
4579   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4580 }
4581 
4582 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4583 /// limited-precision mode.
4584 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4585                           const TargetLowering &TLI) {
4586   if (Op.getValueType() == MVT::f32 &&
4587       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4588     return getLimitedPrecisionExp2(Op, dl, DAG);
4589 
4590   // No special expansion.
4591   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4592 }
4593 
4594 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4595 /// limited-precision mode with x == 10.0f.
4596 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4597                          SelectionDAG &DAG, const TargetLowering &TLI) {
4598   bool IsExp10 = false;
4599   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4600       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4601     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4602       APFloat Ten(10.0f);
4603       IsExp10 = LHSC->isExactlyValue(Ten);
4604     }
4605   }
4606 
4607   // TODO: What fast-math-flags should be set on the FMUL node?
4608   if (IsExp10) {
4609     // Put the exponent in the right bit position for later addition to the
4610     // final result:
4611     //
4612     //   #define LOG2OF10 3.3219281f
4613     //   t0 = Op * LOG2OF10;
4614     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4615                              getF32Constant(DAG, 0x40549a78, dl));
4616     return getLimitedPrecisionExp2(t0, dl, DAG);
4617   }
4618 
4619   // No special expansion.
4620   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4621 }
4622 
4623 
4624 /// ExpandPowI - Expand a llvm.powi intrinsic.
4625 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4626                           SelectionDAG &DAG) {
4627   // If RHS is a constant, we can expand this out to a multiplication tree,
4628   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4629   // optimizing for size, we only want to do this if the expansion would produce
4630   // a small number of multiplies, otherwise we do the full expansion.
4631   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4632     // Get the exponent as a positive value.
4633     unsigned Val = RHSC->getSExtValue();
4634     if ((int)Val < 0) Val = -Val;
4635 
4636     // powi(x, 0) -> 1.0
4637     if (Val == 0)
4638       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4639 
4640     const Function *F = DAG.getMachineFunction().getFunction();
4641     if (!F->optForSize() ||
4642         // If optimizing for size, don't insert too many multiplies.
4643         // This inserts up to 5 multiplies.
4644         countPopulation(Val) + Log2_32(Val) < 7) {
4645       // We use the simple binary decomposition method to generate the multiply
4646       // sequence.  There are more optimal ways to do this (for example,
4647       // powi(x,15) generates one more multiply than it should), but this has
4648       // the benefit of being both really simple and much better than a libcall.
4649       SDValue Res;  // Logically starts equal to 1.0
4650       SDValue CurSquare = LHS;
4651       // TODO: Intrinsics should have fast-math-flags that propagate to these
4652       // nodes.
4653       while (Val) {
4654         if (Val & 1) {
4655           if (Res.getNode())
4656             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4657           else
4658             Res = CurSquare;  // 1.0*CurSquare.
4659         }
4660 
4661         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4662                                 CurSquare, CurSquare);
4663         Val >>= 1;
4664       }
4665 
4666       // If the original was negative, invert the result, producing 1/(x*x*x).
4667       if (RHSC->getSExtValue() < 0)
4668         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4669                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4670       return Res;
4671     }
4672   }
4673 
4674   // Otherwise, expand to a libcall.
4675   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4676 }
4677 
4678 // getUnderlyingArgReg - Find underlying register used for a truncated or
4679 // bitcasted argument.
4680 static unsigned getUnderlyingArgReg(const SDValue &N) {
4681   switch (N.getOpcode()) {
4682   case ISD::CopyFromReg:
4683     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4684   case ISD::BITCAST:
4685   case ISD::AssertZext:
4686   case ISD::AssertSext:
4687   case ISD::TRUNCATE:
4688     return getUnderlyingArgReg(N.getOperand(0));
4689   default:
4690     return 0;
4691   }
4692 }
4693 
4694 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4695 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4696 /// At the end of instruction selection, they will be inserted to the entry BB.
4697 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4698     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4699     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4700   const Argument *Arg = dyn_cast<Argument>(V);
4701   if (!Arg)
4702     return false;
4703 
4704   MachineFunction &MF = DAG.getMachineFunction();
4705   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4706 
4707   // Ignore inlined function arguments here.
4708   //
4709   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4710   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4711     return false;
4712 
4713   Optional<MachineOperand> Op;
4714   // Some arguments' frame index is recorded during argument lowering.
4715   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4716     Op = MachineOperand::CreateFI(FI);
4717 
4718   if (!Op && N.getNode()) {
4719     unsigned Reg = getUnderlyingArgReg(N);
4720     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4721       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4722       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4723       if (PR)
4724         Reg = PR;
4725     }
4726     if (Reg)
4727       Op = MachineOperand::CreateReg(Reg, false);
4728   }
4729 
4730   if (!Op) {
4731     // Check if ValueMap has reg number.
4732     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4733     if (VMI != FuncInfo.ValueMap.end())
4734       Op = MachineOperand::CreateReg(VMI->second, false);
4735   }
4736 
4737   if (!Op && N.getNode())
4738     // Check if frame index is available.
4739     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4740       if (FrameIndexSDNode *FINode =
4741           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4742         Op = MachineOperand::CreateFI(FINode->getIndex());
4743 
4744   if (!Op)
4745     return false;
4746 
4747   assert(Variable->isValidLocationForIntrinsic(DL) &&
4748          "Expected inlined-at fields to agree");
4749   if (Op->isReg())
4750     FuncInfo.ArgDbgValues.push_back(
4751         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4752                 Op->getReg(), Offset, Variable, Expr));
4753   else
4754     FuncInfo.ArgDbgValues.push_back(
4755         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4756             .addOperand(*Op)
4757             .addImm(Offset)
4758             .addMetadata(Variable)
4759             .addMetadata(Expr));
4760 
4761   return true;
4762 }
4763 
4764 /// Return the appropriate SDDbgValue based on N.
4765 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4766                                              DILocalVariable *Variable,
4767                                              DIExpression *Expr, int64_t Offset,
4768                                              DebugLoc dl,
4769                                              unsigned DbgSDNodeOrder) {
4770   SDDbgValue *SDV;
4771   auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode());
4772   if (FISDN && Expr->startsWithDeref()) {
4773     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4774     // stack slot locations as such instead of as indirectly addressed
4775     // locations.
4776     ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1,
4777                                         Expr->elements_end());
4778     DIExpression *DerefedDIExpr =
4779         DIExpression::get(*DAG.getContext(), TrailingElements);
4780     int FI = FISDN->getIndex();
4781     SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl,
4782                                     DbgSDNodeOrder);
4783   } else {
4784     SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false,
4785                           Offset, dl, DbgSDNodeOrder);
4786   }
4787   return SDV;
4788 }
4789 
4790 // VisualStudio defines setjmp as _setjmp
4791 #if defined(_MSC_VER) && defined(setjmp) && \
4792                          !defined(setjmp_undefined_for_msvc)
4793 #  pragma push_macro("setjmp")
4794 #  undef setjmp
4795 #  define setjmp_undefined_for_msvc
4796 #endif
4797 
4798 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4799 /// we want to emit this as a call to a named external function, return the name
4800 /// otherwise lower it and return null.
4801 const char *
4802 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4803   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4804   SDLoc sdl = getCurSDLoc();
4805   DebugLoc dl = getCurDebugLoc();
4806   SDValue Res;
4807 
4808   switch (Intrinsic) {
4809   default:
4810     // By default, turn this into a target intrinsic node.
4811     visitTargetIntrinsic(I, Intrinsic);
4812     return nullptr;
4813   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4814   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4815   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4816   case Intrinsic::returnaddress:
4817     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4818                              TLI.getPointerTy(DAG.getDataLayout()),
4819                              getValue(I.getArgOperand(0))));
4820     return nullptr;
4821   case Intrinsic::addressofreturnaddress:
4822     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
4823                              TLI.getPointerTy(DAG.getDataLayout())));
4824     return nullptr;
4825   case Intrinsic::frameaddress:
4826     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4827                              TLI.getPointerTy(DAG.getDataLayout()),
4828                              getValue(I.getArgOperand(0))));
4829     return nullptr;
4830   case Intrinsic::read_register: {
4831     Value *Reg = I.getArgOperand(0);
4832     SDValue Chain = getRoot();
4833     SDValue RegName =
4834         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4835     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4836     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4837       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4838     setValue(&I, Res);
4839     DAG.setRoot(Res.getValue(1));
4840     return nullptr;
4841   }
4842   case Intrinsic::write_register: {
4843     Value *Reg = I.getArgOperand(0);
4844     Value *RegValue = I.getArgOperand(1);
4845     SDValue Chain = getRoot();
4846     SDValue RegName =
4847         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4848     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4849                             RegName, getValue(RegValue)));
4850     return nullptr;
4851   }
4852   case Intrinsic::setjmp:
4853     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4854   case Intrinsic::longjmp:
4855     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4856   case Intrinsic::memcpy: {
4857     SDValue Op1 = getValue(I.getArgOperand(0));
4858     SDValue Op2 = getValue(I.getArgOperand(1));
4859     SDValue Op3 = getValue(I.getArgOperand(2));
4860     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4861     if (!Align)
4862       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4863     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4864     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4865     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4866                                false, isTC,
4867                                MachinePointerInfo(I.getArgOperand(0)),
4868                                MachinePointerInfo(I.getArgOperand(1)));
4869     updateDAGForMaybeTailCall(MC);
4870     return nullptr;
4871   }
4872   case Intrinsic::memset: {
4873     SDValue Op1 = getValue(I.getArgOperand(0));
4874     SDValue Op2 = getValue(I.getArgOperand(1));
4875     SDValue Op3 = getValue(I.getArgOperand(2));
4876     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4877     if (!Align)
4878       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4879     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4880     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4881     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4882                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4883     updateDAGForMaybeTailCall(MS);
4884     return nullptr;
4885   }
4886   case Intrinsic::memmove: {
4887     SDValue Op1 = getValue(I.getArgOperand(0));
4888     SDValue Op2 = getValue(I.getArgOperand(1));
4889     SDValue Op3 = getValue(I.getArgOperand(2));
4890     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4891     if (!Align)
4892       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4893     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4894     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4895     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4896                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4897                                 MachinePointerInfo(I.getArgOperand(1)));
4898     updateDAGForMaybeTailCall(MM);
4899     return nullptr;
4900   }
4901   case Intrinsic::dbg_declare: {
4902     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4903     DILocalVariable *Variable = DI.getVariable();
4904     DIExpression *Expression = DI.getExpression();
4905     const Value *Address = DI.getAddress();
4906     assert(Variable && "Missing variable");
4907     if (!Address) {
4908       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4909       return nullptr;
4910     }
4911 
4912     // Check if address has undef value.
4913     if (isa<UndefValue>(Address) ||
4914         (Address->use_empty() && !isa<Argument>(Address))) {
4915       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4916       return nullptr;
4917     }
4918 
4919     SDValue &N = NodeMap[Address];
4920     if (!N.getNode() && isa<Argument>(Address))
4921       // Check unused arguments map.
4922       N = UnusedArgNodeMap[Address];
4923     SDDbgValue *SDV;
4924     if (N.getNode()) {
4925       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4926         Address = BCI->getOperand(0);
4927       // Parameters are handled specially.
4928       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4929       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4930       if (isParameter && FINode) {
4931         // Byval parameter. We have a frame index at this point.
4932         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4933                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4934       } else if (isa<Argument>(Address)) {
4935         // Address is an argument, so try to emit its dbg value using
4936         // virtual register info from the FuncInfo.ValueMap.
4937         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4938                                  N);
4939         return nullptr;
4940       } else {
4941         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4942                               true, 0, dl, SDNodeOrder);
4943       }
4944       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4945     } else {
4946       // If Address is an argument then try to emit its dbg value using
4947       // virtual register info from the FuncInfo.ValueMap.
4948       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4949                                     N)) {
4950         // If variable is pinned by a alloca in dominating bb then
4951         // use StaticAllocaMap.
4952         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4953           if (AI->getParent() != DI.getParent()) {
4954             DenseMap<const AllocaInst*, int>::iterator SI =
4955               FuncInfo.StaticAllocaMap.find(AI);
4956             if (SI != FuncInfo.StaticAllocaMap.end()) {
4957               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4958                                               0, dl, SDNodeOrder);
4959               DAG.AddDbgValue(SDV, nullptr, false);
4960               return nullptr;
4961             }
4962           }
4963         }
4964         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4965       }
4966     }
4967     return nullptr;
4968   }
4969   case Intrinsic::dbg_value: {
4970     const DbgValueInst &DI = cast<DbgValueInst>(I);
4971     assert(DI.getVariable() && "Missing variable");
4972 
4973     DILocalVariable *Variable = DI.getVariable();
4974     DIExpression *Expression = DI.getExpression();
4975     uint64_t Offset = DI.getOffset();
4976     const Value *V = DI.getValue();
4977     if (!V)
4978       return nullptr;
4979 
4980     SDDbgValue *SDV;
4981     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4982       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4983                                     SDNodeOrder);
4984       DAG.AddDbgValue(SDV, nullptr, false);
4985     } else {
4986       // Do not use getValue() in here; we don't want to generate code at
4987       // this point if it hasn't been done yet.
4988       SDValue N = NodeMap[V];
4989       if (!N.getNode() && isa<Argument>(V))
4990         // Check unused arguments map.
4991         N = UnusedArgNodeMap[V];
4992       if (N.getNode()) {
4993         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4994                                       false, N)) {
4995           SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder);
4996           DAG.AddDbgValue(SDV, N.getNode(), false);
4997         }
4998       } else if (!V->use_empty() ) {
4999         // Do not call getValue(V) yet, as we don't want to generate code.
5000         // Remember it for later.
5001         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5002         DanglingDebugInfoMap[V] = DDI;
5003       } else {
5004         // We may expand this to cover more cases.  One case where we have no
5005         // data available is an unreferenced parameter.
5006         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5007       }
5008     }
5009 
5010     // Build a debug info table entry.
5011     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
5012       V = BCI->getOperand(0);
5013     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
5014     // Don't handle byval struct arguments or VLAs, for example.
5015     if (!AI) {
5016       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5017       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5018       return nullptr;
5019     }
5020     DenseMap<const AllocaInst*, int>::iterator SI =
5021       FuncInfo.StaticAllocaMap.find(AI);
5022     if (SI == FuncInfo.StaticAllocaMap.end())
5023       return nullptr; // VLAs.
5024     return nullptr;
5025   }
5026 
5027   case Intrinsic::eh_typeid_for: {
5028     // Find the type id for the given typeinfo.
5029     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5030     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
5031     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5032     setValue(&I, Res);
5033     return nullptr;
5034   }
5035 
5036   case Intrinsic::eh_return_i32:
5037   case Intrinsic::eh_return_i64:
5038     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
5039     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5040                             MVT::Other,
5041                             getControlRoot(),
5042                             getValue(I.getArgOperand(0)),
5043                             getValue(I.getArgOperand(1))));
5044     return nullptr;
5045   case Intrinsic::eh_unwind_init:
5046     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
5047     return nullptr;
5048   case Intrinsic::eh_dwarf_cfa: {
5049     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5050                              TLI.getPointerTy(DAG.getDataLayout()),
5051                              getValue(I.getArgOperand(0))));
5052     return nullptr;
5053   }
5054   case Intrinsic::eh_sjlj_callsite: {
5055     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5056     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5057     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5058     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5059 
5060     MMI.setCurrentCallSite(CI->getZExtValue());
5061     return nullptr;
5062   }
5063   case Intrinsic::eh_sjlj_functioncontext: {
5064     // Get and store the index of the function context.
5065     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5066     AllocaInst *FnCtx =
5067       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5068     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5069     MFI.setFunctionContextIndex(FI);
5070     return nullptr;
5071   }
5072   case Intrinsic::eh_sjlj_setjmp: {
5073     SDValue Ops[2];
5074     Ops[0] = getRoot();
5075     Ops[1] = getValue(I.getArgOperand(0));
5076     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5077                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5078     setValue(&I, Op.getValue(0));
5079     DAG.setRoot(Op.getValue(1));
5080     return nullptr;
5081   }
5082   case Intrinsic::eh_sjlj_longjmp: {
5083     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5084                             getRoot(), getValue(I.getArgOperand(0))));
5085     return nullptr;
5086   }
5087   case Intrinsic::eh_sjlj_setup_dispatch: {
5088     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5089                             getRoot()));
5090     return nullptr;
5091   }
5092 
5093   case Intrinsic::masked_gather:
5094     visitMaskedGather(I);
5095     return nullptr;
5096   case Intrinsic::masked_load:
5097     visitMaskedLoad(I);
5098     return nullptr;
5099   case Intrinsic::masked_scatter:
5100     visitMaskedScatter(I);
5101     return nullptr;
5102   case Intrinsic::masked_store:
5103     visitMaskedStore(I);
5104     return nullptr;
5105   case Intrinsic::masked_expandload:
5106     visitMaskedLoad(I, true /* IsExpanding */);
5107     return nullptr;
5108   case Intrinsic::masked_compressstore:
5109     visitMaskedStore(I, true /* IsCompressing */);
5110     return nullptr;
5111   case Intrinsic::x86_mmx_pslli_w:
5112   case Intrinsic::x86_mmx_pslli_d:
5113   case Intrinsic::x86_mmx_pslli_q:
5114   case Intrinsic::x86_mmx_psrli_w:
5115   case Intrinsic::x86_mmx_psrli_d:
5116   case Intrinsic::x86_mmx_psrli_q:
5117   case Intrinsic::x86_mmx_psrai_w:
5118   case Intrinsic::x86_mmx_psrai_d: {
5119     SDValue ShAmt = getValue(I.getArgOperand(1));
5120     if (isa<ConstantSDNode>(ShAmt)) {
5121       visitTargetIntrinsic(I, Intrinsic);
5122       return nullptr;
5123     }
5124     unsigned NewIntrinsic = 0;
5125     EVT ShAmtVT = MVT::v2i32;
5126     switch (Intrinsic) {
5127     case Intrinsic::x86_mmx_pslli_w:
5128       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5129       break;
5130     case Intrinsic::x86_mmx_pslli_d:
5131       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5132       break;
5133     case Intrinsic::x86_mmx_pslli_q:
5134       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5135       break;
5136     case Intrinsic::x86_mmx_psrli_w:
5137       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5138       break;
5139     case Intrinsic::x86_mmx_psrli_d:
5140       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5141       break;
5142     case Intrinsic::x86_mmx_psrli_q:
5143       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5144       break;
5145     case Intrinsic::x86_mmx_psrai_w:
5146       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5147       break;
5148     case Intrinsic::x86_mmx_psrai_d:
5149       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5150       break;
5151     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5152     }
5153 
5154     // The vector shift intrinsics with scalars uses 32b shift amounts but
5155     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5156     // to be zero.
5157     // We must do this early because v2i32 is not a legal type.
5158     SDValue ShOps[2];
5159     ShOps[0] = ShAmt;
5160     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5161     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5162     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5163     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5164     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5165                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5166                        getValue(I.getArgOperand(0)), ShAmt);
5167     setValue(&I, Res);
5168     return nullptr;
5169   }
5170   case Intrinsic::convertff:
5171   case Intrinsic::convertfsi:
5172   case Intrinsic::convertfui:
5173   case Intrinsic::convertsif:
5174   case Intrinsic::convertuif:
5175   case Intrinsic::convertss:
5176   case Intrinsic::convertsu:
5177   case Intrinsic::convertus:
5178   case Intrinsic::convertuu: {
5179     ISD::CvtCode Code = ISD::CVT_INVALID;
5180     switch (Intrinsic) {
5181     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5182     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5183     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5184     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5185     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5186     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5187     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5188     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5189     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5190     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5191     }
5192     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5193     const Value *Op1 = I.getArgOperand(0);
5194     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5195                                DAG.getValueType(DestVT),
5196                                DAG.getValueType(getValue(Op1).getValueType()),
5197                                getValue(I.getArgOperand(1)),
5198                                getValue(I.getArgOperand(2)),
5199                                Code);
5200     setValue(&I, Res);
5201     return nullptr;
5202   }
5203   case Intrinsic::powi:
5204     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5205                             getValue(I.getArgOperand(1)), DAG));
5206     return nullptr;
5207   case Intrinsic::log:
5208     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5209     return nullptr;
5210   case Intrinsic::log2:
5211     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5212     return nullptr;
5213   case Intrinsic::log10:
5214     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5215     return nullptr;
5216   case Intrinsic::exp:
5217     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5218     return nullptr;
5219   case Intrinsic::exp2:
5220     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5221     return nullptr;
5222   case Intrinsic::pow:
5223     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5224                            getValue(I.getArgOperand(1)), DAG, TLI));
5225     return nullptr;
5226   case Intrinsic::sqrt:
5227   case Intrinsic::fabs:
5228   case Intrinsic::sin:
5229   case Intrinsic::cos:
5230   case Intrinsic::floor:
5231   case Intrinsic::ceil:
5232   case Intrinsic::trunc:
5233   case Intrinsic::rint:
5234   case Intrinsic::nearbyint:
5235   case Intrinsic::round:
5236   case Intrinsic::canonicalize: {
5237     unsigned Opcode;
5238     switch (Intrinsic) {
5239     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5240     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5241     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5242     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5243     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5244     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5245     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5246     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5247     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5248     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5249     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5250     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5251     }
5252 
5253     setValue(&I, DAG.getNode(Opcode, sdl,
5254                              getValue(I.getArgOperand(0)).getValueType(),
5255                              getValue(I.getArgOperand(0))));
5256     return nullptr;
5257   }
5258   case Intrinsic::minnum: {
5259     auto VT = getValue(I.getArgOperand(0)).getValueType();
5260     unsigned Opc =
5261         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5262             ? ISD::FMINNAN
5263             : ISD::FMINNUM;
5264     setValue(&I, DAG.getNode(Opc, sdl, VT,
5265                              getValue(I.getArgOperand(0)),
5266                              getValue(I.getArgOperand(1))));
5267     return nullptr;
5268   }
5269   case Intrinsic::maxnum: {
5270     auto VT = getValue(I.getArgOperand(0)).getValueType();
5271     unsigned Opc =
5272         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5273             ? ISD::FMAXNAN
5274             : ISD::FMAXNUM;
5275     setValue(&I, DAG.getNode(Opc, sdl, VT,
5276                              getValue(I.getArgOperand(0)),
5277                              getValue(I.getArgOperand(1))));
5278     return nullptr;
5279   }
5280   case Intrinsic::copysign:
5281     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5282                              getValue(I.getArgOperand(0)).getValueType(),
5283                              getValue(I.getArgOperand(0)),
5284                              getValue(I.getArgOperand(1))));
5285     return nullptr;
5286   case Intrinsic::fma:
5287     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5288                              getValue(I.getArgOperand(0)).getValueType(),
5289                              getValue(I.getArgOperand(0)),
5290                              getValue(I.getArgOperand(1)),
5291                              getValue(I.getArgOperand(2))));
5292     return nullptr;
5293   case Intrinsic::fmuladd: {
5294     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5295     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5296         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5297       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5298                                getValue(I.getArgOperand(0)).getValueType(),
5299                                getValue(I.getArgOperand(0)),
5300                                getValue(I.getArgOperand(1)),
5301                                getValue(I.getArgOperand(2))));
5302     } else {
5303       // TODO: Intrinsic calls should have fast-math-flags.
5304       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5305                                 getValue(I.getArgOperand(0)).getValueType(),
5306                                 getValue(I.getArgOperand(0)),
5307                                 getValue(I.getArgOperand(1)));
5308       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5309                                 getValue(I.getArgOperand(0)).getValueType(),
5310                                 Mul,
5311                                 getValue(I.getArgOperand(2)));
5312       setValue(&I, Add);
5313     }
5314     return nullptr;
5315   }
5316   case Intrinsic::convert_to_fp16:
5317     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5318                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5319                                          getValue(I.getArgOperand(0)),
5320                                          DAG.getTargetConstant(0, sdl,
5321                                                                MVT::i32))));
5322     return nullptr;
5323   case Intrinsic::convert_from_fp16:
5324     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5325                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5326                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5327                                          getValue(I.getArgOperand(0)))));
5328     return nullptr;
5329   case Intrinsic::pcmarker: {
5330     SDValue Tmp = getValue(I.getArgOperand(0));
5331     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5332     return nullptr;
5333   }
5334   case Intrinsic::readcyclecounter: {
5335     SDValue Op = getRoot();
5336     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5337                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5338     setValue(&I, Res);
5339     DAG.setRoot(Res.getValue(1));
5340     return nullptr;
5341   }
5342   case Intrinsic::bitreverse:
5343     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5344                              getValue(I.getArgOperand(0)).getValueType(),
5345                              getValue(I.getArgOperand(0))));
5346     return nullptr;
5347   case Intrinsic::bswap:
5348     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5349                              getValue(I.getArgOperand(0)).getValueType(),
5350                              getValue(I.getArgOperand(0))));
5351     return nullptr;
5352   case Intrinsic::cttz: {
5353     SDValue Arg = getValue(I.getArgOperand(0));
5354     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5355     EVT Ty = Arg.getValueType();
5356     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5357                              sdl, Ty, Arg));
5358     return nullptr;
5359   }
5360   case Intrinsic::ctlz: {
5361     SDValue Arg = getValue(I.getArgOperand(0));
5362     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5363     EVT Ty = Arg.getValueType();
5364     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5365                              sdl, Ty, Arg));
5366     return nullptr;
5367   }
5368   case Intrinsic::ctpop: {
5369     SDValue Arg = getValue(I.getArgOperand(0));
5370     EVT Ty = Arg.getValueType();
5371     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5372     return nullptr;
5373   }
5374   case Intrinsic::stacksave: {
5375     SDValue Op = getRoot();
5376     Res = DAG.getNode(
5377         ISD::STACKSAVE, sdl,
5378         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5379     setValue(&I, Res);
5380     DAG.setRoot(Res.getValue(1));
5381     return nullptr;
5382   }
5383   case Intrinsic::stackrestore: {
5384     Res = getValue(I.getArgOperand(0));
5385     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5386     return nullptr;
5387   }
5388   case Intrinsic::get_dynamic_area_offset: {
5389     SDValue Op = getRoot();
5390     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5391     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5392     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5393     // target.
5394     if (PtrTy != ResTy)
5395       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5396                          " intrinsic!");
5397     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5398                       Op);
5399     DAG.setRoot(Op);
5400     setValue(&I, Res);
5401     return nullptr;
5402   }
5403   case Intrinsic::stackguard: {
5404     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5405     MachineFunction &MF = DAG.getMachineFunction();
5406     const Module &M = *MF.getFunction()->getParent();
5407     SDValue Chain = getRoot();
5408     if (TLI.useLoadStackGuardNode()) {
5409       Res = getLoadStackGuard(DAG, sdl, Chain);
5410     } else {
5411       const Value *Global = TLI.getSDagStackGuard(M);
5412       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5413       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5414                         MachinePointerInfo(Global, 0), Align,
5415                         MachineMemOperand::MOVolatile);
5416     }
5417     DAG.setRoot(Chain);
5418     setValue(&I, Res);
5419     return nullptr;
5420   }
5421   case Intrinsic::stackprotector: {
5422     // Emit code into the DAG to store the stack guard onto the stack.
5423     MachineFunction &MF = DAG.getMachineFunction();
5424     MachineFrameInfo &MFI = MF.getFrameInfo();
5425     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5426     SDValue Src, Chain = getRoot();
5427 
5428     if (TLI.useLoadStackGuardNode())
5429       Src = getLoadStackGuard(DAG, sdl, Chain);
5430     else
5431       Src = getValue(I.getArgOperand(0));   // The guard's value.
5432 
5433     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5434 
5435     int FI = FuncInfo.StaticAllocaMap[Slot];
5436     MFI.setStackProtectorIndex(FI);
5437 
5438     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5439 
5440     // Store the stack protector onto the stack.
5441     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5442                                                  DAG.getMachineFunction(), FI),
5443                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5444     setValue(&I, Res);
5445     DAG.setRoot(Res);
5446     return nullptr;
5447   }
5448   case Intrinsic::objectsize: {
5449     // If we don't know by now, we're never going to know.
5450     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5451 
5452     assert(CI && "Non-constant type in __builtin_object_size?");
5453 
5454     SDValue Arg = getValue(I.getCalledValue());
5455     EVT Ty = Arg.getValueType();
5456 
5457     if (CI->isZero())
5458       Res = DAG.getConstant(-1ULL, sdl, Ty);
5459     else
5460       Res = DAG.getConstant(0, sdl, Ty);
5461 
5462     setValue(&I, Res);
5463     return nullptr;
5464   }
5465   case Intrinsic::annotation:
5466   case Intrinsic::ptr_annotation:
5467   case Intrinsic::invariant_group_barrier:
5468     // Drop the intrinsic, but forward the value
5469     setValue(&I, getValue(I.getOperand(0)));
5470     return nullptr;
5471   case Intrinsic::assume:
5472   case Intrinsic::var_annotation:
5473     // Discard annotate attributes and assumptions
5474     return nullptr;
5475 
5476   case Intrinsic::init_trampoline: {
5477     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5478 
5479     SDValue Ops[6];
5480     Ops[0] = getRoot();
5481     Ops[1] = getValue(I.getArgOperand(0));
5482     Ops[2] = getValue(I.getArgOperand(1));
5483     Ops[3] = getValue(I.getArgOperand(2));
5484     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5485     Ops[5] = DAG.getSrcValue(F);
5486 
5487     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5488 
5489     DAG.setRoot(Res);
5490     return nullptr;
5491   }
5492   case Intrinsic::adjust_trampoline: {
5493     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5494                              TLI.getPointerTy(DAG.getDataLayout()),
5495                              getValue(I.getArgOperand(0))));
5496     return nullptr;
5497   }
5498   case Intrinsic::gcroot: {
5499     MachineFunction &MF = DAG.getMachineFunction();
5500     const Function *F = MF.getFunction();
5501     (void)F;
5502     assert(F->hasGC() &&
5503            "only valid in functions with gc specified, enforced by Verifier");
5504     assert(GFI && "implied by previous");
5505     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5506     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5507 
5508     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5509     GFI->addStackRoot(FI->getIndex(), TypeMap);
5510     return nullptr;
5511   }
5512   case Intrinsic::gcread:
5513   case Intrinsic::gcwrite:
5514     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5515   case Intrinsic::flt_rounds:
5516     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5517     return nullptr;
5518 
5519   case Intrinsic::expect: {
5520     // Just replace __builtin_expect(exp, c) with EXP.
5521     setValue(&I, getValue(I.getArgOperand(0)));
5522     return nullptr;
5523   }
5524 
5525   case Intrinsic::debugtrap:
5526   case Intrinsic::trap: {
5527     StringRef TrapFuncName =
5528         I.getAttributes()
5529             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5530             .getValueAsString();
5531     if (TrapFuncName.empty()) {
5532       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5533         ISD::TRAP : ISD::DEBUGTRAP;
5534       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5535       return nullptr;
5536     }
5537     TargetLowering::ArgListTy Args;
5538 
5539     TargetLowering::CallLoweringInfo CLI(DAG);
5540     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5541         CallingConv::C, I.getType(),
5542         DAG.getExternalSymbol(TrapFuncName.data(),
5543                               TLI.getPointerTy(DAG.getDataLayout())),
5544         std::move(Args));
5545 
5546     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5547     DAG.setRoot(Result.second);
5548     return nullptr;
5549   }
5550 
5551   case Intrinsic::uadd_with_overflow:
5552   case Intrinsic::sadd_with_overflow:
5553   case Intrinsic::usub_with_overflow:
5554   case Intrinsic::ssub_with_overflow:
5555   case Intrinsic::umul_with_overflow:
5556   case Intrinsic::smul_with_overflow: {
5557     ISD::NodeType Op;
5558     switch (Intrinsic) {
5559     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5560     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5561     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5562     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5563     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5564     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5565     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5566     }
5567     SDValue Op1 = getValue(I.getArgOperand(0));
5568     SDValue Op2 = getValue(I.getArgOperand(1));
5569 
5570     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5571     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5572     return nullptr;
5573   }
5574   case Intrinsic::prefetch: {
5575     SDValue Ops[5];
5576     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5577     Ops[0] = getRoot();
5578     Ops[1] = getValue(I.getArgOperand(0));
5579     Ops[2] = getValue(I.getArgOperand(1));
5580     Ops[3] = getValue(I.getArgOperand(2));
5581     Ops[4] = getValue(I.getArgOperand(3));
5582     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5583                                         DAG.getVTList(MVT::Other), Ops,
5584                                         EVT::getIntegerVT(*Context, 8),
5585                                         MachinePointerInfo(I.getArgOperand(0)),
5586                                         0, /* align */
5587                                         false, /* volatile */
5588                                         rw==0, /* read */
5589                                         rw==1)); /* write */
5590     return nullptr;
5591   }
5592   case Intrinsic::lifetime_start:
5593   case Intrinsic::lifetime_end: {
5594     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5595     // Stack coloring is not enabled in O0, discard region information.
5596     if (TM.getOptLevel() == CodeGenOpt::None)
5597       return nullptr;
5598 
5599     SmallVector<Value *, 4> Allocas;
5600     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5601 
5602     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5603            E = Allocas.end(); Object != E; ++Object) {
5604       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5605 
5606       // Could not find an Alloca.
5607       if (!LifetimeObject)
5608         continue;
5609 
5610       // First check that the Alloca is static, otherwise it won't have a
5611       // valid frame index.
5612       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5613       if (SI == FuncInfo.StaticAllocaMap.end())
5614         return nullptr;
5615 
5616       int FI = SI->second;
5617 
5618       SDValue Ops[2];
5619       Ops[0] = getRoot();
5620       Ops[1] =
5621           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5622       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5623 
5624       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5625       DAG.setRoot(Res);
5626     }
5627     return nullptr;
5628   }
5629   case Intrinsic::invariant_start:
5630     // Discard region information.
5631     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5632     return nullptr;
5633   case Intrinsic::invariant_end:
5634     // Discard region information.
5635     return nullptr;
5636   case Intrinsic::clear_cache:
5637     return TLI.getClearCacheBuiltinName();
5638   case Intrinsic::donothing:
5639     // ignore
5640     return nullptr;
5641   case Intrinsic::experimental_stackmap: {
5642     visitStackmap(I);
5643     return nullptr;
5644   }
5645   case Intrinsic::experimental_patchpoint_void:
5646   case Intrinsic::experimental_patchpoint_i64: {
5647     visitPatchpoint(&I);
5648     return nullptr;
5649   }
5650   case Intrinsic::experimental_gc_statepoint: {
5651     LowerStatepoint(ImmutableStatepoint(&I));
5652     return nullptr;
5653   }
5654   case Intrinsic::experimental_gc_result: {
5655     visitGCResult(cast<GCResultInst>(I));
5656     return nullptr;
5657   }
5658   case Intrinsic::experimental_gc_relocate: {
5659     visitGCRelocate(cast<GCRelocateInst>(I));
5660     return nullptr;
5661   }
5662   case Intrinsic::instrprof_increment:
5663     llvm_unreachable("instrprof failed to lower an increment");
5664   case Intrinsic::instrprof_value_profile:
5665     llvm_unreachable("instrprof failed to lower a value profiling call");
5666   case Intrinsic::localescape: {
5667     MachineFunction &MF = DAG.getMachineFunction();
5668     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5669 
5670     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5671     // is the same on all targets.
5672     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5673       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5674       if (isa<ConstantPointerNull>(Arg))
5675         continue; // Skip null pointers. They represent a hole in index space.
5676       AllocaInst *Slot = cast<AllocaInst>(Arg);
5677       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5678              "can only escape static allocas");
5679       int FI = FuncInfo.StaticAllocaMap[Slot];
5680       MCSymbol *FrameAllocSym =
5681           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5682               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5683       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5684               TII->get(TargetOpcode::LOCAL_ESCAPE))
5685           .addSym(FrameAllocSym)
5686           .addFrameIndex(FI);
5687     }
5688 
5689     return nullptr;
5690   }
5691 
5692   case Intrinsic::localrecover: {
5693     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5694     MachineFunction &MF = DAG.getMachineFunction();
5695     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5696 
5697     // Get the symbol that defines the frame offset.
5698     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5699     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5700     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5701     MCSymbol *FrameAllocSym =
5702         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5703             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5704 
5705     // Create a MCSymbol for the label to avoid any target lowering
5706     // that would make this PC relative.
5707     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5708     SDValue OffsetVal =
5709         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5710 
5711     // Add the offset to the FP.
5712     Value *FP = I.getArgOperand(1);
5713     SDValue FPVal = getValue(FP);
5714     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5715     setValue(&I, Add);
5716 
5717     return nullptr;
5718   }
5719 
5720   case Intrinsic::eh_exceptionpointer:
5721   case Intrinsic::eh_exceptioncode: {
5722     // Get the exception pointer vreg, copy from it, and resize it to fit.
5723     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5724     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5725     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5726     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5727     SDValue N =
5728         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5729     if (Intrinsic == Intrinsic::eh_exceptioncode)
5730       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5731     setValue(&I, N);
5732     return nullptr;
5733   }
5734 
5735   case Intrinsic::experimental_deoptimize:
5736     LowerDeoptimizeCall(&I);
5737     return nullptr;
5738   }
5739 }
5740 
5741 std::pair<SDValue, SDValue>
5742 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5743                                     const BasicBlock *EHPadBB) {
5744   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5745   MCSymbol *BeginLabel = nullptr;
5746 
5747   if (EHPadBB) {
5748     // Insert a label before the invoke call to mark the try range.  This can be
5749     // used to detect deletion of the invoke via the MachineModuleInfo.
5750     BeginLabel = MMI.getContext().createTempSymbol();
5751 
5752     // For SjLj, keep track of which landing pads go with which invokes
5753     // so as to maintain the ordering of pads in the LSDA.
5754     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5755     if (CallSiteIndex) {
5756       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5757       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5758 
5759       // Now that the call site is handled, stop tracking it.
5760       MMI.setCurrentCallSite(0);
5761     }
5762 
5763     // Both PendingLoads and PendingExports must be flushed here;
5764     // this call might not return.
5765     (void)getRoot();
5766     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5767 
5768     CLI.setChain(getRoot());
5769   }
5770   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5771   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5772 
5773   assert((CLI.IsTailCall || Result.second.getNode()) &&
5774          "Non-null chain expected with non-tail call!");
5775   assert((Result.second.getNode() || !Result.first.getNode()) &&
5776          "Null value expected with tail call!");
5777 
5778   if (!Result.second.getNode()) {
5779     // As a special case, a null chain means that a tail call has been emitted
5780     // and the DAG root is already updated.
5781     HasTailCall = true;
5782 
5783     // Since there's no actual continuation from this block, nothing can be
5784     // relying on us setting vregs for them.
5785     PendingExports.clear();
5786   } else {
5787     DAG.setRoot(Result.second);
5788   }
5789 
5790   if (EHPadBB) {
5791     // Insert a label at the end of the invoke call to mark the try range.  This
5792     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5793     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5794     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5795 
5796     // Inform MachineModuleInfo of range.
5797     if (MMI.hasEHFunclets()) {
5798       assert(CLI.CS);
5799       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5800       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5801                                 BeginLabel, EndLabel);
5802     } else {
5803       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5804     }
5805   }
5806 
5807   return Result;
5808 }
5809 
5810 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5811                                       bool isTailCall,
5812                                       const BasicBlock *EHPadBB) {
5813   auto &DL = DAG.getDataLayout();
5814   FunctionType *FTy = CS.getFunctionType();
5815   Type *RetTy = CS.getType();
5816 
5817   TargetLowering::ArgListTy Args;
5818   TargetLowering::ArgListEntry Entry;
5819   Args.reserve(CS.arg_size());
5820 
5821   const Value *SwiftErrorVal = nullptr;
5822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5823   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5824        i != e; ++i) {
5825     const Value *V = *i;
5826 
5827     // Skip empty types
5828     if (V->getType()->isEmptyTy())
5829       continue;
5830 
5831     SDValue ArgNode = getValue(V);
5832     Entry.Node = ArgNode; Entry.Ty = V->getType();
5833 
5834     // Skip the first return-type Attribute to get to params.
5835     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5836 
5837     // Use swifterror virtual register as input to the call.
5838     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5839       SwiftErrorVal = V;
5840       // We find the virtual register for the actual swifterror argument.
5841       // Instead of using the Value, we use the virtual register instead.
5842       Entry.Node =
5843           DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V),
5844                           EVT(TLI.getPointerTy(DL)));
5845     }
5846 
5847     Args.push_back(Entry);
5848 
5849     // If we have an explicit sret argument that is an Instruction, (i.e., it
5850     // might point to function-local memory), we can't meaningfully tail-call.
5851     if (Entry.isSRet && isa<Instruction>(V))
5852       isTailCall = false;
5853   }
5854 
5855   // Check if target-independent constraints permit a tail call here.
5856   // Target-dependent constraints are checked within TLI->LowerCallTo.
5857   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5858     isTailCall = false;
5859 
5860   // Disable tail calls if there is an swifterror argument. Targets have not
5861   // been updated to support tail calls.
5862   if (TLI.supportSwiftError() && SwiftErrorVal)
5863     isTailCall = false;
5864 
5865   TargetLowering::CallLoweringInfo CLI(DAG);
5866   CLI.setDebugLoc(getCurSDLoc())
5867       .setChain(getRoot())
5868       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5869       .setTailCall(isTailCall)
5870       .setConvergent(CS.isConvergent());
5871   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5872 
5873   if (Result.first.getNode()) {
5874     const Instruction *Inst = CS.getInstruction();
5875     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5876     setValue(Inst, Result.first);
5877   }
5878 
5879   // The last element of CLI.InVals has the SDValue for swifterror return.
5880   // Here we copy it to a virtual register and update SwiftErrorMap for
5881   // book-keeping.
5882   if (SwiftErrorVal && TLI.supportSwiftError()) {
5883     // Get the last element of InVals.
5884     SDValue Src = CLI.InVals.back();
5885     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5886     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5887     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5888     // We update the virtual register for the actual swifterror argument.
5889     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5890     DAG.setRoot(CopyNode);
5891   }
5892 }
5893 
5894 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5895 /// value is equal or not-equal to zero.
5896 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5897   for (const User *U : V->users()) {
5898     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5899       if (IC->isEquality())
5900         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5901           if (C->isNullValue())
5902             continue;
5903     // Unknown instruction.
5904     return false;
5905   }
5906   return true;
5907 }
5908 
5909 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5910                              Type *LoadTy,
5911                              SelectionDAGBuilder &Builder) {
5912 
5913   // Check to see if this load can be trivially constant folded, e.g. if the
5914   // input is from a string literal.
5915   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5916     // Cast pointer to the type we really want to load.
5917     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5918                                          PointerType::getUnqual(LoadTy));
5919 
5920     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5921             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5922       return Builder.getValue(LoadCst);
5923   }
5924 
5925   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5926   // still constant memory, the input chain can be the entry node.
5927   SDValue Root;
5928   bool ConstantMemory = false;
5929 
5930   // Do not serialize (non-volatile) loads of constant memory with anything.
5931   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5932     Root = Builder.DAG.getEntryNode();
5933     ConstantMemory = true;
5934   } else {
5935     // Do not serialize non-volatile loads against each other.
5936     Root = Builder.DAG.getRoot();
5937   }
5938 
5939   SDValue Ptr = Builder.getValue(PtrVal);
5940   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5941                                         Ptr, MachinePointerInfo(PtrVal),
5942                                         /* Alignment = */ 1);
5943 
5944   if (!ConstantMemory)
5945     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5946   return LoadVal;
5947 }
5948 
5949 /// processIntegerCallValue - Record the value for an instruction that
5950 /// produces an integer result, converting the type where necessary.
5951 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5952                                                   SDValue Value,
5953                                                   bool IsSigned) {
5954   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5955                                                     I.getType(), true);
5956   if (IsSigned)
5957     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5958   else
5959     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5960   setValue(&I, Value);
5961 }
5962 
5963 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5964 /// If so, return true and lower it, otherwise return false and it will be
5965 /// lowered like a normal call.
5966 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5967   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5968   if (I.getNumArgOperands() != 3)
5969     return false;
5970 
5971   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5972   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5973       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5974       !I.getType()->isIntegerTy())
5975     return false;
5976 
5977   const Value *Size = I.getArgOperand(2);
5978   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5979   if (CSize && CSize->getZExtValue() == 0) {
5980     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5981                                                           I.getType(), true);
5982     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5983     return true;
5984   }
5985 
5986   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5987   std::pair<SDValue, SDValue> Res =
5988     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5989                                 getValue(LHS), getValue(RHS), getValue(Size),
5990                                 MachinePointerInfo(LHS),
5991                                 MachinePointerInfo(RHS));
5992   if (Res.first.getNode()) {
5993     processIntegerCallValue(I, Res.first, true);
5994     PendingLoads.push_back(Res.second);
5995     return true;
5996   }
5997 
5998   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5999   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6000   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
6001     bool ActuallyDoIt = true;
6002     MVT LoadVT;
6003     Type *LoadTy;
6004     switch (CSize->getZExtValue()) {
6005     default:
6006       LoadVT = MVT::Other;
6007       LoadTy = nullptr;
6008       ActuallyDoIt = false;
6009       break;
6010     case 2:
6011       LoadVT = MVT::i16;
6012       LoadTy = Type::getInt16Ty(CSize->getContext());
6013       break;
6014     case 4:
6015       LoadVT = MVT::i32;
6016       LoadTy = Type::getInt32Ty(CSize->getContext());
6017       break;
6018     case 8:
6019       LoadVT = MVT::i64;
6020       LoadTy = Type::getInt64Ty(CSize->getContext());
6021       break;
6022         /*
6023     case 16:
6024       LoadVT = MVT::v4i32;
6025       LoadTy = Type::getInt32Ty(CSize->getContext());
6026       LoadTy = VectorType::get(LoadTy, 4);
6027       break;
6028          */
6029     }
6030 
6031     // This turns into unaligned loads.  We only do this if the target natively
6032     // supports the MVT we'll be loading or if it is small enough (<= 4) that
6033     // we'll only produce a small number of byte loads.
6034 
6035     // Require that we can find a legal MVT, and only do this if the target
6036     // supports unaligned loads of that type.  Expanding into byte loads would
6037     // bloat the code.
6038     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6039     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
6040       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6041       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6042       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6043       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6044       // TODO: Check alignment of src and dest ptrs.
6045       if (!TLI.isTypeLegal(LoadVT) ||
6046           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
6047           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
6048         ActuallyDoIt = false;
6049     }
6050 
6051     if (ActuallyDoIt) {
6052       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
6053       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
6054 
6055       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
6056                                  ISD::SETNE);
6057       processIntegerCallValue(I, Res, false);
6058       return true;
6059     }
6060   }
6061 
6062 
6063   return false;
6064 }
6065 
6066 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
6067 /// form.  If so, return true and lower it, otherwise return false and it
6068 /// will be lowered like a normal call.
6069 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6070   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
6071   if (I.getNumArgOperands() != 3)
6072     return false;
6073 
6074   const Value *Src = I.getArgOperand(0);
6075   const Value *Char = I.getArgOperand(1);
6076   const Value *Length = I.getArgOperand(2);
6077   if (!Src->getType()->isPointerTy() ||
6078       !Char->getType()->isIntegerTy() ||
6079       !Length->getType()->isIntegerTy() ||
6080       !I.getType()->isPointerTy())
6081     return false;
6082 
6083   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6084   std::pair<SDValue, SDValue> Res =
6085     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6086                                 getValue(Src), getValue(Char), getValue(Length),
6087                                 MachinePointerInfo(Src));
6088   if (Res.first.getNode()) {
6089     setValue(&I, Res.first);
6090     PendingLoads.push_back(Res.second);
6091     return true;
6092   }
6093 
6094   return false;
6095 }
6096 
6097 ///
6098 /// visitMemPCpyCall -- lower a mempcpy call as a memcpy followed by code to
6099 /// to adjust the dst pointer by the size of the copied memory.
6100 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6101 
6102   // Verify argument count: void *mempcpy(void *, const void *, size_t)
6103   if (I.getNumArgOperands() != 3)
6104     return false;
6105 
6106   SDValue Dst = getValue(I.getArgOperand(0));
6107   SDValue Src = getValue(I.getArgOperand(1));
6108   SDValue Size = getValue(I.getArgOperand(2));
6109 
6110   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6111   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6112   unsigned Align = std::min(DstAlign, SrcAlign);
6113   if (Align == 0) // Alignment of one or both could not be inferred.
6114     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6115 
6116   bool isVol = false;
6117   SDLoc sdl = getCurSDLoc();
6118 
6119   // In the mempcpy context we need to pass in a false value for isTailCall
6120   // because the return pointer needs to be adjusted by the size of
6121   // the copied memory.
6122   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6123                              false, /*isTailCall=*/false,
6124                              MachinePointerInfo(I.getArgOperand(0)),
6125                              MachinePointerInfo(I.getArgOperand(1)));
6126   assert(MC.getNode() != nullptr &&
6127          "** memcpy should not be lowered as TailCall in mempcpy context **");
6128   DAG.setRoot(MC);
6129 
6130   // Check if Size needs to be truncated or extended.
6131   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6132 
6133   // Adjust return pointer to point just past the last dst byte.
6134   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6135                                     Dst, Size);
6136   setValue(&I, DstPlusSize);
6137   return true;
6138 }
6139 
6140 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
6141 /// optimized form.  If so, return true and lower it, otherwise return false
6142 /// and it will be lowered like a normal call.
6143 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6144   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
6145   if (I.getNumArgOperands() != 2)
6146     return false;
6147 
6148   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6149   if (!Arg0->getType()->isPointerTy() ||
6150       !Arg1->getType()->isPointerTy() ||
6151       !I.getType()->isPointerTy())
6152     return false;
6153 
6154   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6155   std::pair<SDValue, SDValue> Res =
6156     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6157                                 getValue(Arg0), getValue(Arg1),
6158                                 MachinePointerInfo(Arg0),
6159                                 MachinePointerInfo(Arg1), isStpcpy);
6160   if (Res.first.getNode()) {
6161     setValue(&I, Res.first);
6162     DAG.setRoot(Res.second);
6163     return true;
6164   }
6165 
6166   return false;
6167 }
6168 
6169 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6170 /// If so, return true and lower it, otherwise return false and it will be
6171 /// lowered like a normal call.
6172 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6173   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6174   if (I.getNumArgOperands() != 2)
6175     return false;
6176 
6177   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6178   if (!Arg0->getType()->isPointerTy() ||
6179       !Arg1->getType()->isPointerTy() ||
6180       !I.getType()->isIntegerTy())
6181     return false;
6182 
6183   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6184   std::pair<SDValue, SDValue> Res =
6185     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6186                                 getValue(Arg0), getValue(Arg1),
6187                                 MachinePointerInfo(Arg0),
6188                                 MachinePointerInfo(Arg1));
6189   if (Res.first.getNode()) {
6190     processIntegerCallValue(I, Res.first, true);
6191     PendingLoads.push_back(Res.second);
6192     return true;
6193   }
6194 
6195   return false;
6196 }
6197 
6198 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6199 /// form.  If so, return true and lower it, otherwise return false and it
6200 /// will be lowered like a normal call.
6201 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6202   // Verify that the prototype makes sense.  size_t strlen(char *)
6203   if (I.getNumArgOperands() != 1)
6204     return false;
6205 
6206   const Value *Arg0 = I.getArgOperand(0);
6207   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6208     return false;
6209 
6210   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6211   std::pair<SDValue, SDValue> Res =
6212     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6213                                 getValue(Arg0), MachinePointerInfo(Arg0));
6214   if (Res.first.getNode()) {
6215     processIntegerCallValue(I, Res.first, false);
6216     PendingLoads.push_back(Res.second);
6217     return true;
6218   }
6219 
6220   return false;
6221 }
6222 
6223 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6224 /// form.  If so, return true and lower it, otherwise return false and it
6225 /// will be lowered like a normal call.
6226 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6227   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6228   if (I.getNumArgOperands() != 2)
6229     return false;
6230 
6231   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6232   if (!Arg0->getType()->isPointerTy() ||
6233       !Arg1->getType()->isIntegerTy() ||
6234       !I.getType()->isIntegerTy())
6235     return false;
6236 
6237   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6238   std::pair<SDValue, SDValue> Res =
6239     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6240                                  getValue(Arg0), getValue(Arg1),
6241                                  MachinePointerInfo(Arg0));
6242   if (Res.first.getNode()) {
6243     processIntegerCallValue(I, Res.first, false);
6244     PendingLoads.push_back(Res.second);
6245     return true;
6246   }
6247 
6248   return false;
6249 }
6250 
6251 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6252 /// operation (as expected), translate it to an SDNode with the specified opcode
6253 /// and return true.
6254 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6255                                               unsigned Opcode) {
6256   // Sanity check that it really is a unary floating-point call.
6257   if (I.getNumArgOperands() != 1 ||
6258       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6259       I.getType() != I.getArgOperand(0)->getType() ||
6260       !I.onlyReadsMemory())
6261     return false;
6262 
6263   SDValue Tmp = getValue(I.getArgOperand(0));
6264   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6265   return true;
6266 }
6267 
6268 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6269 /// operation (as expected), translate it to an SDNode with the specified opcode
6270 /// and return true.
6271 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6272                                                unsigned Opcode) {
6273   // Sanity check that it really is a binary floating-point call.
6274   if (I.getNumArgOperands() != 2 ||
6275       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6276       I.getType() != I.getArgOperand(0)->getType() ||
6277       I.getType() != I.getArgOperand(1)->getType() ||
6278       !I.onlyReadsMemory())
6279     return false;
6280 
6281   SDValue Tmp0 = getValue(I.getArgOperand(0));
6282   SDValue Tmp1 = getValue(I.getArgOperand(1));
6283   EVT VT = Tmp0.getValueType();
6284   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6285   return true;
6286 }
6287 
6288 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6289   // Handle inline assembly differently.
6290   if (isa<InlineAsm>(I.getCalledValue())) {
6291     visitInlineAsm(&I);
6292     return;
6293   }
6294 
6295   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6296   computeUsesVAFloatArgument(I, MMI);
6297 
6298   const char *RenameFn = nullptr;
6299   if (Function *F = I.getCalledFunction()) {
6300     if (F->isDeclaration()) {
6301       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6302         if (unsigned IID = II->getIntrinsicID(F)) {
6303           RenameFn = visitIntrinsicCall(I, IID);
6304           if (!RenameFn)
6305             return;
6306         }
6307       }
6308       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6309         RenameFn = visitIntrinsicCall(I, IID);
6310         if (!RenameFn)
6311           return;
6312       }
6313     }
6314 
6315     // Check for well-known libc/libm calls.  If the function is internal, it
6316     // can't be a library call.  Don't do the check if marked as nobuiltin for
6317     // some reason.
6318     LibFunc::Func Func;
6319     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6320         LibInfo->getLibFunc(F->getName(), Func) &&
6321         LibInfo->hasOptimizedCodeGen(Func)) {
6322       switch (Func) {
6323       default: break;
6324       case LibFunc::copysign:
6325       case LibFunc::copysignf:
6326       case LibFunc::copysignl:
6327         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6328             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6329             I.getType() == I.getArgOperand(0)->getType() &&
6330             I.getType() == I.getArgOperand(1)->getType() &&
6331             I.onlyReadsMemory()) {
6332           SDValue LHS = getValue(I.getArgOperand(0));
6333           SDValue RHS = getValue(I.getArgOperand(1));
6334           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6335                                    LHS.getValueType(), LHS, RHS));
6336           return;
6337         }
6338         break;
6339       case LibFunc::fabs:
6340       case LibFunc::fabsf:
6341       case LibFunc::fabsl:
6342         if (visitUnaryFloatCall(I, ISD::FABS))
6343           return;
6344         break;
6345       case LibFunc::fmin:
6346       case LibFunc::fminf:
6347       case LibFunc::fminl:
6348         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6349           return;
6350         break;
6351       case LibFunc::fmax:
6352       case LibFunc::fmaxf:
6353       case LibFunc::fmaxl:
6354         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6355           return;
6356         break;
6357       case LibFunc::sin:
6358       case LibFunc::sinf:
6359       case LibFunc::sinl:
6360         if (visitUnaryFloatCall(I, ISD::FSIN))
6361           return;
6362         break;
6363       case LibFunc::cos:
6364       case LibFunc::cosf:
6365       case LibFunc::cosl:
6366         if (visitUnaryFloatCall(I, ISD::FCOS))
6367           return;
6368         break;
6369       case LibFunc::sqrt:
6370       case LibFunc::sqrtf:
6371       case LibFunc::sqrtl:
6372       case LibFunc::sqrt_finite:
6373       case LibFunc::sqrtf_finite:
6374       case LibFunc::sqrtl_finite:
6375         if (visitUnaryFloatCall(I, ISD::FSQRT))
6376           return;
6377         break;
6378       case LibFunc::floor:
6379       case LibFunc::floorf:
6380       case LibFunc::floorl:
6381         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6382           return;
6383         break;
6384       case LibFunc::nearbyint:
6385       case LibFunc::nearbyintf:
6386       case LibFunc::nearbyintl:
6387         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6388           return;
6389         break;
6390       case LibFunc::ceil:
6391       case LibFunc::ceilf:
6392       case LibFunc::ceill:
6393         if (visitUnaryFloatCall(I, ISD::FCEIL))
6394           return;
6395         break;
6396       case LibFunc::rint:
6397       case LibFunc::rintf:
6398       case LibFunc::rintl:
6399         if (visitUnaryFloatCall(I, ISD::FRINT))
6400           return;
6401         break;
6402       case LibFunc::round:
6403       case LibFunc::roundf:
6404       case LibFunc::roundl:
6405         if (visitUnaryFloatCall(I, ISD::FROUND))
6406           return;
6407         break;
6408       case LibFunc::trunc:
6409       case LibFunc::truncf:
6410       case LibFunc::truncl:
6411         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6412           return;
6413         break;
6414       case LibFunc::log2:
6415       case LibFunc::log2f:
6416       case LibFunc::log2l:
6417         if (visitUnaryFloatCall(I, ISD::FLOG2))
6418           return;
6419         break;
6420       case LibFunc::exp2:
6421       case LibFunc::exp2f:
6422       case LibFunc::exp2l:
6423         if (visitUnaryFloatCall(I, ISD::FEXP2))
6424           return;
6425         break;
6426       case LibFunc::memcmp:
6427         if (visitMemCmpCall(I))
6428           return;
6429         break;
6430       case LibFunc::mempcpy:
6431         if (visitMemPCpyCall(I))
6432           return;
6433         break;
6434       case LibFunc::memchr:
6435         if (visitMemChrCall(I))
6436           return;
6437         break;
6438       case LibFunc::strcpy:
6439         if (visitStrCpyCall(I, false))
6440           return;
6441         break;
6442       case LibFunc::stpcpy:
6443         if (visitStrCpyCall(I, true))
6444           return;
6445         break;
6446       case LibFunc::strcmp:
6447         if (visitStrCmpCall(I))
6448           return;
6449         break;
6450       case LibFunc::strlen:
6451         if (visitStrLenCall(I))
6452           return;
6453         break;
6454       case LibFunc::strnlen:
6455         if (visitStrNLenCall(I))
6456           return;
6457         break;
6458       }
6459     }
6460   }
6461 
6462   SDValue Callee;
6463   if (!RenameFn)
6464     Callee = getValue(I.getCalledValue());
6465   else
6466     Callee = DAG.getExternalSymbol(
6467         RenameFn,
6468         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6469 
6470   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6471   // have to do anything here to lower funclet bundles.
6472   assert(!I.hasOperandBundlesOtherThan(
6473              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6474          "Cannot lower calls with arbitrary operand bundles!");
6475 
6476   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6477     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6478   else
6479     // Check if we can potentially perform a tail call. More detailed checking
6480     // is be done within LowerCallTo, after more information about the call is
6481     // known.
6482     LowerCallTo(&I, Callee, I.isTailCall());
6483 }
6484 
6485 namespace {
6486 
6487 /// AsmOperandInfo - This contains information for each constraint that we are
6488 /// lowering.
6489 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6490 public:
6491   /// CallOperand - If this is the result output operand or a clobber
6492   /// this is null, otherwise it is the incoming operand to the CallInst.
6493   /// This gets modified as the asm is processed.
6494   SDValue CallOperand;
6495 
6496   /// AssignedRegs - If this is a register or register class operand, this
6497   /// contains the set of register corresponding to the operand.
6498   RegsForValue AssignedRegs;
6499 
6500   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6501     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6502   }
6503 
6504   /// Whether or not this operand accesses memory
6505   bool hasMemory(const TargetLowering &TLI) const {
6506     // Indirect operand accesses access memory.
6507     if (isIndirect)
6508       return true;
6509 
6510     for (const auto &Code : Codes)
6511       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6512         return true;
6513 
6514     return false;
6515   }
6516 
6517   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6518   /// corresponds to.  If there is no Value* for this operand, it returns
6519   /// MVT::Other.
6520   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6521                            const DataLayout &DL) const {
6522     if (!CallOperandVal) return MVT::Other;
6523 
6524     if (isa<BasicBlock>(CallOperandVal))
6525       return TLI.getPointerTy(DL);
6526 
6527     llvm::Type *OpTy = CallOperandVal->getType();
6528 
6529     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6530     // If this is an indirect operand, the operand is a pointer to the
6531     // accessed type.
6532     if (isIndirect) {
6533       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6534       if (!PtrTy)
6535         report_fatal_error("Indirect operand for inline asm not a pointer!");
6536       OpTy = PtrTy->getElementType();
6537     }
6538 
6539     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6540     if (StructType *STy = dyn_cast<StructType>(OpTy))
6541       if (STy->getNumElements() == 1)
6542         OpTy = STy->getElementType(0);
6543 
6544     // If OpTy is not a single value, it may be a struct/union that we
6545     // can tile with integers.
6546     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6547       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6548       switch (BitSize) {
6549       default: break;
6550       case 1:
6551       case 8:
6552       case 16:
6553       case 32:
6554       case 64:
6555       case 128:
6556         OpTy = IntegerType::get(Context, BitSize);
6557         break;
6558       }
6559     }
6560 
6561     return TLI.getValueType(DL, OpTy, true);
6562   }
6563 };
6564 
6565 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6566 
6567 } // end anonymous namespace
6568 
6569 /// Make sure that the output operand \p OpInfo and its corresponding input
6570 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6571 /// out).
6572 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6573                                SDISelAsmOperandInfo &MatchingOpInfo,
6574                                SelectionDAG &DAG) {
6575   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6576     return;
6577 
6578   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6579   const auto &TLI = DAG.getTargetLoweringInfo();
6580 
6581   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6582       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6583                                        OpInfo.ConstraintVT);
6584   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6585       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6586                                        MatchingOpInfo.ConstraintVT);
6587   if ((OpInfo.ConstraintVT.isInteger() !=
6588        MatchingOpInfo.ConstraintVT.isInteger()) ||
6589       (MatchRC.second != InputRC.second)) {
6590     // FIXME: error out in a more elegant fashion
6591     report_fatal_error("Unsupported asm: input constraint"
6592                        " with a matching output constraint of"
6593                        " incompatible type!");
6594   }
6595   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6596 }
6597 
6598 /// Get a direct memory input to behave well as an indirect operand.
6599 /// This may introduce stores, hence the need for a \p Chain.
6600 /// \return The (possibly updated) chain.
6601 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6602                                         SDISelAsmOperandInfo &OpInfo,
6603                                         SelectionDAG &DAG) {
6604   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6605 
6606   // If we don't have an indirect input, put it in the constpool if we can,
6607   // otherwise spill it to a stack slot.
6608   // TODO: This isn't quite right. We need to handle these according to
6609   // the addressing mode that the constraint wants. Also, this may take
6610   // an additional register for the computation and we don't want that
6611   // either.
6612 
6613   // If the operand is a float, integer, or vector constant, spill to a
6614   // constant pool entry to get its address.
6615   const Value *OpVal = OpInfo.CallOperandVal;
6616   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6617       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6618     OpInfo.CallOperand = DAG.getConstantPool(
6619         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6620     return Chain;
6621   }
6622 
6623   // Otherwise, create a stack slot and emit a store to it before the asm.
6624   Type *Ty = OpVal->getType();
6625   auto &DL = DAG.getDataLayout();
6626   uint64_t TySize = DL.getTypeAllocSize(Ty);
6627   unsigned Align = DL.getPrefTypeAlignment(Ty);
6628   MachineFunction &MF = DAG.getMachineFunction();
6629   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6630   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL));
6631   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6632                        MachinePointerInfo::getFixedStack(MF, SSFI));
6633   OpInfo.CallOperand = StackSlot;
6634 
6635   return Chain;
6636 }
6637 
6638 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6639 /// specified operand.  We prefer to assign virtual registers, to allow the
6640 /// register allocator to handle the assignment process.  However, if the asm
6641 /// uses features that we can't model on machineinstrs, we have SDISel do the
6642 /// allocation.  This produces generally horrible, but correct, code.
6643 ///
6644 ///   OpInfo describes the operand.
6645 ///
6646 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6647                                  const SDLoc &DL,
6648                                  SDISelAsmOperandInfo &OpInfo) {
6649   LLVMContext &Context = *DAG.getContext();
6650 
6651   MachineFunction &MF = DAG.getMachineFunction();
6652   SmallVector<unsigned, 4> Regs;
6653 
6654   // If this is a constraint for a single physreg, or a constraint for a
6655   // register class, find it.
6656   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6657       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6658                                        OpInfo.ConstraintCode,
6659                                        OpInfo.ConstraintVT);
6660 
6661   unsigned NumRegs = 1;
6662   if (OpInfo.ConstraintVT != MVT::Other) {
6663     // If this is a FP input in an integer register (or visa versa) insert a bit
6664     // cast of the input value.  More generally, handle any case where the input
6665     // value disagrees with the register class we plan to stick this in.
6666     if (OpInfo.Type == InlineAsm::isInput &&
6667         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6668       // Try to convert to the first EVT that the reg class contains.  If the
6669       // types are identical size, use a bitcast to convert (e.g. two differing
6670       // vector types).
6671       MVT RegVT = *PhysReg.second->vt_begin();
6672       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6673         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6674                                          RegVT, OpInfo.CallOperand);
6675         OpInfo.ConstraintVT = RegVT;
6676       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6677         // If the input is a FP value and we want it in FP registers, do a
6678         // bitcast to the corresponding integer type.  This turns an f64 value
6679         // into i64, which can be passed with two i32 values on a 32-bit
6680         // machine.
6681         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6682         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6683                                          RegVT, OpInfo.CallOperand);
6684         OpInfo.ConstraintVT = RegVT;
6685       }
6686     }
6687 
6688     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6689   }
6690 
6691   MVT RegVT;
6692   EVT ValueVT = OpInfo.ConstraintVT;
6693 
6694   // If this is a constraint for a specific physical register, like {r17},
6695   // assign it now.
6696   if (unsigned AssignedReg = PhysReg.first) {
6697     const TargetRegisterClass *RC = PhysReg.second;
6698     if (OpInfo.ConstraintVT == MVT::Other)
6699       ValueVT = *RC->vt_begin();
6700 
6701     // Get the actual register value type.  This is important, because the user
6702     // may have asked for (e.g.) the AX register in i32 type.  We need to
6703     // remember that AX is actually i16 to get the right extension.
6704     RegVT = *RC->vt_begin();
6705 
6706     // This is a explicit reference to a physical register.
6707     Regs.push_back(AssignedReg);
6708 
6709     // If this is an expanded reference, add the rest of the regs to Regs.
6710     if (NumRegs != 1) {
6711       TargetRegisterClass::iterator I = RC->begin();
6712       for (; *I != AssignedReg; ++I)
6713         assert(I != RC->end() && "Didn't find reg!");
6714 
6715       // Already added the first reg.
6716       --NumRegs; ++I;
6717       for (; NumRegs; --NumRegs, ++I) {
6718         assert(I != RC->end() && "Ran out of registers to allocate!");
6719         Regs.push_back(*I);
6720       }
6721     }
6722 
6723     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6724     return;
6725   }
6726 
6727   // Otherwise, if this was a reference to an LLVM register class, create vregs
6728   // for this reference.
6729   if (const TargetRegisterClass *RC = PhysReg.second) {
6730     RegVT = *RC->vt_begin();
6731     if (OpInfo.ConstraintVT == MVT::Other)
6732       ValueVT = RegVT;
6733 
6734     // Create the appropriate number of virtual registers.
6735     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6736     for (; NumRegs; --NumRegs)
6737       Regs.push_back(RegInfo.createVirtualRegister(RC));
6738 
6739     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6740     return;
6741   }
6742 
6743   // Otherwise, we couldn't allocate enough registers for this.
6744 }
6745 
6746 static unsigned
6747 findMatchingInlineAsmOperand(unsigned OperandNo,
6748                              const std::vector<SDValue> &AsmNodeOperands) {
6749   // Scan until we find the definition we already emitted of this operand.
6750   unsigned CurOp = InlineAsm::Op_FirstOperand;
6751   for (; OperandNo; --OperandNo) {
6752     // Advance to the next operand.
6753     unsigned OpFlag =
6754         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6755     assert((InlineAsm::isRegDefKind(OpFlag) ||
6756             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6757             InlineAsm::isMemKind(OpFlag)) &&
6758            "Skipped past definitions?");
6759     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
6760   }
6761   return CurOp;
6762 }
6763 
6764 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
6765 /// \return true if it has succeeded, false otherwise
6766 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
6767                               MVT RegVT, SelectionDAG &DAG) {
6768   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6769   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6770   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
6771     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6772       Regs.push_back(RegInfo.createVirtualRegister(RC));
6773     else
6774       return false;
6775   }
6776   return true;
6777 }
6778 
6779 class ExtraFlags {
6780   unsigned Flags = 0;
6781 
6782 public:
6783   explicit ExtraFlags(ImmutableCallSite CS) {
6784     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6785     if (IA->hasSideEffects())
6786       Flags |= InlineAsm::Extra_HasSideEffects;
6787     if (IA->isAlignStack())
6788       Flags |= InlineAsm::Extra_IsAlignStack;
6789     if (CS.isConvergent())
6790       Flags |= InlineAsm::Extra_IsConvergent;
6791     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6792   }
6793 
6794   void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) {
6795     // Ideally, we would only check against memory constraints.  However, the
6796     // meaning of an Other constraint can be target-specific and we can't easily
6797     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6798     // for Other constraints as well.
6799     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6800         OpInfo.ConstraintType == TargetLowering::C_Other) {
6801       if (OpInfo.Type == InlineAsm::isInput)
6802         Flags |= InlineAsm::Extra_MayLoad;
6803       else if (OpInfo.Type == InlineAsm::isOutput)
6804         Flags |= InlineAsm::Extra_MayStore;
6805       else if (OpInfo.Type == InlineAsm::isClobber)
6806         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6807     }
6808   }
6809 
6810   unsigned get() const { return Flags; }
6811 };
6812 
6813 /// visitInlineAsm - Handle a call to an InlineAsm object.
6814 ///
6815 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6816   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6817 
6818   /// ConstraintOperands - Information about all of the constraints.
6819   SDISelAsmOperandInfoVector ConstraintOperands;
6820 
6821   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6822   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6823       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6824 
6825   bool hasMemory = false;
6826 
6827   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6828   ExtraFlags ExtraInfo(CS);
6829 
6830   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6831   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6832   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6833     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6834     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6835 
6836     MVT OpVT = MVT::Other;
6837 
6838     // Compute the value type for each operand.
6839     if (OpInfo.Type == InlineAsm::isInput ||
6840         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
6841       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6842 
6843       // Process the call argument. BasicBlocks are labels, currently appearing
6844       // only in asm's.
6845       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6846         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6847       } else {
6848         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6849       }
6850 
6851       OpVT =
6852           OpInfo
6853               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
6854               .getSimpleVT();
6855     }
6856 
6857     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
6858       // The return value of the call is this value.  As such, there is no
6859       // corresponding argument.
6860       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6861       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6862         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6863                                       STy->getElementType(ResNo));
6864       } else {
6865         assert(ResNo == 0 && "Asm only has one result!");
6866         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6867       }
6868       ++ResNo;
6869     }
6870 
6871     OpInfo.ConstraintVT = OpVT;
6872 
6873     if (!hasMemory)
6874       hasMemory = OpInfo.hasMemory(TLI);
6875 
6876     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6877     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
6878     auto TargetConstraint = TargetConstraints[i];
6879 
6880     // Compute the constraint code and ConstraintType to use.
6881     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
6882 
6883     ExtraInfo.update(TargetConstraint);
6884   }
6885 
6886   SDValue Chain, Flag;
6887 
6888   // We won't need to flush pending loads if this asm doesn't touch
6889   // memory and is nonvolatile.
6890   if (hasMemory || IA->hasSideEffects())
6891     Chain = getRoot();
6892   else
6893     Chain = DAG.getRoot();
6894 
6895   // Second pass over the constraints: compute which constraint option to use
6896   // and assign registers to constraints that want a specific physreg.
6897   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6898     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6899 
6900     // If this is an output operand with a matching input operand, look up the
6901     // matching input. If their types mismatch, e.g. one is an integer, the
6902     // other is floating point, or their sizes are different, flag it as an
6903     // error.
6904     if (OpInfo.hasMatchingInput()) {
6905       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6906       patchMatchingInput(OpInfo, Input, DAG);
6907     }
6908 
6909     // Compute the constraint code and ConstraintType to use.
6910     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6911 
6912     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6913         OpInfo.Type == InlineAsm::isClobber)
6914       continue;
6915 
6916     // If this is a memory input, and if the operand is not indirect, do what we
6917     // need to to provide an address for the memory input.
6918     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6919         !OpInfo.isIndirect) {
6920       assert((OpInfo.isMultipleAlternative ||
6921               (OpInfo.Type == InlineAsm::isInput)) &&
6922              "Can only indirectify direct input operands!");
6923 
6924       // Memory operands really want the address of the value.
6925       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
6926 
6927       // There is no longer a Value* corresponding to this operand.
6928       OpInfo.CallOperandVal = nullptr;
6929 
6930       // It is now an indirect operand.
6931       OpInfo.isIndirect = true;
6932     }
6933 
6934     // If this constraint is for a specific register, allocate it before
6935     // anything else.
6936     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6937       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6938   }
6939 
6940   // Third pass - Loop over all of the operands, assigning virtual or physregs
6941   // to register class operands.
6942   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6943     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6944 
6945     // C_Register operands have already been allocated, Other/Memory don't need
6946     // to be.
6947     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6948       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6949   }
6950 
6951   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6952   std::vector<SDValue> AsmNodeOperands;
6953   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6954   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6955       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6956 
6957   // If we have a !srcloc metadata node associated with it, we want to attach
6958   // this to the ultimately generated inline asm machineinstr.  To do this, we
6959   // pass in the third operand as this (potentially null) inline asm MDNode.
6960   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6961   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6962 
6963   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6964   // bits as operand 3.
6965   AsmNodeOperands.push_back(DAG.getTargetConstant(
6966       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6967 
6968   // Loop over all of the inputs, copying the operand values into the
6969   // appropriate registers and processing the output regs.
6970   RegsForValue RetValRegs;
6971 
6972   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6973   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6974 
6975   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6976     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6977 
6978     switch (OpInfo.Type) {
6979     case InlineAsm::isOutput: {
6980       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6981           OpInfo.ConstraintType != TargetLowering::C_Register) {
6982         // Memory output, or 'other' output (e.g. 'X' constraint).
6983         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6984 
6985         unsigned ConstraintID =
6986             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6987         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6988                "Failed to convert memory constraint code to constraint id.");
6989 
6990         // Add information to the INLINEASM node to know about this output.
6991         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6992         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6993         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6994                                                         MVT::i32));
6995         AsmNodeOperands.push_back(OpInfo.CallOperand);
6996         break;
6997       }
6998 
6999       // Otherwise, this is a register or register class output.
7000 
7001       // Copy the output from the appropriate register.  Find a register that
7002       // we can use.
7003       if (OpInfo.AssignedRegs.Regs.empty()) {
7004         emitInlineAsmError(
7005             CS, "couldn't allocate output register for constraint '" +
7006                     Twine(OpInfo.ConstraintCode) + "'");
7007         return;
7008       }
7009 
7010       // If this is an indirect operand, store through the pointer after the
7011       // asm.
7012       if (OpInfo.isIndirect) {
7013         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7014                                                       OpInfo.CallOperandVal));
7015       } else {
7016         // This is the result value of the call.
7017         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7018         // Concatenate this output onto the outputs list.
7019         RetValRegs.append(OpInfo.AssignedRegs);
7020       }
7021 
7022       // Add information to the INLINEASM node to know that this register is
7023       // set.
7024       OpInfo.AssignedRegs
7025           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7026                                     ? InlineAsm::Kind_RegDefEarlyClobber
7027                                     : InlineAsm::Kind_RegDef,
7028                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7029       break;
7030     }
7031     case InlineAsm::isInput: {
7032       SDValue InOperandVal = OpInfo.CallOperand;
7033 
7034       if (OpInfo.isMatchingInputConstraint()) {
7035         // If this is required to match an output register we have already set,
7036         // just use its register.
7037         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7038                                                   AsmNodeOperands);
7039         unsigned OpFlag =
7040           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7041         if (InlineAsm::isRegDefKind(OpFlag) ||
7042             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7043           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7044           if (OpInfo.isIndirect) {
7045             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7046             emitInlineAsmError(CS, "inline asm not supported yet:"
7047                                    " don't know how to handle tied "
7048                                    "indirect register inputs");
7049             return;
7050           }
7051 
7052           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7053           SmallVector<unsigned, 4> Regs;
7054 
7055           if (!createVirtualRegs(Regs,
7056                                  InlineAsm::getNumOperandRegisters(OpFlag),
7057                                  RegVT, DAG)) {
7058             emitInlineAsmError(CS, "inline asm error: This value type register "
7059                                    "class is not natively supported!");
7060             return;
7061           }
7062 
7063           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7064 
7065           SDLoc dl = getCurSDLoc();
7066           // Use the produced MatchedRegs object to
7067           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7068                                     Chain, &Flag, CS.getInstruction());
7069           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7070                                            true, OpInfo.getMatchedOperand(), dl,
7071                                            DAG, AsmNodeOperands);
7072           break;
7073         }
7074 
7075         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7076         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7077                "Unexpected number of operands");
7078         // Add information to the INLINEASM node to know about this input.
7079         // See InlineAsm.h isUseOperandTiedToDef.
7080         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7081         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7082                                                     OpInfo.getMatchedOperand());
7083         AsmNodeOperands.push_back(DAG.getTargetConstant(
7084             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7085         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7086         break;
7087       }
7088 
7089       // Treat indirect 'X' constraint as memory.
7090       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7091           OpInfo.isIndirect)
7092         OpInfo.ConstraintType = TargetLowering::C_Memory;
7093 
7094       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7095         std::vector<SDValue> Ops;
7096         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7097                                           Ops, DAG);
7098         if (Ops.empty()) {
7099           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7100                                      Twine(OpInfo.ConstraintCode) + "'");
7101           return;
7102         }
7103 
7104         // Add information to the INLINEASM node to know about this input.
7105         unsigned ResOpType =
7106           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7107         AsmNodeOperands.push_back(DAG.getTargetConstant(
7108             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7109         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7110         break;
7111       }
7112 
7113       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7114         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7115         assert(InOperandVal.getValueType() ==
7116                    TLI.getPointerTy(DAG.getDataLayout()) &&
7117                "Memory operands expect pointer values");
7118 
7119         unsigned ConstraintID =
7120             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7121         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7122                "Failed to convert memory constraint code to constraint id.");
7123 
7124         // Add information to the INLINEASM node to know about this input.
7125         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7126         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7127         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7128                                                         getCurSDLoc(),
7129                                                         MVT::i32));
7130         AsmNodeOperands.push_back(InOperandVal);
7131         break;
7132       }
7133 
7134       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7135               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7136              "Unknown constraint type!");
7137 
7138       // TODO: Support this.
7139       if (OpInfo.isIndirect) {
7140         emitInlineAsmError(
7141             CS, "Don't know how to handle indirect register inputs yet "
7142                 "for constraint '" +
7143                     Twine(OpInfo.ConstraintCode) + "'");
7144         return;
7145       }
7146 
7147       // Copy the input into the appropriate registers.
7148       if (OpInfo.AssignedRegs.Regs.empty()) {
7149         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7150                                    Twine(OpInfo.ConstraintCode) + "'");
7151         return;
7152       }
7153 
7154       SDLoc dl = getCurSDLoc();
7155 
7156       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7157                                         Chain, &Flag, CS.getInstruction());
7158 
7159       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7160                                                dl, DAG, AsmNodeOperands);
7161       break;
7162     }
7163     case InlineAsm::isClobber: {
7164       // Add the clobbered value to the operand list, so that the register
7165       // allocator is aware that the physreg got clobbered.
7166       if (!OpInfo.AssignedRegs.Regs.empty())
7167         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7168                                                  false, 0, getCurSDLoc(), DAG,
7169                                                  AsmNodeOperands);
7170       break;
7171     }
7172     }
7173   }
7174 
7175   // Finish up input operands.  Set the input chain and add the flag last.
7176   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7177   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7178 
7179   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7180                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7181   Flag = Chain.getValue(1);
7182 
7183   // If this asm returns a register value, copy the result from that register
7184   // and set it as the value of the call.
7185   if (!RetValRegs.Regs.empty()) {
7186     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7187                                              Chain, &Flag, CS.getInstruction());
7188 
7189     // FIXME: Why don't we do this for inline asms with MRVs?
7190     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7191       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7192 
7193       // If any of the results of the inline asm is a vector, it may have the
7194       // wrong width/num elts.  This can happen for register classes that can
7195       // contain multiple different value types.  The preg or vreg allocated may
7196       // not have the same VT as was expected.  Convert it to the right type
7197       // with bit_convert.
7198       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7199         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7200                           ResultType, Val);
7201 
7202       } else if (ResultType != Val.getValueType() &&
7203                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7204         // If a result value was tied to an input value, the computed result may
7205         // have a wider width than the expected result.  Extract the relevant
7206         // portion.
7207         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7208       }
7209 
7210       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7211     }
7212 
7213     setValue(CS.getInstruction(), Val);
7214     // Don't need to use this as a chain in this case.
7215     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7216       return;
7217   }
7218 
7219   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7220 
7221   // Process indirect outputs, first output all of the flagged copies out of
7222   // physregs.
7223   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7224     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7225     const Value *Ptr = IndirectStoresToEmit[i].second;
7226     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7227                                              Chain, &Flag, IA);
7228     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7229   }
7230 
7231   // Emit the non-flagged stores from the physregs.
7232   SmallVector<SDValue, 8> OutChains;
7233   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7234     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7235                                getValue(StoresToEmit[i].second),
7236                                MachinePointerInfo(StoresToEmit[i].second));
7237     OutChains.push_back(Val);
7238   }
7239 
7240   if (!OutChains.empty())
7241     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7242 
7243   DAG.setRoot(Chain);
7244 }
7245 
7246 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7247                                              const Twine &Message) {
7248   LLVMContext &Ctx = *DAG.getContext();
7249   Ctx.emitError(CS.getInstruction(), Message);
7250 
7251   // Make sure we leave the DAG in a valid state
7252   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7253   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7254   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7255 }
7256 
7257 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7258   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7259                           MVT::Other, getRoot(),
7260                           getValue(I.getArgOperand(0)),
7261                           DAG.getSrcValue(I.getArgOperand(0))));
7262 }
7263 
7264 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7265   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7266   const DataLayout &DL = DAG.getDataLayout();
7267   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7268                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7269                            DAG.getSrcValue(I.getOperand(0)),
7270                            DL.getABITypeAlignment(I.getType()));
7271   setValue(&I, V);
7272   DAG.setRoot(V.getValue(1));
7273 }
7274 
7275 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7276   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7277                           MVT::Other, getRoot(),
7278                           getValue(I.getArgOperand(0)),
7279                           DAG.getSrcValue(I.getArgOperand(0))));
7280 }
7281 
7282 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7283   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7284                           MVT::Other, getRoot(),
7285                           getValue(I.getArgOperand(0)),
7286                           getValue(I.getArgOperand(1)),
7287                           DAG.getSrcValue(I.getArgOperand(0)),
7288                           DAG.getSrcValue(I.getArgOperand(1))));
7289 }
7290 
7291 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7292                                                     const Instruction &I,
7293                                                     SDValue Op) {
7294   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7295   if (!Range)
7296     return Op;
7297 
7298   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7299   if (!Lo->isNullValue())
7300     return Op;
7301 
7302   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7303   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
7304 
7305   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7306 
7307   SDLoc SL = getCurSDLoc();
7308 
7309   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7310                              Op, DAG.getValueType(SmallVT));
7311   unsigned NumVals = Op.getNode()->getNumValues();
7312   if (NumVals == 1)
7313     return ZExt;
7314 
7315   SmallVector<SDValue, 4> Ops;
7316 
7317   Ops.push_back(ZExt);
7318   for (unsigned I = 1; I != NumVals; ++I)
7319     Ops.push_back(Op.getValue(I));
7320 
7321   return DAG.getMergeValues(Ops, SL);
7322 }
7323 
7324 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7325 /// the call being lowered.
7326 ///
7327 /// This is a helper for lowering intrinsics that follow a target calling
7328 /// convention or require stack pointer adjustment. Only a subset of the
7329 /// intrinsic's operands need to participate in the calling convention.
7330 void SelectionDAGBuilder::populateCallLoweringInfo(
7331     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7332     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7333     bool IsPatchPoint) {
7334   TargetLowering::ArgListTy Args;
7335   Args.reserve(NumArgs);
7336 
7337   // Populate the argument list.
7338   // Attributes for args start at offset 1, after the return attribute.
7339   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7340        ArgI != ArgE; ++ArgI) {
7341     const Value *V = CS->getOperand(ArgI);
7342 
7343     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7344 
7345     TargetLowering::ArgListEntry Entry;
7346     Entry.Node = getValue(V);
7347     Entry.Ty = V->getType();
7348     Entry.setAttributes(&CS, AttrI);
7349     Args.push_back(Entry);
7350   }
7351 
7352   CLI.setDebugLoc(getCurSDLoc())
7353       .setChain(getRoot())
7354       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7355       .setDiscardResult(CS->use_empty())
7356       .setIsPatchPoint(IsPatchPoint);
7357 }
7358 
7359 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7360 /// or patchpoint target node's operand list.
7361 ///
7362 /// Constants are converted to TargetConstants purely as an optimization to
7363 /// avoid constant materialization and register allocation.
7364 ///
7365 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7366 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7367 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7368 /// address materialization and register allocation, but may also be required
7369 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7370 /// alloca in the entry block, then the runtime may assume that the alloca's
7371 /// StackMap location can be read immediately after compilation and that the
7372 /// location is valid at any point during execution (this is similar to the
7373 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7374 /// only available in a register, then the runtime would need to trap when
7375 /// execution reaches the StackMap in order to read the alloca's location.
7376 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7377                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7378                                 SelectionDAGBuilder &Builder) {
7379   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7380     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7381     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7382       Ops.push_back(
7383         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7384       Ops.push_back(
7385         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7386     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7387       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7388       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7389           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7390     } else
7391       Ops.push_back(OpVal);
7392   }
7393 }
7394 
7395 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7396 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7397   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7398   //                                  [live variables...])
7399 
7400   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7401 
7402   SDValue Chain, InFlag, Callee, NullPtr;
7403   SmallVector<SDValue, 32> Ops;
7404 
7405   SDLoc DL = getCurSDLoc();
7406   Callee = getValue(CI.getCalledValue());
7407   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7408 
7409   // The stackmap intrinsic only records the live variables (the arguemnts
7410   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7411   // intrinsic, this won't be lowered to a function call. This means we don't
7412   // have to worry about calling conventions and target specific lowering code.
7413   // Instead we perform the call lowering right here.
7414   //
7415   // chain, flag = CALLSEQ_START(chain, 0)
7416   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7417   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7418   //
7419   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7420   InFlag = Chain.getValue(1);
7421 
7422   // Add the <id> and <numBytes> constants.
7423   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7424   Ops.push_back(DAG.getTargetConstant(
7425                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7426   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7427   Ops.push_back(DAG.getTargetConstant(
7428                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7429                   MVT::i32));
7430 
7431   // Push live variables for the stack map.
7432   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7433 
7434   // We are not pushing any register mask info here on the operands list,
7435   // because the stackmap doesn't clobber anything.
7436 
7437   // Push the chain and the glue flag.
7438   Ops.push_back(Chain);
7439   Ops.push_back(InFlag);
7440 
7441   // Create the STACKMAP node.
7442   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7443   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7444   Chain = SDValue(SM, 0);
7445   InFlag = Chain.getValue(1);
7446 
7447   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7448 
7449   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7450 
7451   // Set the root to the target-lowered call chain.
7452   DAG.setRoot(Chain);
7453 
7454   // Inform the Frame Information that we have a stackmap in this function.
7455   FuncInfo.MF->getFrameInfo().setHasStackMap();
7456 }
7457 
7458 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7459 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7460                                           const BasicBlock *EHPadBB) {
7461   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7462   //                                                 i32 <numBytes>,
7463   //                                                 i8* <target>,
7464   //                                                 i32 <numArgs>,
7465   //                                                 [Args...],
7466   //                                                 [live variables...])
7467 
7468   CallingConv::ID CC = CS.getCallingConv();
7469   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7470   bool HasDef = !CS->getType()->isVoidTy();
7471   SDLoc dl = getCurSDLoc();
7472   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7473 
7474   // Handle immediate and symbolic callees.
7475   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7476     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7477                                    /*isTarget=*/true);
7478   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7479     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7480                                          SDLoc(SymbolicCallee),
7481                                          SymbolicCallee->getValueType(0));
7482 
7483   // Get the real number of arguments participating in the call <numArgs>
7484   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7485   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7486 
7487   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7488   // Intrinsics include all meta-operands up to but not including CC.
7489   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7490   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7491          "Not enough arguments provided to the patchpoint intrinsic");
7492 
7493   // For AnyRegCC the arguments are lowered later on manually.
7494   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7495   Type *ReturnTy =
7496     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7497 
7498   TargetLowering::CallLoweringInfo CLI(DAG);
7499   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7500                            true);
7501   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7502 
7503   SDNode *CallEnd = Result.second.getNode();
7504   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7505     CallEnd = CallEnd->getOperand(0).getNode();
7506 
7507   /// Get a call instruction from the call sequence chain.
7508   /// Tail calls are not allowed.
7509   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7510          "Expected a callseq node.");
7511   SDNode *Call = CallEnd->getOperand(0).getNode();
7512   bool HasGlue = Call->getGluedNode();
7513 
7514   // Replace the target specific call node with the patchable intrinsic.
7515   SmallVector<SDValue, 8> Ops;
7516 
7517   // Add the <id> and <numBytes> constants.
7518   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7519   Ops.push_back(DAG.getTargetConstant(
7520                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7521   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7522   Ops.push_back(DAG.getTargetConstant(
7523                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7524                   MVT::i32));
7525 
7526   // Add the callee.
7527   Ops.push_back(Callee);
7528 
7529   // Adjust <numArgs> to account for any arguments that have been passed on the
7530   // stack instead.
7531   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7532   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7533   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7534   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7535 
7536   // Add the calling convention
7537   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7538 
7539   // Add the arguments we omitted previously. The register allocator should
7540   // place these in any free register.
7541   if (IsAnyRegCC)
7542     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7543       Ops.push_back(getValue(CS.getArgument(i)));
7544 
7545   // Push the arguments from the call instruction up to the register mask.
7546   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7547   Ops.append(Call->op_begin() + 2, e);
7548 
7549   // Push live variables for the stack map.
7550   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7551 
7552   // Push the register mask info.
7553   if (HasGlue)
7554     Ops.push_back(*(Call->op_end()-2));
7555   else
7556     Ops.push_back(*(Call->op_end()-1));
7557 
7558   // Push the chain (this is originally the first operand of the call, but
7559   // becomes now the last or second to last operand).
7560   Ops.push_back(*(Call->op_begin()));
7561 
7562   // Push the glue flag (last operand).
7563   if (HasGlue)
7564     Ops.push_back(*(Call->op_end()-1));
7565 
7566   SDVTList NodeTys;
7567   if (IsAnyRegCC && HasDef) {
7568     // Create the return types based on the intrinsic definition
7569     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7570     SmallVector<EVT, 3> ValueVTs;
7571     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7572     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7573 
7574     // There is always a chain and a glue type at the end
7575     ValueVTs.push_back(MVT::Other);
7576     ValueVTs.push_back(MVT::Glue);
7577     NodeTys = DAG.getVTList(ValueVTs);
7578   } else
7579     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7580 
7581   // Replace the target specific call node with a PATCHPOINT node.
7582   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7583                                          dl, NodeTys, Ops);
7584 
7585   // Update the NodeMap.
7586   if (HasDef) {
7587     if (IsAnyRegCC)
7588       setValue(CS.getInstruction(), SDValue(MN, 0));
7589     else
7590       setValue(CS.getInstruction(), Result.first);
7591   }
7592 
7593   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7594   // call sequence. Furthermore the location of the chain and glue can change
7595   // when the AnyReg calling convention is used and the intrinsic returns a
7596   // value.
7597   if (IsAnyRegCC && HasDef) {
7598     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7599     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7600     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7601   } else
7602     DAG.ReplaceAllUsesWith(Call, MN);
7603   DAG.DeleteNode(Call);
7604 
7605   // Inform the Frame Information that we have a patchpoint in this function.
7606   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7607 }
7608 
7609 /// Returns an AttributeSet representing the attributes applied to the return
7610 /// value of the given call.
7611 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7612   SmallVector<Attribute::AttrKind, 2> Attrs;
7613   if (CLI.RetSExt)
7614     Attrs.push_back(Attribute::SExt);
7615   if (CLI.RetZExt)
7616     Attrs.push_back(Attribute::ZExt);
7617   if (CLI.IsInReg)
7618     Attrs.push_back(Attribute::InReg);
7619 
7620   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7621                            Attrs);
7622 }
7623 
7624 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7625 /// implementation, which just calls LowerCall.
7626 /// FIXME: When all targets are
7627 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7628 std::pair<SDValue, SDValue>
7629 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7630   // Handle the incoming return values from the call.
7631   CLI.Ins.clear();
7632   Type *OrigRetTy = CLI.RetTy;
7633   SmallVector<EVT, 4> RetTys;
7634   SmallVector<uint64_t, 4> Offsets;
7635   auto &DL = CLI.DAG.getDataLayout();
7636   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7637 
7638   SmallVector<ISD::OutputArg, 4> Outs;
7639   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7640 
7641   bool CanLowerReturn =
7642       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7643                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7644 
7645   SDValue DemoteStackSlot;
7646   int DemoteStackIdx = -100;
7647   if (!CanLowerReturn) {
7648     // FIXME: equivalent assert?
7649     // assert(!CS.hasInAllocaArgument() &&
7650     //        "sret demotion is incompatible with inalloca");
7651     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7652     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7653     MachineFunction &MF = CLI.DAG.getMachineFunction();
7654     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7655     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7656 
7657     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7658     ArgListEntry Entry;
7659     Entry.Node = DemoteStackSlot;
7660     Entry.Ty = StackSlotPtrType;
7661     Entry.isSExt = false;
7662     Entry.isZExt = false;
7663     Entry.isInReg = false;
7664     Entry.isSRet = true;
7665     Entry.isNest = false;
7666     Entry.isByVal = false;
7667     Entry.isReturned = false;
7668     Entry.isSwiftSelf = false;
7669     Entry.isSwiftError = false;
7670     Entry.Alignment = Align;
7671     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7672     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7673 
7674     // sret demotion isn't compatible with tail-calls, since the sret argument
7675     // points into the callers stack frame.
7676     CLI.IsTailCall = false;
7677   } else {
7678     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7679       EVT VT = RetTys[I];
7680       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7681       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7682       for (unsigned i = 0; i != NumRegs; ++i) {
7683         ISD::InputArg MyFlags;
7684         MyFlags.VT = RegisterVT;
7685         MyFlags.ArgVT = VT;
7686         MyFlags.Used = CLI.IsReturnValueUsed;
7687         if (CLI.RetSExt)
7688           MyFlags.Flags.setSExt();
7689         if (CLI.RetZExt)
7690           MyFlags.Flags.setZExt();
7691         if (CLI.IsInReg)
7692           MyFlags.Flags.setInReg();
7693         CLI.Ins.push_back(MyFlags);
7694       }
7695     }
7696   }
7697 
7698   // We push in swifterror return as the last element of CLI.Ins.
7699   ArgListTy &Args = CLI.getArgs();
7700   if (supportSwiftError()) {
7701     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7702       if (Args[i].isSwiftError) {
7703         ISD::InputArg MyFlags;
7704         MyFlags.VT = getPointerTy(DL);
7705         MyFlags.ArgVT = EVT(getPointerTy(DL));
7706         MyFlags.Flags.setSwiftError();
7707         CLI.Ins.push_back(MyFlags);
7708       }
7709     }
7710   }
7711 
7712   // Handle all of the outgoing arguments.
7713   CLI.Outs.clear();
7714   CLI.OutVals.clear();
7715   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7716     SmallVector<EVT, 4> ValueVTs;
7717     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7718     Type *FinalType = Args[i].Ty;
7719     if (Args[i].isByVal)
7720       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7721     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7722         FinalType, CLI.CallConv, CLI.IsVarArg);
7723     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7724          ++Value) {
7725       EVT VT = ValueVTs[Value];
7726       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7727       SDValue Op = SDValue(Args[i].Node.getNode(),
7728                            Args[i].Node.getResNo() + Value);
7729       ISD::ArgFlagsTy Flags;
7730       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7731 
7732       if (Args[i].isZExt)
7733         Flags.setZExt();
7734       if (Args[i].isSExt)
7735         Flags.setSExt();
7736       if (Args[i].isInReg)
7737         Flags.setInReg();
7738       if (Args[i].isSRet)
7739         Flags.setSRet();
7740       if (Args[i].isSwiftSelf)
7741         Flags.setSwiftSelf();
7742       if (Args[i].isSwiftError)
7743         Flags.setSwiftError();
7744       if (Args[i].isByVal)
7745         Flags.setByVal();
7746       if (Args[i].isInAlloca) {
7747         Flags.setInAlloca();
7748         // Set the byval flag for CCAssignFn callbacks that don't know about
7749         // inalloca.  This way we can know how many bytes we should've allocated
7750         // and how many bytes a callee cleanup function will pop.  If we port
7751         // inalloca to more targets, we'll have to add custom inalloca handling
7752         // in the various CC lowering callbacks.
7753         Flags.setByVal();
7754       }
7755       if (Args[i].isByVal || Args[i].isInAlloca) {
7756         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7757         Type *ElementTy = Ty->getElementType();
7758         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7759         // For ByVal, alignment should come from FE.  BE will guess if this
7760         // info is not there but there are cases it cannot get right.
7761         unsigned FrameAlign;
7762         if (Args[i].Alignment)
7763           FrameAlign = Args[i].Alignment;
7764         else
7765           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7766         Flags.setByValAlign(FrameAlign);
7767       }
7768       if (Args[i].isNest)
7769         Flags.setNest();
7770       if (NeedsRegBlock)
7771         Flags.setInConsecutiveRegs();
7772       Flags.setOrigAlign(OriginalAlignment);
7773 
7774       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7775       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7776       SmallVector<SDValue, 4> Parts(NumParts);
7777       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7778 
7779       if (Args[i].isSExt)
7780         ExtendKind = ISD::SIGN_EXTEND;
7781       else if (Args[i].isZExt)
7782         ExtendKind = ISD::ZERO_EXTEND;
7783 
7784       // Conservatively only handle 'returned' on non-vectors for now
7785       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7786         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7787                "unexpected use of 'returned'");
7788         // Before passing 'returned' to the target lowering code, ensure that
7789         // either the register MVT and the actual EVT are the same size or that
7790         // the return value and argument are extended in the same way; in these
7791         // cases it's safe to pass the argument register value unchanged as the
7792         // return register value (although it's at the target's option whether
7793         // to do so)
7794         // TODO: allow code generation to take advantage of partially preserved
7795         // registers rather than clobbering the entire register when the
7796         // parameter extension method is not compatible with the return
7797         // extension method
7798         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7799             (ExtendKind != ISD::ANY_EXTEND &&
7800              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7801         Flags.setReturned();
7802       }
7803 
7804       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7805                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7806 
7807       for (unsigned j = 0; j != NumParts; ++j) {
7808         // if it isn't first piece, alignment must be 1
7809         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7810                                i < CLI.NumFixedArgs,
7811                                i, j*Parts[j].getValueType().getStoreSize());
7812         if (NumParts > 1 && j == 0)
7813           MyFlags.Flags.setSplit();
7814         else if (j != 0) {
7815           MyFlags.Flags.setOrigAlign(1);
7816           if (j == NumParts - 1)
7817             MyFlags.Flags.setSplitEnd();
7818         }
7819 
7820         CLI.Outs.push_back(MyFlags);
7821         CLI.OutVals.push_back(Parts[j]);
7822       }
7823 
7824       if (NeedsRegBlock && Value == NumValues - 1)
7825         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7826     }
7827   }
7828 
7829   SmallVector<SDValue, 4> InVals;
7830   CLI.Chain = LowerCall(CLI, InVals);
7831 
7832   // Update CLI.InVals to use outside of this function.
7833   CLI.InVals = InVals;
7834 
7835   // Verify that the target's LowerCall behaved as expected.
7836   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7837          "LowerCall didn't return a valid chain!");
7838   assert((!CLI.IsTailCall || InVals.empty()) &&
7839          "LowerCall emitted a return value for a tail call!");
7840   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7841          "LowerCall didn't emit the correct number of values!");
7842 
7843   // For a tail call, the return value is merely live-out and there aren't
7844   // any nodes in the DAG representing it. Return a special value to
7845   // indicate that a tail call has been emitted and no more Instructions
7846   // should be processed in the current block.
7847   if (CLI.IsTailCall) {
7848     CLI.DAG.setRoot(CLI.Chain);
7849     return std::make_pair(SDValue(), SDValue());
7850   }
7851 
7852 #ifndef NDEBUG
7853   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7854     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7855     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7856            "LowerCall emitted a value with the wrong type!");
7857   }
7858 #endif
7859 
7860   SmallVector<SDValue, 4> ReturnValues;
7861   if (!CanLowerReturn) {
7862     // The instruction result is the result of loading from the
7863     // hidden sret parameter.
7864     SmallVector<EVT, 1> PVTs;
7865     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7866 
7867     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7868     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7869     EVT PtrVT = PVTs[0];
7870 
7871     unsigned NumValues = RetTys.size();
7872     ReturnValues.resize(NumValues);
7873     SmallVector<SDValue, 4> Chains(NumValues);
7874 
7875     // An aggregate return value cannot wrap around the address space, so
7876     // offsets to its parts don't wrap either.
7877     SDNodeFlags Flags;
7878     Flags.setNoUnsignedWrap(true);
7879 
7880     for (unsigned i = 0; i < NumValues; ++i) {
7881       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7882                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7883                                                         PtrVT), &Flags);
7884       SDValue L = CLI.DAG.getLoad(
7885           RetTys[i], CLI.DL, CLI.Chain, Add,
7886           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7887                                             DemoteStackIdx, Offsets[i]),
7888           /* Alignment = */ 1);
7889       ReturnValues[i] = L;
7890       Chains[i] = L.getValue(1);
7891     }
7892 
7893     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7894   } else {
7895     // Collect the legal value parts into potentially illegal values
7896     // that correspond to the original function's return values.
7897     Optional<ISD::NodeType> AssertOp;
7898     if (CLI.RetSExt)
7899       AssertOp = ISD::AssertSext;
7900     else if (CLI.RetZExt)
7901       AssertOp = ISD::AssertZext;
7902     unsigned CurReg = 0;
7903     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7904       EVT VT = RetTys[I];
7905       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7906       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7907 
7908       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7909                                               NumRegs, RegisterVT, VT, nullptr,
7910                                               AssertOp));
7911       CurReg += NumRegs;
7912     }
7913 
7914     // For a function returning void, there is no return value. We can't create
7915     // such a node, so we just return a null return value in that case. In
7916     // that case, nothing will actually look at the value.
7917     if (ReturnValues.empty())
7918       return std::make_pair(SDValue(), CLI.Chain);
7919   }
7920 
7921   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7922                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7923   return std::make_pair(Res, CLI.Chain);
7924 }
7925 
7926 void TargetLowering::LowerOperationWrapper(SDNode *N,
7927                                            SmallVectorImpl<SDValue> &Results,
7928                                            SelectionDAG &DAG) const {
7929   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7930     Results.push_back(Res);
7931 }
7932 
7933 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7934   llvm_unreachable("LowerOperation not implemented for this target!");
7935 }
7936 
7937 void
7938 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7939   SDValue Op = getNonRegisterValue(V);
7940   assert((Op.getOpcode() != ISD::CopyFromReg ||
7941           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7942          "Copy from a reg to the same reg!");
7943   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7944 
7945   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7946   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7947                    V->getType());
7948   SDValue Chain = DAG.getEntryNode();
7949 
7950   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7951                               FuncInfo.PreferredExtendType.end())
7952                                  ? ISD::ANY_EXTEND
7953                                  : FuncInfo.PreferredExtendType[V];
7954   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7955   PendingExports.push_back(Chain);
7956 }
7957 
7958 #include "llvm/CodeGen/SelectionDAGISel.h"
7959 
7960 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7961 /// entry block, return true.  This includes arguments used by switches, since
7962 /// the switch may expand into multiple basic blocks.
7963 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7964   // With FastISel active, we may be splitting blocks, so force creation
7965   // of virtual registers for all non-dead arguments.
7966   if (FastISel)
7967     return A->use_empty();
7968 
7969   const BasicBlock &Entry = A->getParent()->front();
7970   for (const User *U : A->users())
7971     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7972       return false;  // Use not in entry block.
7973 
7974   return true;
7975 }
7976 
7977 void SelectionDAGISel::LowerArguments(const Function &F) {
7978   SelectionDAG &DAG = SDB->DAG;
7979   SDLoc dl = SDB->getCurSDLoc();
7980   const DataLayout &DL = DAG.getDataLayout();
7981   SmallVector<ISD::InputArg, 16> Ins;
7982 
7983   if (!FuncInfo->CanLowerReturn) {
7984     // Put in an sret pointer parameter before all the other parameters.
7985     SmallVector<EVT, 1> ValueVTs;
7986     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7987                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7988 
7989     // NOTE: Assuming that a pointer will never break down to more than one VT
7990     // or one register.
7991     ISD::ArgFlagsTy Flags;
7992     Flags.setSRet();
7993     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7994     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7995                          ISD::InputArg::NoArgIndex, 0);
7996     Ins.push_back(RetArg);
7997   }
7998 
7999   // Set up the incoming argument description vector.
8000   unsigned Idx = 1;
8001   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
8002        I != E; ++I, ++Idx) {
8003     SmallVector<EVT, 4> ValueVTs;
8004     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
8005     bool isArgValueUsed = !I->use_empty();
8006     unsigned PartBase = 0;
8007     Type *FinalType = I->getType();
8008     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
8009       FinalType = cast<PointerType>(FinalType)->getElementType();
8010     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8011         FinalType, F.getCallingConv(), F.isVarArg());
8012     for (unsigned Value = 0, NumValues = ValueVTs.size();
8013          Value != NumValues; ++Value) {
8014       EVT VT = ValueVTs[Value];
8015       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8016       ISD::ArgFlagsTy Flags;
8017       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
8018 
8019       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8020         Flags.setZExt();
8021       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8022         Flags.setSExt();
8023       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
8024         Flags.setInReg();
8025       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
8026         Flags.setSRet();
8027       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
8028         Flags.setSwiftSelf();
8029       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
8030         Flags.setSwiftError();
8031       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
8032         Flags.setByVal();
8033       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
8034         Flags.setInAlloca();
8035         // Set the byval flag for CCAssignFn callbacks that don't know about
8036         // inalloca.  This way we can know how many bytes we should've allocated
8037         // and how many bytes a callee cleanup function will pop.  If we port
8038         // inalloca to more targets, we'll have to add custom inalloca handling
8039         // in the various CC lowering callbacks.
8040         Flags.setByVal();
8041       }
8042       if (F.getCallingConv() == CallingConv::X86_INTR) {
8043         // IA Interrupt passes frame (1st parameter) by value in the stack.
8044         if (Idx == 1)
8045           Flags.setByVal();
8046       }
8047       if (Flags.isByVal() || Flags.isInAlloca()) {
8048         PointerType *Ty = cast<PointerType>(I->getType());
8049         Type *ElementTy = Ty->getElementType();
8050         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8051         // For ByVal, alignment should be passed from FE.  BE will guess if
8052         // this info is not there but there are cases it cannot get right.
8053         unsigned FrameAlign;
8054         if (F.getParamAlignment(Idx))
8055           FrameAlign = F.getParamAlignment(Idx);
8056         else
8057           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8058         Flags.setByValAlign(FrameAlign);
8059       }
8060       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
8061         Flags.setNest();
8062       if (NeedsRegBlock)
8063         Flags.setInConsecutiveRegs();
8064       Flags.setOrigAlign(OriginalAlignment);
8065 
8066       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8067       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8068       for (unsigned i = 0; i != NumRegs; ++i) {
8069         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8070                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
8071         if (NumRegs > 1 && i == 0)
8072           MyFlags.Flags.setSplit();
8073         // if it isn't first piece, alignment must be 1
8074         else if (i > 0) {
8075           MyFlags.Flags.setOrigAlign(1);
8076           if (i == NumRegs - 1)
8077             MyFlags.Flags.setSplitEnd();
8078         }
8079         Ins.push_back(MyFlags);
8080       }
8081       if (NeedsRegBlock && Value == NumValues - 1)
8082         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8083       PartBase += VT.getStoreSize();
8084     }
8085   }
8086 
8087   // Call the target to set up the argument values.
8088   SmallVector<SDValue, 8> InVals;
8089   SDValue NewRoot = TLI->LowerFormalArguments(
8090       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8091 
8092   // Verify that the target's LowerFormalArguments behaved as expected.
8093   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8094          "LowerFormalArguments didn't return a valid chain!");
8095   assert(InVals.size() == Ins.size() &&
8096          "LowerFormalArguments didn't emit the correct number of values!");
8097   DEBUG({
8098       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8099         assert(InVals[i].getNode() &&
8100                "LowerFormalArguments emitted a null value!");
8101         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8102                "LowerFormalArguments emitted a value with the wrong type!");
8103       }
8104     });
8105 
8106   // Update the DAG with the new chain value resulting from argument lowering.
8107   DAG.setRoot(NewRoot);
8108 
8109   // Set up the argument values.
8110   unsigned i = 0;
8111   Idx = 1;
8112   if (!FuncInfo->CanLowerReturn) {
8113     // Create a virtual register for the sret pointer, and put in a copy
8114     // from the sret argument into it.
8115     SmallVector<EVT, 1> ValueVTs;
8116     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8117                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8118     MVT VT = ValueVTs[0].getSimpleVT();
8119     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8120     Optional<ISD::NodeType> AssertOp = None;
8121     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8122                                         RegVT, VT, nullptr, AssertOp);
8123 
8124     MachineFunction& MF = SDB->DAG.getMachineFunction();
8125     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8126     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8127     FuncInfo->DemoteRegister = SRetReg;
8128     NewRoot =
8129         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8130     DAG.setRoot(NewRoot);
8131 
8132     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8133     // Idx indexes LLVM arguments.  Don't touch it.
8134     ++i;
8135   }
8136 
8137   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
8138       ++I, ++Idx) {
8139     SmallVector<SDValue, 4> ArgValues;
8140     SmallVector<EVT, 4> ValueVTs;
8141     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
8142     unsigned NumValues = ValueVTs.size();
8143 
8144     // If this argument is unused then remember its value. It is used to generate
8145     // debugging information.
8146     bool isSwiftErrorArg =
8147         TLI->supportSwiftError() &&
8148         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError);
8149     if (I->use_empty() && NumValues && !isSwiftErrorArg) {
8150       SDB->setUnusedArgValue(&*I, InVals[i]);
8151 
8152       // Also remember any frame index for use in FastISel.
8153       if (FrameIndexSDNode *FI =
8154           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8155         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8156     }
8157 
8158     for (unsigned Val = 0; Val != NumValues; ++Val) {
8159       EVT VT = ValueVTs[Val];
8160       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8161       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8162 
8163       // Even an apparant 'unused' swifterror argument needs to be returned. So
8164       // we do generate a copy for it that can be used on return from the
8165       // function.
8166       if (!I->use_empty() || isSwiftErrorArg) {
8167         Optional<ISD::NodeType> AssertOp;
8168         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8169           AssertOp = ISD::AssertSext;
8170         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8171           AssertOp = ISD::AssertZext;
8172 
8173         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
8174                                              NumParts, PartVT, VT,
8175                                              nullptr, AssertOp));
8176       }
8177 
8178       i += NumParts;
8179     }
8180 
8181     // We don't need to do anything else for unused arguments.
8182     if (ArgValues.empty())
8183       continue;
8184 
8185     // Note down frame index.
8186     if (FrameIndexSDNode *FI =
8187         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8188       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8189 
8190     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8191                                      SDB->getCurSDLoc());
8192 
8193     SDB->setValue(&*I, Res);
8194     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8195       if (LoadSDNode *LNode =
8196           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8197         if (FrameIndexSDNode *FI =
8198             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8199         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8200     }
8201 
8202     // Update the SwiftErrorVRegDefMap.
8203     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8204       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8205       if (TargetRegisterInfo::isVirtualRegister(Reg))
8206         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8207                                            FuncInfo->SwiftErrorArg, Reg);
8208     }
8209 
8210     // If this argument is live outside of the entry block, insert a copy from
8211     // wherever we got it to the vreg that other BB's will reference it as.
8212     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8213       // If we can, though, try to skip creating an unnecessary vreg.
8214       // FIXME: This isn't very clean... it would be nice to make this more
8215       // general.  It's also subtly incompatible with the hacks FastISel
8216       // uses with vregs.
8217       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8218       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8219         FuncInfo->ValueMap[&*I] = Reg;
8220         continue;
8221       }
8222     }
8223     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8224       FuncInfo->InitializeRegForValue(&*I);
8225       SDB->CopyToExportRegsIfNeeded(&*I);
8226     }
8227   }
8228 
8229   assert(i == InVals.size() && "Argument register count mismatch!");
8230 
8231   // Finally, if the target has anything special to do, allow it to do so.
8232   EmitFunctionEntryCode();
8233 }
8234 
8235 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8236 /// ensure constants are generated when needed.  Remember the virtual registers
8237 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8238 /// directly add them, because expansion might result in multiple MBB's for one
8239 /// BB.  As such, the start of the BB might correspond to a different MBB than
8240 /// the end.
8241 ///
8242 void
8243 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8244   const TerminatorInst *TI = LLVMBB->getTerminator();
8245 
8246   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8247 
8248   // Check PHI nodes in successors that expect a value to be available from this
8249   // block.
8250   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8251     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8252     if (!isa<PHINode>(SuccBB->begin())) continue;
8253     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8254 
8255     // If this terminator has multiple identical successors (common for
8256     // switches), only handle each succ once.
8257     if (!SuccsHandled.insert(SuccMBB).second)
8258       continue;
8259 
8260     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8261 
8262     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8263     // nodes and Machine PHI nodes, but the incoming operands have not been
8264     // emitted yet.
8265     for (BasicBlock::const_iterator I = SuccBB->begin();
8266          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8267       // Ignore dead phi's.
8268       if (PN->use_empty()) continue;
8269 
8270       // Skip empty types
8271       if (PN->getType()->isEmptyTy())
8272         continue;
8273 
8274       unsigned Reg;
8275       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8276 
8277       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8278         unsigned &RegOut = ConstantsOut[C];
8279         if (RegOut == 0) {
8280           RegOut = FuncInfo.CreateRegs(C->getType());
8281           CopyValueToVirtualRegister(C, RegOut);
8282         }
8283         Reg = RegOut;
8284       } else {
8285         DenseMap<const Value *, unsigned>::iterator I =
8286           FuncInfo.ValueMap.find(PHIOp);
8287         if (I != FuncInfo.ValueMap.end())
8288           Reg = I->second;
8289         else {
8290           assert(isa<AllocaInst>(PHIOp) &&
8291                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8292                  "Didn't codegen value into a register!??");
8293           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8294           CopyValueToVirtualRegister(PHIOp, Reg);
8295         }
8296       }
8297 
8298       // Remember that this register needs to added to the machine PHI node as
8299       // the input for this MBB.
8300       SmallVector<EVT, 4> ValueVTs;
8301       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8302       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8303       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8304         EVT VT = ValueVTs[vti];
8305         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8306         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8307           FuncInfo.PHINodesToUpdate.push_back(
8308               std::make_pair(&*MBBI++, Reg + i));
8309         Reg += NumRegisters;
8310       }
8311     }
8312   }
8313 
8314   ConstantsOut.clear();
8315 }
8316 
8317 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8318 /// is 0.
8319 MachineBasicBlock *
8320 SelectionDAGBuilder::StackProtectorDescriptor::
8321 AddSuccessorMBB(const BasicBlock *BB,
8322                 MachineBasicBlock *ParentMBB,
8323                 bool IsLikely,
8324                 MachineBasicBlock *SuccMBB) {
8325   // If SuccBB has not been created yet, create it.
8326   if (!SuccMBB) {
8327     MachineFunction *MF = ParentMBB->getParent();
8328     MachineFunction::iterator BBI(ParentMBB);
8329     SuccMBB = MF->CreateMachineBasicBlock(BB);
8330     MF->insert(++BBI, SuccMBB);
8331   }
8332   // Add it as a successor of ParentMBB.
8333   ParentMBB->addSuccessor(
8334       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8335   return SuccMBB;
8336 }
8337 
8338 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8339   MachineFunction::iterator I(MBB);
8340   if (++I == FuncInfo.MF->end())
8341     return nullptr;
8342   return &*I;
8343 }
8344 
8345 /// During lowering new call nodes can be created (such as memset, etc.).
8346 /// Those will become new roots of the current DAG, but complications arise
8347 /// when they are tail calls. In such cases, the call lowering will update
8348 /// the root, but the builder still needs to know that a tail call has been
8349 /// lowered in order to avoid generating an additional return.
8350 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8351   // If the node is null, we do have a tail call.
8352   if (MaybeTC.getNode() != nullptr)
8353     DAG.setRoot(MaybeTC);
8354   else
8355     HasTailCall = true;
8356 }
8357 
8358 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8359                                   const SmallVectorImpl<unsigned> &TotalCases,
8360                                   unsigned First, unsigned Last,
8361                                   unsigned Density) const {
8362   assert(Last >= First);
8363   assert(TotalCases[Last] >= TotalCases[First]);
8364 
8365   const APInt &LowCase = Clusters[First].Low->getValue();
8366   const APInt &HighCase = Clusters[Last].High->getValue();
8367   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8368 
8369   // FIXME: A range of consecutive cases has 100% density, but only requires one
8370   // comparison to lower. We should discriminate against such consecutive ranges
8371   // in jump tables.
8372 
8373   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8374   uint64_t Range = Diff + 1;
8375 
8376   uint64_t NumCases =
8377       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8378 
8379   assert(NumCases < UINT64_MAX / 100);
8380   assert(Range >= NumCases);
8381 
8382   return NumCases * 100 >= Range * Density;
8383 }
8384 
8385 static inline bool areJTsAllowed(const TargetLowering &TLI,
8386                                  const SwitchInst *SI) {
8387   const Function *Fn = SI->getParent()->getParent();
8388   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8389     return false;
8390 
8391   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8392          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8393 }
8394 
8395 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
8396                                          unsigned First, unsigned Last,
8397                                          const SwitchInst *SI,
8398                                          MachineBasicBlock *DefaultMBB,
8399                                          CaseCluster &JTCluster) {
8400   assert(First <= Last);
8401 
8402   auto Prob = BranchProbability::getZero();
8403   unsigned NumCmps = 0;
8404   std::vector<MachineBasicBlock*> Table;
8405   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8406 
8407   // Initialize probabilities in JTProbs.
8408   for (unsigned I = First; I <= Last; ++I)
8409     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8410 
8411   for (unsigned I = First; I <= Last; ++I) {
8412     assert(Clusters[I].Kind == CC_Range);
8413     Prob += Clusters[I].Prob;
8414     const APInt &Low = Clusters[I].Low->getValue();
8415     const APInt &High = Clusters[I].High->getValue();
8416     NumCmps += (Low == High) ? 1 : 2;
8417     if (I != First) {
8418       // Fill the gap between this and the previous cluster.
8419       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
8420       assert(PreviousHigh.slt(Low));
8421       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8422       for (uint64_t J = 0; J < Gap; J++)
8423         Table.push_back(DefaultMBB);
8424     }
8425     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8426     for (uint64_t J = 0; J < ClusterSize; ++J)
8427       Table.push_back(Clusters[I].MBB);
8428     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8429   }
8430 
8431   unsigned NumDests = JTProbs.size();
8432   if (isSuitableForBitTests(NumDests, NumCmps,
8433                             Clusters[First].Low->getValue(),
8434                             Clusters[Last].High->getValue())) {
8435     // Clusters[First..Last] should be lowered as bit tests instead.
8436     return false;
8437   }
8438 
8439   // Create the MBB that will load from and jump through the table.
8440   // Note: We create it here, but it's not inserted into the function yet.
8441   MachineFunction *CurMF = FuncInfo.MF;
8442   MachineBasicBlock *JumpTableMBB =
8443       CurMF->CreateMachineBasicBlock(SI->getParent());
8444 
8445   // Add successors. Note: use table order for determinism.
8446   SmallPtrSet<MachineBasicBlock *, 8> Done;
8447   for (MachineBasicBlock *Succ : Table) {
8448     if (Done.count(Succ))
8449       continue;
8450     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8451     Done.insert(Succ);
8452   }
8453   JumpTableMBB->normalizeSuccProbs();
8454 
8455   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8456   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8457                      ->createJumpTableIndex(Table);
8458 
8459   // Set up the jump table info.
8460   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8461   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8462                       Clusters[Last].High->getValue(), SI->getCondition(),
8463                       nullptr, false);
8464   JTCases.emplace_back(std::move(JTH), std::move(JT));
8465 
8466   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8467                                      JTCases.size() - 1, Prob);
8468   return true;
8469 }
8470 
8471 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8472                                          const SwitchInst *SI,
8473                                          MachineBasicBlock *DefaultMBB) {
8474 #ifndef NDEBUG
8475   // Clusters must be non-empty, sorted, and only contain Range clusters.
8476   assert(!Clusters.empty());
8477   for (CaseCluster &C : Clusters)
8478     assert(C.Kind == CC_Range);
8479   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8480     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8481 #endif
8482 
8483   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8484   if (!areJTsAllowed(TLI, SI))
8485     return;
8486 
8487   const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize();
8488 
8489   const int64_t N = Clusters.size();
8490   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
8491   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
8492   const unsigned MaxJumpTableSize =
8493                    OptForSize || TLI.getMaximumJumpTableSize() == 0
8494                    ? UINT_MAX : TLI.getMaximumJumpTableSize();
8495 
8496   if (N < 2 || N < MinJumpTableEntries)
8497     return;
8498 
8499   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8500   SmallVector<unsigned, 8> TotalCases(N);
8501   for (unsigned i = 0; i < N; ++i) {
8502     const APInt &Hi = Clusters[i].High->getValue();
8503     const APInt &Lo = Clusters[i].Low->getValue();
8504     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8505     if (i != 0)
8506       TotalCases[i] += TotalCases[i - 1];
8507   }
8508 
8509   const unsigned MinDensity =
8510     OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
8511 
8512   // Cheap case: the whole range may be suitable for jump table.
8513   unsigned JumpTableSize = (Clusters[N - 1].High->getValue() -
8514                             Clusters[0].Low->getValue())
8515                            .getLimitedValue(UINT_MAX - 1) + 1;
8516   if (JumpTableSize <= MaxJumpTableSize &&
8517       isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) {
8518     CaseCluster JTCluster;
8519     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8520       Clusters[0] = JTCluster;
8521       Clusters.resize(1);
8522       return;
8523     }
8524   }
8525 
8526   // The algorithm below is not suitable for -O0.
8527   if (TM.getOptLevel() == CodeGenOpt::None)
8528     return;
8529 
8530   // Split Clusters into minimum number of dense partitions. The algorithm uses
8531   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8532   // for the Case Statement'" (1994), but builds the MinPartitions array in
8533   // reverse order to make it easier to reconstruct the partitions in ascending
8534   // order. In the choice between two optimal partitionings, it picks the one
8535   // which yields more jump tables.
8536 
8537   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8538   SmallVector<unsigned, 8> MinPartitions(N);
8539   // LastElement[i] is the last element of the partition starting at i.
8540   SmallVector<unsigned, 8> LastElement(N);
8541   // PartitionsScore[i] is used to break ties when choosing between two
8542   // partitionings resulting in the same number of partitions.
8543   SmallVector<unsigned, 8> PartitionsScore(N);
8544   // For PartitionsScore, a small number of comparisons is considered as good as
8545   // a jump table and a single comparison is considered better than a jump
8546   // table.
8547   enum PartitionScores : unsigned {
8548     NoTable = 0,
8549     Table = 1,
8550     FewCases = 1,
8551     SingleCase = 2
8552   };
8553 
8554   // Base case: There is only one way to partition Clusters[N-1].
8555   MinPartitions[N - 1] = 1;
8556   LastElement[N - 1] = N - 1;
8557   PartitionsScore[N - 1] = PartitionScores::SingleCase;
8558 
8559   // Note: loop indexes are signed to avoid underflow.
8560   for (int64_t i = N - 2; i >= 0; i--) {
8561     // Find optimal partitioning of Clusters[i..N-1].
8562     // Baseline: Put Clusters[i] into a partition on its own.
8563     MinPartitions[i] = MinPartitions[i + 1] + 1;
8564     LastElement[i] = i;
8565     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
8566 
8567     // Search for a solution that results in fewer partitions.
8568     for (int64_t j = N - 1; j > i; j--) {
8569       // Try building a partition from Clusters[i..j].
8570       JumpTableSize = (Clusters[j].High->getValue() -
8571                        Clusters[i].Low->getValue())
8572                       .getLimitedValue(UINT_MAX - 1) + 1;
8573       if (JumpTableSize <= MaxJumpTableSize &&
8574           isDense(Clusters, TotalCases, i, j, MinDensity)) {
8575         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8576         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
8577         int64_t NumEntries = j - i + 1;
8578 
8579         if (NumEntries == 1)
8580           Score += PartitionScores::SingleCase;
8581         else if (NumEntries <= SmallNumberOfEntries)
8582           Score += PartitionScores::FewCases;
8583         else if (NumEntries >= MinJumpTableEntries)
8584           Score += PartitionScores::Table;
8585 
8586         // If this leads to fewer partitions, or to the same number of
8587         // partitions with better score, it is a better partitioning.
8588         if (NumPartitions < MinPartitions[i] ||
8589             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
8590           MinPartitions[i] = NumPartitions;
8591           LastElement[i] = j;
8592           PartitionsScore[i] = Score;
8593         }
8594       }
8595     }
8596   }
8597 
8598   // Iterate over the partitions, replacing some with jump tables in-place.
8599   unsigned DstIndex = 0;
8600   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8601     Last = LastElement[First];
8602     assert(Last >= First);
8603     assert(DstIndex <= First);
8604     unsigned NumClusters = Last - First + 1;
8605 
8606     CaseCluster JTCluster;
8607     if (NumClusters >= MinJumpTableEntries &&
8608         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8609       Clusters[DstIndex++] = JTCluster;
8610     } else {
8611       for (unsigned I = First; I <= Last; ++I)
8612         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8613     }
8614   }
8615   Clusters.resize(DstIndex);
8616 }
8617 
8618 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8619   // FIXME: Using the pointer type doesn't seem ideal.
8620   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8621   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8622   return Range <= BW;
8623 }
8624 
8625 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8626                                                 unsigned NumCmps,
8627                                                 const APInt &Low,
8628                                                 const APInt &High) {
8629   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8630   // range of cases both require only one branch to lower. Just looking at the
8631   // number of clusters and destinations should be enough to decide whether to
8632   // build bit tests.
8633 
8634   // To lower a range with bit tests, the range must fit the bitwidth of a
8635   // machine word.
8636   if (!rangeFitsInWord(Low, High))
8637     return false;
8638 
8639   // Decide whether it's profitable to lower this range with bit tests. Each
8640   // destination requires a bit test and branch, and there is an overall range
8641   // check branch. For a small number of clusters, separate comparisons might be
8642   // cheaper, and for many destinations, splitting the range might be better.
8643   return (NumDests == 1 && NumCmps >= 3) ||
8644          (NumDests == 2 && NumCmps >= 5) ||
8645          (NumDests == 3 && NumCmps >= 6);
8646 }
8647 
8648 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8649                                         unsigned First, unsigned Last,
8650                                         const SwitchInst *SI,
8651                                         CaseCluster &BTCluster) {
8652   assert(First <= Last);
8653   if (First == Last)
8654     return false;
8655 
8656   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8657   unsigned NumCmps = 0;
8658   for (int64_t I = First; I <= Last; ++I) {
8659     assert(Clusters[I].Kind == CC_Range);
8660     Dests.set(Clusters[I].MBB->getNumber());
8661     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8662   }
8663   unsigned NumDests = Dests.count();
8664 
8665   APInt Low = Clusters[First].Low->getValue();
8666   APInt High = Clusters[Last].High->getValue();
8667   assert(Low.slt(High));
8668 
8669   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8670     return false;
8671 
8672   APInt LowBound;
8673   APInt CmpRange;
8674 
8675   const int BitWidth = DAG.getTargetLoweringInfo()
8676                            .getPointerTy(DAG.getDataLayout())
8677                            .getSizeInBits();
8678   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8679 
8680   // Check if the clusters cover a contiguous range such that no value in the
8681   // range will jump to the default statement.
8682   bool ContiguousRange = true;
8683   for (int64_t I = First + 1; I <= Last; ++I) {
8684     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8685       ContiguousRange = false;
8686       break;
8687     }
8688   }
8689 
8690   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8691     // Optimize the case where all the case values fit in a word without having
8692     // to subtract minValue. In this case, we can optimize away the subtraction.
8693     LowBound = APInt::getNullValue(Low.getBitWidth());
8694     CmpRange = High;
8695     ContiguousRange = false;
8696   } else {
8697     LowBound = Low;
8698     CmpRange = High - Low;
8699   }
8700 
8701   CaseBitsVector CBV;
8702   auto TotalProb = BranchProbability::getZero();
8703   for (unsigned i = First; i <= Last; ++i) {
8704     // Find the CaseBits for this destination.
8705     unsigned j;
8706     for (j = 0; j < CBV.size(); ++j)
8707       if (CBV[j].BB == Clusters[i].MBB)
8708         break;
8709     if (j == CBV.size())
8710       CBV.push_back(
8711           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8712     CaseBits *CB = &CBV[j];
8713 
8714     // Update Mask, Bits and ExtraProb.
8715     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8716     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8717     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8718     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8719     CB->Bits += Hi - Lo + 1;
8720     CB->ExtraProb += Clusters[i].Prob;
8721     TotalProb += Clusters[i].Prob;
8722   }
8723 
8724   BitTestInfo BTI;
8725   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8726     // Sort by probability first, number of bits second.
8727     if (a.ExtraProb != b.ExtraProb)
8728       return a.ExtraProb > b.ExtraProb;
8729     return a.Bits > b.Bits;
8730   });
8731 
8732   for (auto &CB : CBV) {
8733     MachineBasicBlock *BitTestBB =
8734         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8735     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8736   }
8737   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8738                             SI->getCondition(), -1U, MVT::Other, false,
8739                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8740                             TotalProb);
8741 
8742   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8743                                     BitTestCases.size() - 1, TotalProb);
8744   return true;
8745 }
8746 
8747 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8748                                               const SwitchInst *SI) {
8749 // Partition Clusters into as few subsets as possible, where each subset has a
8750 // range that fits in a machine word and has <= 3 unique destinations.
8751 
8752 #ifndef NDEBUG
8753   // Clusters must be sorted and contain Range or JumpTable clusters.
8754   assert(!Clusters.empty());
8755   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8756   for (const CaseCluster &C : Clusters)
8757     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8758   for (unsigned i = 1; i < Clusters.size(); ++i)
8759     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8760 #endif
8761 
8762   // The algorithm below is not suitable for -O0.
8763   if (TM.getOptLevel() == CodeGenOpt::None)
8764     return;
8765 
8766   // If target does not have legal shift left, do not emit bit tests at all.
8767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8768   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8769   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8770     return;
8771 
8772   int BitWidth = PTy.getSizeInBits();
8773   const int64_t N = Clusters.size();
8774 
8775   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8776   SmallVector<unsigned, 8> MinPartitions(N);
8777   // LastElement[i] is the last element of the partition starting at i.
8778   SmallVector<unsigned, 8> LastElement(N);
8779 
8780   // FIXME: This might not be the best algorithm for finding bit test clusters.
8781 
8782   // Base case: There is only one way to partition Clusters[N-1].
8783   MinPartitions[N - 1] = 1;
8784   LastElement[N - 1] = N - 1;
8785 
8786   // Note: loop indexes are signed to avoid underflow.
8787   for (int64_t i = N - 2; i >= 0; --i) {
8788     // Find optimal partitioning of Clusters[i..N-1].
8789     // Baseline: Put Clusters[i] into a partition on its own.
8790     MinPartitions[i] = MinPartitions[i + 1] + 1;
8791     LastElement[i] = i;
8792 
8793     // Search for a solution that results in fewer partitions.
8794     // Note: the search is limited by BitWidth, reducing time complexity.
8795     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8796       // Try building a partition from Clusters[i..j].
8797 
8798       // Check the range.
8799       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8800                            Clusters[j].High->getValue()))
8801         continue;
8802 
8803       // Check nbr of destinations and cluster types.
8804       // FIXME: This works, but doesn't seem very efficient.
8805       bool RangesOnly = true;
8806       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8807       for (int64_t k = i; k <= j; k++) {
8808         if (Clusters[k].Kind != CC_Range) {
8809           RangesOnly = false;
8810           break;
8811         }
8812         Dests.set(Clusters[k].MBB->getNumber());
8813       }
8814       if (!RangesOnly || Dests.count() > 3)
8815         break;
8816 
8817       // Check if it's a better partition.
8818       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8819       if (NumPartitions < MinPartitions[i]) {
8820         // Found a better partition.
8821         MinPartitions[i] = NumPartitions;
8822         LastElement[i] = j;
8823       }
8824     }
8825   }
8826 
8827   // Iterate over the partitions, replacing with bit-test clusters in-place.
8828   unsigned DstIndex = 0;
8829   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8830     Last = LastElement[First];
8831     assert(First <= Last);
8832     assert(DstIndex <= First);
8833 
8834     CaseCluster BitTestCluster;
8835     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8836       Clusters[DstIndex++] = BitTestCluster;
8837     } else {
8838       size_t NumClusters = Last - First + 1;
8839       std::memmove(&Clusters[DstIndex], &Clusters[First],
8840                    sizeof(Clusters[0]) * NumClusters);
8841       DstIndex += NumClusters;
8842     }
8843   }
8844   Clusters.resize(DstIndex);
8845 }
8846 
8847 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8848                                         MachineBasicBlock *SwitchMBB,
8849                                         MachineBasicBlock *DefaultMBB) {
8850   MachineFunction *CurMF = FuncInfo.MF;
8851   MachineBasicBlock *NextMBB = nullptr;
8852   MachineFunction::iterator BBI(W.MBB);
8853   if (++BBI != FuncInfo.MF->end())
8854     NextMBB = &*BBI;
8855 
8856   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8857 
8858   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8859 
8860   if (Size == 2 && W.MBB == SwitchMBB) {
8861     // If any two of the cases has the same destination, and if one value
8862     // is the same as the other, but has one bit unset that the other has set,
8863     // use bit manipulation to do two compares at once.  For example:
8864     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8865     // TODO: This could be extended to merge any 2 cases in switches with 3
8866     // cases.
8867     // TODO: Handle cases where W.CaseBB != SwitchBB.
8868     CaseCluster &Small = *W.FirstCluster;
8869     CaseCluster &Big = *W.LastCluster;
8870 
8871     if (Small.Low == Small.High && Big.Low == Big.High &&
8872         Small.MBB == Big.MBB) {
8873       const APInt &SmallValue = Small.Low->getValue();
8874       const APInt &BigValue = Big.Low->getValue();
8875 
8876       // Check that there is only one bit different.
8877       APInt CommonBit = BigValue ^ SmallValue;
8878       if (CommonBit.isPowerOf2()) {
8879         SDValue CondLHS = getValue(Cond);
8880         EVT VT = CondLHS.getValueType();
8881         SDLoc DL = getCurSDLoc();
8882 
8883         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8884                                  DAG.getConstant(CommonBit, DL, VT));
8885         SDValue Cond = DAG.getSetCC(
8886             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8887             ISD::SETEQ);
8888 
8889         // Update successor info.
8890         // Both Small and Big will jump to Small.BB, so we sum up the
8891         // probabilities.
8892         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8893         if (BPI)
8894           addSuccessorWithProb(
8895               SwitchMBB, DefaultMBB,
8896               // The default destination is the first successor in IR.
8897               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8898         else
8899           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8900 
8901         // Insert the true branch.
8902         SDValue BrCond =
8903             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8904                         DAG.getBasicBlock(Small.MBB));
8905         // Insert the false branch.
8906         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8907                              DAG.getBasicBlock(DefaultMBB));
8908 
8909         DAG.setRoot(BrCond);
8910         return;
8911       }
8912     }
8913   }
8914 
8915   if (TM.getOptLevel() != CodeGenOpt::None) {
8916     // Order cases by probability so the most likely case will be checked first.
8917     std::sort(W.FirstCluster, W.LastCluster + 1,
8918               [](const CaseCluster &a, const CaseCluster &b) {
8919       return a.Prob > b.Prob;
8920     });
8921 
8922     // Rearrange the case blocks so that the last one falls through if possible
8923     // without without changing the order of probabilities.
8924     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8925       --I;
8926       if (I->Prob > W.LastCluster->Prob)
8927         break;
8928       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8929         std::swap(*I, *W.LastCluster);
8930         break;
8931       }
8932     }
8933   }
8934 
8935   // Compute total probability.
8936   BranchProbability DefaultProb = W.DefaultProb;
8937   BranchProbability UnhandledProbs = DefaultProb;
8938   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8939     UnhandledProbs += I->Prob;
8940 
8941   MachineBasicBlock *CurMBB = W.MBB;
8942   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8943     MachineBasicBlock *Fallthrough;
8944     if (I == W.LastCluster) {
8945       // For the last cluster, fall through to the default destination.
8946       Fallthrough = DefaultMBB;
8947     } else {
8948       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8949       CurMF->insert(BBI, Fallthrough);
8950       // Put Cond in a virtual register to make it available from the new blocks.
8951       ExportFromCurrentBlock(Cond);
8952     }
8953     UnhandledProbs -= I->Prob;
8954 
8955     switch (I->Kind) {
8956       case CC_JumpTable: {
8957         // FIXME: Optimize away range check based on pivot comparisons.
8958         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8959         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8960 
8961         // The jump block hasn't been inserted yet; insert it here.
8962         MachineBasicBlock *JumpMBB = JT->MBB;
8963         CurMF->insert(BBI, JumpMBB);
8964 
8965         auto JumpProb = I->Prob;
8966         auto FallthroughProb = UnhandledProbs;
8967 
8968         // If the default statement is a target of the jump table, we evenly
8969         // distribute the default probability to successors of CurMBB. Also
8970         // update the probability on the edge from JumpMBB to Fallthrough.
8971         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8972                                               SE = JumpMBB->succ_end();
8973              SI != SE; ++SI) {
8974           if (*SI == DefaultMBB) {
8975             JumpProb += DefaultProb / 2;
8976             FallthroughProb -= DefaultProb / 2;
8977             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8978             JumpMBB->normalizeSuccProbs();
8979             break;
8980           }
8981         }
8982 
8983         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8984         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8985         CurMBB->normalizeSuccProbs();
8986 
8987         // The jump table header will be inserted in our current block, do the
8988         // range check, and fall through to our fallthrough block.
8989         JTH->HeaderBB = CurMBB;
8990         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8991 
8992         // If we're in the right place, emit the jump table header right now.
8993         if (CurMBB == SwitchMBB) {
8994           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8995           JTH->Emitted = true;
8996         }
8997         break;
8998       }
8999       case CC_BitTests: {
9000         // FIXME: Optimize away range check based on pivot comparisons.
9001         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9002 
9003         // The bit test blocks haven't been inserted yet; insert them here.
9004         for (BitTestCase &BTC : BTB->Cases)
9005           CurMF->insert(BBI, BTC.ThisBB);
9006 
9007         // Fill in fields of the BitTestBlock.
9008         BTB->Parent = CurMBB;
9009         BTB->Default = Fallthrough;
9010 
9011         BTB->DefaultProb = UnhandledProbs;
9012         // If the cases in bit test don't form a contiguous range, we evenly
9013         // distribute the probability on the edge to Fallthrough to two
9014         // successors of CurMBB.
9015         if (!BTB->ContiguousRange) {
9016           BTB->Prob += DefaultProb / 2;
9017           BTB->DefaultProb -= DefaultProb / 2;
9018         }
9019 
9020         // If we're in the right place, emit the bit test header right now.
9021         if (CurMBB == SwitchMBB) {
9022           visitBitTestHeader(*BTB, SwitchMBB);
9023           BTB->Emitted = true;
9024         }
9025         break;
9026       }
9027       case CC_Range: {
9028         const Value *RHS, *LHS, *MHS;
9029         ISD::CondCode CC;
9030         if (I->Low == I->High) {
9031           // Check Cond == I->Low.
9032           CC = ISD::SETEQ;
9033           LHS = Cond;
9034           RHS=I->Low;
9035           MHS = nullptr;
9036         } else {
9037           // Check I->Low <= Cond <= I->High.
9038           CC = ISD::SETLE;
9039           LHS = I->Low;
9040           MHS = Cond;
9041           RHS = I->High;
9042         }
9043 
9044         // The false probability is the sum of all unhandled cases.
9045         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
9046                      UnhandledProbs);
9047 
9048         if (CurMBB == SwitchMBB)
9049           visitSwitchCase(CB, SwitchMBB);
9050         else
9051           SwitchCases.push_back(CB);
9052 
9053         break;
9054       }
9055     }
9056     CurMBB = Fallthrough;
9057   }
9058 }
9059 
9060 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9061                                               CaseClusterIt First,
9062                                               CaseClusterIt Last) {
9063   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9064     if (X.Prob != CC.Prob)
9065       return X.Prob > CC.Prob;
9066 
9067     // Ties are broken by comparing the case value.
9068     return X.Low->getValue().slt(CC.Low->getValue());
9069   });
9070 }
9071 
9072 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9073                                         const SwitchWorkListItem &W,
9074                                         Value *Cond,
9075                                         MachineBasicBlock *SwitchMBB) {
9076   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9077          "Clusters not sorted?");
9078 
9079   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9080 
9081   // Balance the tree based on branch probabilities to create a near-optimal (in
9082   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9083   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9084   CaseClusterIt LastLeft = W.FirstCluster;
9085   CaseClusterIt FirstRight = W.LastCluster;
9086   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9087   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9088 
9089   // Move LastLeft and FirstRight towards each other from opposite directions to
9090   // find a partitioning of the clusters which balances the probability on both
9091   // sides. If LeftProb and RightProb are equal, alternate which side is
9092   // taken to ensure 0-probability nodes are distributed evenly.
9093   unsigned I = 0;
9094   while (LastLeft + 1 < FirstRight) {
9095     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9096       LeftProb += (++LastLeft)->Prob;
9097     else
9098       RightProb += (--FirstRight)->Prob;
9099     I++;
9100   }
9101 
9102   for (;;) {
9103     // Our binary search tree differs from a typical BST in that ours can have up
9104     // to three values in each leaf. The pivot selection above doesn't take that
9105     // into account, which means the tree might require more nodes and be less
9106     // efficient. We compensate for this here.
9107 
9108     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9109     unsigned NumRight = W.LastCluster - FirstRight + 1;
9110 
9111     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9112       // If one side has less than 3 clusters, and the other has more than 3,
9113       // consider taking a cluster from the other side.
9114 
9115       if (NumLeft < NumRight) {
9116         // Consider moving the first cluster on the right to the left side.
9117         CaseCluster &CC = *FirstRight;
9118         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9119         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9120         if (LeftSideRank <= RightSideRank) {
9121           // Moving the cluster to the left does not demote it.
9122           ++LastLeft;
9123           ++FirstRight;
9124           continue;
9125         }
9126       } else {
9127         assert(NumRight < NumLeft);
9128         // Consider moving the last element on the left to the right side.
9129         CaseCluster &CC = *LastLeft;
9130         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9131         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9132         if (RightSideRank <= LeftSideRank) {
9133           // Moving the cluster to the right does not demot it.
9134           --LastLeft;
9135           --FirstRight;
9136           continue;
9137         }
9138       }
9139     }
9140     break;
9141   }
9142 
9143   assert(LastLeft + 1 == FirstRight);
9144   assert(LastLeft >= W.FirstCluster);
9145   assert(FirstRight <= W.LastCluster);
9146 
9147   // Use the first element on the right as pivot since we will make less-than
9148   // comparisons against it.
9149   CaseClusterIt PivotCluster = FirstRight;
9150   assert(PivotCluster > W.FirstCluster);
9151   assert(PivotCluster <= W.LastCluster);
9152 
9153   CaseClusterIt FirstLeft = W.FirstCluster;
9154   CaseClusterIt LastRight = W.LastCluster;
9155 
9156   const ConstantInt *Pivot = PivotCluster->Low;
9157 
9158   // New blocks will be inserted immediately after the current one.
9159   MachineFunction::iterator BBI(W.MBB);
9160   ++BBI;
9161 
9162   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9163   // we can branch to its destination directly if it's squeezed exactly in
9164   // between the known lower bound and Pivot - 1.
9165   MachineBasicBlock *LeftMBB;
9166   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9167       FirstLeft->Low == W.GE &&
9168       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9169     LeftMBB = FirstLeft->MBB;
9170   } else {
9171     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9172     FuncInfo.MF->insert(BBI, LeftMBB);
9173     WorkList.push_back(
9174         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9175     // Put Cond in a virtual register to make it available from the new blocks.
9176     ExportFromCurrentBlock(Cond);
9177   }
9178 
9179   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9180   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9181   // directly if RHS.High equals the current upper bound.
9182   MachineBasicBlock *RightMBB;
9183   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9184       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9185     RightMBB = FirstRight->MBB;
9186   } else {
9187     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9188     FuncInfo.MF->insert(BBI, RightMBB);
9189     WorkList.push_back(
9190         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9191     // Put Cond in a virtual register to make it available from the new blocks.
9192     ExportFromCurrentBlock(Cond);
9193   }
9194 
9195   // Create the CaseBlock record that will be used to lower the branch.
9196   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9197                LeftProb, RightProb);
9198 
9199   if (W.MBB == SwitchMBB)
9200     visitSwitchCase(CB, SwitchMBB);
9201   else
9202     SwitchCases.push_back(CB);
9203 }
9204 
9205 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9206   // Extract cases from the switch.
9207   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9208   CaseClusterVector Clusters;
9209   Clusters.reserve(SI.getNumCases());
9210   for (auto I : SI.cases()) {
9211     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9212     const ConstantInt *CaseVal = I.getCaseValue();
9213     BranchProbability Prob =
9214         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9215             : BranchProbability(1, SI.getNumCases() + 1);
9216     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9217   }
9218 
9219   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9220 
9221   // Cluster adjacent cases with the same destination. We do this at all
9222   // optimization levels because it's cheap to do and will make codegen faster
9223   // if there are many clusters.
9224   sortAndRangeify(Clusters);
9225 
9226   if (TM.getOptLevel() != CodeGenOpt::None) {
9227     // Replace an unreachable default with the most popular destination.
9228     // FIXME: Exploit unreachable default more aggressively.
9229     bool UnreachableDefault =
9230         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9231     if (UnreachableDefault && !Clusters.empty()) {
9232       DenseMap<const BasicBlock *, unsigned> Popularity;
9233       unsigned MaxPop = 0;
9234       const BasicBlock *MaxBB = nullptr;
9235       for (auto I : SI.cases()) {
9236         const BasicBlock *BB = I.getCaseSuccessor();
9237         if (++Popularity[BB] > MaxPop) {
9238           MaxPop = Popularity[BB];
9239           MaxBB = BB;
9240         }
9241       }
9242       // Set new default.
9243       assert(MaxPop > 0 && MaxBB);
9244       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9245 
9246       // Remove cases that were pointing to the destination that is now the
9247       // default.
9248       CaseClusterVector New;
9249       New.reserve(Clusters.size());
9250       for (CaseCluster &CC : Clusters) {
9251         if (CC.MBB != DefaultMBB)
9252           New.push_back(CC);
9253       }
9254       Clusters = std::move(New);
9255     }
9256   }
9257 
9258   // If there is only the default destination, jump there directly.
9259   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9260   if (Clusters.empty()) {
9261     SwitchMBB->addSuccessor(DefaultMBB);
9262     if (DefaultMBB != NextBlock(SwitchMBB)) {
9263       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9264                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9265     }
9266     return;
9267   }
9268 
9269   findJumpTables(Clusters, &SI, DefaultMBB);
9270   findBitTestClusters(Clusters, &SI);
9271 
9272   DEBUG({
9273     dbgs() << "Case clusters: ";
9274     for (const CaseCluster &C : Clusters) {
9275       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9276       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9277 
9278       C.Low->getValue().print(dbgs(), true);
9279       if (C.Low != C.High) {
9280         dbgs() << '-';
9281         C.High->getValue().print(dbgs(), true);
9282       }
9283       dbgs() << ' ';
9284     }
9285     dbgs() << '\n';
9286   });
9287 
9288   assert(!Clusters.empty());
9289   SwitchWorkList WorkList;
9290   CaseClusterIt First = Clusters.begin();
9291   CaseClusterIt Last = Clusters.end() - 1;
9292   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9293   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9294 
9295   while (!WorkList.empty()) {
9296     SwitchWorkListItem W = WorkList.back();
9297     WorkList.pop_back();
9298     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9299 
9300     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
9301         !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
9302       // For optimized builds, lower large range as a balanced binary tree.
9303       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9304       continue;
9305     }
9306 
9307     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9308   }
9309 }
9310