1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsAMDGPU.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/Support/AtomicOrdering.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Compiler.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/MathExtras.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Target/TargetIntrinsicInfo.h" 99 #include "llvm/Target/TargetMachine.h" 100 #include "llvm/Target/TargetOptions.h" 101 #include "llvm/TargetParser/Triple.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <iterator> 105 #include <limits> 106 #include <optional> 107 #include <tuple> 108 109 using namespace llvm; 110 using namespace PatternMatch; 111 using namespace SwitchCG; 112 113 #define DEBUG_TYPE "isel" 114 115 /// LimitFloatPrecision - Generate low-precision inline sequences for 116 /// some float libcalls (6, 8 or 12 bits). 117 static unsigned LimitFloatPrecision; 118 119 static cl::opt<bool> 120 InsertAssertAlign("insert-assert-align", cl::init(true), 121 cl::desc("Insert the experimental `assertalign` node."), 122 cl::ReallyHidden); 123 124 static cl::opt<unsigned, true> 125 LimitFPPrecision("limit-float-precision", 126 cl::desc("Generate low-precision inline sequences " 127 "for some float libcalls"), 128 cl::location(LimitFloatPrecision), cl::Hidden, 129 cl::init(0)); 130 131 static cl::opt<unsigned> SwitchPeelThreshold( 132 "switch-peel-threshold", cl::Hidden, cl::init(66), 133 cl::desc("Set the case probability threshold for peeling the case from a " 134 "switch statement. A value greater than 100 will void this " 135 "optimization")); 136 137 // Limit the width of DAG chains. This is important in general to prevent 138 // DAG-based analysis from blowing up. For example, alias analysis and 139 // load clustering may not complete in reasonable time. It is difficult to 140 // recognize and avoid this situation within each individual analysis, and 141 // future analyses are likely to have the same behavior. Limiting DAG width is 142 // the safe approach and will be especially important with global DAGs. 143 // 144 // MaxParallelChains default is arbitrarily high to avoid affecting 145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 146 // sequence over this should have been converted to llvm.memcpy by the 147 // frontend. It is easy to induce this behavior with .ll code such as: 148 // %buffer = alloca [4096 x i8] 149 // %data = load [4096 x i8]* %argPtr 150 // store [4096 x i8] %data, [4096 x i8]* %buffer 151 static const unsigned MaxParallelChains = 64; 152 153 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 154 const SDValue *Parts, unsigned NumParts, 155 MVT PartVT, EVT ValueVT, const Value *V, 156 std::optional<CallingConv::ID> CC); 157 158 /// getCopyFromParts - Create a value that contains the specified legal parts 159 /// combined into the value they represent. If the parts combine to a type 160 /// larger than ValueVT then AssertOp can be used to specify whether the extra 161 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 162 /// (ISD::AssertSext). 163 static SDValue 164 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 165 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 166 std::optional<CallingConv::ID> CC = std::nullopt, 167 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 168 // Let the target assemble the parts if it wants to 169 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 170 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 171 PartVT, ValueVT, CC)) 172 return Val; 173 174 if (ValueVT.isVector()) 175 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 176 CC); 177 178 assert(NumParts > 0 && "No parts to assemble!"); 179 SDValue Val = Parts[0]; 180 181 if (NumParts > 1) { 182 // Assemble the value from multiple parts. 183 if (ValueVT.isInteger()) { 184 unsigned PartBits = PartVT.getSizeInBits(); 185 unsigned ValueBits = ValueVT.getSizeInBits(); 186 187 // Assemble the power of 2 part. 188 unsigned RoundParts = llvm::bit_floor(NumParts); 189 unsigned RoundBits = PartBits * RoundParts; 190 EVT RoundVT = RoundBits == ValueBits ? 191 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 192 SDValue Lo, Hi; 193 194 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 195 196 if (RoundParts > 2) { 197 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 198 PartVT, HalfVT, V); 199 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 200 RoundParts / 2, PartVT, HalfVT, V); 201 } else { 202 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 203 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 204 } 205 206 if (DAG.getDataLayout().isBigEndian()) 207 std::swap(Lo, Hi); 208 209 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 210 211 if (RoundParts < NumParts) { 212 // Assemble the trailing non-power-of-2 part. 213 unsigned OddParts = NumParts - RoundParts; 214 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 215 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 216 OddVT, V, CC); 217 218 // Combine the round and odd parts. 219 Lo = Val; 220 if (DAG.getDataLayout().isBigEndian()) 221 std::swap(Lo, Hi); 222 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 223 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 224 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 225 DAG.getConstant(Lo.getValueSizeInBits(), DL, 226 TLI.getShiftAmountTy( 227 TotalVT, DAG.getDataLayout()))); 228 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 229 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 230 } 231 } else if (PartVT.isFloatingPoint()) { 232 // FP split into multiple FP parts (for ppcf128) 233 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 234 "Unexpected split"); 235 SDValue Lo, Hi; 236 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 237 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 238 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 239 std::swap(Lo, Hi); 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 241 } else { 242 // FP split into integer parts (soft fp) 243 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 244 !PartVT.isVector() && "Unexpected split"); 245 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 246 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 247 } 248 } 249 250 // There is now one part, held in Val. Correct it to match ValueVT. 251 // PartEVT is the type of the register class that holds the value. 252 // ValueVT is the type of the inline asm operation. 253 EVT PartEVT = Val.getValueType(); 254 255 if (PartEVT == ValueVT) 256 return Val; 257 258 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 259 ValueVT.bitsLT(PartEVT)) { 260 // For an FP value in an integer part, we need to truncate to the right 261 // width first. 262 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 263 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 264 } 265 266 // Handle types that have the same size. 267 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 268 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 269 270 // Handle types with different sizes. 271 if (PartEVT.isInteger() && ValueVT.isInteger()) { 272 if (ValueVT.bitsLT(PartEVT)) { 273 // For a truncate, see if we have any information to 274 // indicate whether the truncated bits will always be 275 // zero or sign-extension. 276 if (AssertOp) 277 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 278 DAG.getValueType(ValueVT)); 279 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 280 } 281 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 282 } 283 284 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 285 // FP_ROUND's are always exact here. 286 if (ValueVT.bitsLT(Val.getValueType())) 287 return DAG.getNode( 288 ISD::FP_ROUND, DL, ValueVT, Val, 289 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 290 291 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 292 } 293 294 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 295 // then truncating. 296 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 297 ValueVT.bitsLT(PartEVT)) { 298 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 299 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 300 } 301 302 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 303 } 304 305 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 306 const Twine &ErrMsg) { 307 const Instruction *I = dyn_cast_or_null<Instruction>(V); 308 if (!V) 309 return Ctx.emitError(ErrMsg); 310 311 const char *AsmError = ", possible invalid constraint for vector type"; 312 if (const CallInst *CI = dyn_cast<CallInst>(I)) 313 if (CI->isInlineAsm()) 314 return Ctx.emitError(I, ErrMsg + AsmError); 315 316 return Ctx.emitError(I, ErrMsg); 317 } 318 319 /// getCopyFromPartsVector - Create a value that contains the specified legal 320 /// parts combined into the value they represent. If the parts combine to a 321 /// type larger than ValueVT then AssertOp can be used to specify whether the 322 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 323 /// ValueVT (ISD::AssertSext). 324 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 325 const SDValue *Parts, unsigned NumParts, 326 MVT PartVT, EVT ValueVT, const Value *V, 327 std::optional<CallingConv::ID> CallConv) { 328 assert(ValueVT.isVector() && "Not a vector value"); 329 assert(NumParts > 0 && "No parts to assemble!"); 330 const bool IsABIRegCopy = CallConv.has_value(); 331 332 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 333 SDValue Val = Parts[0]; 334 335 // Handle a multi-element vector. 336 if (NumParts > 1) { 337 EVT IntermediateVT; 338 MVT RegisterVT; 339 unsigned NumIntermediates; 340 unsigned NumRegs; 341 342 if (IsABIRegCopy) { 343 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 344 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 345 NumIntermediates, RegisterVT); 346 } else { 347 NumRegs = 348 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 349 NumIntermediates, RegisterVT); 350 } 351 352 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 353 NumParts = NumRegs; // Silence a compiler warning. 354 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 355 assert(RegisterVT.getSizeInBits() == 356 Parts[0].getSimpleValueType().getSizeInBits() && 357 "Part type sizes don't match!"); 358 359 // Assemble the parts into intermediate operands. 360 SmallVector<SDValue, 8> Ops(NumIntermediates); 361 if (NumIntermediates == NumParts) { 362 // If the register was not expanded, truncate or copy the value, 363 // as appropriate. 364 for (unsigned i = 0; i != NumParts; ++i) 365 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 366 PartVT, IntermediateVT, V, CallConv); 367 } else if (NumParts > 0) { 368 // If the intermediate type was expanded, build the intermediate 369 // operands from the parts. 370 assert(NumParts % NumIntermediates == 0 && 371 "Must expand into a divisible number of parts!"); 372 unsigned Factor = NumParts / NumIntermediates; 373 for (unsigned i = 0; i != NumIntermediates; ++i) 374 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 375 PartVT, IntermediateVT, V, CallConv); 376 } 377 378 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 379 // intermediate operands. 380 EVT BuiltVectorTy = 381 IntermediateVT.isVector() 382 ? EVT::getVectorVT( 383 *DAG.getContext(), IntermediateVT.getScalarType(), 384 IntermediateVT.getVectorElementCount() * NumParts) 385 : EVT::getVectorVT(*DAG.getContext(), 386 IntermediateVT.getScalarType(), 387 NumIntermediates); 388 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 389 : ISD::BUILD_VECTOR, 390 DL, BuiltVectorTy, Ops); 391 } 392 393 // There is now one part, held in Val. Correct it to match ValueVT. 394 EVT PartEVT = Val.getValueType(); 395 396 if (PartEVT == ValueVT) 397 return Val; 398 399 if (PartEVT.isVector()) { 400 // Vector/Vector bitcast. 401 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 402 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 403 404 // If the parts vector has more elements than the value vector, then we 405 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 406 // Extract the elements we want. 407 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 408 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 409 ValueVT.getVectorElementCount().getKnownMinValue()) && 410 (PartEVT.getVectorElementCount().isScalable() == 411 ValueVT.getVectorElementCount().isScalable()) && 412 "Cannot narrow, it would be a lossy transformation"); 413 PartEVT = 414 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 415 ValueVT.getVectorElementCount()); 416 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 417 DAG.getVectorIdxConstant(0, DL)); 418 if (PartEVT == ValueVT) 419 return Val; 420 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 421 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 422 423 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 424 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 425 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 426 } 427 428 // Promoted vector extract 429 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 430 } 431 432 // Trivial bitcast if the types are the same size and the destination 433 // vector type is legal. 434 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 435 TLI.isTypeLegal(ValueVT)) 436 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 437 438 if (ValueVT.getVectorNumElements() != 1) { 439 // Certain ABIs require that vectors are passed as integers. For vectors 440 // are the same size, this is an obvious bitcast. 441 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 442 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 443 } else if (ValueVT.bitsLT(PartEVT)) { 444 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 445 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 446 // Drop the extra bits. 447 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 448 return DAG.getBitcast(ValueVT, Val); 449 } 450 451 diagnosePossiblyInvalidConstraint( 452 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 453 return DAG.getUNDEF(ValueVT); 454 } 455 456 // Handle cases such as i8 -> <1 x i1> 457 EVT ValueSVT = ValueVT.getVectorElementType(); 458 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 459 unsigned ValueSize = ValueSVT.getSizeInBits(); 460 if (ValueSize == PartEVT.getSizeInBits()) { 461 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 462 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 463 // It's possible a scalar floating point type gets softened to integer and 464 // then promoted to a larger integer. If PartEVT is the larger integer 465 // we need to truncate it and then bitcast to the FP type. 466 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 467 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 468 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 469 Val = DAG.getBitcast(ValueSVT, Val); 470 } else { 471 Val = ValueVT.isFloatingPoint() 472 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 473 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 474 } 475 } 476 477 return DAG.getBuildVector(ValueVT, DL, Val); 478 } 479 480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 481 SDValue Val, SDValue *Parts, unsigned NumParts, 482 MVT PartVT, const Value *V, 483 std::optional<CallingConv::ID> CallConv); 484 485 /// getCopyToParts - Create a series of nodes that contain the specified value 486 /// split into legal parts. If the parts contain more bits than Val, then, for 487 /// integers, ExtendKind can be used to specify how to generate the extra bits. 488 static void 489 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 490 unsigned NumParts, MVT PartVT, const Value *V, 491 std::optional<CallingConv::ID> CallConv = std::nullopt, 492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 493 // Let the target split the parts if it wants to 494 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 495 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 496 CallConv)) 497 return; 498 EVT ValueVT = Val.getValueType(); 499 500 // Handle the vector case separately. 501 if (ValueVT.isVector()) 502 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 503 CallConv); 504 505 unsigned OrigNumParts = NumParts; 506 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 507 "Copying to an illegal type!"); 508 509 if (NumParts == 0) 510 return; 511 512 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 513 EVT PartEVT = PartVT; 514 if (PartEVT == ValueVT) { 515 assert(NumParts == 1 && "No-op copy with multiple parts!"); 516 Parts[0] = Val; 517 return; 518 } 519 520 unsigned PartBits = PartVT.getSizeInBits(); 521 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 522 // If the parts cover more bits than the value has, promote the value. 523 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 524 assert(NumParts == 1 && "Do not know what to promote to!"); 525 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 526 } else { 527 if (ValueVT.isFloatingPoint()) { 528 // FP values need to be bitcast, then extended if they are being put 529 // into a larger container. 530 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 531 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 532 } 533 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 534 ValueVT.isInteger() && 535 "Unknown mismatch!"); 536 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 537 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 538 if (PartVT == MVT::x86mmx) 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } 541 } else if (PartBits == ValueVT.getSizeInBits()) { 542 // Different types of the same size. 543 assert(NumParts == 1 && PartEVT != ValueVT); 544 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 545 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 546 // If the parts cover less bits than value has, truncate the value. 547 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 548 ValueVT.isInteger() && 549 "Unknown mismatch!"); 550 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 551 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 552 if (PartVT == MVT::x86mmx) 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 // The value may have changed - recompute ValueVT. 557 ValueVT = Val.getValueType(); 558 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 559 "Failed to tile the value with PartVT!"); 560 561 if (NumParts == 1) { 562 if (PartEVT != ValueVT) { 563 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 564 "scalar-to-vector conversion failed"); 565 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 566 } 567 568 Parts[0] = Val; 569 return; 570 } 571 572 // Expand the value into multiple parts. 573 if (NumParts & (NumParts - 1)) { 574 // The number of parts is not a power of 2. Split off and copy the tail. 575 assert(PartVT.isInteger() && ValueVT.isInteger() && 576 "Do not know what to expand to!"); 577 unsigned RoundParts = llvm::bit_floor(NumParts); 578 unsigned RoundBits = RoundParts * PartBits; 579 unsigned OddParts = NumParts - RoundParts; 580 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 581 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 582 583 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 584 CallConv); 585 586 if (DAG.getDataLayout().isBigEndian()) 587 // The odd parts were reversed by getCopyToParts - unreverse them. 588 std::reverse(Parts + RoundParts, Parts + NumParts); 589 590 NumParts = RoundParts; 591 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 592 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 593 } 594 595 // The number of parts is a power of 2. Repeatedly bisect the value using 596 // EXTRACT_ELEMENT. 597 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 598 EVT::getIntegerVT(*DAG.getContext(), 599 ValueVT.getSizeInBits()), 600 Val); 601 602 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 603 for (unsigned i = 0; i < NumParts; i += StepSize) { 604 unsigned ThisBits = StepSize * PartBits / 2; 605 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 606 SDValue &Part0 = Parts[i]; 607 SDValue &Part1 = Parts[i+StepSize/2]; 608 609 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 610 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 611 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 612 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 613 614 if (ThisBits == PartBits && ThisVT != PartVT) { 615 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 616 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 617 } 618 } 619 } 620 621 if (DAG.getDataLayout().isBigEndian()) 622 std::reverse(Parts, Parts + OrigNumParts); 623 } 624 625 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 626 const SDLoc &DL, EVT PartVT) { 627 if (!PartVT.isVector()) 628 return SDValue(); 629 630 EVT ValueVT = Val.getValueType(); 631 EVT PartEVT = PartVT.getVectorElementType(); 632 EVT ValueEVT = ValueVT.getVectorElementType(); 633 ElementCount PartNumElts = PartVT.getVectorElementCount(); 634 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 635 636 // We only support widening vectors with equivalent element types and 637 // fixed/scalable properties. If a target needs to widen a fixed-length type 638 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 639 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 640 PartNumElts.isScalable() != ValueNumElts.isScalable()) 641 return SDValue(); 642 643 // Have a try for bf16 because some targets share its ABI with fp16. 644 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 645 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 646 "Cannot widen to illegal type"); 647 Val = DAG.getNode(ISD::BITCAST, DL, 648 ValueVT.changeVectorElementType(MVT::f16), Val); 649 } else if (PartEVT != ValueEVT) { 650 return SDValue(); 651 } 652 653 // Widening a scalable vector to another scalable vector is done by inserting 654 // the vector into a larger undef one. 655 if (PartNumElts.isScalable()) 656 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 657 Val, DAG.getVectorIdxConstant(0, DL)); 658 659 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 660 // undef elements. 661 SmallVector<SDValue, 16> Ops; 662 DAG.ExtractVectorElements(Val, Ops); 663 SDValue EltUndef = DAG.getUNDEF(PartEVT); 664 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 665 666 // FIXME: Use CONCAT for 2x -> 4x. 667 return DAG.getBuildVector(PartVT, DL, Ops); 668 } 669 670 /// getCopyToPartsVector - Create a series of nodes that contain the specified 671 /// value split into legal parts. 672 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 673 SDValue Val, SDValue *Parts, unsigned NumParts, 674 MVT PartVT, const Value *V, 675 std::optional<CallingConv::ID> CallConv) { 676 EVT ValueVT = Val.getValueType(); 677 assert(ValueVT.isVector() && "Not a vector"); 678 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 679 const bool IsABIRegCopy = CallConv.has_value(); 680 681 if (NumParts == 1) { 682 EVT PartEVT = PartVT; 683 if (PartEVT == ValueVT) { 684 // Nothing to do. 685 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 686 // Bitconvert vector->vector case. 687 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 688 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 689 Val = Widened; 690 } else if (PartVT.isVector() && 691 PartEVT.getVectorElementType().bitsGE( 692 ValueVT.getVectorElementType()) && 693 PartEVT.getVectorElementCount() == 694 ValueVT.getVectorElementCount()) { 695 696 // Promoted vector extract 697 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 698 } else if (PartEVT.isVector() && 699 PartEVT.getVectorElementType() != 700 ValueVT.getVectorElementType() && 701 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 702 TargetLowering::TypeWidenVector) { 703 // Combination of widening and promotion. 704 EVT WidenVT = 705 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 706 PartVT.getVectorElementCount()); 707 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 708 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 709 } else { 710 // Don't extract an integer from a float vector. This can happen if the 711 // FP type gets softened to integer and then promoted. The promotion 712 // prevents it from being picked up by the earlier bitcast case. 713 if (ValueVT.getVectorElementCount().isScalar() && 714 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 715 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 716 DAG.getVectorIdxConstant(0, DL)); 717 } else { 718 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 719 assert(PartVT.getFixedSizeInBits() > ValueSize && 720 "lossy conversion of vector to scalar type"); 721 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 722 Val = DAG.getBitcast(IntermediateType, Val); 723 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 724 } 725 } 726 727 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 728 Parts[0] = Val; 729 return; 730 } 731 732 // Handle a multi-element vector. 733 EVT IntermediateVT; 734 MVT RegisterVT; 735 unsigned NumIntermediates; 736 unsigned NumRegs; 737 if (IsABIRegCopy) { 738 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 739 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 740 RegisterVT); 741 } else { 742 NumRegs = 743 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 744 NumIntermediates, RegisterVT); 745 } 746 747 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 748 NumParts = NumRegs; // Silence a compiler warning. 749 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 750 751 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 752 "Mixing scalable and fixed vectors when copying in parts"); 753 754 std::optional<ElementCount> DestEltCnt; 755 756 if (IntermediateVT.isVector()) 757 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 758 else 759 DestEltCnt = ElementCount::getFixed(NumIntermediates); 760 761 EVT BuiltVectorTy = EVT::getVectorVT( 762 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 763 764 if (ValueVT == BuiltVectorTy) { 765 // Nothing to do. 766 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 767 // Bitconvert vector->vector case. 768 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 769 } else { 770 if (BuiltVectorTy.getVectorElementType().bitsGT( 771 ValueVT.getVectorElementType())) { 772 // Integer promotion. 773 ValueVT = EVT::getVectorVT(*DAG.getContext(), 774 BuiltVectorTy.getVectorElementType(), 775 ValueVT.getVectorElementCount()); 776 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 777 } 778 779 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 780 Val = Widened; 781 } 782 } 783 784 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 785 786 // Split the vector into intermediate operands. 787 SmallVector<SDValue, 8> Ops(NumIntermediates); 788 for (unsigned i = 0; i != NumIntermediates; ++i) { 789 if (IntermediateVT.isVector()) { 790 // This does something sensible for scalable vectors - see the 791 // definition of EXTRACT_SUBVECTOR for further details. 792 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 793 Ops[i] = 794 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 795 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 796 } else { 797 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 798 DAG.getVectorIdxConstant(i, DL)); 799 } 800 } 801 802 // Split the intermediate operands into legal parts. 803 if (NumParts == NumIntermediates) { 804 // If the register was not expanded, promote or copy the value, 805 // as appropriate. 806 for (unsigned i = 0; i != NumParts; ++i) 807 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 808 } else if (NumParts > 0) { 809 // If the intermediate type was expanded, split each the value into 810 // legal parts. 811 assert(NumIntermediates != 0 && "division by zero"); 812 assert(NumParts % NumIntermediates == 0 && 813 "Must expand into a divisible number of parts!"); 814 unsigned Factor = NumParts / NumIntermediates; 815 for (unsigned i = 0; i != NumIntermediates; ++i) 816 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 817 CallConv); 818 } 819 } 820 821 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 822 EVT valuevt, std::optional<CallingConv::ID> CC) 823 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 824 RegCount(1, regs.size()), CallConv(CC) {} 825 826 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 827 const DataLayout &DL, unsigned Reg, Type *Ty, 828 std::optional<CallingConv::ID> CC) { 829 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 830 831 CallConv = CC; 832 833 for (EVT ValueVT : ValueVTs) { 834 unsigned NumRegs = 835 isABIMangled() 836 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 837 : TLI.getNumRegisters(Context, ValueVT); 838 MVT RegisterVT = 839 isABIMangled() 840 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 841 : TLI.getRegisterType(Context, ValueVT); 842 for (unsigned i = 0; i != NumRegs; ++i) 843 Regs.push_back(Reg + i); 844 RegVTs.push_back(RegisterVT); 845 RegCount.push_back(NumRegs); 846 Reg += NumRegs; 847 } 848 } 849 850 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 851 FunctionLoweringInfo &FuncInfo, 852 const SDLoc &dl, SDValue &Chain, 853 SDValue *Glue, const Value *V) const { 854 // A Value with type {} or [0 x %t] needs no registers. 855 if (ValueVTs.empty()) 856 return SDValue(); 857 858 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 859 860 // Assemble the legal parts into the final values. 861 SmallVector<SDValue, 4> Values(ValueVTs.size()); 862 SmallVector<SDValue, 8> Parts; 863 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 864 // Copy the legal parts from the registers. 865 EVT ValueVT = ValueVTs[Value]; 866 unsigned NumRegs = RegCount[Value]; 867 MVT RegisterVT = isABIMangled() 868 ? TLI.getRegisterTypeForCallingConv( 869 *DAG.getContext(), *CallConv, RegVTs[Value]) 870 : RegVTs[Value]; 871 872 Parts.resize(NumRegs); 873 for (unsigned i = 0; i != NumRegs; ++i) { 874 SDValue P; 875 if (!Glue) { 876 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 877 } else { 878 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 879 *Glue = P.getValue(2); 880 } 881 882 Chain = P.getValue(1); 883 Parts[i] = P; 884 885 // If the source register was virtual and if we know something about it, 886 // add an assert node. 887 if (!Register::isVirtualRegister(Regs[Part + i]) || 888 !RegisterVT.isInteger()) 889 continue; 890 891 const FunctionLoweringInfo::LiveOutInfo *LOI = 892 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 893 if (!LOI) 894 continue; 895 896 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 897 unsigned NumSignBits = LOI->NumSignBits; 898 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 899 900 if (NumZeroBits == RegSize) { 901 // The current value is a zero. 902 // Explicitly express that as it would be easier for 903 // optimizations to kick in. 904 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 905 continue; 906 } 907 908 // FIXME: We capture more information than the dag can represent. For 909 // now, just use the tightest assertzext/assertsext possible. 910 bool isSExt; 911 EVT FromVT(MVT::Other); 912 if (NumZeroBits) { 913 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 914 isSExt = false; 915 } else if (NumSignBits > 1) { 916 FromVT = 917 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 918 isSExt = true; 919 } else { 920 continue; 921 } 922 // Add an assertion node. 923 assert(FromVT != MVT::Other); 924 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 925 RegisterVT, P, DAG.getValueType(FromVT)); 926 } 927 928 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 929 RegisterVT, ValueVT, V, CallConv); 930 Part += NumRegs; 931 Parts.clear(); 932 } 933 934 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 935 } 936 937 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 938 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 939 const Value *V, 940 ISD::NodeType PreferredExtendType) const { 941 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 942 ISD::NodeType ExtendKind = PreferredExtendType; 943 944 // Get the list of the values's legal parts. 945 unsigned NumRegs = Regs.size(); 946 SmallVector<SDValue, 8> Parts(NumRegs); 947 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 948 unsigned NumParts = RegCount[Value]; 949 950 MVT RegisterVT = isABIMangled() 951 ? TLI.getRegisterTypeForCallingConv( 952 *DAG.getContext(), *CallConv, RegVTs[Value]) 953 : RegVTs[Value]; 954 955 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 956 ExtendKind = ISD::ZERO_EXTEND; 957 958 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 959 NumParts, RegisterVT, V, CallConv, ExtendKind); 960 Part += NumParts; 961 } 962 963 // Copy the parts into the registers. 964 SmallVector<SDValue, 8> Chains(NumRegs); 965 for (unsigned i = 0; i != NumRegs; ++i) { 966 SDValue Part; 967 if (!Glue) { 968 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 969 } else { 970 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 971 *Glue = Part.getValue(1); 972 } 973 974 Chains[i] = Part.getValue(0); 975 } 976 977 if (NumRegs == 1 || Glue) 978 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 979 // flagged to it. That is the CopyToReg nodes and the user are considered 980 // a single scheduling unit. If we create a TokenFactor and return it as 981 // chain, then the TokenFactor is both a predecessor (operand) of the 982 // user as well as a successor (the TF operands are flagged to the user). 983 // c1, f1 = CopyToReg 984 // c2, f2 = CopyToReg 985 // c3 = TokenFactor c1, c2 986 // ... 987 // = op c3, ..., f2 988 Chain = Chains[NumRegs-1]; 989 else 990 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 991 } 992 993 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 994 unsigned MatchingIdx, const SDLoc &dl, 995 SelectionDAG &DAG, 996 std::vector<SDValue> &Ops) const { 997 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 998 999 InlineAsm::Flag Flag(Code, Regs.size()); 1000 if (HasMatching) 1001 Flag.setMatchingOp(MatchingIdx); 1002 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1003 // Put the register class of the virtual registers in the flag word. That 1004 // way, later passes can recompute register class constraints for inline 1005 // assembly as well as normal instructions. 1006 // Don't do this for tied operands that can use the regclass information 1007 // from the def. 1008 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1009 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1010 Flag.setRegClass(RC->getID()); 1011 } 1012 1013 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1014 Ops.push_back(Res); 1015 1016 if (Code == InlineAsm::Kind::Clobber) { 1017 // Clobbers should always have a 1:1 mapping with registers, and may 1018 // reference registers that have illegal (e.g. vector) types. Hence, we 1019 // shouldn't try to apply any sort of splitting logic to them. 1020 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1021 "No 1:1 mapping from clobbers to regs?"); 1022 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1023 (void)SP; 1024 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1025 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1026 assert( 1027 (Regs[I] != SP || 1028 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1029 "If we clobbered the stack pointer, MFI should know about it."); 1030 } 1031 return; 1032 } 1033 1034 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1035 MVT RegisterVT = RegVTs[Value]; 1036 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1037 RegisterVT); 1038 for (unsigned i = 0; i != NumRegs; ++i) { 1039 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1040 unsigned TheReg = Regs[Reg++]; 1041 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1042 } 1043 } 1044 } 1045 1046 SmallVector<std::pair<unsigned, TypeSize>, 4> 1047 RegsForValue::getRegsAndSizes() const { 1048 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1049 unsigned I = 0; 1050 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1051 unsigned RegCount = std::get<0>(CountAndVT); 1052 MVT RegisterVT = std::get<1>(CountAndVT); 1053 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1054 for (unsigned E = I + RegCount; I != E; ++I) 1055 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1056 } 1057 return OutVec; 1058 } 1059 1060 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1061 AssumptionCache *ac, 1062 const TargetLibraryInfo *li) { 1063 AA = aa; 1064 AC = ac; 1065 GFI = gfi; 1066 LibInfo = li; 1067 Context = DAG.getContext(); 1068 LPadToCallSiteMap.clear(); 1069 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1070 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1071 *DAG.getMachineFunction().getFunction().getParent()); 1072 } 1073 1074 void SelectionDAGBuilder::clear() { 1075 NodeMap.clear(); 1076 UnusedArgNodeMap.clear(); 1077 PendingLoads.clear(); 1078 PendingExports.clear(); 1079 PendingConstrainedFP.clear(); 1080 PendingConstrainedFPStrict.clear(); 1081 CurInst = nullptr; 1082 HasTailCall = false; 1083 SDNodeOrder = LowestSDNodeOrder; 1084 StatepointLowering.clear(); 1085 } 1086 1087 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1088 DanglingDebugInfoMap.clear(); 1089 } 1090 1091 // Update DAG root to include dependencies on Pending chains. 1092 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1093 SDValue Root = DAG.getRoot(); 1094 1095 if (Pending.empty()) 1096 return Root; 1097 1098 // Add current root to PendingChains, unless we already indirectly 1099 // depend on it. 1100 if (Root.getOpcode() != ISD::EntryToken) { 1101 unsigned i = 0, e = Pending.size(); 1102 for (; i != e; ++i) { 1103 assert(Pending[i].getNode()->getNumOperands() > 1); 1104 if (Pending[i].getNode()->getOperand(0) == Root) 1105 break; // Don't add the root if we already indirectly depend on it. 1106 } 1107 1108 if (i == e) 1109 Pending.push_back(Root); 1110 } 1111 1112 if (Pending.size() == 1) 1113 Root = Pending[0]; 1114 else 1115 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1116 1117 DAG.setRoot(Root); 1118 Pending.clear(); 1119 return Root; 1120 } 1121 1122 SDValue SelectionDAGBuilder::getMemoryRoot() { 1123 return updateRoot(PendingLoads); 1124 } 1125 1126 SDValue SelectionDAGBuilder::getRoot() { 1127 // Chain up all pending constrained intrinsics together with all 1128 // pending loads, by simply appending them to PendingLoads and 1129 // then calling getMemoryRoot(). 1130 PendingLoads.reserve(PendingLoads.size() + 1131 PendingConstrainedFP.size() + 1132 PendingConstrainedFPStrict.size()); 1133 PendingLoads.append(PendingConstrainedFP.begin(), 1134 PendingConstrainedFP.end()); 1135 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1136 PendingConstrainedFPStrict.end()); 1137 PendingConstrainedFP.clear(); 1138 PendingConstrainedFPStrict.clear(); 1139 return getMemoryRoot(); 1140 } 1141 1142 SDValue SelectionDAGBuilder::getControlRoot() { 1143 // We need to emit pending fpexcept.strict constrained intrinsics, 1144 // so append them to the PendingExports list. 1145 PendingExports.append(PendingConstrainedFPStrict.begin(), 1146 PendingConstrainedFPStrict.end()); 1147 PendingConstrainedFPStrict.clear(); 1148 return updateRoot(PendingExports); 1149 } 1150 1151 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1152 // Add SDDbgValue nodes for any var locs here. Do so before updating 1153 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1154 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1155 // Add SDDbgValue nodes for any var locs here. Do so before updating 1156 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1157 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1158 It != End; ++It) { 1159 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1160 dropDanglingDebugInfo(Var, It->Expr); 1161 if (It->Values.isKillLocation(It->Expr)) { 1162 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1163 continue; 1164 } 1165 SmallVector<Value *> Values(It->Values.location_ops()); 1166 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1167 It->Values.hasArgList())) { 1168 SmallVector<Value *, 4> Vals; 1169 for (Value *V : It->Values.location_ops()) 1170 Vals.push_back(V); 1171 addDanglingDebugInfo(Vals, 1172 FnVarLocs->getDILocalVariable(It->VariableID), 1173 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1174 } 1175 } 1176 } 1177 1178 // Is there is any debug-info attached to this instruction, in the form of 1179 // DPValue non-instruction debug-info records. 1180 for (DPValue &DPV : I.getDbgValueRange()) { 1181 DILocalVariable *Variable = DPV.getVariable(); 1182 DIExpression *Expression = DPV.getExpression(); 1183 dropDanglingDebugInfo(Variable, Expression); 1184 1185 // A DPValue with no locations is a kill location. 1186 SmallVector<Value *, 4> Values(DPV.location_ops()); 1187 if (Values.empty()) { 1188 handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(), 1189 SDNodeOrder); 1190 continue; 1191 } 1192 1193 // A DPValue with an undef or absent location is also a kill location. 1194 if (llvm::any_of(Values, 1195 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1196 handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(), 1197 SDNodeOrder); 1198 continue; 1199 } 1200 1201 bool IsVariadic = DPV.hasArgList(); 1202 if (!handleDebugValue(Values, Variable, Expression, DPV.getDebugLoc(), 1203 SDNodeOrder, IsVariadic)) { 1204 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1205 DPV.getDebugLoc(), SDNodeOrder); 1206 } 1207 } 1208 } 1209 1210 void SelectionDAGBuilder::visit(const Instruction &I) { 1211 visitDbgInfo(I); 1212 1213 // Set up outgoing PHI node register values before emitting the terminator. 1214 if (I.isTerminator()) { 1215 HandlePHINodesInSuccessorBlocks(I.getParent()); 1216 } 1217 1218 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1219 if (!isa<DbgInfoIntrinsic>(I)) 1220 ++SDNodeOrder; 1221 1222 CurInst = &I; 1223 1224 // Set inserted listener only if required. 1225 bool NodeInserted = false; 1226 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1227 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1228 if (PCSectionsMD) { 1229 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1230 DAG, [&](SDNode *) { NodeInserted = true; }); 1231 } 1232 1233 visit(I.getOpcode(), I); 1234 1235 if (!I.isTerminator() && !HasTailCall && 1236 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1237 CopyToExportRegsIfNeeded(&I); 1238 1239 // Handle metadata. 1240 if (PCSectionsMD) { 1241 auto It = NodeMap.find(&I); 1242 if (It != NodeMap.end()) { 1243 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1244 } else if (NodeInserted) { 1245 // This should not happen; if it does, don't let it go unnoticed so we can 1246 // fix it. Relevant visit*() function is probably missing a setValue(). 1247 errs() << "warning: loosing !pcsections metadata [" 1248 << I.getModule()->getName() << "]\n"; 1249 LLVM_DEBUG(I.dump()); 1250 assert(false); 1251 } 1252 } 1253 1254 CurInst = nullptr; 1255 } 1256 1257 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1258 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1259 } 1260 1261 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1262 // Note: this doesn't use InstVisitor, because it has to work with 1263 // ConstantExpr's in addition to instructions. 1264 switch (Opcode) { 1265 default: llvm_unreachable("Unknown instruction type encountered!"); 1266 // Build the switch statement using the Instruction.def file. 1267 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1268 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1269 #include "llvm/IR/Instruction.def" 1270 } 1271 } 1272 1273 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1274 DILocalVariable *Variable, 1275 DebugLoc DL, unsigned Order, 1276 SmallVectorImpl<Value *> &Values, 1277 DIExpression *Expression) { 1278 // For variadic dbg_values we will now insert an undef. 1279 // FIXME: We can potentially recover these! 1280 SmallVector<SDDbgOperand, 2> Locs; 1281 for (const Value *V : Values) { 1282 auto *Undef = UndefValue::get(V->getType()); 1283 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1284 } 1285 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1286 /*IsIndirect=*/false, DL, Order, 1287 /*IsVariadic=*/true); 1288 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1289 return true; 1290 } 1291 1292 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1293 DILocalVariable *Var, 1294 DIExpression *Expr, 1295 bool IsVariadic, DebugLoc DL, 1296 unsigned Order) { 1297 if (IsVariadic) { 1298 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1299 return; 1300 } 1301 // TODO: Dangling debug info will eventually either be resolved or produce 1302 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1303 // between the original dbg.value location and its resolved DBG_VALUE, 1304 // which we should ideally fill with an extra Undef DBG_VALUE. 1305 assert(Values.size() == 1); 1306 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1307 } 1308 1309 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1310 const DIExpression *Expr) { 1311 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1312 DIVariable *DanglingVariable = DDI.getVariable(); 1313 DIExpression *DanglingExpr = DDI.getExpression(); 1314 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1315 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1316 << printDDI(nullptr, DDI) << "\n"); 1317 return true; 1318 } 1319 return false; 1320 }; 1321 1322 for (auto &DDIMI : DanglingDebugInfoMap) { 1323 DanglingDebugInfoVector &DDIV = DDIMI.second; 1324 1325 // If debug info is to be dropped, run it through final checks to see 1326 // whether it can be salvaged. 1327 for (auto &DDI : DDIV) 1328 if (isMatchingDbgValue(DDI)) 1329 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1330 1331 erase_if(DDIV, isMatchingDbgValue); 1332 } 1333 } 1334 1335 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1336 // generate the debug data structures now that we've seen its definition. 1337 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1338 SDValue Val) { 1339 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1340 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1341 return; 1342 1343 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1344 for (auto &DDI : DDIV) { 1345 DebugLoc DL = DDI.getDebugLoc(); 1346 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1347 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1348 DILocalVariable *Variable = DDI.getVariable(); 1349 DIExpression *Expr = DDI.getExpression(); 1350 assert(Variable->isValidLocationForIntrinsic(DL) && 1351 "Expected inlined-at fields to agree"); 1352 SDDbgValue *SDV; 1353 if (Val.getNode()) { 1354 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1355 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1356 // we couldn't resolve it directly when examining the DbgValue intrinsic 1357 // in the first place we should not be more successful here). Unless we 1358 // have some test case that prove this to be correct we should avoid 1359 // calling EmitFuncArgumentDbgValue here. 1360 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1361 FuncArgumentDbgValueKind::Value, Val)) { 1362 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1363 << printDDI(V, DDI) << "\n"); 1364 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1365 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1366 // inserted after the definition of Val when emitting the instructions 1367 // after ISel. An alternative could be to teach 1368 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1369 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1370 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1371 << ValSDNodeOrder << "\n"); 1372 SDV = getDbgValue(Val, Variable, Expr, DL, 1373 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1374 DAG.AddDbgValue(SDV, false); 1375 } else 1376 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1377 << printDDI(V, DDI) 1378 << " in EmitFuncArgumentDbgValue\n"); 1379 } else { 1380 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1381 << "\n"); 1382 auto Undef = UndefValue::get(V->getType()); 1383 auto SDV = 1384 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1385 DAG.AddDbgValue(SDV, false); 1386 } 1387 } 1388 DDIV.clear(); 1389 } 1390 1391 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1392 DanglingDebugInfo &DDI) { 1393 // TODO: For the variadic implementation, instead of only checking the fail 1394 // state of `handleDebugValue`, we need know specifically which values were 1395 // invalid, so that we attempt to salvage only those values when processing 1396 // a DIArgList. 1397 const Value *OrigV = V; 1398 DILocalVariable *Var = DDI.getVariable(); 1399 DIExpression *Expr = DDI.getExpression(); 1400 DebugLoc DL = DDI.getDebugLoc(); 1401 unsigned SDOrder = DDI.getSDNodeOrder(); 1402 1403 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1404 // that DW_OP_stack_value is desired. 1405 bool StackValue = true; 1406 1407 // Can this Value can be encoded without any further work? 1408 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1409 return; 1410 1411 // Attempt to salvage back through as many instructions as possible. Bail if 1412 // a non-instruction is seen, such as a constant expression or global 1413 // variable. FIXME: Further work could recover those too. 1414 while (isa<Instruction>(V)) { 1415 const Instruction &VAsInst = *cast<const Instruction>(V); 1416 // Temporary "0", awaiting real implementation. 1417 SmallVector<uint64_t, 16> Ops; 1418 SmallVector<Value *, 4> AdditionalValues; 1419 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1420 Expr->getNumLocationOperands(), Ops, 1421 AdditionalValues); 1422 // If we cannot salvage any further, and haven't yet found a suitable debug 1423 // expression, bail out. 1424 if (!V) 1425 break; 1426 1427 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1428 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1429 // here for variadic dbg_values, remove that condition. 1430 if (!AdditionalValues.empty()) 1431 break; 1432 1433 // New value and expr now represent this debuginfo. 1434 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1435 1436 // Some kind of simplification occurred: check whether the operand of the 1437 // salvaged debug expression can be encoded in this DAG. 1438 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1439 LLVM_DEBUG( 1440 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1441 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1442 return; 1443 } 1444 } 1445 1446 // This was the final opportunity to salvage this debug information, and it 1447 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1448 // any earlier variable location. 1449 assert(OrigV && "V shouldn't be null"); 1450 auto *Undef = UndefValue::get(OrigV->getType()); 1451 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1452 DAG.AddDbgValue(SDV, false); 1453 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1454 << printDDI(OrigV, DDI) << "\n"); 1455 } 1456 1457 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1458 DIExpression *Expr, 1459 DebugLoc DbgLoc, 1460 unsigned Order) { 1461 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1462 DIExpression *NewExpr = 1463 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1464 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1465 /*IsVariadic*/ false); 1466 } 1467 1468 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1469 DILocalVariable *Var, 1470 DIExpression *Expr, DebugLoc DbgLoc, 1471 unsigned Order, bool IsVariadic) { 1472 if (Values.empty()) 1473 return true; 1474 SmallVector<SDDbgOperand> LocationOps; 1475 SmallVector<SDNode *> Dependencies; 1476 for (const Value *V : Values) { 1477 // Constant value. 1478 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1479 isa<ConstantPointerNull>(V)) { 1480 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1481 continue; 1482 } 1483 1484 // Look through IntToPtr constants. 1485 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1486 if (CE->getOpcode() == Instruction::IntToPtr) { 1487 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1488 continue; 1489 } 1490 1491 // If the Value is a frame index, we can create a FrameIndex debug value 1492 // without relying on the DAG at all. 1493 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1494 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1495 if (SI != FuncInfo.StaticAllocaMap.end()) { 1496 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1497 continue; 1498 } 1499 } 1500 1501 // Do not use getValue() in here; we don't want to generate code at 1502 // this point if it hasn't been done yet. 1503 SDValue N = NodeMap[V]; 1504 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1505 N = UnusedArgNodeMap[V]; 1506 if (N.getNode()) { 1507 // Only emit func arg dbg value for non-variadic dbg.values for now. 1508 if (!IsVariadic && 1509 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1510 FuncArgumentDbgValueKind::Value, N)) 1511 return true; 1512 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1513 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1514 // describe stack slot locations. 1515 // 1516 // Consider "int x = 0; int *px = &x;". There are two kinds of 1517 // interesting debug values here after optimization: 1518 // 1519 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1520 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1521 // 1522 // Both describe the direct values of their associated variables. 1523 Dependencies.push_back(N.getNode()); 1524 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1525 continue; 1526 } 1527 LocationOps.emplace_back( 1528 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1529 continue; 1530 } 1531 1532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1533 // Special rules apply for the first dbg.values of parameter variables in a 1534 // function. Identify them by the fact they reference Argument Values, that 1535 // they're parameters, and they are parameters of the current function. We 1536 // need to let them dangle until they get an SDNode. 1537 bool IsParamOfFunc = 1538 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1539 if (IsParamOfFunc) 1540 return false; 1541 1542 // The value is not used in this block yet (or it would have an SDNode). 1543 // We still want the value to appear for the user if possible -- if it has 1544 // an associated VReg, we can refer to that instead. 1545 auto VMI = FuncInfo.ValueMap.find(V); 1546 if (VMI != FuncInfo.ValueMap.end()) { 1547 unsigned Reg = VMI->second; 1548 // If this is a PHI node, it may be split up into several MI PHI nodes 1549 // (in FunctionLoweringInfo::set). 1550 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1551 V->getType(), std::nullopt); 1552 if (RFV.occupiesMultipleRegs()) { 1553 // FIXME: We could potentially support variadic dbg_values here. 1554 if (IsVariadic) 1555 return false; 1556 unsigned Offset = 0; 1557 unsigned BitsToDescribe = 0; 1558 if (auto VarSize = Var->getSizeInBits()) 1559 BitsToDescribe = *VarSize; 1560 if (auto Fragment = Expr->getFragmentInfo()) 1561 BitsToDescribe = Fragment->SizeInBits; 1562 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1563 // Bail out if all bits are described already. 1564 if (Offset >= BitsToDescribe) 1565 break; 1566 // TODO: handle scalable vectors. 1567 unsigned RegisterSize = RegAndSize.second; 1568 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1569 ? BitsToDescribe - Offset 1570 : RegisterSize; 1571 auto FragmentExpr = DIExpression::createFragmentExpression( 1572 Expr, Offset, FragmentSize); 1573 if (!FragmentExpr) 1574 continue; 1575 SDDbgValue *SDV = DAG.getVRegDbgValue( 1576 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1577 DAG.AddDbgValue(SDV, false); 1578 Offset += RegisterSize; 1579 } 1580 return true; 1581 } 1582 // We can use simple vreg locations for variadic dbg_values as well. 1583 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1584 continue; 1585 } 1586 // We failed to create a SDDbgOperand for V. 1587 return false; 1588 } 1589 1590 // We have created a SDDbgOperand for each Value in Values. 1591 // Should use Order instead of SDNodeOrder? 1592 assert(!LocationOps.empty()); 1593 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1594 /*IsIndirect=*/false, DbgLoc, 1595 SDNodeOrder, IsVariadic); 1596 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1597 return true; 1598 } 1599 1600 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1601 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1602 for (auto &Pair : DanglingDebugInfoMap) 1603 for (auto &DDI : Pair.second) 1604 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1605 clearDanglingDebugInfo(); 1606 } 1607 1608 /// getCopyFromRegs - If there was virtual register allocated for the value V 1609 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1610 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1611 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1612 SDValue Result; 1613 1614 if (It != FuncInfo.ValueMap.end()) { 1615 Register InReg = It->second; 1616 1617 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1618 DAG.getDataLayout(), InReg, Ty, 1619 std::nullopt); // This is not an ABI copy. 1620 SDValue Chain = DAG.getEntryNode(); 1621 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1622 V); 1623 resolveDanglingDebugInfo(V, Result); 1624 } 1625 1626 return Result; 1627 } 1628 1629 /// getValue - Return an SDValue for the given Value. 1630 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1631 // If we already have an SDValue for this value, use it. It's important 1632 // to do this first, so that we don't create a CopyFromReg if we already 1633 // have a regular SDValue. 1634 SDValue &N = NodeMap[V]; 1635 if (N.getNode()) return N; 1636 1637 // If there's a virtual register allocated and initialized for this 1638 // value, use it. 1639 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1640 return copyFromReg; 1641 1642 // Otherwise create a new SDValue and remember it. 1643 SDValue Val = getValueImpl(V); 1644 NodeMap[V] = Val; 1645 resolveDanglingDebugInfo(V, Val); 1646 return Val; 1647 } 1648 1649 /// getNonRegisterValue - Return an SDValue for the given Value, but 1650 /// don't look in FuncInfo.ValueMap for a virtual register. 1651 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1652 // If we already have an SDValue for this value, use it. 1653 SDValue &N = NodeMap[V]; 1654 if (N.getNode()) { 1655 if (isIntOrFPConstant(N)) { 1656 // Remove the debug location from the node as the node is about to be used 1657 // in a location which may differ from the original debug location. This 1658 // is relevant to Constant and ConstantFP nodes because they can appear 1659 // as constant expressions inside PHI nodes. 1660 N->setDebugLoc(DebugLoc()); 1661 } 1662 return N; 1663 } 1664 1665 // Otherwise create a new SDValue and remember it. 1666 SDValue Val = getValueImpl(V); 1667 NodeMap[V] = Val; 1668 resolveDanglingDebugInfo(V, Val); 1669 return Val; 1670 } 1671 1672 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1673 /// Create an SDValue for the given value. 1674 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1676 1677 if (const Constant *C = dyn_cast<Constant>(V)) { 1678 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1679 1680 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1681 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1682 1683 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1684 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1685 1686 if (isa<ConstantPointerNull>(C)) { 1687 unsigned AS = V->getType()->getPointerAddressSpace(); 1688 return DAG.getConstant(0, getCurSDLoc(), 1689 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1690 } 1691 1692 if (match(C, m_VScale())) 1693 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1694 1695 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1696 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1697 1698 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1699 return DAG.getUNDEF(VT); 1700 1701 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1702 visit(CE->getOpcode(), *CE); 1703 SDValue N1 = NodeMap[V]; 1704 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1705 return N1; 1706 } 1707 1708 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1709 SmallVector<SDValue, 4> Constants; 1710 for (const Use &U : C->operands()) { 1711 SDNode *Val = getValue(U).getNode(); 1712 // If the operand is an empty aggregate, there are no values. 1713 if (!Val) continue; 1714 // Add each leaf value from the operand to the Constants list 1715 // to form a flattened list of all the values. 1716 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1717 Constants.push_back(SDValue(Val, i)); 1718 } 1719 1720 return DAG.getMergeValues(Constants, getCurSDLoc()); 1721 } 1722 1723 if (const ConstantDataSequential *CDS = 1724 dyn_cast<ConstantDataSequential>(C)) { 1725 SmallVector<SDValue, 4> Ops; 1726 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1727 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1728 // Add each leaf value from the operand to the Constants list 1729 // to form a flattened list of all the values. 1730 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1731 Ops.push_back(SDValue(Val, i)); 1732 } 1733 1734 if (isa<ArrayType>(CDS->getType())) 1735 return DAG.getMergeValues(Ops, getCurSDLoc()); 1736 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1737 } 1738 1739 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1740 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1741 "Unknown struct or array constant!"); 1742 1743 SmallVector<EVT, 4> ValueVTs; 1744 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1745 unsigned NumElts = ValueVTs.size(); 1746 if (NumElts == 0) 1747 return SDValue(); // empty struct 1748 SmallVector<SDValue, 4> Constants(NumElts); 1749 for (unsigned i = 0; i != NumElts; ++i) { 1750 EVT EltVT = ValueVTs[i]; 1751 if (isa<UndefValue>(C)) 1752 Constants[i] = DAG.getUNDEF(EltVT); 1753 else if (EltVT.isFloatingPoint()) 1754 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1755 else 1756 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1757 } 1758 1759 return DAG.getMergeValues(Constants, getCurSDLoc()); 1760 } 1761 1762 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1763 return DAG.getBlockAddress(BA, VT); 1764 1765 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1766 return getValue(Equiv->getGlobalValue()); 1767 1768 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1769 return getValue(NC->getGlobalValue()); 1770 1771 if (VT == MVT::aarch64svcount) { 1772 assert(C->isNullValue() && "Can only zero this target type!"); 1773 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1774 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1775 } 1776 1777 VectorType *VecTy = cast<VectorType>(V->getType()); 1778 1779 // Now that we know the number and type of the elements, get that number of 1780 // elements into the Ops array based on what kind of constant it is. 1781 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1782 SmallVector<SDValue, 16> Ops; 1783 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1784 for (unsigned i = 0; i != NumElements; ++i) 1785 Ops.push_back(getValue(CV->getOperand(i))); 1786 1787 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1788 } 1789 1790 if (isa<ConstantAggregateZero>(C)) { 1791 EVT EltVT = 1792 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1793 1794 SDValue Op; 1795 if (EltVT.isFloatingPoint()) 1796 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1797 else 1798 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1799 1800 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1801 } 1802 1803 llvm_unreachable("Unknown vector constant"); 1804 } 1805 1806 // If this is a static alloca, generate it as the frameindex instead of 1807 // computation. 1808 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1809 DenseMap<const AllocaInst*, int>::iterator SI = 1810 FuncInfo.StaticAllocaMap.find(AI); 1811 if (SI != FuncInfo.StaticAllocaMap.end()) 1812 return DAG.getFrameIndex( 1813 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1814 } 1815 1816 // If this is an instruction which fast-isel has deferred, select it now. 1817 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1818 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1819 1820 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1821 Inst->getType(), std::nullopt); 1822 SDValue Chain = DAG.getEntryNode(); 1823 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1824 } 1825 1826 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1827 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1828 1829 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1830 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1831 1832 llvm_unreachable("Can't get register for value!"); 1833 } 1834 1835 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1836 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1837 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1838 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1839 bool IsSEH = isAsynchronousEHPersonality(Pers); 1840 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1841 if (!IsSEH) 1842 CatchPadMBB->setIsEHScopeEntry(); 1843 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1844 if (IsMSVCCXX || IsCoreCLR) 1845 CatchPadMBB->setIsEHFuncletEntry(); 1846 } 1847 1848 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1849 // Update machine-CFG edge. 1850 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1851 FuncInfo.MBB->addSuccessor(TargetMBB); 1852 TargetMBB->setIsEHCatchretTarget(true); 1853 DAG.getMachineFunction().setHasEHCatchret(true); 1854 1855 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1856 bool IsSEH = isAsynchronousEHPersonality(Pers); 1857 if (IsSEH) { 1858 // If this is not a fall-through branch or optimizations are switched off, 1859 // emit the branch. 1860 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1861 TM.getOptLevel() == CodeGenOptLevel::None) 1862 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1863 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1864 return; 1865 } 1866 1867 // Figure out the funclet membership for the catchret's successor. 1868 // This will be used by the FuncletLayout pass to determine how to order the 1869 // BB's. 1870 // A 'catchret' returns to the outer scope's color. 1871 Value *ParentPad = I.getCatchSwitchParentPad(); 1872 const BasicBlock *SuccessorColor; 1873 if (isa<ConstantTokenNone>(ParentPad)) 1874 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1875 else 1876 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1877 assert(SuccessorColor && "No parent funclet for catchret!"); 1878 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1879 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1880 1881 // Create the terminator node. 1882 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1883 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1884 DAG.getBasicBlock(SuccessorColorMBB)); 1885 DAG.setRoot(Ret); 1886 } 1887 1888 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1889 // Don't emit any special code for the cleanuppad instruction. It just marks 1890 // the start of an EH scope/funclet. 1891 FuncInfo.MBB->setIsEHScopeEntry(); 1892 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1893 if (Pers != EHPersonality::Wasm_CXX) { 1894 FuncInfo.MBB->setIsEHFuncletEntry(); 1895 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1896 } 1897 } 1898 1899 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1900 // not match, it is OK to add only the first unwind destination catchpad to the 1901 // successors, because there will be at least one invoke instruction within the 1902 // catch scope that points to the next unwind destination, if one exists, so 1903 // CFGSort cannot mess up with BB sorting order. 1904 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1905 // call within them, and catchpads only consisting of 'catch (...)' have a 1906 // '__cxa_end_catch' call within them, both of which generate invokes in case 1907 // the next unwind destination exists, i.e., the next unwind destination is not 1908 // the caller.) 1909 // 1910 // Having at most one EH pad successor is also simpler and helps later 1911 // transformations. 1912 // 1913 // For example, 1914 // current: 1915 // invoke void @foo to ... unwind label %catch.dispatch 1916 // catch.dispatch: 1917 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1918 // catch.start: 1919 // ... 1920 // ... in this BB or some other child BB dominated by this BB there will be an 1921 // invoke that points to 'next' BB as an unwind destination 1922 // 1923 // next: ; We don't need to add this to 'current' BB's successor 1924 // ... 1925 static void findWasmUnwindDestinations( 1926 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1927 BranchProbability Prob, 1928 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1929 &UnwindDests) { 1930 while (EHPadBB) { 1931 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1932 if (isa<CleanupPadInst>(Pad)) { 1933 // Stop on cleanup pads. 1934 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1935 UnwindDests.back().first->setIsEHScopeEntry(); 1936 break; 1937 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1938 // Add the catchpad handlers to the possible destinations. We don't 1939 // continue to the unwind destination of the catchswitch for wasm. 1940 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1941 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1942 UnwindDests.back().first->setIsEHScopeEntry(); 1943 } 1944 break; 1945 } else { 1946 continue; 1947 } 1948 } 1949 } 1950 1951 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1952 /// many places it could ultimately go. In the IR, we have a single unwind 1953 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1954 /// This function skips over imaginary basic blocks that hold catchswitch 1955 /// instructions, and finds all the "real" machine 1956 /// basic block destinations. As those destinations may not be successors of 1957 /// EHPadBB, here we also calculate the edge probability to those destinations. 1958 /// The passed-in Prob is the edge probability to EHPadBB. 1959 static void findUnwindDestinations( 1960 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1961 BranchProbability Prob, 1962 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1963 &UnwindDests) { 1964 EHPersonality Personality = 1965 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1966 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1967 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1968 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1969 bool IsSEH = isAsynchronousEHPersonality(Personality); 1970 1971 if (IsWasmCXX) { 1972 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1973 assert(UnwindDests.size() <= 1 && 1974 "There should be at most one unwind destination for wasm"); 1975 return; 1976 } 1977 1978 while (EHPadBB) { 1979 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1980 BasicBlock *NewEHPadBB = nullptr; 1981 if (isa<LandingPadInst>(Pad)) { 1982 // Stop on landingpads. They are not funclets. 1983 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1984 break; 1985 } else if (isa<CleanupPadInst>(Pad)) { 1986 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1987 // personalities. 1988 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1989 UnwindDests.back().first->setIsEHScopeEntry(); 1990 UnwindDests.back().first->setIsEHFuncletEntry(); 1991 break; 1992 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1993 // Add the catchpad handlers to the possible destinations. 1994 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1995 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1996 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1997 if (IsMSVCCXX || IsCoreCLR) 1998 UnwindDests.back().first->setIsEHFuncletEntry(); 1999 if (!IsSEH) 2000 UnwindDests.back().first->setIsEHScopeEntry(); 2001 } 2002 NewEHPadBB = CatchSwitch->getUnwindDest(); 2003 } else { 2004 continue; 2005 } 2006 2007 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2008 if (BPI && NewEHPadBB) 2009 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2010 EHPadBB = NewEHPadBB; 2011 } 2012 } 2013 2014 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2015 // Update successor info. 2016 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2017 auto UnwindDest = I.getUnwindDest(); 2018 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2019 BranchProbability UnwindDestProb = 2020 (BPI && UnwindDest) 2021 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2022 : BranchProbability::getZero(); 2023 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2024 for (auto &UnwindDest : UnwindDests) { 2025 UnwindDest.first->setIsEHPad(); 2026 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2027 } 2028 FuncInfo.MBB->normalizeSuccProbs(); 2029 2030 // Create the terminator node. 2031 SDValue Ret = 2032 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2033 DAG.setRoot(Ret); 2034 } 2035 2036 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2037 report_fatal_error("visitCatchSwitch not yet implemented!"); 2038 } 2039 2040 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2042 auto &DL = DAG.getDataLayout(); 2043 SDValue Chain = getControlRoot(); 2044 SmallVector<ISD::OutputArg, 8> Outs; 2045 SmallVector<SDValue, 8> OutVals; 2046 2047 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2048 // lower 2049 // 2050 // %val = call <ty> @llvm.experimental.deoptimize() 2051 // ret <ty> %val 2052 // 2053 // differently. 2054 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2055 LowerDeoptimizingReturn(); 2056 return; 2057 } 2058 2059 if (!FuncInfo.CanLowerReturn) { 2060 unsigned DemoteReg = FuncInfo.DemoteRegister; 2061 const Function *F = I.getParent()->getParent(); 2062 2063 // Emit a store of the return value through the virtual register. 2064 // Leave Outs empty so that LowerReturn won't try to load return 2065 // registers the usual way. 2066 SmallVector<EVT, 1> PtrValueVTs; 2067 ComputeValueVTs(TLI, DL, 2068 PointerType::get(F->getContext(), 2069 DAG.getDataLayout().getAllocaAddrSpace()), 2070 PtrValueVTs); 2071 2072 SDValue RetPtr = 2073 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2074 SDValue RetOp = getValue(I.getOperand(0)); 2075 2076 SmallVector<EVT, 4> ValueVTs, MemVTs; 2077 SmallVector<uint64_t, 4> Offsets; 2078 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2079 &Offsets, 0); 2080 unsigned NumValues = ValueVTs.size(); 2081 2082 SmallVector<SDValue, 4> Chains(NumValues); 2083 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2084 for (unsigned i = 0; i != NumValues; ++i) { 2085 // An aggregate return value cannot wrap around the address space, so 2086 // offsets to its parts don't wrap either. 2087 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2088 TypeSize::getFixed(Offsets[i])); 2089 2090 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2091 if (MemVTs[i] != ValueVTs[i]) 2092 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2093 Chains[i] = DAG.getStore( 2094 Chain, getCurSDLoc(), Val, 2095 // FIXME: better loc info would be nice. 2096 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2097 commonAlignment(BaseAlign, Offsets[i])); 2098 } 2099 2100 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2101 MVT::Other, Chains); 2102 } else if (I.getNumOperands() != 0) { 2103 SmallVector<EVT, 4> ValueVTs; 2104 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2105 unsigned NumValues = ValueVTs.size(); 2106 if (NumValues) { 2107 SDValue RetOp = getValue(I.getOperand(0)); 2108 2109 const Function *F = I.getParent()->getParent(); 2110 2111 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2112 I.getOperand(0)->getType(), F->getCallingConv(), 2113 /*IsVarArg*/ false, DL); 2114 2115 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2116 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2117 ExtendKind = ISD::SIGN_EXTEND; 2118 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2119 ExtendKind = ISD::ZERO_EXTEND; 2120 2121 LLVMContext &Context = F->getContext(); 2122 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2123 2124 for (unsigned j = 0; j != NumValues; ++j) { 2125 EVT VT = ValueVTs[j]; 2126 2127 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2128 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2129 2130 CallingConv::ID CC = F->getCallingConv(); 2131 2132 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2133 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2134 SmallVector<SDValue, 4> Parts(NumParts); 2135 getCopyToParts(DAG, getCurSDLoc(), 2136 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2137 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2138 2139 // 'inreg' on function refers to return value 2140 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2141 if (RetInReg) 2142 Flags.setInReg(); 2143 2144 if (I.getOperand(0)->getType()->isPointerTy()) { 2145 Flags.setPointer(); 2146 Flags.setPointerAddrSpace( 2147 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2148 } 2149 2150 if (NeedsRegBlock) { 2151 Flags.setInConsecutiveRegs(); 2152 if (j == NumValues - 1) 2153 Flags.setInConsecutiveRegsLast(); 2154 } 2155 2156 // Propagate extension type if any 2157 if (ExtendKind == ISD::SIGN_EXTEND) 2158 Flags.setSExt(); 2159 else if (ExtendKind == ISD::ZERO_EXTEND) 2160 Flags.setZExt(); 2161 2162 for (unsigned i = 0; i < NumParts; ++i) { 2163 Outs.push_back(ISD::OutputArg(Flags, 2164 Parts[i].getValueType().getSimpleVT(), 2165 VT, /*isfixed=*/true, 0, 0)); 2166 OutVals.push_back(Parts[i]); 2167 } 2168 } 2169 } 2170 } 2171 2172 // Push in swifterror virtual register as the last element of Outs. This makes 2173 // sure swifterror virtual register will be returned in the swifterror 2174 // physical register. 2175 const Function *F = I.getParent()->getParent(); 2176 if (TLI.supportSwiftError() && 2177 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2178 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2179 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2180 Flags.setSwiftError(); 2181 Outs.push_back(ISD::OutputArg( 2182 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2183 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2184 // Create SDNode for the swifterror virtual register. 2185 OutVals.push_back( 2186 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2187 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2188 EVT(TLI.getPointerTy(DL)))); 2189 } 2190 2191 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2192 CallingConv::ID CallConv = 2193 DAG.getMachineFunction().getFunction().getCallingConv(); 2194 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2195 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2196 2197 // Verify that the target's LowerReturn behaved as expected. 2198 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2199 "LowerReturn didn't return a valid chain!"); 2200 2201 // Update the DAG with the new chain value resulting from return lowering. 2202 DAG.setRoot(Chain); 2203 } 2204 2205 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2206 /// created for it, emit nodes to copy the value into the virtual 2207 /// registers. 2208 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2209 // Skip empty types 2210 if (V->getType()->isEmptyTy()) 2211 return; 2212 2213 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2214 if (VMI != FuncInfo.ValueMap.end()) { 2215 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2216 "Unused value assigned virtual registers!"); 2217 CopyValueToVirtualRegister(V, VMI->second); 2218 } 2219 } 2220 2221 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2222 /// the current basic block, add it to ValueMap now so that we'll get a 2223 /// CopyTo/FromReg. 2224 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2225 // No need to export constants. 2226 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2227 2228 // Already exported? 2229 if (FuncInfo.isExportedInst(V)) return; 2230 2231 Register Reg = FuncInfo.InitializeRegForValue(V); 2232 CopyValueToVirtualRegister(V, Reg); 2233 } 2234 2235 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2236 const BasicBlock *FromBB) { 2237 // The operands of the setcc have to be in this block. We don't know 2238 // how to export them from some other block. 2239 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2240 // Can export from current BB. 2241 if (VI->getParent() == FromBB) 2242 return true; 2243 2244 // Is already exported, noop. 2245 return FuncInfo.isExportedInst(V); 2246 } 2247 2248 // If this is an argument, we can export it if the BB is the entry block or 2249 // if it is already exported. 2250 if (isa<Argument>(V)) { 2251 if (FromBB->isEntryBlock()) 2252 return true; 2253 2254 // Otherwise, can only export this if it is already exported. 2255 return FuncInfo.isExportedInst(V); 2256 } 2257 2258 // Otherwise, constants can always be exported. 2259 return true; 2260 } 2261 2262 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2263 BranchProbability 2264 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2265 const MachineBasicBlock *Dst) const { 2266 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2267 const BasicBlock *SrcBB = Src->getBasicBlock(); 2268 const BasicBlock *DstBB = Dst->getBasicBlock(); 2269 if (!BPI) { 2270 // If BPI is not available, set the default probability as 1 / N, where N is 2271 // the number of successors. 2272 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2273 return BranchProbability(1, SuccSize); 2274 } 2275 return BPI->getEdgeProbability(SrcBB, DstBB); 2276 } 2277 2278 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2279 MachineBasicBlock *Dst, 2280 BranchProbability Prob) { 2281 if (!FuncInfo.BPI) 2282 Src->addSuccessorWithoutProb(Dst); 2283 else { 2284 if (Prob.isUnknown()) 2285 Prob = getEdgeProbability(Src, Dst); 2286 Src->addSuccessor(Dst, Prob); 2287 } 2288 } 2289 2290 static bool InBlock(const Value *V, const BasicBlock *BB) { 2291 if (const Instruction *I = dyn_cast<Instruction>(V)) 2292 return I->getParent() == BB; 2293 return true; 2294 } 2295 2296 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2297 /// This function emits a branch and is used at the leaves of an OR or an 2298 /// AND operator tree. 2299 void 2300 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2301 MachineBasicBlock *TBB, 2302 MachineBasicBlock *FBB, 2303 MachineBasicBlock *CurBB, 2304 MachineBasicBlock *SwitchBB, 2305 BranchProbability TProb, 2306 BranchProbability FProb, 2307 bool InvertCond) { 2308 const BasicBlock *BB = CurBB->getBasicBlock(); 2309 2310 // If the leaf of the tree is a comparison, merge the condition into 2311 // the caseblock. 2312 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2313 // The operands of the cmp have to be in this block. We don't know 2314 // how to export them from some other block. If this is the first block 2315 // of the sequence, no exporting is needed. 2316 if (CurBB == SwitchBB || 2317 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2318 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2319 ISD::CondCode Condition; 2320 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2321 ICmpInst::Predicate Pred = 2322 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2323 Condition = getICmpCondCode(Pred); 2324 } else { 2325 const FCmpInst *FC = cast<FCmpInst>(Cond); 2326 FCmpInst::Predicate Pred = 2327 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2328 Condition = getFCmpCondCode(Pred); 2329 if (TM.Options.NoNaNsFPMath) 2330 Condition = getFCmpCodeWithoutNaN(Condition); 2331 } 2332 2333 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2334 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2335 SL->SwitchCases.push_back(CB); 2336 return; 2337 } 2338 } 2339 2340 // Create a CaseBlock record representing this branch. 2341 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2342 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2343 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2344 SL->SwitchCases.push_back(CB); 2345 } 2346 2347 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2348 MachineBasicBlock *TBB, 2349 MachineBasicBlock *FBB, 2350 MachineBasicBlock *CurBB, 2351 MachineBasicBlock *SwitchBB, 2352 Instruction::BinaryOps Opc, 2353 BranchProbability TProb, 2354 BranchProbability FProb, 2355 bool InvertCond) { 2356 // Skip over not part of the tree and remember to invert op and operands at 2357 // next level. 2358 Value *NotCond; 2359 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2360 InBlock(NotCond, CurBB->getBasicBlock())) { 2361 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2362 !InvertCond); 2363 return; 2364 } 2365 2366 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2367 const Value *BOpOp0, *BOpOp1; 2368 // Compute the effective opcode for Cond, taking into account whether it needs 2369 // to be inverted, e.g. 2370 // and (not (or A, B)), C 2371 // gets lowered as 2372 // and (and (not A, not B), C) 2373 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2374 if (BOp) { 2375 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2376 ? Instruction::And 2377 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2378 ? Instruction::Or 2379 : (Instruction::BinaryOps)0); 2380 if (InvertCond) { 2381 if (BOpc == Instruction::And) 2382 BOpc = Instruction::Or; 2383 else if (BOpc == Instruction::Or) 2384 BOpc = Instruction::And; 2385 } 2386 } 2387 2388 // If this node is not part of the or/and tree, emit it as a branch. 2389 // Note that all nodes in the tree should have same opcode. 2390 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2391 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2392 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2393 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2394 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2395 TProb, FProb, InvertCond); 2396 return; 2397 } 2398 2399 // Create TmpBB after CurBB. 2400 MachineFunction::iterator BBI(CurBB); 2401 MachineFunction &MF = DAG.getMachineFunction(); 2402 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2403 CurBB->getParent()->insert(++BBI, TmpBB); 2404 2405 if (Opc == Instruction::Or) { 2406 // Codegen X | Y as: 2407 // BB1: 2408 // jmp_if_X TBB 2409 // jmp TmpBB 2410 // TmpBB: 2411 // jmp_if_Y TBB 2412 // jmp FBB 2413 // 2414 2415 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2416 // The requirement is that 2417 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2418 // = TrueProb for original BB. 2419 // Assuming the original probabilities are A and B, one choice is to set 2420 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2421 // A/(1+B) and 2B/(1+B). This choice assumes that 2422 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2423 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2424 // TmpBB, but the math is more complicated. 2425 2426 auto NewTrueProb = TProb / 2; 2427 auto NewFalseProb = TProb / 2 + FProb; 2428 // Emit the LHS condition. 2429 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2430 NewFalseProb, InvertCond); 2431 2432 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2433 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2434 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2435 // Emit the RHS condition into TmpBB. 2436 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2437 Probs[1], InvertCond); 2438 } else { 2439 assert(Opc == Instruction::And && "Unknown merge op!"); 2440 // Codegen X & Y as: 2441 // BB1: 2442 // jmp_if_X TmpBB 2443 // jmp FBB 2444 // TmpBB: 2445 // jmp_if_Y TBB 2446 // jmp FBB 2447 // 2448 // This requires creation of TmpBB after CurBB. 2449 2450 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2451 // The requirement is that 2452 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2453 // = FalseProb for original BB. 2454 // Assuming the original probabilities are A and B, one choice is to set 2455 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2456 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2457 // TrueProb for BB1 * FalseProb for TmpBB. 2458 2459 auto NewTrueProb = TProb + FProb / 2; 2460 auto NewFalseProb = FProb / 2; 2461 // Emit the LHS condition. 2462 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2463 NewFalseProb, InvertCond); 2464 2465 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2466 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2467 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2468 // Emit the RHS condition into TmpBB. 2469 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2470 Probs[1], InvertCond); 2471 } 2472 } 2473 2474 /// If the set of cases should be emitted as a series of branches, return true. 2475 /// If we should emit this as a bunch of and/or'd together conditions, return 2476 /// false. 2477 bool 2478 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2479 if (Cases.size() != 2) return true; 2480 2481 // If this is two comparisons of the same values or'd or and'd together, they 2482 // will get folded into a single comparison, so don't emit two blocks. 2483 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2484 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2485 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2486 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2487 return false; 2488 } 2489 2490 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2491 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2492 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2493 Cases[0].CC == Cases[1].CC && 2494 isa<Constant>(Cases[0].CmpRHS) && 2495 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2496 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2497 return false; 2498 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2499 return false; 2500 } 2501 2502 return true; 2503 } 2504 2505 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2506 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2507 2508 // Update machine-CFG edges. 2509 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2510 2511 if (I.isUnconditional()) { 2512 // Update machine-CFG edges. 2513 BrMBB->addSuccessor(Succ0MBB); 2514 2515 // If this is not a fall-through branch or optimizations are switched off, 2516 // emit the branch. 2517 if (Succ0MBB != NextBlock(BrMBB) || 2518 TM.getOptLevel() == CodeGenOptLevel::None) { 2519 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2520 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2521 setValue(&I, Br); 2522 DAG.setRoot(Br); 2523 } 2524 2525 return; 2526 } 2527 2528 // If this condition is one of the special cases we handle, do special stuff 2529 // now. 2530 const Value *CondVal = I.getCondition(); 2531 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2532 2533 // If this is a series of conditions that are or'd or and'd together, emit 2534 // this as a sequence of branches instead of setcc's with and/or operations. 2535 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2536 // unpredictable branches, and vector extracts because those jumps are likely 2537 // expensive for any target), this should improve performance. 2538 // For example, instead of something like: 2539 // cmp A, B 2540 // C = seteq 2541 // cmp D, E 2542 // F = setle 2543 // or C, F 2544 // jnz foo 2545 // Emit: 2546 // cmp A, B 2547 // je foo 2548 // cmp D, E 2549 // jle foo 2550 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2551 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2552 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2553 Value *Vec; 2554 const Value *BOp0, *BOp1; 2555 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2556 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2557 Opcode = Instruction::And; 2558 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2559 Opcode = Instruction::Or; 2560 2561 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2562 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2563 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2564 getEdgeProbability(BrMBB, Succ0MBB), 2565 getEdgeProbability(BrMBB, Succ1MBB), 2566 /*InvertCond=*/false); 2567 // If the compares in later blocks need to use values not currently 2568 // exported from this block, export them now. This block should always 2569 // be the first entry. 2570 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2571 2572 // Allow some cases to be rejected. 2573 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2574 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2575 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2576 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2577 } 2578 2579 // Emit the branch for this block. 2580 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2581 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2582 return; 2583 } 2584 2585 // Okay, we decided not to do this, remove any inserted MBB's and clear 2586 // SwitchCases. 2587 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2588 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2589 2590 SL->SwitchCases.clear(); 2591 } 2592 } 2593 2594 // Create a CaseBlock record representing this branch. 2595 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2596 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2597 2598 // Use visitSwitchCase to actually insert the fast branch sequence for this 2599 // cond branch. 2600 visitSwitchCase(CB, BrMBB); 2601 } 2602 2603 /// visitSwitchCase - Emits the necessary code to represent a single node in 2604 /// the binary search tree resulting from lowering a switch instruction. 2605 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2606 MachineBasicBlock *SwitchBB) { 2607 SDValue Cond; 2608 SDValue CondLHS = getValue(CB.CmpLHS); 2609 SDLoc dl = CB.DL; 2610 2611 if (CB.CC == ISD::SETTRUE) { 2612 // Branch or fall through to TrueBB. 2613 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2614 SwitchBB->normalizeSuccProbs(); 2615 if (CB.TrueBB != NextBlock(SwitchBB)) { 2616 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2617 DAG.getBasicBlock(CB.TrueBB))); 2618 } 2619 return; 2620 } 2621 2622 auto &TLI = DAG.getTargetLoweringInfo(); 2623 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2624 2625 // Build the setcc now. 2626 if (!CB.CmpMHS) { 2627 // Fold "(X == true)" to X and "(X == false)" to !X to 2628 // handle common cases produced by branch lowering. 2629 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2630 CB.CC == ISD::SETEQ) 2631 Cond = CondLHS; 2632 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2633 CB.CC == ISD::SETEQ) { 2634 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2635 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2636 } else { 2637 SDValue CondRHS = getValue(CB.CmpRHS); 2638 2639 // If a pointer's DAG type is larger than its memory type then the DAG 2640 // values are zero-extended. This breaks signed comparisons so truncate 2641 // back to the underlying type before doing the compare. 2642 if (CondLHS.getValueType() != MemVT) { 2643 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2644 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2645 } 2646 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2647 } 2648 } else { 2649 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2650 2651 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2652 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2653 2654 SDValue CmpOp = getValue(CB.CmpMHS); 2655 EVT VT = CmpOp.getValueType(); 2656 2657 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2658 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2659 ISD::SETLE); 2660 } else { 2661 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2662 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2663 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2664 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2665 } 2666 } 2667 2668 // Update successor info 2669 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2670 // TrueBB and FalseBB are always different unless the incoming IR is 2671 // degenerate. This only happens when running llc on weird IR. 2672 if (CB.TrueBB != CB.FalseBB) 2673 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2674 SwitchBB->normalizeSuccProbs(); 2675 2676 // If the lhs block is the next block, invert the condition so that we can 2677 // fall through to the lhs instead of the rhs block. 2678 if (CB.TrueBB == NextBlock(SwitchBB)) { 2679 std::swap(CB.TrueBB, CB.FalseBB); 2680 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2681 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2682 } 2683 2684 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2685 MVT::Other, getControlRoot(), Cond, 2686 DAG.getBasicBlock(CB.TrueBB)); 2687 2688 setValue(CurInst, BrCond); 2689 2690 // Insert the false branch. Do this even if it's a fall through branch, 2691 // this makes it easier to do DAG optimizations which require inverting 2692 // the branch condition. 2693 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2694 DAG.getBasicBlock(CB.FalseBB)); 2695 2696 DAG.setRoot(BrCond); 2697 } 2698 2699 /// visitJumpTable - Emit JumpTable node in the current MBB 2700 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2701 // Emit the code for the jump table 2702 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2703 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2704 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2705 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2706 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2707 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2708 Index.getValue(1), Table, Index); 2709 DAG.setRoot(BrJumpTable); 2710 } 2711 2712 /// visitJumpTableHeader - This function emits necessary code to produce index 2713 /// in the JumpTable from switch case. 2714 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2715 JumpTableHeader &JTH, 2716 MachineBasicBlock *SwitchBB) { 2717 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2718 const SDLoc &dl = *JT.SL; 2719 2720 // Subtract the lowest switch case value from the value being switched on. 2721 SDValue SwitchOp = getValue(JTH.SValue); 2722 EVT VT = SwitchOp.getValueType(); 2723 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2724 DAG.getConstant(JTH.First, dl, VT)); 2725 2726 // The SDNode we just created, which holds the value being switched on minus 2727 // the smallest case value, needs to be copied to a virtual register so it 2728 // can be used as an index into the jump table in a subsequent basic block. 2729 // This value may be smaller or larger than the target's pointer type, and 2730 // therefore require extension or truncating. 2731 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2732 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2733 2734 unsigned JumpTableReg = 2735 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2736 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2737 JumpTableReg, SwitchOp); 2738 JT.Reg = JumpTableReg; 2739 2740 if (!JTH.FallthroughUnreachable) { 2741 // Emit the range check for the jump table, and branch to the default block 2742 // for the switch statement if the value being switched on exceeds the 2743 // largest case in the switch. 2744 SDValue CMP = DAG.getSetCC( 2745 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2746 Sub.getValueType()), 2747 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2748 2749 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2750 MVT::Other, CopyTo, CMP, 2751 DAG.getBasicBlock(JT.Default)); 2752 2753 // Avoid emitting unnecessary branches to the next block. 2754 if (JT.MBB != NextBlock(SwitchBB)) 2755 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2756 DAG.getBasicBlock(JT.MBB)); 2757 2758 DAG.setRoot(BrCond); 2759 } else { 2760 // Avoid emitting unnecessary branches to the next block. 2761 if (JT.MBB != NextBlock(SwitchBB)) 2762 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2763 DAG.getBasicBlock(JT.MBB))); 2764 else 2765 DAG.setRoot(CopyTo); 2766 } 2767 } 2768 2769 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2770 /// variable if there exists one. 2771 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2772 SDValue &Chain) { 2773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2774 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2775 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2776 MachineFunction &MF = DAG.getMachineFunction(); 2777 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2778 MachineSDNode *Node = 2779 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2780 if (Global) { 2781 MachinePointerInfo MPInfo(Global); 2782 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2783 MachineMemOperand::MODereferenceable; 2784 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2785 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2786 DAG.setNodeMemRefs(Node, {MemRef}); 2787 } 2788 if (PtrTy != PtrMemTy) 2789 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2790 return SDValue(Node, 0); 2791 } 2792 2793 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2794 /// tail spliced into a stack protector check success bb. 2795 /// 2796 /// For a high level explanation of how this fits into the stack protector 2797 /// generation see the comment on the declaration of class 2798 /// StackProtectorDescriptor. 2799 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2800 MachineBasicBlock *ParentBB) { 2801 2802 // First create the loads to the guard/stack slot for the comparison. 2803 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2804 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2805 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2806 2807 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2808 int FI = MFI.getStackProtectorIndex(); 2809 2810 SDValue Guard; 2811 SDLoc dl = getCurSDLoc(); 2812 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2813 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2814 Align Align = 2815 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 2816 2817 // Generate code to load the content of the guard slot. 2818 SDValue GuardVal = DAG.getLoad( 2819 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2820 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2821 MachineMemOperand::MOVolatile); 2822 2823 if (TLI.useStackGuardXorFP()) 2824 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2825 2826 // Retrieve guard check function, nullptr if instrumentation is inlined. 2827 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2828 // The target provides a guard check function to validate the guard value. 2829 // Generate a call to that function with the content of the guard slot as 2830 // argument. 2831 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2832 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2833 2834 TargetLowering::ArgListTy Args; 2835 TargetLowering::ArgListEntry Entry; 2836 Entry.Node = GuardVal; 2837 Entry.Ty = FnTy->getParamType(0); 2838 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2839 Entry.IsInReg = true; 2840 Args.push_back(Entry); 2841 2842 TargetLowering::CallLoweringInfo CLI(DAG); 2843 CLI.setDebugLoc(getCurSDLoc()) 2844 .setChain(DAG.getEntryNode()) 2845 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2846 getValue(GuardCheckFn), std::move(Args)); 2847 2848 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2849 DAG.setRoot(Result.second); 2850 return; 2851 } 2852 2853 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2854 // Otherwise, emit a volatile load to retrieve the stack guard value. 2855 SDValue Chain = DAG.getEntryNode(); 2856 if (TLI.useLoadStackGuardNode()) { 2857 Guard = getLoadStackGuard(DAG, dl, Chain); 2858 } else { 2859 const Value *IRGuard = TLI.getSDagStackGuard(M); 2860 SDValue GuardPtr = getValue(IRGuard); 2861 2862 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2863 MachinePointerInfo(IRGuard, 0), Align, 2864 MachineMemOperand::MOVolatile); 2865 } 2866 2867 // Perform the comparison via a getsetcc. 2868 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2869 *DAG.getContext(), 2870 Guard.getValueType()), 2871 Guard, GuardVal, ISD::SETNE); 2872 2873 // If the guard/stackslot do not equal, branch to failure MBB. 2874 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2875 MVT::Other, GuardVal.getOperand(0), 2876 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2877 // Otherwise branch to success MBB. 2878 SDValue Br = DAG.getNode(ISD::BR, dl, 2879 MVT::Other, BrCond, 2880 DAG.getBasicBlock(SPD.getSuccessMBB())); 2881 2882 DAG.setRoot(Br); 2883 } 2884 2885 /// Codegen the failure basic block for a stack protector check. 2886 /// 2887 /// A failure stack protector machine basic block consists simply of a call to 2888 /// __stack_chk_fail(). 2889 /// 2890 /// For a high level explanation of how this fits into the stack protector 2891 /// generation see the comment on the declaration of class 2892 /// StackProtectorDescriptor. 2893 void 2894 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2896 TargetLowering::MakeLibCallOptions CallOptions; 2897 CallOptions.setDiscardResult(true); 2898 SDValue Chain = 2899 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2900 std::nullopt, CallOptions, getCurSDLoc()) 2901 .second; 2902 // On PS4/PS5, the "return address" must still be within the calling 2903 // function, even if it's at the very end, so emit an explicit TRAP here. 2904 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2905 if (TM.getTargetTriple().isPS()) 2906 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2907 // WebAssembly needs an unreachable instruction after a non-returning call, 2908 // because the function return type can be different from __stack_chk_fail's 2909 // return type (void). 2910 if (TM.getTargetTriple().isWasm()) 2911 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2912 2913 DAG.setRoot(Chain); 2914 } 2915 2916 /// visitBitTestHeader - This function emits necessary code to produce value 2917 /// suitable for "bit tests" 2918 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2919 MachineBasicBlock *SwitchBB) { 2920 SDLoc dl = getCurSDLoc(); 2921 2922 // Subtract the minimum value. 2923 SDValue SwitchOp = getValue(B.SValue); 2924 EVT VT = SwitchOp.getValueType(); 2925 SDValue RangeSub = 2926 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2927 2928 // Determine the type of the test operands. 2929 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2930 bool UsePtrType = false; 2931 if (!TLI.isTypeLegal(VT)) { 2932 UsePtrType = true; 2933 } else { 2934 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2935 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2936 // Switch table case range are encoded into series of masks. 2937 // Just use pointer type, it's guaranteed to fit. 2938 UsePtrType = true; 2939 break; 2940 } 2941 } 2942 SDValue Sub = RangeSub; 2943 if (UsePtrType) { 2944 VT = TLI.getPointerTy(DAG.getDataLayout()); 2945 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2946 } 2947 2948 B.RegVT = VT.getSimpleVT(); 2949 B.Reg = FuncInfo.CreateReg(B.RegVT); 2950 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2951 2952 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2953 2954 if (!B.FallthroughUnreachable) 2955 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2956 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2957 SwitchBB->normalizeSuccProbs(); 2958 2959 SDValue Root = CopyTo; 2960 if (!B.FallthroughUnreachable) { 2961 // Conditional branch to the default block. 2962 SDValue RangeCmp = DAG.getSetCC(dl, 2963 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2964 RangeSub.getValueType()), 2965 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2966 ISD::SETUGT); 2967 2968 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2969 DAG.getBasicBlock(B.Default)); 2970 } 2971 2972 // Avoid emitting unnecessary branches to the next block. 2973 if (MBB != NextBlock(SwitchBB)) 2974 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2975 2976 DAG.setRoot(Root); 2977 } 2978 2979 /// visitBitTestCase - this function produces one "bit test" 2980 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2981 MachineBasicBlock* NextMBB, 2982 BranchProbability BranchProbToNext, 2983 unsigned Reg, 2984 BitTestCase &B, 2985 MachineBasicBlock *SwitchBB) { 2986 SDLoc dl = getCurSDLoc(); 2987 MVT VT = BB.RegVT; 2988 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2989 SDValue Cmp; 2990 unsigned PopCount = llvm::popcount(B.Mask); 2991 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2992 if (PopCount == 1) { 2993 // Testing for a single bit; just compare the shift count with what it 2994 // would need to be to shift a 1 bit in that position. 2995 Cmp = DAG.getSetCC( 2996 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2997 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 2998 ISD::SETEQ); 2999 } else if (PopCount == BB.Range) { 3000 // There is only one zero bit in the range, test for it directly. 3001 Cmp = DAG.getSetCC( 3002 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3003 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3004 } else { 3005 // Make desired shift 3006 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3007 DAG.getConstant(1, dl, VT), ShiftOp); 3008 3009 // Emit bit tests and jumps 3010 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3011 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3012 Cmp = DAG.getSetCC( 3013 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3014 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3015 } 3016 3017 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3018 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3019 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3020 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3021 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3022 // one as they are relative probabilities (and thus work more like weights), 3023 // and hence we need to normalize them to let the sum of them become one. 3024 SwitchBB->normalizeSuccProbs(); 3025 3026 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3027 MVT::Other, getControlRoot(), 3028 Cmp, DAG.getBasicBlock(B.TargetBB)); 3029 3030 // Avoid emitting unnecessary branches to the next block. 3031 if (NextMBB != NextBlock(SwitchBB)) 3032 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3033 DAG.getBasicBlock(NextMBB)); 3034 3035 DAG.setRoot(BrAnd); 3036 } 3037 3038 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3039 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3040 3041 // Retrieve successors. Look through artificial IR level blocks like 3042 // catchswitch for successors. 3043 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3044 const BasicBlock *EHPadBB = I.getSuccessor(1); 3045 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3046 3047 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3048 // have to do anything here to lower funclet bundles. 3049 assert(!I.hasOperandBundlesOtherThan( 3050 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3051 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3052 LLVMContext::OB_cfguardtarget, 3053 LLVMContext::OB_clang_arc_attachedcall}) && 3054 "Cannot lower invokes with arbitrary operand bundles yet!"); 3055 3056 const Value *Callee(I.getCalledOperand()); 3057 const Function *Fn = dyn_cast<Function>(Callee); 3058 if (isa<InlineAsm>(Callee)) 3059 visitInlineAsm(I, EHPadBB); 3060 else if (Fn && Fn->isIntrinsic()) { 3061 switch (Fn->getIntrinsicID()) { 3062 default: 3063 llvm_unreachable("Cannot invoke this intrinsic"); 3064 case Intrinsic::donothing: 3065 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3066 case Intrinsic::seh_try_begin: 3067 case Intrinsic::seh_scope_begin: 3068 case Intrinsic::seh_try_end: 3069 case Intrinsic::seh_scope_end: 3070 if (EHPadMBB) 3071 // a block referenced by EH table 3072 // so dtor-funclet not removed by opts 3073 EHPadMBB->setMachineBlockAddressTaken(); 3074 break; 3075 case Intrinsic::experimental_patchpoint_void: 3076 case Intrinsic::experimental_patchpoint_i64: 3077 visitPatchpoint(I, EHPadBB); 3078 break; 3079 case Intrinsic::experimental_gc_statepoint: 3080 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3081 break; 3082 case Intrinsic::wasm_rethrow: { 3083 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3084 // special because it can be invoked, so we manually lower it to a DAG 3085 // node here. 3086 SmallVector<SDValue, 8> Ops; 3087 Ops.push_back(getRoot()); // inchain 3088 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3089 Ops.push_back( 3090 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3091 TLI.getPointerTy(DAG.getDataLayout()))); 3092 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3093 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3094 break; 3095 } 3096 } 3097 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3098 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3099 // Eventually we will support lowering the @llvm.experimental.deoptimize 3100 // intrinsic, and right now there are no plans to support other intrinsics 3101 // with deopt state. 3102 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3103 } else { 3104 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3105 } 3106 3107 // If the value of the invoke is used outside of its defining block, make it 3108 // available as a virtual register. 3109 // We already took care of the exported value for the statepoint instruction 3110 // during call to the LowerStatepoint. 3111 if (!isa<GCStatepointInst>(I)) { 3112 CopyToExportRegsIfNeeded(&I); 3113 } 3114 3115 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3116 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3117 BranchProbability EHPadBBProb = 3118 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3119 : BranchProbability::getZero(); 3120 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3121 3122 // Update successor info. 3123 addSuccessorWithProb(InvokeMBB, Return); 3124 for (auto &UnwindDest : UnwindDests) { 3125 UnwindDest.first->setIsEHPad(); 3126 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3127 } 3128 InvokeMBB->normalizeSuccProbs(); 3129 3130 // Drop into normal successor. 3131 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3132 DAG.getBasicBlock(Return))); 3133 } 3134 3135 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3136 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3137 3138 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3139 // have to do anything here to lower funclet bundles. 3140 assert(!I.hasOperandBundlesOtherThan( 3141 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3142 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3143 3144 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3145 visitInlineAsm(I); 3146 CopyToExportRegsIfNeeded(&I); 3147 3148 // Retrieve successors. 3149 SmallPtrSet<BasicBlock *, 8> Dests; 3150 Dests.insert(I.getDefaultDest()); 3151 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3152 3153 // Update successor info. 3154 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3155 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3156 BasicBlock *Dest = I.getIndirectDest(i); 3157 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3158 Target->setIsInlineAsmBrIndirectTarget(); 3159 Target->setMachineBlockAddressTaken(); 3160 Target->setLabelMustBeEmitted(); 3161 // Don't add duplicate machine successors. 3162 if (Dests.insert(Dest).second) 3163 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3164 } 3165 CallBrMBB->normalizeSuccProbs(); 3166 3167 // Drop into default successor. 3168 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3169 MVT::Other, getControlRoot(), 3170 DAG.getBasicBlock(Return))); 3171 } 3172 3173 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3174 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3175 } 3176 3177 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3178 assert(FuncInfo.MBB->isEHPad() && 3179 "Call to landingpad not in landing pad!"); 3180 3181 // If there aren't registers to copy the values into (e.g., during SjLj 3182 // exceptions), then don't bother to create these DAG nodes. 3183 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3184 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3185 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3186 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3187 return; 3188 3189 // If landingpad's return type is token type, we don't create DAG nodes 3190 // for its exception pointer and selector value. The extraction of exception 3191 // pointer or selector value from token type landingpads is not currently 3192 // supported. 3193 if (LP.getType()->isTokenTy()) 3194 return; 3195 3196 SmallVector<EVT, 2> ValueVTs; 3197 SDLoc dl = getCurSDLoc(); 3198 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3199 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3200 3201 // Get the two live-in registers as SDValues. The physregs have already been 3202 // copied into virtual registers. 3203 SDValue Ops[2]; 3204 if (FuncInfo.ExceptionPointerVirtReg) { 3205 Ops[0] = DAG.getZExtOrTrunc( 3206 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3207 FuncInfo.ExceptionPointerVirtReg, 3208 TLI.getPointerTy(DAG.getDataLayout())), 3209 dl, ValueVTs[0]); 3210 } else { 3211 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3212 } 3213 Ops[1] = DAG.getZExtOrTrunc( 3214 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3215 FuncInfo.ExceptionSelectorVirtReg, 3216 TLI.getPointerTy(DAG.getDataLayout())), 3217 dl, ValueVTs[1]); 3218 3219 // Merge into one. 3220 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3221 DAG.getVTList(ValueVTs), Ops); 3222 setValue(&LP, Res); 3223 } 3224 3225 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3226 MachineBasicBlock *Last) { 3227 // Update JTCases. 3228 for (JumpTableBlock &JTB : SL->JTCases) 3229 if (JTB.first.HeaderBB == First) 3230 JTB.first.HeaderBB = Last; 3231 3232 // Update BitTestCases. 3233 for (BitTestBlock &BTB : SL->BitTestCases) 3234 if (BTB.Parent == First) 3235 BTB.Parent = Last; 3236 } 3237 3238 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3239 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3240 3241 // Update machine-CFG edges with unique successors. 3242 SmallSet<BasicBlock*, 32> Done; 3243 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3244 BasicBlock *BB = I.getSuccessor(i); 3245 bool Inserted = Done.insert(BB).second; 3246 if (!Inserted) 3247 continue; 3248 3249 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3250 addSuccessorWithProb(IndirectBrMBB, Succ); 3251 } 3252 IndirectBrMBB->normalizeSuccProbs(); 3253 3254 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3255 MVT::Other, getControlRoot(), 3256 getValue(I.getAddress()))); 3257 } 3258 3259 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3260 if (!DAG.getTarget().Options.TrapUnreachable) 3261 return; 3262 3263 // We may be able to ignore unreachable behind a noreturn call. 3264 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3265 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3266 if (Call->doesNotReturn()) 3267 return; 3268 } 3269 } 3270 3271 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3272 } 3273 3274 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3275 SDNodeFlags Flags; 3276 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3277 Flags.copyFMF(*FPOp); 3278 3279 SDValue Op = getValue(I.getOperand(0)); 3280 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3281 Op, Flags); 3282 setValue(&I, UnNodeValue); 3283 } 3284 3285 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3286 SDNodeFlags Flags; 3287 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3288 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3289 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3290 } 3291 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3292 Flags.setExact(ExactOp->isExact()); 3293 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3294 Flags.copyFMF(*FPOp); 3295 3296 SDValue Op1 = getValue(I.getOperand(0)); 3297 SDValue Op2 = getValue(I.getOperand(1)); 3298 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3299 Op1, Op2, Flags); 3300 setValue(&I, BinNodeValue); 3301 } 3302 3303 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3304 SDValue Op1 = getValue(I.getOperand(0)); 3305 SDValue Op2 = getValue(I.getOperand(1)); 3306 3307 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3308 Op1.getValueType(), DAG.getDataLayout()); 3309 3310 // Coerce the shift amount to the right type if we can. This exposes the 3311 // truncate or zext to optimization early. 3312 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3313 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3314 "Unexpected shift type"); 3315 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3316 } 3317 3318 bool nuw = false; 3319 bool nsw = false; 3320 bool exact = false; 3321 3322 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3323 3324 if (const OverflowingBinaryOperator *OFBinOp = 3325 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3326 nuw = OFBinOp->hasNoUnsignedWrap(); 3327 nsw = OFBinOp->hasNoSignedWrap(); 3328 } 3329 if (const PossiblyExactOperator *ExactOp = 3330 dyn_cast<const PossiblyExactOperator>(&I)) 3331 exact = ExactOp->isExact(); 3332 } 3333 SDNodeFlags Flags; 3334 Flags.setExact(exact); 3335 Flags.setNoSignedWrap(nsw); 3336 Flags.setNoUnsignedWrap(nuw); 3337 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3338 Flags); 3339 setValue(&I, Res); 3340 } 3341 3342 void SelectionDAGBuilder::visitSDiv(const User &I) { 3343 SDValue Op1 = getValue(I.getOperand(0)); 3344 SDValue Op2 = getValue(I.getOperand(1)); 3345 3346 SDNodeFlags Flags; 3347 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3348 cast<PossiblyExactOperator>(&I)->isExact()); 3349 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3350 Op2, Flags)); 3351 } 3352 3353 void SelectionDAGBuilder::visitICmp(const User &I) { 3354 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3355 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3356 predicate = IC->getPredicate(); 3357 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3358 predicate = ICmpInst::Predicate(IC->getPredicate()); 3359 SDValue Op1 = getValue(I.getOperand(0)); 3360 SDValue Op2 = getValue(I.getOperand(1)); 3361 ISD::CondCode Opcode = getICmpCondCode(predicate); 3362 3363 auto &TLI = DAG.getTargetLoweringInfo(); 3364 EVT MemVT = 3365 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3366 3367 // If a pointer's DAG type is larger than its memory type then the DAG values 3368 // are zero-extended. This breaks signed comparisons so truncate back to the 3369 // underlying type before doing the compare. 3370 if (Op1.getValueType() != MemVT) { 3371 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3372 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3373 } 3374 3375 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3376 I.getType()); 3377 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3378 } 3379 3380 void SelectionDAGBuilder::visitFCmp(const User &I) { 3381 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3382 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3383 predicate = FC->getPredicate(); 3384 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3385 predicate = FCmpInst::Predicate(FC->getPredicate()); 3386 SDValue Op1 = getValue(I.getOperand(0)); 3387 SDValue Op2 = getValue(I.getOperand(1)); 3388 3389 ISD::CondCode Condition = getFCmpCondCode(predicate); 3390 auto *FPMO = cast<FPMathOperator>(&I); 3391 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3392 Condition = getFCmpCodeWithoutNaN(Condition); 3393 3394 SDNodeFlags Flags; 3395 Flags.copyFMF(*FPMO); 3396 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3397 3398 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3399 I.getType()); 3400 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3401 } 3402 3403 // Check if the condition of the select has one use or two users that are both 3404 // selects with the same condition. 3405 static bool hasOnlySelectUsers(const Value *Cond) { 3406 return llvm::all_of(Cond->users(), [](const Value *V) { 3407 return isa<SelectInst>(V); 3408 }); 3409 } 3410 3411 void SelectionDAGBuilder::visitSelect(const User &I) { 3412 SmallVector<EVT, 4> ValueVTs; 3413 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3414 ValueVTs); 3415 unsigned NumValues = ValueVTs.size(); 3416 if (NumValues == 0) return; 3417 3418 SmallVector<SDValue, 4> Values(NumValues); 3419 SDValue Cond = getValue(I.getOperand(0)); 3420 SDValue LHSVal = getValue(I.getOperand(1)); 3421 SDValue RHSVal = getValue(I.getOperand(2)); 3422 SmallVector<SDValue, 1> BaseOps(1, Cond); 3423 ISD::NodeType OpCode = 3424 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3425 3426 bool IsUnaryAbs = false; 3427 bool Negate = false; 3428 3429 SDNodeFlags Flags; 3430 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3431 Flags.copyFMF(*FPOp); 3432 3433 Flags.setUnpredictable( 3434 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3435 3436 // Min/max matching is only viable if all output VTs are the same. 3437 if (all_equal(ValueVTs)) { 3438 EVT VT = ValueVTs[0]; 3439 LLVMContext &Ctx = *DAG.getContext(); 3440 auto &TLI = DAG.getTargetLoweringInfo(); 3441 3442 // We care about the legality of the operation after it has been type 3443 // legalized. 3444 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3445 VT = TLI.getTypeToTransformTo(Ctx, VT); 3446 3447 // If the vselect is legal, assume we want to leave this as a vector setcc + 3448 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3449 // min/max is legal on the scalar type. 3450 bool UseScalarMinMax = VT.isVector() && 3451 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3452 3453 // ValueTracking's select pattern matching does not account for -0.0, 3454 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3455 // -0.0 is less than +0.0. 3456 Value *LHS, *RHS; 3457 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3458 ISD::NodeType Opc = ISD::DELETED_NODE; 3459 switch (SPR.Flavor) { 3460 case SPF_UMAX: Opc = ISD::UMAX; break; 3461 case SPF_UMIN: Opc = ISD::UMIN; break; 3462 case SPF_SMAX: Opc = ISD::SMAX; break; 3463 case SPF_SMIN: Opc = ISD::SMIN; break; 3464 case SPF_FMINNUM: 3465 switch (SPR.NaNBehavior) { 3466 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3467 case SPNB_RETURNS_NAN: break; 3468 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3469 case SPNB_RETURNS_ANY: 3470 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3471 (UseScalarMinMax && 3472 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3473 Opc = ISD::FMINNUM; 3474 break; 3475 } 3476 break; 3477 case SPF_FMAXNUM: 3478 switch (SPR.NaNBehavior) { 3479 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3480 case SPNB_RETURNS_NAN: break; 3481 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3482 case SPNB_RETURNS_ANY: 3483 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3484 (UseScalarMinMax && 3485 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3486 Opc = ISD::FMAXNUM; 3487 break; 3488 } 3489 break; 3490 case SPF_NABS: 3491 Negate = true; 3492 [[fallthrough]]; 3493 case SPF_ABS: 3494 IsUnaryAbs = true; 3495 Opc = ISD::ABS; 3496 break; 3497 default: break; 3498 } 3499 3500 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3501 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3502 (UseScalarMinMax && 3503 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3504 // If the underlying comparison instruction is used by any other 3505 // instruction, the consumed instructions won't be destroyed, so it is 3506 // not profitable to convert to a min/max. 3507 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3508 OpCode = Opc; 3509 LHSVal = getValue(LHS); 3510 RHSVal = getValue(RHS); 3511 BaseOps.clear(); 3512 } 3513 3514 if (IsUnaryAbs) { 3515 OpCode = Opc; 3516 LHSVal = getValue(LHS); 3517 BaseOps.clear(); 3518 } 3519 } 3520 3521 if (IsUnaryAbs) { 3522 for (unsigned i = 0; i != NumValues; ++i) { 3523 SDLoc dl = getCurSDLoc(); 3524 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3525 Values[i] = 3526 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3527 if (Negate) 3528 Values[i] = DAG.getNegative(Values[i], dl, VT); 3529 } 3530 } else { 3531 for (unsigned i = 0; i != NumValues; ++i) { 3532 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3533 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3534 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3535 Values[i] = DAG.getNode( 3536 OpCode, getCurSDLoc(), 3537 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3538 } 3539 } 3540 3541 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3542 DAG.getVTList(ValueVTs), Values)); 3543 } 3544 3545 void SelectionDAGBuilder::visitTrunc(const User &I) { 3546 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3547 SDValue N = getValue(I.getOperand(0)); 3548 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3549 I.getType()); 3550 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3551 } 3552 3553 void SelectionDAGBuilder::visitZExt(const User &I) { 3554 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3555 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3556 SDValue N = getValue(I.getOperand(0)); 3557 auto &TLI = DAG.getTargetLoweringInfo(); 3558 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3559 3560 SDNodeFlags Flags; 3561 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3562 Flags.setNonNeg(PNI->hasNonNeg()); 3563 3564 // Eagerly use nonneg information to canonicalize towards sign_extend if 3565 // that is the target's preference. 3566 // TODO: Let the target do this later. 3567 if (Flags.hasNonNeg() && 3568 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3569 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3570 return; 3571 } 3572 3573 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3574 } 3575 3576 void SelectionDAGBuilder::visitSExt(const User &I) { 3577 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3578 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3579 SDValue N = getValue(I.getOperand(0)); 3580 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3581 I.getType()); 3582 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3583 } 3584 3585 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3586 // FPTrunc is never a no-op cast, no need to check 3587 SDValue N = getValue(I.getOperand(0)); 3588 SDLoc dl = getCurSDLoc(); 3589 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3590 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3591 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3592 DAG.getTargetConstant( 3593 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3594 } 3595 3596 void SelectionDAGBuilder::visitFPExt(const User &I) { 3597 // FPExt is never a no-op cast, no need to check 3598 SDValue N = getValue(I.getOperand(0)); 3599 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3600 I.getType()); 3601 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3602 } 3603 3604 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3605 // FPToUI is never a no-op cast, no need to check 3606 SDValue N = getValue(I.getOperand(0)); 3607 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3608 I.getType()); 3609 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3610 } 3611 3612 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3613 // FPToSI is never a no-op cast, no need to check 3614 SDValue N = getValue(I.getOperand(0)); 3615 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3616 I.getType()); 3617 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3618 } 3619 3620 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3621 // UIToFP is never a no-op cast, no need to check 3622 SDValue N = getValue(I.getOperand(0)); 3623 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3624 I.getType()); 3625 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3626 } 3627 3628 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3629 // SIToFP is never a no-op cast, no need to check 3630 SDValue N = getValue(I.getOperand(0)); 3631 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3632 I.getType()); 3633 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3634 } 3635 3636 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3637 // What to do depends on the size of the integer and the size of the pointer. 3638 // We can either truncate, zero extend, or no-op, accordingly. 3639 SDValue N = getValue(I.getOperand(0)); 3640 auto &TLI = DAG.getTargetLoweringInfo(); 3641 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3642 I.getType()); 3643 EVT PtrMemVT = 3644 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3645 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3646 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3647 setValue(&I, N); 3648 } 3649 3650 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3651 // What to do depends on the size of the integer and the size of the pointer. 3652 // We can either truncate, zero extend, or no-op, accordingly. 3653 SDValue N = getValue(I.getOperand(0)); 3654 auto &TLI = DAG.getTargetLoweringInfo(); 3655 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3656 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3657 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3658 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3659 setValue(&I, N); 3660 } 3661 3662 void SelectionDAGBuilder::visitBitCast(const User &I) { 3663 SDValue N = getValue(I.getOperand(0)); 3664 SDLoc dl = getCurSDLoc(); 3665 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3666 I.getType()); 3667 3668 // BitCast assures us that source and destination are the same size so this is 3669 // either a BITCAST or a no-op. 3670 if (DestVT != N.getValueType()) 3671 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3672 DestVT, N)); // convert types. 3673 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3674 // might fold any kind of constant expression to an integer constant and that 3675 // is not what we are looking for. Only recognize a bitcast of a genuine 3676 // constant integer as an opaque constant. 3677 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3678 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3679 /*isOpaque*/true)); 3680 else 3681 setValue(&I, N); // noop cast. 3682 } 3683 3684 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3685 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3686 const Value *SV = I.getOperand(0); 3687 SDValue N = getValue(SV); 3688 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3689 3690 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3691 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3692 3693 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3694 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3695 3696 setValue(&I, N); 3697 } 3698 3699 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3700 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3701 SDValue InVec = getValue(I.getOperand(0)); 3702 SDValue InVal = getValue(I.getOperand(1)); 3703 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3704 TLI.getVectorIdxTy(DAG.getDataLayout())); 3705 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3706 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3707 InVec, InVal, InIdx)); 3708 } 3709 3710 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3712 SDValue InVec = getValue(I.getOperand(0)); 3713 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3714 TLI.getVectorIdxTy(DAG.getDataLayout())); 3715 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3716 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3717 InVec, InIdx)); 3718 } 3719 3720 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3721 SDValue Src1 = getValue(I.getOperand(0)); 3722 SDValue Src2 = getValue(I.getOperand(1)); 3723 ArrayRef<int> Mask; 3724 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3725 Mask = SVI->getShuffleMask(); 3726 else 3727 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3728 SDLoc DL = getCurSDLoc(); 3729 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3730 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3731 EVT SrcVT = Src1.getValueType(); 3732 3733 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3734 VT.isScalableVector()) { 3735 // Canonical splat form of first element of first input vector. 3736 SDValue FirstElt = 3737 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3738 DAG.getVectorIdxConstant(0, DL)); 3739 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3740 return; 3741 } 3742 3743 // For now, we only handle splats for scalable vectors. 3744 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3745 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3746 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3747 3748 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3749 unsigned MaskNumElts = Mask.size(); 3750 3751 if (SrcNumElts == MaskNumElts) { 3752 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3753 return; 3754 } 3755 3756 // Normalize the shuffle vector since mask and vector length don't match. 3757 if (SrcNumElts < MaskNumElts) { 3758 // Mask is longer than the source vectors. We can use concatenate vector to 3759 // make the mask and vectors lengths match. 3760 3761 if (MaskNumElts % SrcNumElts == 0) { 3762 // Mask length is a multiple of the source vector length. 3763 // Check if the shuffle is some kind of concatenation of the input 3764 // vectors. 3765 unsigned NumConcat = MaskNumElts / SrcNumElts; 3766 bool IsConcat = true; 3767 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3768 for (unsigned i = 0; i != MaskNumElts; ++i) { 3769 int Idx = Mask[i]; 3770 if (Idx < 0) 3771 continue; 3772 // Ensure the indices in each SrcVT sized piece are sequential and that 3773 // the same source is used for the whole piece. 3774 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3775 (ConcatSrcs[i / SrcNumElts] >= 0 && 3776 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3777 IsConcat = false; 3778 break; 3779 } 3780 // Remember which source this index came from. 3781 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3782 } 3783 3784 // The shuffle is concatenating multiple vectors together. Just emit 3785 // a CONCAT_VECTORS operation. 3786 if (IsConcat) { 3787 SmallVector<SDValue, 8> ConcatOps; 3788 for (auto Src : ConcatSrcs) { 3789 if (Src < 0) 3790 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3791 else if (Src == 0) 3792 ConcatOps.push_back(Src1); 3793 else 3794 ConcatOps.push_back(Src2); 3795 } 3796 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3797 return; 3798 } 3799 } 3800 3801 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3802 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3803 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3804 PaddedMaskNumElts); 3805 3806 // Pad both vectors with undefs to make them the same length as the mask. 3807 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3808 3809 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3810 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3811 MOps1[0] = Src1; 3812 MOps2[0] = Src2; 3813 3814 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3815 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3816 3817 // Readjust mask for new input vector length. 3818 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3819 for (unsigned i = 0; i != MaskNumElts; ++i) { 3820 int Idx = Mask[i]; 3821 if (Idx >= (int)SrcNumElts) 3822 Idx -= SrcNumElts - PaddedMaskNumElts; 3823 MappedOps[i] = Idx; 3824 } 3825 3826 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3827 3828 // If the concatenated vector was padded, extract a subvector with the 3829 // correct number of elements. 3830 if (MaskNumElts != PaddedMaskNumElts) 3831 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3832 DAG.getVectorIdxConstant(0, DL)); 3833 3834 setValue(&I, Result); 3835 return; 3836 } 3837 3838 if (SrcNumElts > MaskNumElts) { 3839 // Analyze the access pattern of the vector to see if we can extract 3840 // two subvectors and do the shuffle. 3841 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3842 bool CanExtract = true; 3843 for (int Idx : Mask) { 3844 unsigned Input = 0; 3845 if (Idx < 0) 3846 continue; 3847 3848 if (Idx >= (int)SrcNumElts) { 3849 Input = 1; 3850 Idx -= SrcNumElts; 3851 } 3852 3853 // If all the indices come from the same MaskNumElts sized portion of 3854 // the sources we can use extract. Also make sure the extract wouldn't 3855 // extract past the end of the source. 3856 int NewStartIdx = alignDown(Idx, MaskNumElts); 3857 if (NewStartIdx + MaskNumElts > SrcNumElts || 3858 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3859 CanExtract = false; 3860 // Make sure we always update StartIdx as we use it to track if all 3861 // elements are undef. 3862 StartIdx[Input] = NewStartIdx; 3863 } 3864 3865 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3866 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3867 return; 3868 } 3869 if (CanExtract) { 3870 // Extract appropriate subvector and generate a vector shuffle 3871 for (unsigned Input = 0; Input < 2; ++Input) { 3872 SDValue &Src = Input == 0 ? Src1 : Src2; 3873 if (StartIdx[Input] < 0) 3874 Src = DAG.getUNDEF(VT); 3875 else { 3876 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3877 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3878 } 3879 } 3880 3881 // Calculate new mask. 3882 SmallVector<int, 8> MappedOps(Mask); 3883 for (int &Idx : MappedOps) { 3884 if (Idx >= (int)SrcNumElts) 3885 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3886 else if (Idx >= 0) 3887 Idx -= StartIdx[0]; 3888 } 3889 3890 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3891 return; 3892 } 3893 } 3894 3895 // We can't use either concat vectors or extract subvectors so fall back to 3896 // replacing the shuffle with extract and build vector. 3897 // to insert and build vector. 3898 EVT EltVT = VT.getVectorElementType(); 3899 SmallVector<SDValue,8> Ops; 3900 for (int Idx : Mask) { 3901 SDValue Res; 3902 3903 if (Idx < 0) { 3904 Res = DAG.getUNDEF(EltVT); 3905 } else { 3906 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3907 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3908 3909 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3910 DAG.getVectorIdxConstant(Idx, DL)); 3911 } 3912 3913 Ops.push_back(Res); 3914 } 3915 3916 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3917 } 3918 3919 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3920 ArrayRef<unsigned> Indices = I.getIndices(); 3921 const Value *Op0 = I.getOperand(0); 3922 const Value *Op1 = I.getOperand(1); 3923 Type *AggTy = I.getType(); 3924 Type *ValTy = Op1->getType(); 3925 bool IntoUndef = isa<UndefValue>(Op0); 3926 bool FromUndef = isa<UndefValue>(Op1); 3927 3928 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3929 3930 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3931 SmallVector<EVT, 4> AggValueVTs; 3932 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3933 SmallVector<EVT, 4> ValValueVTs; 3934 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3935 3936 unsigned NumAggValues = AggValueVTs.size(); 3937 unsigned NumValValues = ValValueVTs.size(); 3938 SmallVector<SDValue, 4> Values(NumAggValues); 3939 3940 // Ignore an insertvalue that produces an empty object 3941 if (!NumAggValues) { 3942 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3943 return; 3944 } 3945 3946 SDValue Agg = getValue(Op0); 3947 unsigned i = 0; 3948 // Copy the beginning value(s) from the original aggregate. 3949 for (; i != LinearIndex; ++i) 3950 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3951 SDValue(Agg.getNode(), Agg.getResNo() + i); 3952 // Copy values from the inserted value(s). 3953 if (NumValValues) { 3954 SDValue Val = getValue(Op1); 3955 for (; i != LinearIndex + NumValValues; ++i) 3956 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3957 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3958 } 3959 // Copy remaining value(s) from the original aggregate. 3960 for (; i != NumAggValues; ++i) 3961 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3962 SDValue(Agg.getNode(), Agg.getResNo() + i); 3963 3964 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3965 DAG.getVTList(AggValueVTs), Values)); 3966 } 3967 3968 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3969 ArrayRef<unsigned> Indices = I.getIndices(); 3970 const Value *Op0 = I.getOperand(0); 3971 Type *AggTy = Op0->getType(); 3972 Type *ValTy = I.getType(); 3973 bool OutOfUndef = isa<UndefValue>(Op0); 3974 3975 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3976 3977 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3978 SmallVector<EVT, 4> ValValueVTs; 3979 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3980 3981 unsigned NumValValues = ValValueVTs.size(); 3982 3983 // Ignore a extractvalue that produces an empty object 3984 if (!NumValValues) { 3985 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3986 return; 3987 } 3988 3989 SmallVector<SDValue, 4> Values(NumValValues); 3990 3991 SDValue Agg = getValue(Op0); 3992 // Copy out the selected value(s). 3993 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3994 Values[i - LinearIndex] = 3995 OutOfUndef ? 3996 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3997 SDValue(Agg.getNode(), Agg.getResNo() + i); 3998 3999 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4000 DAG.getVTList(ValValueVTs), Values)); 4001 } 4002 4003 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4004 Value *Op0 = I.getOperand(0); 4005 // Note that the pointer operand may be a vector of pointers. Take the scalar 4006 // element which holds a pointer. 4007 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4008 SDValue N = getValue(Op0); 4009 SDLoc dl = getCurSDLoc(); 4010 auto &TLI = DAG.getTargetLoweringInfo(); 4011 4012 // Normalize Vector GEP - all scalar operands should be converted to the 4013 // splat vector. 4014 bool IsVectorGEP = I.getType()->isVectorTy(); 4015 ElementCount VectorElementCount = 4016 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4017 : ElementCount::getFixed(0); 4018 4019 if (IsVectorGEP && !N.getValueType().isVector()) { 4020 LLVMContext &Context = *DAG.getContext(); 4021 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4022 N = DAG.getSplat(VT, dl, N); 4023 } 4024 4025 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4026 GTI != E; ++GTI) { 4027 const Value *Idx = GTI.getOperand(); 4028 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4029 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4030 if (Field) { 4031 // N = N + Offset 4032 uint64_t Offset = 4033 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4034 4035 // In an inbounds GEP with an offset that is nonnegative even when 4036 // interpreted as signed, assume there is no unsigned overflow. 4037 SDNodeFlags Flags; 4038 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4039 Flags.setNoUnsignedWrap(true); 4040 4041 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4042 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4043 } 4044 } else { 4045 // IdxSize is the width of the arithmetic according to IR semantics. 4046 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4047 // (and fix up the result later). 4048 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4049 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4050 TypeSize ElementSize = 4051 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 4052 // We intentionally mask away the high bits here; ElementSize may not 4053 // fit in IdxTy. 4054 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4055 bool ElementScalable = ElementSize.isScalable(); 4056 4057 // If this is a scalar constant or a splat vector of constants, 4058 // handle it quickly. 4059 const auto *C = dyn_cast<Constant>(Idx); 4060 if (C && isa<VectorType>(C->getType())) 4061 C = C->getSplatValue(); 4062 4063 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4064 if (CI && CI->isZero()) 4065 continue; 4066 if (CI && !ElementScalable) { 4067 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4068 LLVMContext &Context = *DAG.getContext(); 4069 SDValue OffsVal; 4070 if (IsVectorGEP) 4071 OffsVal = DAG.getConstant( 4072 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4073 else 4074 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4075 4076 // In an inbounds GEP with an offset that is nonnegative even when 4077 // interpreted as signed, assume there is no unsigned overflow. 4078 SDNodeFlags Flags; 4079 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4080 Flags.setNoUnsignedWrap(true); 4081 4082 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4083 4084 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4085 continue; 4086 } 4087 4088 // N = N + Idx * ElementMul; 4089 SDValue IdxN = getValue(Idx); 4090 4091 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4092 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4093 VectorElementCount); 4094 IdxN = DAG.getSplat(VT, dl, IdxN); 4095 } 4096 4097 // If the index is smaller or larger than intptr_t, truncate or extend 4098 // it. 4099 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4100 4101 if (ElementScalable) { 4102 EVT VScaleTy = N.getValueType().getScalarType(); 4103 SDValue VScale = DAG.getNode( 4104 ISD::VSCALE, dl, VScaleTy, 4105 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4106 if (IsVectorGEP) 4107 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4108 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4109 } else { 4110 // If this is a multiply by a power of two, turn it into a shl 4111 // immediately. This is a very common case. 4112 if (ElementMul != 1) { 4113 if (ElementMul.isPowerOf2()) { 4114 unsigned Amt = ElementMul.logBase2(); 4115 IdxN = DAG.getNode(ISD::SHL, dl, 4116 N.getValueType(), IdxN, 4117 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4118 } else { 4119 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4120 IdxN.getValueType()); 4121 IdxN = DAG.getNode(ISD::MUL, dl, 4122 N.getValueType(), IdxN, Scale); 4123 } 4124 } 4125 } 4126 4127 N = DAG.getNode(ISD::ADD, dl, 4128 N.getValueType(), N, IdxN); 4129 } 4130 } 4131 4132 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4133 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4134 if (IsVectorGEP) { 4135 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4136 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4137 } 4138 4139 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4140 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4141 4142 setValue(&I, N); 4143 } 4144 4145 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4146 // If this is a fixed sized alloca in the entry block of the function, 4147 // allocate it statically on the stack. 4148 if (FuncInfo.StaticAllocaMap.count(&I)) 4149 return; // getValue will auto-populate this. 4150 4151 SDLoc dl = getCurSDLoc(); 4152 Type *Ty = I.getAllocatedType(); 4153 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4154 auto &DL = DAG.getDataLayout(); 4155 TypeSize TySize = DL.getTypeAllocSize(Ty); 4156 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4157 4158 SDValue AllocSize = getValue(I.getArraySize()); 4159 4160 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4161 if (AllocSize.getValueType() != IntPtr) 4162 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4163 4164 if (TySize.isScalable()) 4165 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4166 DAG.getVScale(dl, IntPtr, 4167 APInt(IntPtr.getScalarSizeInBits(), 4168 TySize.getKnownMinValue()))); 4169 else { 4170 SDValue TySizeValue = 4171 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4172 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4173 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4174 } 4175 4176 // Handle alignment. If the requested alignment is less than or equal to 4177 // the stack alignment, ignore it. If the size is greater than or equal to 4178 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4179 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4180 if (*Alignment <= StackAlign) 4181 Alignment = std::nullopt; 4182 4183 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4184 // Round the size of the allocation up to the stack alignment size 4185 // by add SA-1 to the size. This doesn't overflow because we're computing 4186 // an address inside an alloca. 4187 SDNodeFlags Flags; 4188 Flags.setNoUnsignedWrap(true); 4189 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4190 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4191 4192 // Mask out the low bits for alignment purposes. 4193 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4194 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4195 4196 SDValue Ops[] = { 4197 getRoot(), AllocSize, 4198 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4199 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4200 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4201 setValue(&I, DSA); 4202 DAG.setRoot(DSA.getValue(1)); 4203 4204 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4205 } 4206 4207 static const MDNode *getRangeMetadata(const Instruction &I) { 4208 // If !noundef is not present, then !range violation results in a poison 4209 // value rather than immediate undefined behavior. In theory, transferring 4210 // these annotations to SDAG is fine, but in practice there are key SDAG 4211 // transforms that are known not to be poison-safe, such as folding logical 4212 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4213 // also present. 4214 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4215 return nullptr; 4216 return I.getMetadata(LLVMContext::MD_range); 4217 } 4218 4219 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4220 if (I.isAtomic()) 4221 return visitAtomicLoad(I); 4222 4223 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4224 const Value *SV = I.getOperand(0); 4225 if (TLI.supportSwiftError()) { 4226 // Swifterror values can come from either a function parameter with 4227 // swifterror attribute or an alloca with swifterror attribute. 4228 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4229 if (Arg->hasSwiftErrorAttr()) 4230 return visitLoadFromSwiftError(I); 4231 } 4232 4233 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4234 if (Alloca->isSwiftError()) 4235 return visitLoadFromSwiftError(I); 4236 } 4237 } 4238 4239 SDValue Ptr = getValue(SV); 4240 4241 Type *Ty = I.getType(); 4242 SmallVector<EVT, 4> ValueVTs, MemVTs; 4243 SmallVector<TypeSize, 4> Offsets; 4244 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0); 4245 unsigned NumValues = ValueVTs.size(); 4246 if (NumValues == 0) 4247 return; 4248 4249 Align Alignment = I.getAlign(); 4250 AAMDNodes AAInfo = I.getAAMetadata(); 4251 const MDNode *Ranges = getRangeMetadata(I); 4252 bool isVolatile = I.isVolatile(); 4253 MachineMemOperand::Flags MMOFlags = 4254 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4255 4256 SDValue Root; 4257 bool ConstantMemory = false; 4258 if (isVolatile) 4259 // Serialize volatile loads with other side effects. 4260 Root = getRoot(); 4261 else if (NumValues > MaxParallelChains) 4262 Root = getMemoryRoot(); 4263 else if (AA && 4264 AA->pointsToConstantMemory(MemoryLocation( 4265 SV, 4266 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4267 AAInfo))) { 4268 // Do not serialize (non-volatile) loads of constant memory with anything. 4269 Root = DAG.getEntryNode(); 4270 ConstantMemory = true; 4271 MMOFlags |= MachineMemOperand::MOInvariant; 4272 } else { 4273 // Do not serialize non-volatile loads against each other. 4274 Root = DAG.getRoot(); 4275 } 4276 4277 SDLoc dl = getCurSDLoc(); 4278 4279 if (isVolatile) 4280 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4281 4282 SmallVector<SDValue, 4> Values(NumValues); 4283 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4284 4285 unsigned ChainI = 0; 4286 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4287 // Serializing loads here may result in excessive register pressure, and 4288 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4289 // could recover a bit by hoisting nodes upward in the chain by recognizing 4290 // they are side-effect free or do not alias. The optimizer should really 4291 // avoid this case by converting large object/array copies to llvm.memcpy 4292 // (MaxParallelChains should always remain as failsafe). 4293 if (ChainI == MaxParallelChains) { 4294 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4295 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4296 ArrayRef(Chains.data(), ChainI)); 4297 Root = Chain; 4298 ChainI = 0; 4299 } 4300 4301 // TODO: MachinePointerInfo only supports a fixed length offset. 4302 MachinePointerInfo PtrInfo = 4303 !Offsets[i].isScalable() || Offsets[i].isZero() 4304 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4305 : MachinePointerInfo(); 4306 4307 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4308 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4309 MMOFlags, AAInfo, Ranges); 4310 Chains[ChainI] = L.getValue(1); 4311 4312 if (MemVTs[i] != ValueVTs[i]) 4313 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4314 4315 Values[i] = L; 4316 } 4317 4318 if (!ConstantMemory) { 4319 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4320 ArrayRef(Chains.data(), ChainI)); 4321 if (isVolatile) 4322 DAG.setRoot(Chain); 4323 else 4324 PendingLoads.push_back(Chain); 4325 } 4326 4327 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4328 DAG.getVTList(ValueVTs), Values)); 4329 } 4330 4331 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4332 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4333 "call visitStoreToSwiftError when backend supports swifterror"); 4334 4335 SmallVector<EVT, 4> ValueVTs; 4336 SmallVector<uint64_t, 4> Offsets; 4337 const Value *SrcV = I.getOperand(0); 4338 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4339 SrcV->getType(), ValueVTs, &Offsets, 0); 4340 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4341 "expect a single EVT for swifterror"); 4342 4343 SDValue Src = getValue(SrcV); 4344 // Create a virtual register, then update the virtual register. 4345 Register VReg = 4346 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4347 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4348 // Chain can be getRoot or getControlRoot. 4349 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4350 SDValue(Src.getNode(), Src.getResNo())); 4351 DAG.setRoot(CopyNode); 4352 } 4353 4354 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4355 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4356 "call visitLoadFromSwiftError when backend supports swifterror"); 4357 4358 assert(!I.isVolatile() && 4359 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4360 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4361 "Support volatile, non temporal, invariant for load_from_swift_error"); 4362 4363 const Value *SV = I.getOperand(0); 4364 Type *Ty = I.getType(); 4365 assert( 4366 (!AA || 4367 !AA->pointsToConstantMemory(MemoryLocation( 4368 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4369 I.getAAMetadata()))) && 4370 "load_from_swift_error should not be constant memory"); 4371 4372 SmallVector<EVT, 4> ValueVTs; 4373 SmallVector<uint64_t, 4> Offsets; 4374 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4375 ValueVTs, &Offsets, 0); 4376 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4377 "expect a single EVT for swifterror"); 4378 4379 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4380 SDValue L = DAG.getCopyFromReg( 4381 getRoot(), getCurSDLoc(), 4382 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4383 4384 setValue(&I, L); 4385 } 4386 4387 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4388 if (I.isAtomic()) 4389 return visitAtomicStore(I); 4390 4391 const Value *SrcV = I.getOperand(0); 4392 const Value *PtrV = I.getOperand(1); 4393 4394 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4395 if (TLI.supportSwiftError()) { 4396 // Swifterror values can come from either a function parameter with 4397 // swifterror attribute or an alloca with swifterror attribute. 4398 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4399 if (Arg->hasSwiftErrorAttr()) 4400 return visitStoreToSwiftError(I); 4401 } 4402 4403 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4404 if (Alloca->isSwiftError()) 4405 return visitStoreToSwiftError(I); 4406 } 4407 } 4408 4409 SmallVector<EVT, 4> ValueVTs, MemVTs; 4410 SmallVector<TypeSize, 4> Offsets; 4411 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4412 SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0); 4413 unsigned NumValues = ValueVTs.size(); 4414 if (NumValues == 0) 4415 return; 4416 4417 // Get the lowered operands. Note that we do this after 4418 // checking if NumResults is zero, because with zero results 4419 // the operands won't have values in the map. 4420 SDValue Src = getValue(SrcV); 4421 SDValue Ptr = getValue(PtrV); 4422 4423 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4424 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4425 SDLoc dl = getCurSDLoc(); 4426 Align Alignment = I.getAlign(); 4427 AAMDNodes AAInfo = I.getAAMetadata(); 4428 4429 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4430 4431 unsigned ChainI = 0; 4432 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4433 // See visitLoad comments. 4434 if (ChainI == MaxParallelChains) { 4435 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4436 ArrayRef(Chains.data(), ChainI)); 4437 Root = Chain; 4438 ChainI = 0; 4439 } 4440 4441 // TODO: MachinePointerInfo only supports a fixed length offset. 4442 MachinePointerInfo PtrInfo = 4443 !Offsets[i].isScalable() || Offsets[i].isZero() 4444 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4445 : MachinePointerInfo(); 4446 4447 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4448 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4449 if (MemVTs[i] != ValueVTs[i]) 4450 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4451 SDValue St = 4452 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4453 Chains[ChainI] = St; 4454 } 4455 4456 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4457 ArrayRef(Chains.data(), ChainI)); 4458 setValue(&I, StoreNode); 4459 DAG.setRoot(StoreNode); 4460 } 4461 4462 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4463 bool IsCompressing) { 4464 SDLoc sdl = getCurSDLoc(); 4465 4466 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4467 MaybeAlign &Alignment) { 4468 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4469 Src0 = I.getArgOperand(0); 4470 Ptr = I.getArgOperand(1); 4471 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4472 Mask = I.getArgOperand(3); 4473 }; 4474 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4475 MaybeAlign &Alignment) { 4476 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4477 Src0 = I.getArgOperand(0); 4478 Ptr = I.getArgOperand(1); 4479 Mask = I.getArgOperand(2); 4480 Alignment = std::nullopt; 4481 }; 4482 4483 Value *PtrOperand, *MaskOperand, *Src0Operand; 4484 MaybeAlign Alignment; 4485 if (IsCompressing) 4486 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4487 else 4488 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4489 4490 SDValue Ptr = getValue(PtrOperand); 4491 SDValue Src0 = getValue(Src0Operand); 4492 SDValue Mask = getValue(MaskOperand); 4493 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4494 4495 EVT VT = Src0.getValueType(); 4496 if (!Alignment) 4497 Alignment = DAG.getEVTAlign(VT); 4498 4499 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4500 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4501 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4502 SDValue StoreNode = 4503 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4504 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4505 DAG.setRoot(StoreNode); 4506 setValue(&I, StoreNode); 4507 } 4508 4509 // Get a uniform base for the Gather/Scatter intrinsic. 4510 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4511 // We try to represent it as a base pointer + vector of indices. 4512 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4513 // The first operand of the GEP may be a single pointer or a vector of pointers 4514 // Example: 4515 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4516 // or 4517 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4518 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4519 // 4520 // When the first GEP operand is a single pointer - it is the uniform base we 4521 // are looking for. If first operand of the GEP is a splat vector - we 4522 // extract the splat value and use it as a uniform base. 4523 // In all other cases the function returns 'false'. 4524 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4525 ISD::MemIndexType &IndexType, SDValue &Scale, 4526 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4527 uint64_t ElemSize) { 4528 SelectionDAG& DAG = SDB->DAG; 4529 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4530 const DataLayout &DL = DAG.getDataLayout(); 4531 4532 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4533 4534 // Handle splat constant pointer. 4535 if (auto *C = dyn_cast<Constant>(Ptr)) { 4536 C = C->getSplatValue(); 4537 if (!C) 4538 return false; 4539 4540 Base = SDB->getValue(C); 4541 4542 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4543 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4544 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4545 IndexType = ISD::SIGNED_SCALED; 4546 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4547 return true; 4548 } 4549 4550 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4551 if (!GEP || GEP->getParent() != CurBB) 4552 return false; 4553 4554 if (GEP->getNumOperands() != 2) 4555 return false; 4556 4557 const Value *BasePtr = GEP->getPointerOperand(); 4558 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4559 4560 // Make sure the base is scalar and the index is a vector. 4561 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4562 return false; 4563 4564 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4565 if (ScaleVal.isScalable()) 4566 return false; 4567 4568 // Target may not support the required addressing mode. 4569 if (ScaleVal != 1 && 4570 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4571 return false; 4572 4573 Base = SDB->getValue(BasePtr); 4574 Index = SDB->getValue(IndexVal); 4575 IndexType = ISD::SIGNED_SCALED; 4576 4577 Scale = 4578 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4579 return true; 4580 } 4581 4582 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4583 SDLoc sdl = getCurSDLoc(); 4584 4585 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4586 const Value *Ptr = I.getArgOperand(1); 4587 SDValue Src0 = getValue(I.getArgOperand(0)); 4588 SDValue Mask = getValue(I.getArgOperand(3)); 4589 EVT VT = Src0.getValueType(); 4590 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4591 ->getMaybeAlignValue() 4592 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4593 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4594 4595 SDValue Base; 4596 SDValue Index; 4597 ISD::MemIndexType IndexType; 4598 SDValue Scale; 4599 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4600 I.getParent(), VT.getScalarStoreSize()); 4601 4602 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4603 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4604 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4605 // TODO: Make MachineMemOperands aware of scalable 4606 // vectors. 4607 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4608 if (!UniformBase) { 4609 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4610 Index = getValue(Ptr); 4611 IndexType = ISD::SIGNED_SCALED; 4612 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4613 } 4614 4615 EVT IdxVT = Index.getValueType(); 4616 EVT EltTy = IdxVT.getVectorElementType(); 4617 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4618 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4619 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4620 } 4621 4622 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4623 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4624 Ops, MMO, IndexType, false); 4625 DAG.setRoot(Scatter); 4626 setValue(&I, Scatter); 4627 } 4628 4629 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4630 SDLoc sdl = getCurSDLoc(); 4631 4632 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4633 MaybeAlign &Alignment) { 4634 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4635 Ptr = I.getArgOperand(0); 4636 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4637 Mask = I.getArgOperand(2); 4638 Src0 = I.getArgOperand(3); 4639 }; 4640 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4641 MaybeAlign &Alignment) { 4642 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4643 Ptr = I.getArgOperand(0); 4644 Alignment = std::nullopt; 4645 Mask = I.getArgOperand(1); 4646 Src0 = I.getArgOperand(2); 4647 }; 4648 4649 Value *PtrOperand, *MaskOperand, *Src0Operand; 4650 MaybeAlign Alignment; 4651 if (IsExpanding) 4652 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4653 else 4654 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4655 4656 SDValue Ptr = getValue(PtrOperand); 4657 SDValue Src0 = getValue(Src0Operand); 4658 SDValue Mask = getValue(MaskOperand); 4659 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4660 4661 EVT VT = Src0.getValueType(); 4662 if (!Alignment) 4663 Alignment = DAG.getEVTAlign(VT); 4664 4665 AAMDNodes AAInfo = I.getAAMetadata(); 4666 const MDNode *Ranges = getRangeMetadata(I); 4667 4668 // Do not serialize masked loads of constant memory with anything. 4669 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4670 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4671 4672 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4673 4674 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4675 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4676 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4677 4678 SDValue Load = 4679 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4680 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4681 if (AddToChain) 4682 PendingLoads.push_back(Load.getValue(1)); 4683 setValue(&I, Load); 4684 } 4685 4686 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4687 SDLoc sdl = getCurSDLoc(); 4688 4689 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4690 const Value *Ptr = I.getArgOperand(0); 4691 SDValue Src0 = getValue(I.getArgOperand(3)); 4692 SDValue Mask = getValue(I.getArgOperand(2)); 4693 4694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4695 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4696 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4697 ->getMaybeAlignValue() 4698 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4699 4700 const MDNode *Ranges = getRangeMetadata(I); 4701 4702 SDValue Root = DAG.getRoot(); 4703 SDValue Base; 4704 SDValue Index; 4705 ISD::MemIndexType IndexType; 4706 SDValue Scale; 4707 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4708 I.getParent(), VT.getScalarStoreSize()); 4709 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4710 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4711 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4712 // TODO: Make MachineMemOperands aware of scalable 4713 // vectors. 4714 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4715 4716 if (!UniformBase) { 4717 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4718 Index = getValue(Ptr); 4719 IndexType = ISD::SIGNED_SCALED; 4720 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4721 } 4722 4723 EVT IdxVT = Index.getValueType(); 4724 EVT EltTy = IdxVT.getVectorElementType(); 4725 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4726 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4727 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4728 } 4729 4730 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4731 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4732 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4733 4734 PendingLoads.push_back(Gather.getValue(1)); 4735 setValue(&I, Gather); 4736 } 4737 4738 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4739 SDLoc dl = getCurSDLoc(); 4740 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4741 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4742 SyncScope::ID SSID = I.getSyncScopeID(); 4743 4744 SDValue InChain = getRoot(); 4745 4746 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4747 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4748 4749 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4750 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4751 4752 MachineFunction &MF = DAG.getMachineFunction(); 4753 MachineMemOperand *MMO = MF.getMachineMemOperand( 4754 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4755 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4756 FailureOrdering); 4757 4758 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4759 dl, MemVT, VTs, InChain, 4760 getValue(I.getPointerOperand()), 4761 getValue(I.getCompareOperand()), 4762 getValue(I.getNewValOperand()), MMO); 4763 4764 SDValue OutChain = L.getValue(2); 4765 4766 setValue(&I, L); 4767 DAG.setRoot(OutChain); 4768 } 4769 4770 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4771 SDLoc dl = getCurSDLoc(); 4772 ISD::NodeType NT; 4773 switch (I.getOperation()) { 4774 default: llvm_unreachable("Unknown atomicrmw operation"); 4775 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4776 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4777 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4778 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4779 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4780 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4781 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4782 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4783 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4784 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4785 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4786 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4787 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4788 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4789 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4790 case AtomicRMWInst::UIncWrap: 4791 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4792 break; 4793 case AtomicRMWInst::UDecWrap: 4794 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4795 break; 4796 } 4797 AtomicOrdering Ordering = I.getOrdering(); 4798 SyncScope::ID SSID = I.getSyncScopeID(); 4799 4800 SDValue InChain = getRoot(); 4801 4802 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4803 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4804 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4805 4806 MachineFunction &MF = DAG.getMachineFunction(); 4807 MachineMemOperand *MMO = MF.getMachineMemOperand( 4808 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4809 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4810 4811 SDValue L = 4812 DAG.getAtomic(NT, dl, MemVT, InChain, 4813 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4814 MMO); 4815 4816 SDValue OutChain = L.getValue(1); 4817 4818 setValue(&I, L); 4819 DAG.setRoot(OutChain); 4820 } 4821 4822 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4823 SDLoc dl = getCurSDLoc(); 4824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4825 SDValue Ops[3]; 4826 Ops[0] = getRoot(); 4827 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4828 TLI.getFenceOperandTy(DAG.getDataLayout())); 4829 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4830 TLI.getFenceOperandTy(DAG.getDataLayout())); 4831 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4832 setValue(&I, N); 4833 DAG.setRoot(N); 4834 } 4835 4836 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4837 SDLoc dl = getCurSDLoc(); 4838 AtomicOrdering Order = I.getOrdering(); 4839 SyncScope::ID SSID = I.getSyncScopeID(); 4840 4841 SDValue InChain = getRoot(); 4842 4843 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4844 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4845 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4846 4847 if (!TLI.supportsUnalignedAtomics() && 4848 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4849 report_fatal_error("Cannot generate unaligned atomic load"); 4850 4851 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4852 4853 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4854 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4855 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4856 4857 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4858 4859 SDValue Ptr = getValue(I.getPointerOperand()); 4860 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4861 Ptr, MMO); 4862 4863 SDValue OutChain = L.getValue(1); 4864 if (MemVT != VT) 4865 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4866 4867 setValue(&I, L); 4868 DAG.setRoot(OutChain); 4869 } 4870 4871 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4872 SDLoc dl = getCurSDLoc(); 4873 4874 AtomicOrdering Ordering = I.getOrdering(); 4875 SyncScope::ID SSID = I.getSyncScopeID(); 4876 4877 SDValue InChain = getRoot(); 4878 4879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4880 EVT MemVT = 4881 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4882 4883 if (!TLI.supportsUnalignedAtomics() && 4884 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4885 report_fatal_error("Cannot generate unaligned atomic store"); 4886 4887 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4888 4889 MachineFunction &MF = DAG.getMachineFunction(); 4890 MachineMemOperand *MMO = MF.getMachineMemOperand( 4891 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4892 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4893 4894 SDValue Val = getValue(I.getValueOperand()); 4895 if (Val.getValueType() != MemVT) 4896 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4897 SDValue Ptr = getValue(I.getPointerOperand()); 4898 4899 SDValue OutChain = 4900 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 4901 4902 setValue(&I, OutChain); 4903 DAG.setRoot(OutChain); 4904 } 4905 4906 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4907 /// node. 4908 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4909 unsigned Intrinsic) { 4910 // Ignore the callsite's attributes. A specific call site may be marked with 4911 // readnone, but the lowering code will expect the chain based on the 4912 // definition. 4913 const Function *F = I.getCalledFunction(); 4914 bool HasChain = !F->doesNotAccessMemory(); 4915 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4916 4917 // Build the operand list. 4918 SmallVector<SDValue, 8> Ops; 4919 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4920 if (OnlyLoad) { 4921 // We don't need to serialize loads against other loads. 4922 Ops.push_back(DAG.getRoot()); 4923 } else { 4924 Ops.push_back(getRoot()); 4925 } 4926 } 4927 4928 // Info is set by getTgtMemIntrinsic 4929 TargetLowering::IntrinsicInfo Info; 4930 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4931 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4932 DAG.getMachineFunction(), 4933 Intrinsic); 4934 4935 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4936 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4937 Info.opc == ISD::INTRINSIC_W_CHAIN) 4938 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4939 TLI.getPointerTy(DAG.getDataLayout()))); 4940 4941 // Add all operands of the call to the operand list. 4942 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4943 const Value *Arg = I.getArgOperand(i); 4944 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4945 Ops.push_back(getValue(Arg)); 4946 continue; 4947 } 4948 4949 // Use TargetConstant instead of a regular constant for immarg. 4950 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4951 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4952 assert(CI->getBitWidth() <= 64 && 4953 "large intrinsic immediates not handled"); 4954 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4955 } else { 4956 Ops.push_back( 4957 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4958 } 4959 } 4960 4961 SmallVector<EVT, 4> ValueVTs; 4962 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4963 4964 if (HasChain) 4965 ValueVTs.push_back(MVT::Other); 4966 4967 SDVTList VTs = DAG.getVTList(ValueVTs); 4968 4969 // Propagate fast-math-flags from IR to node(s). 4970 SDNodeFlags Flags; 4971 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4972 Flags.copyFMF(*FPMO); 4973 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4974 4975 // Create the node. 4976 SDValue Result; 4977 // In some cases, custom collection of operands from CallInst I may be needed. 4978 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4979 if (IsTgtIntrinsic) { 4980 // This is target intrinsic that touches memory 4981 // 4982 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4983 // didn't yield anything useful. 4984 MachinePointerInfo MPI; 4985 if (Info.ptrVal) 4986 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4987 else if (Info.fallbackAddressSpace) 4988 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4989 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4990 Info.memVT, MPI, Info.align, Info.flags, 4991 Info.size, I.getAAMetadata()); 4992 } else if (!HasChain) { 4993 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4994 } else if (!I.getType()->isVoidTy()) { 4995 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4996 } else { 4997 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4998 } 4999 5000 if (HasChain) { 5001 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5002 if (OnlyLoad) 5003 PendingLoads.push_back(Chain); 5004 else 5005 DAG.setRoot(Chain); 5006 } 5007 5008 if (!I.getType()->isVoidTy()) { 5009 if (!isa<VectorType>(I.getType())) 5010 Result = lowerRangeToAssertZExt(DAG, I, Result); 5011 5012 MaybeAlign Alignment = I.getRetAlign(); 5013 5014 // Insert `assertalign` node if there's an alignment. 5015 if (InsertAssertAlign && Alignment) { 5016 Result = 5017 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5018 } 5019 5020 setValue(&I, Result); 5021 } 5022 } 5023 5024 /// GetSignificand - Get the significand and build it into a floating-point 5025 /// number with exponent of 1: 5026 /// 5027 /// Op = (Op & 0x007fffff) | 0x3f800000; 5028 /// 5029 /// where Op is the hexadecimal representation of floating point value. 5030 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5031 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5032 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5033 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5034 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5035 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5036 } 5037 5038 /// GetExponent - Get the exponent: 5039 /// 5040 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5041 /// 5042 /// where Op is the hexadecimal representation of floating point value. 5043 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5044 const TargetLowering &TLI, const SDLoc &dl) { 5045 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5046 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5047 SDValue t1 = DAG.getNode( 5048 ISD::SRL, dl, MVT::i32, t0, 5049 DAG.getConstant(23, dl, 5050 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5051 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5052 DAG.getConstant(127, dl, MVT::i32)); 5053 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5054 } 5055 5056 /// getF32Constant - Get 32-bit floating point constant. 5057 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5058 const SDLoc &dl) { 5059 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5060 MVT::f32); 5061 } 5062 5063 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5064 SelectionDAG &DAG) { 5065 // TODO: What fast-math-flags should be set on the floating-point nodes? 5066 5067 // IntegerPartOfX = ((int32_t)(t0); 5068 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5069 5070 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5071 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5072 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5073 5074 // IntegerPartOfX <<= 23; 5075 IntegerPartOfX = 5076 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5077 DAG.getConstant(23, dl, 5078 DAG.getTargetLoweringInfo().getShiftAmountTy( 5079 MVT::i32, DAG.getDataLayout()))); 5080 5081 SDValue TwoToFractionalPartOfX; 5082 if (LimitFloatPrecision <= 6) { 5083 // For floating-point precision of 6: 5084 // 5085 // TwoToFractionalPartOfX = 5086 // 0.997535578f + 5087 // (0.735607626f + 0.252464424f * x) * x; 5088 // 5089 // error 0.0144103317, which is 6 bits 5090 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5091 getF32Constant(DAG, 0x3e814304, dl)); 5092 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5093 getF32Constant(DAG, 0x3f3c50c8, dl)); 5094 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5095 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5096 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5097 } else if (LimitFloatPrecision <= 12) { 5098 // For floating-point precision of 12: 5099 // 5100 // TwoToFractionalPartOfX = 5101 // 0.999892986f + 5102 // (0.696457318f + 5103 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5104 // 5105 // error 0.000107046256, which is 13 to 14 bits 5106 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5107 getF32Constant(DAG, 0x3da235e3, dl)); 5108 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5109 getF32Constant(DAG, 0x3e65b8f3, dl)); 5110 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5111 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5112 getF32Constant(DAG, 0x3f324b07, dl)); 5113 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5114 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5115 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5116 } else { // LimitFloatPrecision <= 18 5117 // For floating-point precision of 18: 5118 // 5119 // TwoToFractionalPartOfX = 5120 // 0.999999982f + 5121 // (0.693148872f + 5122 // (0.240227044f + 5123 // (0.554906021e-1f + 5124 // (0.961591928e-2f + 5125 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5126 // error 2.47208000*10^(-7), which is better than 18 bits 5127 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5128 getF32Constant(DAG, 0x3924b03e, dl)); 5129 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5130 getF32Constant(DAG, 0x3ab24b87, dl)); 5131 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5132 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5133 getF32Constant(DAG, 0x3c1d8c17, dl)); 5134 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5135 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5136 getF32Constant(DAG, 0x3d634a1d, dl)); 5137 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5138 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5139 getF32Constant(DAG, 0x3e75fe14, dl)); 5140 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5141 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5142 getF32Constant(DAG, 0x3f317234, dl)); 5143 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5144 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5145 getF32Constant(DAG, 0x3f800000, dl)); 5146 } 5147 5148 // Add the exponent into the result in integer domain. 5149 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5150 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5151 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5152 } 5153 5154 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5155 /// limited-precision mode. 5156 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5157 const TargetLowering &TLI, SDNodeFlags Flags) { 5158 if (Op.getValueType() == MVT::f32 && 5159 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5160 5161 // Put the exponent in the right bit position for later addition to the 5162 // final result: 5163 // 5164 // t0 = Op * log2(e) 5165 5166 // TODO: What fast-math-flags should be set here? 5167 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5168 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5169 return getLimitedPrecisionExp2(t0, dl, DAG); 5170 } 5171 5172 // No special expansion. 5173 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5174 } 5175 5176 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5177 /// limited-precision mode. 5178 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5179 const TargetLowering &TLI, SDNodeFlags Flags) { 5180 // TODO: What fast-math-flags should be set on the floating-point nodes? 5181 5182 if (Op.getValueType() == MVT::f32 && 5183 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5184 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5185 5186 // Scale the exponent by log(2). 5187 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5188 SDValue LogOfExponent = 5189 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5190 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5191 5192 // Get the significand and build it into a floating-point number with 5193 // exponent of 1. 5194 SDValue X = GetSignificand(DAG, Op1, dl); 5195 5196 SDValue LogOfMantissa; 5197 if (LimitFloatPrecision <= 6) { 5198 // For floating-point precision of 6: 5199 // 5200 // LogofMantissa = 5201 // -1.1609546f + 5202 // (1.4034025f - 0.23903021f * x) * x; 5203 // 5204 // error 0.0034276066, which is better than 8 bits 5205 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5206 getF32Constant(DAG, 0xbe74c456, dl)); 5207 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5208 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5209 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5210 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5211 getF32Constant(DAG, 0x3f949a29, dl)); 5212 } else if (LimitFloatPrecision <= 12) { 5213 // For floating-point precision of 12: 5214 // 5215 // LogOfMantissa = 5216 // -1.7417939f + 5217 // (2.8212026f + 5218 // (-1.4699568f + 5219 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5220 // 5221 // error 0.000061011436, which is 14 bits 5222 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5223 getF32Constant(DAG, 0xbd67b6d6, dl)); 5224 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5225 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5226 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5227 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5228 getF32Constant(DAG, 0x3fbc278b, dl)); 5229 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5230 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5231 getF32Constant(DAG, 0x40348e95, dl)); 5232 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5233 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5234 getF32Constant(DAG, 0x3fdef31a, dl)); 5235 } else { // LimitFloatPrecision <= 18 5236 // For floating-point precision of 18: 5237 // 5238 // LogOfMantissa = 5239 // -2.1072184f + 5240 // (4.2372794f + 5241 // (-3.7029485f + 5242 // (2.2781945f + 5243 // (-0.87823314f + 5244 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5245 // 5246 // error 0.0000023660568, which is better than 18 bits 5247 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5248 getF32Constant(DAG, 0xbc91e5ac, dl)); 5249 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5250 getF32Constant(DAG, 0x3e4350aa, dl)); 5251 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5252 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5253 getF32Constant(DAG, 0x3f60d3e3, dl)); 5254 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5255 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5256 getF32Constant(DAG, 0x4011cdf0, dl)); 5257 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5258 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5259 getF32Constant(DAG, 0x406cfd1c, dl)); 5260 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5261 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5262 getF32Constant(DAG, 0x408797cb, dl)); 5263 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5264 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5265 getF32Constant(DAG, 0x4006dcab, dl)); 5266 } 5267 5268 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5269 } 5270 5271 // No special expansion. 5272 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5273 } 5274 5275 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5276 /// limited-precision mode. 5277 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5278 const TargetLowering &TLI, SDNodeFlags Flags) { 5279 // TODO: What fast-math-flags should be set on the floating-point nodes? 5280 5281 if (Op.getValueType() == MVT::f32 && 5282 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5283 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5284 5285 // Get the exponent. 5286 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5287 5288 // Get the significand and build it into a floating-point number with 5289 // exponent of 1. 5290 SDValue X = GetSignificand(DAG, Op1, dl); 5291 5292 // Different possible minimax approximations of significand in 5293 // floating-point for various degrees of accuracy over [1,2]. 5294 SDValue Log2ofMantissa; 5295 if (LimitFloatPrecision <= 6) { 5296 // For floating-point precision of 6: 5297 // 5298 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5299 // 5300 // error 0.0049451742, which is more than 7 bits 5301 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5302 getF32Constant(DAG, 0xbeb08fe0, dl)); 5303 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5304 getF32Constant(DAG, 0x40019463, dl)); 5305 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5306 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5307 getF32Constant(DAG, 0x3fd6633d, dl)); 5308 } else if (LimitFloatPrecision <= 12) { 5309 // For floating-point precision of 12: 5310 // 5311 // Log2ofMantissa = 5312 // -2.51285454f + 5313 // (4.07009056f + 5314 // (-2.12067489f + 5315 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5316 // 5317 // error 0.0000876136000, which is better than 13 bits 5318 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5319 getF32Constant(DAG, 0xbda7262e, dl)); 5320 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5321 getF32Constant(DAG, 0x3f25280b, dl)); 5322 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5323 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5324 getF32Constant(DAG, 0x4007b923, dl)); 5325 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5326 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5327 getF32Constant(DAG, 0x40823e2f, dl)); 5328 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5329 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5330 getF32Constant(DAG, 0x4020d29c, dl)); 5331 } else { // LimitFloatPrecision <= 18 5332 // For floating-point precision of 18: 5333 // 5334 // Log2ofMantissa = 5335 // -3.0400495f + 5336 // (6.1129976f + 5337 // (-5.3420409f + 5338 // (3.2865683f + 5339 // (-1.2669343f + 5340 // (0.27515199f - 5341 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5342 // 5343 // error 0.0000018516, which is better than 18 bits 5344 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5345 getF32Constant(DAG, 0xbcd2769e, dl)); 5346 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5347 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5348 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5349 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5350 getF32Constant(DAG, 0x3fa22ae7, dl)); 5351 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5352 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5353 getF32Constant(DAG, 0x40525723, dl)); 5354 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5355 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5356 getF32Constant(DAG, 0x40aaf200, dl)); 5357 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5358 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5359 getF32Constant(DAG, 0x40c39dad, dl)); 5360 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5361 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5362 getF32Constant(DAG, 0x4042902c, dl)); 5363 } 5364 5365 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5366 } 5367 5368 // No special expansion. 5369 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5370 } 5371 5372 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5373 /// limited-precision mode. 5374 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5375 const TargetLowering &TLI, SDNodeFlags Flags) { 5376 // TODO: What fast-math-flags should be set on the floating-point nodes? 5377 5378 if (Op.getValueType() == MVT::f32 && 5379 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5380 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5381 5382 // Scale the exponent by log10(2) [0.30102999f]. 5383 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5384 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5385 getF32Constant(DAG, 0x3e9a209a, dl)); 5386 5387 // Get the significand and build it into a floating-point number with 5388 // exponent of 1. 5389 SDValue X = GetSignificand(DAG, Op1, dl); 5390 5391 SDValue Log10ofMantissa; 5392 if (LimitFloatPrecision <= 6) { 5393 // For floating-point precision of 6: 5394 // 5395 // Log10ofMantissa = 5396 // -0.50419619f + 5397 // (0.60948995f - 0.10380950f * x) * x; 5398 // 5399 // error 0.0014886165, which is 6 bits 5400 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5401 getF32Constant(DAG, 0xbdd49a13, dl)); 5402 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5403 getF32Constant(DAG, 0x3f1c0789, dl)); 5404 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5405 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5406 getF32Constant(DAG, 0x3f011300, dl)); 5407 } else if (LimitFloatPrecision <= 12) { 5408 // For floating-point precision of 12: 5409 // 5410 // Log10ofMantissa = 5411 // -0.64831180f + 5412 // (0.91751397f + 5413 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5414 // 5415 // error 0.00019228036, which is better than 12 bits 5416 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5417 getF32Constant(DAG, 0x3d431f31, dl)); 5418 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5419 getF32Constant(DAG, 0x3ea21fb2, dl)); 5420 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5421 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5422 getF32Constant(DAG, 0x3f6ae232, dl)); 5423 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5424 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5425 getF32Constant(DAG, 0x3f25f7c3, dl)); 5426 } else { // LimitFloatPrecision <= 18 5427 // For floating-point precision of 18: 5428 // 5429 // Log10ofMantissa = 5430 // -0.84299375f + 5431 // (1.5327582f + 5432 // (-1.0688956f + 5433 // (0.49102474f + 5434 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5435 // 5436 // error 0.0000037995730, which is better than 18 bits 5437 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5438 getF32Constant(DAG, 0x3c5d51ce, dl)); 5439 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5440 getF32Constant(DAG, 0x3e00685a, dl)); 5441 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5442 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5443 getF32Constant(DAG, 0x3efb6798, dl)); 5444 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5445 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5446 getF32Constant(DAG, 0x3f88d192, dl)); 5447 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5448 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5449 getF32Constant(DAG, 0x3fc4316c, dl)); 5450 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5451 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5452 getF32Constant(DAG, 0x3f57ce70, dl)); 5453 } 5454 5455 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5456 } 5457 5458 // No special expansion. 5459 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5460 } 5461 5462 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5463 /// limited-precision mode. 5464 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5465 const TargetLowering &TLI, SDNodeFlags Flags) { 5466 if (Op.getValueType() == MVT::f32 && 5467 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5468 return getLimitedPrecisionExp2(Op, dl, DAG); 5469 5470 // No special expansion. 5471 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5472 } 5473 5474 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5475 /// limited-precision mode with x == 10.0f. 5476 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5477 SelectionDAG &DAG, const TargetLowering &TLI, 5478 SDNodeFlags Flags) { 5479 bool IsExp10 = false; 5480 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5481 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5482 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5483 APFloat Ten(10.0f); 5484 IsExp10 = LHSC->isExactlyValue(Ten); 5485 } 5486 } 5487 5488 // TODO: What fast-math-flags should be set on the FMUL node? 5489 if (IsExp10) { 5490 // Put the exponent in the right bit position for later addition to the 5491 // final result: 5492 // 5493 // #define LOG2OF10 3.3219281f 5494 // t0 = Op * LOG2OF10; 5495 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5496 getF32Constant(DAG, 0x40549a78, dl)); 5497 return getLimitedPrecisionExp2(t0, dl, DAG); 5498 } 5499 5500 // No special expansion. 5501 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5502 } 5503 5504 /// ExpandPowI - Expand a llvm.powi intrinsic. 5505 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5506 SelectionDAG &DAG) { 5507 // If RHS is a constant, we can expand this out to a multiplication tree if 5508 // it's beneficial on the target, otherwise we end up lowering to a call to 5509 // __powidf2 (for example). 5510 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5511 unsigned Val = RHSC->getSExtValue(); 5512 5513 // powi(x, 0) -> 1.0 5514 if (Val == 0) 5515 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5516 5517 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5518 Val, DAG.shouldOptForSize())) { 5519 // Get the exponent as a positive value. 5520 if ((int)Val < 0) 5521 Val = -Val; 5522 // We use the simple binary decomposition method to generate the multiply 5523 // sequence. There are more optimal ways to do this (for example, 5524 // powi(x,15) generates one more multiply than it should), but this has 5525 // the benefit of being both really simple and much better than a libcall. 5526 SDValue Res; // Logically starts equal to 1.0 5527 SDValue CurSquare = LHS; 5528 // TODO: Intrinsics should have fast-math-flags that propagate to these 5529 // nodes. 5530 while (Val) { 5531 if (Val & 1) { 5532 if (Res.getNode()) 5533 Res = 5534 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5535 else 5536 Res = CurSquare; // 1.0*CurSquare. 5537 } 5538 5539 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5540 CurSquare, CurSquare); 5541 Val >>= 1; 5542 } 5543 5544 // If the original was negative, invert the result, producing 1/(x*x*x). 5545 if (RHSC->getSExtValue() < 0) 5546 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5547 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5548 return Res; 5549 } 5550 } 5551 5552 // Otherwise, expand to a libcall. 5553 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5554 } 5555 5556 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5557 SDValue LHS, SDValue RHS, SDValue Scale, 5558 SelectionDAG &DAG, const TargetLowering &TLI) { 5559 EVT VT = LHS.getValueType(); 5560 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5561 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5562 LLVMContext &Ctx = *DAG.getContext(); 5563 5564 // If the type is legal but the operation isn't, this node might survive all 5565 // the way to operation legalization. If we end up there and we do not have 5566 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5567 // node. 5568 5569 // Coax the legalizer into expanding the node during type legalization instead 5570 // by bumping the size by one bit. This will force it to Promote, enabling the 5571 // early expansion and avoiding the need to expand later. 5572 5573 // We don't have to do this if Scale is 0; that can always be expanded, unless 5574 // it's a saturating signed operation. Those can experience true integer 5575 // division overflow, a case which we must avoid. 5576 5577 // FIXME: We wouldn't have to do this (or any of the early 5578 // expansion/promotion) if it was possible to expand a libcall of an 5579 // illegal type during operation legalization. But it's not, so things 5580 // get a bit hacky. 5581 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5582 if ((ScaleInt > 0 || (Saturating && Signed)) && 5583 (TLI.isTypeLegal(VT) || 5584 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5585 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5586 Opcode, VT, ScaleInt); 5587 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5588 EVT PromVT; 5589 if (VT.isScalarInteger()) 5590 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5591 else if (VT.isVector()) { 5592 PromVT = VT.getVectorElementType(); 5593 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5594 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5595 } else 5596 llvm_unreachable("Wrong VT for DIVFIX?"); 5597 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5598 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5599 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5600 // For saturating operations, we need to shift up the LHS to get the 5601 // proper saturation width, and then shift down again afterwards. 5602 if (Saturating) 5603 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5604 DAG.getConstant(1, DL, ShiftTy)); 5605 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5606 if (Saturating) 5607 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5608 DAG.getConstant(1, DL, ShiftTy)); 5609 return DAG.getZExtOrTrunc(Res, DL, VT); 5610 } 5611 } 5612 5613 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5614 } 5615 5616 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5617 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5618 static void 5619 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5620 const SDValue &N) { 5621 switch (N.getOpcode()) { 5622 case ISD::CopyFromReg: { 5623 SDValue Op = N.getOperand(1); 5624 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5625 Op.getValueType().getSizeInBits()); 5626 return; 5627 } 5628 case ISD::BITCAST: 5629 case ISD::AssertZext: 5630 case ISD::AssertSext: 5631 case ISD::TRUNCATE: 5632 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5633 return; 5634 case ISD::BUILD_PAIR: 5635 case ISD::BUILD_VECTOR: 5636 case ISD::CONCAT_VECTORS: 5637 for (SDValue Op : N->op_values()) 5638 getUnderlyingArgRegs(Regs, Op); 5639 return; 5640 default: 5641 return; 5642 } 5643 } 5644 5645 /// If the DbgValueInst is a dbg_value of a function argument, create the 5646 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5647 /// instruction selection, they will be inserted to the entry BB. 5648 /// We don't currently support this for variadic dbg_values, as they shouldn't 5649 /// appear for function arguments or in the prologue. 5650 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5651 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5652 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5653 const Argument *Arg = dyn_cast<Argument>(V); 5654 if (!Arg) 5655 return false; 5656 5657 MachineFunction &MF = DAG.getMachineFunction(); 5658 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5659 5660 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5661 // we've been asked to pursue. 5662 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5663 bool Indirect) { 5664 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5665 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5666 // pointing at the VReg, which will be patched up later. 5667 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5668 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5669 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5670 /* isKill */ false, /* isDead */ false, 5671 /* isUndef */ false, /* isEarlyClobber */ false, 5672 /* SubReg */ 0, /* isDebug */ true)}); 5673 5674 auto *NewDIExpr = FragExpr; 5675 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5676 // the DIExpression. 5677 if (Indirect) 5678 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5679 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5680 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5681 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5682 } else { 5683 // Create a completely standard DBG_VALUE. 5684 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5685 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5686 } 5687 }; 5688 5689 if (Kind == FuncArgumentDbgValueKind::Value) { 5690 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5691 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5692 // the entry block. 5693 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5694 if (!IsInEntryBlock) 5695 return false; 5696 5697 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5698 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5699 // variable that also is a param. 5700 // 5701 // Although, if we are at the top of the entry block already, we can still 5702 // emit using ArgDbgValue. This might catch some situations when the 5703 // dbg.value refers to an argument that isn't used in the entry block, so 5704 // any CopyToReg node would be optimized out and the only way to express 5705 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5706 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5707 // we should only emit as ArgDbgValue if the Variable is an argument to the 5708 // current function, and the dbg.value intrinsic is found in the entry 5709 // block. 5710 bool VariableIsFunctionInputArg = Variable->isParameter() && 5711 !DL->getInlinedAt(); 5712 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5713 if (!IsInPrologue && !VariableIsFunctionInputArg) 5714 return false; 5715 5716 // Here we assume that a function argument on IR level only can be used to 5717 // describe one input parameter on source level. If we for example have 5718 // source code like this 5719 // 5720 // struct A { long x, y; }; 5721 // void foo(struct A a, long b) { 5722 // ... 5723 // b = a.x; 5724 // ... 5725 // } 5726 // 5727 // and IR like this 5728 // 5729 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5730 // entry: 5731 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5732 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5733 // call void @llvm.dbg.value(metadata i32 %b, "b", 5734 // ... 5735 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5736 // ... 5737 // 5738 // then the last dbg.value is describing a parameter "b" using a value that 5739 // is an argument. But since we already has used %a1 to describe a parameter 5740 // we should not handle that last dbg.value here (that would result in an 5741 // incorrect hoisting of the DBG_VALUE to the function entry). 5742 // Notice that we allow one dbg.value per IR level argument, to accommodate 5743 // for the situation with fragments above. 5744 if (VariableIsFunctionInputArg) { 5745 unsigned ArgNo = Arg->getArgNo(); 5746 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5747 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5748 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5749 return false; 5750 FuncInfo.DescribedArgs.set(ArgNo); 5751 } 5752 } 5753 5754 bool IsIndirect = false; 5755 std::optional<MachineOperand> Op; 5756 // Some arguments' frame index is recorded during argument lowering. 5757 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5758 if (FI != std::numeric_limits<int>::max()) 5759 Op = MachineOperand::CreateFI(FI); 5760 5761 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5762 if (!Op && N.getNode()) { 5763 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5764 Register Reg; 5765 if (ArgRegsAndSizes.size() == 1) 5766 Reg = ArgRegsAndSizes.front().first; 5767 5768 if (Reg && Reg.isVirtual()) { 5769 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5770 Register PR = RegInfo.getLiveInPhysReg(Reg); 5771 if (PR) 5772 Reg = PR; 5773 } 5774 if (Reg) { 5775 Op = MachineOperand::CreateReg(Reg, false); 5776 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5777 } 5778 } 5779 5780 if (!Op && N.getNode()) { 5781 // Check if frame index is available. 5782 SDValue LCandidate = peekThroughBitcasts(N); 5783 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5784 if (FrameIndexSDNode *FINode = 5785 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5786 Op = MachineOperand::CreateFI(FINode->getIndex()); 5787 } 5788 5789 if (!Op) { 5790 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5791 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5792 SplitRegs) { 5793 unsigned Offset = 0; 5794 for (const auto &RegAndSize : SplitRegs) { 5795 // If the expression is already a fragment, the current register 5796 // offset+size might extend beyond the fragment. In this case, only 5797 // the register bits that are inside the fragment are relevant. 5798 int RegFragmentSizeInBits = RegAndSize.second; 5799 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5800 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5801 // The register is entirely outside the expression fragment, 5802 // so is irrelevant for debug info. 5803 if (Offset >= ExprFragmentSizeInBits) 5804 break; 5805 // The register is partially outside the expression fragment, only 5806 // the low bits within the fragment are relevant for debug info. 5807 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5808 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5809 } 5810 } 5811 5812 auto FragmentExpr = DIExpression::createFragmentExpression( 5813 Expr, Offset, RegFragmentSizeInBits); 5814 Offset += RegAndSize.second; 5815 // If a valid fragment expression cannot be created, the variable's 5816 // correct value cannot be determined and so it is set as Undef. 5817 if (!FragmentExpr) { 5818 SDDbgValue *SDV = DAG.getConstantDbgValue( 5819 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5820 DAG.AddDbgValue(SDV, false); 5821 continue; 5822 } 5823 MachineInstr *NewMI = 5824 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5825 Kind != FuncArgumentDbgValueKind::Value); 5826 FuncInfo.ArgDbgValues.push_back(NewMI); 5827 } 5828 }; 5829 5830 // Check if ValueMap has reg number. 5831 DenseMap<const Value *, Register>::const_iterator 5832 VMI = FuncInfo.ValueMap.find(V); 5833 if (VMI != FuncInfo.ValueMap.end()) { 5834 const auto &TLI = DAG.getTargetLoweringInfo(); 5835 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5836 V->getType(), std::nullopt); 5837 if (RFV.occupiesMultipleRegs()) { 5838 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5839 return true; 5840 } 5841 5842 Op = MachineOperand::CreateReg(VMI->second, false); 5843 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5844 } else if (ArgRegsAndSizes.size() > 1) { 5845 // This was split due to the calling convention, and no virtual register 5846 // mapping exists for the value. 5847 splitMultiRegDbgValue(ArgRegsAndSizes); 5848 return true; 5849 } 5850 } 5851 5852 if (!Op) 5853 return false; 5854 5855 assert(Variable->isValidLocationForIntrinsic(DL) && 5856 "Expected inlined-at fields to agree"); 5857 MachineInstr *NewMI = nullptr; 5858 5859 if (Op->isReg()) 5860 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5861 else 5862 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5863 Variable, Expr); 5864 5865 // Otherwise, use ArgDbgValues. 5866 FuncInfo.ArgDbgValues.push_back(NewMI); 5867 return true; 5868 } 5869 5870 /// Return the appropriate SDDbgValue based on N. 5871 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5872 DILocalVariable *Variable, 5873 DIExpression *Expr, 5874 const DebugLoc &dl, 5875 unsigned DbgSDNodeOrder) { 5876 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5877 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5878 // stack slot locations. 5879 // 5880 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5881 // debug values here after optimization: 5882 // 5883 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5884 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5885 // 5886 // Both describe the direct values of their associated variables. 5887 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5888 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5889 } 5890 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5891 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5892 } 5893 5894 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5895 switch (Intrinsic) { 5896 case Intrinsic::smul_fix: 5897 return ISD::SMULFIX; 5898 case Intrinsic::umul_fix: 5899 return ISD::UMULFIX; 5900 case Intrinsic::smul_fix_sat: 5901 return ISD::SMULFIXSAT; 5902 case Intrinsic::umul_fix_sat: 5903 return ISD::UMULFIXSAT; 5904 case Intrinsic::sdiv_fix: 5905 return ISD::SDIVFIX; 5906 case Intrinsic::udiv_fix: 5907 return ISD::UDIVFIX; 5908 case Intrinsic::sdiv_fix_sat: 5909 return ISD::SDIVFIXSAT; 5910 case Intrinsic::udiv_fix_sat: 5911 return ISD::UDIVFIXSAT; 5912 default: 5913 llvm_unreachable("Unhandled fixed point intrinsic"); 5914 } 5915 } 5916 5917 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5918 const char *FunctionName) { 5919 assert(FunctionName && "FunctionName must not be nullptr"); 5920 SDValue Callee = DAG.getExternalSymbol( 5921 FunctionName, 5922 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5923 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5924 } 5925 5926 /// Given a @llvm.call.preallocated.setup, return the corresponding 5927 /// preallocated call. 5928 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5929 assert(cast<CallBase>(PreallocatedSetup) 5930 ->getCalledFunction() 5931 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5932 "expected call_preallocated_setup Value"); 5933 for (const auto *U : PreallocatedSetup->users()) { 5934 auto *UseCall = cast<CallBase>(U); 5935 const Function *Fn = UseCall->getCalledFunction(); 5936 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5937 return UseCall; 5938 } 5939 } 5940 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5941 } 5942 5943 /// If DI is a debug value with an EntryValue expression, lower it using the 5944 /// corresponding physical register of the associated Argument value 5945 /// (guaranteed to exist by the verifier). 5946 bool SelectionDAGBuilder::visitEntryValueDbgValue(const DbgValueInst &DI) { 5947 DILocalVariable *Variable = DI.getVariable(); 5948 DIExpression *Expr = DI.getExpression(); 5949 if (!Expr->isEntryValue() || !hasSingleElement(DI.getValues())) 5950 return false; 5951 5952 // These properties are guaranteed by the verifier. 5953 Argument *Arg = cast<Argument>(DI.getValue(0)); 5954 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 5955 5956 auto ArgIt = FuncInfo.ValueMap.find(Arg); 5957 if (ArgIt == FuncInfo.ValueMap.end()) { 5958 LLVM_DEBUG( 5959 dbgs() << "Dropping dbg.value: expression is entry_value but " 5960 "couldn't find an associated register for the Argument\n"); 5961 return true; 5962 } 5963 Register ArgVReg = ArgIt->getSecond(); 5964 5965 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 5966 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 5967 SDDbgValue *SDV = 5968 DAG.getVRegDbgValue(Variable, Expr, PhysReg, false /*IsIndidrect*/, 5969 DI.getDebugLoc(), SDNodeOrder); 5970 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 5971 return true; 5972 } 5973 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 5974 "couldn't find a physical register\n"); 5975 return true; 5976 } 5977 5978 /// Lower the call to the specified intrinsic function. 5979 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5980 unsigned Intrinsic) { 5981 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5982 SDLoc sdl = getCurSDLoc(); 5983 DebugLoc dl = getCurDebugLoc(); 5984 SDValue Res; 5985 5986 SDNodeFlags Flags; 5987 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5988 Flags.copyFMF(*FPOp); 5989 5990 switch (Intrinsic) { 5991 default: 5992 // By default, turn this into a target intrinsic node. 5993 visitTargetIntrinsic(I, Intrinsic); 5994 return; 5995 case Intrinsic::vscale: { 5996 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5997 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5998 return; 5999 } 6000 case Intrinsic::vastart: visitVAStart(I); return; 6001 case Intrinsic::vaend: visitVAEnd(I); return; 6002 case Intrinsic::vacopy: visitVACopy(I); return; 6003 case Intrinsic::returnaddress: 6004 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6005 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6006 getValue(I.getArgOperand(0)))); 6007 return; 6008 case Intrinsic::addressofreturnaddress: 6009 setValue(&I, 6010 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6011 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6012 return; 6013 case Intrinsic::sponentry: 6014 setValue(&I, 6015 DAG.getNode(ISD::SPONENTRY, sdl, 6016 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6017 return; 6018 case Intrinsic::frameaddress: 6019 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6020 TLI.getFrameIndexTy(DAG.getDataLayout()), 6021 getValue(I.getArgOperand(0)))); 6022 return; 6023 case Intrinsic::read_volatile_register: 6024 case Intrinsic::read_register: { 6025 Value *Reg = I.getArgOperand(0); 6026 SDValue Chain = getRoot(); 6027 SDValue RegName = 6028 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6029 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6030 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6031 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6032 setValue(&I, Res); 6033 DAG.setRoot(Res.getValue(1)); 6034 return; 6035 } 6036 case Intrinsic::write_register: { 6037 Value *Reg = I.getArgOperand(0); 6038 Value *RegValue = I.getArgOperand(1); 6039 SDValue Chain = getRoot(); 6040 SDValue RegName = 6041 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6042 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6043 RegName, getValue(RegValue))); 6044 return; 6045 } 6046 case Intrinsic::memcpy: { 6047 const auto &MCI = cast<MemCpyInst>(I); 6048 SDValue Op1 = getValue(I.getArgOperand(0)); 6049 SDValue Op2 = getValue(I.getArgOperand(1)); 6050 SDValue Op3 = getValue(I.getArgOperand(2)); 6051 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6052 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6053 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6054 Align Alignment = std::min(DstAlign, SrcAlign); 6055 bool isVol = MCI.isVolatile(); 6056 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6057 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6058 // node. 6059 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6060 SDValue MC = DAG.getMemcpy( 6061 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6062 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6063 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6064 updateDAGForMaybeTailCall(MC); 6065 return; 6066 } 6067 case Intrinsic::memcpy_inline: { 6068 const auto &MCI = cast<MemCpyInlineInst>(I); 6069 SDValue Dst = getValue(I.getArgOperand(0)); 6070 SDValue Src = getValue(I.getArgOperand(1)); 6071 SDValue Size = getValue(I.getArgOperand(2)); 6072 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6073 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6074 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6075 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6076 Align Alignment = std::min(DstAlign, SrcAlign); 6077 bool isVol = MCI.isVolatile(); 6078 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6079 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6080 // node. 6081 SDValue MC = DAG.getMemcpy( 6082 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6083 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6084 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6085 updateDAGForMaybeTailCall(MC); 6086 return; 6087 } 6088 case Intrinsic::memset: { 6089 const auto &MSI = cast<MemSetInst>(I); 6090 SDValue Op1 = getValue(I.getArgOperand(0)); 6091 SDValue Op2 = getValue(I.getArgOperand(1)); 6092 SDValue Op3 = getValue(I.getArgOperand(2)); 6093 // @llvm.memset defines 0 and 1 to both mean no alignment. 6094 Align Alignment = MSI.getDestAlign().valueOrOne(); 6095 bool isVol = MSI.isVolatile(); 6096 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6097 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6098 SDValue MS = DAG.getMemset( 6099 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6100 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6101 updateDAGForMaybeTailCall(MS); 6102 return; 6103 } 6104 case Intrinsic::memset_inline: { 6105 const auto &MSII = cast<MemSetInlineInst>(I); 6106 SDValue Dst = getValue(I.getArgOperand(0)); 6107 SDValue Value = getValue(I.getArgOperand(1)); 6108 SDValue Size = getValue(I.getArgOperand(2)); 6109 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6110 // @llvm.memset defines 0 and 1 to both mean no alignment. 6111 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6112 bool isVol = MSII.isVolatile(); 6113 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6114 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6115 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6116 /* AlwaysInline */ true, isTC, 6117 MachinePointerInfo(I.getArgOperand(0)), 6118 I.getAAMetadata()); 6119 updateDAGForMaybeTailCall(MC); 6120 return; 6121 } 6122 case Intrinsic::memmove: { 6123 const auto &MMI = cast<MemMoveInst>(I); 6124 SDValue Op1 = getValue(I.getArgOperand(0)); 6125 SDValue Op2 = getValue(I.getArgOperand(1)); 6126 SDValue Op3 = getValue(I.getArgOperand(2)); 6127 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6128 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6129 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6130 Align Alignment = std::min(DstAlign, SrcAlign); 6131 bool isVol = MMI.isVolatile(); 6132 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6133 // FIXME: Support passing different dest/src alignments to the memmove DAG 6134 // node. 6135 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6136 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6137 isTC, MachinePointerInfo(I.getArgOperand(0)), 6138 MachinePointerInfo(I.getArgOperand(1)), 6139 I.getAAMetadata(), AA); 6140 updateDAGForMaybeTailCall(MM); 6141 return; 6142 } 6143 case Intrinsic::memcpy_element_unordered_atomic: { 6144 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6145 SDValue Dst = getValue(MI.getRawDest()); 6146 SDValue Src = getValue(MI.getRawSource()); 6147 SDValue Length = getValue(MI.getLength()); 6148 6149 Type *LengthTy = MI.getLength()->getType(); 6150 unsigned ElemSz = MI.getElementSizeInBytes(); 6151 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6152 SDValue MC = 6153 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6154 isTC, MachinePointerInfo(MI.getRawDest()), 6155 MachinePointerInfo(MI.getRawSource())); 6156 updateDAGForMaybeTailCall(MC); 6157 return; 6158 } 6159 case Intrinsic::memmove_element_unordered_atomic: { 6160 auto &MI = cast<AtomicMemMoveInst>(I); 6161 SDValue Dst = getValue(MI.getRawDest()); 6162 SDValue Src = getValue(MI.getRawSource()); 6163 SDValue Length = getValue(MI.getLength()); 6164 6165 Type *LengthTy = MI.getLength()->getType(); 6166 unsigned ElemSz = MI.getElementSizeInBytes(); 6167 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6168 SDValue MC = 6169 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6170 isTC, MachinePointerInfo(MI.getRawDest()), 6171 MachinePointerInfo(MI.getRawSource())); 6172 updateDAGForMaybeTailCall(MC); 6173 return; 6174 } 6175 case Intrinsic::memset_element_unordered_atomic: { 6176 auto &MI = cast<AtomicMemSetInst>(I); 6177 SDValue Dst = getValue(MI.getRawDest()); 6178 SDValue Val = getValue(MI.getValue()); 6179 SDValue Length = getValue(MI.getLength()); 6180 6181 Type *LengthTy = MI.getLength()->getType(); 6182 unsigned ElemSz = MI.getElementSizeInBytes(); 6183 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6184 SDValue MC = 6185 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6186 isTC, MachinePointerInfo(MI.getRawDest())); 6187 updateDAGForMaybeTailCall(MC); 6188 return; 6189 } 6190 case Intrinsic::call_preallocated_setup: { 6191 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6192 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6193 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6194 getRoot(), SrcValue); 6195 setValue(&I, Res); 6196 DAG.setRoot(Res); 6197 return; 6198 } 6199 case Intrinsic::call_preallocated_arg: { 6200 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6201 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6202 SDValue Ops[3]; 6203 Ops[0] = getRoot(); 6204 Ops[1] = SrcValue; 6205 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6206 MVT::i32); // arg index 6207 SDValue Res = DAG.getNode( 6208 ISD::PREALLOCATED_ARG, sdl, 6209 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6210 setValue(&I, Res); 6211 DAG.setRoot(Res.getValue(1)); 6212 return; 6213 } 6214 case Intrinsic::dbg_declare: { 6215 const auto &DI = cast<DbgDeclareInst>(I); 6216 // Debug intrinsics are handled separately in assignment tracking mode. 6217 // Some intrinsics are handled right after Argument lowering. 6218 if (AssignmentTrackingEnabled || 6219 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6220 return; 6221 // Assume dbg.declare can not currently use DIArgList, i.e. 6222 // it is non-variadic. 6223 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6224 DILocalVariable *Variable = DI.getVariable(); 6225 DIExpression *Expression = DI.getExpression(); 6226 dropDanglingDebugInfo(Variable, Expression); 6227 assert(Variable && "Missing variable"); 6228 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6229 << "\n"); 6230 // Check if address has undef value. 6231 const Value *Address = DI.getVariableLocationOp(0); 6232 if (!Address || isa<UndefValue>(Address) || 6233 (Address->use_empty() && !isa<Argument>(Address))) { 6234 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6235 << " (bad/undef/unused-arg address)\n"); 6236 return; 6237 } 6238 6239 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6240 6241 SDValue &N = NodeMap[Address]; 6242 if (!N.getNode() && isa<Argument>(Address)) 6243 // Check unused arguments map. 6244 N = UnusedArgNodeMap[Address]; 6245 SDDbgValue *SDV; 6246 if (N.getNode()) { 6247 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6248 Address = BCI->getOperand(0); 6249 // Parameters are handled specially. 6250 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6251 if (isParameter && FINode) { 6252 // Byval parameter. We have a frame index at this point. 6253 SDV = 6254 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6255 /*IsIndirect*/ true, dl, SDNodeOrder); 6256 } else if (isa<Argument>(Address)) { 6257 // Address is an argument, so try to emit its dbg value using 6258 // virtual register info from the FuncInfo.ValueMap. 6259 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6260 FuncArgumentDbgValueKind::Declare, N); 6261 return; 6262 } else { 6263 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6264 true, dl, SDNodeOrder); 6265 } 6266 DAG.AddDbgValue(SDV, isParameter); 6267 } else { 6268 // If Address is an argument then try to emit its dbg value using 6269 // virtual register info from the FuncInfo.ValueMap. 6270 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6271 FuncArgumentDbgValueKind::Declare, N)) { 6272 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6273 << " (could not emit func-arg dbg_value)\n"); 6274 } 6275 } 6276 return; 6277 } 6278 case Intrinsic::dbg_label: { 6279 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6280 DILabel *Label = DI.getLabel(); 6281 assert(Label && "Missing label"); 6282 6283 SDDbgLabel *SDV; 6284 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6285 DAG.AddDbgLabel(SDV); 6286 return; 6287 } 6288 case Intrinsic::dbg_assign: { 6289 // Debug intrinsics are handled seperately in assignment tracking mode. 6290 if (AssignmentTrackingEnabled) 6291 return; 6292 // If assignment tracking hasn't been enabled then fall through and treat 6293 // the dbg.assign as a dbg.value. 6294 [[fallthrough]]; 6295 } 6296 case Intrinsic::dbg_value: { 6297 // Debug intrinsics are handled seperately in assignment tracking mode. 6298 if (AssignmentTrackingEnabled) 6299 return; 6300 const DbgValueInst &DI = cast<DbgValueInst>(I); 6301 assert(DI.getVariable() && "Missing variable"); 6302 6303 DILocalVariable *Variable = DI.getVariable(); 6304 DIExpression *Expression = DI.getExpression(); 6305 dropDanglingDebugInfo(Variable, Expression); 6306 6307 if (visitEntryValueDbgValue(DI)) 6308 return; 6309 6310 if (DI.isKillLocation()) { 6311 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6312 return; 6313 } 6314 6315 SmallVector<Value *, 4> Values(DI.getValues()); 6316 if (Values.empty()) 6317 return; 6318 6319 bool IsVariadic = DI.hasArgList(); 6320 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6321 SDNodeOrder, IsVariadic)) 6322 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6323 DI.getDebugLoc(), SDNodeOrder); 6324 return; 6325 } 6326 6327 case Intrinsic::eh_typeid_for: { 6328 // Find the type id for the given typeinfo. 6329 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6330 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6331 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6332 setValue(&I, Res); 6333 return; 6334 } 6335 6336 case Intrinsic::eh_return_i32: 6337 case Intrinsic::eh_return_i64: 6338 DAG.getMachineFunction().setCallsEHReturn(true); 6339 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6340 MVT::Other, 6341 getControlRoot(), 6342 getValue(I.getArgOperand(0)), 6343 getValue(I.getArgOperand(1)))); 6344 return; 6345 case Intrinsic::eh_unwind_init: 6346 DAG.getMachineFunction().setCallsUnwindInit(true); 6347 return; 6348 case Intrinsic::eh_dwarf_cfa: 6349 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6350 TLI.getPointerTy(DAG.getDataLayout()), 6351 getValue(I.getArgOperand(0)))); 6352 return; 6353 case Intrinsic::eh_sjlj_callsite: { 6354 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6355 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6356 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6357 6358 MMI.setCurrentCallSite(CI->getZExtValue()); 6359 return; 6360 } 6361 case Intrinsic::eh_sjlj_functioncontext: { 6362 // Get and store the index of the function context. 6363 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6364 AllocaInst *FnCtx = 6365 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6366 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6367 MFI.setFunctionContextIndex(FI); 6368 return; 6369 } 6370 case Intrinsic::eh_sjlj_setjmp: { 6371 SDValue Ops[2]; 6372 Ops[0] = getRoot(); 6373 Ops[1] = getValue(I.getArgOperand(0)); 6374 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6375 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6376 setValue(&I, Op.getValue(0)); 6377 DAG.setRoot(Op.getValue(1)); 6378 return; 6379 } 6380 case Intrinsic::eh_sjlj_longjmp: 6381 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6382 getRoot(), getValue(I.getArgOperand(0)))); 6383 return; 6384 case Intrinsic::eh_sjlj_setup_dispatch: 6385 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6386 getRoot())); 6387 return; 6388 case Intrinsic::masked_gather: 6389 visitMaskedGather(I); 6390 return; 6391 case Intrinsic::masked_load: 6392 visitMaskedLoad(I); 6393 return; 6394 case Intrinsic::masked_scatter: 6395 visitMaskedScatter(I); 6396 return; 6397 case Intrinsic::masked_store: 6398 visitMaskedStore(I); 6399 return; 6400 case Intrinsic::masked_expandload: 6401 visitMaskedLoad(I, true /* IsExpanding */); 6402 return; 6403 case Intrinsic::masked_compressstore: 6404 visitMaskedStore(I, true /* IsCompressing */); 6405 return; 6406 case Intrinsic::powi: 6407 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6408 getValue(I.getArgOperand(1)), DAG)); 6409 return; 6410 case Intrinsic::log: 6411 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6412 return; 6413 case Intrinsic::log2: 6414 setValue(&I, 6415 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6416 return; 6417 case Intrinsic::log10: 6418 setValue(&I, 6419 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6420 return; 6421 case Intrinsic::exp: 6422 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6423 return; 6424 case Intrinsic::exp2: 6425 setValue(&I, 6426 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6427 return; 6428 case Intrinsic::pow: 6429 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6430 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6431 return; 6432 case Intrinsic::sqrt: 6433 case Intrinsic::fabs: 6434 case Intrinsic::sin: 6435 case Intrinsic::cos: 6436 case Intrinsic::exp10: 6437 case Intrinsic::floor: 6438 case Intrinsic::ceil: 6439 case Intrinsic::trunc: 6440 case Intrinsic::rint: 6441 case Intrinsic::nearbyint: 6442 case Intrinsic::round: 6443 case Intrinsic::roundeven: 6444 case Intrinsic::canonicalize: { 6445 unsigned Opcode; 6446 switch (Intrinsic) { 6447 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6448 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6449 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6450 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6451 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6452 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6453 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6454 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6455 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6456 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6457 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6458 case Intrinsic::round: Opcode = ISD::FROUND; break; 6459 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6460 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6461 } 6462 6463 setValue(&I, DAG.getNode(Opcode, sdl, 6464 getValue(I.getArgOperand(0)).getValueType(), 6465 getValue(I.getArgOperand(0)), Flags)); 6466 return; 6467 } 6468 case Intrinsic::lround: 6469 case Intrinsic::llround: 6470 case Intrinsic::lrint: 6471 case Intrinsic::llrint: { 6472 unsigned Opcode; 6473 switch (Intrinsic) { 6474 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6475 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6476 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6477 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6478 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6479 } 6480 6481 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6482 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6483 getValue(I.getArgOperand(0)))); 6484 return; 6485 } 6486 case Intrinsic::minnum: 6487 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6488 getValue(I.getArgOperand(0)).getValueType(), 6489 getValue(I.getArgOperand(0)), 6490 getValue(I.getArgOperand(1)), Flags)); 6491 return; 6492 case Intrinsic::maxnum: 6493 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6494 getValue(I.getArgOperand(0)).getValueType(), 6495 getValue(I.getArgOperand(0)), 6496 getValue(I.getArgOperand(1)), Flags)); 6497 return; 6498 case Intrinsic::minimum: 6499 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6500 getValue(I.getArgOperand(0)).getValueType(), 6501 getValue(I.getArgOperand(0)), 6502 getValue(I.getArgOperand(1)), Flags)); 6503 return; 6504 case Intrinsic::maximum: 6505 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6506 getValue(I.getArgOperand(0)).getValueType(), 6507 getValue(I.getArgOperand(0)), 6508 getValue(I.getArgOperand(1)), Flags)); 6509 return; 6510 case Intrinsic::copysign: 6511 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6512 getValue(I.getArgOperand(0)).getValueType(), 6513 getValue(I.getArgOperand(0)), 6514 getValue(I.getArgOperand(1)), Flags)); 6515 return; 6516 case Intrinsic::ldexp: 6517 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6518 getValue(I.getArgOperand(0)).getValueType(), 6519 getValue(I.getArgOperand(0)), 6520 getValue(I.getArgOperand(1)), Flags)); 6521 return; 6522 case Intrinsic::frexp: { 6523 SmallVector<EVT, 2> ValueVTs; 6524 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6525 SDVTList VTs = DAG.getVTList(ValueVTs); 6526 setValue(&I, 6527 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6528 return; 6529 } 6530 case Intrinsic::arithmetic_fence: { 6531 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6532 getValue(I.getArgOperand(0)).getValueType(), 6533 getValue(I.getArgOperand(0)), Flags)); 6534 return; 6535 } 6536 case Intrinsic::fma: 6537 setValue(&I, DAG.getNode( 6538 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6539 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6540 getValue(I.getArgOperand(2)), Flags)); 6541 return; 6542 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6543 case Intrinsic::INTRINSIC: 6544 #include "llvm/IR/ConstrainedOps.def" 6545 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6546 return; 6547 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6548 #include "llvm/IR/VPIntrinsics.def" 6549 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6550 return; 6551 case Intrinsic::fptrunc_round: { 6552 // Get the last argument, the metadata and convert it to an integer in the 6553 // call 6554 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6555 std::optional<RoundingMode> RoundMode = 6556 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6557 6558 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6559 6560 // Propagate fast-math-flags from IR to node(s). 6561 SDNodeFlags Flags; 6562 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6563 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6564 6565 SDValue Result; 6566 Result = DAG.getNode( 6567 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6568 DAG.getTargetConstant((int)*RoundMode, sdl, 6569 TLI.getPointerTy(DAG.getDataLayout()))); 6570 setValue(&I, Result); 6571 6572 return; 6573 } 6574 case Intrinsic::fmuladd: { 6575 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6576 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6577 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6578 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6579 getValue(I.getArgOperand(0)).getValueType(), 6580 getValue(I.getArgOperand(0)), 6581 getValue(I.getArgOperand(1)), 6582 getValue(I.getArgOperand(2)), Flags)); 6583 } else { 6584 // TODO: Intrinsic calls should have fast-math-flags. 6585 SDValue Mul = DAG.getNode( 6586 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6587 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6588 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6589 getValue(I.getArgOperand(0)).getValueType(), 6590 Mul, getValue(I.getArgOperand(2)), Flags); 6591 setValue(&I, Add); 6592 } 6593 return; 6594 } 6595 case Intrinsic::convert_to_fp16: 6596 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6597 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6598 getValue(I.getArgOperand(0)), 6599 DAG.getTargetConstant(0, sdl, 6600 MVT::i32)))); 6601 return; 6602 case Intrinsic::convert_from_fp16: 6603 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6604 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6605 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6606 getValue(I.getArgOperand(0))))); 6607 return; 6608 case Intrinsic::fptosi_sat: { 6609 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6610 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6611 getValue(I.getArgOperand(0)), 6612 DAG.getValueType(VT.getScalarType()))); 6613 return; 6614 } 6615 case Intrinsic::fptoui_sat: { 6616 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6617 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6618 getValue(I.getArgOperand(0)), 6619 DAG.getValueType(VT.getScalarType()))); 6620 return; 6621 } 6622 case Intrinsic::set_rounding: 6623 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6624 {getRoot(), getValue(I.getArgOperand(0))}); 6625 setValue(&I, Res); 6626 DAG.setRoot(Res.getValue(0)); 6627 return; 6628 case Intrinsic::is_fpclass: { 6629 const DataLayout DLayout = DAG.getDataLayout(); 6630 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6631 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6632 FPClassTest Test = static_cast<FPClassTest>( 6633 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6634 MachineFunction &MF = DAG.getMachineFunction(); 6635 const Function &F = MF.getFunction(); 6636 SDValue Op = getValue(I.getArgOperand(0)); 6637 SDNodeFlags Flags; 6638 Flags.setNoFPExcept( 6639 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6640 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6641 // expansion can use illegal types. Making expansion early allows 6642 // legalizing these types prior to selection. 6643 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6644 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6645 setValue(&I, Result); 6646 return; 6647 } 6648 6649 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6650 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6651 setValue(&I, V); 6652 return; 6653 } 6654 case Intrinsic::get_fpenv: { 6655 const DataLayout DLayout = DAG.getDataLayout(); 6656 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6657 Align TempAlign = DAG.getEVTAlign(EnvVT); 6658 SDValue Chain = getRoot(); 6659 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6660 // and temporary storage in stack. 6661 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6662 Res = DAG.getNode( 6663 ISD::GET_FPENV, sdl, 6664 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6665 MVT::Other), 6666 Chain); 6667 } else { 6668 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6669 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6670 auto MPI = 6671 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6672 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6673 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6674 TempAlign); 6675 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6676 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6677 } 6678 setValue(&I, Res); 6679 DAG.setRoot(Res.getValue(1)); 6680 return; 6681 } 6682 case Intrinsic::set_fpenv: { 6683 const DataLayout DLayout = DAG.getDataLayout(); 6684 SDValue Env = getValue(I.getArgOperand(0)); 6685 EVT EnvVT = Env.getValueType(); 6686 Align TempAlign = DAG.getEVTAlign(EnvVT); 6687 SDValue Chain = getRoot(); 6688 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6689 // environment from memory. 6690 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6691 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6692 } else { 6693 // Allocate space in stack, copy environment bits into it and use this 6694 // memory in SET_FPENV_MEM. 6695 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6696 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6697 auto MPI = 6698 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6699 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6700 MachineMemOperand::MOStore); 6701 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6702 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6703 TempAlign); 6704 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6705 } 6706 DAG.setRoot(Chain); 6707 return; 6708 } 6709 case Intrinsic::reset_fpenv: 6710 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6711 return; 6712 case Intrinsic::get_fpmode: 6713 Res = DAG.getNode( 6714 ISD::GET_FPMODE, sdl, 6715 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6716 MVT::Other), 6717 DAG.getRoot()); 6718 setValue(&I, Res); 6719 DAG.setRoot(Res.getValue(1)); 6720 return; 6721 case Intrinsic::set_fpmode: 6722 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6723 getValue(I.getArgOperand(0))); 6724 DAG.setRoot(Res); 6725 return; 6726 case Intrinsic::reset_fpmode: { 6727 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6728 DAG.setRoot(Res); 6729 return; 6730 } 6731 case Intrinsic::pcmarker: { 6732 SDValue Tmp = getValue(I.getArgOperand(0)); 6733 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6734 return; 6735 } 6736 case Intrinsic::readcyclecounter: { 6737 SDValue Op = getRoot(); 6738 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6739 DAG.getVTList(MVT::i64, MVT::Other), Op); 6740 setValue(&I, Res); 6741 DAG.setRoot(Res.getValue(1)); 6742 return; 6743 } 6744 case Intrinsic::bitreverse: 6745 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6746 getValue(I.getArgOperand(0)).getValueType(), 6747 getValue(I.getArgOperand(0)))); 6748 return; 6749 case Intrinsic::bswap: 6750 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6751 getValue(I.getArgOperand(0)).getValueType(), 6752 getValue(I.getArgOperand(0)))); 6753 return; 6754 case Intrinsic::cttz: { 6755 SDValue Arg = getValue(I.getArgOperand(0)); 6756 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6757 EVT Ty = Arg.getValueType(); 6758 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6759 sdl, Ty, Arg)); 6760 return; 6761 } 6762 case Intrinsic::ctlz: { 6763 SDValue Arg = getValue(I.getArgOperand(0)); 6764 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6765 EVT Ty = Arg.getValueType(); 6766 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6767 sdl, Ty, Arg)); 6768 return; 6769 } 6770 case Intrinsic::ctpop: { 6771 SDValue Arg = getValue(I.getArgOperand(0)); 6772 EVT Ty = Arg.getValueType(); 6773 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6774 return; 6775 } 6776 case Intrinsic::fshl: 6777 case Intrinsic::fshr: { 6778 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6779 SDValue X = getValue(I.getArgOperand(0)); 6780 SDValue Y = getValue(I.getArgOperand(1)); 6781 SDValue Z = getValue(I.getArgOperand(2)); 6782 EVT VT = X.getValueType(); 6783 6784 if (X == Y) { 6785 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6786 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6787 } else { 6788 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6789 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6790 } 6791 return; 6792 } 6793 case Intrinsic::sadd_sat: { 6794 SDValue Op1 = getValue(I.getArgOperand(0)); 6795 SDValue Op2 = getValue(I.getArgOperand(1)); 6796 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6797 return; 6798 } 6799 case Intrinsic::uadd_sat: { 6800 SDValue Op1 = getValue(I.getArgOperand(0)); 6801 SDValue Op2 = getValue(I.getArgOperand(1)); 6802 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6803 return; 6804 } 6805 case Intrinsic::ssub_sat: { 6806 SDValue Op1 = getValue(I.getArgOperand(0)); 6807 SDValue Op2 = getValue(I.getArgOperand(1)); 6808 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6809 return; 6810 } 6811 case Intrinsic::usub_sat: { 6812 SDValue Op1 = getValue(I.getArgOperand(0)); 6813 SDValue Op2 = getValue(I.getArgOperand(1)); 6814 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6815 return; 6816 } 6817 case Intrinsic::sshl_sat: { 6818 SDValue Op1 = getValue(I.getArgOperand(0)); 6819 SDValue Op2 = getValue(I.getArgOperand(1)); 6820 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6821 return; 6822 } 6823 case Intrinsic::ushl_sat: { 6824 SDValue Op1 = getValue(I.getArgOperand(0)); 6825 SDValue Op2 = getValue(I.getArgOperand(1)); 6826 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6827 return; 6828 } 6829 case Intrinsic::smul_fix: 6830 case Intrinsic::umul_fix: 6831 case Intrinsic::smul_fix_sat: 6832 case Intrinsic::umul_fix_sat: { 6833 SDValue Op1 = getValue(I.getArgOperand(0)); 6834 SDValue Op2 = getValue(I.getArgOperand(1)); 6835 SDValue Op3 = getValue(I.getArgOperand(2)); 6836 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6837 Op1.getValueType(), Op1, Op2, Op3)); 6838 return; 6839 } 6840 case Intrinsic::sdiv_fix: 6841 case Intrinsic::udiv_fix: 6842 case Intrinsic::sdiv_fix_sat: 6843 case Intrinsic::udiv_fix_sat: { 6844 SDValue Op1 = getValue(I.getArgOperand(0)); 6845 SDValue Op2 = getValue(I.getArgOperand(1)); 6846 SDValue Op3 = getValue(I.getArgOperand(2)); 6847 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6848 Op1, Op2, Op3, DAG, TLI)); 6849 return; 6850 } 6851 case Intrinsic::smax: { 6852 SDValue Op1 = getValue(I.getArgOperand(0)); 6853 SDValue Op2 = getValue(I.getArgOperand(1)); 6854 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6855 return; 6856 } 6857 case Intrinsic::smin: { 6858 SDValue Op1 = getValue(I.getArgOperand(0)); 6859 SDValue Op2 = getValue(I.getArgOperand(1)); 6860 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6861 return; 6862 } 6863 case Intrinsic::umax: { 6864 SDValue Op1 = getValue(I.getArgOperand(0)); 6865 SDValue Op2 = getValue(I.getArgOperand(1)); 6866 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6867 return; 6868 } 6869 case Intrinsic::umin: { 6870 SDValue Op1 = getValue(I.getArgOperand(0)); 6871 SDValue Op2 = getValue(I.getArgOperand(1)); 6872 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6873 return; 6874 } 6875 case Intrinsic::abs: { 6876 // TODO: Preserve "int min is poison" arg in SDAG? 6877 SDValue Op1 = getValue(I.getArgOperand(0)); 6878 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6879 return; 6880 } 6881 case Intrinsic::stacksave: { 6882 SDValue Op = getRoot(); 6883 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6884 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6885 setValue(&I, Res); 6886 DAG.setRoot(Res.getValue(1)); 6887 return; 6888 } 6889 case Intrinsic::stackrestore: 6890 Res = getValue(I.getArgOperand(0)); 6891 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6892 return; 6893 case Intrinsic::get_dynamic_area_offset: { 6894 SDValue Op = getRoot(); 6895 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6896 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6897 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6898 // target. 6899 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6900 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6901 " intrinsic!"); 6902 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6903 Op); 6904 DAG.setRoot(Op); 6905 setValue(&I, Res); 6906 return; 6907 } 6908 case Intrinsic::stackguard: { 6909 MachineFunction &MF = DAG.getMachineFunction(); 6910 const Module &M = *MF.getFunction().getParent(); 6911 SDValue Chain = getRoot(); 6912 if (TLI.useLoadStackGuardNode()) { 6913 Res = getLoadStackGuard(DAG, sdl, Chain); 6914 } else { 6915 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6916 const Value *Global = TLI.getSDagStackGuard(M); 6917 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6918 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6919 MachinePointerInfo(Global, 0), Align, 6920 MachineMemOperand::MOVolatile); 6921 } 6922 if (TLI.useStackGuardXorFP()) 6923 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6924 DAG.setRoot(Chain); 6925 setValue(&I, Res); 6926 return; 6927 } 6928 case Intrinsic::stackprotector: { 6929 // Emit code into the DAG to store the stack guard onto the stack. 6930 MachineFunction &MF = DAG.getMachineFunction(); 6931 MachineFrameInfo &MFI = MF.getFrameInfo(); 6932 SDValue Src, Chain = getRoot(); 6933 6934 if (TLI.useLoadStackGuardNode()) 6935 Src = getLoadStackGuard(DAG, sdl, Chain); 6936 else 6937 Src = getValue(I.getArgOperand(0)); // The guard's value. 6938 6939 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6940 6941 int FI = FuncInfo.StaticAllocaMap[Slot]; 6942 MFI.setStackProtectorIndex(FI); 6943 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6944 6945 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6946 6947 // Store the stack protector onto the stack. 6948 Res = DAG.getStore( 6949 Chain, sdl, Src, FIN, 6950 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6951 MaybeAlign(), MachineMemOperand::MOVolatile); 6952 setValue(&I, Res); 6953 DAG.setRoot(Res); 6954 return; 6955 } 6956 case Intrinsic::objectsize: 6957 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6958 6959 case Intrinsic::is_constant: 6960 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6961 6962 case Intrinsic::annotation: 6963 case Intrinsic::ptr_annotation: 6964 case Intrinsic::launder_invariant_group: 6965 case Intrinsic::strip_invariant_group: 6966 // Drop the intrinsic, but forward the value 6967 setValue(&I, getValue(I.getOperand(0))); 6968 return; 6969 6970 case Intrinsic::assume: 6971 case Intrinsic::experimental_noalias_scope_decl: 6972 case Intrinsic::var_annotation: 6973 case Intrinsic::sideeffect: 6974 // Discard annotate attributes, noalias scope declarations, assumptions, and 6975 // artificial side-effects. 6976 return; 6977 6978 case Intrinsic::codeview_annotation: { 6979 // Emit a label associated with this metadata. 6980 MachineFunction &MF = DAG.getMachineFunction(); 6981 MCSymbol *Label = 6982 MF.getMMI().getContext().createTempSymbol("annotation", true); 6983 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6984 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6985 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6986 DAG.setRoot(Res); 6987 return; 6988 } 6989 6990 case Intrinsic::init_trampoline: { 6991 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6992 6993 SDValue Ops[6]; 6994 Ops[0] = getRoot(); 6995 Ops[1] = getValue(I.getArgOperand(0)); 6996 Ops[2] = getValue(I.getArgOperand(1)); 6997 Ops[3] = getValue(I.getArgOperand(2)); 6998 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6999 Ops[5] = DAG.getSrcValue(F); 7000 7001 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7002 7003 DAG.setRoot(Res); 7004 return; 7005 } 7006 case Intrinsic::adjust_trampoline: 7007 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7008 TLI.getPointerTy(DAG.getDataLayout()), 7009 getValue(I.getArgOperand(0)))); 7010 return; 7011 case Intrinsic::gcroot: { 7012 assert(DAG.getMachineFunction().getFunction().hasGC() && 7013 "only valid in functions with gc specified, enforced by Verifier"); 7014 assert(GFI && "implied by previous"); 7015 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7016 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7017 7018 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7019 GFI->addStackRoot(FI->getIndex(), TypeMap); 7020 return; 7021 } 7022 case Intrinsic::gcread: 7023 case Intrinsic::gcwrite: 7024 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7025 case Intrinsic::get_rounding: 7026 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7027 setValue(&I, Res); 7028 DAG.setRoot(Res.getValue(1)); 7029 return; 7030 7031 case Intrinsic::expect: 7032 // Just replace __builtin_expect(exp, c) with EXP. 7033 setValue(&I, getValue(I.getArgOperand(0))); 7034 return; 7035 7036 case Intrinsic::ubsantrap: 7037 case Intrinsic::debugtrap: 7038 case Intrinsic::trap: { 7039 StringRef TrapFuncName = 7040 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7041 if (TrapFuncName.empty()) { 7042 switch (Intrinsic) { 7043 case Intrinsic::trap: 7044 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7045 break; 7046 case Intrinsic::debugtrap: 7047 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7048 break; 7049 case Intrinsic::ubsantrap: 7050 DAG.setRoot(DAG.getNode( 7051 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7052 DAG.getTargetConstant( 7053 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7054 MVT::i32))); 7055 break; 7056 default: llvm_unreachable("unknown trap intrinsic"); 7057 } 7058 return; 7059 } 7060 TargetLowering::ArgListTy Args; 7061 if (Intrinsic == Intrinsic::ubsantrap) { 7062 Args.push_back(TargetLoweringBase::ArgListEntry()); 7063 Args[0].Val = I.getArgOperand(0); 7064 Args[0].Node = getValue(Args[0].Val); 7065 Args[0].Ty = Args[0].Val->getType(); 7066 } 7067 7068 TargetLowering::CallLoweringInfo CLI(DAG); 7069 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7070 CallingConv::C, I.getType(), 7071 DAG.getExternalSymbol(TrapFuncName.data(), 7072 TLI.getPointerTy(DAG.getDataLayout())), 7073 std::move(Args)); 7074 7075 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7076 DAG.setRoot(Result.second); 7077 return; 7078 } 7079 7080 case Intrinsic::uadd_with_overflow: 7081 case Intrinsic::sadd_with_overflow: 7082 case Intrinsic::usub_with_overflow: 7083 case Intrinsic::ssub_with_overflow: 7084 case Intrinsic::umul_with_overflow: 7085 case Intrinsic::smul_with_overflow: { 7086 ISD::NodeType Op; 7087 switch (Intrinsic) { 7088 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7089 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7090 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7091 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7092 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7093 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7094 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7095 } 7096 SDValue Op1 = getValue(I.getArgOperand(0)); 7097 SDValue Op2 = getValue(I.getArgOperand(1)); 7098 7099 EVT ResultVT = Op1.getValueType(); 7100 EVT OverflowVT = MVT::i1; 7101 if (ResultVT.isVector()) 7102 OverflowVT = EVT::getVectorVT( 7103 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7104 7105 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7106 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7107 return; 7108 } 7109 case Intrinsic::prefetch: { 7110 SDValue Ops[5]; 7111 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7112 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7113 Ops[0] = DAG.getRoot(); 7114 Ops[1] = getValue(I.getArgOperand(0)); 7115 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7116 MVT::i32); 7117 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7118 MVT::i32); 7119 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7120 MVT::i32); 7121 SDValue Result = DAG.getMemIntrinsicNode( 7122 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7123 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7124 /* align */ std::nullopt, Flags); 7125 7126 // Chain the prefetch in parallel with any pending loads, to stay out of 7127 // the way of later optimizations. 7128 PendingLoads.push_back(Result); 7129 Result = getRoot(); 7130 DAG.setRoot(Result); 7131 return; 7132 } 7133 case Intrinsic::lifetime_start: 7134 case Intrinsic::lifetime_end: { 7135 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7136 // Stack coloring is not enabled in O0, discard region information. 7137 if (TM.getOptLevel() == CodeGenOptLevel::None) 7138 return; 7139 7140 const int64_t ObjectSize = 7141 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7142 Value *const ObjectPtr = I.getArgOperand(1); 7143 SmallVector<const Value *, 4> Allocas; 7144 getUnderlyingObjects(ObjectPtr, Allocas); 7145 7146 for (const Value *Alloca : Allocas) { 7147 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7148 7149 // Could not find an Alloca. 7150 if (!LifetimeObject) 7151 continue; 7152 7153 // First check that the Alloca is static, otherwise it won't have a 7154 // valid frame index. 7155 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7156 if (SI == FuncInfo.StaticAllocaMap.end()) 7157 return; 7158 7159 const int FrameIndex = SI->second; 7160 int64_t Offset; 7161 if (GetPointerBaseWithConstantOffset( 7162 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7163 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7164 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7165 Offset); 7166 DAG.setRoot(Res); 7167 } 7168 return; 7169 } 7170 case Intrinsic::pseudoprobe: { 7171 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7172 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7173 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7174 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7175 DAG.setRoot(Res); 7176 return; 7177 } 7178 case Intrinsic::invariant_start: 7179 // Discard region information. 7180 setValue(&I, 7181 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7182 return; 7183 case Intrinsic::invariant_end: 7184 // Discard region information. 7185 return; 7186 case Intrinsic::clear_cache: 7187 /// FunctionName may be null. 7188 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7189 lowerCallToExternalSymbol(I, FunctionName); 7190 return; 7191 case Intrinsic::donothing: 7192 case Intrinsic::seh_try_begin: 7193 case Intrinsic::seh_scope_begin: 7194 case Intrinsic::seh_try_end: 7195 case Intrinsic::seh_scope_end: 7196 // ignore 7197 return; 7198 case Intrinsic::experimental_stackmap: 7199 visitStackmap(I); 7200 return; 7201 case Intrinsic::experimental_patchpoint_void: 7202 case Intrinsic::experimental_patchpoint_i64: 7203 visitPatchpoint(I); 7204 return; 7205 case Intrinsic::experimental_gc_statepoint: 7206 LowerStatepoint(cast<GCStatepointInst>(I)); 7207 return; 7208 case Intrinsic::experimental_gc_result: 7209 visitGCResult(cast<GCResultInst>(I)); 7210 return; 7211 case Intrinsic::experimental_gc_relocate: 7212 visitGCRelocate(cast<GCRelocateInst>(I)); 7213 return; 7214 case Intrinsic::instrprof_cover: 7215 llvm_unreachable("instrprof failed to lower a cover"); 7216 case Intrinsic::instrprof_increment: 7217 llvm_unreachable("instrprof failed to lower an increment"); 7218 case Intrinsic::instrprof_timestamp: 7219 llvm_unreachable("instrprof failed to lower a timestamp"); 7220 case Intrinsic::instrprof_value_profile: 7221 llvm_unreachable("instrprof failed to lower a value profiling call"); 7222 case Intrinsic::instrprof_mcdc_parameters: 7223 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7224 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7225 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7226 case Intrinsic::instrprof_mcdc_condbitmap_update: 7227 llvm_unreachable("instrprof failed to lower an mcdc condbitmap update"); 7228 case Intrinsic::localescape: { 7229 MachineFunction &MF = DAG.getMachineFunction(); 7230 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7231 7232 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7233 // is the same on all targets. 7234 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7235 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7236 if (isa<ConstantPointerNull>(Arg)) 7237 continue; // Skip null pointers. They represent a hole in index space. 7238 AllocaInst *Slot = cast<AllocaInst>(Arg); 7239 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7240 "can only escape static allocas"); 7241 int FI = FuncInfo.StaticAllocaMap[Slot]; 7242 MCSymbol *FrameAllocSym = 7243 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7244 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7245 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7246 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7247 .addSym(FrameAllocSym) 7248 .addFrameIndex(FI); 7249 } 7250 7251 return; 7252 } 7253 7254 case Intrinsic::localrecover: { 7255 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7256 MachineFunction &MF = DAG.getMachineFunction(); 7257 7258 // Get the symbol that defines the frame offset. 7259 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7260 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7261 unsigned IdxVal = 7262 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7263 MCSymbol *FrameAllocSym = 7264 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7265 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7266 7267 Value *FP = I.getArgOperand(1); 7268 SDValue FPVal = getValue(FP); 7269 EVT PtrVT = FPVal.getValueType(); 7270 7271 // Create a MCSymbol for the label to avoid any target lowering 7272 // that would make this PC relative. 7273 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7274 SDValue OffsetVal = 7275 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7276 7277 // Add the offset to the FP. 7278 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7279 setValue(&I, Add); 7280 7281 return; 7282 } 7283 7284 case Intrinsic::eh_exceptionpointer: 7285 case Intrinsic::eh_exceptioncode: { 7286 // Get the exception pointer vreg, copy from it, and resize it to fit. 7287 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7288 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7289 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7290 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7291 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7292 if (Intrinsic == Intrinsic::eh_exceptioncode) 7293 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7294 setValue(&I, N); 7295 return; 7296 } 7297 case Intrinsic::xray_customevent: { 7298 // Here we want to make sure that the intrinsic behaves as if it has a 7299 // specific calling convention. 7300 const auto &Triple = DAG.getTarget().getTargetTriple(); 7301 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7302 return; 7303 7304 SmallVector<SDValue, 8> Ops; 7305 7306 // We want to say that we always want the arguments in registers. 7307 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7308 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7309 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7310 SDValue Chain = getRoot(); 7311 Ops.push_back(LogEntryVal); 7312 Ops.push_back(StrSizeVal); 7313 Ops.push_back(Chain); 7314 7315 // We need to enforce the calling convention for the callsite, so that 7316 // argument ordering is enforced correctly, and that register allocation can 7317 // see that some registers may be assumed clobbered and have to preserve 7318 // them across calls to the intrinsic. 7319 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7320 sdl, NodeTys, Ops); 7321 SDValue patchableNode = SDValue(MN, 0); 7322 DAG.setRoot(patchableNode); 7323 setValue(&I, patchableNode); 7324 return; 7325 } 7326 case Intrinsic::xray_typedevent: { 7327 // Here we want to make sure that the intrinsic behaves as if it has a 7328 // specific calling convention. 7329 const auto &Triple = DAG.getTarget().getTargetTriple(); 7330 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7331 return; 7332 7333 SmallVector<SDValue, 8> Ops; 7334 7335 // We want to say that we always want the arguments in registers. 7336 // It's unclear to me how manipulating the selection DAG here forces callers 7337 // to provide arguments in registers instead of on the stack. 7338 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7339 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7340 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7341 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7342 SDValue Chain = getRoot(); 7343 Ops.push_back(LogTypeId); 7344 Ops.push_back(LogEntryVal); 7345 Ops.push_back(StrSizeVal); 7346 Ops.push_back(Chain); 7347 7348 // We need to enforce the calling convention for the callsite, so that 7349 // argument ordering is enforced correctly, and that register allocation can 7350 // see that some registers may be assumed clobbered and have to preserve 7351 // them across calls to the intrinsic. 7352 MachineSDNode *MN = DAG.getMachineNode( 7353 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7354 SDValue patchableNode = SDValue(MN, 0); 7355 DAG.setRoot(patchableNode); 7356 setValue(&I, patchableNode); 7357 return; 7358 } 7359 case Intrinsic::experimental_deoptimize: 7360 LowerDeoptimizeCall(&I); 7361 return; 7362 case Intrinsic::experimental_stepvector: 7363 visitStepVector(I); 7364 return; 7365 case Intrinsic::vector_reduce_fadd: 7366 case Intrinsic::vector_reduce_fmul: 7367 case Intrinsic::vector_reduce_add: 7368 case Intrinsic::vector_reduce_mul: 7369 case Intrinsic::vector_reduce_and: 7370 case Intrinsic::vector_reduce_or: 7371 case Intrinsic::vector_reduce_xor: 7372 case Intrinsic::vector_reduce_smax: 7373 case Intrinsic::vector_reduce_smin: 7374 case Intrinsic::vector_reduce_umax: 7375 case Intrinsic::vector_reduce_umin: 7376 case Intrinsic::vector_reduce_fmax: 7377 case Intrinsic::vector_reduce_fmin: 7378 case Intrinsic::vector_reduce_fmaximum: 7379 case Intrinsic::vector_reduce_fminimum: 7380 visitVectorReduce(I, Intrinsic); 7381 return; 7382 7383 case Intrinsic::icall_branch_funnel: { 7384 SmallVector<SDValue, 16> Ops; 7385 Ops.push_back(getValue(I.getArgOperand(0))); 7386 7387 int64_t Offset; 7388 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7389 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7390 if (!Base) 7391 report_fatal_error( 7392 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7393 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7394 7395 struct BranchFunnelTarget { 7396 int64_t Offset; 7397 SDValue Target; 7398 }; 7399 SmallVector<BranchFunnelTarget, 8> Targets; 7400 7401 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7402 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7403 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7404 if (ElemBase != Base) 7405 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7406 "to the same GlobalValue"); 7407 7408 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7409 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7410 if (!GA) 7411 report_fatal_error( 7412 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7413 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7414 GA->getGlobal(), sdl, Val.getValueType(), 7415 GA->getOffset())}); 7416 } 7417 llvm::sort(Targets, 7418 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7419 return T1.Offset < T2.Offset; 7420 }); 7421 7422 for (auto &T : Targets) { 7423 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7424 Ops.push_back(T.Target); 7425 } 7426 7427 Ops.push_back(DAG.getRoot()); // Chain 7428 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7429 MVT::Other, Ops), 7430 0); 7431 DAG.setRoot(N); 7432 setValue(&I, N); 7433 HasTailCall = true; 7434 return; 7435 } 7436 7437 case Intrinsic::wasm_landingpad_index: 7438 // Information this intrinsic contained has been transferred to 7439 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7440 // delete it now. 7441 return; 7442 7443 case Intrinsic::aarch64_settag: 7444 case Intrinsic::aarch64_settag_zero: { 7445 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7446 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7447 SDValue Val = TSI.EmitTargetCodeForSetTag( 7448 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7449 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7450 ZeroMemory); 7451 DAG.setRoot(Val); 7452 setValue(&I, Val); 7453 return; 7454 } 7455 case Intrinsic::amdgcn_cs_chain: { 7456 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7457 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7458 "Non-zero flags not supported yet"); 7459 7460 // At this point we don't care if it's amdgpu_cs_chain or 7461 // amdgpu_cs_chain_preserve. 7462 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7463 7464 Type *RetTy = I.getType(); 7465 assert(RetTy->isVoidTy() && "Should not return"); 7466 7467 SDValue Callee = getValue(I.getOperand(0)); 7468 7469 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7470 // We'll also tack the value of the EXEC mask at the end. 7471 TargetLowering::ArgListTy Args; 7472 Args.reserve(3); 7473 7474 for (unsigned Idx : {2, 3, 1}) { 7475 TargetLowering::ArgListEntry Arg; 7476 Arg.Node = getValue(I.getOperand(Idx)); 7477 Arg.Ty = I.getOperand(Idx)->getType(); 7478 Arg.setAttributes(&I, Idx); 7479 Args.push_back(Arg); 7480 } 7481 7482 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7483 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7484 Args[2].IsInReg = true; // EXEC should be inreg 7485 7486 TargetLowering::CallLoweringInfo CLI(DAG); 7487 CLI.setDebugLoc(getCurSDLoc()) 7488 .setChain(getRoot()) 7489 .setCallee(CC, RetTy, Callee, std::move(Args)) 7490 .setNoReturn(true) 7491 .setTailCall(true) 7492 .setConvergent(I.isConvergent()); 7493 CLI.CB = &I; 7494 std::pair<SDValue, SDValue> Result = 7495 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7496 (void)Result; 7497 assert(!Result.first.getNode() && !Result.second.getNode() && 7498 "Should've lowered as tail call"); 7499 7500 HasTailCall = true; 7501 return; 7502 } 7503 case Intrinsic::ptrmask: { 7504 SDValue Ptr = getValue(I.getOperand(0)); 7505 SDValue Mask = getValue(I.getOperand(1)); 7506 7507 EVT PtrVT = Ptr.getValueType(); 7508 assert(PtrVT == Mask.getValueType() && 7509 "Pointers with different index type are not supported by SDAG"); 7510 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7511 return; 7512 } 7513 case Intrinsic::threadlocal_address: { 7514 setValue(&I, getValue(I.getOperand(0))); 7515 return; 7516 } 7517 case Intrinsic::get_active_lane_mask: { 7518 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7519 SDValue Index = getValue(I.getOperand(0)); 7520 EVT ElementVT = Index.getValueType(); 7521 7522 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7523 visitTargetIntrinsic(I, Intrinsic); 7524 return; 7525 } 7526 7527 SDValue TripCount = getValue(I.getOperand(1)); 7528 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7529 CCVT.getVectorElementCount()); 7530 7531 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7532 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7533 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7534 SDValue VectorInduction = DAG.getNode( 7535 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7536 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7537 VectorTripCount, ISD::CondCode::SETULT); 7538 setValue(&I, SetCC); 7539 return; 7540 } 7541 case Intrinsic::experimental_get_vector_length: { 7542 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7543 "Expected positive VF"); 7544 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7545 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7546 7547 SDValue Count = getValue(I.getOperand(0)); 7548 EVT CountVT = Count.getValueType(); 7549 7550 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7551 visitTargetIntrinsic(I, Intrinsic); 7552 return; 7553 } 7554 7555 // Expand to a umin between the trip count and the maximum elements the type 7556 // can hold. 7557 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7558 7559 // Extend the trip count to at least the result VT. 7560 if (CountVT.bitsLT(VT)) { 7561 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7562 CountVT = VT; 7563 } 7564 7565 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7566 ElementCount::get(VF, IsScalable)); 7567 7568 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7569 // Clip to the result type if needed. 7570 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7571 7572 setValue(&I, Trunc); 7573 return; 7574 } 7575 case Intrinsic::experimental_cttz_elts: { 7576 auto DL = getCurSDLoc(); 7577 SDValue Op = getValue(I.getOperand(0)); 7578 EVT OpVT = Op.getValueType(); 7579 7580 if (!TLI.shouldExpandCttzElements(OpVT)) { 7581 visitTargetIntrinsic(I, Intrinsic); 7582 return; 7583 } 7584 7585 if (OpVT.getScalarType() != MVT::i1) { 7586 // Compare the input vector elements to zero & use to count trailing zeros 7587 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7588 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7589 OpVT.getVectorElementCount()); 7590 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7591 } 7592 7593 // Find the smallest "sensible" element type to use for the expansion. 7594 ConstantRange CR( 7595 APInt(64, OpVT.getVectorElementCount().getKnownMinValue())); 7596 if (OpVT.isScalableVT()) 7597 CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64)); 7598 7599 // If the zero-is-poison flag is set, we can assume the upper limit 7600 // of the result is VF-1. 7601 if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero()) 7602 CR = CR.subtract(APInt(64, 1)); 7603 7604 unsigned EltWidth = I.getType()->getScalarSizeInBits(); 7605 EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits()); 7606 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8); 7607 7608 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7609 7610 // Create the new vector type & get the vector length 7611 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7612 OpVT.getVectorElementCount()); 7613 7614 SDValue VL = 7615 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7616 7617 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7618 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7619 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7620 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7621 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7622 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 7623 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 7624 7625 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7626 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 7627 7628 setValue(&I, Ret); 7629 return; 7630 } 7631 case Intrinsic::vector_insert: { 7632 SDValue Vec = getValue(I.getOperand(0)); 7633 SDValue SubVec = getValue(I.getOperand(1)); 7634 SDValue Index = getValue(I.getOperand(2)); 7635 7636 // The intrinsic's index type is i64, but the SDNode requires an index type 7637 // suitable for the target. Convert the index as required. 7638 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7639 if (Index.getValueType() != VectorIdxTy) 7640 Index = DAG.getVectorIdxConstant( 7641 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7642 7643 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7644 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7645 Index)); 7646 return; 7647 } 7648 case Intrinsic::vector_extract: { 7649 SDValue Vec = getValue(I.getOperand(0)); 7650 SDValue Index = getValue(I.getOperand(1)); 7651 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7652 7653 // The intrinsic's index type is i64, but the SDNode requires an index type 7654 // suitable for the target. Convert the index as required. 7655 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7656 if (Index.getValueType() != VectorIdxTy) 7657 Index = DAG.getVectorIdxConstant( 7658 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7659 7660 setValue(&I, 7661 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7662 return; 7663 } 7664 case Intrinsic::experimental_vector_reverse: 7665 visitVectorReverse(I); 7666 return; 7667 case Intrinsic::experimental_vector_splice: 7668 visitVectorSplice(I); 7669 return; 7670 case Intrinsic::callbr_landingpad: 7671 visitCallBrLandingPad(I); 7672 return; 7673 case Intrinsic::experimental_vector_interleave2: 7674 visitVectorInterleave(I); 7675 return; 7676 case Intrinsic::experimental_vector_deinterleave2: 7677 visitVectorDeinterleave(I); 7678 return; 7679 } 7680 } 7681 7682 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7683 const ConstrainedFPIntrinsic &FPI) { 7684 SDLoc sdl = getCurSDLoc(); 7685 7686 // We do not need to serialize constrained FP intrinsics against 7687 // each other or against (nonvolatile) loads, so they can be 7688 // chained like loads. 7689 SDValue Chain = DAG.getRoot(); 7690 SmallVector<SDValue, 4> Opers; 7691 Opers.push_back(Chain); 7692 if (FPI.isUnaryOp()) { 7693 Opers.push_back(getValue(FPI.getArgOperand(0))); 7694 } else if (FPI.isTernaryOp()) { 7695 Opers.push_back(getValue(FPI.getArgOperand(0))); 7696 Opers.push_back(getValue(FPI.getArgOperand(1))); 7697 Opers.push_back(getValue(FPI.getArgOperand(2))); 7698 } else { 7699 Opers.push_back(getValue(FPI.getArgOperand(0))); 7700 Opers.push_back(getValue(FPI.getArgOperand(1))); 7701 } 7702 7703 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7704 assert(Result.getNode()->getNumValues() == 2); 7705 7706 // Push node to the appropriate list so that future instructions can be 7707 // chained up correctly. 7708 SDValue OutChain = Result.getValue(1); 7709 switch (EB) { 7710 case fp::ExceptionBehavior::ebIgnore: 7711 // The only reason why ebIgnore nodes still need to be chained is that 7712 // they might depend on the current rounding mode, and therefore must 7713 // not be moved across instruction that may change that mode. 7714 [[fallthrough]]; 7715 case fp::ExceptionBehavior::ebMayTrap: 7716 // These must not be moved across calls or instructions that may change 7717 // floating-point exception masks. 7718 PendingConstrainedFP.push_back(OutChain); 7719 break; 7720 case fp::ExceptionBehavior::ebStrict: 7721 // These must not be moved across calls or instructions that may change 7722 // floating-point exception masks or read floating-point exception flags. 7723 // In addition, they cannot be optimized out even if unused. 7724 PendingConstrainedFPStrict.push_back(OutChain); 7725 break; 7726 } 7727 }; 7728 7729 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7730 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7731 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7732 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7733 7734 SDNodeFlags Flags; 7735 if (EB == fp::ExceptionBehavior::ebIgnore) 7736 Flags.setNoFPExcept(true); 7737 7738 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7739 Flags.copyFMF(*FPOp); 7740 7741 unsigned Opcode; 7742 switch (FPI.getIntrinsicID()) { 7743 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7744 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7745 case Intrinsic::INTRINSIC: \ 7746 Opcode = ISD::STRICT_##DAGN; \ 7747 break; 7748 #include "llvm/IR/ConstrainedOps.def" 7749 case Intrinsic::experimental_constrained_fmuladd: { 7750 Opcode = ISD::STRICT_FMA; 7751 // Break fmuladd into fmul and fadd. 7752 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7753 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7754 Opers.pop_back(); 7755 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7756 pushOutChain(Mul, EB); 7757 Opcode = ISD::STRICT_FADD; 7758 Opers.clear(); 7759 Opers.push_back(Mul.getValue(1)); 7760 Opers.push_back(Mul.getValue(0)); 7761 Opers.push_back(getValue(FPI.getArgOperand(2))); 7762 } 7763 break; 7764 } 7765 } 7766 7767 // A few strict DAG nodes carry additional operands that are not 7768 // set up by the default code above. 7769 switch (Opcode) { 7770 default: break; 7771 case ISD::STRICT_FP_ROUND: 7772 Opers.push_back( 7773 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7774 break; 7775 case ISD::STRICT_FSETCC: 7776 case ISD::STRICT_FSETCCS: { 7777 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7778 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7779 if (TM.Options.NoNaNsFPMath) 7780 Condition = getFCmpCodeWithoutNaN(Condition); 7781 Opers.push_back(DAG.getCondCode(Condition)); 7782 break; 7783 } 7784 } 7785 7786 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7787 pushOutChain(Result, EB); 7788 7789 SDValue FPResult = Result.getValue(0); 7790 setValue(&FPI, FPResult); 7791 } 7792 7793 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7794 std::optional<unsigned> ResOPC; 7795 switch (VPIntrin.getIntrinsicID()) { 7796 case Intrinsic::vp_ctlz: { 7797 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7798 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7799 break; 7800 } 7801 case Intrinsic::vp_cttz: { 7802 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7803 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7804 break; 7805 } 7806 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7807 case Intrinsic::VPID: \ 7808 ResOPC = ISD::VPSD; \ 7809 break; 7810 #include "llvm/IR/VPIntrinsics.def" 7811 } 7812 7813 if (!ResOPC) 7814 llvm_unreachable( 7815 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7816 7817 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7818 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7819 if (VPIntrin.getFastMathFlags().allowReassoc()) 7820 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7821 : ISD::VP_REDUCE_FMUL; 7822 } 7823 7824 return *ResOPC; 7825 } 7826 7827 void SelectionDAGBuilder::visitVPLoad( 7828 const VPIntrinsic &VPIntrin, EVT VT, 7829 const SmallVectorImpl<SDValue> &OpValues) { 7830 SDLoc DL = getCurSDLoc(); 7831 Value *PtrOperand = VPIntrin.getArgOperand(0); 7832 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7833 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7834 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7835 SDValue LD; 7836 // Do not serialize variable-length loads of constant memory with 7837 // anything. 7838 if (!Alignment) 7839 Alignment = DAG.getEVTAlign(VT); 7840 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7841 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7842 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7843 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7844 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7845 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7846 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7847 MMO, false /*IsExpanding */); 7848 if (AddToChain) 7849 PendingLoads.push_back(LD.getValue(1)); 7850 setValue(&VPIntrin, LD); 7851 } 7852 7853 void SelectionDAGBuilder::visitVPGather( 7854 const VPIntrinsic &VPIntrin, EVT VT, 7855 const SmallVectorImpl<SDValue> &OpValues) { 7856 SDLoc DL = getCurSDLoc(); 7857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7858 Value *PtrOperand = VPIntrin.getArgOperand(0); 7859 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7860 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7861 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7862 SDValue LD; 7863 if (!Alignment) 7864 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7865 unsigned AS = 7866 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7867 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7868 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7869 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7870 SDValue Base, Index, Scale; 7871 ISD::MemIndexType IndexType; 7872 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7873 this, VPIntrin.getParent(), 7874 VT.getScalarStoreSize()); 7875 if (!UniformBase) { 7876 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7877 Index = getValue(PtrOperand); 7878 IndexType = ISD::SIGNED_SCALED; 7879 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7880 } 7881 EVT IdxVT = Index.getValueType(); 7882 EVT EltTy = IdxVT.getVectorElementType(); 7883 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7884 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7885 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7886 } 7887 LD = DAG.getGatherVP( 7888 DAG.getVTList(VT, MVT::Other), VT, DL, 7889 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7890 IndexType); 7891 PendingLoads.push_back(LD.getValue(1)); 7892 setValue(&VPIntrin, LD); 7893 } 7894 7895 void SelectionDAGBuilder::visitVPStore( 7896 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7897 SDLoc DL = getCurSDLoc(); 7898 Value *PtrOperand = VPIntrin.getArgOperand(1); 7899 EVT VT = OpValues[0].getValueType(); 7900 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7901 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7902 SDValue ST; 7903 if (!Alignment) 7904 Alignment = DAG.getEVTAlign(VT); 7905 SDValue Ptr = OpValues[1]; 7906 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7907 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7908 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7909 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7910 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7911 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7912 /* IsTruncating */ false, /*IsCompressing*/ false); 7913 DAG.setRoot(ST); 7914 setValue(&VPIntrin, ST); 7915 } 7916 7917 void SelectionDAGBuilder::visitVPScatter( 7918 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7919 SDLoc DL = getCurSDLoc(); 7920 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7921 Value *PtrOperand = VPIntrin.getArgOperand(1); 7922 EVT VT = OpValues[0].getValueType(); 7923 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7924 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7925 SDValue ST; 7926 if (!Alignment) 7927 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7928 unsigned AS = 7929 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7930 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7931 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7932 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7933 SDValue Base, Index, Scale; 7934 ISD::MemIndexType IndexType; 7935 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7936 this, VPIntrin.getParent(), 7937 VT.getScalarStoreSize()); 7938 if (!UniformBase) { 7939 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7940 Index = getValue(PtrOperand); 7941 IndexType = ISD::SIGNED_SCALED; 7942 Scale = 7943 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7944 } 7945 EVT IdxVT = Index.getValueType(); 7946 EVT EltTy = IdxVT.getVectorElementType(); 7947 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7948 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7949 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7950 } 7951 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7952 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7953 OpValues[2], OpValues[3]}, 7954 MMO, IndexType); 7955 DAG.setRoot(ST); 7956 setValue(&VPIntrin, ST); 7957 } 7958 7959 void SelectionDAGBuilder::visitVPStridedLoad( 7960 const VPIntrinsic &VPIntrin, EVT VT, 7961 const SmallVectorImpl<SDValue> &OpValues) { 7962 SDLoc DL = getCurSDLoc(); 7963 Value *PtrOperand = VPIntrin.getArgOperand(0); 7964 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7965 if (!Alignment) 7966 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7967 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7968 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7969 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7970 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7971 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7972 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7973 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7974 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7975 7976 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7977 OpValues[2], OpValues[3], MMO, 7978 false /*IsExpanding*/); 7979 7980 if (AddToChain) 7981 PendingLoads.push_back(LD.getValue(1)); 7982 setValue(&VPIntrin, LD); 7983 } 7984 7985 void SelectionDAGBuilder::visitVPStridedStore( 7986 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7987 SDLoc DL = getCurSDLoc(); 7988 Value *PtrOperand = VPIntrin.getArgOperand(1); 7989 EVT VT = OpValues[0].getValueType(); 7990 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7991 if (!Alignment) 7992 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7993 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7994 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7995 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7996 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7997 7998 SDValue ST = DAG.getStridedStoreVP( 7999 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8000 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8001 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8002 /*IsCompressing*/ false); 8003 8004 DAG.setRoot(ST); 8005 setValue(&VPIntrin, ST); 8006 } 8007 8008 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8010 SDLoc DL = getCurSDLoc(); 8011 8012 ISD::CondCode Condition; 8013 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8014 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8015 if (IsFP) { 8016 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8017 // flags, but calls that don't return floating-point types can't be 8018 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8019 Condition = getFCmpCondCode(CondCode); 8020 if (TM.Options.NoNaNsFPMath) 8021 Condition = getFCmpCodeWithoutNaN(Condition); 8022 } else { 8023 Condition = getICmpCondCode(CondCode); 8024 } 8025 8026 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8027 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8028 // #2 is the condition code 8029 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8030 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8031 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8032 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8033 "Unexpected target EVL type"); 8034 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8035 8036 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8037 VPIntrin.getType()); 8038 setValue(&VPIntrin, 8039 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8040 } 8041 8042 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8043 const VPIntrinsic &VPIntrin) { 8044 SDLoc DL = getCurSDLoc(); 8045 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8046 8047 auto IID = VPIntrin.getIntrinsicID(); 8048 8049 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8050 return visitVPCmp(*CmpI); 8051 8052 SmallVector<EVT, 4> ValueVTs; 8053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8054 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8055 SDVTList VTs = DAG.getVTList(ValueVTs); 8056 8057 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8058 8059 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8060 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8061 "Unexpected target EVL type"); 8062 8063 // Request operands. 8064 SmallVector<SDValue, 7> OpValues; 8065 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8066 auto Op = getValue(VPIntrin.getArgOperand(I)); 8067 if (I == EVLParamPos) 8068 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8069 OpValues.push_back(Op); 8070 } 8071 8072 switch (Opcode) { 8073 default: { 8074 SDNodeFlags SDFlags; 8075 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8076 SDFlags.copyFMF(*FPMO); 8077 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8078 setValue(&VPIntrin, Result); 8079 break; 8080 } 8081 case ISD::VP_LOAD: 8082 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8083 break; 8084 case ISD::VP_GATHER: 8085 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8086 break; 8087 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8088 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8089 break; 8090 case ISD::VP_STORE: 8091 visitVPStore(VPIntrin, OpValues); 8092 break; 8093 case ISD::VP_SCATTER: 8094 visitVPScatter(VPIntrin, OpValues); 8095 break; 8096 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8097 visitVPStridedStore(VPIntrin, OpValues); 8098 break; 8099 case ISD::VP_FMULADD: { 8100 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8101 SDNodeFlags SDFlags; 8102 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8103 SDFlags.copyFMF(*FPMO); 8104 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8105 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8106 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8107 } else { 8108 SDValue Mul = DAG.getNode( 8109 ISD::VP_FMUL, DL, VTs, 8110 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8111 SDValue Add = 8112 DAG.getNode(ISD::VP_FADD, DL, VTs, 8113 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8114 setValue(&VPIntrin, Add); 8115 } 8116 break; 8117 } 8118 case ISD::VP_IS_FPCLASS: { 8119 const DataLayout DLayout = DAG.getDataLayout(); 8120 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8121 auto Constant = cast<ConstantSDNode>(OpValues[1])->getZExtValue(); 8122 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8123 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8124 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8125 setValue(&VPIntrin, V); 8126 return; 8127 } 8128 case ISD::VP_INTTOPTR: { 8129 SDValue N = OpValues[0]; 8130 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8131 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8132 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8133 OpValues[2]); 8134 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8135 OpValues[2]); 8136 setValue(&VPIntrin, N); 8137 break; 8138 } 8139 case ISD::VP_PTRTOINT: { 8140 SDValue N = OpValues[0]; 8141 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8142 VPIntrin.getType()); 8143 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8144 VPIntrin.getOperand(0)->getType()); 8145 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8146 OpValues[2]); 8147 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8148 OpValues[2]); 8149 setValue(&VPIntrin, N); 8150 break; 8151 } 8152 case ISD::VP_ABS: 8153 case ISD::VP_CTLZ: 8154 case ISD::VP_CTLZ_ZERO_UNDEF: 8155 case ISD::VP_CTTZ: 8156 case ISD::VP_CTTZ_ZERO_UNDEF: { 8157 SDValue Result = 8158 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8159 setValue(&VPIntrin, Result); 8160 break; 8161 } 8162 } 8163 } 8164 8165 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8166 const BasicBlock *EHPadBB, 8167 MCSymbol *&BeginLabel) { 8168 MachineFunction &MF = DAG.getMachineFunction(); 8169 MachineModuleInfo &MMI = MF.getMMI(); 8170 8171 // Insert a label before the invoke call to mark the try range. This can be 8172 // used to detect deletion of the invoke via the MachineModuleInfo. 8173 BeginLabel = MMI.getContext().createTempSymbol(); 8174 8175 // For SjLj, keep track of which landing pads go with which invokes 8176 // so as to maintain the ordering of pads in the LSDA. 8177 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8178 if (CallSiteIndex) { 8179 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8180 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8181 8182 // Now that the call site is handled, stop tracking it. 8183 MMI.setCurrentCallSite(0); 8184 } 8185 8186 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8187 } 8188 8189 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8190 const BasicBlock *EHPadBB, 8191 MCSymbol *BeginLabel) { 8192 assert(BeginLabel && "BeginLabel should've been set"); 8193 8194 MachineFunction &MF = DAG.getMachineFunction(); 8195 MachineModuleInfo &MMI = MF.getMMI(); 8196 8197 // Insert a label at the end of the invoke call to mark the try range. This 8198 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8199 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8200 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8201 8202 // Inform MachineModuleInfo of range. 8203 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8204 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8205 // actually use outlined funclets and their LSDA info style. 8206 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8207 assert(II && "II should've been set"); 8208 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8209 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8210 } else if (!isScopedEHPersonality(Pers)) { 8211 assert(EHPadBB); 8212 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8213 } 8214 8215 return Chain; 8216 } 8217 8218 std::pair<SDValue, SDValue> 8219 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8220 const BasicBlock *EHPadBB) { 8221 MCSymbol *BeginLabel = nullptr; 8222 8223 if (EHPadBB) { 8224 // Both PendingLoads and PendingExports must be flushed here; 8225 // this call might not return. 8226 (void)getRoot(); 8227 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8228 CLI.setChain(getRoot()); 8229 } 8230 8231 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8232 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8233 8234 assert((CLI.IsTailCall || Result.second.getNode()) && 8235 "Non-null chain expected with non-tail call!"); 8236 assert((Result.second.getNode() || !Result.first.getNode()) && 8237 "Null value expected with tail call!"); 8238 8239 if (!Result.second.getNode()) { 8240 // As a special case, a null chain means that a tail call has been emitted 8241 // and the DAG root is already updated. 8242 HasTailCall = true; 8243 8244 // Since there's no actual continuation from this block, nothing can be 8245 // relying on us setting vregs for them. 8246 PendingExports.clear(); 8247 } else { 8248 DAG.setRoot(Result.second); 8249 } 8250 8251 if (EHPadBB) { 8252 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8253 BeginLabel)); 8254 } 8255 8256 return Result; 8257 } 8258 8259 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8260 bool isTailCall, 8261 bool isMustTailCall, 8262 const BasicBlock *EHPadBB) { 8263 auto &DL = DAG.getDataLayout(); 8264 FunctionType *FTy = CB.getFunctionType(); 8265 Type *RetTy = CB.getType(); 8266 8267 TargetLowering::ArgListTy Args; 8268 Args.reserve(CB.arg_size()); 8269 8270 const Value *SwiftErrorVal = nullptr; 8271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8272 8273 if (isTailCall) { 8274 // Avoid emitting tail calls in functions with the disable-tail-calls 8275 // attribute. 8276 auto *Caller = CB.getParent()->getParent(); 8277 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8278 "true" && !isMustTailCall) 8279 isTailCall = false; 8280 8281 // We can't tail call inside a function with a swifterror argument. Lowering 8282 // does not support this yet. It would have to move into the swifterror 8283 // register before the call. 8284 if (TLI.supportSwiftError() && 8285 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8286 isTailCall = false; 8287 } 8288 8289 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8290 TargetLowering::ArgListEntry Entry; 8291 const Value *V = *I; 8292 8293 // Skip empty types 8294 if (V->getType()->isEmptyTy()) 8295 continue; 8296 8297 SDValue ArgNode = getValue(V); 8298 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8299 8300 Entry.setAttributes(&CB, I - CB.arg_begin()); 8301 8302 // Use swifterror virtual register as input to the call. 8303 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8304 SwiftErrorVal = V; 8305 // We find the virtual register for the actual swifterror argument. 8306 // Instead of using the Value, we use the virtual register instead. 8307 Entry.Node = 8308 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8309 EVT(TLI.getPointerTy(DL))); 8310 } 8311 8312 Args.push_back(Entry); 8313 8314 // If we have an explicit sret argument that is an Instruction, (i.e., it 8315 // might point to function-local memory), we can't meaningfully tail-call. 8316 if (Entry.IsSRet && isa<Instruction>(V)) 8317 isTailCall = false; 8318 } 8319 8320 // If call site has a cfguardtarget operand bundle, create and add an 8321 // additional ArgListEntry. 8322 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8323 TargetLowering::ArgListEntry Entry; 8324 Value *V = Bundle->Inputs[0]; 8325 SDValue ArgNode = getValue(V); 8326 Entry.Node = ArgNode; 8327 Entry.Ty = V->getType(); 8328 Entry.IsCFGuardTarget = true; 8329 Args.push_back(Entry); 8330 } 8331 8332 // Check if target-independent constraints permit a tail call here. 8333 // Target-dependent constraints are checked within TLI->LowerCallTo. 8334 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8335 isTailCall = false; 8336 8337 // Disable tail calls if there is an swifterror argument. Targets have not 8338 // been updated to support tail calls. 8339 if (TLI.supportSwiftError() && SwiftErrorVal) 8340 isTailCall = false; 8341 8342 ConstantInt *CFIType = nullptr; 8343 if (CB.isIndirectCall()) { 8344 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8345 if (!TLI.supportKCFIBundles()) 8346 report_fatal_error( 8347 "Target doesn't support calls with kcfi operand bundles."); 8348 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8349 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8350 } 8351 } 8352 8353 TargetLowering::CallLoweringInfo CLI(DAG); 8354 CLI.setDebugLoc(getCurSDLoc()) 8355 .setChain(getRoot()) 8356 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8357 .setTailCall(isTailCall) 8358 .setConvergent(CB.isConvergent()) 8359 .setIsPreallocated( 8360 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8361 .setCFIType(CFIType); 8362 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8363 8364 if (Result.first.getNode()) { 8365 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8366 setValue(&CB, Result.first); 8367 } 8368 8369 // The last element of CLI.InVals has the SDValue for swifterror return. 8370 // Here we copy it to a virtual register and update SwiftErrorMap for 8371 // book-keeping. 8372 if (SwiftErrorVal && TLI.supportSwiftError()) { 8373 // Get the last element of InVals. 8374 SDValue Src = CLI.InVals.back(); 8375 Register VReg = 8376 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8377 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8378 DAG.setRoot(CopyNode); 8379 } 8380 } 8381 8382 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8383 SelectionDAGBuilder &Builder) { 8384 // Check to see if this load can be trivially constant folded, e.g. if the 8385 // input is from a string literal. 8386 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8387 // Cast pointer to the type we really want to load. 8388 Type *LoadTy = 8389 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8390 if (LoadVT.isVector()) 8391 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8392 8393 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8394 PointerType::getUnqual(LoadTy)); 8395 8396 if (const Constant *LoadCst = 8397 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8398 LoadTy, Builder.DAG.getDataLayout())) 8399 return Builder.getValue(LoadCst); 8400 } 8401 8402 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8403 // still constant memory, the input chain can be the entry node. 8404 SDValue Root; 8405 bool ConstantMemory = false; 8406 8407 // Do not serialize (non-volatile) loads of constant memory with anything. 8408 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8409 Root = Builder.DAG.getEntryNode(); 8410 ConstantMemory = true; 8411 } else { 8412 // Do not serialize non-volatile loads against each other. 8413 Root = Builder.DAG.getRoot(); 8414 } 8415 8416 SDValue Ptr = Builder.getValue(PtrVal); 8417 SDValue LoadVal = 8418 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8419 MachinePointerInfo(PtrVal), Align(1)); 8420 8421 if (!ConstantMemory) 8422 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8423 return LoadVal; 8424 } 8425 8426 /// Record the value for an instruction that produces an integer result, 8427 /// converting the type where necessary. 8428 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8429 SDValue Value, 8430 bool IsSigned) { 8431 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8432 I.getType(), true); 8433 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8434 setValue(&I, Value); 8435 } 8436 8437 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8438 /// true and lower it. Otherwise return false, and it will be lowered like a 8439 /// normal call. 8440 /// The caller already checked that \p I calls the appropriate LibFunc with a 8441 /// correct prototype. 8442 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8443 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8444 const Value *Size = I.getArgOperand(2); 8445 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8446 if (CSize && CSize->getZExtValue() == 0) { 8447 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8448 I.getType(), true); 8449 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8450 return true; 8451 } 8452 8453 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8454 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8455 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8456 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8457 if (Res.first.getNode()) { 8458 processIntegerCallValue(I, Res.first, true); 8459 PendingLoads.push_back(Res.second); 8460 return true; 8461 } 8462 8463 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8464 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8465 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8466 return false; 8467 8468 // If the target has a fast compare for the given size, it will return a 8469 // preferred load type for that size. Require that the load VT is legal and 8470 // that the target supports unaligned loads of that type. Otherwise, return 8471 // INVALID. 8472 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8473 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8474 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8475 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8476 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8477 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8478 // TODO: Check alignment of src and dest ptrs. 8479 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8480 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8481 if (!TLI.isTypeLegal(LVT) || 8482 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8483 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8484 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8485 } 8486 8487 return LVT; 8488 }; 8489 8490 // This turns into unaligned loads. We only do this if the target natively 8491 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8492 // we'll only produce a small number of byte loads. 8493 MVT LoadVT; 8494 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8495 switch (NumBitsToCompare) { 8496 default: 8497 return false; 8498 case 16: 8499 LoadVT = MVT::i16; 8500 break; 8501 case 32: 8502 LoadVT = MVT::i32; 8503 break; 8504 case 64: 8505 case 128: 8506 case 256: 8507 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8508 break; 8509 } 8510 8511 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8512 return false; 8513 8514 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8515 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8516 8517 // Bitcast to a wide integer type if the loads are vectors. 8518 if (LoadVT.isVector()) { 8519 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8520 LoadL = DAG.getBitcast(CmpVT, LoadL); 8521 LoadR = DAG.getBitcast(CmpVT, LoadR); 8522 } 8523 8524 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8525 processIntegerCallValue(I, Cmp, false); 8526 return true; 8527 } 8528 8529 /// See if we can lower a memchr call into an optimized form. If so, return 8530 /// true and lower it. Otherwise return false, and it will be lowered like a 8531 /// normal call. 8532 /// The caller already checked that \p I calls the appropriate LibFunc with a 8533 /// correct prototype. 8534 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8535 const Value *Src = I.getArgOperand(0); 8536 const Value *Char = I.getArgOperand(1); 8537 const Value *Length = I.getArgOperand(2); 8538 8539 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8540 std::pair<SDValue, SDValue> Res = 8541 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8542 getValue(Src), getValue(Char), getValue(Length), 8543 MachinePointerInfo(Src)); 8544 if (Res.first.getNode()) { 8545 setValue(&I, Res.first); 8546 PendingLoads.push_back(Res.second); 8547 return true; 8548 } 8549 8550 return false; 8551 } 8552 8553 /// See if we can lower a mempcpy call into an optimized form. If so, return 8554 /// true and lower it. Otherwise return false, and it will be lowered like a 8555 /// normal call. 8556 /// The caller already checked that \p I calls the appropriate LibFunc with a 8557 /// correct prototype. 8558 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8559 SDValue Dst = getValue(I.getArgOperand(0)); 8560 SDValue Src = getValue(I.getArgOperand(1)); 8561 SDValue Size = getValue(I.getArgOperand(2)); 8562 8563 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8564 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8565 // DAG::getMemcpy needs Alignment to be defined. 8566 Align Alignment = std::min(DstAlign, SrcAlign); 8567 8568 SDLoc sdl = getCurSDLoc(); 8569 8570 // In the mempcpy context we need to pass in a false value for isTailCall 8571 // because the return pointer needs to be adjusted by the size of 8572 // the copied memory. 8573 SDValue Root = getMemoryRoot(); 8574 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8575 /*isTailCall=*/false, 8576 MachinePointerInfo(I.getArgOperand(0)), 8577 MachinePointerInfo(I.getArgOperand(1)), 8578 I.getAAMetadata()); 8579 assert(MC.getNode() != nullptr && 8580 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8581 DAG.setRoot(MC); 8582 8583 // Check if Size needs to be truncated or extended. 8584 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8585 8586 // Adjust return pointer to point just past the last dst byte. 8587 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8588 Dst, Size); 8589 setValue(&I, DstPlusSize); 8590 return true; 8591 } 8592 8593 /// See if we can lower a strcpy call into an optimized form. If so, return 8594 /// true and lower it, otherwise return false and it will be lowered like a 8595 /// normal call. 8596 /// The caller already checked that \p I calls the appropriate LibFunc with a 8597 /// correct prototype. 8598 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8599 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8600 8601 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8602 std::pair<SDValue, SDValue> Res = 8603 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8604 getValue(Arg0), getValue(Arg1), 8605 MachinePointerInfo(Arg0), 8606 MachinePointerInfo(Arg1), isStpcpy); 8607 if (Res.first.getNode()) { 8608 setValue(&I, Res.first); 8609 DAG.setRoot(Res.second); 8610 return true; 8611 } 8612 8613 return false; 8614 } 8615 8616 /// See if we can lower a strcmp call into an optimized form. If so, return 8617 /// true and lower it, otherwise return false and it will be lowered like a 8618 /// normal call. 8619 /// The caller already checked that \p I calls the appropriate LibFunc with a 8620 /// correct prototype. 8621 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8622 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8623 8624 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8625 std::pair<SDValue, SDValue> Res = 8626 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8627 getValue(Arg0), getValue(Arg1), 8628 MachinePointerInfo(Arg0), 8629 MachinePointerInfo(Arg1)); 8630 if (Res.first.getNode()) { 8631 processIntegerCallValue(I, Res.first, true); 8632 PendingLoads.push_back(Res.second); 8633 return true; 8634 } 8635 8636 return false; 8637 } 8638 8639 /// See if we can lower a strlen call into an optimized form. If so, return 8640 /// true and lower it, otherwise return false and it will be lowered like a 8641 /// normal call. 8642 /// The caller already checked that \p I calls the appropriate LibFunc with a 8643 /// correct prototype. 8644 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8645 const Value *Arg0 = I.getArgOperand(0); 8646 8647 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8648 std::pair<SDValue, SDValue> Res = 8649 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8650 getValue(Arg0), MachinePointerInfo(Arg0)); 8651 if (Res.first.getNode()) { 8652 processIntegerCallValue(I, Res.first, false); 8653 PendingLoads.push_back(Res.second); 8654 return true; 8655 } 8656 8657 return false; 8658 } 8659 8660 /// See if we can lower a strnlen call into an optimized form. If so, return 8661 /// true and lower it, otherwise return false and it will be lowered like a 8662 /// normal call. 8663 /// The caller already checked that \p I calls the appropriate LibFunc with a 8664 /// correct prototype. 8665 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8666 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8667 8668 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8669 std::pair<SDValue, SDValue> Res = 8670 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8671 getValue(Arg0), getValue(Arg1), 8672 MachinePointerInfo(Arg0)); 8673 if (Res.first.getNode()) { 8674 processIntegerCallValue(I, Res.first, false); 8675 PendingLoads.push_back(Res.second); 8676 return true; 8677 } 8678 8679 return false; 8680 } 8681 8682 /// See if we can lower a unary floating-point operation into an SDNode with 8683 /// the specified Opcode. If so, return true and lower it, otherwise return 8684 /// false and it will be lowered like a normal call. 8685 /// The caller already checked that \p I calls the appropriate LibFunc with a 8686 /// correct prototype. 8687 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8688 unsigned Opcode) { 8689 // We already checked this call's prototype; verify it doesn't modify errno. 8690 if (!I.onlyReadsMemory()) 8691 return false; 8692 8693 SDNodeFlags Flags; 8694 Flags.copyFMF(cast<FPMathOperator>(I)); 8695 8696 SDValue Tmp = getValue(I.getArgOperand(0)); 8697 setValue(&I, 8698 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8699 return true; 8700 } 8701 8702 /// See if we can lower a binary floating-point operation into an SDNode with 8703 /// the specified Opcode. If so, return true and lower it. Otherwise return 8704 /// false, and it will be lowered like a normal call. 8705 /// The caller already checked that \p I calls the appropriate LibFunc with a 8706 /// correct prototype. 8707 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8708 unsigned Opcode) { 8709 // We already checked this call's prototype; verify it doesn't modify errno. 8710 if (!I.onlyReadsMemory()) 8711 return false; 8712 8713 SDNodeFlags Flags; 8714 Flags.copyFMF(cast<FPMathOperator>(I)); 8715 8716 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8717 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8718 EVT VT = Tmp0.getValueType(); 8719 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8720 return true; 8721 } 8722 8723 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8724 // Handle inline assembly differently. 8725 if (I.isInlineAsm()) { 8726 visitInlineAsm(I); 8727 return; 8728 } 8729 8730 diagnoseDontCall(I); 8731 8732 if (Function *F = I.getCalledFunction()) { 8733 if (F->isDeclaration()) { 8734 // Is this an LLVM intrinsic or a target-specific intrinsic? 8735 unsigned IID = F->getIntrinsicID(); 8736 if (!IID) 8737 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8738 IID = II->getIntrinsicID(F); 8739 8740 if (IID) { 8741 visitIntrinsicCall(I, IID); 8742 return; 8743 } 8744 } 8745 8746 // Check for well-known libc/libm calls. If the function is internal, it 8747 // can't be a library call. Don't do the check if marked as nobuiltin for 8748 // some reason or the call site requires strict floating point semantics. 8749 LibFunc Func; 8750 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8751 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8752 LibInfo->hasOptimizedCodeGen(Func)) { 8753 switch (Func) { 8754 default: break; 8755 case LibFunc_bcmp: 8756 if (visitMemCmpBCmpCall(I)) 8757 return; 8758 break; 8759 case LibFunc_copysign: 8760 case LibFunc_copysignf: 8761 case LibFunc_copysignl: 8762 // We already checked this call's prototype; verify it doesn't modify 8763 // errno. 8764 if (I.onlyReadsMemory()) { 8765 SDValue LHS = getValue(I.getArgOperand(0)); 8766 SDValue RHS = getValue(I.getArgOperand(1)); 8767 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8768 LHS.getValueType(), LHS, RHS)); 8769 return; 8770 } 8771 break; 8772 case LibFunc_fabs: 8773 case LibFunc_fabsf: 8774 case LibFunc_fabsl: 8775 if (visitUnaryFloatCall(I, ISD::FABS)) 8776 return; 8777 break; 8778 case LibFunc_fmin: 8779 case LibFunc_fminf: 8780 case LibFunc_fminl: 8781 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8782 return; 8783 break; 8784 case LibFunc_fmax: 8785 case LibFunc_fmaxf: 8786 case LibFunc_fmaxl: 8787 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8788 return; 8789 break; 8790 case LibFunc_sin: 8791 case LibFunc_sinf: 8792 case LibFunc_sinl: 8793 if (visitUnaryFloatCall(I, ISD::FSIN)) 8794 return; 8795 break; 8796 case LibFunc_cos: 8797 case LibFunc_cosf: 8798 case LibFunc_cosl: 8799 if (visitUnaryFloatCall(I, ISD::FCOS)) 8800 return; 8801 break; 8802 case LibFunc_sqrt: 8803 case LibFunc_sqrtf: 8804 case LibFunc_sqrtl: 8805 case LibFunc_sqrt_finite: 8806 case LibFunc_sqrtf_finite: 8807 case LibFunc_sqrtl_finite: 8808 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8809 return; 8810 break; 8811 case LibFunc_floor: 8812 case LibFunc_floorf: 8813 case LibFunc_floorl: 8814 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8815 return; 8816 break; 8817 case LibFunc_nearbyint: 8818 case LibFunc_nearbyintf: 8819 case LibFunc_nearbyintl: 8820 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8821 return; 8822 break; 8823 case LibFunc_ceil: 8824 case LibFunc_ceilf: 8825 case LibFunc_ceill: 8826 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8827 return; 8828 break; 8829 case LibFunc_rint: 8830 case LibFunc_rintf: 8831 case LibFunc_rintl: 8832 if (visitUnaryFloatCall(I, ISD::FRINT)) 8833 return; 8834 break; 8835 case LibFunc_round: 8836 case LibFunc_roundf: 8837 case LibFunc_roundl: 8838 if (visitUnaryFloatCall(I, ISD::FROUND)) 8839 return; 8840 break; 8841 case LibFunc_trunc: 8842 case LibFunc_truncf: 8843 case LibFunc_truncl: 8844 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8845 return; 8846 break; 8847 case LibFunc_log2: 8848 case LibFunc_log2f: 8849 case LibFunc_log2l: 8850 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8851 return; 8852 break; 8853 case LibFunc_exp2: 8854 case LibFunc_exp2f: 8855 case LibFunc_exp2l: 8856 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8857 return; 8858 break; 8859 case LibFunc_exp10: 8860 case LibFunc_exp10f: 8861 case LibFunc_exp10l: 8862 if (visitUnaryFloatCall(I, ISD::FEXP10)) 8863 return; 8864 break; 8865 case LibFunc_ldexp: 8866 case LibFunc_ldexpf: 8867 case LibFunc_ldexpl: 8868 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 8869 return; 8870 break; 8871 case LibFunc_memcmp: 8872 if (visitMemCmpBCmpCall(I)) 8873 return; 8874 break; 8875 case LibFunc_mempcpy: 8876 if (visitMemPCpyCall(I)) 8877 return; 8878 break; 8879 case LibFunc_memchr: 8880 if (visitMemChrCall(I)) 8881 return; 8882 break; 8883 case LibFunc_strcpy: 8884 if (visitStrCpyCall(I, false)) 8885 return; 8886 break; 8887 case LibFunc_stpcpy: 8888 if (visitStrCpyCall(I, true)) 8889 return; 8890 break; 8891 case LibFunc_strcmp: 8892 if (visitStrCmpCall(I)) 8893 return; 8894 break; 8895 case LibFunc_strlen: 8896 if (visitStrLenCall(I)) 8897 return; 8898 break; 8899 case LibFunc_strnlen: 8900 if (visitStrNLenCall(I)) 8901 return; 8902 break; 8903 } 8904 } 8905 } 8906 8907 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8908 // have to do anything here to lower funclet bundles. 8909 // CFGuardTarget bundles are lowered in LowerCallTo. 8910 assert(!I.hasOperandBundlesOtherThan( 8911 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8912 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8913 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8914 "Cannot lower calls with arbitrary operand bundles!"); 8915 8916 SDValue Callee = getValue(I.getCalledOperand()); 8917 8918 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8919 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8920 else 8921 // Check if we can potentially perform a tail call. More detailed checking 8922 // is be done within LowerCallTo, after more information about the call is 8923 // known. 8924 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8925 } 8926 8927 namespace { 8928 8929 /// AsmOperandInfo - This contains information for each constraint that we are 8930 /// lowering. 8931 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8932 public: 8933 /// CallOperand - If this is the result output operand or a clobber 8934 /// this is null, otherwise it is the incoming operand to the CallInst. 8935 /// This gets modified as the asm is processed. 8936 SDValue CallOperand; 8937 8938 /// AssignedRegs - If this is a register or register class operand, this 8939 /// contains the set of register corresponding to the operand. 8940 RegsForValue AssignedRegs; 8941 8942 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8943 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8944 } 8945 8946 /// Whether or not this operand accesses memory 8947 bool hasMemory(const TargetLowering &TLI) const { 8948 // Indirect operand accesses access memory. 8949 if (isIndirect) 8950 return true; 8951 8952 for (const auto &Code : Codes) 8953 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8954 return true; 8955 8956 return false; 8957 } 8958 }; 8959 8960 8961 } // end anonymous namespace 8962 8963 /// Make sure that the output operand \p OpInfo and its corresponding input 8964 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8965 /// out). 8966 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8967 SDISelAsmOperandInfo &MatchingOpInfo, 8968 SelectionDAG &DAG) { 8969 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8970 return; 8971 8972 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8973 const auto &TLI = DAG.getTargetLoweringInfo(); 8974 8975 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8976 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8977 OpInfo.ConstraintVT); 8978 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8979 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8980 MatchingOpInfo.ConstraintVT); 8981 if ((OpInfo.ConstraintVT.isInteger() != 8982 MatchingOpInfo.ConstraintVT.isInteger()) || 8983 (MatchRC.second != InputRC.second)) { 8984 // FIXME: error out in a more elegant fashion 8985 report_fatal_error("Unsupported asm: input constraint" 8986 " with a matching output constraint of" 8987 " incompatible type!"); 8988 } 8989 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8990 } 8991 8992 /// Get a direct memory input to behave well as an indirect operand. 8993 /// This may introduce stores, hence the need for a \p Chain. 8994 /// \return The (possibly updated) chain. 8995 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8996 SDISelAsmOperandInfo &OpInfo, 8997 SelectionDAG &DAG) { 8998 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8999 9000 // If we don't have an indirect input, put it in the constpool if we can, 9001 // otherwise spill it to a stack slot. 9002 // TODO: This isn't quite right. We need to handle these according to 9003 // the addressing mode that the constraint wants. Also, this may take 9004 // an additional register for the computation and we don't want that 9005 // either. 9006 9007 // If the operand is a float, integer, or vector constant, spill to a 9008 // constant pool entry to get its address. 9009 const Value *OpVal = OpInfo.CallOperandVal; 9010 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9011 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9012 OpInfo.CallOperand = DAG.getConstantPool( 9013 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9014 return Chain; 9015 } 9016 9017 // Otherwise, create a stack slot and emit a store to it before the asm. 9018 Type *Ty = OpVal->getType(); 9019 auto &DL = DAG.getDataLayout(); 9020 uint64_t TySize = DL.getTypeAllocSize(Ty); 9021 MachineFunction &MF = DAG.getMachineFunction(); 9022 int SSFI = MF.getFrameInfo().CreateStackObject( 9023 TySize, DL.getPrefTypeAlign(Ty), false); 9024 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9025 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9026 MachinePointerInfo::getFixedStack(MF, SSFI), 9027 TLI.getMemValueType(DL, Ty)); 9028 OpInfo.CallOperand = StackSlot; 9029 9030 return Chain; 9031 } 9032 9033 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9034 /// specified operand. We prefer to assign virtual registers, to allow the 9035 /// register allocator to handle the assignment process. However, if the asm 9036 /// uses features that we can't model on machineinstrs, we have SDISel do the 9037 /// allocation. This produces generally horrible, but correct, code. 9038 /// 9039 /// OpInfo describes the operand 9040 /// RefOpInfo describes the matching operand if any, the operand otherwise 9041 static std::optional<unsigned> 9042 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9043 SDISelAsmOperandInfo &OpInfo, 9044 SDISelAsmOperandInfo &RefOpInfo) { 9045 LLVMContext &Context = *DAG.getContext(); 9046 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9047 9048 MachineFunction &MF = DAG.getMachineFunction(); 9049 SmallVector<unsigned, 4> Regs; 9050 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9051 9052 // No work to do for memory/address operands. 9053 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9054 OpInfo.ConstraintType == TargetLowering::C_Address) 9055 return std::nullopt; 9056 9057 // If this is a constraint for a single physreg, or a constraint for a 9058 // register class, find it. 9059 unsigned AssignedReg; 9060 const TargetRegisterClass *RC; 9061 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9062 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9063 // RC is unset only on failure. Return immediately. 9064 if (!RC) 9065 return std::nullopt; 9066 9067 // Get the actual register value type. This is important, because the user 9068 // may have asked for (e.g.) the AX register in i32 type. We need to 9069 // remember that AX is actually i16 to get the right extension. 9070 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9071 9072 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9073 // If this is an FP operand in an integer register (or visa versa), or more 9074 // generally if the operand value disagrees with the register class we plan 9075 // to stick it in, fix the operand type. 9076 // 9077 // If this is an input value, the bitcast to the new type is done now. 9078 // Bitcast for output value is done at the end of visitInlineAsm(). 9079 if ((OpInfo.Type == InlineAsm::isOutput || 9080 OpInfo.Type == InlineAsm::isInput) && 9081 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9082 // Try to convert to the first EVT that the reg class contains. If the 9083 // types are identical size, use a bitcast to convert (e.g. two differing 9084 // vector types). Note: output bitcast is done at the end of 9085 // visitInlineAsm(). 9086 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9087 // Exclude indirect inputs while they are unsupported because the code 9088 // to perform the load is missing and thus OpInfo.CallOperand still 9089 // refers to the input address rather than the pointed-to value. 9090 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9091 OpInfo.CallOperand = 9092 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9093 OpInfo.ConstraintVT = RegVT; 9094 // If the operand is an FP value and we want it in integer registers, 9095 // use the corresponding integer type. This turns an f64 value into 9096 // i64, which can be passed with two i32 values on a 32-bit machine. 9097 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9098 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9099 if (OpInfo.Type == InlineAsm::isInput) 9100 OpInfo.CallOperand = 9101 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9102 OpInfo.ConstraintVT = VT; 9103 } 9104 } 9105 } 9106 9107 // No need to allocate a matching input constraint since the constraint it's 9108 // matching to has already been allocated. 9109 if (OpInfo.isMatchingInputConstraint()) 9110 return std::nullopt; 9111 9112 EVT ValueVT = OpInfo.ConstraintVT; 9113 if (OpInfo.ConstraintVT == MVT::Other) 9114 ValueVT = RegVT; 9115 9116 // Initialize NumRegs. 9117 unsigned NumRegs = 1; 9118 if (OpInfo.ConstraintVT != MVT::Other) 9119 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9120 9121 // If this is a constraint for a specific physical register, like {r17}, 9122 // assign it now. 9123 9124 // If this associated to a specific register, initialize iterator to correct 9125 // place. If virtual, make sure we have enough registers 9126 9127 // Initialize iterator if necessary 9128 TargetRegisterClass::iterator I = RC->begin(); 9129 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9130 9131 // Do not check for single registers. 9132 if (AssignedReg) { 9133 I = std::find(I, RC->end(), AssignedReg); 9134 if (I == RC->end()) { 9135 // RC does not contain the selected register, which indicates a 9136 // mismatch between the register and the required type/bitwidth. 9137 return {AssignedReg}; 9138 } 9139 } 9140 9141 for (; NumRegs; --NumRegs, ++I) { 9142 assert(I != RC->end() && "Ran out of registers to allocate!"); 9143 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9144 Regs.push_back(R); 9145 } 9146 9147 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9148 return std::nullopt; 9149 } 9150 9151 static unsigned 9152 findMatchingInlineAsmOperand(unsigned OperandNo, 9153 const std::vector<SDValue> &AsmNodeOperands) { 9154 // Scan until we find the definition we already emitted of this operand. 9155 unsigned CurOp = InlineAsm::Op_FirstOperand; 9156 for (; OperandNo; --OperandNo) { 9157 // Advance to the next operand. 9158 unsigned OpFlag = 9159 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9160 const InlineAsm::Flag F(OpFlag); 9161 assert( 9162 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9163 "Skipped past definitions?"); 9164 CurOp += F.getNumOperandRegisters() + 1; 9165 } 9166 return CurOp; 9167 } 9168 9169 namespace { 9170 9171 class ExtraFlags { 9172 unsigned Flags = 0; 9173 9174 public: 9175 explicit ExtraFlags(const CallBase &Call) { 9176 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9177 if (IA->hasSideEffects()) 9178 Flags |= InlineAsm::Extra_HasSideEffects; 9179 if (IA->isAlignStack()) 9180 Flags |= InlineAsm::Extra_IsAlignStack; 9181 if (Call.isConvergent()) 9182 Flags |= InlineAsm::Extra_IsConvergent; 9183 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9184 } 9185 9186 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9187 // Ideally, we would only check against memory constraints. However, the 9188 // meaning of an Other constraint can be target-specific and we can't easily 9189 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9190 // for Other constraints as well. 9191 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9192 OpInfo.ConstraintType == TargetLowering::C_Other) { 9193 if (OpInfo.Type == InlineAsm::isInput) 9194 Flags |= InlineAsm::Extra_MayLoad; 9195 else if (OpInfo.Type == InlineAsm::isOutput) 9196 Flags |= InlineAsm::Extra_MayStore; 9197 else if (OpInfo.Type == InlineAsm::isClobber) 9198 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9199 } 9200 } 9201 9202 unsigned get() const { return Flags; } 9203 }; 9204 9205 } // end anonymous namespace 9206 9207 static bool isFunction(SDValue Op) { 9208 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9209 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9210 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9211 9212 // In normal "call dllimport func" instruction (non-inlineasm) it force 9213 // indirect access by specifing call opcode. And usually specially print 9214 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9215 // not do in this way now. (In fact, this is similar with "Data Access" 9216 // action). So here we ignore dllimport function. 9217 if (Fn && !Fn->hasDLLImportStorageClass()) 9218 return true; 9219 } 9220 } 9221 return false; 9222 } 9223 9224 /// visitInlineAsm - Handle a call to an InlineAsm object. 9225 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9226 const BasicBlock *EHPadBB) { 9227 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9228 9229 /// ConstraintOperands - Information about all of the constraints. 9230 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9231 9232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9233 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9234 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9235 9236 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9237 // AsmDialect, MayLoad, MayStore). 9238 bool HasSideEffect = IA->hasSideEffects(); 9239 ExtraFlags ExtraInfo(Call); 9240 9241 for (auto &T : TargetConstraints) { 9242 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9243 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9244 9245 if (OpInfo.CallOperandVal) 9246 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9247 9248 if (!HasSideEffect) 9249 HasSideEffect = OpInfo.hasMemory(TLI); 9250 9251 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9252 // FIXME: Could we compute this on OpInfo rather than T? 9253 9254 // Compute the constraint code and ConstraintType to use. 9255 TLI.ComputeConstraintToUse(T, SDValue()); 9256 9257 if (T.ConstraintType == TargetLowering::C_Immediate && 9258 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9259 // We've delayed emitting a diagnostic like the "n" constraint because 9260 // inlining could cause an integer showing up. 9261 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9262 "' expects an integer constant " 9263 "expression"); 9264 9265 ExtraInfo.update(T); 9266 } 9267 9268 // We won't need to flush pending loads if this asm doesn't touch 9269 // memory and is nonvolatile. 9270 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9271 9272 bool EmitEHLabels = isa<InvokeInst>(Call); 9273 if (EmitEHLabels) { 9274 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9275 } 9276 bool IsCallBr = isa<CallBrInst>(Call); 9277 9278 if (IsCallBr || EmitEHLabels) { 9279 // If this is a callbr or invoke we need to flush pending exports since 9280 // inlineasm_br and invoke are terminators. 9281 // We need to do this before nodes are glued to the inlineasm_br node. 9282 Chain = getControlRoot(); 9283 } 9284 9285 MCSymbol *BeginLabel = nullptr; 9286 if (EmitEHLabels) { 9287 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9288 } 9289 9290 int OpNo = -1; 9291 SmallVector<StringRef> AsmStrs; 9292 IA->collectAsmStrs(AsmStrs); 9293 9294 // Second pass over the constraints: compute which constraint option to use. 9295 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9296 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9297 OpNo++; 9298 9299 // If this is an output operand with a matching input operand, look up the 9300 // matching input. If their types mismatch, e.g. one is an integer, the 9301 // other is floating point, or their sizes are different, flag it as an 9302 // error. 9303 if (OpInfo.hasMatchingInput()) { 9304 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9305 patchMatchingInput(OpInfo, Input, DAG); 9306 } 9307 9308 // Compute the constraint code and ConstraintType to use. 9309 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9310 9311 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9312 OpInfo.Type == InlineAsm::isClobber) || 9313 OpInfo.ConstraintType == TargetLowering::C_Address) 9314 continue; 9315 9316 // In Linux PIC model, there are 4 cases about value/label addressing: 9317 // 9318 // 1: Function call or Label jmp inside the module. 9319 // 2: Data access (such as global variable, static variable) inside module. 9320 // 3: Function call or Label jmp outside the module. 9321 // 4: Data access (such as global variable) outside the module. 9322 // 9323 // Due to current llvm inline asm architecture designed to not "recognize" 9324 // the asm code, there are quite troubles for us to treat mem addressing 9325 // differently for same value/adress used in different instuctions. 9326 // For example, in pic model, call a func may in plt way or direclty 9327 // pc-related, but lea/mov a function adress may use got. 9328 // 9329 // Here we try to "recognize" function call for the case 1 and case 3 in 9330 // inline asm. And try to adjust the constraint for them. 9331 // 9332 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9333 // label, so here we don't handle jmp function label now, but we need to 9334 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9335 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9336 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9337 TM.getCodeModel() != CodeModel::Large) { 9338 OpInfo.isIndirect = false; 9339 OpInfo.ConstraintType = TargetLowering::C_Address; 9340 } 9341 9342 // If this is a memory input, and if the operand is not indirect, do what we 9343 // need to provide an address for the memory input. 9344 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9345 !OpInfo.isIndirect) { 9346 assert((OpInfo.isMultipleAlternative || 9347 (OpInfo.Type == InlineAsm::isInput)) && 9348 "Can only indirectify direct input operands!"); 9349 9350 // Memory operands really want the address of the value. 9351 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9352 9353 // There is no longer a Value* corresponding to this operand. 9354 OpInfo.CallOperandVal = nullptr; 9355 9356 // It is now an indirect operand. 9357 OpInfo.isIndirect = true; 9358 } 9359 9360 } 9361 9362 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9363 std::vector<SDValue> AsmNodeOperands; 9364 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9365 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9366 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9367 9368 // If we have a !srcloc metadata node associated with it, we want to attach 9369 // this to the ultimately generated inline asm machineinstr. To do this, we 9370 // pass in the third operand as this (potentially null) inline asm MDNode. 9371 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9372 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9373 9374 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9375 // bits as operand 3. 9376 AsmNodeOperands.push_back(DAG.getTargetConstant( 9377 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9378 9379 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9380 // this, assign virtual and physical registers for inputs and otput. 9381 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9382 // Assign Registers. 9383 SDISelAsmOperandInfo &RefOpInfo = 9384 OpInfo.isMatchingInputConstraint() 9385 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9386 : OpInfo; 9387 const auto RegError = 9388 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9389 if (RegError) { 9390 const MachineFunction &MF = DAG.getMachineFunction(); 9391 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9392 const char *RegName = TRI.getName(*RegError); 9393 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9394 "' allocated for constraint '" + 9395 Twine(OpInfo.ConstraintCode) + 9396 "' does not match required type"); 9397 return; 9398 } 9399 9400 auto DetectWriteToReservedRegister = [&]() { 9401 const MachineFunction &MF = DAG.getMachineFunction(); 9402 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9403 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9404 if (Register::isPhysicalRegister(Reg) && 9405 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9406 const char *RegName = TRI.getName(Reg); 9407 emitInlineAsmError(Call, "write to reserved register '" + 9408 Twine(RegName) + "'"); 9409 return true; 9410 } 9411 } 9412 return false; 9413 }; 9414 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9415 (OpInfo.Type == InlineAsm::isInput && 9416 !OpInfo.isMatchingInputConstraint())) && 9417 "Only address as input operand is allowed."); 9418 9419 switch (OpInfo.Type) { 9420 case InlineAsm::isOutput: 9421 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9422 const InlineAsm::ConstraintCode ConstraintID = 9423 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9424 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9425 "Failed to convert memory constraint code to constraint id."); 9426 9427 // Add information to the INLINEASM node to know about this output. 9428 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9429 OpFlags.setMemConstraint(ConstraintID); 9430 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9431 MVT::i32)); 9432 AsmNodeOperands.push_back(OpInfo.CallOperand); 9433 } else { 9434 // Otherwise, this outputs to a register (directly for C_Register / 9435 // C_RegisterClass, and a target-defined fashion for 9436 // C_Immediate/C_Other). Find a register that we can use. 9437 if (OpInfo.AssignedRegs.Regs.empty()) { 9438 emitInlineAsmError( 9439 Call, "couldn't allocate output register for constraint '" + 9440 Twine(OpInfo.ConstraintCode) + "'"); 9441 return; 9442 } 9443 9444 if (DetectWriteToReservedRegister()) 9445 return; 9446 9447 // Add information to the INLINEASM node to know that this register is 9448 // set. 9449 OpInfo.AssignedRegs.AddInlineAsmOperands( 9450 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9451 : InlineAsm::Kind::RegDef, 9452 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9453 } 9454 break; 9455 9456 case InlineAsm::isInput: 9457 case InlineAsm::isLabel: { 9458 SDValue InOperandVal = OpInfo.CallOperand; 9459 9460 if (OpInfo.isMatchingInputConstraint()) { 9461 // If this is required to match an output register we have already set, 9462 // just use its register. 9463 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9464 AsmNodeOperands); 9465 InlineAsm::Flag Flag( 9466 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue()); 9467 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9468 if (OpInfo.isIndirect) { 9469 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9470 emitInlineAsmError(Call, "inline asm not supported yet: " 9471 "don't know how to handle tied " 9472 "indirect register inputs"); 9473 return; 9474 } 9475 9476 SmallVector<unsigned, 4> Regs; 9477 MachineFunction &MF = DAG.getMachineFunction(); 9478 MachineRegisterInfo &MRI = MF.getRegInfo(); 9479 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9480 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9481 Register TiedReg = R->getReg(); 9482 MVT RegVT = R->getSimpleValueType(0); 9483 const TargetRegisterClass *RC = 9484 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9485 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9486 : TRI.getMinimalPhysRegClass(TiedReg); 9487 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9488 Regs.push_back(MRI.createVirtualRegister(RC)); 9489 9490 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9491 9492 SDLoc dl = getCurSDLoc(); 9493 // Use the produced MatchedRegs object to 9494 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9495 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9496 OpInfo.getMatchedOperand(), dl, DAG, 9497 AsmNodeOperands); 9498 break; 9499 } 9500 9501 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9502 assert(Flag.getNumOperandRegisters() == 1 && 9503 "Unexpected number of operands"); 9504 // Add information to the INLINEASM node to know about this input. 9505 // See InlineAsm.h isUseOperandTiedToDef. 9506 Flag.clearMemConstraint(); 9507 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9508 AsmNodeOperands.push_back(DAG.getTargetConstant( 9509 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9510 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9511 break; 9512 } 9513 9514 // Treat indirect 'X' constraint as memory. 9515 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9516 OpInfo.isIndirect) 9517 OpInfo.ConstraintType = TargetLowering::C_Memory; 9518 9519 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9520 OpInfo.ConstraintType == TargetLowering::C_Other) { 9521 std::vector<SDValue> Ops; 9522 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9523 Ops, DAG); 9524 if (Ops.empty()) { 9525 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9526 if (isa<ConstantSDNode>(InOperandVal)) { 9527 emitInlineAsmError(Call, "value out of range for constraint '" + 9528 Twine(OpInfo.ConstraintCode) + "'"); 9529 return; 9530 } 9531 9532 emitInlineAsmError(Call, 9533 "invalid operand for inline asm constraint '" + 9534 Twine(OpInfo.ConstraintCode) + "'"); 9535 return; 9536 } 9537 9538 // Add information to the INLINEASM node to know about this input. 9539 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9540 AsmNodeOperands.push_back(DAG.getTargetConstant( 9541 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9542 llvm::append_range(AsmNodeOperands, Ops); 9543 break; 9544 } 9545 9546 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9547 assert((OpInfo.isIndirect || 9548 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9549 "Operand must be indirect to be a mem!"); 9550 assert(InOperandVal.getValueType() == 9551 TLI.getPointerTy(DAG.getDataLayout()) && 9552 "Memory operands expect pointer values"); 9553 9554 const InlineAsm::ConstraintCode ConstraintID = 9555 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9556 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9557 "Failed to convert memory constraint code to constraint id."); 9558 9559 // Add information to the INLINEASM node to know about this input. 9560 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9561 ResOpType.setMemConstraint(ConstraintID); 9562 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9563 getCurSDLoc(), 9564 MVT::i32)); 9565 AsmNodeOperands.push_back(InOperandVal); 9566 break; 9567 } 9568 9569 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9570 const InlineAsm::ConstraintCode ConstraintID = 9571 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9572 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9573 "Failed to convert memory constraint code to constraint id."); 9574 9575 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9576 9577 SDValue AsmOp = InOperandVal; 9578 if (isFunction(InOperandVal)) { 9579 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9580 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9581 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9582 InOperandVal.getValueType(), 9583 GA->getOffset()); 9584 } 9585 9586 // Add information to the INLINEASM node to know about this input. 9587 ResOpType.setMemConstraint(ConstraintID); 9588 9589 AsmNodeOperands.push_back( 9590 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9591 9592 AsmNodeOperands.push_back(AsmOp); 9593 break; 9594 } 9595 9596 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9597 OpInfo.ConstraintType == TargetLowering::C_Register) && 9598 "Unknown constraint type!"); 9599 9600 // TODO: Support this. 9601 if (OpInfo.isIndirect) { 9602 emitInlineAsmError( 9603 Call, "Don't know how to handle indirect register inputs yet " 9604 "for constraint '" + 9605 Twine(OpInfo.ConstraintCode) + "'"); 9606 return; 9607 } 9608 9609 // Copy the input into the appropriate registers. 9610 if (OpInfo.AssignedRegs.Regs.empty()) { 9611 emitInlineAsmError(Call, 9612 "couldn't allocate input reg for constraint '" + 9613 Twine(OpInfo.ConstraintCode) + "'"); 9614 return; 9615 } 9616 9617 if (DetectWriteToReservedRegister()) 9618 return; 9619 9620 SDLoc dl = getCurSDLoc(); 9621 9622 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9623 &Call); 9624 9625 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 9626 0, dl, DAG, AsmNodeOperands); 9627 break; 9628 } 9629 case InlineAsm::isClobber: 9630 // Add the clobbered value to the operand list, so that the register 9631 // allocator is aware that the physreg got clobbered. 9632 if (!OpInfo.AssignedRegs.Regs.empty()) 9633 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 9634 false, 0, getCurSDLoc(), DAG, 9635 AsmNodeOperands); 9636 break; 9637 } 9638 } 9639 9640 // Finish up input operands. Set the input chain and add the flag last. 9641 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9642 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9643 9644 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9645 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9646 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9647 Glue = Chain.getValue(1); 9648 9649 // Do additional work to generate outputs. 9650 9651 SmallVector<EVT, 1> ResultVTs; 9652 SmallVector<SDValue, 1> ResultValues; 9653 SmallVector<SDValue, 8> OutChains; 9654 9655 llvm::Type *CallResultType = Call.getType(); 9656 ArrayRef<Type *> ResultTypes; 9657 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9658 ResultTypes = StructResult->elements(); 9659 else if (!CallResultType->isVoidTy()) 9660 ResultTypes = ArrayRef(CallResultType); 9661 9662 auto CurResultType = ResultTypes.begin(); 9663 auto handleRegAssign = [&](SDValue V) { 9664 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9665 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9666 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9667 ++CurResultType; 9668 // If the type of the inline asm call site return value is different but has 9669 // same size as the type of the asm output bitcast it. One example of this 9670 // is for vectors with different width / number of elements. This can 9671 // happen for register classes that can contain multiple different value 9672 // types. The preg or vreg allocated may not have the same VT as was 9673 // expected. 9674 // 9675 // This can also happen for a return value that disagrees with the register 9676 // class it is put in, eg. a double in a general-purpose register on a 9677 // 32-bit machine. 9678 if (ResultVT != V.getValueType() && 9679 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9680 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9681 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9682 V.getValueType().isInteger()) { 9683 // If a result value was tied to an input value, the computed result 9684 // may have a wider width than the expected result. Extract the 9685 // relevant portion. 9686 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9687 } 9688 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9689 ResultVTs.push_back(ResultVT); 9690 ResultValues.push_back(V); 9691 }; 9692 9693 // Deal with output operands. 9694 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9695 if (OpInfo.Type == InlineAsm::isOutput) { 9696 SDValue Val; 9697 // Skip trivial output operands. 9698 if (OpInfo.AssignedRegs.Regs.empty()) 9699 continue; 9700 9701 switch (OpInfo.ConstraintType) { 9702 case TargetLowering::C_Register: 9703 case TargetLowering::C_RegisterClass: 9704 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9705 Chain, &Glue, &Call); 9706 break; 9707 case TargetLowering::C_Immediate: 9708 case TargetLowering::C_Other: 9709 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9710 OpInfo, DAG); 9711 break; 9712 case TargetLowering::C_Memory: 9713 break; // Already handled. 9714 case TargetLowering::C_Address: 9715 break; // Silence warning. 9716 case TargetLowering::C_Unknown: 9717 assert(false && "Unexpected unknown constraint"); 9718 } 9719 9720 // Indirect output manifest as stores. Record output chains. 9721 if (OpInfo.isIndirect) { 9722 const Value *Ptr = OpInfo.CallOperandVal; 9723 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9724 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9725 MachinePointerInfo(Ptr)); 9726 OutChains.push_back(Store); 9727 } else { 9728 // generate CopyFromRegs to associated registers. 9729 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9730 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9731 for (const SDValue &V : Val->op_values()) 9732 handleRegAssign(V); 9733 } else 9734 handleRegAssign(Val); 9735 } 9736 } 9737 } 9738 9739 // Set results. 9740 if (!ResultValues.empty()) { 9741 assert(CurResultType == ResultTypes.end() && 9742 "Mismatch in number of ResultTypes"); 9743 assert(ResultValues.size() == ResultTypes.size() && 9744 "Mismatch in number of output operands in asm result"); 9745 9746 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9747 DAG.getVTList(ResultVTs), ResultValues); 9748 setValue(&Call, V); 9749 } 9750 9751 // Collect store chains. 9752 if (!OutChains.empty()) 9753 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9754 9755 if (EmitEHLabels) { 9756 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9757 } 9758 9759 // Only Update Root if inline assembly has a memory effect. 9760 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9761 EmitEHLabels) 9762 DAG.setRoot(Chain); 9763 } 9764 9765 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9766 const Twine &Message) { 9767 LLVMContext &Ctx = *DAG.getContext(); 9768 Ctx.emitError(&Call, Message); 9769 9770 // Make sure we leave the DAG in a valid state 9771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9772 SmallVector<EVT, 1> ValueVTs; 9773 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9774 9775 if (ValueVTs.empty()) 9776 return; 9777 9778 SmallVector<SDValue, 1> Ops; 9779 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9780 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9781 9782 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9783 } 9784 9785 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9786 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9787 MVT::Other, getRoot(), 9788 getValue(I.getArgOperand(0)), 9789 DAG.getSrcValue(I.getArgOperand(0)))); 9790 } 9791 9792 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9794 const DataLayout &DL = DAG.getDataLayout(); 9795 SDValue V = DAG.getVAArg( 9796 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9797 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9798 DL.getABITypeAlign(I.getType()).value()); 9799 DAG.setRoot(V.getValue(1)); 9800 9801 if (I.getType()->isPointerTy()) 9802 V = DAG.getPtrExtOrTrunc( 9803 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9804 setValue(&I, V); 9805 } 9806 9807 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9808 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9809 MVT::Other, getRoot(), 9810 getValue(I.getArgOperand(0)), 9811 DAG.getSrcValue(I.getArgOperand(0)))); 9812 } 9813 9814 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9815 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9816 MVT::Other, getRoot(), 9817 getValue(I.getArgOperand(0)), 9818 getValue(I.getArgOperand(1)), 9819 DAG.getSrcValue(I.getArgOperand(0)), 9820 DAG.getSrcValue(I.getArgOperand(1)))); 9821 } 9822 9823 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9824 const Instruction &I, 9825 SDValue Op) { 9826 const MDNode *Range = getRangeMetadata(I); 9827 if (!Range) 9828 return Op; 9829 9830 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9831 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9832 return Op; 9833 9834 APInt Lo = CR.getUnsignedMin(); 9835 if (!Lo.isMinValue()) 9836 return Op; 9837 9838 APInt Hi = CR.getUnsignedMax(); 9839 unsigned Bits = std::max(Hi.getActiveBits(), 9840 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9841 9842 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9843 9844 SDLoc SL = getCurSDLoc(); 9845 9846 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9847 DAG.getValueType(SmallVT)); 9848 unsigned NumVals = Op.getNode()->getNumValues(); 9849 if (NumVals == 1) 9850 return ZExt; 9851 9852 SmallVector<SDValue, 4> Ops; 9853 9854 Ops.push_back(ZExt); 9855 for (unsigned I = 1; I != NumVals; ++I) 9856 Ops.push_back(Op.getValue(I)); 9857 9858 return DAG.getMergeValues(Ops, SL); 9859 } 9860 9861 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9862 /// the call being lowered. 9863 /// 9864 /// This is a helper for lowering intrinsics that follow a target calling 9865 /// convention or require stack pointer adjustment. Only a subset of the 9866 /// intrinsic's operands need to participate in the calling convention. 9867 void SelectionDAGBuilder::populateCallLoweringInfo( 9868 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9869 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9870 AttributeSet RetAttrs, bool IsPatchPoint) { 9871 TargetLowering::ArgListTy Args; 9872 Args.reserve(NumArgs); 9873 9874 // Populate the argument list. 9875 // Attributes for args start at offset 1, after the return attribute. 9876 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9877 ArgI != ArgE; ++ArgI) { 9878 const Value *V = Call->getOperand(ArgI); 9879 9880 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9881 9882 TargetLowering::ArgListEntry Entry; 9883 Entry.Node = getValue(V); 9884 Entry.Ty = V->getType(); 9885 Entry.setAttributes(Call, ArgI); 9886 Args.push_back(Entry); 9887 } 9888 9889 CLI.setDebugLoc(getCurSDLoc()) 9890 .setChain(getRoot()) 9891 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 9892 RetAttrs) 9893 .setDiscardResult(Call->use_empty()) 9894 .setIsPatchPoint(IsPatchPoint) 9895 .setIsPreallocated( 9896 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9897 } 9898 9899 /// Add a stack map intrinsic call's live variable operands to a stackmap 9900 /// or patchpoint target node's operand list. 9901 /// 9902 /// Constants are converted to TargetConstants purely as an optimization to 9903 /// avoid constant materialization and register allocation. 9904 /// 9905 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9906 /// generate addess computation nodes, and so FinalizeISel can convert the 9907 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9908 /// address materialization and register allocation, but may also be required 9909 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9910 /// alloca in the entry block, then the runtime may assume that the alloca's 9911 /// StackMap location can be read immediately after compilation and that the 9912 /// location is valid at any point during execution (this is similar to the 9913 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9914 /// only available in a register, then the runtime would need to trap when 9915 /// execution reaches the StackMap in order to read the alloca's location. 9916 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9917 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9918 SelectionDAGBuilder &Builder) { 9919 SelectionDAG &DAG = Builder.DAG; 9920 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9921 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9922 9923 // Things on the stack are pointer-typed, meaning that they are already 9924 // legal and can be emitted directly to target nodes. 9925 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9926 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9927 } else { 9928 // Otherwise emit a target independent node to be legalised. 9929 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9930 } 9931 } 9932 } 9933 9934 /// Lower llvm.experimental.stackmap. 9935 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9936 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9937 // [live variables...]) 9938 9939 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9940 9941 SDValue Chain, InGlue, Callee; 9942 SmallVector<SDValue, 32> Ops; 9943 9944 SDLoc DL = getCurSDLoc(); 9945 Callee = getValue(CI.getCalledOperand()); 9946 9947 // The stackmap intrinsic only records the live variables (the arguments 9948 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9949 // intrinsic, this won't be lowered to a function call. This means we don't 9950 // have to worry about calling conventions and target specific lowering code. 9951 // Instead we perform the call lowering right here. 9952 // 9953 // chain, flag = CALLSEQ_START(chain, 0, 0) 9954 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9955 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9956 // 9957 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9958 InGlue = Chain.getValue(1); 9959 9960 // Add the STACKMAP operands, starting with DAG house-keeping. 9961 Ops.push_back(Chain); 9962 Ops.push_back(InGlue); 9963 9964 // Add the <id>, <numShadowBytes> operands. 9965 // 9966 // These do not require legalisation, and can be emitted directly to target 9967 // constant nodes. 9968 SDValue ID = getValue(CI.getArgOperand(0)); 9969 assert(ID.getValueType() == MVT::i64); 9970 SDValue IDConst = DAG.getTargetConstant( 9971 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9972 Ops.push_back(IDConst); 9973 9974 SDValue Shad = getValue(CI.getArgOperand(1)); 9975 assert(Shad.getValueType() == MVT::i32); 9976 SDValue ShadConst = DAG.getTargetConstant( 9977 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9978 Ops.push_back(ShadConst); 9979 9980 // Add the live variables. 9981 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9982 9983 // Create the STACKMAP node. 9984 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9985 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9986 InGlue = Chain.getValue(1); 9987 9988 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 9989 9990 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9991 9992 // Set the root to the target-lowered call chain. 9993 DAG.setRoot(Chain); 9994 9995 // Inform the Frame Information that we have a stackmap in this function. 9996 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9997 } 9998 9999 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10000 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10001 const BasicBlock *EHPadBB) { 10002 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 10003 // i32 <numBytes>, 10004 // i8* <target>, 10005 // i32 <numArgs>, 10006 // [Args...], 10007 // [live variables...]) 10008 10009 CallingConv::ID CC = CB.getCallingConv(); 10010 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10011 bool HasDef = !CB.getType()->isVoidTy(); 10012 SDLoc dl = getCurSDLoc(); 10013 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10014 10015 // Handle immediate and symbolic callees. 10016 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10017 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10018 /*isTarget=*/true); 10019 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10020 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10021 SDLoc(SymbolicCallee), 10022 SymbolicCallee->getValueType(0)); 10023 10024 // Get the real number of arguments participating in the call <numArgs> 10025 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10026 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 10027 10028 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10029 // Intrinsics include all meta-operands up to but not including CC. 10030 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10031 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10032 "Not enough arguments provided to the patchpoint intrinsic"); 10033 10034 // For AnyRegCC the arguments are lowered later on manually. 10035 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10036 Type *ReturnTy = 10037 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10038 10039 TargetLowering::CallLoweringInfo CLI(DAG); 10040 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10041 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10042 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10043 10044 SDNode *CallEnd = Result.second.getNode(); 10045 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10046 CallEnd = CallEnd->getOperand(0).getNode(); 10047 10048 /// Get a call instruction from the call sequence chain. 10049 /// Tail calls are not allowed. 10050 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10051 "Expected a callseq node."); 10052 SDNode *Call = CallEnd->getOperand(0).getNode(); 10053 bool HasGlue = Call->getGluedNode(); 10054 10055 // Replace the target specific call node with the patchable intrinsic. 10056 SmallVector<SDValue, 8> Ops; 10057 10058 // Push the chain. 10059 Ops.push_back(*(Call->op_begin())); 10060 10061 // Optionally, push the glue (if any). 10062 if (HasGlue) 10063 Ops.push_back(*(Call->op_end() - 1)); 10064 10065 // Push the register mask info. 10066 if (HasGlue) 10067 Ops.push_back(*(Call->op_end() - 2)); 10068 else 10069 Ops.push_back(*(Call->op_end() - 1)); 10070 10071 // Add the <id> and <numBytes> constants. 10072 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10073 Ops.push_back(DAG.getTargetConstant( 10074 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 10075 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10076 Ops.push_back(DAG.getTargetConstant( 10077 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 10078 MVT::i32)); 10079 10080 // Add the callee. 10081 Ops.push_back(Callee); 10082 10083 // Adjust <numArgs> to account for any arguments that have been passed on the 10084 // stack instead. 10085 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10086 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10087 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10088 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10089 10090 // Add the calling convention 10091 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10092 10093 // Add the arguments we omitted previously. The register allocator should 10094 // place these in any free register. 10095 if (IsAnyRegCC) 10096 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10097 Ops.push_back(getValue(CB.getArgOperand(i))); 10098 10099 // Push the arguments from the call instruction. 10100 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10101 Ops.append(Call->op_begin() + 2, e); 10102 10103 // Push live variables for the stack map. 10104 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10105 10106 SDVTList NodeTys; 10107 if (IsAnyRegCC && HasDef) { 10108 // Create the return types based on the intrinsic definition 10109 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10110 SmallVector<EVT, 3> ValueVTs; 10111 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10112 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10113 10114 // There is always a chain and a glue type at the end 10115 ValueVTs.push_back(MVT::Other); 10116 ValueVTs.push_back(MVT::Glue); 10117 NodeTys = DAG.getVTList(ValueVTs); 10118 } else 10119 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10120 10121 // Replace the target specific call node with a PATCHPOINT node. 10122 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10123 10124 // Update the NodeMap. 10125 if (HasDef) { 10126 if (IsAnyRegCC) 10127 setValue(&CB, SDValue(PPV.getNode(), 0)); 10128 else 10129 setValue(&CB, Result.first); 10130 } 10131 10132 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10133 // call sequence. Furthermore the location of the chain and glue can change 10134 // when the AnyReg calling convention is used and the intrinsic returns a 10135 // value. 10136 if (IsAnyRegCC && HasDef) { 10137 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10138 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10139 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10140 } else 10141 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10142 DAG.DeleteNode(Call); 10143 10144 // Inform the Frame Information that we have a patchpoint in this function. 10145 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10146 } 10147 10148 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10149 unsigned Intrinsic) { 10150 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10151 SDValue Op1 = getValue(I.getArgOperand(0)); 10152 SDValue Op2; 10153 if (I.arg_size() > 1) 10154 Op2 = getValue(I.getArgOperand(1)); 10155 SDLoc dl = getCurSDLoc(); 10156 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10157 SDValue Res; 10158 SDNodeFlags SDFlags; 10159 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10160 SDFlags.copyFMF(*FPMO); 10161 10162 switch (Intrinsic) { 10163 case Intrinsic::vector_reduce_fadd: 10164 if (SDFlags.hasAllowReassociation()) 10165 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10166 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10167 SDFlags); 10168 else 10169 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10170 break; 10171 case Intrinsic::vector_reduce_fmul: 10172 if (SDFlags.hasAllowReassociation()) 10173 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10174 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10175 SDFlags); 10176 else 10177 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10178 break; 10179 case Intrinsic::vector_reduce_add: 10180 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10181 break; 10182 case Intrinsic::vector_reduce_mul: 10183 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10184 break; 10185 case Intrinsic::vector_reduce_and: 10186 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10187 break; 10188 case Intrinsic::vector_reduce_or: 10189 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10190 break; 10191 case Intrinsic::vector_reduce_xor: 10192 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10193 break; 10194 case Intrinsic::vector_reduce_smax: 10195 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10196 break; 10197 case Intrinsic::vector_reduce_smin: 10198 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10199 break; 10200 case Intrinsic::vector_reduce_umax: 10201 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10202 break; 10203 case Intrinsic::vector_reduce_umin: 10204 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10205 break; 10206 case Intrinsic::vector_reduce_fmax: 10207 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10208 break; 10209 case Intrinsic::vector_reduce_fmin: 10210 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10211 break; 10212 case Intrinsic::vector_reduce_fmaximum: 10213 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10214 break; 10215 case Intrinsic::vector_reduce_fminimum: 10216 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10217 break; 10218 default: 10219 llvm_unreachable("Unhandled vector reduce intrinsic"); 10220 } 10221 setValue(&I, Res); 10222 } 10223 10224 /// Returns an AttributeList representing the attributes applied to the return 10225 /// value of the given call. 10226 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10227 SmallVector<Attribute::AttrKind, 2> Attrs; 10228 if (CLI.RetSExt) 10229 Attrs.push_back(Attribute::SExt); 10230 if (CLI.RetZExt) 10231 Attrs.push_back(Attribute::ZExt); 10232 if (CLI.IsInReg) 10233 Attrs.push_back(Attribute::InReg); 10234 10235 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10236 Attrs); 10237 } 10238 10239 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10240 /// implementation, which just calls LowerCall. 10241 /// FIXME: When all targets are 10242 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10243 std::pair<SDValue, SDValue> 10244 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10245 // Handle the incoming return values from the call. 10246 CLI.Ins.clear(); 10247 Type *OrigRetTy = CLI.RetTy; 10248 SmallVector<EVT, 4> RetTys; 10249 SmallVector<uint64_t, 4> Offsets; 10250 auto &DL = CLI.DAG.getDataLayout(); 10251 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10252 10253 if (CLI.IsPostTypeLegalization) { 10254 // If we are lowering a libcall after legalization, split the return type. 10255 SmallVector<EVT, 4> OldRetTys; 10256 SmallVector<uint64_t, 4> OldOffsets; 10257 RetTys.swap(OldRetTys); 10258 Offsets.swap(OldOffsets); 10259 10260 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10261 EVT RetVT = OldRetTys[i]; 10262 uint64_t Offset = OldOffsets[i]; 10263 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10264 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10265 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10266 RetTys.append(NumRegs, RegisterVT); 10267 for (unsigned j = 0; j != NumRegs; ++j) 10268 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10269 } 10270 } 10271 10272 SmallVector<ISD::OutputArg, 4> Outs; 10273 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10274 10275 bool CanLowerReturn = 10276 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10277 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10278 10279 SDValue DemoteStackSlot; 10280 int DemoteStackIdx = -100; 10281 if (!CanLowerReturn) { 10282 // FIXME: equivalent assert? 10283 // assert(!CS.hasInAllocaArgument() && 10284 // "sret demotion is incompatible with inalloca"); 10285 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10286 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10287 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10288 DemoteStackIdx = 10289 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10290 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10291 DL.getAllocaAddrSpace()); 10292 10293 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10294 ArgListEntry Entry; 10295 Entry.Node = DemoteStackSlot; 10296 Entry.Ty = StackSlotPtrType; 10297 Entry.IsSExt = false; 10298 Entry.IsZExt = false; 10299 Entry.IsInReg = false; 10300 Entry.IsSRet = true; 10301 Entry.IsNest = false; 10302 Entry.IsByVal = false; 10303 Entry.IsByRef = false; 10304 Entry.IsReturned = false; 10305 Entry.IsSwiftSelf = false; 10306 Entry.IsSwiftAsync = false; 10307 Entry.IsSwiftError = false; 10308 Entry.IsCFGuardTarget = false; 10309 Entry.Alignment = Alignment; 10310 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10311 CLI.NumFixedArgs += 1; 10312 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10313 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10314 10315 // sret demotion isn't compatible with tail-calls, since the sret argument 10316 // points into the callers stack frame. 10317 CLI.IsTailCall = false; 10318 } else { 10319 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10320 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10321 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10322 ISD::ArgFlagsTy Flags; 10323 if (NeedsRegBlock) { 10324 Flags.setInConsecutiveRegs(); 10325 if (I == RetTys.size() - 1) 10326 Flags.setInConsecutiveRegsLast(); 10327 } 10328 EVT VT = RetTys[I]; 10329 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10330 CLI.CallConv, VT); 10331 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10332 CLI.CallConv, VT); 10333 for (unsigned i = 0; i != NumRegs; ++i) { 10334 ISD::InputArg MyFlags; 10335 MyFlags.Flags = Flags; 10336 MyFlags.VT = RegisterVT; 10337 MyFlags.ArgVT = VT; 10338 MyFlags.Used = CLI.IsReturnValueUsed; 10339 if (CLI.RetTy->isPointerTy()) { 10340 MyFlags.Flags.setPointer(); 10341 MyFlags.Flags.setPointerAddrSpace( 10342 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10343 } 10344 if (CLI.RetSExt) 10345 MyFlags.Flags.setSExt(); 10346 if (CLI.RetZExt) 10347 MyFlags.Flags.setZExt(); 10348 if (CLI.IsInReg) 10349 MyFlags.Flags.setInReg(); 10350 CLI.Ins.push_back(MyFlags); 10351 } 10352 } 10353 } 10354 10355 // We push in swifterror return as the last element of CLI.Ins. 10356 ArgListTy &Args = CLI.getArgs(); 10357 if (supportSwiftError()) { 10358 for (const ArgListEntry &Arg : Args) { 10359 if (Arg.IsSwiftError) { 10360 ISD::InputArg MyFlags; 10361 MyFlags.VT = getPointerTy(DL); 10362 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10363 MyFlags.Flags.setSwiftError(); 10364 CLI.Ins.push_back(MyFlags); 10365 } 10366 } 10367 } 10368 10369 // Handle all of the outgoing arguments. 10370 CLI.Outs.clear(); 10371 CLI.OutVals.clear(); 10372 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10373 SmallVector<EVT, 4> ValueVTs; 10374 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10375 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10376 Type *FinalType = Args[i].Ty; 10377 if (Args[i].IsByVal) 10378 FinalType = Args[i].IndirectType; 10379 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10380 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10381 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10382 ++Value) { 10383 EVT VT = ValueVTs[Value]; 10384 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10385 SDValue Op = SDValue(Args[i].Node.getNode(), 10386 Args[i].Node.getResNo() + Value); 10387 ISD::ArgFlagsTy Flags; 10388 10389 // Certain targets (such as MIPS), may have a different ABI alignment 10390 // for a type depending on the context. Give the target a chance to 10391 // specify the alignment it wants. 10392 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10393 Flags.setOrigAlign(OriginalAlignment); 10394 10395 if (Args[i].Ty->isPointerTy()) { 10396 Flags.setPointer(); 10397 Flags.setPointerAddrSpace( 10398 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10399 } 10400 if (Args[i].IsZExt) 10401 Flags.setZExt(); 10402 if (Args[i].IsSExt) 10403 Flags.setSExt(); 10404 if (Args[i].IsInReg) { 10405 // If we are using vectorcall calling convention, a structure that is 10406 // passed InReg - is surely an HVA 10407 if (CLI.CallConv == CallingConv::X86_VectorCall && 10408 isa<StructType>(FinalType)) { 10409 // The first value of a structure is marked 10410 if (0 == Value) 10411 Flags.setHvaStart(); 10412 Flags.setHva(); 10413 } 10414 // Set InReg Flag 10415 Flags.setInReg(); 10416 } 10417 if (Args[i].IsSRet) 10418 Flags.setSRet(); 10419 if (Args[i].IsSwiftSelf) 10420 Flags.setSwiftSelf(); 10421 if (Args[i].IsSwiftAsync) 10422 Flags.setSwiftAsync(); 10423 if (Args[i].IsSwiftError) 10424 Flags.setSwiftError(); 10425 if (Args[i].IsCFGuardTarget) 10426 Flags.setCFGuardTarget(); 10427 if (Args[i].IsByVal) 10428 Flags.setByVal(); 10429 if (Args[i].IsByRef) 10430 Flags.setByRef(); 10431 if (Args[i].IsPreallocated) { 10432 Flags.setPreallocated(); 10433 // Set the byval flag for CCAssignFn callbacks that don't know about 10434 // preallocated. This way we can know how many bytes we should've 10435 // allocated and how many bytes a callee cleanup function will pop. If 10436 // we port preallocated to more targets, we'll have to add custom 10437 // preallocated handling in the various CC lowering callbacks. 10438 Flags.setByVal(); 10439 } 10440 if (Args[i].IsInAlloca) { 10441 Flags.setInAlloca(); 10442 // Set the byval flag for CCAssignFn callbacks that don't know about 10443 // inalloca. This way we can know how many bytes we should've allocated 10444 // and how many bytes a callee cleanup function will pop. If we port 10445 // inalloca to more targets, we'll have to add custom inalloca handling 10446 // in the various CC lowering callbacks. 10447 Flags.setByVal(); 10448 } 10449 Align MemAlign; 10450 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10451 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10452 Flags.setByValSize(FrameSize); 10453 10454 // info is not there but there are cases it cannot get right. 10455 if (auto MA = Args[i].Alignment) 10456 MemAlign = *MA; 10457 else 10458 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10459 } else if (auto MA = Args[i].Alignment) { 10460 MemAlign = *MA; 10461 } else { 10462 MemAlign = OriginalAlignment; 10463 } 10464 Flags.setMemAlign(MemAlign); 10465 if (Args[i].IsNest) 10466 Flags.setNest(); 10467 if (NeedsRegBlock) 10468 Flags.setInConsecutiveRegs(); 10469 10470 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10471 CLI.CallConv, VT); 10472 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10473 CLI.CallConv, VT); 10474 SmallVector<SDValue, 4> Parts(NumParts); 10475 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10476 10477 if (Args[i].IsSExt) 10478 ExtendKind = ISD::SIGN_EXTEND; 10479 else if (Args[i].IsZExt) 10480 ExtendKind = ISD::ZERO_EXTEND; 10481 10482 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10483 // for now. 10484 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10485 CanLowerReturn) { 10486 assert((CLI.RetTy == Args[i].Ty || 10487 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10488 CLI.RetTy->getPointerAddressSpace() == 10489 Args[i].Ty->getPointerAddressSpace())) && 10490 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10491 // Before passing 'returned' to the target lowering code, ensure that 10492 // either the register MVT and the actual EVT are the same size or that 10493 // the return value and argument are extended in the same way; in these 10494 // cases it's safe to pass the argument register value unchanged as the 10495 // return register value (although it's at the target's option whether 10496 // to do so) 10497 // TODO: allow code generation to take advantage of partially preserved 10498 // registers rather than clobbering the entire register when the 10499 // parameter extension method is not compatible with the return 10500 // extension method 10501 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10502 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10503 CLI.RetZExt == Args[i].IsZExt)) 10504 Flags.setReturned(); 10505 } 10506 10507 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10508 CLI.CallConv, ExtendKind); 10509 10510 for (unsigned j = 0; j != NumParts; ++j) { 10511 // if it isn't first piece, alignment must be 1 10512 // For scalable vectors the scalable part is currently handled 10513 // by individual targets, so we just use the known minimum size here. 10514 ISD::OutputArg MyFlags( 10515 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10516 i < CLI.NumFixedArgs, i, 10517 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10518 if (NumParts > 1 && j == 0) 10519 MyFlags.Flags.setSplit(); 10520 else if (j != 0) { 10521 MyFlags.Flags.setOrigAlign(Align(1)); 10522 if (j == NumParts - 1) 10523 MyFlags.Flags.setSplitEnd(); 10524 } 10525 10526 CLI.Outs.push_back(MyFlags); 10527 CLI.OutVals.push_back(Parts[j]); 10528 } 10529 10530 if (NeedsRegBlock && Value == NumValues - 1) 10531 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10532 } 10533 } 10534 10535 SmallVector<SDValue, 4> InVals; 10536 CLI.Chain = LowerCall(CLI, InVals); 10537 10538 // Update CLI.InVals to use outside of this function. 10539 CLI.InVals = InVals; 10540 10541 // Verify that the target's LowerCall behaved as expected. 10542 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10543 "LowerCall didn't return a valid chain!"); 10544 assert((!CLI.IsTailCall || InVals.empty()) && 10545 "LowerCall emitted a return value for a tail call!"); 10546 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10547 "LowerCall didn't emit the correct number of values!"); 10548 10549 // For a tail call, the return value is merely live-out and there aren't 10550 // any nodes in the DAG representing it. Return a special value to 10551 // indicate that a tail call has been emitted and no more Instructions 10552 // should be processed in the current block. 10553 if (CLI.IsTailCall) { 10554 CLI.DAG.setRoot(CLI.Chain); 10555 return std::make_pair(SDValue(), SDValue()); 10556 } 10557 10558 #ifndef NDEBUG 10559 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10560 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10561 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10562 "LowerCall emitted a value with the wrong type!"); 10563 } 10564 #endif 10565 10566 SmallVector<SDValue, 4> ReturnValues; 10567 if (!CanLowerReturn) { 10568 // The instruction result is the result of loading from the 10569 // hidden sret parameter. 10570 SmallVector<EVT, 1> PVTs; 10571 Type *PtrRetTy = 10572 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10573 10574 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10575 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10576 EVT PtrVT = PVTs[0]; 10577 10578 unsigned NumValues = RetTys.size(); 10579 ReturnValues.resize(NumValues); 10580 SmallVector<SDValue, 4> Chains(NumValues); 10581 10582 // An aggregate return value cannot wrap around the address space, so 10583 // offsets to its parts don't wrap either. 10584 SDNodeFlags Flags; 10585 Flags.setNoUnsignedWrap(true); 10586 10587 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10588 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10589 for (unsigned i = 0; i < NumValues; ++i) { 10590 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10591 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10592 PtrVT), Flags); 10593 SDValue L = CLI.DAG.getLoad( 10594 RetTys[i], CLI.DL, CLI.Chain, Add, 10595 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10596 DemoteStackIdx, Offsets[i]), 10597 HiddenSRetAlign); 10598 ReturnValues[i] = L; 10599 Chains[i] = L.getValue(1); 10600 } 10601 10602 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10603 } else { 10604 // Collect the legal value parts into potentially illegal values 10605 // that correspond to the original function's return values. 10606 std::optional<ISD::NodeType> AssertOp; 10607 if (CLI.RetSExt) 10608 AssertOp = ISD::AssertSext; 10609 else if (CLI.RetZExt) 10610 AssertOp = ISD::AssertZext; 10611 unsigned CurReg = 0; 10612 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10613 EVT VT = RetTys[I]; 10614 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10615 CLI.CallConv, VT); 10616 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10617 CLI.CallConv, VT); 10618 10619 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10620 NumRegs, RegisterVT, VT, nullptr, 10621 CLI.CallConv, AssertOp)); 10622 CurReg += NumRegs; 10623 } 10624 10625 // For a function returning void, there is no return value. We can't create 10626 // such a node, so we just return a null return value in that case. In 10627 // that case, nothing will actually look at the value. 10628 if (ReturnValues.empty()) 10629 return std::make_pair(SDValue(), CLI.Chain); 10630 } 10631 10632 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10633 CLI.DAG.getVTList(RetTys), ReturnValues); 10634 return std::make_pair(Res, CLI.Chain); 10635 } 10636 10637 /// Places new result values for the node in Results (their number 10638 /// and types must exactly match those of the original return values of 10639 /// the node), or leaves Results empty, which indicates that the node is not 10640 /// to be custom lowered after all. 10641 void TargetLowering::LowerOperationWrapper(SDNode *N, 10642 SmallVectorImpl<SDValue> &Results, 10643 SelectionDAG &DAG) const { 10644 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10645 10646 if (!Res.getNode()) 10647 return; 10648 10649 // If the original node has one result, take the return value from 10650 // LowerOperation as is. It might not be result number 0. 10651 if (N->getNumValues() == 1) { 10652 Results.push_back(Res); 10653 return; 10654 } 10655 10656 // If the original node has multiple results, then the return node should 10657 // have the same number of results. 10658 assert((N->getNumValues() == Res->getNumValues()) && 10659 "Lowering returned the wrong number of results!"); 10660 10661 // Places new result values base on N result number. 10662 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10663 Results.push_back(Res.getValue(I)); 10664 } 10665 10666 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10667 llvm_unreachable("LowerOperation not implemented for this target!"); 10668 } 10669 10670 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10671 unsigned Reg, 10672 ISD::NodeType ExtendType) { 10673 SDValue Op = getNonRegisterValue(V); 10674 assert((Op.getOpcode() != ISD::CopyFromReg || 10675 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10676 "Copy from a reg to the same reg!"); 10677 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10678 10679 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10680 // If this is an InlineAsm we have to match the registers required, not the 10681 // notional registers required by the type. 10682 10683 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10684 std::nullopt); // This is not an ABI copy. 10685 SDValue Chain = DAG.getEntryNode(); 10686 10687 if (ExtendType == ISD::ANY_EXTEND) { 10688 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10689 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10690 ExtendType = PreferredExtendIt->second; 10691 } 10692 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10693 PendingExports.push_back(Chain); 10694 } 10695 10696 #include "llvm/CodeGen/SelectionDAGISel.h" 10697 10698 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10699 /// entry block, return true. This includes arguments used by switches, since 10700 /// the switch may expand into multiple basic blocks. 10701 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10702 // With FastISel active, we may be splitting blocks, so force creation 10703 // of virtual registers for all non-dead arguments. 10704 if (FastISel) 10705 return A->use_empty(); 10706 10707 const BasicBlock &Entry = A->getParent()->front(); 10708 for (const User *U : A->users()) 10709 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10710 return false; // Use not in entry block. 10711 10712 return true; 10713 } 10714 10715 using ArgCopyElisionMapTy = 10716 DenseMap<const Argument *, 10717 std::pair<const AllocaInst *, const StoreInst *>>; 10718 10719 /// Scan the entry block of the function in FuncInfo for arguments that look 10720 /// like copies into a local alloca. Record any copied arguments in 10721 /// ArgCopyElisionCandidates. 10722 static void 10723 findArgumentCopyElisionCandidates(const DataLayout &DL, 10724 FunctionLoweringInfo *FuncInfo, 10725 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10726 // Record the state of every static alloca used in the entry block. Argument 10727 // allocas are all used in the entry block, so we need approximately as many 10728 // entries as we have arguments. 10729 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10730 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10731 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10732 StaticAllocas.reserve(NumArgs * 2); 10733 10734 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10735 if (!V) 10736 return nullptr; 10737 V = V->stripPointerCasts(); 10738 const auto *AI = dyn_cast<AllocaInst>(V); 10739 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10740 return nullptr; 10741 auto Iter = StaticAllocas.insert({AI, Unknown}); 10742 return &Iter.first->second; 10743 }; 10744 10745 // Look for stores of arguments to static allocas. Look through bitcasts and 10746 // GEPs to handle type coercions, as long as the alloca is fully initialized 10747 // by the store. Any non-store use of an alloca escapes it and any subsequent 10748 // unanalyzed store might write it. 10749 // FIXME: Handle structs initialized with multiple stores. 10750 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10751 // Look for stores, and handle non-store uses conservatively. 10752 const auto *SI = dyn_cast<StoreInst>(&I); 10753 if (!SI) { 10754 // We will look through cast uses, so ignore them completely. 10755 if (I.isCast()) 10756 continue; 10757 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10758 // to allocas. 10759 if (I.isDebugOrPseudoInst()) 10760 continue; 10761 // This is an unknown instruction. Assume it escapes or writes to all 10762 // static alloca operands. 10763 for (const Use &U : I.operands()) { 10764 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10765 *Info = StaticAllocaInfo::Clobbered; 10766 } 10767 continue; 10768 } 10769 10770 // If the stored value is a static alloca, mark it as escaped. 10771 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10772 *Info = StaticAllocaInfo::Clobbered; 10773 10774 // Check if the destination is a static alloca. 10775 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10776 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10777 if (!Info) 10778 continue; 10779 const AllocaInst *AI = cast<AllocaInst>(Dst); 10780 10781 // Skip allocas that have been initialized or clobbered. 10782 if (*Info != StaticAllocaInfo::Unknown) 10783 continue; 10784 10785 // Check if the stored value is an argument, and that this store fully 10786 // initializes the alloca. 10787 // If the argument type has padding bits we can't directly forward a pointer 10788 // as the upper bits may contain garbage. 10789 // Don't elide copies from the same argument twice. 10790 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10791 const auto *Arg = dyn_cast<Argument>(Val); 10792 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10793 Arg->getType()->isEmptyTy() || 10794 DL.getTypeStoreSize(Arg->getType()) != 10795 DL.getTypeAllocSize(AI->getAllocatedType()) || 10796 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10797 ArgCopyElisionCandidates.count(Arg)) { 10798 *Info = StaticAllocaInfo::Clobbered; 10799 continue; 10800 } 10801 10802 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10803 << '\n'); 10804 10805 // Mark this alloca and store for argument copy elision. 10806 *Info = StaticAllocaInfo::Elidable; 10807 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10808 10809 // Stop scanning if we've seen all arguments. This will happen early in -O0 10810 // builds, which is useful, because -O0 builds have large entry blocks and 10811 // many allocas. 10812 if (ArgCopyElisionCandidates.size() == NumArgs) 10813 break; 10814 } 10815 } 10816 10817 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10818 /// ArgVal is a load from a suitable fixed stack object. 10819 static void tryToElideArgumentCopy( 10820 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10821 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10822 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10823 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10824 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 10825 // Check if this is a load from a fixed stack object. 10826 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 10827 if (!LNode) 10828 return; 10829 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10830 if (!FINode) 10831 return; 10832 10833 // Check that the fixed stack object is the right size and alignment. 10834 // Look at the alignment that the user wrote on the alloca instead of looking 10835 // at the stack object. 10836 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10837 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10838 const AllocaInst *AI = ArgCopyIter->second.first; 10839 int FixedIndex = FINode->getIndex(); 10840 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10841 int OldIndex = AllocaIndex; 10842 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10843 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10844 LLVM_DEBUG( 10845 dbgs() << " argument copy elision failed due to bad fixed stack " 10846 "object size\n"); 10847 return; 10848 } 10849 Align RequiredAlignment = AI->getAlign(); 10850 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10851 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10852 "greater than stack argument alignment (" 10853 << DebugStr(RequiredAlignment) << " vs " 10854 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10855 return; 10856 } 10857 10858 // Perform the elision. Delete the old stack object and replace its only use 10859 // in the variable info map. Mark the stack object as mutable. 10860 LLVM_DEBUG({ 10861 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10862 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10863 << '\n'; 10864 }); 10865 MFI.RemoveStackObject(OldIndex); 10866 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10867 AllocaIndex = FixedIndex; 10868 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10869 for (SDValue ArgVal : ArgVals) 10870 Chains.push_back(ArgVal.getValue(1)); 10871 10872 // Avoid emitting code for the store implementing the copy. 10873 const StoreInst *SI = ArgCopyIter->second.second; 10874 ElidedArgCopyInstrs.insert(SI); 10875 10876 // Check for uses of the argument again so that we can avoid exporting ArgVal 10877 // if it is't used by anything other than the store. 10878 for (const Value *U : Arg.users()) { 10879 if (U != SI) { 10880 ArgHasUses = true; 10881 break; 10882 } 10883 } 10884 } 10885 10886 void SelectionDAGISel::LowerArguments(const Function &F) { 10887 SelectionDAG &DAG = SDB->DAG; 10888 SDLoc dl = SDB->getCurSDLoc(); 10889 const DataLayout &DL = DAG.getDataLayout(); 10890 SmallVector<ISD::InputArg, 16> Ins; 10891 10892 // In Naked functions we aren't going to save any registers. 10893 if (F.hasFnAttribute(Attribute::Naked)) 10894 return; 10895 10896 if (!FuncInfo->CanLowerReturn) { 10897 // Put in an sret pointer parameter before all the other parameters. 10898 SmallVector<EVT, 1> ValueVTs; 10899 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10900 PointerType::get(F.getContext(), 10901 DAG.getDataLayout().getAllocaAddrSpace()), 10902 ValueVTs); 10903 10904 // NOTE: Assuming that a pointer will never break down to more than one VT 10905 // or one register. 10906 ISD::ArgFlagsTy Flags; 10907 Flags.setSRet(); 10908 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10909 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10910 ISD::InputArg::NoArgIndex, 0); 10911 Ins.push_back(RetArg); 10912 } 10913 10914 // Look for stores of arguments to static allocas. Mark such arguments with a 10915 // flag to ask the target to give us the memory location of that argument if 10916 // available. 10917 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10918 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10919 ArgCopyElisionCandidates); 10920 10921 // Set up the incoming argument description vector. 10922 for (const Argument &Arg : F.args()) { 10923 unsigned ArgNo = Arg.getArgNo(); 10924 SmallVector<EVT, 4> ValueVTs; 10925 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10926 bool isArgValueUsed = !Arg.use_empty(); 10927 unsigned PartBase = 0; 10928 Type *FinalType = Arg.getType(); 10929 if (Arg.hasAttribute(Attribute::ByVal)) 10930 FinalType = Arg.getParamByValType(); 10931 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10932 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10933 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10934 Value != NumValues; ++Value) { 10935 EVT VT = ValueVTs[Value]; 10936 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10937 ISD::ArgFlagsTy Flags; 10938 10939 10940 if (Arg.getType()->isPointerTy()) { 10941 Flags.setPointer(); 10942 Flags.setPointerAddrSpace( 10943 cast<PointerType>(Arg.getType())->getAddressSpace()); 10944 } 10945 if (Arg.hasAttribute(Attribute::ZExt)) 10946 Flags.setZExt(); 10947 if (Arg.hasAttribute(Attribute::SExt)) 10948 Flags.setSExt(); 10949 if (Arg.hasAttribute(Attribute::InReg)) { 10950 // If we are using vectorcall calling convention, a structure that is 10951 // passed InReg - is surely an HVA 10952 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10953 isa<StructType>(Arg.getType())) { 10954 // The first value of a structure is marked 10955 if (0 == Value) 10956 Flags.setHvaStart(); 10957 Flags.setHva(); 10958 } 10959 // Set InReg Flag 10960 Flags.setInReg(); 10961 } 10962 if (Arg.hasAttribute(Attribute::StructRet)) 10963 Flags.setSRet(); 10964 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10965 Flags.setSwiftSelf(); 10966 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10967 Flags.setSwiftAsync(); 10968 if (Arg.hasAttribute(Attribute::SwiftError)) 10969 Flags.setSwiftError(); 10970 if (Arg.hasAttribute(Attribute::ByVal)) 10971 Flags.setByVal(); 10972 if (Arg.hasAttribute(Attribute::ByRef)) 10973 Flags.setByRef(); 10974 if (Arg.hasAttribute(Attribute::InAlloca)) { 10975 Flags.setInAlloca(); 10976 // Set the byval flag for CCAssignFn callbacks that don't know about 10977 // inalloca. This way we can know how many bytes we should've allocated 10978 // and how many bytes a callee cleanup function will pop. If we port 10979 // inalloca to more targets, we'll have to add custom inalloca handling 10980 // in the various CC lowering callbacks. 10981 Flags.setByVal(); 10982 } 10983 if (Arg.hasAttribute(Attribute::Preallocated)) { 10984 Flags.setPreallocated(); 10985 // Set the byval flag for CCAssignFn callbacks that don't know about 10986 // preallocated. This way we can know how many bytes we should've 10987 // allocated and how many bytes a callee cleanup function will pop. If 10988 // we port preallocated to more targets, we'll have to add custom 10989 // preallocated handling in the various CC lowering callbacks. 10990 Flags.setByVal(); 10991 } 10992 10993 // Certain targets (such as MIPS), may have a different ABI alignment 10994 // for a type depending on the context. Give the target a chance to 10995 // specify the alignment it wants. 10996 const Align OriginalAlignment( 10997 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10998 Flags.setOrigAlign(OriginalAlignment); 10999 11000 Align MemAlign; 11001 Type *ArgMemTy = nullptr; 11002 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11003 Flags.isByRef()) { 11004 if (!ArgMemTy) 11005 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11006 11007 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11008 11009 // For in-memory arguments, size and alignment should be passed from FE. 11010 // BE will guess if this info is not there but there are cases it cannot 11011 // get right. 11012 if (auto ParamAlign = Arg.getParamStackAlign()) 11013 MemAlign = *ParamAlign; 11014 else if ((ParamAlign = Arg.getParamAlign())) 11015 MemAlign = *ParamAlign; 11016 else 11017 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11018 if (Flags.isByRef()) 11019 Flags.setByRefSize(MemSize); 11020 else 11021 Flags.setByValSize(MemSize); 11022 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11023 MemAlign = *ParamAlign; 11024 } else { 11025 MemAlign = OriginalAlignment; 11026 } 11027 Flags.setMemAlign(MemAlign); 11028 11029 if (Arg.hasAttribute(Attribute::Nest)) 11030 Flags.setNest(); 11031 if (NeedsRegBlock) 11032 Flags.setInConsecutiveRegs(); 11033 if (ArgCopyElisionCandidates.count(&Arg)) 11034 Flags.setCopyElisionCandidate(); 11035 if (Arg.hasAttribute(Attribute::Returned)) 11036 Flags.setReturned(); 11037 11038 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11039 *CurDAG->getContext(), F.getCallingConv(), VT); 11040 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11041 *CurDAG->getContext(), F.getCallingConv(), VT); 11042 for (unsigned i = 0; i != NumRegs; ++i) { 11043 // For scalable vectors, use the minimum size; individual targets 11044 // are responsible for handling scalable vector arguments and 11045 // return values. 11046 ISD::InputArg MyFlags( 11047 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11048 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11049 if (NumRegs > 1 && i == 0) 11050 MyFlags.Flags.setSplit(); 11051 // if it isn't first piece, alignment must be 1 11052 else if (i > 0) { 11053 MyFlags.Flags.setOrigAlign(Align(1)); 11054 if (i == NumRegs - 1) 11055 MyFlags.Flags.setSplitEnd(); 11056 } 11057 Ins.push_back(MyFlags); 11058 } 11059 if (NeedsRegBlock && Value == NumValues - 1) 11060 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11061 PartBase += VT.getStoreSize().getKnownMinValue(); 11062 } 11063 } 11064 11065 // Call the target to set up the argument values. 11066 SmallVector<SDValue, 8> InVals; 11067 SDValue NewRoot = TLI->LowerFormalArguments( 11068 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11069 11070 // Verify that the target's LowerFormalArguments behaved as expected. 11071 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11072 "LowerFormalArguments didn't return a valid chain!"); 11073 assert(InVals.size() == Ins.size() && 11074 "LowerFormalArguments didn't emit the correct number of values!"); 11075 LLVM_DEBUG({ 11076 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11077 assert(InVals[i].getNode() && 11078 "LowerFormalArguments emitted a null value!"); 11079 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11080 "LowerFormalArguments emitted a value with the wrong type!"); 11081 } 11082 }); 11083 11084 // Update the DAG with the new chain value resulting from argument lowering. 11085 DAG.setRoot(NewRoot); 11086 11087 // Set up the argument values. 11088 unsigned i = 0; 11089 if (!FuncInfo->CanLowerReturn) { 11090 // Create a virtual register for the sret pointer, and put in a copy 11091 // from the sret argument into it. 11092 SmallVector<EVT, 1> ValueVTs; 11093 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11094 PointerType::get(F.getContext(), 11095 DAG.getDataLayout().getAllocaAddrSpace()), 11096 ValueVTs); 11097 MVT VT = ValueVTs[0].getSimpleVT(); 11098 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11099 std::optional<ISD::NodeType> AssertOp; 11100 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 11101 nullptr, F.getCallingConv(), AssertOp); 11102 11103 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11104 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11105 Register SRetReg = 11106 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11107 FuncInfo->DemoteRegister = SRetReg; 11108 NewRoot = 11109 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11110 DAG.setRoot(NewRoot); 11111 11112 // i indexes lowered arguments. Bump it past the hidden sret argument. 11113 ++i; 11114 } 11115 11116 SmallVector<SDValue, 4> Chains; 11117 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11118 for (const Argument &Arg : F.args()) { 11119 SmallVector<SDValue, 4> ArgValues; 11120 SmallVector<EVT, 4> ValueVTs; 11121 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11122 unsigned NumValues = ValueVTs.size(); 11123 if (NumValues == 0) 11124 continue; 11125 11126 bool ArgHasUses = !Arg.use_empty(); 11127 11128 // Elide the copying store if the target loaded this argument from a 11129 // suitable fixed stack object. 11130 if (Ins[i].Flags.isCopyElisionCandidate()) { 11131 unsigned NumParts = 0; 11132 for (EVT VT : ValueVTs) 11133 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11134 F.getCallingConv(), VT); 11135 11136 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11137 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11138 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11139 } 11140 11141 // If this argument is unused then remember its value. It is used to generate 11142 // debugging information. 11143 bool isSwiftErrorArg = 11144 TLI->supportSwiftError() && 11145 Arg.hasAttribute(Attribute::SwiftError); 11146 if (!ArgHasUses && !isSwiftErrorArg) { 11147 SDB->setUnusedArgValue(&Arg, InVals[i]); 11148 11149 // Also remember any frame index for use in FastISel. 11150 if (FrameIndexSDNode *FI = 11151 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11152 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11153 } 11154 11155 for (unsigned Val = 0; Val != NumValues; ++Val) { 11156 EVT VT = ValueVTs[Val]; 11157 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11158 F.getCallingConv(), VT); 11159 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11160 *CurDAG->getContext(), F.getCallingConv(), VT); 11161 11162 // Even an apparent 'unused' swifterror argument needs to be returned. So 11163 // we do generate a copy for it that can be used on return from the 11164 // function. 11165 if (ArgHasUses || isSwiftErrorArg) { 11166 std::optional<ISD::NodeType> AssertOp; 11167 if (Arg.hasAttribute(Attribute::SExt)) 11168 AssertOp = ISD::AssertSext; 11169 else if (Arg.hasAttribute(Attribute::ZExt)) 11170 AssertOp = ISD::AssertZext; 11171 11172 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11173 PartVT, VT, nullptr, 11174 F.getCallingConv(), AssertOp)); 11175 } 11176 11177 i += NumParts; 11178 } 11179 11180 // We don't need to do anything else for unused arguments. 11181 if (ArgValues.empty()) 11182 continue; 11183 11184 // Note down frame index. 11185 if (FrameIndexSDNode *FI = 11186 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11187 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11188 11189 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11190 SDB->getCurSDLoc()); 11191 11192 SDB->setValue(&Arg, Res); 11193 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11194 // We want to associate the argument with the frame index, among 11195 // involved operands, that correspond to the lowest address. The 11196 // getCopyFromParts function, called earlier, is swapping the order of 11197 // the operands to BUILD_PAIR depending on endianness. The result of 11198 // that swapping is that the least significant bits of the argument will 11199 // be in the first operand of the BUILD_PAIR node, and the most 11200 // significant bits will be in the second operand. 11201 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11202 if (LoadSDNode *LNode = 11203 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11204 if (FrameIndexSDNode *FI = 11205 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11206 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11207 } 11208 11209 // Analyses past this point are naive and don't expect an assertion. 11210 if (Res.getOpcode() == ISD::AssertZext) 11211 Res = Res.getOperand(0); 11212 11213 // Update the SwiftErrorVRegDefMap. 11214 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11215 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11216 if (Register::isVirtualRegister(Reg)) 11217 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11218 Reg); 11219 } 11220 11221 // If this argument is live outside of the entry block, insert a copy from 11222 // wherever we got it to the vreg that other BB's will reference it as. 11223 if (Res.getOpcode() == ISD::CopyFromReg) { 11224 // If we can, though, try to skip creating an unnecessary vreg. 11225 // FIXME: This isn't very clean... it would be nice to make this more 11226 // general. 11227 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11228 if (Register::isVirtualRegister(Reg)) { 11229 FuncInfo->ValueMap[&Arg] = Reg; 11230 continue; 11231 } 11232 } 11233 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11234 FuncInfo->InitializeRegForValue(&Arg); 11235 SDB->CopyToExportRegsIfNeeded(&Arg); 11236 } 11237 } 11238 11239 if (!Chains.empty()) { 11240 Chains.push_back(NewRoot); 11241 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11242 } 11243 11244 DAG.setRoot(NewRoot); 11245 11246 assert(i == InVals.size() && "Argument register count mismatch!"); 11247 11248 // If any argument copy elisions occurred and we have debug info, update the 11249 // stale frame indices used in the dbg.declare variable info table. 11250 if (!ArgCopyElisionFrameIndexMap.empty()) { 11251 for (MachineFunction::VariableDbgInfo &VI : 11252 MF->getInStackSlotVariableDbgInfo()) { 11253 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11254 if (I != ArgCopyElisionFrameIndexMap.end()) 11255 VI.updateStackSlot(I->second); 11256 } 11257 } 11258 11259 // Finally, if the target has anything special to do, allow it to do so. 11260 emitFunctionEntryCode(); 11261 } 11262 11263 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11264 /// ensure constants are generated when needed. Remember the virtual registers 11265 /// that need to be added to the Machine PHI nodes as input. We cannot just 11266 /// directly add them, because expansion might result in multiple MBB's for one 11267 /// BB. As such, the start of the BB might correspond to a different MBB than 11268 /// the end. 11269 void 11270 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11272 11273 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11274 11275 // Check PHI nodes in successors that expect a value to be available from this 11276 // block. 11277 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11278 if (!isa<PHINode>(SuccBB->begin())) continue; 11279 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11280 11281 // If this terminator has multiple identical successors (common for 11282 // switches), only handle each succ once. 11283 if (!SuccsHandled.insert(SuccMBB).second) 11284 continue; 11285 11286 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11287 11288 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11289 // nodes and Machine PHI nodes, but the incoming operands have not been 11290 // emitted yet. 11291 for (const PHINode &PN : SuccBB->phis()) { 11292 // Ignore dead phi's. 11293 if (PN.use_empty()) 11294 continue; 11295 11296 // Skip empty types 11297 if (PN.getType()->isEmptyTy()) 11298 continue; 11299 11300 unsigned Reg; 11301 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11302 11303 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11304 unsigned &RegOut = ConstantsOut[C]; 11305 if (RegOut == 0) { 11306 RegOut = FuncInfo.CreateRegs(C); 11307 // We need to zero/sign extend ConstantInt phi operands to match 11308 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11309 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11310 if (auto *CI = dyn_cast<ConstantInt>(C)) 11311 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11312 : ISD::ZERO_EXTEND; 11313 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11314 } 11315 Reg = RegOut; 11316 } else { 11317 DenseMap<const Value *, Register>::iterator I = 11318 FuncInfo.ValueMap.find(PHIOp); 11319 if (I != FuncInfo.ValueMap.end()) 11320 Reg = I->second; 11321 else { 11322 assert(isa<AllocaInst>(PHIOp) && 11323 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11324 "Didn't codegen value into a register!??"); 11325 Reg = FuncInfo.CreateRegs(PHIOp); 11326 CopyValueToVirtualRegister(PHIOp, Reg); 11327 } 11328 } 11329 11330 // Remember that this register needs to added to the machine PHI node as 11331 // the input for this MBB. 11332 SmallVector<EVT, 4> ValueVTs; 11333 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11334 for (EVT VT : ValueVTs) { 11335 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11336 for (unsigned i = 0; i != NumRegisters; ++i) 11337 FuncInfo.PHINodesToUpdate.push_back( 11338 std::make_pair(&*MBBI++, Reg + i)); 11339 Reg += NumRegisters; 11340 } 11341 } 11342 } 11343 11344 ConstantsOut.clear(); 11345 } 11346 11347 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11348 MachineFunction::iterator I(MBB); 11349 if (++I == FuncInfo.MF->end()) 11350 return nullptr; 11351 return &*I; 11352 } 11353 11354 /// During lowering new call nodes can be created (such as memset, etc.). 11355 /// Those will become new roots of the current DAG, but complications arise 11356 /// when they are tail calls. In such cases, the call lowering will update 11357 /// the root, but the builder still needs to know that a tail call has been 11358 /// lowered in order to avoid generating an additional return. 11359 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11360 // If the node is null, we do have a tail call. 11361 if (MaybeTC.getNode() != nullptr) 11362 DAG.setRoot(MaybeTC); 11363 else 11364 HasTailCall = true; 11365 } 11366 11367 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11368 MachineBasicBlock *SwitchMBB, 11369 MachineBasicBlock *DefaultMBB) { 11370 MachineFunction *CurMF = FuncInfo.MF; 11371 MachineBasicBlock *NextMBB = nullptr; 11372 MachineFunction::iterator BBI(W.MBB); 11373 if (++BBI != FuncInfo.MF->end()) 11374 NextMBB = &*BBI; 11375 11376 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11377 11378 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11379 11380 if (Size == 2 && W.MBB == SwitchMBB) { 11381 // If any two of the cases has the same destination, and if one value 11382 // is the same as the other, but has one bit unset that the other has set, 11383 // use bit manipulation to do two compares at once. For example: 11384 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11385 // TODO: This could be extended to merge any 2 cases in switches with 3 11386 // cases. 11387 // TODO: Handle cases where W.CaseBB != SwitchBB. 11388 CaseCluster &Small = *W.FirstCluster; 11389 CaseCluster &Big = *W.LastCluster; 11390 11391 if (Small.Low == Small.High && Big.Low == Big.High && 11392 Small.MBB == Big.MBB) { 11393 const APInt &SmallValue = Small.Low->getValue(); 11394 const APInt &BigValue = Big.Low->getValue(); 11395 11396 // Check that there is only one bit different. 11397 APInt CommonBit = BigValue ^ SmallValue; 11398 if (CommonBit.isPowerOf2()) { 11399 SDValue CondLHS = getValue(Cond); 11400 EVT VT = CondLHS.getValueType(); 11401 SDLoc DL = getCurSDLoc(); 11402 11403 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11404 DAG.getConstant(CommonBit, DL, VT)); 11405 SDValue Cond = DAG.getSetCC( 11406 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11407 ISD::SETEQ); 11408 11409 // Update successor info. 11410 // Both Small and Big will jump to Small.BB, so we sum up the 11411 // probabilities. 11412 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11413 if (BPI) 11414 addSuccessorWithProb( 11415 SwitchMBB, DefaultMBB, 11416 // The default destination is the first successor in IR. 11417 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11418 else 11419 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11420 11421 // Insert the true branch. 11422 SDValue BrCond = 11423 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11424 DAG.getBasicBlock(Small.MBB)); 11425 // Insert the false branch. 11426 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11427 DAG.getBasicBlock(DefaultMBB)); 11428 11429 DAG.setRoot(BrCond); 11430 return; 11431 } 11432 } 11433 } 11434 11435 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11436 // Here, we order cases by probability so the most likely case will be 11437 // checked first. However, two clusters can have the same probability in 11438 // which case their relative ordering is non-deterministic. So we use Low 11439 // as a tie-breaker as clusters are guaranteed to never overlap. 11440 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11441 [](const CaseCluster &a, const CaseCluster &b) { 11442 return a.Prob != b.Prob ? 11443 a.Prob > b.Prob : 11444 a.Low->getValue().slt(b.Low->getValue()); 11445 }); 11446 11447 // Rearrange the case blocks so that the last one falls through if possible 11448 // without changing the order of probabilities. 11449 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11450 --I; 11451 if (I->Prob > W.LastCluster->Prob) 11452 break; 11453 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11454 std::swap(*I, *W.LastCluster); 11455 break; 11456 } 11457 } 11458 } 11459 11460 // Compute total probability. 11461 BranchProbability DefaultProb = W.DefaultProb; 11462 BranchProbability UnhandledProbs = DefaultProb; 11463 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11464 UnhandledProbs += I->Prob; 11465 11466 MachineBasicBlock *CurMBB = W.MBB; 11467 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11468 bool FallthroughUnreachable = false; 11469 MachineBasicBlock *Fallthrough; 11470 if (I == W.LastCluster) { 11471 // For the last cluster, fall through to the default destination. 11472 Fallthrough = DefaultMBB; 11473 FallthroughUnreachable = isa<UnreachableInst>( 11474 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11475 } else { 11476 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11477 CurMF->insert(BBI, Fallthrough); 11478 // Put Cond in a virtual register to make it available from the new blocks. 11479 ExportFromCurrentBlock(Cond); 11480 } 11481 UnhandledProbs -= I->Prob; 11482 11483 switch (I->Kind) { 11484 case CC_JumpTable: { 11485 // FIXME: Optimize away range check based on pivot comparisons. 11486 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11487 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11488 11489 // The jump block hasn't been inserted yet; insert it here. 11490 MachineBasicBlock *JumpMBB = JT->MBB; 11491 CurMF->insert(BBI, JumpMBB); 11492 11493 auto JumpProb = I->Prob; 11494 auto FallthroughProb = UnhandledProbs; 11495 11496 // If the default statement is a target of the jump table, we evenly 11497 // distribute the default probability to successors of CurMBB. Also 11498 // update the probability on the edge from JumpMBB to Fallthrough. 11499 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11500 SE = JumpMBB->succ_end(); 11501 SI != SE; ++SI) { 11502 if (*SI == DefaultMBB) { 11503 JumpProb += DefaultProb / 2; 11504 FallthroughProb -= DefaultProb / 2; 11505 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11506 JumpMBB->normalizeSuccProbs(); 11507 break; 11508 } 11509 } 11510 11511 // If the default clause is unreachable, propagate that knowledge into 11512 // JTH->FallthroughUnreachable which will use it to suppress the range 11513 // check. 11514 // 11515 // However, don't do this if we're doing branch target enforcement, 11516 // because a table branch _without_ a range check can be a tempting JOP 11517 // gadget - out-of-bounds inputs that are impossible in correct 11518 // execution become possible again if an attacker can influence the 11519 // control flow. So if an attacker doesn't already have a BTI bypass 11520 // available, we don't want them to be able to get one out of this 11521 // table branch. 11522 if (FallthroughUnreachable) { 11523 Function &CurFunc = CurMF->getFunction(); 11524 bool HasBranchTargetEnforcement = false; 11525 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11526 HasBranchTargetEnforcement = 11527 CurFunc.getFnAttribute("branch-target-enforcement") 11528 .getValueAsBool(); 11529 } else { 11530 HasBranchTargetEnforcement = 11531 CurMF->getMMI().getModule()->getModuleFlag( 11532 "branch-target-enforcement"); 11533 } 11534 if (!HasBranchTargetEnforcement) 11535 JTH->FallthroughUnreachable = true; 11536 } 11537 11538 if (!JTH->FallthroughUnreachable) 11539 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11540 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11541 CurMBB->normalizeSuccProbs(); 11542 11543 // The jump table header will be inserted in our current block, do the 11544 // range check, and fall through to our fallthrough block. 11545 JTH->HeaderBB = CurMBB; 11546 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11547 11548 // If we're in the right place, emit the jump table header right now. 11549 if (CurMBB == SwitchMBB) { 11550 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11551 JTH->Emitted = true; 11552 } 11553 break; 11554 } 11555 case CC_BitTests: { 11556 // FIXME: Optimize away range check based on pivot comparisons. 11557 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11558 11559 // The bit test blocks haven't been inserted yet; insert them here. 11560 for (BitTestCase &BTC : BTB->Cases) 11561 CurMF->insert(BBI, BTC.ThisBB); 11562 11563 // Fill in fields of the BitTestBlock. 11564 BTB->Parent = CurMBB; 11565 BTB->Default = Fallthrough; 11566 11567 BTB->DefaultProb = UnhandledProbs; 11568 // If the cases in bit test don't form a contiguous range, we evenly 11569 // distribute the probability on the edge to Fallthrough to two 11570 // successors of CurMBB. 11571 if (!BTB->ContiguousRange) { 11572 BTB->Prob += DefaultProb / 2; 11573 BTB->DefaultProb -= DefaultProb / 2; 11574 } 11575 11576 if (FallthroughUnreachable) 11577 BTB->FallthroughUnreachable = true; 11578 11579 // If we're in the right place, emit the bit test header right now. 11580 if (CurMBB == SwitchMBB) { 11581 visitBitTestHeader(*BTB, SwitchMBB); 11582 BTB->Emitted = true; 11583 } 11584 break; 11585 } 11586 case CC_Range: { 11587 const Value *RHS, *LHS, *MHS; 11588 ISD::CondCode CC; 11589 if (I->Low == I->High) { 11590 // Check Cond == I->Low. 11591 CC = ISD::SETEQ; 11592 LHS = Cond; 11593 RHS=I->Low; 11594 MHS = nullptr; 11595 } else { 11596 // Check I->Low <= Cond <= I->High. 11597 CC = ISD::SETLE; 11598 LHS = I->Low; 11599 MHS = Cond; 11600 RHS = I->High; 11601 } 11602 11603 // If Fallthrough is unreachable, fold away the comparison. 11604 if (FallthroughUnreachable) 11605 CC = ISD::SETTRUE; 11606 11607 // The false probability is the sum of all unhandled cases. 11608 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11609 getCurSDLoc(), I->Prob, UnhandledProbs); 11610 11611 if (CurMBB == SwitchMBB) 11612 visitSwitchCase(CB, SwitchMBB); 11613 else 11614 SL->SwitchCases.push_back(CB); 11615 11616 break; 11617 } 11618 } 11619 CurMBB = Fallthrough; 11620 } 11621 } 11622 11623 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11624 CaseClusterIt First, 11625 CaseClusterIt Last) { 11626 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11627 if (X.Prob != CC.Prob) 11628 return X.Prob > CC.Prob; 11629 11630 // Ties are broken by comparing the case value. 11631 return X.Low->getValue().slt(CC.Low->getValue()); 11632 }); 11633 } 11634 11635 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11636 const SwitchWorkListItem &W, 11637 Value *Cond, 11638 MachineBasicBlock *SwitchMBB) { 11639 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11640 "Clusters not sorted?"); 11641 11642 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11643 11644 // Balance the tree based on branch probabilities to create a near-optimal (in 11645 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11646 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11647 CaseClusterIt LastLeft = W.FirstCluster; 11648 CaseClusterIt FirstRight = W.LastCluster; 11649 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11650 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11651 11652 // Move LastLeft and FirstRight towards each other from opposite directions to 11653 // find a partitioning of the clusters which balances the probability on both 11654 // sides. If LeftProb and RightProb are equal, alternate which side is 11655 // taken to ensure 0-probability nodes are distributed evenly. 11656 unsigned I = 0; 11657 while (LastLeft + 1 < FirstRight) { 11658 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11659 LeftProb += (++LastLeft)->Prob; 11660 else 11661 RightProb += (--FirstRight)->Prob; 11662 I++; 11663 } 11664 11665 while (true) { 11666 // Our binary search tree differs from a typical BST in that ours can have up 11667 // to three values in each leaf. The pivot selection above doesn't take that 11668 // into account, which means the tree might require more nodes and be less 11669 // efficient. We compensate for this here. 11670 11671 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11672 unsigned NumRight = W.LastCluster - FirstRight + 1; 11673 11674 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11675 // If one side has less than 3 clusters, and the other has more than 3, 11676 // consider taking a cluster from the other side. 11677 11678 if (NumLeft < NumRight) { 11679 // Consider moving the first cluster on the right to the left side. 11680 CaseCluster &CC = *FirstRight; 11681 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11682 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11683 if (LeftSideRank <= RightSideRank) { 11684 // Moving the cluster to the left does not demote it. 11685 ++LastLeft; 11686 ++FirstRight; 11687 continue; 11688 } 11689 } else { 11690 assert(NumRight < NumLeft); 11691 // Consider moving the last element on the left to the right side. 11692 CaseCluster &CC = *LastLeft; 11693 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11694 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11695 if (RightSideRank <= LeftSideRank) { 11696 // Moving the cluster to the right does not demot it. 11697 --LastLeft; 11698 --FirstRight; 11699 continue; 11700 } 11701 } 11702 } 11703 break; 11704 } 11705 11706 assert(LastLeft + 1 == FirstRight); 11707 assert(LastLeft >= W.FirstCluster); 11708 assert(FirstRight <= W.LastCluster); 11709 11710 // Use the first element on the right as pivot since we will make less-than 11711 // comparisons against it. 11712 CaseClusterIt PivotCluster = FirstRight; 11713 assert(PivotCluster > W.FirstCluster); 11714 assert(PivotCluster <= W.LastCluster); 11715 11716 CaseClusterIt FirstLeft = W.FirstCluster; 11717 CaseClusterIt LastRight = W.LastCluster; 11718 11719 const ConstantInt *Pivot = PivotCluster->Low; 11720 11721 // New blocks will be inserted immediately after the current one. 11722 MachineFunction::iterator BBI(W.MBB); 11723 ++BBI; 11724 11725 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11726 // we can branch to its destination directly if it's squeezed exactly in 11727 // between the known lower bound and Pivot - 1. 11728 MachineBasicBlock *LeftMBB; 11729 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11730 FirstLeft->Low == W.GE && 11731 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11732 LeftMBB = FirstLeft->MBB; 11733 } else { 11734 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11735 FuncInfo.MF->insert(BBI, LeftMBB); 11736 WorkList.push_back( 11737 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11738 // Put Cond in a virtual register to make it available from the new blocks. 11739 ExportFromCurrentBlock(Cond); 11740 } 11741 11742 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11743 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11744 // directly if RHS.High equals the current upper bound. 11745 MachineBasicBlock *RightMBB; 11746 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11747 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11748 RightMBB = FirstRight->MBB; 11749 } else { 11750 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11751 FuncInfo.MF->insert(BBI, RightMBB); 11752 WorkList.push_back( 11753 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11754 // Put Cond in a virtual register to make it available from the new blocks. 11755 ExportFromCurrentBlock(Cond); 11756 } 11757 11758 // Create the CaseBlock record that will be used to lower the branch. 11759 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11760 getCurSDLoc(), LeftProb, RightProb); 11761 11762 if (W.MBB == SwitchMBB) 11763 visitSwitchCase(CB, SwitchMBB); 11764 else 11765 SL->SwitchCases.push_back(CB); 11766 } 11767 11768 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11769 // from the swith statement. 11770 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11771 BranchProbability PeeledCaseProb) { 11772 if (PeeledCaseProb == BranchProbability::getOne()) 11773 return BranchProbability::getZero(); 11774 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11775 11776 uint32_t Numerator = CaseProb.getNumerator(); 11777 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11778 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11779 } 11780 11781 // Try to peel the top probability case if it exceeds the threshold. 11782 // Return current MachineBasicBlock for the switch statement if the peeling 11783 // does not occur. 11784 // If the peeling is performed, return the newly created MachineBasicBlock 11785 // for the peeled switch statement. Also update Clusters to remove the peeled 11786 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11787 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11788 const SwitchInst &SI, CaseClusterVector &Clusters, 11789 BranchProbability &PeeledCaseProb) { 11790 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11791 // Don't perform if there is only one cluster or optimizing for size. 11792 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11793 TM.getOptLevel() == CodeGenOptLevel::None || 11794 SwitchMBB->getParent()->getFunction().hasMinSize()) 11795 return SwitchMBB; 11796 11797 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11798 unsigned PeeledCaseIndex = 0; 11799 bool SwitchPeeled = false; 11800 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11801 CaseCluster &CC = Clusters[Index]; 11802 if (CC.Prob < TopCaseProb) 11803 continue; 11804 TopCaseProb = CC.Prob; 11805 PeeledCaseIndex = Index; 11806 SwitchPeeled = true; 11807 } 11808 if (!SwitchPeeled) 11809 return SwitchMBB; 11810 11811 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11812 << TopCaseProb << "\n"); 11813 11814 // Record the MBB for the peeled switch statement. 11815 MachineFunction::iterator BBI(SwitchMBB); 11816 ++BBI; 11817 MachineBasicBlock *PeeledSwitchMBB = 11818 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11819 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11820 11821 ExportFromCurrentBlock(SI.getCondition()); 11822 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11823 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11824 nullptr, nullptr, TopCaseProb.getCompl()}; 11825 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11826 11827 Clusters.erase(PeeledCaseIt); 11828 for (CaseCluster &CC : Clusters) { 11829 LLVM_DEBUG( 11830 dbgs() << "Scale the probablity for one cluster, before scaling: " 11831 << CC.Prob << "\n"); 11832 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11833 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11834 } 11835 PeeledCaseProb = TopCaseProb; 11836 return PeeledSwitchMBB; 11837 } 11838 11839 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11840 // Extract cases from the switch. 11841 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11842 CaseClusterVector Clusters; 11843 Clusters.reserve(SI.getNumCases()); 11844 for (auto I : SI.cases()) { 11845 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11846 const ConstantInt *CaseVal = I.getCaseValue(); 11847 BranchProbability Prob = 11848 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11849 : BranchProbability(1, SI.getNumCases() + 1); 11850 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11851 } 11852 11853 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11854 11855 // Cluster adjacent cases with the same destination. We do this at all 11856 // optimization levels because it's cheap to do and will make codegen faster 11857 // if there are many clusters. 11858 sortAndRangeify(Clusters); 11859 11860 // The branch probablity of the peeled case. 11861 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11862 MachineBasicBlock *PeeledSwitchMBB = 11863 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11864 11865 // If there is only the default destination, jump there directly. 11866 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11867 if (Clusters.empty()) { 11868 assert(PeeledSwitchMBB == SwitchMBB); 11869 SwitchMBB->addSuccessor(DefaultMBB); 11870 if (DefaultMBB != NextBlock(SwitchMBB)) { 11871 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11872 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11873 } 11874 return; 11875 } 11876 11877 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 11878 DAG.getBFI()); 11879 SL->findBitTestClusters(Clusters, &SI); 11880 11881 LLVM_DEBUG({ 11882 dbgs() << "Case clusters: "; 11883 for (const CaseCluster &C : Clusters) { 11884 if (C.Kind == CC_JumpTable) 11885 dbgs() << "JT:"; 11886 if (C.Kind == CC_BitTests) 11887 dbgs() << "BT:"; 11888 11889 C.Low->getValue().print(dbgs(), true); 11890 if (C.Low != C.High) { 11891 dbgs() << '-'; 11892 C.High->getValue().print(dbgs(), true); 11893 } 11894 dbgs() << ' '; 11895 } 11896 dbgs() << '\n'; 11897 }); 11898 11899 assert(!Clusters.empty()); 11900 SwitchWorkList WorkList; 11901 CaseClusterIt First = Clusters.begin(); 11902 CaseClusterIt Last = Clusters.end() - 1; 11903 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11904 // Scale the branchprobability for DefaultMBB if the peel occurs and 11905 // DefaultMBB is not replaced. 11906 if (PeeledCaseProb != BranchProbability::getZero() && 11907 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11908 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11909 WorkList.push_back( 11910 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11911 11912 while (!WorkList.empty()) { 11913 SwitchWorkListItem W = WorkList.pop_back_val(); 11914 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11915 11916 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 11917 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11918 // For optimized builds, lower large range as a balanced binary tree. 11919 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11920 continue; 11921 } 11922 11923 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11924 } 11925 } 11926 11927 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11929 auto DL = getCurSDLoc(); 11930 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11931 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11932 } 11933 11934 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11936 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11937 11938 SDLoc DL = getCurSDLoc(); 11939 SDValue V = getValue(I.getOperand(0)); 11940 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11941 11942 if (VT.isScalableVector()) { 11943 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11944 return; 11945 } 11946 11947 // Use VECTOR_SHUFFLE for the fixed-length vector 11948 // to maintain existing behavior. 11949 SmallVector<int, 8> Mask; 11950 unsigned NumElts = VT.getVectorMinNumElements(); 11951 for (unsigned i = 0; i != NumElts; ++i) 11952 Mask.push_back(NumElts - 1 - i); 11953 11954 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11955 } 11956 11957 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 11958 auto DL = getCurSDLoc(); 11959 SDValue InVec = getValue(I.getOperand(0)); 11960 EVT OutVT = 11961 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 11962 11963 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 11964 11965 // ISD Node needs the input vectors split into two equal parts 11966 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11967 DAG.getVectorIdxConstant(0, DL)); 11968 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11969 DAG.getVectorIdxConstant(OutNumElts, DL)); 11970 11971 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11972 // legalisation and combines. 11973 if (OutVT.isFixedLengthVector()) { 11974 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11975 createStrideMask(0, 2, OutNumElts)); 11976 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11977 createStrideMask(1, 2, OutNumElts)); 11978 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 11979 setValue(&I, Res); 11980 return; 11981 } 11982 11983 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 11984 DAG.getVTList(OutVT, OutVT), Lo, Hi); 11985 setValue(&I, Res); 11986 } 11987 11988 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 11989 auto DL = getCurSDLoc(); 11990 EVT InVT = getValue(I.getOperand(0)).getValueType(); 11991 SDValue InVec0 = getValue(I.getOperand(0)); 11992 SDValue InVec1 = getValue(I.getOperand(1)); 11993 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11994 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11995 11996 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11997 // legalisation and combines. 11998 if (OutVT.isFixedLengthVector()) { 11999 unsigned NumElts = InVT.getVectorMinNumElements(); 12000 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12001 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12002 createInterleaveMask(NumElts, 2))); 12003 return; 12004 } 12005 12006 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12007 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12008 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12009 Res.getValue(1)); 12010 setValue(&I, Res); 12011 } 12012 12013 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12014 SmallVector<EVT, 4> ValueVTs; 12015 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12016 ValueVTs); 12017 unsigned NumValues = ValueVTs.size(); 12018 if (NumValues == 0) return; 12019 12020 SmallVector<SDValue, 4> Values(NumValues); 12021 SDValue Op = getValue(I.getOperand(0)); 12022 12023 for (unsigned i = 0; i != NumValues; ++i) 12024 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12025 SDValue(Op.getNode(), Op.getResNo() + i)); 12026 12027 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12028 DAG.getVTList(ValueVTs), Values)); 12029 } 12030 12031 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12032 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12033 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12034 12035 SDLoc DL = getCurSDLoc(); 12036 SDValue V1 = getValue(I.getOperand(0)); 12037 SDValue V2 = getValue(I.getOperand(1)); 12038 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12039 12040 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12041 if (VT.isScalableVector()) { 12042 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 12043 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12044 DAG.getConstant(Imm, DL, IdxVT))); 12045 return; 12046 } 12047 12048 unsigned NumElts = VT.getVectorNumElements(); 12049 12050 uint64_t Idx = (NumElts + Imm) % NumElts; 12051 12052 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12053 SmallVector<int, 8> Mask; 12054 for (unsigned i = 0; i < NumElts; ++i) 12055 Mask.push_back(Idx + i); 12056 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12057 } 12058 12059 // Consider the following MIR after SelectionDAG, which produces output in 12060 // phyregs in the first case or virtregs in the second case. 12061 // 12062 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12063 // %5:gr32 = COPY $ebx 12064 // %6:gr32 = COPY $edx 12065 // %1:gr32 = COPY %6:gr32 12066 // %0:gr32 = COPY %5:gr32 12067 // 12068 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12069 // %1:gr32 = COPY %6:gr32 12070 // %0:gr32 = COPY %5:gr32 12071 // 12072 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12073 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12074 // 12075 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12076 // to a single virtreg (such as %0). The remaining outputs monotonically 12077 // increase in virtreg number from there. If a callbr has no outputs, then it 12078 // should not have a corresponding callbr landingpad; in fact, the callbr 12079 // landingpad would not even be able to refer to such a callbr. 12080 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12081 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12082 // There is definitely at least one copy. 12083 assert(MI->getOpcode() == TargetOpcode::COPY && 12084 "start of copy chain MUST be COPY"); 12085 Reg = MI->getOperand(1).getReg(); 12086 MI = MRI.def_begin(Reg)->getParent(); 12087 // There may be an optional second copy. 12088 if (MI->getOpcode() == TargetOpcode::COPY) { 12089 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12090 Reg = MI->getOperand(1).getReg(); 12091 assert(Reg.isPhysical() && "expected COPY of physical register"); 12092 MI = MRI.def_begin(Reg)->getParent(); 12093 } 12094 // The start of the chain must be an INLINEASM_BR. 12095 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12096 "end of copy chain MUST be INLINEASM_BR"); 12097 return Reg; 12098 } 12099 12100 // We must do this walk rather than the simpler 12101 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12102 // otherwise we will end up with copies of virtregs only valid along direct 12103 // edges. 12104 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12105 SmallVector<EVT, 8> ResultVTs; 12106 SmallVector<SDValue, 8> ResultValues; 12107 const auto *CBR = 12108 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12109 12110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12111 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12112 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12113 12114 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12115 SDValue Chain = DAG.getRoot(); 12116 12117 // Re-parse the asm constraints string. 12118 TargetLowering::AsmOperandInfoVector TargetConstraints = 12119 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12120 for (auto &T : TargetConstraints) { 12121 SDISelAsmOperandInfo OpInfo(T); 12122 if (OpInfo.Type != InlineAsm::isOutput) 12123 continue; 12124 12125 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12126 // individual constraint. 12127 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12128 12129 switch (OpInfo.ConstraintType) { 12130 case TargetLowering::C_Register: 12131 case TargetLowering::C_RegisterClass: { 12132 // Fill in OpInfo.AssignedRegs.Regs. 12133 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12134 12135 // getRegistersForValue may produce 1 to many registers based on whether 12136 // the OpInfo.ConstraintVT is legal on the target or not. 12137 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12138 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12139 if (Register::isPhysicalRegister(OriginalDef)) 12140 FuncInfo.MBB->addLiveIn(OriginalDef); 12141 // Update the assigned registers to use the original defs. 12142 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12143 } 12144 12145 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12146 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12147 ResultValues.push_back(V); 12148 ResultVTs.push_back(OpInfo.ConstraintVT); 12149 break; 12150 } 12151 case TargetLowering::C_Other: { 12152 SDValue Flag; 12153 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12154 OpInfo, DAG); 12155 ++InitialDef; 12156 ResultValues.push_back(V); 12157 ResultVTs.push_back(OpInfo.ConstraintVT); 12158 break; 12159 } 12160 default: 12161 break; 12162 } 12163 } 12164 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12165 DAG.getVTList(ResultVTs), ResultValues); 12166 setValue(&I, V); 12167 } 12168