1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 /// LimitFloatPrecision - Generate low-precision inline sequences for 68 /// some float libcalls (6, 8 or 12 bits). 69 static unsigned LimitFloatPrecision; 70 71 static cl::opt<unsigned, true> 72 LimitFPPrecision("limit-float-precision", 73 cl::desc("Generate low-precision inline sequences " 74 "for some float libcalls"), 75 cl::location(LimitFloatPrecision), 76 cl::init(0)); 77 78 // Limit the width of DAG chains. This is important in general to prevent 79 // prevent DAG-based analysis from blowing up. For example, alias analysis and 80 // load clustering may not complete in reasonable time. It is difficult to 81 // recognize and avoid this situation within each individual analysis, and 82 // future analyses are likely to have the same behavior. Limiting DAG width is 83 // the safe approach, and will be especially important with global DAGs. 84 // 85 // MaxParallelChains default is arbitrarily high to avoid affecting 86 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 87 // sequence over this should have been converted to llvm.memcpy by the 88 // frontend. It easy to induce this behavior with .ll code such as: 89 // %buffer = alloca [4096 x i8] 90 // %data = load [4096 x i8]* %argPtr 91 // store [4096 x i8] %data, [4096 x i8]* %buffer 92 static const unsigned MaxParallelChains = 64; 93 94 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 95 const SDValue *Parts, unsigned NumParts, 96 MVT PartVT, EVT ValueVT, const Value *V); 97 98 /// getCopyFromParts - Create a value that contains the specified legal parts 99 /// combined into the value they represent. If the parts combine to a type 100 /// larger then ValueVT then AssertOp can be used to specify whether the extra 101 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 102 /// (ISD::AssertSext). 103 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, 105 unsigned NumParts, MVT PartVT, EVT ValueVT, 106 const Value *V, 107 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 108 if (ValueVT.isVector()) 109 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 110 PartVT, ValueVT, V); 111 112 assert(NumParts > 0 && "No parts to assemble!"); 113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 114 SDValue Val = Parts[0]; 115 116 if (NumParts > 1) { 117 // Assemble the value from multiple parts. 118 if (ValueVT.isInteger()) { 119 unsigned PartBits = PartVT.getSizeInBits(); 120 unsigned ValueBits = ValueVT.getSizeInBits(); 121 122 // Assemble the power of 2 part. 123 unsigned RoundParts = NumParts & (NumParts - 1) ? 124 1 << Log2_32(NumParts) : NumParts; 125 unsigned RoundBits = PartBits * RoundParts; 126 EVT RoundVT = RoundBits == ValueBits ? 127 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 128 SDValue Lo, Hi; 129 130 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 131 132 if (RoundParts > 2) { 133 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 134 PartVT, HalfVT, V); 135 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 136 RoundParts / 2, PartVT, HalfVT, V); 137 } else { 138 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 139 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 140 } 141 142 if (TLI.isBigEndian()) 143 std::swap(Lo, Hi); 144 145 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 146 147 if (RoundParts < NumParts) { 148 // Assemble the trailing non-power-of-2 part. 149 unsigned OddParts = NumParts - RoundParts; 150 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 151 Hi = getCopyFromParts(DAG, DL, 152 Parts + RoundParts, OddParts, PartVT, OddVT, V); 153 154 // Combine the round and odd parts. 155 Lo = Val; 156 if (TLI.isBigEndian()) 157 std::swap(Lo, Hi); 158 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 159 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 160 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 161 DAG.getConstant(Lo.getValueType().getSizeInBits(), 162 TLI.getPointerTy())); 163 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 164 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 165 } 166 } else if (PartVT.isFloatingPoint()) { 167 // FP split into multiple FP parts (for ppcf128) 168 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 169 "Unexpected split"); 170 SDValue Lo, Hi; 171 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 172 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 173 if (TLI.hasBigEndianPartOrdering(ValueVT)) 174 std::swap(Lo, Hi); 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 176 } else { 177 // FP split into integer parts (soft fp) 178 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 179 !PartVT.isVector() && "Unexpected split"); 180 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 181 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 182 } 183 } 184 185 // There is now one part, held in Val. Correct it to match ValueVT. 186 EVT PartEVT = Val.getValueType(); 187 188 if (PartEVT == ValueVT) 189 return Val; 190 191 if (PartEVT.isInteger() && ValueVT.isInteger()) { 192 if (ValueVT.bitsLT(PartEVT)) { 193 // For a truncate, see if we have any information to 194 // indicate whether the truncated bits will always be 195 // zero or sign-extension. 196 if (AssertOp != ISD::DELETED_NODE) 197 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 198 DAG.getValueType(ValueVT)); 199 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 200 } 201 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 205 // FP_ROUND's are always exact here. 206 if (ValueVT.bitsLT(Val.getValueType())) 207 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 208 DAG.getTargetConstant(1, TLI.getPointerTy())); 209 210 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 214 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 215 216 llvm_unreachable("Unknown mismatch!"); 217 } 218 219 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 220 const Twine &ErrMsg) { 221 const Instruction *I = dyn_cast_or_null<Instruction>(V); 222 if (!V) 223 return Ctx.emitError(ErrMsg); 224 225 const char *AsmError = ", possible invalid constraint for vector type"; 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) 227 if (isa<InlineAsm>(CI->getCalledValue())) 228 return Ctx.emitError(I, ErrMsg + AsmError); 229 230 return Ctx.emitError(I, ErrMsg); 231 } 232 233 /// getCopyFromPartsVector - Create a value that contains the specified legal 234 /// parts combined into the value they represent. If the parts combine to a 235 /// type larger then ValueVT then AssertOp can be used to specify whether the 236 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 237 /// ValueVT (ISD::AssertSext). 238 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 239 const SDValue *Parts, unsigned NumParts, 240 MVT PartVT, EVT ValueVT, const Value *V) { 241 assert(ValueVT.isVector() && "Not a vector value"); 242 assert(NumParts > 0 && "No parts to assemble!"); 243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 244 SDValue Val = Parts[0]; 245 246 // Handle a multi-element vector. 247 if (NumParts > 1) { 248 EVT IntermediateVT; 249 MVT RegisterVT; 250 unsigned NumIntermediates; 251 unsigned NumRegs = 252 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 253 NumIntermediates, RegisterVT); 254 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 255 NumParts = NumRegs; // Silence a compiler warning. 256 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 257 assert(RegisterVT == Parts[0].getSimpleValueType() && 258 "Part type doesn't match part!"); 259 260 // Assemble the parts into intermediate operands. 261 SmallVector<SDValue, 8> Ops(NumIntermediates); 262 if (NumIntermediates == NumParts) { 263 // If the register was not expanded, truncate or copy the value, 264 // as appropriate. 265 for (unsigned i = 0; i != NumParts; ++i) 266 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 267 PartVT, IntermediateVT, V); 268 } else if (NumParts > 0) { 269 // If the intermediate type was expanded, build the intermediate 270 // operands from the parts. 271 assert(NumParts % NumIntermediates == 0 && 272 "Must expand into a divisible number of parts!"); 273 unsigned Factor = NumParts / NumIntermediates; 274 for (unsigned i = 0; i != NumIntermediates; ++i) 275 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 276 PartVT, IntermediateVT, V); 277 } 278 279 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 280 // intermediate operands. 281 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 282 : ISD::BUILD_VECTOR, 283 DL, ValueVT, Ops); 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 EVT PartEVT = Val.getValueType(); 288 289 if (PartEVT == ValueVT) 290 return Val; 291 292 if (PartEVT.isVector()) { 293 // If the element type of the source/dest vectors are the same, but the 294 // parts vector has more elements than the value vector, then we have a 295 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 296 // elements we want. 297 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 298 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 299 "Cannot narrow, it would be a lossy transformation"); 300 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 301 DAG.getConstant(0, TLI.getVectorIdxTy())); 302 } 303 304 // Vector/Vector bitcast. 305 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 306 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 307 308 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 309 "Cannot handle this kind of promotion"); 310 // Promoted vector extract 311 bool Smaller = ValueVT.bitsLE(PartEVT); 312 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 313 DL, ValueVT, Val); 314 315 } 316 317 // Trivial bitcast if the types are the same size and the destination 318 // vector type is legal. 319 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 320 TLI.isTypeLegal(ValueVT)) 321 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 322 323 // Handle cases such as i8 -> <1 x i1> 324 if (ValueVT.getVectorNumElements() != 1) { 325 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 326 "non-trivial scalar-to-vector conversion"); 327 return DAG.getUNDEF(ValueVT); 328 } 329 330 if (ValueVT.getVectorNumElements() == 1 && 331 ValueVT.getVectorElementType() != PartEVT) { 332 bool Smaller = ValueVT.bitsLE(PartEVT); 333 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 334 DL, ValueVT.getScalarType(), Val); 335 } 336 337 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 338 } 339 340 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 341 SDValue Val, SDValue *Parts, unsigned NumParts, 342 MVT PartVT, const Value *V); 343 344 /// getCopyToParts - Create a series of nodes that contain the specified value 345 /// split into legal parts. If the parts contain more bits than Val, then, for 346 /// integers, ExtendKind can be used to specify how to generate the extra bits. 347 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V, 350 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 351 EVT ValueVT = Val.getValueType(); 352 353 // Handle the vector case separately. 354 if (ValueVT.isVector()) 355 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 356 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 unsigned PartBits = PartVT.getSizeInBits(); 359 unsigned OrigNumParts = NumParts; 360 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 361 362 if (NumParts == 0) 363 return; 364 365 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 366 EVT PartEVT = PartVT; 367 if (PartEVT == ValueVT) { 368 assert(NumParts == 1 && "No-op copy with multiple parts!"); 369 Parts[0] = Val; 370 return; 371 } 372 373 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 374 // If the parts cover more bits than the value has, promote the value. 375 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 376 assert(NumParts == 1 && "Do not know what to promote to!"); 377 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 378 } else { 379 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 380 ValueVT.isInteger() && 381 "Unknown mismatch!"); 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 384 if (PartVT == MVT::x86mmx) 385 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 386 } 387 } else if (PartBits == ValueVT.getSizeInBits()) { 388 // Different types of the same size. 389 assert(NumParts == 1 && PartEVT != ValueVT); 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 392 // If the parts cover less bits than value has, truncate the value. 393 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 394 ValueVT.isInteger() && 395 "Unknown mismatch!"); 396 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 397 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 398 if (PartVT == MVT::x86mmx) 399 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 400 } 401 402 // The value may have changed - recompute ValueVT. 403 ValueVT = Val.getValueType(); 404 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 405 "Failed to tile the value with PartVT!"); 406 407 if (NumParts == 1) { 408 if (PartEVT != ValueVT) 409 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 410 "scalar-to-vector conversion failed"); 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// append - Add the specified values to this one. 630 void append(const RegsForValue &RHS) { 631 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 632 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 633 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVTs value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 641 SDLoc dl, 642 SDValue &Chain, SDValue *Flag, 643 const Value *V = nullptr) const; 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 650 SDValue &Chain, SDValue *Flag, const Value *V) const; 651 652 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 653 /// operand list. This adds the code marker, matching input operand index 654 /// (if applicable), and includes the number of values added into it. 655 void AddInlineAsmOperands(unsigned Kind, 656 bool HasMatching, unsigned MatchingIdx, 657 SelectionDAG &DAG, 658 std::vector<SDValue> &Ops) const; 659 }; 660 } 661 662 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 663 /// this value and returns the result as a ValueVT value. This uses 664 /// Chain/Flag as the input and updates them for the output Chain/Flag. 665 /// If the Flag pointer is NULL, no flag is used. 666 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 667 FunctionLoweringInfo &FuncInfo, 668 SDLoc dl, 669 SDValue &Chain, SDValue *Flag, 670 const Value *V) const { 671 // A Value with type {} or [0 x %t] needs no registers. 672 if (ValueVTs.empty()) 673 return SDValue(); 674 675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 676 677 // Assemble the legal parts into the final values. 678 SmallVector<SDValue, 4> Values(ValueVTs.size()); 679 SmallVector<SDValue, 8> Parts; 680 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 681 // Copy the legal parts from the registers. 682 EVT ValueVT = ValueVTs[Value]; 683 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 684 MVT RegisterVT = RegVTs[Value]; 685 686 Parts.resize(NumRegs); 687 for (unsigned i = 0; i != NumRegs; ++i) { 688 SDValue P; 689 if (!Flag) { 690 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 691 } else { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 693 *Flag = P.getValue(2); 694 } 695 696 Chain = P.getValue(1); 697 Parts[i] = P; 698 699 // If the source register was virtual and if we know something about it, 700 // add an assert node. 701 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 702 !RegisterVT.isInteger() || RegisterVT.isVector()) 703 continue; 704 705 const FunctionLoweringInfo::LiveOutInfo *LOI = 706 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 707 if (!LOI) 708 continue; 709 710 unsigned RegSize = RegisterVT.getSizeInBits(); 711 unsigned NumSignBits = LOI->NumSignBits; 712 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 713 714 if (NumZeroBits == RegSize) { 715 // The current value is a zero. 716 // Explicitly express that as it would be easier for 717 // optimizations to kick in. 718 Parts[i] = DAG.getConstant(0, RegisterVT); 719 continue; 720 } 721 722 // FIXME: We capture more information than the dag can represent. For 723 // now, just use the tightest assertzext/assertsext possible. 724 bool isSExt = true; 725 EVT FromVT(MVT::Other); 726 if (NumSignBits == RegSize) 727 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 728 else if (NumZeroBits >= RegSize-1) 729 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 730 else if (NumSignBits > RegSize-8) 731 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 732 else if (NumZeroBits >= RegSize-8) 733 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 734 else if (NumSignBits > RegSize-16) 735 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 736 else if (NumZeroBits >= RegSize-16) 737 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 738 else if (NumSignBits > RegSize-32) 739 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 740 else if (NumZeroBits >= RegSize-32) 741 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 742 else 743 continue; 744 745 // Add an assertion node. 746 assert(FromVT != MVT::Other); 747 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 748 RegisterVT, P, DAG.getValueType(FromVT)); 749 } 750 751 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 752 NumRegs, RegisterVT, ValueVT, V); 753 Part += NumRegs; 754 Parts.clear(); 755 } 756 757 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 758 } 759 760 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 761 /// specified value into the registers specified by this object. This uses 762 /// Chain/Flag as the input and updates them for the output Chain/Flag. 763 /// If the Flag pointer is NULL, no flag is used. 764 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 765 SDValue &Chain, SDValue *Flag, 766 const Value *V) const { 767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 768 769 // Get the list of the values's legal parts. 770 unsigned NumRegs = Regs.size(); 771 SmallVector<SDValue, 8> Parts(NumRegs); 772 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 773 EVT ValueVT = ValueVTs[Value]; 774 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 775 MVT RegisterVT = RegVTs[Value]; 776 ISD::NodeType ExtendKind = 777 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 778 779 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 780 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 781 Part += NumParts; 782 } 783 784 // Copy the parts into the registers. 785 SmallVector<SDValue, 8> Chains(NumRegs); 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 SDValue Part; 788 if (!Flag) { 789 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 790 } else { 791 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 792 *Flag = Part.getValue(1); 793 } 794 795 Chains[i] = Part.getValue(0); 796 } 797 798 if (NumRegs == 1 || Flag) 799 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 800 // flagged to it. That is the CopyToReg nodes and the user are considered 801 // a single scheduling unit. If we create a TokenFactor and return it as 802 // chain, then the TokenFactor is both a predecessor (operand) of the 803 // user as well as a successor (the TF operands are flagged to the user). 804 // c1, f1 = CopyToReg 805 // c2, f2 = CopyToReg 806 // c3 = TokenFactor c1, c2 807 // ... 808 // = op c3, ..., f2 809 Chain = Chains[NumRegs-1]; 810 else 811 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 812 } 813 814 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 815 /// operand list. This adds the code marker and includes the number of 816 /// values added into it. 817 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 818 unsigned MatchingIdx, 819 SelectionDAG &DAG, 820 std::vector<SDValue> &Ops) const { 821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 822 823 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 824 if (HasMatching) 825 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 826 else if (!Regs.empty() && 827 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 828 // Put the register class of the virtual registers in the flag word. That 829 // way, later passes can recompute register class constraints for inline 830 // assembly as well as normal instructions. 831 // Don't do this for tied operands that can use the regclass information 832 // from the def. 833 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 834 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 835 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 836 } 837 838 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 839 Ops.push_back(Res); 840 841 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 842 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 843 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 844 MVT RegisterVT = RegVTs[Value]; 845 for (unsigned i = 0; i != NumRegs; ++i) { 846 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 847 unsigned TheReg = Regs[Reg++]; 848 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 849 850 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 851 // If we clobbered the stack pointer, MFI should know about it. 852 assert(DAG.getMachineFunction().getFrameInfo()-> 853 hasInlineAsmWithSPAdjust()); 854 } 855 } 856 } 857 } 858 859 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 860 const TargetLibraryInfo *li) { 861 AA = &aa; 862 GFI = gfi; 863 LibInfo = li; 864 DL = DAG.getSubtarget().getDataLayout(); 865 Context = DAG.getContext(); 866 LPadToCallSiteMap.clear(); 867 } 868 869 /// clear - Clear out the current SelectionDAG and the associated 870 /// state and prepare this SelectionDAGBuilder object to be used 871 /// for a new block. This doesn't clear out information about 872 /// additional blocks that are needed to complete switch lowering 873 /// or PHI node updating; that information is cleared out as it is 874 /// consumed. 875 void SelectionDAGBuilder::clear() { 876 NodeMap.clear(); 877 UnusedArgNodeMap.clear(); 878 PendingLoads.clear(); 879 PendingExports.clear(); 880 CurInst = nullptr; 881 HasTailCall = false; 882 SDNodeOrder = LowestSDNodeOrder; 883 } 884 885 /// clearDanglingDebugInfo - Clear the dangling debug information 886 /// map. This function is separated from the clear so that debug 887 /// information that is dangling in a basic block can be properly 888 /// resolved in a different basic block. This allows the 889 /// SelectionDAG to resolve dangling debug information attached 890 /// to PHI nodes. 891 void SelectionDAGBuilder::clearDanglingDebugInfo() { 892 DanglingDebugInfoMap.clear(); 893 } 894 895 /// getRoot - Return the current virtual root of the Selection DAG, 896 /// flushing any PendingLoad items. This must be done before emitting 897 /// a store or any other node that may need to be ordered after any 898 /// prior load instructions. 899 /// 900 SDValue SelectionDAGBuilder::getRoot() { 901 if (PendingLoads.empty()) 902 return DAG.getRoot(); 903 904 if (PendingLoads.size() == 1) { 905 SDValue Root = PendingLoads[0]; 906 DAG.setRoot(Root); 907 PendingLoads.clear(); 908 return Root; 909 } 910 911 // Otherwise, we have to make a token factor node. 912 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 913 PendingLoads); 914 PendingLoads.clear(); 915 DAG.setRoot(Root); 916 return Root; 917 } 918 919 /// getControlRoot - Similar to getRoot, but instead of flushing all the 920 /// PendingLoad items, flush all the PendingExports items. It is necessary 921 /// to do this before emitting a terminator instruction. 922 /// 923 SDValue SelectionDAGBuilder::getControlRoot() { 924 SDValue Root = DAG.getRoot(); 925 926 if (PendingExports.empty()) 927 return Root; 928 929 // Turn all of the CopyToReg chains into one factored node. 930 if (Root.getOpcode() != ISD::EntryToken) { 931 unsigned i = 0, e = PendingExports.size(); 932 for (; i != e; ++i) { 933 assert(PendingExports[i].getNode()->getNumOperands() > 1); 934 if (PendingExports[i].getNode()->getOperand(0) == Root) 935 break; // Don't add the root if we already indirectly depend on it. 936 } 937 938 if (i == e) 939 PendingExports.push_back(Root); 940 } 941 942 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 943 PendingExports); 944 PendingExports.clear(); 945 DAG.setRoot(Root); 946 return Root; 947 } 948 949 void SelectionDAGBuilder::visit(const Instruction &I) { 950 // Set up outgoing PHI node register values before emitting the terminator. 951 if (isa<TerminatorInst>(&I)) 952 HandlePHINodesInSuccessorBlocks(I.getParent()); 953 954 ++SDNodeOrder; 955 956 CurInst = &I; 957 958 visit(I.getOpcode(), I); 959 960 if (!isa<TerminatorInst>(&I) && !HasTailCall) 961 CopyToExportRegsIfNeeded(&I); 962 963 CurInst = nullptr; 964 } 965 966 void SelectionDAGBuilder::visitPHI(const PHINode &) { 967 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 968 } 969 970 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 971 // Note: this doesn't use InstVisitor, because it has to work with 972 // ConstantExpr's in addition to instructions. 973 switch (Opcode) { 974 default: llvm_unreachable("Unknown instruction type encountered!"); 975 // Build the switch statement using the Instruction.def file. 976 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 977 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 978 #include "llvm/IR/Instruction.def" 979 } 980 } 981 982 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 983 // generate the debug data structures now that we've seen its definition. 984 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 985 SDValue Val) { 986 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 987 if (DDI.getDI()) { 988 const DbgValueInst *DI = DDI.getDI(); 989 DebugLoc dl = DDI.getdl(); 990 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 991 MDNode *Variable = DI->getVariable(); 992 uint64_t Offset = DI->getOffset(); 993 // A dbg.value for an alloca is always indirect. 994 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 995 SDDbgValue *SDV; 996 if (Val.getNode()) { 997 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) { 998 SDV = DAG.getDbgValue(Variable, Val.getNode(), 999 Val.getResNo(), IsIndirect, 1000 Offset, dl, DbgSDNodeOrder); 1001 DAG.AddDbgValue(SDV, Val.getNode(), false); 1002 } 1003 } else 1004 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1005 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1006 } 1007 } 1008 1009 /// getValue - Return an SDValue for the given Value. 1010 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1011 // If we already have an SDValue for this value, use it. It's important 1012 // to do this first, so that we don't create a CopyFromReg if we already 1013 // have a regular SDValue. 1014 SDValue &N = NodeMap[V]; 1015 if (N.getNode()) return N; 1016 1017 // If there's a virtual register allocated and initialized for this 1018 // value, use it. 1019 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1020 if (It != FuncInfo.ValueMap.end()) { 1021 unsigned InReg = It->second; 1022 RegsForValue RFV(*DAG.getContext(), 1023 *TM.getSubtargetImpl()->getTargetLowering(), InReg, 1024 V->getType()); 1025 SDValue Chain = DAG.getEntryNode(); 1026 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1027 resolveDanglingDebugInfo(V, N); 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getNonRegisterValue - Return an SDValue for the given Value, but 1039 /// don't look in FuncInfo.ValueMap for a virtual register. 1040 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1041 // If we already have an SDValue for this value, use it. 1042 SDValue &N = NodeMap[V]; 1043 if (N.getNode()) return N; 1044 1045 // Otherwise create a new SDValue and remember it. 1046 SDValue Val = getValueImpl(V); 1047 NodeMap[V] = Val; 1048 resolveDanglingDebugInfo(V, Val); 1049 return Val; 1050 } 1051 1052 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1053 /// Create an SDValue for the given value. 1054 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1055 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1056 1057 if (const Constant *C = dyn_cast<Constant>(V)) { 1058 EVT VT = TLI->getValueType(V->getType(), true); 1059 1060 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1061 return DAG.getConstant(*CI, VT); 1062 1063 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1064 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1065 1066 if (isa<ConstantPointerNull>(C)) { 1067 unsigned AS = V->getType()->getPointerAddressSpace(); 1068 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1069 } 1070 1071 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1072 return DAG.getConstantFP(*CFP, VT); 1073 1074 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1075 return DAG.getUNDEF(VT); 1076 1077 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1078 visit(CE->getOpcode(), *CE); 1079 SDValue N1 = NodeMap[V]; 1080 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1081 return N1; 1082 } 1083 1084 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1085 SmallVector<SDValue, 4> Constants; 1086 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1087 OI != OE; ++OI) { 1088 SDNode *Val = getValue(*OI).getNode(); 1089 // If the operand is an empty aggregate, there are no values. 1090 if (!Val) continue; 1091 // Add each leaf value from the operand to the Constants list 1092 // to form a flattened list of all the values. 1093 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1094 Constants.push_back(SDValue(Val, i)); 1095 } 1096 1097 return DAG.getMergeValues(Constants, getCurSDLoc()); 1098 } 1099 1100 if (const ConstantDataSequential *CDS = 1101 dyn_cast<ConstantDataSequential>(C)) { 1102 SmallVector<SDValue, 4> Ops; 1103 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1104 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1105 // Add each leaf value from the operand to the Constants list 1106 // to form a flattened list of all the values. 1107 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1108 Ops.push_back(SDValue(Val, i)); 1109 } 1110 1111 if (isa<ArrayType>(CDS->getType())) 1112 return DAG.getMergeValues(Ops, getCurSDLoc()); 1113 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1114 VT, Ops); 1115 } 1116 1117 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1118 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1119 "Unknown struct or array constant!"); 1120 1121 SmallVector<EVT, 4> ValueVTs; 1122 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1123 unsigned NumElts = ValueVTs.size(); 1124 if (NumElts == 0) 1125 return SDValue(); // empty struct 1126 SmallVector<SDValue, 4> Constants(NumElts); 1127 for (unsigned i = 0; i != NumElts; ++i) { 1128 EVT EltVT = ValueVTs[i]; 1129 if (isa<UndefValue>(C)) 1130 Constants[i] = DAG.getUNDEF(EltVT); 1131 else if (EltVT.isFloatingPoint()) 1132 Constants[i] = DAG.getConstantFP(0, EltVT); 1133 else 1134 Constants[i] = DAG.getConstant(0, EltVT); 1135 } 1136 1137 return DAG.getMergeValues(Constants, getCurSDLoc()); 1138 } 1139 1140 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1141 return DAG.getBlockAddress(BA, VT); 1142 1143 VectorType *VecTy = cast<VectorType>(V->getType()); 1144 unsigned NumElements = VecTy->getNumElements(); 1145 1146 // Now that we know the number and type of the elements, get that number of 1147 // elements into the Ops array based on what kind of constant it is. 1148 SmallVector<SDValue, 16> Ops; 1149 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1150 for (unsigned i = 0; i != NumElements; ++i) 1151 Ops.push_back(getValue(CV->getOperand(i))); 1152 } else { 1153 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1154 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1155 1156 SDValue Op; 1157 if (EltVT.isFloatingPoint()) 1158 Op = DAG.getConstantFP(0, EltVT); 1159 else 1160 Op = DAG.getConstant(0, EltVT); 1161 Ops.assign(NumElements, Op); 1162 } 1163 1164 // Create a BUILD_VECTOR node. 1165 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1166 } 1167 1168 // If this is a static alloca, generate it as the frameindex instead of 1169 // computation. 1170 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1171 DenseMap<const AllocaInst*, int>::iterator SI = 1172 FuncInfo.StaticAllocaMap.find(AI); 1173 if (SI != FuncInfo.StaticAllocaMap.end()) 1174 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1175 } 1176 1177 // If this is an instruction which fast-isel has deferred, select it now. 1178 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1179 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1180 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1181 SDValue Chain = DAG.getEntryNode(); 1182 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1183 } 1184 1185 llvm_unreachable("Can't get register for value!"); 1186 } 1187 1188 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1189 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1190 SDValue Chain = getControlRoot(); 1191 SmallVector<ISD::OutputArg, 8> Outs; 1192 SmallVector<SDValue, 8> OutVals; 1193 1194 if (!FuncInfo.CanLowerReturn) { 1195 unsigned DemoteReg = FuncInfo.DemoteRegister; 1196 const Function *F = I.getParent()->getParent(); 1197 1198 // Emit a store of the return value through the virtual register. 1199 // Leave Outs empty so that LowerReturn won't try to load return 1200 // registers the usual way. 1201 SmallVector<EVT, 1> PtrValueVTs; 1202 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1203 PtrValueVTs); 1204 1205 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1206 SDValue RetOp = getValue(I.getOperand(0)); 1207 1208 SmallVector<EVT, 4> ValueVTs; 1209 SmallVector<uint64_t, 4> Offsets; 1210 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1211 unsigned NumValues = ValueVTs.size(); 1212 1213 SmallVector<SDValue, 4> Chains(NumValues); 1214 for (unsigned i = 0; i != NumValues; ++i) { 1215 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1216 RetPtr.getValueType(), RetPtr, 1217 DAG.getIntPtrConstant(Offsets[i])); 1218 Chains[i] = 1219 DAG.getStore(Chain, getCurSDLoc(), 1220 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1221 // FIXME: better loc info would be nice. 1222 Add, MachinePointerInfo(), false, false, 0); 1223 } 1224 1225 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1226 MVT::Other, Chains); 1227 } else if (I.getNumOperands() != 0) { 1228 SmallVector<EVT, 4> ValueVTs; 1229 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1230 unsigned NumValues = ValueVTs.size(); 1231 if (NumValues) { 1232 SDValue RetOp = getValue(I.getOperand(0)); 1233 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1234 EVT VT = ValueVTs[j]; 1235 1236 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1237 1238 const Function *F = I.getParent()->getParent(); 1239 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1240 Attribute::SExt)) 1241 ExtendKind = ISD::SIGN_EXTEND; 1242 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1243 Attribute::ZExt)) 1244 ExtendKind = ISD::ZERO_EXTEND; 1245 1246 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1247 VT = TLI->getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1248 1249 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1250 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1251 SmallVector<SDValue, 4> Parts(NumParts); 1252 getCopyToParts(DAG, getCurSDLoc(), 1253 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1254 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1255 1256 // 'inreg' on function refers to return value 1257 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1258 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1259 Attribute::InReg)) 1260 Flags.setInReg(); 1261 1262 // Propagate extension type if any 1263 if (ExtendKind == ISD::SIGN_EXTEND) 1264 Flags.setSExt(); 1265 else if (ExtendKind == ISD::ZERO_EXTEND) 1266 Flags.setZExt(); 1267 1268 for (unsigned i = 0; i < NumParts; ++i) { 1269 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1270 VT, /*isfixed=*/true, 0, 0)); 1271 OutVals.push_back(Parts[i]); 1272 } 1273 } 1274 } 1275 } 1276 1277 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1278 CallingConv::ID CallConv = 1279 DAG.getMachineFunction().getFunction()->getCallingConv(); 1280 Chain = TM.getSubtargetImpl()->getTargetLowering()->LowerReturn( 1281 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1282 1283 // Verify that the target's LowerReturn behaved as expected. 1284 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1285 "LowerReturn didn't return a valid chain!"); 1286 1287 // Update the DAG with the new chain value resulting from return lowering. 1288 DAG.setRoot(Chain); 1289 } 1290 1291 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1292 /// created for it, emit nodes to copy the value into the virtual 1293 /// registers. 1294 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1295 // Skip empty types 1296 if (V->getType()->isEmptyTy()) 1297 return; 1298 1299 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1300 if (VMI != FuncInfo.ValueMap.end()) { 1301 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1302 CopyValueToVirtualRegister(V, VMI->second); 1303 } 1304 } 1305 1306 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1307 /// the current basic block, add it to ValueMap now so that we'll get a 1308 /// CopyTo/FromReg. 1309 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1310 // No need to export constants. 1311 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1312 1313 // Already exported? 1314 if (FuncInfo.isExportedInst(V)) return; 1315 1316 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1317 CopyValueToVirtualRegister(V, Reg); 1318 } 1319 1320 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1321 const BasicBlock *FromBB) { 1322 // The operands of the setcc have to be in this block. We don't know 1323 // how to export them from some other block. 1324 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1325 // Can export from current BB. 1326 if (VI->getParent() == FromBB) 1327 return true; 1328 1329 // Is already exported, noop. 1330 return FuncInfo.isExportedInst(V); 1331 } 1332 1333 // If this is an argument, we can export it if the BB is the entry block or 1334 // if it is already exported. 1335 if (isa<Argument>(V)) { 1336 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1337 return true; 1338 1339 // Otherwise, can only export this if it is already exported. 1340 return FuncInfo.isExportedInst(V); 1341 } 1342 1343 // Otherwise, constants can always be exported. 1344 return true; 1345 } 1346 1347 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1348 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1349 const MachineBasicBlock *Dst) const { 1350 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1351 if (!BPI) 1352 return 0; 1353 const BasicBlock *SrcBB = Src->getBasicBlock(); 1354 const BasicBlock *DstBB = Dst->getBasicBlock(); 1355 return BPI->getEdgeWeight(SrcBB, DstBB); 1356 } 1357 1358 void SelectionDAGBuilder:: 1359 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1360 uint32_t Weight /* = 0 */) { 1361 if (!Weight) 1362 Weight = getEdgeWeight(Src, Dst); 1363 Src->addSuccessor(Dst, Weight); 1364 } 1365 1366 1367 static bool InBlock(const Value *V, const BasicBlock *BB) { 1368 if (const Instruction *I = dyn_cast<Instruction>(V)) 1369 return I->getParent() == BB; 1370 return true; 1371 } 1372 1373 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1374 /// This function emits a branch and is used at the leaves of an OR or an 1375 /// AND operator tree. 1376 /// 1377 void 1378 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1379 MachineBasicBlock *TBB, 1380 MachineBasicBlock *FBB, 1381 MachineBasicBlock *CurBB, 1382 MachineBasicBlock *SwitchBB, 1383 uint32_t TWeight, 1384 uint32_t FWeight) { 1385 const BasicBlock *BB = CurBB->getBasicBlock(); 1386 1387 // If the leaf of the tree is a comparison, merge the condition into 1388 // the caseblock. 1389 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1390 // The operands of the cmp have to be in this block. We don't know 1391 // how to export them from some other block. If this is the first block 1392 // of the sequence, no exporting is needed. 1393 if (CurBB == SwitchBB || 1394 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1395 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1396 ISD::CondCode Condition; 1397 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1398 Condition = getICmpCondCode(IC->getPredicate()); 1399 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1400 Condition = getFCmpCondCode(FC->getPredicate()); 1401 if (TM.Options.NoNaNsFPMath) 1402 Condition = getFCmpCodeWithoutNaN(Condition); 1403 } else { 1404 Condition = ISD::SETEQ; // silence warning. 1405 llvm_unreachable("Unknown compare instruction"); 1406 } 1407 1408 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1409 TBB, FBB, CurBB, TWeight, FWeight); 1410 SwitchCases.push_back(CB); 1411 return; 1412 } 1413 } 1414 1415 // Create a CaseBlock record representing this branch. 1416 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1417 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1418 SwitchCases.push_back(CB); 1419 } 1420 1421 /// Scale down both weights to fit into uint32_t. 1422 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1423 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1424 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1425 NewTrue = NewTrue / Scale; 1426 NewFalse = NewFalse / Scale; 1427 } 1428 1429 /// FindMergedConditions - If Cond is an expression like 1430 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1431 MachineBasicBlock *TBB, 1432 MachineBasicBlock *FBB, 1433 MachineBasicBlock *CurBB, 1434 MachineBasicBlock *SwitchBB, 1435 unsigned Opc, uint32_t TWeight, 1436 uint32_t FWeight) { 1437 // If this node is not part of the or/and tree, emit it as a branch. 1438 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1439 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1440 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1441 BOp->getParent() != CurBB->getBasicBlock() || 1442 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1443 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1444 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1445 TWeight, FWeight); 1446 return; 1447 } 1448 1449 // Create TmpBB after CurBB. 1450 MachineFunction::iterator BBI = CurBB; 1451 MachineFunction &MF = DAG.getMachineFunction(); 1452 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1453 CurBB->getParent()->insert(++BBI, TmpBB); 1454 1455 if (Opc == Instruction::Or) { 1456 // Codegen X | Y as: 1457 // BB1: 1458 // jmp_if_X TBB 1459 // jmp TmpBB 1460 // TmpBB: 1461 // jmp_if_Y TBB 1462 // jmp FBB 1463 // 1464 1465 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1466 // The requirement is that 1467 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1468 // = TrueProb for orignal BB. 1469 // Assuming the orignal weights are A and B, one choice is to set BB1's 1470 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1471 // assumes that 1472 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1473 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1474 // TmpBB, but the math is more complicated. 1475 1476 uint64_t NewTrueWeight = TWeight; 1477 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1478 ScaleWeights(NewTrueWeight, NewFalseWeight); 1479 // Emit the LHS condition. 1480 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1481 NewTrueWeight, NewFalseWeight); 1482 1483 NewTrueWeight = TWeight; 1484 NewFalseWeight = 2 * (uint64_t)FWeight; 1485 ScaleWeights(NewTrueWeight, NewFalseWeight); 1486 // Emit the RHS condition into TmpBB. 1487 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1488 NewTrueWeight, NewFalseWeight); 1489 } else { 1490 assert(Opc == Instruction::And && "Unknown merge op!"); 1491 // Codegen X & Y as: 1492 // BB1: 1493 // jmp_if_X TmpBB 1494 // jmp FBB 1495 // TmpBB: 1496 // jmp_if_Y TBB 1497 // jmp FBB 1498 // 1499 // This requires creation of TmpBB after CurBB. 1500 1501 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1502 // The requirement is that 1503 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1504 // = FalseProb for orignal BB. 1505 // Assuming the orignal weights are A and B, one choice is to set BB1's 1506 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1507 // assumes that 1508 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1509 1510 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1511 uint64_t NewFalseWeight = FWeight; 1512 ScaleWeights(NewTrueWeight, NewFalseWeight); 1513 // Emit the LHS condition. 1514 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1515 NewTrueWeight, NewFalseWeight); 1516 1517 NewTrueWeight = 2 * (uint64_t)TWeight; 1518 NewFalseWeight = FWeight; 1519 ScaleWeights(NewTrueWeight, NewFalseWeight); 1520 // Emit the RHS condition into TmpBB. 1521 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1522 NewTrueWeight, NewFalseWeight); 1523 } 1524 } 1525 1526 /// If the set of cases should be emitted as a series of branches, return true. 1527 /// If we should emit this as a bunch of and/or'd together conditions, return 1528 /// false. 1529 bool 1530 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1531 if (Cases.size() != 2) return true; 1532 1533 // If this is two comparisons of the same values or'd or and'd together, they 1534 // will get folded into a single comparison, so don't emit two blocks. 1535 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1536 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1537 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1538 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1539 return false; 1540 } 1541 1542 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1543 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1544 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1545 Cases[0].CC == Cases[1].CC && 1546 isa<Constant>(Cases[0].CmpRHS) && 1547 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1548 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1549 return false; 1550 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1551 return false; 1552 } 1553 1554 return true; 1555 } 1556 1557 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1558 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1559 1560 // Update machine-CFG edges. 1561 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1562 1563 // Figure out which block is immediately after the current one. 1564 MachineBasicBlock *NextBlock = nullptr; 1565 MachineFunction::iterator BBI = BrMBB; 1566 if (++BBI != FuncInfo.MF->end()) 1567 NextBlock = BBI; 1568 1569 if (I.isUnconditional()) { 1570 // Update machine-CFG edges. 1571 BrMBB->addSuccessor(Succ0MBB); 1572 1573 // If this is not a fall-through branch or optimizations are switched off, 1574 // emit the branch. 1575 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1576 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1577 MVT::Other, getControlRoot(), 1578 DAG.getBasicBlock(Succ0MBB))); 1579 1580 return; 1581 } 1582 1583 // If this condition is one of the special cases we handle, do special stuff 1584 // now. 1585 const Value *CondVal = I.getCondition(); 1586 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1587 1588 // If this is a series of conditions that are or'd or and'd together, emit 1589 // this as a sequence of branches instead of setcc's with and/or operations. 1590 // As long as jumps are not expensive, this should improve performance. 1591 // For example, instead of something like: 1592 // cmp A, B 1593 // C = seteq 1594 // cmp D, E 1595 // F = setle 1596 // or C, F 1597 // jnz foo 1598 // Emit: 1599 // cmp A, B 1600 // je foo 1601 // cmp D, E 1602 // jle foo 1603 // 1604 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1605 if (!TM.getSubtargetImpl()->getTargetLowering()->isJumpExpensive() && 1606 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1607 BOp->getOpcode() == Instruction::Or)) { 1608 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1609 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1610 getEdgeWeight(BrMBB, Succ1MBB)); 1611 // If the compares in later blocks need to use values not currently 1612 // exported from this block, export them now. This block should always 1613 // be the first entry. 1614 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1615 1616 // Allow some cases to be rejected. 1617 if (ShouldEmitAsBranches(SwitchCases)) { 1618 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1619 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1620 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1621 } 1622 1623 // Emit the branch for this block. 1624 visitSwitchCase(SwitchCases[0], BrMBB); 1625 SwitchCases.erase(SwitchCases.begin()); 1626 return; 1627 } 1628 1629 // Okay, we decided not to do this, remove any inserted MBB's and clear 1630 // SwitchCases. 1631 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1632 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1633 1634 SwitchCases.clear(); 1635 } 1636 } 1637 1638 // Create a CaseBlock record representing this branch. 1639 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1640 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1641 1642 // Use visitSwitchCase to actually insert the fast branch sequence for this 1643 // cond branch. 1644 visitSwitchCase(CB, BrMBB); 1645 } 1646 1647 /// visitSwitchCase - Emits the necessary code to represent a single node in 1648 /// the binary search tree resulting from lowering a switch instruction. 1649 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1650 MachineBasicBlock *SwitchBB) { 1651 SDValue Cond; 1652 SDValue CondLHS = getValue(CB.CmpLHS); 1653 SDLoc dl = getCurSDLoc(); 1654 1655 // Build the setcc now. 1656 if (!CB.CmpMHS) { 1657 // Fold "(X == true)" to X and "(X == false)" to !X to 1658 // handle common cases produced by branch lowering. 1659 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1660 CB.CC == ISD::SETEQ) 1661 Cond = CondLHS; 1662 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1663 CB.CC == ISD::SETEQ) { 1664 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1665 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1666 } else 1667 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1668 } else { 1669 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1670 1671 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1672 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1673 1674 SDValue CmpOp = getValue(CB.CmpMHS); 1675 EVT VT = CmpOp.getValueType(); 1676 1677 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1678 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1679 ISD::SETLE); 1680 } else { 1681 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1682 VT, CmpOp, DAG.getConstant(Low, VT)); 1683 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1684 DAG.getConstant(High-Low, VT), ISD::SETULE); 1685 } 1686 } 1687 1688 // Update successor info 1689 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1690 // TrueBB and FalseBB are always different unless the incoming IR is 1691 // degenerate. This only happens when running llc on weird IR. 1692 if (CB.TrueBB != CB.FalseBB) 1693 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1694 1695 // Set NextBlock to be the MBB immediately after the current one, if any. 1696 // This is used to avoid emitting unnecessary branches to the next block. 1697 MachineBasicBlock *NextBlock = nullptr; 1698 MachineFunction::iterator BBI = SwitchBB; 1699 if (++BBI != FuncInfo.MF->end()) 1700 NextBlock = BBI; 1701 1702 // If the lhs block is the next block, invert the condition so that we can 1703 // fall through to the lhs instead of the rhs block. 1704 if (CB.TrueBB == NextBlock) { 1705 std::swap(CB.TrueBB, CB.FalseBB); 1706 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1707 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1708 } 1709 1710 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1711 MVT::Other, getControlRoot(), Cond, 1712 DAG.getBasicBlock(CB.TrueBB)); 1713 1714 // Insert the false branch. Do this even if it's a fall through branch, 1715 // this makes it easier to do DAG optimizations which require inverting 1716 // the branch condition. 1717 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1718 DAG.getBasicBlock(CB.FalseBB)); 1719 1720 DAG.setRoot(BrCond); 1721 } 1722 1723 /// visitJumpTable - Emit JumpTable node in the current MBB 1724 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1725 // Emit the code for the jump table 1726 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1727 EVT PTy = TM.getSubtargetImpl()->getTargetLowering()->getPointerTy(); 1728 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1729 JT.Reg, PTy); 1730 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1731 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1732 MVT::Other, Index.getValue(1), 1733 Table, Index); 1734 DAG.setRoot(BrJumpTable); 1735 } 1736 1737 /// visitJumpTableHeader - This function emits necessary code to produce index 1738 /// in the JumpTable from switch case. 1739 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1740 JumpTableHeader &JTH, 1741 MachineBasicBlock *SwitchBB) { 1742 // Subtract the lowest switch case value from the value being switched on and 1743 // conditional branch to default mbb if the result is greater than the 1744 // difference between smallest and largest cases. 1745 SDValue SwitchOp = getValue(JTH.SValue); 1746 EVT VT = SwitchOp.getValueType(); 1747 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1748 DAG.getConstant(JTH.First, VT)); 1749 1750 // The SDNode we just created, which holds the value being switched on minus 1751 // the smallest case value, needs to be copied to a virtual register so it 1752 // can be used as an index into the jump table in a subsequent basic block. 1753 // This value may be smaller or larger than the target's pointer type, and 1754 // therefore require extension or truncating. 1755 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1756 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1757 1758 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1759 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1760 JumpTableReg, SwitchOp); 1761 JT.Reg = JumpTableReg; 1762 1763 // Emit the range check for the jump table, and branch to the default block 1764 // for the switch statement if the value being switched on exceeds the largest 1765 // case in the switch. 1766 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1767 TLI->getSetCCResultType(*DAG.getContext(), 1768 Sub.getValueType()), 1769 Sub, 1770 DAG.getConstant(JTH.Last - JTH.First,VT), 1771 ISD::SETUGT); 1772 1773 // Set NextBlock to be the MBB immediately after the current one, if any. 1774 // This is used to avoid emitting unnecessary branches to the next block. 1775 MachineBasicBlock *NextBlock = nullptr; 1776 MachineFunction::iterator BBI = SwitchBB; 1777 1778 if (++BBI != FuncInfo.MF->end()) 1779 NextBlock = BBI; 1780 1781 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1782 MVT::Other, CopyTo, CMP, 1783 DAG.getBasicBlock(JT.Default)); 1784 1785 if (JT.MBB != NextBlock) 1786 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1787 DAG.getBasicBlock(JT.MBB)); 1788 1789 DAG.setRoot(BrCond); 1790 } 1791 1792 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1793 /// tail spliced into a stack protector check success bb. 1794 /// 1795 /// For a high level explanation of how this fits into the stack protector 1796 /// generation see the comment on the declaration of class 1797 /// StackProtectorDescriptor. 1798 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1799 MachineBasicBlock *ParentBB) { 1800 1801 // First create the loads to the guard/stack slot for the comparison. 1802 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1803 EVT PtrTy = TLI->getPointerTy(); 1804 1805 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1806 int FI = MFI->getStackProtectorIndex(); 1807 1808 const Value *IRGuard = SPD.getGuard(); 1809 SDValue GuardPtr = getValue(IRGuard); 1810 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1811 1812 unsigned Align = 1813 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1814 1815 SDValue Guard; 1816 1817 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1818 // guard value from the virtual register holding the value. Otherwise, emit a 1819 // volatile load to retrieve the stack guard value. 1820 unsigned GuardReg = SPD.getGuardReg(); 1821 1822 if (GuardReg && TLI->useLoadStackGuardNode()) 1823 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1824 PtrTy); 1825 else 1826 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1827 GuardPtr, MachinePointerInfo(IRGuard, 0), 1828 true, false, false, Align); 1829 1830 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1831 StackSlotPtr, 1832 MachinePointerInfo::getFixedStack(FI), 1833 true, false, false, Align); 1834 1835 // Perform the comparison via a subtract/getsetcc. 1836 EVT VT = Guard.getValueType(); 1837 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1838 1839 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1840 TLI->getSetCCResultType(*DAG.getContext(), 1841 Sub.getValueType()), 1842 Sub, DAG.getConstant(0, VT), 1843 ISD::SETNE); 1844 1845 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1846 // branch to failure MBB. 1847 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1848 MVT::Other, StackSlot.getOperand(0), 1849 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1850 // Otherwise branch to success MBB. 1851 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1852 MVT::Other, BrCond, 1853 DAG.getBasicBlock(SPD.getSuccessMBB())); 1854 1855 DAG.setRoot(Br); 1856 } 1857 1858 /// Codegen the failure basic block for a stack protector check. 1859 /// 1860 /// A failure stack protector machine basic block consists simply of a call to 1861 /// __stack_chk_fail(). 1862 /// 1863 /// For a high level explanation of how this fits into the stack protector 1864 /// generation see the comment on the declaration of class 1865 /// StackProtectorDescriptor. 1866 void 1867 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1868 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1869 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1870 MVT::isVoid, nullptr, 0, false, 1871 getCurSDLoc(), false, false).second; 1872 DAG.setRoot(Chain); 1873 } 1874 1875 /// visitBitTestHeader - This function emits necessary code to produce value 1876 /// suitable for "bit tests" 1877 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1878 MachineBasicBlock *SwitchBB) { 1879 // Subtract the minimum value 1880 SDValue SwitchOp = getValue(B.SValue); 1881 EVT VT = SwitchOp.getValueType(); 1882 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1883 DAG.getConstant(B.First, VT)); 1884 1885 // Check range 1886 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1887 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1888 TLI->getSetCCResultType(*DAG.getContext(), 1889 Sub.getValueType()), 1890 Sub, DAG.getConstant(B.Range, VT), 1891 ISD::SETUGT); 1892 1893 // Determine the type of the test operands. 1894 bool UsePtrType = false; 1895 if (!TLI->isTypeLegal(VT)) 1896 UsePtrType = true; 1897 else { 1898 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1899 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1900 // Switch table case range are encoded into series of masks. 1901 // Just use pointer type, it's guaranteed to fit. 1902 UsePtrType = true; 1903 break; 1904 } 1905 } 1906 if (UsePtrType) { 1907 VT = TLI->getPointerTy(); 1908 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1909 } 1910 1911 B.RegVT = VT.getSimpleVT(); 1912 B.Reg = FuncInfo.CreateReg(B.RegVT); 1913 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1914 B.Reg, Sub); 1915 1916 // Set NextBlock to be the MBB immediately after the current one, if any. 1917 // This is used to avoid emitting unnecessary branches to the next block. 1918 MachineBasicBlock *NextBlock = nullptr; 1919 MachineFunction::iterator BBI = SwitchBB; 1920 if (++BBI != FuncInfo.MF->end()) 1921 NextBlock = BBI; 1922 1923 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1924 1925 addSuccessorWithWeight(SwitchBB, B.Default); 1926 addSuccessorWithWeight(SwitchBB, MBB); 1927 1928 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1929 MVT::Other, CopyTo, RangeCmp, 1930 DAG.getBasicBlock(B.Default)); 1931 1932 if (MBB != NextBlock) 1933 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1934 DAG.getBasicBlock(MBB)); 1935 1936 DAG.setRoot(BrRange); 1937 } 1938 1939 /// visitBitTestCase - this function produces one "bit test" 1940 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1941 MachineBasicBlock* NextMBB, 1942 uint32_t BranchWeightToNext, 1943 unsigned Reg, 1944 BitTestCase &B, 1945 MachineBasicBlock *SwitchBB) { 1946 MVT VT = BB.RegVT; 1947 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1948 Reg, VT); 1949 SDValue Cmp; 1950 unsigned PopCount = CountPopulation_64(B.Mask); 1951 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1952 if (PopCount == 1) { 1953 // Testing for a single bit; just compare the shift count with what it 1954 // would need to be to shift a 1 bit in that position. 1955 Cmp = DAG.getSetCC(getCurSDLoc(), 1956 TLI->getSetCCResultType(*DAG.getContext(), VT), 1957 ShiftOp, 1958 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1959 ISD::SETEQ); 1960 } else if (PopCount == BB.Range) { 1961 // There is only one zero bit in the range, test for it directly. 1962 Cmp = DAG.getSetCC(getCurSDLoc(), 1963 TLI->getSetCCResultType(*DAG.getContext(), VT), 1964 ShiftOp, 1965 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1966 ISD::SETNE); 1967 } else { 1968 // Make desired shift 1969 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1970 DAG.getConstant(1, VT), ShiftOp); 1971 1972 // Emit bit tests and jumps 1973 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1974 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1975 Cmp = DAG.getSetCC(getCurSDLoc(), 1976 TLI->getSetCCResultType(*DAG.getContext(), VT), 1977 AndOp, DAG.getConstant(0, VT), 1978 ISD::SETNE); 1979 } 1980 1981 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1982 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1983 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1984 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1985 1986 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1987 MVT::Other, getControlRoot(), 1988 Cmp, DAG.getBasicBlock(B.TargetBB)); 1989 1990 // Set NextBlock to be the MBB immediately after the current one, if any. 1991 // This is used to avoid emitting unnecessary branches to the next block. 1992 MachineBasicBlock *NextBlock = nullptr; 1993 MachineFunction::iterator BBI = SwitchBB; 1994 if (++BBI != FuncInfo.MF->end()) 1995 NextBlock = BBI; 1996 1997 if (NextMBB != NextBlock) 1998 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1999 DAG.getBasicBlock(NextMBB)); 2000 2001 DAG.setRoot(BrAnd); 2002 } 2003 2004 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2005 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2006 2007 // Retrieve successors. 2008 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2009 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2010 2011 const Value *Callee(I.getCalledValue()); 2012 const Function *Fn = dyn_cast<Function>(Callee); 2013 if (isa<InlineAsm>(Callee)) 2014 visitInlineAsm(&I); 2015 else if (Fn && Fn->isIntrinsic()) { 2016 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2017 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2018 } else 2019 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2020 2021 // If the value of the invoke is used outside of its defining block, make it 2022 // available as a virtual register. 2023 CopyToExportRegsIfNeeded(&I); 2024 2025 // Update successor info 2026 addSuccessorWithWeight(InvokeMBB, Return); 2027 addSuccessorWithWeight(InvokeMBB, LandingPad); 2028 2029 // Drop into normal successor. 2030 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2031 MVT::Other, getControlRoot(), 2032 DAG.getBasicBlock(Return))); 2033 } 2034 2035 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2036 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2037 } 2038 2039 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2040 assert(FuncInfo.MBB->isLandingPad() && 2041 "Call to landingpad not in landing pad!"); 2042 2043 MachineBasicBlock *MBB = FuncInfo.MBB; 2044 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2045 AddLandingPadInfo(LP, MMI, MBB); 2046 2047 // If there aren't registers to copy the values into (e.g., during SjLj 2048 // exceptions), then don't bother to create these DAG nodes. 2049 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2050 if (TLI->getExceptionPointerRegister() == 0 && 2051 TLI->getExceptionSelectorRegister() == 0) 2052 return; 2053 2054 SmallVector<EVT, 2> ValueVTs; 2055 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2056 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2057 2058 // Get the two live-in registers as SDValues. The physregs have already been 2059 // copied into virtual registers. 2060 SDValue Ops[2]; 2061 Ops[0] = DAG.getZExtOrTrunc( 2062 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2063 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2064 getCurSDLoc(), ValueVTs[0]); 2065 Ops[1] = DAG.getZExtOrTrunc( 2066 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2067 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2068 getCurSDLoc(), ValueVTs[1]); 2069 2070 // Merge into one. 2071 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2072 DAG.getVTList(ValueVTs), Ops); 2073 setValue(&LP, Res); 2074 } 2075 2076 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2077 /// small case ranges). 2078 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2079 CaseRecVector& WorkList, 2080 const Value* SV, 2081 MachineBasicBlock *Default, 2082 MachineBasicBlock *SwitchBB) { 2083 // Size is the number of Cases represented by this range. 2084 size_t Size = CR.Range.second - CR.Range.first; 2085 if (Size > 3) 2086 return false; 2087 2088 // Get the MachineFunction which holds the current MBB. This is used when 2089 // inserting any additional MBBs necessary to represent the switch. 2090 MachineFunction *CurMF = FuncInfo.MF; 2091 2092 // Figure out which block is immediately after the current one. 2093 MachineBasicBlock *NextBlock = nullptr; 2094 MachineFunction::iterator BBI = CR.CaseBB; 2095 2096 if (++BBI != FuncInfo.MF->end()) 2097 NextBlock = BBI; 2098 2099 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2100 // If any two of the cases has the same destination, and if one value 2101 // is the same as the other, but has one bit unset that the other has set, 2102 // use bit manipulation to do two compares at once. For example: 2103 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2104 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2105 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2106 if (Size == 2 && CR.CaseBB == SwitchBB) { 2107 Case &Small = *CR.Range.first; 2108 Case &Big = *(CR.Range.second-1); 2109 2110 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2111 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2112 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2113 2114 // Check that there is only one bit different. 2115 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2116 (SmallValue | BigValue) == BigValue) { 2117 // Isolate the common bit. 2118 APInt CommonBit = BigValue & ~SmallValue; 2119 assert((SmallValue | CommonBit) == BigValue && 2120 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2121 2122 SDValue CondLHS = getValue(SV); 2123 EVT VT = CondLHS.getValueType(); 2124 SDLoc DL = getCurSDLoc(); 2125 2126 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2127 DAG.getConstant(CommonBit, VT)); 2128 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2129 Or, DAG.getConstant(BigValue, VT), 2130 ISD::SETEQ); 2131 2132 // Update successor info. 2133 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2134 addSuccessorWithWeight(SwitchBB, Small.BB, 2135 Small.ExtraWeight + Big.ExtraWeight); 2136 addSuccessorWithWeight(SwitchBB, Default, 2137 // The default destination is the first successor in IR. 2138 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2139 2140 // Insert the true branch. 2141 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2142 getControlRoot(), Cond, 2143 DAG.getBasicBlock(Small.BB)); 2144 2145 // Insert the false branch. 2146 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2147 DAG.getBasicBlock(Default)); 2148 2149 DAG.setRoot(BrCond); 2150 return true; 2151 } 2152 } 2153 } 2154 2155 // Order cases by weight so the most likely case will be checked first. 2156 uint32_t UnhandledWeights = 0; 2157 if (BPI) { 2158 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2159 uint32_t IWeight = I->ExtraWeight; 2160 UnhandledWeights += IWeight; 2161 for (CaseItr J = CR.Range.first; J < I; ++J) { 2162 uint32_t JWeight = J->ExtraWeight; 2163 if (IWeight > JWeight) 2164 std::swap(*I, *J); 2165 } 2166 } 2167 } 2168 // Rearrange the case blocks so that the last one falls through if possible. 2169 Case &BackCase = *(CR.Range.second-1); 2170 if (Size > 1 && 2171 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2172 // The last case block won't fall through into 'NextBlock' if we emit the 2173 // branches in this order. See if rearranging a case value would help. 2174 // We start at the bottom as it's the case with the least weight. 2175 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2176 if (I->BB == NextBlock) { 2177 std::swap(*I, BackCase); 2178 break; 2179 } 2180 } 2181 2182 // Create a CaseBlock record representing a conditional branch to 2183 // the Case's target mbb if the value being switched on SV is equal 2184 // to C. 2185 MachineBasicBlock *CurBlock = CR.CaseBB; 2186 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2187 MachineBasicBlock *FallThrough; 2188 if (I != E-1) { 2189 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2190 CurMF->insert(BBI, FallThrough); 2191 2192 // Put SV in a virtual register to make it available from the new blocks. 2193 ExportFromCurrentBlock(SV); 2194 } else { 2195 // If the last case doesn't match, go to the default block. 2196 FallThrough = Default; 2197 } 2198 2199 const Value *RHS, *LHS, *MHS; 2200 ISD::CondCode CC; 2201 if (I->High == I->Low) { 2202 // This is just small small case range :) containing exactly 1 case 2203 CC = ISD::SETEQ; 2204 LHS = SV; RHS = I->High; MHS = nullptr; 2205 } else { 2206 CC = ISD::SETLE; 2207 LHS = I->Low; MHS = SV; RHS = I->High; 2208 } 2209 2210 // The false weight should be sum of all un-handled cases. 2211 UnhandledWeights -= I->ExtraWeight; 2212 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2213 /* me */ CurBlock, 2214 /* trueweight */ I->ExtraWeight, 2215 /* falseweight */ UnhandledWeights); 2216 2217 // If emitting the first comparison, just call visitSwitchCase to emit the 2218 // code into the current block. Otherwise, push the CaseBlock onto the 2219 // vector to be later processed by SDISel, and insert the node's MBB 2220 // before the next MBB. 2221 if (CurBlock == SwitchBB) 2222 visitSwitchCase(CB, SwitchBB); 2223 else 2224 SwitchCases.push_back(CB); 2225 2226 CurBlock = FallThrough; 2227 } 2228 2229 return true; 2230 } 2231 2232 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2233 return TLI.supportJumpTables() && 2234 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2235 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2236 } 2237 2238 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2239 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2240 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2241 return (LastExt - FirstExt + 1ULL); 2242 } 2243 2244 /// handleJTSwitchCase - Emit jumptable for current switch case range 2245 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2246 CaseRecVector &WorkList, 2247 const Value *SV, 2248 MachineBasicBlock *Default, 2249 MachineBasicBlock *SwitchBB) { 2250 Case& FrontCase = *CR.Range.first; 2251 Case& BackCase = *(CR.Range.second-1); 2252 2253 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2254 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2255 2256 APInt TSize(First.getBitWidth(), 0); 2257 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2258 TSize += I->size(); 2259 2260 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2261 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2262 return false; 2263 2264 APInt Range = ComputeRange(First, Last); 2265 // The density is TSize / Range. Require at least 40%. 2266 // It should not be possible for IntTSize to saturate for sane code, but make 2267 // sure we handle Range saturation correctly. 2268 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2269 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2270 if (IntTSize * 10 < IntRange * 4) 2271 return false; 2272 2273 DEBUG(dbgs() << "Lowering jump table\n" 2274 << "First entry: " << First << ". Last entry: " << Last << '\n' 2275 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2276 2277 // Get the MachineFunction which holds the current MBB. This is used when 2278 // inserting any additional MBBs necessary to represent the switch. 2279 MachineFunction *CurMF = FuncInfo.MF; 2280 2281 // Figure out which block is immediately after the current one. 2282 MachineFunction::iterator BBI = CR.CaseBB; 2283 ++BBI; 2284 2285 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2286 2287 // Create a new basic block to hold the code for loading the address 2288 // of the jump table, and jumping to it. Update successor information; 2289 // we will either branch to the default case for the switch, or the jump 2290 // table. 2291 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2292 CurMF->insert(BBI, JumpTableBB); 2293 2294 addSuccessorWithWeight(CR.CaseBB, Default); 2295 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2296 2297 // Build a vector of destination BBs, corresponding to each target 2298 // of the jump table. If the value of the jump table slot corresponds to 2299 // a case statement, push the case's BB onto the vector, otherwise, push 2300 // the default BB. 2301 std::vector<MachineBasicBlock*> DestBBs; 2302 APInt TEI = First; 2303 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2304 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2305 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2306 2307 if (Low.sle(TEI) && TEI.sle(High)) { 2308 DestBBs.push_back(I->BB); 2309 if (TEI==High) 2310 ++I; 2311 } else { 2312 DestBBs.push_back(Default); 2313 } 2314 } 2315 2316 // Calculate weight for each unique destination in CR. 2317 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2318 if (FuncInfo.BPI) 2319 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2320 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2321 DestWeights.find(I->BB); 2322 if (Itr != DestWeights.end()) 2323 Itr->second += I->ExtraWeight; 2324 else 2325 DestWeights[I->BB] = I->ExtraWeight; 2326 } 2327 2328 // Update successor info. Add one edge to each unique successor. 2329 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2330 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2331 E = DestBBs.end(); I != E; ++I) { 2332 if (!SuccsHandled[(*I)->getNumber()]) { 2333 SuccsHandled[(*I)->getNumber()] = true; 2334 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2335 DestWeights.find(*I); 2336 addSuccessorWithWeight(JumpTableBB, *I, 2337 Itr != DestWeights.end() ? Itr->second : 0); 2338 } 2339 } 2340 2341 // Create a jump table index for this jump table. 2342 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2343 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2344 ->createJumpTableIndex(DestBBs); 2345 2346 // Set the jump table information so that we can codegen it as a second 2347 // MachineBasicBlock 2348 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2349 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2350 if (CR.CaseBB == SwitchBB) 2351 visitJumpTableHeader(JT, JTH, SwitchBB); 2352 2353 JTCases.push_back(JumpTableBlock(JTH, JT)); 2354 return true; 2355 } 2356 2357 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2358 /// 2 subtrees. 2359 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2360 CaseRecVector& WorkList, 2361 const Value* SV, 2362 MachineBasicBlock* Default, 2363 MachineBasicBlock* SwitchBB) { 2364 // Get the MachineFunction which holds the current MBB. This is used when 2365 // inserting any additional MBBs necessary to represent the switch. 2366 MachineFunction *CurMF = FuncInfo.MF; 2367 2368 // Figure out which block is immediately after the current one. 2369 MachineFunction::iterator BBI = CR.CaseBB; 2370 ++BBI; 2371 2372 Case& FrontCase = *CR.Range.first; 2373 Case& BackCase = *(CR.Range.second-1); 2374 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2375 2376 // Size is the number of Cases represented by this range. 2377 unsigned Size = CR.Range.second - CR.Range.first; 2378 2379 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2380 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2381 double FMetric = 0; 2382 CaseItr Pivot = CR.Range.first + Size/2; 2383 2384 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2385 // (heuristically) allow us to emit JumpTable's later. 2386 APInt TSize(First.getBitWidth(), 0); 2387 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2388 I!=E; ++I) 2389 TSize += I->size(); 2390 2391 APInt LSize = FrontCase.size(); 2392 APInt RSize = TSize-LSize; 2393 DEBUG(dbgs() << "Selecting best pivot: \n" 2394 << "First: " << First << ", Last: " << Last <<'\n' 2395 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2396 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2397 J!=E; ++I, ++J) { 2398 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2399 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2400 APInt Range = ComputeRange(LEnd, RBegin); 2401 assert((Range - 2ULL).isNonNegative() && 2402 "Invalid case distance"); 2403 // Use volatile double here to avoid excess precision issues on some hosts, 2404 // e.g. that use 80-bit X87 registers. 2405 volatile double LDensity = 2406 (double)LSize.roundToDouble() / 2407 (LEnd - First + 1ULL).roundToDouble(); 2408 volatile double RDensity = 2409 (double)RSize.roundToDouble() / 2410 (Last - RBegin + 1ULL).roundToDouble(); 2411 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2412 // Should always split in some non-trivial place 2413 DEBUG(dbgs() <<"=>Step\n" 2414 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2415 << "LDensity: " << LDensity 2416 << ", RDensity: " << RDensity << '\n' 2417 << "Metric: " << Metric << '\n'); 2418 if (FMetric < Metric) { 2419 Pivot = J; 2420 FMetric = Metric; 2421 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2422 } 2423 2424 LSize += J->size(); 2425 RSize -= J->size(); 2426 } 2427 2428 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2429 if (areJTsAllowed(*TLI)) { 2430 // If our case is dense we *really* should handle it earlier! 2431 assert((FMetric > 0) && "Should handle dense range earlier!"); 2432 } else { 2433 Pivot = CR.Range.first + Size/2; 2434 } 2435 2436 CaseRange LHSR(CR.Range.first, Pivot); 2437 CaseRange RHSR(Pivot, CR.Range.second); 2438 const Constant *C = Pivot->Low; 2439 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2440 2441 // We know that we branch to the LHS if the Value being switched on is 2442 // less than the Pivot value, C. We use this to optimize our binary 2443 // tree a bit, by recognizing that if SV is greater than or equal to the 2444 // LHS's Case Value, and that Case Value is exactly one less than the 2445 // Pivot's Value, then we can branch directly to the LHS's Target, 2446 // rather than creating a leaf node for it. 2447 if ((LHSR.second - LHSR.first) == 1 && 2448 LHSR.first->High == CR.GE && 2449 cast<ConstantInt>(C)->getValue() == 2450 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2451 TrueBB = LHSR.first->BB; 2452 } else { 2453 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2454 CurMF->insert(BBI, TrueBB); 2455 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2456 2457 // Put SV in a virtual register to make it available from the new blocks. 2458 ExportFromCurrentBlock(SV); 2459 } 2460 2461 // Similar to the optimization above, if the Value being switched on is 2462 // known to be less than the Constant CR.LT, and the current Case Value 2463 // is CR.LT - 1, then we can branch directly to the target block for 2464 // the current Case Value, rather than emitting a RHS leaf node for it. 2465 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2466 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2467 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2468 FalseBB = RHSR.first->BB; 2469 } else { 2470 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2471 CurMF->insert(BBI, FalseBB); 2472 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2473 2474 // Put SV in a virtual register to make it available from the new blocks. 2475 ExportFromCurrentBlock(SV); 2476 } 2477 2478 // Create a CaseBlock record representing a conditional branch to 2479 // the LHS node if the value being switched on SV is less than C. 2480 // Otherwise, branch to LHS. 2481 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2482 2483 if (CR.CaseBB == SwitchBB) 2484 visitSwitchCase(CB, SwitchBB); 2485 else 2486 SwitchCases.push_back(CB); 2487 2488 return true; 2489 } 2490 2491 /// handleBitTestsSwitchCase - if current case range has few destination and 2492 /// range span less, than machine word bitwidth, encode case range into series 2493 /// of masks and emit bit tests with these masks. 2494 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2495 CaseRecVector& WorkList, 2496 const Value* SV, 2497 MachineBasicBlock* Default, 2498 MachineBasicBlock* SwitchBB) { 2499 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2500 EVT PTy = TLI->getPointerTy(); 2501 unsigned IntPtrBits = PTy.getSizeInBits(); 2502 2503 Case& FrontCase = *CR.Range.first; 2504 Case& BackCase = *(CR.Range.second-1); 2505 2506 // Get the MachineFunction which holds the current MBB. This is used when 2507 // inserting any additional MBBs necessary to represent the switch. 2508 MachineFunction *CurMF = FuncInfo.MF; 2509 2510 // If target does not have legal shift left, do not emit bit tests at all. 2511 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2512 return false; 2513 2514 size_t numCmps = 0; 2515 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2516 I!=E; ++I) { 2517 // Single case counts one, case range - two. 2518 numCmps += (I->Low == I->High ? 1 : 2); 2519 } 2520 2521 // Count unique destinations 2522 SmallSet<MachineBasicBlock*, 4> Dests; 2523 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2524 Dests.insert(I->BB); 2525 if (Dests.size() > 3) 2526 // Don't bother the code below, if there are too much unique destinations 2527 return false; 2528 } 2529 DEBUG(dbgs() << "Total number of unique destinations: " 2530 << Dests.size() << '\n' 2531 << "Total number of comparisons: " << numCmps << '\n'); 2532 2533 // Compute span of values. 2534 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2535 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2536 APInt cmpRange = maxValue - minValue; 2537 2538 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2539 << "Low bound: " << minValue << '\n' 2540 << "High bound: " << maxValue << '\n'); 2541 2542 if (cmpRange.uge(IntPtrBits) || 2543 (!(Dests.size() == 1 && numCmps >= 3) && 2544 !(Dests.size() == 2 && numCmps >= 5) && 2545 !(Dests.size() >= 3 && numCmps >= 6))) 2546 return false; 2547 2548 DEBUG(dbgs() << "Emitting bit tests\n"); 2549 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2550 2551 // Optimize the case where all the case values fit in a 2552 // word without having to subtract minValue. In this case, 2553 // we can optimize away the subtraction. 2554 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2555 cmpRange = maxValue; 2556 } else { 2557 lowBound = minValue; 2558 } 2559 2560 CaseBitsVector CasesBits; 2561 unsigned i, count = 0; 2562 2563 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2564 MachineBasicBlock* Dest = I->BB; 2565 for (i = 0; i < count; ++i) 2566 if (Dest == CasesBits[i].BB) 2567 break; 2568 2569 if (i == count) { 2570 assert((count < 3) && "Too much destinations to test!"); 2571 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2572 count++; 2573 } 2574 2575 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2576 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2577 2578 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2579 uint64_t hi = (highValue - lowBound).getZExtValue(); 2580 CasesBits[i].ExtraWeight += I->ExtraWeight; 2581 2582 for (uint64_t j = lo; j <= hi; j++) { 2583 CasesBits[i].Mask |= 1ULL << j; 2584 CasesBits[i].Bits++; 2585 } 2586 2587 } 2588 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2589 2590 BitTestInfo BTC; 2591 2592 // Figure out which block is immediately after the current one. 2593 MachineFunction::iterator BBI = CR.CaseBB; 2594 ++BBI; 2595 2596 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2597 2598 DEBUG(dbgs() << "Cases:\n"); 2599 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2600 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2601 << ", Bits: " << CasesBits[i].Bits 2602 << ", BB: " << CasesBits[i].BB << '\n'); 2603 2604 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2605 CurMF->insert(BBI, CaseBB); 2606 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2607 CaseBB, 2608 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2609 2610 // Put SV in a virtual register to make it available from the new blocks. 2611 ExportFromCurrentBlock(SV); 2612 } 2613 2614 BitTestBlock BTB(lowBound, cmpRange, SV, 2615 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2616 CR.CaseBB, Default, BTC); 2617 2618 if (CR.CaseBB == SwitchBB) 2619 visitBitTestHeader(BTB, SwitchBB); 2620 2621 BitTestCases.push_back(BTB); 2622 2623 return true; 2624 } 2625 2626 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2627 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2628 const SwitchInst& SI) { 2629 size_t numCmps = 0; 2630 2631 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2632 // Start with "simple" cases 2633 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2634 i != e; ++i) { 2635 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2636 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2637 2638 uint32_t ExtraWeight = 2639 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2640 2641 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2642 SMBB, ExtraWeight)); 2643 } 2644 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2645 2646 // Merge case into clusters 2647 if (Cases.size() >= 2) 2648 // Must recompute end() each iteration because it may be 2649 // invalidated by erase if we hold on to it 2650 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2651 J != Cases.end(); ) { 2652 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2653 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2654 MachineBasicBlock* nextBB = J->BB; 2655 MachineBasicBlock* currentBB = I->BB; 2656 2657 // If the two neighboring cases go to the same destination, merge them 2658 // into a single case. 2659 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2660 I->High = J->High; 2661 I->ExtraWeight += J->ExtraWeight; 2662 J = Cases.erase(J); 2663 } else { 2664 I = J++; 2665 } 2666 } 2667 2668 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2669 if (I->Low != I->High) 2670 // A range counts double, since it requires two compares. 2671 ++numCmps; 2672 } 2673 2674 return numCmps; 2675 } 2676 2677 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2678 MachineBasicBlock *Last) { 2679 // Update JTCases. 2680 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2681 if (JTCases[i].first.HeaderBB == First) 2682 JTCases[i].first.HeaderBB = Last; 2683 2684 // Update BitTestCases. 2685 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2686 if (BitTestCases[i].Parent == First) 2687 BitTestCases[i].Parent = Last; 2688 } 2689 2690 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2691 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2692 2693 // Figure out which block is immediately after the current one. 2694 MachineBasicBlock *NextBlock = nullptr; 2695 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2696 2697 // If there is only the default destination, branch to it if it is not the 2698 // next basic block. Otherwise, just fall through. 2699 if (!SI.getNumCases()) { 2700 // Update machine-CFG edges. 2701 2702 // If this is not a fall-through branch, emit the branch. 2703 SwitchMBB->addSuccessor(Default); 2704 if (Default != NextBlock) 2705 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2706 MVT::Other, getControlRoot(), 2707 DAG.getBasicBlock(Default))); 2708 2709 return; 2710 } 2711 2712 // If there are any non-default case statements, create a vector of Cases 2713 // representing each one, and sort the vector so that we can efficiently 2714 // create a binary search tree from them. 2715 CaseVector Cases; 2716 size_t numCmps = Clusterify(Cases, SI); 2717 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2718 << ". Total compares: " << numCmps << '\n'); 2719 (void)numCmps; 2720 2721 // Get the Value to be switched on and default basic blocks, which will be 2722 // inserted into CaseBlock records, representing basic blocks in the binary 2723 // search tree. 2724 const Value *SV = SI.getCondition(); 2725 2726 // Push the initial CaseRec onto the worklist 2727 CaseRecVector WorkList; 2728 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2729 CaseRange(Cases.begin(),Cases.end()))); 2730 2731 while (!WorkList.empty()) { 2732 // Grab a record representing a case range to process off the worklist 2733 CaseRec CR = WorkList.back(); 2734 WorkList.pop_back(); 2735 2736 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2737 continue; 2738 2739 // If the range has few cases (two or less) emit a series of specific 2740 // tests. 2741 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2742 continue; 2743 2744 // If the switch has more than N blocks, and is at least 40% dense, and the 2745 // target supports indirect branches, then emit a jump table rather than 2746 // lowering the switch to a binary tree of conditional branches. 2747 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2748 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2749 continue; 2750 2751 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2752 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2753 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2754 } 2755 } 2756 2757 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2758 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2759 2760 // Update machine-CFG edges with unique successors. 2761 SmallSet<BasicBlock*, 32> Done; 2762 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2763 BasicBlock *BB = I.getSuccessor(i); 2764 bool Inserted = Done.insert(BB); 2765 if (!Inserted) 2766 continue; 2767 2768 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2769 addSuccessorWithWeight(IndirectBrMBB, Succ); 2770 } 2771 2772 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2773 MVT::Other, getControlRoot(), 2774 getValue(I.getAddress()))); 2775 } 2776 2777 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2778 if (DAG.getTarget().Options.TrapUnreachable) 2779 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2780 } 2781 2782 void SelectionDAGBuilder::visitFSub(const User &I) { 2783 // -0.0 - X --> fneg 2784 Type *Ty = I.getType(); 2785 if (isa<Constant>(I.getOperand(0)) && 2786 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2787 SDValue Op2 = getValue(I.getOperand(1)); 2788 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2789 Op2.getValueType(), Op2)); 2790 return; 2791 } 2792 2793 visitBinary(I, ISD::FSUB); 2794 } 2795 2796 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2797 SDValue Op1 = getValue(I.getOperand(0)); 2798 SDValue Op2 = getValue(I.getOperand(1)); 2799 2800 bool nuw = false; 2801 bool nsw = false; 2802 bool exact = false; 2803 if (const OverflowingBinaryOperator *OFBinOp = 2804 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2805 nuw = OFBinOp->hasNoUnsignedWrap(); 2806 nsw = OFBinOp->hasNoSignedWrap(); 2807 } 2808 if (const PossiblyExactOperator *ExactOp = 2809 dyn_cast<const PossiblyExactOperator>(&I)) 2810 exact = ExactOp->isExact(); 2811 2812 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2813 Op1, Op2, nuw, nsw, exact); 2814 setValue(&I, BinNodeValue); 2815 } 2816 2817 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2818 SDValue Op1 = getValue(I.getOperand(0)); 2819 SDValue Op2 = getValue(I.getOperand(1)); 2820 2821 EVT ShiftTy = TM.getSubtargetImpl()->getTargetLowering()->getShiftAmountTy( 2822 Op2.getValueType()); 2823 2824 // Coerce the shift amount to the right type if we can. 2825 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2826 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2827 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2828 SDLoc DL = getCurSDLoc(); 2829 2830 // If the operand is smaller than the shift count type, promote it. 2831 if (ShiftSize > Op2Size) 2832 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2833 2834 // If the operand is larger than the shift count type but the shift 2835 // count type has enough bits to represent any shift value, truncate 2836 // it now. This is a common case and it exposes the truncate to 2837 // optimization early. 2838 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2839 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2840 // Otherwise we'll need to temporarily settle for some other convenient 2841 // type. Type legalization will make adjustments once the shiftee is split. 2842 else 2843 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2844 } 2845 2846 bool nuw = false; 2847 bool nsw = false; 2848 bool exact = false; 2849 2850 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2851 2852 if (const OverflowingBinaryOperator *OFBinOp = 2853 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2854 nuw = OFBinOp->hasNoUnsignedWrap(); 2855 nsw = OFBinOp->hasNoSignedWrap(); 2856 } 2857 if (const PossiblyExactOperator *ExactOp = 2858 dyn_cast<const PossiblyExactOperator>(&I)) 2859 exact = ExactOp->isExact(); 2860 } 2861 2862 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2863 nuw, nsw, exact); 2864 setValue(&I, Res); 2865 } 2866 2867 void SelectionDAGBuilder::visitSDiv(const User &I) { 2868 SDValue Op1 = getValue(I.getOperand(0)); 2869 SDValue Op2 = getValue(I.getOperand(1)); 2870 2871 // Turn exact SDivs into multiplications. 2872 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2873 // exact bit. 2874 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2875 !isa<ConstantSDNode>(Op1) && 2876 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2877 setValue(&I, TM.getSubtargetImpl()->getTargetLowering()->BuildExactSDIV( 2878 Op1, Op2, getCurSDLoc(), DAG)); 2879 else 2880 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2881 Op1, Op2)); 2882 } 2883 2884 void SelectionDAGBuilder::visitICmp(const User &I) { 2885 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2886 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2887 predicate = IC->getPredicate(); 2888 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2889 predicate = ICmpInst::Predicate(IC->getPredicate()); 2890 SDValue Op1 = getValue(I.getOperand(0)); 2891 SDValue Op2 = getValue(I.getOperand(1)); 2892 ISD::CondCode Opcode = getICmpCondCode(predicate); 2893 2894 EVT DestVT = 2895 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2896 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2897 } 2898 2899 void SelectionDAGBuilder::visitFCmp(const User &I) { 2900 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2901 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2902 predicate = FC->getPredicate(); 2903 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2904 predicate = FCmpInst::Predicate(FC->getPredicate()); 2905 SDValue Op1 = getValue(I.getOperand(0)); 2906 SDValue Op2 = getValue(I.getOperand(1)); 2907 ISD::CondCode Condition = getFCmpCondCode(predicate); 2908 if (TM.Options.NoNaNsFPMath) 2909 Condition = getFCmpCodeWithoutNaN(Condition); 2910 EVT DestVT = 2911 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2912 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2913 } 2914 2915 void SelectionDAGBuilder::visitSelect(const User &I) { 2916 SmallVector<EVT, 4> ValueVTs; 2917 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), I.getType(), 2918 ValueVTs); 2919 unsigned NumValues = ValueVTs.size(); 2920 if (NumValues == 0) return; 2921 2922 SmallVector<SDValue, 4> Values(NumValues); 2923 SDValue Cond = getValue(I.getOperand(0)); 2924 SDValue TrueVal = getValue(I.getOperand(1)); 2925 SDValue FalseVal = getValue(I.getOperand(2)); 2926 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2927 ISD::VSELECT : ISD::SELECT; 2928 2929 for (unsigned i = 0; i != NumValues; ++i) 2930 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2931 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2932 Cond, 2933 SDValue(TrueVal.getNode(), 2934 TrueVal.getResNo() + i), 2935 SDValue(FalseVal.getNode(), 2936 FalseVal.getResNo() + i)); 2937 2938 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2939 DAG.getVTList(ValueVTs), Values)); 2940 } 2941 2942 void SelectionDAGBuilder::visitTrunc(const User &I) { 2943 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2944 SDValue N = getValue(I.getOperand(0)); 2945 EVT DestVT = 2946 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2947 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2948 } 2949 2950 void SelectionDAGBuilder::visitZExt(const User &I) { 2951 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2952 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2953 SDValue N = getValue(I.getOperand(0)); 2954 EVT DestVT = 2955 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2956 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2957 } 2958 2959 void SelectionDAGBuilder::visitSExt(const User &I) { 2960 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2961 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2962 SDValue N = getValue(I.getOperand(0)); 2963 EVT DestVT = 2964 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2965 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2966 } 2967 2968 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2969 // FPTrunc is never a no-op cast, no need to check 2970 SDValue N = getValue(I.getOperand(0)); 2971 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2972 EVT DestVT = TLI->getValueType(I.getType()); 2973 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2974 DestVT, N, 2975 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2976 } 2977 2978 void SelectionDAGBuilder::visitFPExt(const User &I) { 2979 // FPExt is never a no-op cast, no need to check 2980 SDValue N = getValue(I.getOperand(0)); 2981 EVT DestVT = 2982 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2983 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2984 } 2985 2986 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2987 // FPToUI is never a no-op cast, no need to check 2988 SDValue N = getValue(I.getOperand(0)); 2989 EVT DestVT = 2990 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2991 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2992 } 2993 2994 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2995 // FPToSI is never a no-op cast, no need to check 2996 SDValue N = getValue(I.getOperand(0)); 2997 EVT DestVT = 2998 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2999 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3000 } 3001 3002 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3003 // UIToFP is never a no-op cast, no need to check 3004 SDValue N = getValue(I.getOperand(0)); 3005 EVT DestVT = 3006 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3007 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3008 } 3009 3010 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3011 // SIToFP is never a no-op cast, no need to check 3012 SDValue N = getValue(I.getOperand(0)); 3013 EVT DestVT = 3014 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3015 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3016 } 3017 3018 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3019 // What to do depends on the size of the integer and the size of the pointer. 3020 // We can either truncate, zero extend, or no-op, accordingly. 3021 SDValue N = getValue(I.getOperand(0)); 3022 EVT DestVT = 3023 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3024 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3025 } 3026 3027 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3028 // What to do depends on the size of the integer and the size of the pointer. 3029 // We can either truncate, zero extend, or no-op, accordingly. 3030 SDValue N = getValue(I.getOperand(0)); 3031 EVT DestVT = 3032 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3033 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3034 } 3035 3036 void SelectionDAGBuilder::visitBitCast(const User &I) { 3037 SDValue N = getValue(I.getOperand(0)); 3038 EVT DestVT = 3039 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3040 3041 // BitCast assures us that source and destination are the same size so this is 3042 // either a BITCAST or a no-op. 3043 if (DestVT != N.getValueType()) 3044 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3045 DestVT, N)); // convert types. 3046 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3047 // might fold any kind of constant expression to an integer constant and that 3048 // is not what we are looking for. Only regcognize a bitcast of a genuine 3049 // constant integer as an opaque constant. 3050 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3051 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3052 /*isOpaque*/true)); 3053 else 3054 setValue(&I, N); // noop cast. 3055 } 3056 3057 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3059 const Value *SV = I.getOperand(0); 3060 SDValue N = getValue(SV); 3061 EVT DestVT = 3062 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3063 3064 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3065 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3066 3067 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3068 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3069 3070 setValue(&I, N); 3071 } 3072 3073 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3075 SDValue InVec = getValue(I.getOperand(0)); 3076 SDValue InVal = getValue(I.getOperand(1)); 3077 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3078 getCurSDLoc(), TLI.getVectorIdxTy()); 3079 setValue(&I, 3080 DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3081 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3082 I.getType()), 3083 InVec, InVal, InIdx)); 3084 } 3085 3086 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3088 SDValue InVec = getValue(I.getOperand(0)); 3089 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3090 getCurSDLoc(), TLI.getVectorIdxTy()); 3091 setValue(&I, 3092 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3093 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3094 I.getType()), 3095 InVec, InIdx)); 3096 } 3097 3098 // Utility for visitShuffleVector - Return true if every element in Mask, 3099 // beginning from position Pos and ending in Pos+Size, falls within the 3100 // specified sequential range [L, L+Pos). or is undef. 3101 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3102 unsigned Pos, unsigned Size, int Low) { 3103 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3104 if (Mask[i] >= 0 && Mask[i] != Low) 3105 return false; 3106 return true; 3107 } 3108 3109 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3110 SDValue Src1 = getValue(I.getOperand(0)); 3111 SDValue Src2 = getValue(I.getOperand(1)); 3112 3113 SmallVector<int, 8> Mask; 3114 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3115 unsigned MaskNumElts = Mask.size(); 3116 3117 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3118 EVT VT = TLI->getValueType(I.getType()); 3119 EVT SrcVT = Src1.getValueType(); 3120 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3121 3122 if (SrcNumElts == MaskNumElts) { 3123 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3124 &Mask[0])); 3125 return; 3126 } 3127 3128 // Normalize the shuffle vector since mask and vector length don't match. 3129 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3130 // Mask is longer than the source vectors and is a multiple of the source 3131 // vectors. We can use concatenate vector to make the mask and vectors 3132 // lengths match. 3133 if (SrcNumElts*2 == MaskNumElts) { 3134 // First check for Src1 in low and Src2 in high 3135 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3136 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3137 // The shuffle is concatenating two vectors together. 3138 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3139 VT, Src1, Src2)); 3140 return; 3141 } 3142 // Then check for Src2 in low and Src1 in high 3143 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3144 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3145 // The shuffle is concatenating two vectors together. 3146 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3147 VT, Src2, Src1)); 3148 return; 3149 } 3150 } 3151 3152 // Pad both vectors with undefs to make them the same length as the mask. 3153 unsigned NumConcat = MaskNumElts / SrcNumElts; 3154 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3155 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3156 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3157 3158 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3159 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3160 MOps1[0] = Src1; 3161 MOps2[0] = Src2; 3162 3163 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3164 getCurSDLoc(), VT, MOps1); 3165 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3166 getCurSDLoc(), VT, MOps2); 3167 3168 // Readjust mask for new input vector length. 3169 SmallVector<int, 8> MappedOps; 3170 for (unsigned i = 0; i != MaskNumElts; ++i) { 3171 int Idx = Mask[i]; 3172 if (Idx >= (int)SrcNumElts) 3173 Idx -= SrcNumElts - MaskNumElts; 3174 MappedOps.push_back(Idx); 3175 } 3176 3177 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3178 &MappedOps[0])); 3179 return; 3180 } 3181 3182 if (SrcNumElts > MaskNumElts) { 3183 // Analyze the access pattern of the vector to see if we can extract 3184 // two subvectors and do the shuffle. The analysis is done by calculating 3185 // the range of elements the mask access on both vectors. 3186 int MinRange[2] = { static_cast<int>(SrcNumElts), 3187 static_cast<int>(SrcNumElts)}; 3188 int MaxRange[2] = {-1, -1}; 3189 3190 for (unsigned i = 0; i != MaskNumElts; ++i) { 3191 int Idx = Mask[i]; 3192 unsigned Input = 0; 3193 if (Idx < 0) 3194 continue; 3195 3196 if (Idx >= (int)SrcNumElts) { 3197 Input = 1; 3198 Idx -= SrcNumElts; 3199 } 3200 if (Idx > MaxRange[Input]) 3201 MaxRange[Input] = Idx; 3202 if (Idx < MinRange[Input]) 3203 MinRange[Input] = Idx; 3204 } 3205 3206 // Check if the access is smaller than the vector size and can we find 3207 // a reasonable extract index. 3208 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3209 // Extract. 3210 int StartIdx[2]; // StartIdx to extract from 3211 for (unsigned Input = 0; Input < 2; ++Input) { 3212 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3213 RangeUse[Input] = 0; // Unused 3214 StartIdx[Input] = 0; 3215 continue; 3216 } 3217 3218 // Find a good start index that is a multiple of the mask length. Then 3219 // see if the rest of the elements are in range. 3220 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3221 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3222 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3223 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3224 } 3225 3226 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3227 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3228 return; 3229 } 3230 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3231 // Extract appropriate subvector and generate a vector shuffle 3232 for (unsigned Input = 0; Input < 2; ++Input) { 3233 SDValue &Src = Input == 0 ? Src1 : Src2; 3234 if (RangeUse[Input] == 0) 3235 Src = DAG.getUNDEF(VT); 3236 else 3237 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3238 Src, DAG.getConstant(StartIdx[Input], 3239 TLI->getVectorIdxTy())); 3240 } 3241 3242 // Calculate new mask. 3243 SmallVector<int, 8> MappedOps; 3244 for (unsigned i = 0; i != MaskNumElts; ++i) { 3245 int Idx = Mask[i]; 3246 if (Idx >= 0) { 3247 if (Idx < (int)SrcNumElts) 3248 Idx -= StartIdx[0]; 3249 else 3250 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3251 } 3252 MappedOps.push_back(Idx); 3253 } 3254 3255 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3256 &MappedOps[0])); 3257 return; 3258 } 3259 } 3260 3261 // We can't use either concat vectors or extract subvectors so fall back to 3262 // replacing the shuffle with extract and build vector. 3263 // to insert and build vector. 3264 EVT EltVT = VT.getVectorElementType(); 3265 EVT IdxVT = TLI->getVectorIdxTy(); 3266 SmallVector<SDValue,8> Ops; 3267 for (unsigned i = 0; i != MaskNumElts; ++i) { 3268 int Idx = Mask[i]; 3269 SDValue Res; 3270 3271 if (Idx < 0) { 3272 Res = DAG.getUNDEF(EltVT); 3273 } else { 3274 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3275 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3276 3277 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3278 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3279 } 3280 3281 Ops.push_back(Res); 3282 } 3283 3284 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3285 } 3286 3287 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3288 const Value *Op0 = I.getOperand(0); 3289 const Value *Op1 = I.getOperand(1); 3290 Type *AggTy = I.getType(); 3291 Type *ValTy = Op1->getType(); 3292 bool IntoUndef = isa<UndefValue>(Op0); 3293 bool FromUndef = isa<UndefValue>(Op1); 3294 3295 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3296 3297 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3298 SmallVector<EVT, 4> AggValueVTs; 3299 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3300 SmallVector<EVT, 4> ValValueVTs; 3301 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3302 3303 unsigned NumAggValues = AggValueVTs.size(); 3304 unsigned NumValValues = ValValueVTs.size(); 3305 SmallVector<SDValue, 4> Values(NumAggValues); 3306 3307 SDValue Agg = getValue(Op0); 3308 unsigned i = 0; 3309 // Copy the beginning value(s) from the original aggregate. 3310 for (; i != LinearIndex; ++i) 3311 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3312 SDValue(Agg.getNode(), Agg.getResNo() + i); 3313 // Copy values from the inserted value(s). 3314 if (NumValValues) { 3315 SDValue Val = getValue(Op1); 3316 for (; i != LinearIndex + NumValValues; ++i) 3317 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3318 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3319 } 3320 // Copy remaining value(s) from the original aggregate. 3321 for (; i != NumAggValues; ++i) 3322 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3323 SDValue(Agg.getNode(), Agg.getResNo() + i); 3324 3325 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3326 DAG.getVTList(AggValueVTs), Values)); 3327 } 3328 3329 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3330 const Value *Op0 = I.getOperand(0); 3331 Type *AggTy = Op0->getType(); 3332 Type *ValTy = I.getType(); 3333 bool OutOfUndef = isa<UndefValue>(Op0); 3334 3335 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3336 3337 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3338 SmallVector<EVT, 4> ValValueVTs; 3339 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3340 3341 unsigned NumValValues = ValValueVTs.size(); 3342 3343 // Ignore a extractvalue that produces an empty object 3344 if (!NumValValues) { 3345 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3346 return; 3347 } 3348 3349 SmallVector<SDValue, 4> Values(NumValValues); 3350 3351 SDValue Agg = getValue(Op0); 3352 // Copy out the selected value(s). 3353 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3354 Values[i - LinearIndex] = 3355 OutOfUndef ? 3356 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3357 SDValue(Agg.getNode(), Agg.getResNo() + i); 3358 3359 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3360 DAG.getVTList(ValValueVTs), Values)); 3361 } 3362 3363 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3364 Value *Op0 = I.getOperand(0); 3365 // Note that the pointer operand may be a vector of pointers. Take the scalar 3366 // element which holds a pointer. 3367 Type *Ty = Op0->getType()->getScalarType(); 3368 unsigned AS = Ty->getPointerAddressSpace(); 3369 SDValue N = getValue(Op0); 3370 3371 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3372 OI != E; ++OI) { 3373 const Value *Idx = *OI; 3374 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3375 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3376 if (Field) { 3377 // N = N + Offset 3378 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3379 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3380 DAG.getConstant(Offset, N.getValueType())); 3381 } 3382 3383 Ty = StTy->getElementType(Field); 3384 } else { 3385 Ty = cast<SequentialType>(Ty)->getElementType(); 3386 3387 // If this is a constant subscript, handle it quickly. 3388 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3389 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3390 if (CI->isZero()) continue; 3391 uint64_t Offs = 3392 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3393 SDValue OffsVal; 3394 EVT PTy = TLI->getPointerTy(AS); 3395 unsigned PtrBits = PTy.getSizeInBits(); 3396 if (PtrBits < 64) 3397 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3398 DAG.getConstant(Offs, MVT::i64)); 3399 else 3400 OffsVal = DAG.getConstant(Offs, PTy); 3401 3402 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3403 OffsVal); 3404 continue; 3405 } 3406 3407 // N = N + Idx * ElementSize; 3408 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3409 DL->getTypeAllocSize(Ty)); 3410 SDValue IdxN = getValue(Idx); 3411 3412 // If the index is smaller or larger than intptr_t, truncate or extend 3413 // it. 3414 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3415 3416 // If this is a multiply by a power of two, turn it into a shl 3417 // immediately. This is a very common case. 3418 if (ElementSize != 1) { 3419 if (ElementSize.isPowerOf2()) { 3420 unsigned Amt = ElementSize.logBase2(); 3421 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3422 N.getValueType(), IdxN, 3423 DAG.getConstant(Amt, IdxN.getValueType())); 3424 } else { 3425 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3426 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3427 N.getValueType(), IdxN, Scale); 3428 } 3429 } 3430 3431 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3432 N.getValueType(), N, IdxN); 3433 } 3434 } 3435 3436 setValue(&I, N); 3437 } 3438 3439 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3440 // If this is a fixed sized alloca in the entry block of the function, 3441 // allocate it statically on the stack. 3442 if (FuncInfo.StaticAllocaMap.count(&I)) 3443 return; // getValue will auto-populate this. 3444 3445 Type *Ty = I.getAllocatedType(); 3446 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3447 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3448 unsigned Align = 3449 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3450 I.getAlignment()); 3451 3452 SDValue AllocSize = getValue(I.getArraySize()); 3453 3454 EVT IntPtr = TLI->getPointerTy(); 3455 if (AllocSize.getValueType() != IntPtr) 3456 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3457 3458 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3459 AllocSize, 3460 DAG.getConstant(TySize, IntPtr)); 3461 3462 // Handle alignment. If the requested alignment is less than or equal to 3463 // the stack alignment, ignore it. If the size is greater than or equal to 3464 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3465 unsigned StackAlign = 3466 TM.getSubtargetImpl()->getFrameLowering()->getStackAlignment(); 3467 if (Align <= StackAlign) 3468 Align = 0; 3469 3470 // Round the size of the allocation up to the stack alignment size 3471 // by add SA-1 to the size. 3472 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3473 AllocSize.getValueType(), AllocSize, 3474 DAG.getIntPtrConstant(StackAlign-1)); 3475 3476 // Mask out the low bits for alignment purposes. 3477 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3478 AllocSize.getValueType(), AllocSize, 3479 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3480 3481 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3482 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3483 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3484 setValue(&I, DSA); 3485 DAG.setRoot(DSA.getValue(1)); 3486 3487 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3488 } 3489 3490 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3491 if (I.isAtomic()) 3492 return visitAtomicLoad(I); 3493 3494 const Value *SV = I.getOperand(0); 3495 SDValue Ptr = getValue(SV); 3496 3497 Type *Ty = I.getType(); 3498 3499 bool isVolatile = I.isVolatile(); 3500 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3501 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3502 unsigned Alignment = I.getAlignment(); 3503 3504 AAMDNodes AAInfo; 3505 I.getAAMetadata(AAInfo); 3506 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3507 3508 SmallVector<EVT, 4> ValueVTs; 3509 SmallVector<uint64_t, 4> Offsets; 3510 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), Ty, ValueVTs, 3511 &Offsets); 3512 unsigned NumValues = ValueVTs.size(); 3513 if (NumValues == 0) 3514 return; 3515 3516 SDValue Root; 3517 bool ConstantMemory = false; 3518 if (isVolatile || NumValues > MaxParallelChains) 3519 // Serialize volatile loads with other side effects. 3520 Root = getRoot(); 3521 else if (AA->pointsToConstantMemory( 3522 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3523 // Do not serialize (non-volatile) loads of constant memory with anything. 3524 Root = DAG.getEntryNode(); 3525 ConstantMemory = true; 3526 } else { 3527 // Do not serialize non-volatile loads against each other. 3528 Root = DAG.getRoot(); 3529 } 3530 3531 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3532 if (isVolatile) 3533 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3534 3535 SmallVector<SDValue, 4> Values(NumValues); 3536 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3537 NumValues)); 3538 EVT PtrVT = Ptr.getValueType(); 3539 unsigned ChainI = 0; 3540 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3541 // Serializing loads here may result in excessive register pressure, and 3542 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3543 // could recover a bit by hoisting nodes upward in the chain by recognizing 3544 // they are side-effect free or do not alias. The optimizer should really 3545 // avoid this case by converting large object/array copies to llvm.memcpy 3546 // (MaxParallelChains should always remain as failsafe). 3547 if (ChainI == MaxParallelChains) { 3548 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3549 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3550 makeArrayRef(Chains.data(), ChainI)); 3551 Root = Chain; 3552 ChainI = 0; 3553 } 3554 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3555 PtrVT, Ptr, 3556 DAG.getConstant(Offsets[i], PtrVT)); 3557 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3558 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3559 isNonTemporal, isInvariant, Alignment, AAInfo, 3560 Ranges); 3561 3562 Values[i] = L; 3563 Chains[ChainI] = L.getValue(1); 3564 } 3565 3566 if (!ConstantMemory) { 3567 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3568 makeArrayRef(Chains.data(), ChainI)); 3569 if (isVolatile) 3570 DAG.setRoot(Chain); 3571 else 3572 PendingLoads.push_back(Chain); 3573 } 3574 3575 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3576 DAG.getVTList(ValueVTs), Values)); 3577 } 3578 3579 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3580 if (I.isAtomic()) 3581 return visitAtomicStore(I); 3582 3583 const Value *SrcV = I.getOperand(0); 3584 const Value *PtrV = I.getOperand(1); 3585 3586 SmallVector<EVT, 4> ValueVTs; 3587 SmallVector<uint64_t, 4> Offsets; 3588 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), SrcV->getType(), 3589 ValueVTs, &Offsets); 3590 unsigned NumValues = ValueVTs.size(); 3591 if (NumValues == 0) 3592 return; 3593 3594 // Get the lowered operands. Note that we do this after 3595 // checking if NumResults is zero, because with zero results 3596 // the operands won't have values in the map. 3597 SDValue Src = getValue(SrcV); 3598 SDValue Ptr = getValue(PtrV); 3599 3600 SDValue Root = getRoot(); 3601 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3602 NumValues)); 3603 EVT PtrVT = Ptr.getValueType(); 3604 bool isVolatile = I.isVolatile(); 3605 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3606 unsigned Alignment = I.getAlignment(); 3607 3608 AAMDNodes AAInfo; 3609 I.getAAMetadata(AAInfo); 3610 3611 unsigned ChainI = 0; 3612 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3613 // See visitLoad comments. 3614 if (ChainI == MaxParallelChains) { 3615 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3616 makeArrayRef(Chains.data(), ChainI)); 3617 Root = Chain; 3618 ChainI = 0; 3619 } 3620 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3621 DAG.getConstant(Offsets[i], PtrVT)); 3622 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3623 SDValue(Src.getNode(), Src.getResNo() + i), 3624 Add, MachinePointerInfo(PtrV, Offsets[i]), 3625 isVolatile, isNonTemporal, Alignment, AAInfo); 3626 Chains[ChainI] = St; 3627 } 3628 3629 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3630 makeArrayRef(Chains.data(), ChainI)); 3631 DAG.setRoot(StoreNode); 3632 } 3633 3634 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3635 SynchronizationScope Scope, 3636 bool Before, SDLoc dl, 3637 SelectionDAG &DAG, 3638 const TargetLowering &TLI) { 3639 // Fence, if necessary 3640 if (Before) { 3641 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3642 Order = Release; 3643 else if (Order == Acquire || Order == Monotonic || Order == Unordered) 3644 return Chain; 3645 } else { 3646 if (Order == AcquireRelease) 3647 Order = Acquire; 3648 else if (Order == Release || Order == Monotonic || Order == Unordered) 3649 return Chain; 3650 } 3651 SDValue Ops[3]; 3652 Ops[0] = Chain; 3653 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3654 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3655 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3656 } 3657 3658 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3659 SDLoc dl = getCurSDLoc(); 3660 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3661 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3662 SynchronizationScope Scope = I.getSynchScope(); 3663 3664 SDValue InChain = getRoot(); 3665 3666 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3667 if (TLI->getInsertFencesForAtomic()) 3668 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3669 DAG, *TLI); 3670 3671 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3672 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3673 SDValue L = DAG.getAtomicCmpSwap( 3674 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3675 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3676 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3677 0 /* Alignment */, 3678 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3679 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope); 3680 3681 SDValue OutChain = L.getValue(2); 3682 3683 if (TLI->getInsertFencesForAtomic()) 3684 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3685 DAG, *TLI); 3686 3687 setValue(&I, L); 3688 DAG.setRoot(OutChain); 3689 } 3690 3691 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3692 SDLoc dl = getCurSDLoc(); 3693 ISD::NodeType NT; 3694 switch (I.getOperation()) { 3695 default: llvm_unreachable("Unknown atomicrmw operation"); 3696 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3697 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3698 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3699 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3700 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3701 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3702 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3703 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3704 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3705 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3706 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3707 } 3708 AtomicOrdering Order = I.getOrdering(); 3709 SynchronizationScope Scope = I.getSynchScope(); 3710 3711 SDValue InChain = getRoot(); 3712 3713 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3714 if (TLI->getInsertFencesForAtomic()) 3715 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3716 DAG, *TLI); 3717 3718 SDValue L = 3719 DAG.getAtomic(NT, dl, 3720 getValue(I.getValOperand()).getSimpleValueType(), 3721 InChain, 3722 getValue(I.getPointerOperand()), 3723 getValue(I.getValOperand()), 3724 I.getPointerOperand(), 0 /* Alignment */, 3725 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3726 Scope); 3727 3728 SDValue OutChain = L.getValue(1); 3729 3730 if (TLI->getInsertFencesForAtomic()) 3731 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3732 DAG, *TLI); 3733 3734 setValue(&I, L); 3735 DAG.setRoot(OutChain); 3736 } 3737 3738 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3739 SDLoc dl = getCurSDLoc(); 3740 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3741 SDValue Ops[3]; 3742 Ops[0] = getRoot(); 3743 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3744 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3745 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3746 } 3747 3748 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3749 SDLoc dl = getCurSDLoc(); 3750 AtomicOrdering Order = I.getOrdering(); 3751 SynchronizationScope Scope = I.getSynchScope(); 3752 3753 SDValue InChain = getRoot(); 3754 3755 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3756 EVT VT = TLI->getValueType(I.getType()); 3757 3758 if (I.getAlignment() < VT.getSizeInBits() / 8) 3759 report_fatal_error("Cannot generate unaligned atomic load"); 3760 3761 MachineMemOperand *MMO = 3762 DAG.getMachineFunction(). 3763 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3764 MachineMemOperand::MOVolatile | 3765 MachineMemOperand::MOLoad, 3766 VT.getStoreSize(), 3767 I.getAlignment() ? I.getAlignment() : 3768 DAG.getEVTAlignment(VT)); 3769 3770 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3771 SDValue L = 3772 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3773 getValue(I.getPointerOperand()), MMO, 3774 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3775 Scope); 3776 3777 SDValue OutChain = L.getValue(1); 3778 3779 if (TLI->getInsertFencesForAtomic()) 3780 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3781 DAG, *TLI); 3782 3783 setValue(&I, L); 3784 DAG.setRoot(OutChain); 3785 } 3786 3787 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3788 SDLoc dl = getCurSDLoc(); 3789 3790 AtomicOrdering Order = I.getOrdering(); 3791 SynchronizationScope Scope = I.getSynchScope(); 3792 3793 SDValue InChain = getRoot(); 3794 3795 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3796 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3797 3798 if (I.getAlignment() < VT.getSizeInBits() / 8) 3799 report_fatal_error("Cannot generate unaligned atomic store"); 3800 3801 if (TLI->getInsertFencesForAtomic()) 3802 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3803 DAG, *TLI); 3804 3805 SDValue OutChain = 3806 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3807 InChain, 3808 getValue(I.getPointerOperand()), 3809 getValue(I.getValueOperand()), 3810 I.getPointerOperand(), I.getAlignment(), 3811 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3812 Scope); 3813 3814 if (TLI->getInsertFencesForAtomic()) 3815 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3816 DAG, *TLI); 3817 3818 DAG.setRoot(OutChain); 3819 } 3820 3821 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3822 /// node. 3823 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3824 unsigned Intrinsic) { 3825 bool HasChain = !I.doesNotAccessMemory(); 3826 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3827 3828 // Build the operand list. 3829 SmallVector<SDValue, 8> Ops; 3830 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3831 if (OnlyLoad) { 3832 // We don't need to serialize loads against other loads. 3833 Ops.push_back(DAG.getRoot()); 3834 } else { 3835 Ops.push_back(getRoot()); 3836 } 3837 } 3838 3839 // Info is set by getTgtMemInstrinsic 3840 TargetLowering::IntrinsicInfo Info; 3841 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3842 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3843 3844 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3845 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3846 Info.opc == ISD::INTRINSIC_W_CHAIN) 3847 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3848 3849 // Add all operands of the call to the operand list. 3850 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3851 SDValue Op = getValue(I.getArgOperand(i)); 3852 Ops.push_back(Op); 3853 } 3854 3855 SmallVector<EVT, 4> ValueVTs; 3856 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3857 3858 if (HasChain) 3859 ValueVTs.push_back(MVT::Other); 3860 3861 SDVTList VTs = DAG.getVTList(ValueVTs); 3862 3863 // Create the node. 3864 SDValue Result; 3865 if (IsTgtIntrinsic) { 3866 // This is target intrinsic that touches memory 3867 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3868 VTs, Ops, Info.memVT, 3869 MachinePointerInfo(Info.ptrVal, Info.offset), 3870 Info.align, Info.vol, 3871 Info.readMem, Info.writeMem); 3872 } else if (!HasChain) { 3873 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3874 } else if (!I.getType()->isVoidTy()) { 3875 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3876 } else { 3877 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3878 } 3879 3880 if (HasChain) { 3881 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3882 if (OnlyLoad) 3883 PendingLoads.push_back(Chain); 3884 else 3885 DAG.setRoot(Chain); 3886 } 3887 3888 if (!I.getType()->isVoidTy()) { 3889 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3890 EVT VT = TLI->getValueType(PTy); 3891 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3892 } 3893 3894 setValue(&I, Result); 3895 } 3896 } 3897 3898 /// GetSignificand - Get the significand and build it into a floating-point 3899 /// number with exponent of 1: 3900 /// 3901 /// Op = (Op & 0x007fffff) | 0x3f800000; 3902 /// 3903 /// where Op is the hexadecimal representation of floating point value. 3904 static SDValue 3905 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3906 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3907 DAG.getConstant(0x007fffff, MVT::i32)); 3908 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3909 DAG.getConstant(0x3f800000, MVT::i32)); 3910 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3911 } 3912 3913 /// GetExponent - Get the exponent: 3914 /// 3915 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3916 /// 3917 /// where Op is the hexadecimal representation of floating point value. 3918 static SDValue 3919 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3920 SDLoc dl) { 3921 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3922 DAG.getConstant(0x7f800000, MVT::i32)); 3923 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3924 DAG.getConstant(23, TLI.getPointerTy())); 3925 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3926 DAG.getConstant(127, MVT::i32)); 3927 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3928 } 3929 3930 /// getF32Constant - Get 32-bit floating point constant. 3931 static SDValue 3932 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3933 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3934 MVT::f32); 3935 } 3936 3937 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3938 /// limited-precision mode. 3939 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3940 const TargetLowering &TLI) { 3941 if (Op.getValueType() == MVT::f32 && 3942 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3943 3944 // Put the exponent in the right bit position for later addition to the 3945 // final result: 3946 // 3947 // #define LOG2OFe 1.4426950f 3948 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3949 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3950 getF32Constant(DAG, 0x3fb8aa3b)); 3951 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3952 3953 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3954 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3955 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3956 3957 // IntegerPartOfX <<= 23; 3958 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3959 DAG.getConstant(23, TLI.getPointerTy())); 3960 3961 SDValue TwoToFracPartOfX; 3962 if (LimitFloatPrecision <= 6) { 3963 // For floating-point precision of 6: 3964 // 3965 // TwoToFractionalPartOfX = 3966 // 0.997535578f + 3967 // (0.735607626f + 0.252464424f * x) * x; 3968 // 3969 // error 0.0144103317, which is 6 bits 3970 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3971 getF32Constant(DAG, 0x3e814304)); 3972 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3973 getF32Constant(DAG, 0x3f3c50c8)); 3974 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3975 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3976 getF32Constant(DAG, 0x3f7f5e7e)); 3977 } else if (LimitFloatPrecision <= 12) { 3978 // For floating-point precision of 12: 3979 // 3980 // TwoToFractionalPartOfX = 3981 // 0.999892986f + 3982 // (0.696457318f + 3983 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3984 // 3985 // 0.000107046256 error, which is 13 to 14 bits 3986 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3987 getF32Constant(DAG, 0x3da235e3)); 3988 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3989 getF32Constant(DAG, 0x3e65b8f3)); 3990 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3991 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3992 getF32Constant(DAG, 0x3f324b07)); 3993 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3994 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3995 getF32Constant(DAG, 0x3f7ff8fd)); 3996 } else { // LimitFloatPrecision <= 18 3997 // For floating-point precision of 18: 3998 // 3999 // TwoToFractionalPartOfX = 4000 // 0.999999982f + 4001 // (0.693148872f + 4002 // (0.240227044f + 4003 // (0.554906021e-1f + 4004 // (0.961591928e-2f + 4005 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4006 // 4007 // error 2.47208000*10^(-7), which is better than 18 bits 4008 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4009 getF32Constant(DAG, 0x3924b03e)); 4010 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4011 getF32Constant(DAG, 0x3ab24b87)); 4012 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4013 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4014 getF32Constant(DAG, 0x3c1d8c17)); 4015 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4016 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4017 getF32Constant(DAG, 0x3d634a1d)); 4018 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4019 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4020 getF32Constant(DAG, 0x3e75fe14)); 4021 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4022 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4023 getF32Constant(DAG, 0x3f317234)); 4024 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4025 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4026 getF32Constant(DAG, 0x3f800000)); 4027 } 4028 4029 // Add the exponent into the result in integer domain. 4030 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 4031 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4032 DAG.getNode(ISD::ADD, dl, MVT::i32, 4033 t13, IntegerPartOfX)); 4034 } 4035 4036 // No special expansion. 4037 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4038 } 4039 4040 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4041 /// limited-precision mode. 4042 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4043 const TargetLowering &TLI) { 4044 if (Op.getValueType() == MVT::f32 && 4045 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4046 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4047 4048 // Scale the exponent by log(2) [0.69314718f]. 4049 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4050 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4051 getF32Constant(DAG, 0x3f317218)); 4052 4053 // Get the significand and build it into a floating-point number with 4054 // exponent of 1. 4055 SDValue X = GetSignificand(DAG, Op1, dl); 4056 4057 SDValue LogOfMantissa; 4058 if (LimitFloatPrecision <= 6) { 4059 // For floating-point precision of 6: 4060 // 4061 // LogofMantissa = 4062 // -1.1609546f + 4063 // (1.4034025f - 0.23903021f * x) * x; 4064 // 4065 // error 0.0034276066, which is better than 8 bits 4066 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4067 getF32Constant(DAG, 0xbe74c456)); 4068 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4069 getF32Constant(DAG, 0x3fb3a2b1)); 4070 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4071 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4072 getF32Constant(DAG, 0x3f949a29)); 4073 } else if (LimitFloatPrecision <= 12) { 4074 // For floating-point precision of 12: 4075 // 4076 // LogOfMantissa = 4077 // -1.7417939f + 4078 // (2.8212026f + 4079 // (-1.4699568f + 4080 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4081 // 4082 // error 0.000061011436, which is 14 bits 4083 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4084 getF32Constant(DAG, 0xbd67b6d6)); 4085 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4086 getF32Constant(DAG, 0x3ee4f4b8)); 4087 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4088 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4089 getF32Constant(DAG, 0x3fbc278b)); 4090 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4091 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4092 getF32Constant(DAG, 0x40348e95)); 4093 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4094 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4095 getF32Constant(DAG, 0x3fdef31a)); 4096 } else { // LimitFloatPrecision <= 18 4097 // For floating-point precision of 18: 4098 // 4099 // LogOfMantissa = 4100 // -2.1072184f + 4101 // (4.2372794f + 4102 // (-3.7029485f + 4103 // (2.2781945f + 4104 // (-0.87823314f + 4105 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4106 // 4107 // error 0.0000023660568, which is better than 18 bits 4108 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4109 getF32Constant(DAG, 0xbc91e5ac)); 4110 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4111 getF32Constant(DAG, 0x3e4350aa)); 4112 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4113 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4114 getF32Constant(DAG, 0x3f60d3e3)); 4115 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4116 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4117 getF32Constant(DAG, 0x4011cdf0)); 4118 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4119 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4120 getF32Constant(DAG, 0x406cfd1c)); 4121 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4122 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4123 getF32Constant(DAG, 0x408797cb)); 4124 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4125 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4126 getF32Constant(DAG, 0x4006dcab)); 4127 } 4128 4129 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4130 } 4131 4132 // No special expansion. 4133 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4134 } 4135 4136 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4137 /// limited-precision mode. 4138 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4139 const TargetLowering &TLI) { 4140 if (Op.getValueType() == MVT::f32 && 4141 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4142 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4143 4144 // Get the exponent. 4145 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4146 4147 // Get the significand and build it into a floating-point number with 4148 // exponent of 1. 4149 SDValue X = GetSignificand(DAG, Op1, dl); 4150 4151 // Different possible minimax approximations of significand in 4152 // floating-point for various degrees of accuracy over [1,2]. 4153 SDValue Log2ofMantissa; 4154 if (LimitFloatPrecision <= 6) { 4155 // For floating-point precision of 6: 4156 // 4157 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4158 // 4159 // error 0.0049451742, which is more than 7 bits 4160 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4161 getF32Constant(DAG, 0xbeb08fe0)); 4162 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4163 getF32Constant(DAG, 0x40019463)); 4164 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4165 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4166 getF32Constant(DAG, 0x3fd6633d)); 4167 } else if (LimitFloatPrecision <= 12) { 4168 // For floating-point precision of 12: 4169 // 4170 // Log2ofMantissa = 4171 // -2.51285454f + 4172 // (4.07009056f + 4173 // (-2.12067489f + 4174 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4175 // 4176 // error 0.0000876136000, which is better than 13 bits 4177 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4178 getF32Constant(DAG, 0xbda7262e)); 4179 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4180 getF32Constant(DAG, 0x3f25280b)); 4181 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4182 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4183 getF32Constant(DAG, 0x4007b923)); 4184 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4185 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4186 getF32Constant(DAG, 0x40823e2f)); 4187 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4188 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4189 getF32Constant(DAG, 0x4020d29c)); 4190 } else { // LimitFloatPrecision <= 18 4191 // For floating-point precision of 18: 4192 // 4193 // Log2ofMantissa = 4194 // -3.0400495f + 4195 // (6.1129976f + 4196 // (-5.3420409f + 4197 // (3.2865683f + 4198 // (-1.2669343f + 4199 // (0.27515199f - 4200 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4201 // 4202 // error 0.0000018516, which is better than 18 bits 4203 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4204 getF32Constant(DAG, 0xbcd2769e)); 4205 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4206 getF32Constant(DAG, 0x3e8ce0b9)); 4207 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4208 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4209 getF32Constant(DAG, 0x3fa22ae7)); 4210 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4211 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4212 getF32Constant(DAG, 0x40525723)); 4213 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4214 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4215 getF32Constant(DAG, 0x40aaf200)); 4216 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4217 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4218 getF32Constant(DAG, 0x40c39dad)); 4219 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4220 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4221 getF32Constant(DAG, 0x4042902c)); 4222 } 4223 4224 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4225 } 4226 4227 // No special expansion. 4228 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4229 } 4230 4231 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4232 /// limited-precision mode. 4233 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4234 const TargetLowering &TLI) { 4235 if (Op.getValueType() == MVT::f32 && 4236 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4237 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4238 4239 // Scale the exponent by log10(2) [0.30102999f]. 4240 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4241 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4242 getF32Constant(DAG, 0x3e9a209a)); 4243 4244 // Get the significand and build it into a floating-point number with 4245 // exponent of 1. 4246 SDValue X = GetSignificand(DAG, Op1, dl); 4247 4248 SDValue Log10ofMantissa; 4249 if (LimitFloatPrecision <= 6) { 4250 // For floating-point precision of 6: 4251 // 4252 // Log10ofMantissa = 4253 // -0.50419619f + 4254 // (0.60948995f - 0.10380950f * x) * x; 4255 // 4256 // error 0.0014886165, which is 6 bits 4257 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4258 getF32Constant(DAG, 0xbdd49a13)); 4259 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4260 getF32Constant(DAG, 0x3f1c0789)); 4261 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4262 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4263 getF32Constant(DAG, 0x3f011300)); 4264 } else if (LimitFloatPrecision <= 12) { 4265 // For floating-point precision of 12: 4266 // 4267 // Log10ofMantissa = 4268 // -0.64831180f + 4269 // (0.91751397f + 4270 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4271 // 4272 // error 0.00019228036, which is better than 12 bits 4273 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4274 getF32Constant(DAG, 0x3d431f31)); 4275 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4276 getF32Constant(DAG, 0x3ea21fb2)); 4277 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4278 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4279 getF32Constant(DAG, 0x3f6ae232)); 4280 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4281 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4282 getF32Constant(DAG, 0x3f25f7c3)); 4283 } else { // LimitFloatPrecision <= 18 4284 // For floating-point precision of 18: 4285 // 4286 // Log10ofMantissa = 4287 // -0.84299375f + 4288 // (1.5327582f + 4289 // (-1.0688956f + 4290 // (0.49102474f + 4291 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4292 // 4293 // error 0.0000037995730, which is better than 18 bits 4294 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4295 getF32Constant(DAG, 0x3c5d51ce)); 4296 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4297 getF32Constant(DAG, 0x3e00685a)); 4298 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4299 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4300 getF32Constant(DAG, 0x3efb6798)); 4301 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4302 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4303 getF32Constant(DAG, 0x3f88d192)); 4304 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4305 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4306 getF32Constant(DAG, 0x3fc4316c)); 4307 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4308 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4309 getF32Constant(DAG, 0x3f57ce70)); 4310 } 4311 4312 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4313 } 4314 4315 // No special expansion. 4316 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4317 } 4318 4319 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4320 /// limited-precision mode. 4321 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4322 const TargetLowering &TLI) { 4323 if (Op.getValueType() == MVT::f32 && 4324 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4325 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4326 4327 // FractionalPartOfX = x - (float)IntegerPartOfX; 4328 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4329 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4330 4331 // IntegerPartOfX <<= 23; 4332 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4333 DAG.getConstant(23, TLI.getPointerTy())); 4334 4335 SDValue TwoToFractionalPartOfX; 4336 if (LimitFloatPrecision <= 6) { 4337 // For floating-point precision of 6: 4338 // 4339 // TwoToFractionalPartOfX = 4340 // 0.997535578f + 4341 // (0.735607626f + 0.252464424f * x) * x; 4342 // 4343 // error 0.0144103317, which is 6 bits 4344 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4345 getF32Constant(DAG, 0x3e814304)); 4346 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4347 getF32Constant(DAG, 0x3f3c50c8)); 4348 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4349 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4350 getF32Constant(DAG, 0x3f7f5e7e)); 4351 } else if (LimitFloatPrecision <= 12) { 4352 // For floating-point precision of 12: 4353 // 4354 // TwoToFractionalPartOfX = 4355 // 0.999892986f + 4356 // (0.696457318f + 4357 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4358 // 4359 // error 0.000107046256, which is 13 to 14 bits 4360 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4361 getF32Constant(DAG, 0x3da235e3)); 4362 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4363 getF32Constant(DAG, 0x3e65b8f3)); 4364 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4365 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4366 getF32Constant(DAG, 0x3f324b07)); 4367 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4368 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4369 getF32Constant(DAG, 0x3f7ff8fd)); 4370 } else { // LimitFloatPrecision <= 18 4371 // For floating-point precision of 18: 4372 // 4373 // TwoToFractionalPartOfX = 4374 // 0.999999982f + 4375 // (0.693148872f + 4376 // (0.240227044f + 4377 // (0.554906021e-1f + 4378 // (0.961591928e-2f + 4379 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4380 // error 2.47208000*10^(-7), which is better than 18 bits 4381 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4382 getF32Constant(DAG, 0x3924b03e)); 4383 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4384 getF32Constant(DAG, 0x3ab24b87)); 4385 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4386 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4387 getF32Constant(DAG, 0x3c1d8c17)); 4388 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4389 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4390 getF32Constant(DAG, 0x3d634a1d)); 4391 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4392 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4393 getF32Constant(DAG, 0x3e75fe14)); 4394 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4395 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4396 getF32Constant(DAG, 0x3f317234)); 4397 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4398 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4399 getF32Constant(DAG, 0x3f800000)); 4400 } 4401 4402 // Add the exponent into the result in integer domain. 4403 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4404 TwoToFractionalPartOfX); 4405 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4406 DAG.getNode(ISD::ADD, dl, MVT::i32, 4407 t13, IntegerPartOfX)); 4408 } 4409 4410 // No special expansion. 4411 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4412 } 4413 4414 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4415 /// limited-precision mode with x == 10.0f. 4416 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4417 SelectionDAG &DAG, const TargetLowering &TLI) { 4418 bool IsExp10 = false; 4419 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4420 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4421 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4422 APFloat Ten(10.0f); 4423 IsExp10 = LHSC->isExactlyValue(Ten); 4424 } 4425 } 4426 4427 if (IsExp10) { 4428 // Put the exponent in the right bit position for later addition to the 4429 // final result: 4430 // 4431 // #define LOG2OF10 3.3219281f 4432 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4433 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4434 getF32Constant(DAG, 0x40549a78)); 4435 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4436 4437 // FractionalPartOfX = x - (float)IntegerPartOfX; 4438 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4439 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4440 4441 // IntegerPartOfX <<= 23; 4442 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4443 DAG.getConstant(23, TLI.getPointerTy())); 4444 4445 SDValue TwoToFractionalPartOfX; 4446 if (LimitFloatPrecision <= 6) { 4447 // For floating-point precision of 6: 4448 // 4449 // twoToFractionalPartOfX = 4450 // 0.997535578f + 4451 // (0.735607626f + 0.252464424f * x) * x; 4452 // 4453 // error 0.0144103317, which is 6 bits 4454 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4455 getF32Constant(DAG, 0x3e814304)); 4456 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4457 getF32Constant(DAG, 0x3f3c50c8)); 4458 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4459 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4460 getF32Constant(DAG, 0x3f7f5e7e)); 4461 } else if (LimitFloatPrecision <= 12) { 4462 // For floating-point precision of 12: 4463 // 4464 // TwoToFractionalPartOfX = 4465 // 0.999892986f + 4466 // (0.696457318f + 4467 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4468 // 4469 // error 0.000107046256, which is 13 to 14 bits 4470 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4471 getF32Constant(DAG, 0x3da235e3)); 4472 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4473 getF32Constant(DAG, 0x3e65b8f3)); 4474 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4475 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4476 getF32Constant(DAG, 0x3f324b07)); 4477 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4478 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4479 getF32Constant(DAG, 0x3f7ff8fd)); 4480 } else { // LimitFloatPrecision <= 18 4481 // For floating-point precision of 18: 4482 // 4483 // TwoToFractionalPartOfX = 4484 // 0.999999982f + 4485 // (0.693148872f + 4486 // (0.240227044f + 4487 // (0.554906021e-1f + 4488 // (0.961591928e-2f + 4489 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4490 // error 2.47208000*10^(-7), which is better than 18 bits 4491 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4492 getF32Constant(DAG, 0x3924b03e)); 4493 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4494 getF32Constant(DAG, 0x3ab24b87)); 4495 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4496 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4497 getF32Constant(DAG, 0x3c1d8c17)); 4498 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4499 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4500 getF32Constant(DAG, 0x3d634a1d)); 4501 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4502 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4503 getF32Constant(DAG, 0x3e75fe14)); 4504 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4505 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4506 getF32Constant(DAG, 0x3f317234)); 4507 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4508 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4509 getF32Constant(DAG, 0x3f800000)); 4510 } 4511 4512 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4513 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4514 DAG.getNode(ISD::ADD, dl, MVT::i32, 4515 t13, IntegerPartOfX)); 4516 } 4517 4518 // No special expansion. 4519 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4520 } 4521 4522 4523 /// ExpandPowI - Expand a llvm.powi intrinsic. 4524 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4525 SelectionDAG &DAG) { 4526 // If RHS is a constant, we can expand this out to a multiplication tree, 4527 // otherwise we end up lowering to a call to __powidf2 (for example). When 4528 // optimizing for size, we only want to do this if the expansion would produce 4529 // a small number of multiplies, otherwise we do the full expansion. 4530 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4531 // Get the exponent as a positive value. 4532 unsigned Val = RHSC->getSExtValue(); 4533 if ((int)Val < 0) Val = -Val; 4534 4535 // powi(x, 0) -> 1.0 4536 if (Val == 0) 4537 return DAG.getConstantFP(1.0, LHS.getValueType()); 4538 4539 const Function *F = DAG.getMachineFunction().getFunction(); 4540 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4541 Attribute::OptimizeForSize) || 4542 // If optimizing for size, don't insert too many multiplies. This 4543 // inserts up to 5 multiplies. 4544 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4545 // We use the simple binary decomposition method to generate the multiply 4546 // sequence. There are more optimal ways to do this (for example, 4547 // powi(x,15) generates one more multiply than it should), but this has 4548 // the benefit of being both really simple and much better than a libcall. 4549 SDValue Res; // Logically starts equal to 1.0 4550 SDValue CurSquare = LHS; 4551 while (Val) { 4552 if (Val & 1) { 4553 if (Res.getNode()) 4554 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4555 else 4556 Res = CurSquare; // 1.0*CurSquare. 4557 } 4558 4559 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4560 CurSquare, CurSquare); 4561 Val >>= 1; 4562 } 4563 4564 // If the original was negative, invert the result, producing 1/(x*x*x). 4565 if (RHSC->getSExtValue() < 0) 4566 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4567 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4568 return Res; 4569 } 4570 } 4571 4572 // Otherwise, expand to a libcall. 4573 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4574 } 4575 4576 // getTruncatedArgReg - Find underlying register used for an truncated 4577 // argument. 4578 static unsigned getTruncatedArgReg(const SDValue &N) { 4579 if (N.getOpcode() != ISD::TRUNCATE) 4580 return 0; 4581 4582 const SDValue &Ext = N.getOperand(0); 4583 if (Ext.getOpcode() == ISD::AssertZext || 4584 Ext.getOpcode() == ISD::AssertSext) { 4585 const SDValue &CFR = Ext.getOperand(0); 4586 if (CFR.getOpcode() == ISD::CopyFromReg) 4587 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4588 if (CFR.getOpcode() == ISD::TRUNCATE) 4589 return getTruncatedArgReg(CFR); 4590 } 4591 return 0; 4592 } 4593 4594 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4595 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4596 /// At the end of instruction selection, they will be inserted to the entry BB. 4597 bool 4598 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4599 int64_t Offset, bool IsIndirect, 4600 const SDValue &N) { 4601 const Argument *Arg = dyn_cast<Argument>(V); 4602 if (!Arg) 4603 return false; 4604 4605 MachineFunction &MF = DAG.getMachineFunction(); 4606 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4607 4608 // Ignore inlined function arguments here. 4609 DIVariable DV(Variable); 4610 if (DV.isInlinedFnArgument(MF.getFunction())) 4611 return false; 4612 4613 Optional<MachineOperand> Op; 4614 // Some arguments' frame index is recorded during argument lowering. 4615 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4616 Op = MachineOperand::CreateFI(FI); 4617 4618 if (!Op && N.getNode()) { 4619 unsigned Reg; 4620 if (N.getOpcode() == ISD::CopyFromReg) 4621 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4622 else 4623 Reg = getTruncatedArgReg(N); 4624 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4625 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4626 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4627 if (PR) 4628 Reg = PR; 4629 } 4630 if (Reg) 4631 Op = MachineOperand::CreateReg(Reg, false); 4632 } 4633 4634 if (!Op) { 4635 // Check if ValueMap has reg number. 4636 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4637 if (VMI != FuncInfo.ValueMap.end()) 4638 Op = MachineOperand::CreateReg(VMI->second, false); 4639 } 4640 4641 if (!Op && N.getNode()) 4642 // Check if frame index is available. 4643 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4644 if (FrameIndexSDNode *FINode = 4645 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4646 Op = MachineOperand::CreateFI(FINode->getIndex()); 4647 4648 if (!Op) 4649 return false; 4650 4651 if (Op->isReg()) 4652 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4653 TII->get(TargetOpcode::DBG_VALUE), 4654 IsIndirect, 4655 Op->getReg(), Offset, Variable)); 4656 else 4657 FuncInfo.ArgDbgValues.push_back( 4658 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4659 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4660 4661 return true; 4662 } 4663 4664 // VisualStudio defines setjmp as _setjmp 4665 #if defined(_MSC_VER) && defined(setjmp) && \ 4666 !defined(setjmp_undefined_for_msvc) 4667 # pragma push_macro("setjmp") 4668 # undef setjmp 4669 # define setjmp_undefined_for_msvc 4670 #endif 4671 4672 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4673 /// we want to emit this as a call to a named external function, return the name 4674 /// otherwise lower it and return null. 4675 const char * 4676 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4677 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 4678 SDLoc sdl = getCurSDLoc(); 4679 DebugLoc dl = getCurDebugLoc(); 4680 SDValue Res; 4681 4682 switch (Intrinsic) { 4683 default: 4684 // By default, turn this into a target intrinsic node. 4685 visitTargetIntrinsic(I, Intrinsic); 4686 return nullptr; 4687 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4688 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4689 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4690 case Intrinsic::returnaddress: 4691 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4692 getValue(I.getArgOperand(0)))); 4693 return nullptr; 4694 case Intrinsic::frameaddress: 4695 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4696 getValue(I.getArgOperand(0)))); 4697 return nullptr; 4698 case Intrinsic::read_register: { 4699 Value *Reg = I.getArgOperand(0); 4700 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4701 EVT VT = 4702 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 4703 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4704 return nullptr; 4705 } 4706 case Intrinsic::write_register: { 4707 Value *Reg = I.getArgOperand(0); 4708 Value *RegValue = I.getArgOperand(1); 4709 SDValue Chain = getValue(RegValue).getOperand(0); 4710 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4711 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4712 RegName, getValue(RegValue))); 4713 return nullptr; 4714 } 4715 case Intrinsic::setjmp: 4716 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4717 case Intrinsic::longjmp: 4718 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4719 case Intrinsic::memcpy: { 4720 // Assert for address < 256 since we support only user defined address 4721 // spaces. 4722 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4723 < 256 && 4724 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4725 < 256 && 4726 "Unknown address space"); 4727 SDValue Op1 = getValue(I.getArgOperand(0)); 4728 SDValue Op2 = getValue(I.getArgOperand(1)); 4729 SDValue Op3 = getValue(I.getArgOperand(2)); 4730 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4731 if (!Align) 4732 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4733 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4734 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4735 MachinePointerInfo(I.getArgOperand(0)), 4736 MachinePointerInfo(I.getArgOperand(1)))); 4737 return nullptr; 4738 } 4739 case Intrinsic::memset: { 4740 // Assert for address < 256 since we support only user defined address 4741 // spaces. 4742 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4743 < 256 && 4744 "Unknown address space"); 4745 SDValue Op1 = getValue(I.getArgOperand(0)); 4746 SDValue Op2 = getValue(I.getArgOperand(1)); 4747 SDValue Op3 = getValue(I.getArgOperand(2)); 4748 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4749 if (!Align) 4750 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4751 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4752 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4753 MachinePointerInfo(I.getArgOperand(0)))); 4754 return nullptr; 4755 } 4756 case Intrinsic::memmove: { 4757 // Assert for address < 256 since we support only user defined address 4758 // spaces. 4759 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4760 < 256 && 4761 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4762 < 256 && 4763 "Unknown address space"); 4764 SDValue Op1 = getValue(I.getArgOperand(0)); 4765 SDValue Op2 = getValue(I.getArgOperand(1)); 4766 SDValue Op3 = getValue(I.getArgOperand(2)); 4767 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4768 if (!Align) 4769 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4770 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4771 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4772 MachinePointerInfo(I.getArgOperand(0)), 4773 MachinePointerInfo(I.getArgOperand(1)))); 4774 return nullptr; 4775 } 4776 case Intrinsic::dbg_declare: { 4777 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4778 MDNode *Variable = DI.getVariable(); 4779 const Value *Address = DI.getAddress(); 4780 DIVariable DIVar(Variable); 4781 assert((!DIVar || DIVar.isVariable()) && 4782 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4783 if (!Address || !DIVar) { 4784 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4785 return nullptr; 4786 } 4787 4788 // Check if address has undef value. 4789 if (isa<UndefValue>(Address) || 4790 (Address->use_empty() && !isa<Argument>(Address))) { 4791 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4792 return nullptr; 4793 } 4794 4795 SDValue &N = NodeMap[Address]; 4796 if (!N.getNode() && isa<Argument>(Address)) 4797 // Check unused arguments map. 4798 N = UnusedArgNodeMap[Address]; 4799 SDDbgValue *SDV; 4800 if (N.getNode()) { 4801 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4802 Address = BCI->getOperand(0); 4803 // Parameters are handled specially. 4804 bool isParameter = 4805 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4806 isa<Argument>(Address)); 4807 4808 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4809 4810 if (isParameter && !AI) { 4811 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4812 if (FINode) 4813 // Byval parameter. We have a frame index at this point. 4814 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(), 4815 0, dl, SDNodeOrder); 4816 else { 4817 // Address is an argument, so try to emit its dbg value using 4818 // virtual register info from the FuncInfo.ValueMap. 4819 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N); 4820 return nullptr; 4821 } 4822 } else if (AI) 4823 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4824 true, 0, dl, SDNodeOrder); 4825 else { 4826 // Can't do anything with other non-AI cases yet. 4827 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4828 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4829 DEBUG(Address->dump()); 4830 return nullptr; 4831 } 4832 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4833 } else { 4834 // If Address is an argument then try to emit its dbg value using 4835 // virtual register info from the FuncInfo.ValueMap. 4836 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) { 4837 // If variable is pinned by a alloca in dominating bb then 4838 // use StaticAllocaMap. 4839 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4840 if (AI->getParent() != DI.getParent()) { 4841 DenseMap<const AllocaInst*, int>::iterator SI = 4842 FuncInfo.StaticAllocaMap.find(AI); 4843 if (SI != FuncInfo.StaticAllocaMap.end()) { 4844 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second, 4845 0, dl, SDNodeOrder); 4846 DAG.AddDbgValue(SDV, nullptr, false); 4847 return nullptr; 4848 } 4849 } 4850 } 4851 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4852 } 4853 } 4854 return nullptr; 4855 } 4856 case Intrinsic::dbg_value: { 4857 const DbgValueInst &DI = cast<DbgValueInst>(I); 4858 DIVariable DIVar(DI.getVariable()); 4859 assert((!DIVar || DIVar.isVariable()) && 4860 "Variable in DbgValueInst should be either null or a DIVariable."); 4861 if (!DIVar) 4862 return nullptr; 4863 4864 MDNode *Variable = DI.getVariable(); 4865 uint64_t Offset = DI.getOffset(); 4866 const Value *V = DI.getValue(); 4867 if (!V) 4868 return nullptr; 4869 4870 SDDbgValue *SDV; 4871 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4872 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4873 DAG.AddDbgValue(SDV, nullptr, false); 4874 } else { 4875 // Do not use getValue() in here; we don't want to generate code at 4876 // this point if it hasn't been done yet. 4877 SDValue N = NodeMap[V]; 4878 if (!N.getNode() && isa<Argument>(V)) 4879 // Check unused arguments map. 4880 N = UnusedArgNodeMap[V]; 4881 if (N.getNode()) { 4882 // A dbg.value for an alloca is always indirect. 4883 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4884 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) { 4885 SDV = DAG.getDbgValue(Variable, N.getNode(), 4886 N.getResNo(), IsIndirect, 4887 Offset, dl, SDNodeOrder); 4888 DAG.AddDbgValue(SDV, N.getNode(), false); 4889 } 4890 } else if (!V->use_empty() ) { 4891 // Do not call getValue(V) yet, as we don't want to generate code. 4892 // Remember it for later. 4893 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4894 DanglingDebugInfoMap[V] = DDI; 4895 } else { 4896 // We may expand this to cover more cases. One case where we have no 4897 // data available is an unreferenced parameter. 4898 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4899 } 4900 } 4901 4902 // Build a debug info table entry. 4903 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4904 V = BCI->getOperand(0); 4905 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4906 // Don't handle byval struct arguments or VLAs, for example. 4907 if (!AI) { 4908 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4909 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4910 return nullptr; 4911 } 4912 DenseMap<const AllocaInst*, int>::iterator SI = 4913 FuncInfo.StaticAllocaMap.find(AI); 4914 if (SI == FuncInfo.StaticAllocaMap.end()) 4915 return nullptr; // VLAs. 4916 return nullptr; 4917 } 4918 4919 case Intrinsic::eh_typeid_for: { 4920 // Find the type id for the given typeinfo. 4921 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4922 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4923 Res = DAG.getConstant(TypeID, MVT::i32); 4924 setValue(&I, Res); 4925 return nullptr; 4926 } 4927 4928 case Intrinsic::eh_return_i32: 4929 case Intrinsic::eh_return_i64: 4930 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4931 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4932 MVT::Other, 4933 getControlRoot(), 4934 getValue(I.getArgOperand(0)), 4935 getValue(I.getArgOperand(1)))); 4936 return nullptr; 4937 case Intrinsic::eh_unwind_init: 4938 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4939 return nullptr; 4940 case Intrinsic::eh_dwarf_cfa: { 4941 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4942 TLI->getPointerTy()); 4943 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4944 CfaArg.getValueType(), 4945 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4946 CfaArg.getValueType()), 4947 CfaArg); 4948 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4949 TLI->getPointerTy(), 4950 DAG.getConstant(0, TLI->getPointerTy())); 4951 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4952 FA, Offset)); 4953 return nullptr; 4954 } 4955 case Intrinsic::eh_sjlj_callsite: { 4956 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4957 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4958 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4959 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4960 4961 MMI.setCurrentCallSite(CI->getZExtValue()); 4962 return nullptr; 4963 } 4964 case Intrinsic::eh_sjlj_functioncontext: { 4965 // Get and store the index of the function context. 4966 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4967 AllocaInst *FnCtx = 4968 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4969 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4970 MFI->setFunctionContextIndex(FI); 4971 return nullptr; 4972 } 4973 case Intrinsic::eh_sjlj_setjmp: { 4974 SDValue Ops[2]; 4975 Ops[0] = getRoot(); 4976 Ops[1] = getValue(I.getArgOperand(0)); 4977 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4978 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4979 setValue(&I, Op.getValue(0)); 4980 DAG.setRoot(Op.getValue(1)); 4981 return nullptr; 4982 } 4983 case Intrinsic::eh_sjlj_longjmp: { 4984 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4985 getRoot(), getValue(I.getArgOperand(0)))); 4986 return nullptr; 4987 } 4988 4989 case Intrinsic::x86_mmx_pslli_w: 4990 case Intrinsic::x86_mmx_pslli_d: 4991 case Intrinsic::x86_mmx_pslli_q: 4992 case Intrinsic::x86_mmx_psrli_w: 4993 case Intrinsic::x86_mmx_psrli_d: 4994 case Intrinsic::x86_mmx_psrli_q: 4995 case Intrinsic::x86_mmx_psrai_w: 4996 case Intrinsic::x86_mmx_psrai_d: { 4997 SDValue ShAmt = getValue(I.getArgOperand(1)); 4998 if (isa<ConstantSDNode>(ShAmt)) { 4999 visitTargetIntrinsic(I, Intrinsic); 5000 return nullptr; 5001 } 5002 unsigned NewIntrinsic = 0; 5003 EVT ShAmtVT = MVT::v2i32; 5004 switch (Intrinsic) { 5005 case Intrinsic::x86_mmx_pslli_w: 5006 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5007 break; 5008 case Intrinsic::x86_mmx_pslli_d: 5009 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5010 break; 5011 case Intrinsic::x86_mmx_pslli_q: 5012 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5013 break; 5014 case Intrinsic::x86_mmx_psrli_w: 5015 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5016 break; 5017 case Intrinsic::x86_mmx_psrli_d: 5018 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5019 break; 5020 case Intrinsic::x86_mmx_psrli_q: 5021 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5022 break; 5023 case Intrinsic::x86_mmx_psrai_w: 5024 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5025 break; 5026 case Intrinsic::x86_mmx_psrai_d: 5027 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5028 break; 5029 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5030 } 5031 5032 // The vector shift intrinsics with scalars uses 32b shift amounts but 5033 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5034 // to be zero. 5035 // We must do this early because v2i32 is not a legal type. 5036 SDValue ShOps[2]; 5037 ShOps[0] = ShAmt; 5038 ShOps[1] = DAG.getConstant(0, MVT::i32); 5039 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5040 EVT DestVT = TLI->getValueType(I.getType()); 5041 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5042 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5043 DAG.getConstant(NewIntrinsic, MVT::i32), 5044 getValue(I.getArgOperand(0)), ShAmt); 5045 setValue(&I, Res); 5046 return nullptr; 5047 } 5048 case Intrinsic::x86_avx_vinsertf128_pd_256: 5049 case Intrinsic::x86_avx_vinsertf128_ps_256: 5050 case Intrinsic::x86_avx_vinsertf128_si_256: 5051 case Intrinsic::x86_avx2_vinserti128: { 5052 EVT DestVT = TLI->getValueType(I.getType()); 5053 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 5054 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5055 ElVT.getVectorNumElements(); 5056 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5057 getValue(I.getArgOperand(0)), 5058 getValue(I.getArgOperand(1)), 5059 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5060 setValue(&I, Res); 5061 return nullptr; 5062 } 5063 case Intrinsic::x86_avx_vextractf128_pd_256: 5064 case Intrinsic::x86_avx_vextractf128_ps_256: 5065 case Intrinsic::x86_avx_vextractf128_si_256: 5066 case Intrinsic::x86_avx2_vextracti128: { 5067 EVT DestVT = TLI->getValueType(I.getType()); 5068 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5069 DestVT.getVectorNumElements(); 5070 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5071 getValue(I.getArgOperand(0)), 5072 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5073 setValue(&I, Res); 5074 return nullptr; 5075 } 5076 case Intrinsic::convertff: 5077 case Intrinsic::convertfsi: 5078 case Intrinsic::convertfui: 5079 case Intrinsic::convertsif: 5080 case Intrinsic::convertuif: 5081 case Intrinsic::convertss: 5082 case Intrinsic::convertsu: 5083 case Intrinsic::convertus: 5084 case Intrinsic::convertuu: { 5085 ISD::CvtCode Code = ISD::CVT_INVALID; 5086 switch (Intrinsic) { 5087 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5088 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5089 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5090 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5091 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5092 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5093 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5094 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5095 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5096 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5097 } 5098 EVT DestVT = TLI->getValueType(I.getType()); 5099 const Value *Op1 = I.getArgOperand(0); 5100 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5101 DAG.getValueType(DestVT), 5102 DAG.getValueType(getValue(Op1).getValueType()), 5103 getValue(I.getArgOperand(1)), 5104 getValue(I.getArgOperand(2)), 5105 Code); 5106 setValue(&I, Res); 5107 return nullptr; 5108 } 5109 case Intrinsic::powi: 5110 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5111 getValue(I.getArgOperand(1)), DAG)); 5112 return nullptr; 5113 case Intrinsic::log: 5114 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5115 return nullptr; 5116 case Intrinsic::log2: 5117 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5118 return nullptr; 5119 case Intrinsic::log10: 5120 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5121 return nullptr; 5122 case Intrinsic::exp: 5123 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5124 return nullptr; 5125 case Intrinsic::exp2: 5126 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5127 return nullptr; 5128 case Intrinsic::pow: 5129 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5130 getValue(I.getArgOperand(1)), DAG, *TLI)); 5131 return nullptr; 5132 case Intrinsic::sqrt: 5133 case Intrinsic::fabs: 5134 case Intrinsic::sin: 5135 case Intrinsic::cos: 5136 case Intrinsic::floor: 5137 case Intrinsic::ceil: 5138 case Intrinsic::trunc: 5139 case Intrinsic::rint: 5140 case Intrinsic::nearbyint: 5141 case Intrinsic::round: { 5142 unsigned Opcode; 5143 switch (Intrinsic) { 5144 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5145 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5146 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5147 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5148 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5149 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5150 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5151 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5152 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5153 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5154 case Intrinsic::round: Opcode = ISD::FROUND; break; 5155 } 5156 5157 setValue(&I, DAG.getNode(Opcode, sdl, 5158 getValue(I.getArgOperand(0)).getValueType(), 5159 getValue(I.getArgOperand(0)))); 5160 return nullptr; 5161 } 5162 case Intrinsic::copysign: 5163 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5164 getValue(I.getArgOperand(0)).getValueType(), 5165 getValue(I.getArgOperand(0)), 5166 getValue(I.getArgOperand(1)))); 5167 return nullptr; 5168 case Intrinsic::fma: 5169 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5170 getValue(I.getArgOperand(0)).getValueType(), 5171 getValue(I.getArgOperand(0)), 5172 getValue(I.getArgOperand(1)), 5173 getValue(I.getArgOperand(2)))); 5174 return nullptr; 5175 case Intrinsic::fmuladd: { 5176 EVT VT = TLI->getValueType(I.getType()); 5177 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5178 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5179 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5180 getValue(I.getArgOperand(0)).getValueType(), 5181 getValue(I.getArgOperand(0)), 5182 getValue(I.getArgOperand(1)), 5183 getValue(I.getArgOperand(2)))); 5184 } else { 5185 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5186 getValue(I.getArgOperand(0)).getValueType(), 5187 getValue(I.getArgOperand(0)), 5188 getValue(I.getArgOperand(1))); 5189 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5190 getValue(I.getArgOperand(0)).getValueType(), 5191 Mul, 5192 getValue(I.getArgOperand(2))); 5193 setValue(&I, Add); 5194 } 5195 return nullptr; 5196 } 5197 case Intrinsic::convert_to_fp16: 5198 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5199 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5200 getValue(I.getArgOperand(0)), 5201 DAG.getTargetConstant(0, MVT::i32)))); 5202 return nullptr; 5203 case Intrinsic::convert_from_fp16: 5204 setValue(&I, 5205 DAG.getNode(ISD::FP_EXTEND, sdl, TLI->getValueType(I.getType()), 5206 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5207 getValue(I.getArgOperand(0))))); 5208 return nullptr; 5209 case Intrinsic::pcmarker: { 5210 SDValue Tmp = getValue(I.getArgOperand(0)); 5211 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5212 return nullptr; 5213 } 5214 case Intrinsic::readcyclecounter: { 5215 SDValue Op = getRoot(); 5216 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5217 DAG.getVTList(MVT::i64, MVT::Other), Op); 5218 setValue(&I, Res); 5219 DAG.setRoot(Res.getValue(1)); 5220 return nullptr; 5221 } 5222 case Intrinsic::bswap: 5223 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5224 getValue(I.getArgOperand(0)).getValueType(), 5225 getValue(I.getArgOperand(0)))); 5226 return nullptr; 5227 case Intrinsic::cttz: { 5228 SDValue Arg = getValue(I.getArgOperand(0)); 5229 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5230 EVT Ty = Arg.getValueType(); 5231 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5232 sdl, Ty, Arg)); 5233 return nullptr; 5234 } 5235 case Intrinsic::ctlz: { 5236 SDValue Arg = getValue(I.getArgOperand(0)); 5237 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5238 EVT Ty = Arg.getValueType(); 5239 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5240 sdl, Ty, Arg)); 5241 return nullptr; 5242 } 5243 case Intrinsic::ctpop: { 5244 SDValue Arg = getValue(I.getArgOperand(0)); 5245 EVT Ty = Arg.getValueType(); 5246 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5247 return nullptr; 5248 } 5249 case Intrinsic::stacksave: { 5250 SDValue Op = getRoot(); 5251 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5252 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op); 5253 setValue(&I, Res); 5254 DAG.setRoot(Res.getValue(1)); 5255 return nullptr; 5256 } 5257 case Intrinsic::stackrestore: { 5258 Res = getValue(I.getArgOperand(0)); 5259 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5260 return nullptr; 5261 } 5262 case Intrinsic::stackprotector: { 5263 // Emit code into the DAG to store the stack guard onto the stack. 5264 MachineFunction &MF = DAG.getMachineFunction(); 5265 MachineFrameInfo *MFI = MF.getFrameInfo(); 5266 EVT PtrTy = TLI->getPointerTy(); 5267 SDValue Src, Chain = getRoot(); 5268 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5269 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5270 5271 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5272 // global variable __stack_chk_guard. 5273 if (!GV) 5274 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5275 if (BC->getOpcode() == Instruction::BitCast) 5276 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5277 5278 if (GV && TLI->useLoadStackGuardNode()) { 5279 // Emit a LOAD_STACK_GUARD node. 5280 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5281 sdl, PtrTy, Chain); 5282 MachinePointerInfo MPInfo(GV); 5283 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5284 unsigned Flags = MachineMemOperand::MOLoad | 5285 MachineMemOperand::MOInvariant; 5286 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5287 PtrTy.getSizeInBits() / 8, 5288 DAG.getEVTAlignment(PtrTy)); 5289 Node->setMemRefs(MemRefs, MemRefs + 1); 5290 5291 // Copy the guard value to a virtual register so that it can be 5292 // retrieved in the epilogue. 5293 Src = SDValue(Node, 0); 5294 const TargetRegisterClass *RC = 5295 TLI->getRegClassFor(Src.getSimpleValueType()); 5296 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5297 5298 SPDescriptor.setGuardReg(Reg); 5299 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5300 } else { 5301 Src = getValue(I.getArgOperand(0)); // The guard's value. 5302 } 5303 5304 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5305 5306 int FI = FuncInfo.StaticAllocaMap[Slot]; 5307 MFI->setStackProtectorIndex(FI); 5308 5309 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5310 5311 // Store the stack protector onto the stack. 5312 Res = DAG.getStore(Chain, sdl, Src, FIN, 5313 MachinePointerInfo::getFixedStack(FI), 5314 true, false, 0); 5315 setValue(&I, Res); 5316 DAG.setRoot(Res); 5317 return nullptr; 5318 } 5319 case Intrinsic::objectsize: { 5320 // If we don't know by now, we're never going to know. 5321 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5322 5323 assert(CI && "Non-constant type in __builtin_object_size?"); 5324 5325 SDValue Arg = getValue(I.getCalledValue()); 5326 EVT Ty = Arg.getValueType(); 5327 5328 if (CI->isZero()) 5329 Res = DAG.getConstant(-1ULL, Ty); 5330 else 5331 Res = DAG.getConstant(0, Ty); 5332 5333 setValue(&I, Res); 5334 return nullptr; 5335 } 5336 case Intrinsic::annotation: 5337 case Intrinsic::ptr_annotation: 5338 // Drop the intrinsic, but forward the value 5339 setValue(&I, getValue(I.getOperand(0))); 5340 return nullptr; 5341 case Intrinsic::assume: 5342 case Intrinsic::var_annotation: 5343 // Discard annotate attributes and assumptions 5344 return nullptr; 5345 5346 case Intrinsic::init_trampoline: { 5347 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5348 5349 SDValue Ops[6]; 5350 Ops[0] = getRoot(); 5351 Ops[1] = getValue(I.getArgOperand(0)); 5352 Ops[2] = getValue(I.getArgOperand(1)); 5353 Ops[3] = getValue(I.getArgOperand(2)); 5354 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5355 Ops[5] = DAG.getSrcValue(F); 5356 5357 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5358 5359 DAG.setRoot(Res); 5360 return nullptr; 5361 } 5362 case Intrinsic::adjust_trampoline: { 5363 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5364 TLI->getPointerTy(), 5365 getValue(I.getArgOperand(0)))); 5366 return nullptr; 5367 } 5368 case Intrinsic::gcroot: 5369 if (GFI) { 5370 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5371 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5372 5373 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5374 GFI->addStackRoot(FI->getIndex(), TypeMap); 5375 } 5376 return nullptr; 5377 case Intrinsic::gcread: 5378 case Intrinsic::gcwrite: 5379 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5380 case Intrinsic::flt_rounds: 5381 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5382 return nullptr; 5383 5384 case Intrinsic::expect: { 5385 // Just replace __builtin_expect(exp, c) with EXP. 5386 setValue(&I, getValue(I.getArgOperand(0))); 5387 return nullptr; 5388 } 5389 5390 case Intrinsic::debugtrap: 5391 case Intrinsic::trap: { 5392 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5393 if (TrapFuncName.empty()) { 5394 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5395 ISD::TRAP : ISD::DEBUGTRAP; 5396 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5397 return nullptr; 5398 } 5399 TargetLowering::ArgListTy Args; 5400 5401 TargetLowering::CallLoweringInfo CLI(DAG); 5402 CLI.setDebugLoc(sdl).setChain(getRoot()) 5403 .setCallee(CallingConv::C, I.getType(), 5404 DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()), 5405 std::move(Args), 0); 5406 5407 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5408 DAG.setRoot(Result.second); 5409 return nullptr; 5410 } 5411 5412 case Intrinsic::uadd_with_overflow: 5413 case Intrinsic::sadd_with_overflow: 5414 case Intrinsic::usub_with_overflow: 5415 case Intrinsic::ssub_with_overflow: 5416 case Intrinsic::umul_with_overflow: 5417 case Intrinsic::smul_with_overflow: { 5418 ISD::NodeType Op; 5419 switch (Intrinsic) { 5420 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5421 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5422 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5423 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5424 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5425 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5426 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5427 } 5428 SDValue Op1 = getValue(I.getArgOperand(0)); 5429 SDValue Op2 = getValue(I.getArgOperand(1)); 5430 5431 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5432 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5433 return nullptr; 5434 } 5435 case Intrinsic::prefetch: { 5436 SDValue Ops[5]; 5437 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5438 Ops[0] = getRoot(); 5439 Ops[1] = getValue(I.getArgOperand(0)); 5440 Ops[2] = getValue(I.getArgOperand(1)); 5441 Ops[3] = getValue(I.getArgOperand(2)); 5442 Ops[4] = getValue(I.getArgOperand(3)); 5443 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5444 DAG.getVTList(MVT::Other), Ops, 5445 EVT::getIntegerVT(*Context, 8), 5446 MachinePointerInfo(I.getArgOperand(0)), 5447 0, /* align */ 5448 false, /* volatile */ 5449 rw==0, /* read */ 5450 rw==1)); /* write */ 5451 return nullptr; 5452 } 5453 case Intrinsic::lifetime_start: 5454 case Intrinsic::lifetime_end: { 5455 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5456 // Stack coloring is not enabled in O0, discard region information. 5457 if (TM.getOptLevel() == CodeGenOpt::None) 5458 return nullptr; 5459 5460 SmallVector<Value *, 4> Allocas; 5461 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5462 5463 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5464 E = Allocas.end(); Object != E; ++Object) { 5465 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5466 5467 // Could not find an Alloca. 5468 if (!LifetimeObject) 5469 continue; 5470 5471 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5472 5473 SDValue Ops[2]; 5474 Ops[0] = getRoot(); 5475 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5476 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5477 5478 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5479 DAG.setRoot(Res); 5480 } 5481 return nullptr; 5482 } 5483 case Intrinsic::invariant_start: 5484 // Discard region information. 5485 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5486 return nullptr; 5487 case Intrinsic::invariant_end: 5488 // Discard region information. 5489 return nullptr; 5490 case Intrinsic::stackprotectorcheck: { 5491 // Do not actually emit anything for this basic block. Instead we initialize 5492 // the stack protector descriptor and export the guard variable so we can 5493 // access it in FinishBasicBlock. 5494 const BasicBlock *BB = I.getParent(); 5495 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5496 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5497 5498 // Flush our exports since we are going to process a terminator. 5499 (void)getControlRoot(); 5500 return nullptr; 5501 } 5502 case Intrinsic::clear_cache: 5503 return TLI->getClearCacheBuiltinName(); 5504 case Intrinsic::donothing: 5505 // ignore 5506 return nullptr; 5507 case Intrinsic::experimental_stackmap: { 5508 visitStackmap(I); 5509 return nullptr; 5510 } 5511 case Intrinsic::experimental_patchpoint_void: 5512 case Intrinsic::experimental_patchpoint_i64: { 5513 visitPatchpoint(I); 5514 return nullptr; 5515 } 5516 } 5517 } 5518 5519 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5520 bool isTailCall, 5521 MachineBasicBlock *LandingPad) { 5522 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5523 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5524 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5525 Type *RetTy = FTy->getReturnType(); 5526 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5527 MCSymbol *BeginLabel = nullptr; 5528 5529 TargetLowering::ArgListTy Args; 5530 TargetLowering::ArgListEntry Entry; 5531 Args.reserve(CS.arg_size()); 5532 5533 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5534 i != e; ++i) { 5535 const Value *V = *i; 5536 5537 // Skip empty types 5538 if (V->getType()->isEmptyTy()) 5539 continue; 5540 5541 SDValue ArgNode = getValue(V); 5542 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5543 5544 // Skip the first return-type Attribute to get to params. 5545 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5546 Args.push_back(Entry); 5547 } 5548 5549 if (LandingPad) { 5550 // Insert a label before the invoke call to mark the try range. This can be 5551 // used to detect deletion of the invoke via the MachineModuleInfo. 5552 BeginLabel = MMI.getContext().CreateTempSymbol(); 5553 5554 // For SjLj, keep track of which landing pads go with which invokes 5555 // so as to maintain the ordering of pads in the LSDA. 5556 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5557 if (CallSiteIndex) { 5558 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5559 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5560 5561 // Now that the call site is handled, stop tracking it. 5562 MMI.setCurrentCallSite(0); 5563 } 5564 5565 // Both PendingLoads and PendingExports must be flushed here; 5566 // this call might not return. 5567 (void)getRoot(); 5568 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5569 } 5570 5571 // Check if target-independent constraints permit a tail call here. 5572 // Target-dependent constraints are checked within TLI->LowerCallTo. 5573 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5574 isTailCall = false; 5575 5576 TargetLowering::CallLoweringInfo CLI(DAG); 5577 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5578 .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall); 5579 5580 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5581 assert((isTailCall || Result.second.getNode()) && 5582 "Non-null chain expected with non-tail call!"); 5583 assert((Result.second.getNode() || !Result.first.getNode()) && 5584 "Null value expected with tail call!"); 5585 if (Result.first.getNode()) 5586 setValue(CS.getInstruction(), Result.first); 5587 5588 if (!Result.second.getNode()) { 5589 // As a special case, a null chain means that a tail call has been emitted 5590 // and the DAG root is already updated. 5591 HasTailCall = true; 5592 5593 // Since there's no actual continuation from this block, nothing can be 5594 // relying on us setting vregs for them. 5595 PendingExports.clear(); 5596 } else { 5597 DAG.setRoot(Result.second); 5598 } 5599 5600 if (LandingPad) { 5601 // Insert a label at the end of the invoke call to mark the try range. This 5602 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5603 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5604 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5605 5606 // Inform MachineModuleInfo of range. 5607 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5608 } 5609 } 5610 5611 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5612 /// value is equal or not-equal to zero. 5613 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5614 for (const User *U : V->users()) { 5615 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5616 if (IC->isEquality()) 5617 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5618 if (C->isNullValue()) 5619 continue; 5620 // Unknown instruction. 5621 return false; 5622 } 5623 return true; 5624 } 5625 5626 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5627 Type *LoadTy, 5628 SelectionDAGBuilder &Builder) { 5629 5630 // Check to see if this load can be trivially constant folded, e.g. if the 5631 // input is from a string literal. 5632 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5633 // Cast pointer to the type we really want to load. 5634 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5635 PointerType::getUnqual(LoadTy)); 5636 5637 if (const Constant *LoadCst = 5638 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5639 Builder.DL)) 5640 return Builder.getValue(LoadCst); 5641 } 5642 5643 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5644 // still constant memory, the input chain can be the entry node. 5645 SDValue Root; 5646 bool ConstantMemory = false; 5647 5648 // Do not serialize (non-volatile) loads of constant memory with anything. 5649 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5650 Root = Builder.DAG.getEntryNode(); 5651 ConstantMemory = true; 5652 } else { 5653 // Do not serialize non-volatile loads against each other. 5654 Root = Builder.DAG.getRoot(); 5655 } 5656 5657 SDValue Ptr = Builder.getValue(PtrVal); 5658 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5659 Ptr, MachinePointerInfo(PtrVal), 5660 false /*volatile*/, 5661 false /*nontemporal*/, 5662 false /*isinvariant*/, 1 /* align=1 */); 5663 5664 if (!ConstantMemory) 5665 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5666 return LoadVal; 5667 } 5668 5669 /// processIntegerCallValue - Record the value for an instruction that 5670 /// produces an integer result, converting the type where necessary. 5671 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5672 SDValue Value, 5673 bool IsSigned) { 5674 EVT VT = TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType(), 5675 true); 5676 if (IsSigned) 5677 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5678 else 5679 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5680 setValue(&I, Value); 5681 } 5682 5683 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5684 /// If so, return true and lower it, otherwise return false and it will be 5685 /// lowered like a normal call. 5686 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5687 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5688 if (I.getNumArgOperands() != 3) 5689 return false; 5690 5691 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5692 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5693 !I.getArgOperand(2)->getType()->isIntegerTy() || 5694 !I.getType()->isIntegerTy()) 5695 return false; 5696 5697 const Value *Size = I.getArgOperand(2); 5698 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5699 if (CSize && CSize->getZExtValue() == 0) { 5700 EVT CallVT = TM.getSubtargetImpl()->getTargetLowering()->getValueType( 5701 I.getType(), true); 5702 setValue(&I, DAG.getConstant(0, CallVT)); 5703 return true; 5704 } 5705 5706 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5707 std::pair<SDValue, SDValue> Res = 5708 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5709 getValue(LHS), getValue(RHS), getValue(Size), 5710 MachinePointerInfo(LHS), 5711 MachinePointerInfo(RHS)); 5712 if (Res.first.getNode()) { 5713 processIntegerCallValue(I, Res.first, true); 5714 PendingLoads.push_back(Res.second); 5715 return true; 5716 } 5717 5718 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5719 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5720 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5721 bool ActuallyDoIt = true; 5722 MVT LoadVT; 5723 Type *LoadTy; 5724 switch (CSize->getZExtValue()) { 5725 default: 5726 LoadVT = MVT::Other; 5727 LoadTy = nullptr; 5728 ActuallyDoIt = false; 5729 break; 5730 case 2: 5731 LoadVT = MVT::i16; 5732 LoadTy = Type::getInt16Ty(CSize->getContext()); 5733 break; 5734 case 4: 5735 LoadVT = MVT::i32; 5736 LoadTy = Type::getInt32Ty(CSize->getContext()); 5737 break; 5738 case 8: 5739 LoadVT = MVT::i64; 5740 LoadTy = Type::getInt64Ty(CSize->getContext()); 5741 break; 5742 /* 5743 case 16: 5744 LoadVT = MVT::v4i32; 5745 LoadTy = Type::getInt32Ty(CSize->getContext()); 5746 LoadTy = VectorType::get(LoadTy, 4); 5747 break; 5748 */ 5749 } 5750 5751 // This turns into unaligned loads. We only do this if the target natively 5752 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5753 // we'll only produce a small number of byte loads. 5754 5755 // Require that we can find a legal MVT, and only do this if the target 5756 // supports unaligned loads of that type. Expanding into byte loads would 5757 // bloat the code. 5758 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5759 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5760 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5761 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5762 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5763 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5764 // TODO: Check alignment of src and dest ptrs. 5765 if (!TLI->isTypeLegal(LoadVT) || 5766 !TLI->allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5767 !TLI->allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5768 ActuallyDoIt = false; 5769 } 5770 5771 if (ActuallyDoIt) { 5772 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5773 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5774 5775 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5776 ISD::SETNE); 5777 processIntegerCallValue(I, Res, false); 5778 return true; 5779 } 5780 } 5781 5782 5783 return false; 5784 } 5785 5786 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5787 /// form. If so, return true and lower it, otherwise return false and it 5788 /// will be lowered like a normal call. 5789 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5790 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5791 if (I.getNumArgOperands() != 3) 5792 return false; 5793 5794 const Value *Src = I.getArgOperand(0); 5795 const Value *Char = I.getArgOperand(1); 5796 const Value *Length = I.getArgOperand(2); 5797 if (!Src->getType()->isPointerTy() || 5798 !Char->getType()->isIntegerTy() || 5799 !Length->getType()->isIntegerTy() || 5800 !I.getType()->isPointerTy()) 5801 return false; 5802 5803 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5804 std::pair<SDValue, SDValue> Res = 5805 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5806 getValue(Src), getValue(Char), getValue(Length), 5807 MachinePointerInfo(Src)); 5808 if (Res.first.getNode()) { 5809 setValue(&I, Res.first); 5810 PendingLoads.push_back(Res.second); 5811 return true; 5812 } 5813 5814 return false; 5815 } 5816 5817 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5818 /// optimized form. If so, return true and lower it, otherwise return false 5819 /// and it will be lowered like a normal call. 5820 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5821 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5822 if (I.getNumArgOperands() != 2) 5823 return false; 5824 5825 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5826 if (!Arg0->getType()->isPointerTy() || 5827 !Arg1->getType()->isPointerTy() || 5828 !I.getType()->isPointerTy()) 5829 return false; 5830 5831 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5832 std::pair<SDValue, SDValue> Res = 5833 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5834 getValue(Arg0), getValue(Arg1), 5835 MachinePointerInfo(Arg0), 5836 MachinePointerInfo(Arg1), isStpcpy); 5837 if (Res.first.getNode()) { 5838 setValue(&I, Res.first); 5839 DAG.setRoot(Res.second); 5840 return true; 5841 } 5842 5843 return false; 5844 } 5845 5846 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5847 /// If so, return true and lower it, otherwise return false and it will be 5848 /// lowered like a normal call. 5849 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5850 // Verify that the prototype makes sense. int strcmp(void*,void*) 5851 if (I.getNumArgOperands() != 2) 5852 return false; 5853 5854 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5855 if (!Arg0->getType()->isPointerTy() || 5856 !Arg1->getType()->isPointerTy() || 5857 !I.getType()->isIntegerTy()) 5858 return false; 5859 5860 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5861 std::pair<SDValue, SDValue> Res = 5862 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5863 getValue(Arg0), getValue(Arg1), 5864 MachinePointerInfo(Arg0), 5865 MachinePointerInfo(Arg1)); 5866 if (Res.first.getNode()) { 5867 processIntegerCallValue(I, Res.first, true); 5868 PendingLoads.push_back(Res.second); 5869 return true; 5870 } 5871 5872 return false; 5873 } 5874 5875 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5876 /// form. If so, return true and lower it, otherwise return false and it 5877 /// will be lowered like a normal call. 5878 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5879 // Verify that the prototype makes sense. size_t strlen(char *) 5880 if (I.getNumArgOperands() != 1) 5881 return false; 5882 5883 const Value *Arg0 = I.getArgOperand(0); 5884 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5885 return false; 5886 5887 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5888 std::pair<SDValue, SDValue> Res = 5889 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5890 getValue(Arg0), MachinePointerInfo(Arg0)); 5891 if (Res.first.getNode()) { 5892 processIntegerCallValue(I, Res.first, false); 5893 PendingLoads.push_back(Res.second); 5894 return true; 5895 } 5896 5897 return false; 5898 } 5899 5900 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5901 /// form. If so, return true and lower it, otherwise return false and it 5902 /// will be lowered like a normal call. 5903 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5904 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5905 if (I.getNumArgOperands() != 2) 5906 return false; 5907 5908 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5909 if (!Arg0->getType()->isPointerTy() || 5910 !Arg1->getType()->isIntegerTy() || 5911 !I.getType()->isIntegerTy()) 5912 return false; 5913 5914 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5915 std::pair<SDValue, SDValue> Res = 5916 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5917 getValue(Arg0), getValue(Arg1), 5918 MachinePointerInfo(Arg0)); 5919 if (Res.first.getNode()) { 5920 processIntegerCallValue(I, Res.first, false); 5921 PendingLoads.push_back(Res.second); 5922 return true; 5923 } 5924 5925 return false; 5926 } 5927 5928 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5929 /// operation (as expected), translate it to an SDNode with the specified opcode 5930 /// and return true. 5931 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5932 unsigned Opcode) { 5933 // Sanity check that it really is a unary floating-point call. 5934 if (I.getNumArgOperands() != 1 || 5935 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5936 I.getType() != I.getArgOperand(0)->getType() || 5937 !I.onlyReadsMemory()) 5938 return false; 5939 5940 SDValue Tmp = getValue(I.getArgOperand(0)); 5941 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5942 return true; 5943 } 5944 5945 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5946 // Handle inline assembly differently. 5947 if (isa<InlineAsm>(I.getCalledValue())) { 5948 visitInlineAsm(&I); 5949 return; 5950 } 5951 5952 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5953 ComputeUsesVAFloatArgument(I, &MMI); 5954 5955 const char *RenameFn = nullptr; 5956 if (Function *F = I.getCalledFunction()) { 5957 if (F->isDeclaration()) { 5958 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5959 if (unsigned IID = II->getIntrinsicID(F)) { 5960 RenameFn = visitIntrinsicCall(I, IID); 5961 if (!RenameFn) 5962 return; 5963 } 5964 } 5965 if (unsigned IID = F->getIntrinsicID()) { 5966 RenameFn = visitIntrinsicCall(I, IID); 5967 if (!RenameFn) 5968 return; 5969 } 5970 } 5971 5972 // Check for well-known libc/libm calls. If the function is internal, it 5973 // can't be a library call. 5974 LibFunc::Func Func; 5975 if (!F->hasLocalLinkage() && F->hasName() && 5976 LibInfo->getLibFunc(F->getName(), Func) && 5977 LibInfo->hasOptimizedCodeGen(Func)) { 5978 switch (Func) { 5979 default: break; 5980 case LibFunc::copysign: 5981 case LibFunc::copysignf: 5982 case LibFunc::copysignl: 5983 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5984 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5985 I.getType() == I.getArgOperand(0)->getType() && 5986 I.getType() == I.getArgOperand(1)->getType() && 5987 I.onlyReadsMemory()) { 5988 SDValue LHS = getValue(I.getArgOperand(0)); 5989 SDValue RHS = getValue(I.getArgOperand(1)); 5990 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5991 LHS.getValueType(), LHS, RHS)); 5992 return; 5993 } 5994 break; 5995 case LibFunc::fabs: 5996 case LibFunc::fabsf: 5997 case LibFunc::fabsl: 5998 if (visitUnaryFloatCall(I, ISD::FABS)) 5999 return; 6000 break; 6001 case LibFunc::sin: 6002 case LibFunc::sinf: 6003 case LibFunc::sinl: 6004 if (visitUnaryFloatCall(I, ISD::FSIN)) 6005 return; 6006 break; 6007 case LibFunc::cos: 6008 case LibFunc::cosf: 6009 case LibFunc::cosl: 6010 if (visitUnaryFloatCall(I, ISD::FCOS)) 6011 return; 6012 break; 6013 case LibFunc::sqrt: 6014 case LibFunc::sqrtf: 6015 case LibFunc::sqrtl: 6016 case LibFunc::sqrt_finite: 6017 case LibFunc::sqrtf_finite: 6018 case LibFunc::sqrtl_finite: 6019 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6020 return; 6021 break; 6022 case LibFunc::floor: 6023 case LibFunc::floorf: 6024 case LibFunc::floorl: 6025 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6026 return; 6027 break; 6028 case LibFunc::nearbyint: 6029 case LibFunc::nearbyintf: 6030 case LibFunc::nearbyintl: 6031 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6032 return; 6033 break; 6034 case LibFunc::ceil: 6035 case LibFunc::ceilf: 6036 case LibFunc::ceill: 6037 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6038 return; 6039 break; 6040 case LibFunc::rint: 6041 case LibFunc::rintf: 6042 case LibFunc::rintl: 6043 if (visitUnaryFloatCall(I, ISD::FRINT)) 6044 return; 6045 break; 6046 case LibFunc::round: 6047 case LibFunc::roundf: 6048 case LibFunc::roundl: 6049 if (visitUnaryFloatCall(I, ISD::FROUND)) 6050 return; 6051 break; 6052 case LibFunc::trunc: 6053 case LibFunc::truncf: 6054 case LibFunc::truncl: 6055 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6056 return; 6057 break; 6058 case LibFunc::log2: 6059 case LibFunc::log2f: 6060 case LibFunc::log2l: 6061 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6062 return; 6063 break; 6064 case LibFunc::exp2: 6065 case LibFunc::exp2f: 6066 case LibFunc::exp2l: 6067 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6068 return; 6069 break; 6070 case LibFunc::memcmp: 6071 if (visitMemCmpCall(I)) 6072 return; 6073 break; 6074 case LibFunc::memchr: 6075 if (visitMemChrCall(I)) 6076 return; 6077 break; 6078 case LibFunc::strcpy: 6079 if (visitStrCpyCall(I, false)) 6080 return; 6081 break; 6082 case LibFunc::stpcpy: 6083 if (visitStrCpyCall(I, true)) 6084 return; 6085 break; 6086 case LibFunc::strcmp: 6087 if (visitStrCmpCall(I)) 6088 return; 6089 break; 6090 case LibFunc::strlen: 6091 if (visitStrLenCall(I)) 6092 return; 6093 break; 6094 case LibFunc::strnlen: 6095 if (visitStrNLenCall(I)) 6096 return; 6097 break; 6098 } 6099 } 6100 } 6101 6102 SDValue Callee; 6103 if (!RenameFn) 6104 Callee = getValue(I.getCalledValue()); 6105 else 6106 Callee = DAG.getExternalSymbol( 6107 RenameFn, TM.getSubtargetImpl()->getTargetLowering()->getPointerTy()); 6108 6109 // Check if we can potentially perform a tail call. More detailed checking is 6110 // be done within LowerCallTo, after more information about the call is known. 6111 LowerCallTo(&I, Callee, I.isTailCall()); 6112 } 6113 6114 namespace { 6115 6116 /// AsmOperandInfo - This contains information for each constraint that we are 6117 /// lowering. 6118 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6119 public: 6120 /// CallOperand - If this is the result output operand or a clobber 6121 /// this is null, otherwise it is the incoming operand to the CallInst. 6122 /// This gets modified as the asm is processed. 6123 SDValue CallOperand; 6124 6125 /// AssignedRegs - If this is a register or register class operand, this 6126 /// contains the set of register corresponding to the operand. 6127 RegsForValue AssignedRegs; 6128 6129 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6130 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6131 } 6132 6133 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6134 /// corresponds to. If there is no Value* for this operand, it returns 6135 /// MVT::Other. 6136 EVT getCallOperandValEVT(LLVMContext &Context, 6137 const TargetLowering &TLI, 6138 const DataLayout *DL) const { 6139 if (!CallOperandVal) return MVT::Other; 6140 6141 if (isa<BasicBlock>(CallOperandVal)) 6142 return TLI.getPointerTy(); 6143 6144 llvm::Type *OpTy = CallOperandVal->getType(); 6145 6146 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6147 // If this is an indirect operand, the operand is a pointer to the 6148 // accessed type. 6149 if (isIndirect) { 6150 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6151 if (!PtrTy) 6152 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6153 OpTy = PtrTy->getElementType(); 6154 } 6155 6156 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6157 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6158 if (STy->getNumElements() == 1) 6159 OpTy = STy->getElementType(0); 6160 6161 // If OpTy is not a single value, it may be a struct/union that we 6162 // can tile with integers. 6163 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6164 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6165 switch (BitSize) { 6166 default: break; 6167 case 1: 6168 case 8: 6169 case 16: 6170 case 32: 6171 case 64: 6172 case 128: 6173 OpTy = IntegerType::get(Context, BitSize); 6174 break; 6175 } 6176 } 6177 6178 return TLI.getValueType(OpTy, true); 6179 } 6180 }; 6181 6182 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6183 6184 } // end anonymous namespace 6185 6186 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6187 /// specified operand. We prefer to assign virtual registers, to allow the 6188 /// register allocator to handle the assignment process. However, if the asm 6189 /// uses features that we can't model on machineinstrs, we have SDISel do the 6190 /// allocation. This produces generally horrible, but correct, code. 6191 /// 6192 /// OpInfo describes the operand. 6193 /// 6194 static void GetRegistersForValue(SelectionDAG &DAG, 6195 const TargetLowering &TLI, 6196 SDLoc DL, 6197 SDISelAsmOperandInfo &OpInfo) { 6198 LLVMContext &Context = *DAG.getContext(); 6199 6200 MachineFunction &MF = DAG.getMachineFunction(); 6201 SmallVector<unsigned, 4> Regs; 6202 6203 // If this is a constraint for a single physreg, or a constraint for a 6204 // register class, find it. 6205 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6206 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6207 OpInfo.ConstraintVT); 6208 6209 unsigned NumRegs = 1; 6210 if (OpInfo.ConstraintVT != MVT::Other) { 6211 // If this is a FP input in an integer register (or visa versa) insert a bit 6212 // cast of the input value. More generally, handle any case where the input 6213 // value disagrees with the register class we plan to stick this in. 6214 if (OpInfo.Type == InlineAsm::isInput && 6215 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6216 // Try to convert to the first EVT that the reg class contains. If the 6217 // types are identical size, use a bitcast to convert (e.g. two differing 6218 // vector types). 6219 MVT RegVT = *PhysReg.second->vt_begin(); 6220 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6221 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6222 RegVT, OpInfo.CallOperand); 6223 OpInfo.ConstraintVT = RegVT; 6224 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6225 // If the input is a FP value and we want it in FP registers, do a 6226 // bitcast to the corresponding integer type. This turns an f64 value 6227 // into i64, which can be passed with two i32 values on a 32-bit 6228 // machine. 6229 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6230 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6231 RegVT, OpInfo.CallOperand); 6232 OpInfo.ConstraintVT = RegVT; 6233 } 6234 } 6235 6236 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6237 } 6238 6239 MVT RegVT; 6240 EVT ValueVT = OpInfo.ConstraintVT; 6241 6242 // If this is a constraint for a specific physical register, like {r17}, 6243 // assign it now. 6244 if (unsigned AssignedReg = PhysReg.first) { 6245 const TargetRegisterClass *RC = PhysReg.second; 6246 if (OpInfo.ConstraintVT == MVT::Other) 6247 ValueVT = *RC->vt_begin(); 6248 6249 // Get the actual register value type. This is important, because the user 6250 // may have asked for (e.g.) the AX register in i32 type. We need to 6251 // remember that AX is actually i16 to get the right extension. 6252 RegVT = *RC->vt_begin(); 6253 6254 // This is a explicit reference to a physical register. 6255 Regs.push_back(AssignedReg); 6256 6257 // If this is an expanded reference, add the rest of the regs to Regs. 6258 if (NumRegs != 1) { 6259 TargetRegisterClass::iterator I = RC->begin(); 6260 for (; *I != AssignedReg; ++I) 6261 assert(I != RC->end() && "Didn't find reg!"); 6262 6263 // Already added the first reg. 6264 --NumRegs; ++I; 6265 for (; NumRegs; --NumRegs, ++I) { 6266 assert(I != RC->end() && "Ran out of registers to allocate!"); 6267 Regs.push_back(*I); 6268 } 6269 } 6270 6271 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6272 return; 6273 } 6274 6275 // Otherwise, if this was a reference to an LLVM register class, create vregs 6276 // for this reference. 6277 if (const TargetRegisterClass *RC = PhysReg.second) { 6278 RegVT = *RC->vt_begin(); 6279 if (OpInfo.ConstraintVT == MVT::Other) 6280 ValueVT = RegVT; 6281 6282 // Create the appropriate number of virtual registers. 6283 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6284 for (; NumRegs; --NumRegs) 6285 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6286 6287 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6288 return; 6289 } 6290 6291 // Otherwise, we couldn't allocate enough registers for this. 6292 } 6293 6294 /// visitInlineAsm - Handle a call to an InlineAsm object. 6295 /// 6296 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6297 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6298 6299 /// ConstraintOperands - Information about all of the constraints. 6300 SDISelAsmOperandInfoVector ConstraintOperands; 6301 6302 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6303 TargetLowering::AsmOperandInfoVector 6304 TargetConstraints = TLI->ParseConstraints(CS); 6305 6306 bool hasMemory = false; 6307 6308 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6309 unsigned ResNo = 0; // ResNo - The result number of the next output. 6310 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6311 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6312 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6313 6314 MVT OpVT = MVT::Other; 6315 6316 // Compute the value type for each operand. 6317 switch (OpInfo.Type) { 6318 case InlineAsm::isOutput: 6319 // Indirect outputs just consume an argument. 6320 if (OpInfo.isIndirect) { 6321 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6322 break; 6323 } 6324 6325 // The return value of the call is this value. As such, there is no 6326 // corresponding argument. 6327 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6328 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6329 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6330 } else { 6331 assert(ResNo == 0 && "Asm only has one result!"); 6332 OpVT = TLI->getSimpleValueType(CS.getType()); 6333 } 6334 ++ResNo; 6335 break; 6336 case InlineAsm::isInput: 6337 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6338 break; 6339 case InlineAsm::isClobber: 6340 // Nothing to do. 6341 break; 6342 } 6343 6344 // If this is an input or an indirect output, process the call argument. 6345 // BasicBlocks are labels, currently appearing only in asm's. 6346 if (OpInfo.CallOperandVal) { 6347 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6348 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6349 } else { 6350 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6351 } 6352 6353 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6354 getSimpleVT(); 6355 } 6356 6357 OpInfo.ConstraintVT = OpVT; 6358 6359 // Indirect operand accesses access memory. 6360 if (OpInfo.isIndirect) 6361 hasMemory = true; 6362 else { 6363 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6364 TargetLowering::ConstraintType 6365 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6366 if (CType == TargetLowering::C_Memory) { 6367 hasMemory = true; 6368 break; 6369 } 6370 } 6371 } 6372 } 6373 6374 SDValue Chain, Flag; 6375 6376 // We won't need to flush pending loads if this asm doesn't touch 6377 // memory and is nonvolatile. 6378 if (hasMemory || IA->hasSideEffects()) 6379 Chain = getRoot(); 6380 else 6381 Chain = DAG.getRoot(); 6382 6383 // Second pass over the constraints: compute which constraint option to use 6384 // and assign registers to constraints that want a specific physreg. 6385 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6386 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6387 6388 // If this is an output operand with a matching input operand, look up the 6389 // matching input. If their types mismatch, e.g. one is an integer, the 6390 // other is floating point, or their sizes are different, flag it as an 6391 // error. 6392 if (OpInfo.hasMatchingInput()) { 6393 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6394 6395 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6396 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6397 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6398 OpInfo.ConstraintVT); 6399 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6400 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6401 Input.ConstraintVT); 6402 if ((OpInfo.ConstraintVT.isInteger() != 6403 Input.ConstraintVT.isInteger()) || 6404 (MatchRC.second != InputRC.second)) { 6405 report_fatal_error("Unsupported asm: input constraint" 6406 " with a matching output constraint of" 6407 " incompatible type!"); 6408 } 6409 Input.ConstraintVT = OpInfo.ConstraintVT; 6410 } 6411 } 6412 6413 // Compute the constraint code and ConstraintType to use. 6414 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6415 6416 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6417 OpInfo.Type == InlineAsm::isClobber) 6418 continue; 6419 6420 // If this is a memory input, and if the operand is not indirect, do what we 6421 // need to to provide an address for the memory input. 6422 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6423 !OpInfo.isIndirect) { 6424 assert((OpInfo.isMultipleAlternative || 6425 (OpInfo.Type == InlineAsm::isInput)) && 6426 "Can only indirectify direct input operands!"); 6427 6428 // Memory operands really want the address of the value. If we don't have 6429 // an indirect input, put it in the constpool if we can, otherwise spill 6430 // it to a stack slot. 6431 // TODO: This isn't quite right. We need to handle these according to 6432 // the addressing mode that the constraint wants. Also, this may take 6433 // an additional register for the computation and we don't want that 6434 // either. 6435 6436 // If the operand is a float, integer, or vector constant, spill to a 6437 // constant pool entry to get its address. 6438 const Value *OpVal = OpInfo.CallOperandVal; 6439 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6440 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6441 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6442 TLI->getPointerTy()); 6443 } else { 6444 // Otherwise, create a stack slot and emit a store to it before the 6445 // asm. 6446 Type *Ty = OpVal->getType(); 6447 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6448 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6449 MachineFunction &MF = DAG.getMachineFunction(); 6450 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6451 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6452 Chain = DAG.getStore(Chain, getCurSDLoc(), 6453 OpInfo.CallOperand, StackSlot, 6454 MachinePointerInfo::getFixedStack(SSFI), 6455 false, false, 0); 6456 OpInfo.CallOperand = StackSlot; 6457 } 6458 6459 // There is no longer a Value* corresponding to this operand. 6460 OpInfo.CallOperandVal = nullptr; 6461 6462 // It is now an indirect operand. 6463 OpInfo.isIndirect = true; 6464 } 6465 6466 // If this constraint is for a specific register, allocate it before 6467 // anything else. 6468 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6469 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6470 } 6471 6472 // Second pass - Loop over all of the operands, assigning virtual or physregs 6473 // to register class operands. 6474 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6475 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6476 6477 // C_Register operands have already been allocated, Other/Memory don't need 6478 // to be. 6479 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6480 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6481 } 6482 6483 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6484 std::vector<SDValue> AsmNodeOperands; 6485 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6486 AsmNodeOperands.push_back( 6487 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6488 TLI->getPointerTy())); 6489 6490 // If we have a !srcloc metadata node associated with it, we want to attach 6491 // this to the ultimately generated inline asm machineinstr. To do this, we 6492 // pass in the third operand as this (potentially null) inline asm MDNode. 6493 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6494 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6495 6496 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6497 // bits as operand 3. 6498 unsigned ExtraInfo = 0; 6499 if (IA->hasSideEffects()) 6500 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6501 if (IA->isAlignStack()) 6502 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6503 // Set the asm dialect. 6504 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6505 6506 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6507 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6508 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6509 6510 // Compute the constraint code and ConstraintType to use. 6511 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6512 6513 // Ideally, we would only check against memory constraints. However, the 6514 // meaning of an other constraint can be target-specific and we can't easily 6515 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6516 // for other constriants as well. 6517 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6518 OpInfo.ConstraintType == TargetLowering::C_Other) { 6519 if (OpInfo.Type == InlineAsm::isInput) 6520 ExtraInfo |= InlineAsm::Extra_MayLoad; 6521 else if (OpInfo.Type == InlineAsm::isOutput) 6522 ExtraInfo |= InlineAsm::Extra_MayStore; 6523 else if (OpInfo.Type == InlineAsm::isClobber) 6524 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6525 } 6526 } 6527 6528 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6529 TLI->getPointerTy())); 6530 6531 // Loop over all of the inputs, copying the operand values into the 6532 // appropriate registers and processing the output regs. 6533 RegsForValue RetValRegs; 6534 6535 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6536 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6537 6538 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6539 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6540 6541 switch (OpInfo.Type) { 6542 case InlineAsm::isOutput: { 6543 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6544 OpInfo.ConstraintType != TargetLowering::C_Register) { 6545 // Memory output, or 'other' output (e.g. 'X' constraint). 6546 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6547 6548 // Add information to the INLINEASM node to know about this output. 6549 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6550 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6551 TLI->getPointerTy())); 6552 AsmNodeOperands.push_back(OpInfo.CallOperand); 6553 break; 6554 } 6555 6556 // Otherwise, this is a register or register class output. 6557 6558 // Copy the output from the appropriate register. Find a register that 6559 // we can use. 6560 if (OpInfo.AssignedRegs.Regs.empty()) { 6561 LLVMContext &Ctx = *DAG.getContext(); 6562 Ctx.emitError(CS.getInstruction(), 6563 "couldn't allocate output register for constraint '" + 6564 Twine(OpInfo.ConstraintCode) + "'"); 6565 return; 6566 } 6567 6568 // If this is an indirect operand, store through the pointer after the 6569 // asm. 6570 if (OpInfo.isIndirect) { 6571 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6572 OpInfo.CallOperandVal)); 6573 } else { 6574 // This is the result value of the call. 6575 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6576 // Concatenate this output onto the outputs list. 6577 RetValRegs.append(OpInfo.AssignedRegs); 6578 } 6579 6580 // Add information to the INLINEASM node to know that this register is 6581 // set. 6582 OpInfo.AssignedRegs 6583 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6584 ? InlineAsm::Kind_RegDefEarlyClobber 6585 : InlineAsm::Kind_RegDef, 6586 false, 0, DAG, AsmNodeOperands); 6587 break; 6588 } 6589 case InlineAsm::isInput: { 6590 SDValue InOperandVal = OpInfo.CallOperand; 6591 6592 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6593 // If this is required to match an output register we have already set, 6594 // just use its register. 6595 unsigned OperandNo = OpInfo.getMatchedOperand(); 6596 6597 // Scan until we find the definition we already emitted of this operand. 6598 // When we find it, create a RegsForValue operand. 6599 unsigned CurOp = InlineAsm::Op_FirstOperand; 6600 for (; OperandNo; --OperandNo) { 6601 // Advance to the next operand. 6602 unsigned OpFlag = 6603 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6604 assert((InlineAsm::isRegDefKind(OpFlag) || 6605 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6606 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6607 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6608 } 6609 6610 unsigned OpFlag = 6611 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6612 if (InlineAsm::isRegDefKind(OpFlag) || 6613 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6614 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6615 if (OpInfo.isIndirect) { 6616 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6617 LLVMContext &Ctx = *DAG.getContext(); 6618 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6619 " don't know how to handle tied " 6620 "indirect register inputs"); 6621 return; 6622 } 6623 6624 RegsForValue MatchedRegs; 6625 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6626 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6627 MatchedRegs.RegVTs.push_back(RegVT); 6628 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6629 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6630 i != e; ++i) { 6631 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6632 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6633 else { 6634 LLVMContext &Ctx = *DAG.getContext(); 6635 Ctx.emitError(CS.getInstruction(), 6636 "inline asm error: This value" 6637 " type register class is not natively supported!"); 6638 return; 6639 } 6640 } 6641 // Use the produced MatchedRegs object to 6642 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6643 Chain, &Flag, CS.getInstruction()); 6644 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6645 true, OpInfo.getMatchedOperand(), 6646 DAG, AsmNodeOperands); 6647 break; 6648 } 6649 6650 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6651 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6652 "Unexpected number of operands"); 6653 // Add information to the INLINEASM node to know about this input. 6654 // See InlineAsm.h isUseOperandTiedToDef. 6655 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6656 OpInfo.getMatchedOperand()); 6657 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6658 TLI->getPointerTy())); 6659 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6660 break; 6661 } 6662 6663 // Treat indirect 'X' constraint as memory. 6664 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6665 OpInfo.isIndirect) 6666 OpInfo.ConstraintType = TargetLowering::C_Memory; 6667 6668 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6669 std::vector<SDValue> Ops; 6670 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6671 Ops, DAG); 6672 if (Ops.empty()) { 6673 LLVMContext &Ctx = *DAG.getContext(); 6674 Ctx.emitError(CS.getInstruction(), 6675 "invalid operand for inline asm constraint '" + 6676 Twine(OpInfo.ConstraintCode) + "'"); 6677 return; 6678 } 6679 6680 // Add information to the INLINEASM node to know about this input. 6681 unsigned ResOpType = 6682 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6683 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6684 TLI->getPointerTy())); 6685 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6686 break; 6687 } 6688 6689 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6690 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6691 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6692 "Memory operands expect pointer values"); 6693 6694 // Add information to the INLINEASM node to know about this input. 6695 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6696 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6697 TLI->getPointerTy())); 6698 AsmNodeOperands.push_back(InOperandVal); 6699 break; 6700 } 6701 6702 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6703 OpInfo.ConstraintType == TargetLowering::C_Register) && 6704 "Unknown constraint type!"); 6705 6706 // TODO: Support this. 6707 if (OpInfo.isIndirect) { 6708 LLVMContext &Ctx = *DAG.getContext(); 6709 Ctx.emitError(CS.getInstruction(), 6710 "Don't know how to handle indirect register inputs yet " 6711 "for constraint '" + 6712 Twine(OpInfo.ConstraintCode) + "'"); 6713 return; 6714 } 6715 6716 // Copy the input into the appropriate registers. 6717 if (OpInfo.AssignedRegs.Regs.empty()) { 6718 LLVMContext &Ctx = *DAG.getContext(); 6719 Ctx.emitError(CS.getInstruction(), 6720 "couldn't allocate input reg for constraint '" + 6721 Twine(OpInfo.ConstraintCode) + "'"); 6722 return; 6723 } 6724 6725 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6726 Chain, &Flag, CS.getInstruction()); 6727 6728 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6729 DAG, AsmNodeOperands); 6730 break; 6731 } 6732 case InlineAsm::isClobber: { 6733 // Add the clobbered value to the operand list, so that the register 6734 // allocator is aware that the physreg got clobbered. 6735 if (!OpInfo.AssignedRegs.Regs.empty()) 6736 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6737 false, 0, DAG, 6738 AsmNodeOperands); 6739 break; 6740 } 6741 } 6742 } 6743 6744 // Finish up input operands. Set the input chain and add the flag last. 6745 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6746 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6747 6748 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6749 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6750 Flag = Chain.getValue(1); 6751 6752 // If this asm returns a register value, copy the result from that register 6753 // and set it as the value of the call. 6754 if (!RetValRegs.Regs.empty()) { 6755 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6756 Chain, &Flag, CS.getInstruction()); 6757 6758 // FIXME: Why don't we do this for inline asms with MRVs? 6759 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6760 EVT ResultType = TLI->getValueType(CS.getType()); 6761 6762 // If any of the results of the inline asm is a vector, it may have the 6763 // wrong width/num elts. This can happen for register classes that can 6764 // contain multiple different value types. The preg or vreg allocated may 6765 // not have the same VT as was expected. Convert it to the right type 6766 // with bit_convert. 6767 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6768 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6769 ResultType, Val); 6770 6771 } else if (ResultType != Val.getValueType() && 6772 ResultType.isInteger() && Val.getValueType().isInteger()) { 6773 // If a result value was tied to an input value, the computed result may 6774 // have a wider width than the expected result. Extract the relevant 6775 // portion. 6776 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6777 } 6778 6779 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6780 } 6781 6782 setValue(CS.getInstruction(), Val); 6783 // Don't need to use this as a chain in this case. 6784 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6785 return; 6786 } 6787 6788 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6789 6790 // Process indirect outputs, first output all of the flagged copies out of 6791 // physregs. 6792 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6793 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6794 const Value *Ptr = IndirectStoresToEmit[i].second; 6795 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6796 Chain, &Flag, IA); 6797 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6798 } 6799 6800 // Emit the non-flagged stores from the physregs. 6801 SmallVector<SDValue, 8> OutChains; 6802 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6803 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6804 StoresToEmit[i].first, 6805 getValue(StoresToEmit[i].second), 6806 MachinePointerInfo(StoresToEmit[i].second), 6807 false, false, 0); 6808 OutChains.push_back(Val); 6809 } 6810 6811 if (!OutChains.empty()) 6812 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6813 6814 DAG.setRoot(Chain); 6815 } 6816 6817 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6818 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6819 MVT::Other, getRoot(), 6820 getValue(I.getArgOperand(0)), 6821 DAG.getSrcValue(I.getArgOperand(0)))); 6822 } 6823 6824 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6825 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6826 const DataLayout &DL = *TLI->getDataLayout(); 6827 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6828 getRoot(), getValue(I.getOperand(0)), 6829 DAG.getSrcValue(I.getOperand(0)), 6830 DL.getABITypeAlignment(I.getType())); 6831 setValue(&I, V); 6832 DAG.setRoot(V.getValue(1)); 6833 } 6834 6835 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6836 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6837 MVT::Other, getRoot(), 6838 getValue(I.getArgOperand(0)), 6839 DAG.getSrcValue(I.getArgOperand(0)))); 6840 } 6841 6842 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6843 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6844 MVT::Other, getRoot(), 6845 getValue(I.getArgOperand(0)), 6846 getValue(I.getArgOperand(1)), 6847 DAG.getSrcValue(I.getArgOperand(0)), 6848 DAG.getSrcValue(I.getArgOperand(1)))); 6849 } 6850 6851 /// \brief Lower an argument list according to the target calling convention. 6852 /// 6853 /// \return A tuple of <return-value, token-chain> 6854 /// 6855 /// This is a helper for lowering intrinsics that follow a target calling 6856 /// convention or require stack pointer adjustment. Only a subset of the 6857 /// intrinsic's operands need to participate in the calling convention. 6858 std::pair<SDValue, SDValue> 6859 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6860 unsigned NumArgs, SDValue Callee, 6861 bool useVoidTy) { 6862 TargetLowering::ArgListTy Args; 6863 Args.reserve(NumArgs); 6864 6865 // Populate the argument list. 6866 // Attributes for args start at offset 1, after the return attribute. 6867 ImmutableCallSite CS(&CI); 6868 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6869 ArgI != ArgE; ++ArgI) { 6870 const Value *V = CI.getOperand(ArgI); 6871 6872 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6873 6874 TargetLowering::ArgListEntry Entry; 6875 Entry.Node = getValue(V); 6876 Entry.Ty = V->getType(); 6877 Entry.setAttributes(&CS, AttrI); 6878 Args.push_back(Entry); 6879 } 6880 6881 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6882 TargetLowering::CallLoweringInfo CLI(DAG); 6883 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6884 .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6885 .setDiscardResult(!CI.use_empty()); 6886 6887 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6888 return TLI->LowerCallTo(CLI); 6889 } 6890 6891 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6892 /// or patchpoint target node's operand list. 6893 /// 6894 /// Constants are converted to TargetConstants purely as an optimization to 6895 /// avoid constant materialization and register allocation. 6896 /// 6897 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6898 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6899 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6900 /// address materialization and register allocation, but may also be required 6901 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6902 /// alloca in the entry block, then the runtime may assume that the alloca's 6903 /// StackMap location can be read immediately after compilation and that the 6904 /// location is valid at any point during execution (this is similar to the 6905 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6906 /// only available in a register, then the runtime would need to trap when 6907 /// execution reaches the StackMap in order to read the alloca's location. 6908 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6909 SmallVectorImpl<SDValue> &Ops, 6910 SelectionDAGBuilder &Builder) { 6911 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6912 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6913 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6914 Ops.push_back( 6915 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6916 Ops.push_back( 6917 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6918 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6919 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6920 Ops.push_back( 6921 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6922 } else 6923 Ops.push_back(OpVal); 6924 } 6925 } 6926 6927 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6928 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6929 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6930 // [live variables...]) 6931 6932 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6933 6934 SDValue Chain, InFlag, Callee, NullPtr; 6935 SmallVector<SDValue, 32> Ops; 6936 6937 SDLoc DL = getCurSDLoc(); 6938 Callee = getValue(CI.getCalledValue()); 6939 NullPtr = DAG.getIntPtrConstant(0, true); 6940 6941 // The stackmap intrinsic only records the live variables (the arguemnts 6942 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6943 // intrinsic, this won't be lowered to a function call. This means we don't 6944 // have to worry about calling conventions and target specific lowering code. 6945 // Instead we perform the call lowering right here. 6946 // 6947 // chain, flag = CALLSEQ_START(chain, 0) 6948 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6949 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6950 // 6951 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6952 InFlag = Chain.getValue(1); 6953 6954 // Add the <id> and <numBytes> constants. 6955 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6956 Ops.push_back(DAG.getTargetConstant( 6957 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6958 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6959 Ops.push_back(DAG.getTargetConstant( 6960 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6961 6962 // Push live variables for the stack map. 6963 addStackMapLiveVars(CI, 2, Ops, *this); 6964 6965 // We are not pushing any register mask info here on the operands list, 6966 // because the stackmap doesn't clobber anything. 6967 6968 // Push the chain and the glue flag. 6969 Ops.push_back(Chain); 6970 Ops.push_back(InFlag); 6971 6972 // Create the STACKMAP node. 6973 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6974 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6975 Chain = SDValue(SM, 0); 6976 InFlag = Chain.getValue(1); 6977 6978 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6979 6980 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6981 6982 // Set the root to the target-lowered call chain. 6983 DAG.setRoot(Chain); 6984 6985 // Inform the Frame Information that we have a stackmap in this function. 6986 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6987 } 6988 6989 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6990 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6991 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6992 // i32 <numBytes>, 6993 // i8* <target>, 6994 // i32 <numArgs>, 6995 // [Args...], 6996 // [live variables...]) 6997 6998 CallingConv::ID CC = CI.getCallingConv(); 6999 bool isAnyRegCC = CC == CallingConv::AnyReg; 7000 bool hasDef = !CI.getType()->isVoidTy(); 7001 SDValue Callee = getValue(CI.getOperand(2)); // <target> 7002 7003 // Get the real number of arguments participating in the call <numArgs> 7004 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 7005 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7006 7007 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7008 // Intrinsics include all meta-operands up to but not including CC. 7009 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7010 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 7011 "Not enough arguments provided to the patchpoint intrinsic"); 7012 7013 // For AnyRegCC the arguments are lowered later on manually. 7014 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 7015 std::pair<SDValue, SDValue> Result = 7016 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 7017 7018 // Set the root to the target-lowered call chain. 7019 SDValue Chain = Result.second; 7020 DAG.setRoot(Chain); 7021 7022 SDNode *CallEnd = Chain.getNode(); 7023 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7024 CallEnd = CallEnd->getOperand(0).getNode(); 7025 7026 /// Get a call instruction from the call sequence chain. 7027 /// Tail calls are not allowed. 7028 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7029 "Expected a callseq node."); 7030 SDNode *Call = CallEnd->getOperand(0).getNode(); 7031 bool hasGlue = Call->getGluedNode(); 7032 7033 // Replace the target specific call node with the patchable intrinsic. 7034 SmallVector<SDValue, 8> Ops; 7035 7036 // Add the <id> and <numBytes> constants. 7037 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7038 Ops.push_back(DAG.getTargetConstant( 7039 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7040 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7041 Ops.push_back(DAG.getTargetConstant( 7042 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7043 7044 // Assume that the Callee is a constant address. 7045 // FIXME: handle function symbols in the future. 7046 Ops.push_back( 7047 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7048 /*isTarget=*/true)); 7049 7050 // Adjust <numArgs> to account for any arguments that have been passed on the 7051 // stack instead. 7052 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7053 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7054 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7055 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7056 7057 // Add the calling convention 7058 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7059 7060 // Add the arguments we omitted previously. The register allocator should 7061 // place these in any free register. 7062 if (isAnyRegCC) 7063 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7064 Ops.push_back(getValue(CI.getArgOperand(i))); 7065 7066 // Push the arguments from the call instruction up to the register mask. 7067 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7068 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7069 Ops.push_back(*i); 7070 7071 // Push live variables for the stack map. 7072 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7073 7074 // Push the register mask info. 7075 if (hasGlue) 7076 Ops.push_back(*(Call->op_end()-2)); 7077 else 7078 Ops.push_back(*(Call->op_end()-1)); 7079 7080 // Push the chain (this is originally the first operand of the call, but 7081 // becomes now the last or second to last operand). 7082 Ops.push_back(*(Call->op_begin())); 7083 7084 // Push the glue flag (last operand). 7085 if (hasGlue) 7086 Ops.push_back(*(Call->op_end()-1)); 7087 7088 SDVTList NodeTys; 7089 if (isAnyRegCC && hasDef) { 7090 // Create the return types based on the intrinsic definition 7091 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7092 SmallVector<EVT, 3> ValueVTs; 7093 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7094 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7095 7096 // There is always a chain and a glue type at the end 7097 ValueVTs.push_back(MVT::Other); 7098 ValueVTs.push_back(MVT::Glue); 7099 NodeTys = DAG.getVTList(ValueVTs); 7100 } else 7101 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7102 7103 // Replace the target specific call node with a PATCHPOINT node. 7104 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7105 getCurSDLoc(), NodeTys, Ops); 7106 7107 // Update the NodeMap. 7108 if (hasDef) { 7109 if (isAnyRegCC) 7110 setValue(&CI, SDValue(MN, 0)); 7111 else 7112 setValue(&CI, Result.first); 7113 } 7114 7115 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7116 // call sequence. Furthermore the location of the chain and glue can change 7117 // when the AnyReg calling convention is used and the intrinsic returns a 7118 // value. 7119 if (isAnyRegCC && hasDef) { 7120 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7121 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7122 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7123 } else 7124 DAG.ReplaceAllUsesWith(Call, MN); 7125 DAG.DeleteNode(Call); 7126 7127 // Inform the Frame Information that we have a patchpoint in this function. 7128 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7129 } 7130 7131 /// Returns an AttributeSet representing the attributes applied to the return 7132 /// value of the given call. 7133 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7134 SmallVector<Attribute::AttrKind, 2> Attrs; 7135 if (CLI.RetSExt) 7136 Attrs.push_back(Attribute::SExt); 7137 if (CLI.RetZExt) 7138 Attrs.push_back(Attribute::ZExt); 7139 if (CLI.IsInReg) 7140 Attrs.push_back(Attribute::InReg); 7141 7142 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7143 Attrs); 7144 } 7145 7146 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7147 /// implementation, which just calls LowerCall. 7148 /// FIXME: When all targets are 7149 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7150 std::pair<SDValue, SDValue> 7151 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7152 // Handle the incoming return values from the call. 7153 CLI.Ins.clear(); 7154 Type *OrigRetTy = CLI.RetTy; 7155 SmallVector<EVT, 4> RetTys; 7156 SmallVector<uint64_t, 4> Offsets; 7157 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7158 7159 SmallVector<ISD::OutputArg, 4> Outs; 7160 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7161 7162 bool CanLowerReturn = 7163 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7164 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7165 7166 SDValue DemoteStackSlot; 7167 int DemoteStackIdx = -100; 7168 if (!CanLowerReturn) { 7169 // FIXME: equivalent assert? 7170 // assert(!CS.hasInAllocaArgument() && 7171 // "sret demotion is incompatible with inalloca"); 7172 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7173 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7174 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7175 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7176 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7177 7178 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7179 ArgListEntry Entry; 7180 Entry.Node = DemoteStackSlot; 7181 Entry.Ty = StackSlotPtrType; 7182 Entry.isSExt = false; 7183 Entry.isZExt = false; 7184 Entry.isInReg = false; 7185 Entry.isSRet = true; 7186 Entry.isNest = false; 7187 Entry.isByVal = false; 7188 Entry.isReturned = false; 7189 Entry.Alignment = Align; 7190 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7191 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7192 } else { 7193 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7194 EVT VT = RetTys[I]; 7195 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7196 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7197 for (unsigned i = 0; i != NumRegs; ++i) { 7198 ISD::InputArg MyFlags; 7199 MyFlags.VT = RegisterVT; 7200 MyFlags.ArgVT = VT; 7201 MyFlags.Used = CLI.IsReturnValueUsed; 7202 if (CLI.RetSExt) 7203 MyFlags.Flags.setSExt(); 7204 if (CLI.RetZExt) 7205 MyFlags.Flags.setZExt(); 7206 if (CLI.IsInReg) 7207 MyFlags.Flags.setInReg(); 7208 CLI.Ins.push_back(MyFlags); 7209 } 7210 } 7211 } 7212 7213 // Handle all of the outgoing arguments. 7214 CLI.Outs.clear(); 7215 CLI.OutVals.clear(); 7216 ArgListTy &Args = CLI.getArgs(); 7217 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7218 SmallVector<EVT, 4> ValueVTs; 7219 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7220 Type *FinalType = Args[i].Ty; 7221 if (Args[i].isByVal) 7222 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7223 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7224 FinalType, CLI.CallConv, CLI.IsVarArg); 7225 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7226 ++Value) { 7227 EVT VT = ValueVTs[Value]; 7228 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7229 SDValue Op = SDValue(Args[i].Node.getNode(), 7230 Args[i].Node.getResNo() + Value); 7231 ISD::ArgFlagsTy Flags; 7232 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7233 7234 if (Args[i].isZExt) 7235 Flags.setZExt(); 7236 if (Args[i].isSExt) 7237 Flags.setSExt(); 7238 if (Args[i].isInReg) 7239 Flags.setInReg(); 7240 if (Args[i].isSRet) 7241 Flags.setSRet(); 7242 if (Args[i].isByVal) 7243 Flags.setByVal(); 7244 if (Args[i].isInAlloca) { 7245 Flags.setInAlloca(); 7246 // Set the byval flag for CCAssignFn callbacks that don't know about 7247 // inalloca. This way we can know how many bytes we should've allocated 7248 // and how many bytes a callee cleanup function will pop. If we port 7249 // inalloca to more targets, we'll have to add custom inalloca handling 7250 // in the various CC lowering callbacks. 7251 Flags.setByVal(); 7252 } 7253 if (Args[i].isByVal || Args[i].isInAlloca) { 7254 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7255 Type *ElementTy = Ty->getElementType(); 7256 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7257 // For ByVal, alignment should come from FE. BE will guess if this 7258 // info is not there but there are cases it cannot get right. 7259 unsigned FrameAlign; 7260 if (Args[i].Alignment) 7261 FrameAlign = Args[i].Alignment; 7262 else 7263 FrameAlign = getByValTypeAlignment(ElementTy); 7264 Flags.setByValAlign(FrameAlign); 7265 } 7266 if (Args[i].isNest) 7267 Flags.setNest(); 7268 if (NeedsRegBlock) 7269 Flags.setInConsecutiveRegs(); 7270 Flags.setOrigAlign(OriginalAlignment); 7271 7272 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7273 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7274 SmallVector<SDValue, 4> Parts(NumParts); 7275 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7276 7277 if (Args[i].isSExt) 7278 ExtendKind = ISD::SIGN_EXTEND; 7279 else if (Args[i].isZExt) 7280 ExtendKind = ISD::ZERO_EXTEND; 7281 7282 // Conservatively only handle 'returned' on non-vectors for now 7283 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7284 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7285 "unexpected use of 'returned'"); 7286 // Before passing 'returned' to the target lowering code, ensure that 7287 // either the register MVT and the actual EVT are the same size or that 7288 // the return value and argument are extended in the same way; in these 7289 // cases it's safe to pass the argument register value unchanged as the 7290 // return register value (although it's at the target's option whether 7291 // to do so) 7292 // TODO: allow code generation to take advantage of partially preserved 7293 // registers rather than clobbering the entire register when the 7294 // parameter extension method is not compatible with the return 7295 // extension method 7296 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7297 (ExtendKind != ISD::ANY_EXTEND && 7298 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7299 Flags.setReturned(); 7300 } 7301 7302 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7303 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7304 7305 for (unsigned j = 0; j != NumParts; ++j) { 7306 // if it isn't first piece, alignment must be 1 7307 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7308 i < CLI.NumFixedArgs, 7309 i, j*Parts[j].getValueType().getStoreSize()); 7310 if (NumParts > 1 && j == 0) 7311 MyFlags.Flags.setSplit(); 7312 else if (j != 0) 7313 MyFlags.Flags.setOrigAlign(1); 7314 7315 // Only mark the end at the last register of the last value. 7316 if (NeedsRegBlock && Value == NumValues - 1 && j == NumParts - 1) 7317 MyFlags.Flags.setInConsecutiveRegsLast(); 7318 7319 CLI.Outs.push_back(MyFlags); 7320 CLI.OutVals.push_back(Parts[j]); 7321 } 7322 } 7323 } 7324 7325 SmallVector<SDValue, 4> InVals; 7326 CLI.Chain = LowerCall(CLI, InVals); 7327 7328 // Verify that the target's LowerCall behaved as expected. 7329 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7330 "LowerCall didn't return a valid chain!"); 7331 assert((!CLI.IsTailCall || InVals.empty()) && 7332 "LowerCall emitted a return value for a tail call!"); 7333 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7334 "LowerCall didn't emit the correct number of values!"); 7335 7336 // For a tail call, the return value is merely live-out and there aren't 7337 // any nodes in the DAG representing it. Return a special value to 7338 // indicate that a tail call has been emitted and no more Instructions 7339 // should be processed in the current block. 7340 if (CLI.IsTailCall) { 7341 CLI.DAG.setRoot(CLI.Chain); 7342 return std::make_pair(SDValue(), SDValue()); 7343 } 7344 7345 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7346 assert(InVals[i].getNode() && 7347 "LowerCall emitted a null value!"); 7348 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7349 "LowerCall emitted a value with the wrong type!"); 7350 }); 7351 7352 SmallVector<SDValue, 4> ReturnValues; 7353 if (!CanLowerReturn) { 7354 // The instruction result is the result of loading from the 7355 // hidden sret parameter. 7356 SmallVector<EVT, 1> PVTs; 7357 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7358 7359 ComputeValueVTs(*this, PtrRetTy, PVTs); 7360 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7361 EVT PtrVT = PVTs[0]; 7362 7363 unsigned NumValues = RetTys.size(); 7364 ReturnValues.resize(NumValues); 7365 SmallVector<SDValue, 4> Chains(NumValues); 7366 7367 for (unsigned i = 0; i < NumValues; ++i) { 7368 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7369 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7370 SDValue L = CLI.DAG.getLoad( 7371 RetTys[i], CLI.DL, CLI.Chain, Add, 7372 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7373 false, false, 1); 7374 ReturnValues[i] = L; 7375 Chains[i] = L.getValue(1); 7376 } 7377 7378 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7379 } else { 7380 // Collect the legal value parts into potentially illegal values 7381 // that correspond to the original function's return values. 7382 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7383 if (CLI.RetSExt) 7384 AssertOp = ISD::AssertSext; 7385 else if (CLI.RetZExt) 7386 AssertOp = ISD::AssertZext; 7387 unsigned CurReg = 0; 7388 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7389 EVT VT = RetTys[I]; 7390 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7391 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7392 7393 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7394 NumRegs, RegisterVT, VT, nullptr, 7395 AssertOp)); 7396 CurReg += NumRegs; 7397 } 7398 7399 // For a function returning void, there is no return value. We can't create 7400 // such a node, so we just return a null return value in that case. In 7401 // that case, nothing will actually look at the value. 7402 if (ReturnValues.empty()) 7403 return std::make_pair(SDValue(), CLI.Chain); 7404 } 7405 7406 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7407 CLI.DAG.getVTList(RetTys), ReturnValues); 7408 return std::make_pair(Res, CLI.Chain); 7409 } 7410 7411 void TargetLowering::LowerOperationWrapper(SDNode *N, 7412 SmallVectorImpl<SDValue> &Results, 7413 SelectionDAG &DAG) const { 7414 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7415 if (Res.getNode()) 7416 Results.push_back(Res); 7417 } 7418 7419 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7420 llvm_unreachable("LowerOperation not implemented for this target!"); 7421 } 7422 7423 void 7424 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7425 SDValue Op = getNonRegisterValue(V); 7426 assert((Op.getOpcode() != ISD::CopyFromReg || 7427 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7428 "Copy from a reg to the same reg!"); 7429 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7430 7431 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7432 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7433 SDValue Chain = DAG.getEntryNode(); 7434 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7435 PendingExports.push_back(Chain); 7436 } 7437 7438 #include "llvm/CodeGen/SelectionDAGISel.h" 7439 7440 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7441 /// entry block, return true. This includes arguments used by switches, since 7442 /// the switch may expand into multiple basic blocks. 7443 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7444 // With FastISel active, we may be splitting blocks, so force creation 7445 // of virtual registers for all non-dead arguments. 7446 if (FastISel) 7447 return A->use_empty(); 7448 7449 const BasicBlock *Entry = A->getParent()->begin(); 7450 for (const User *U : A->users()) 7451 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7452 return false; // Use not in entry block. 7453 7454 return true; 7455 } 7456 7457 void SelectionDAGISel::LowerArguments(const Function &F) { 7458 SelectionDAG &DAG = SDB->DAG; 7459 SDLoc dl = SDB->getCurSDLoc(); 7460 const TargetLowering *TLI = getTargetLowering(); 7461 const DataLayout *DL = TLI->getDataLayout(); 7462 SmallVector<ISD::InputArg, 16> Ins; 7463 7464 if (!FuncInfo->CanLowerReturn) { 7465 // Put in an sret pointer parameter before all the other parameters. 7466 SmallVector<EVT, 1> ValueVTs; 7467 ComputeValueVTs(*getTargetLowering(), 7468 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7469 7470 // NOTE: Assuming that a pointer will never break down to more than one VT 7471 // or one register. 7472 ISD::ArgFlagsTy Flags; 7473 Flags.setSRet(); 7474 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7475 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7476 Ins.push_back(RetArg); 7477 } 7478 7479 // Set up the incoming argument description vector. 7480 unsigned Idx = 1; 7481 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7482 I != E; ++I, ++Idx) { 7483 SmallVector<EVT, 4> ValueVTs; 7484 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7485 bool isArgValueUsed = !I->use_empty(); 7486 unsigned PartBase = 0; 7487 Type *FinalType = I->getType(); 7488 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7489 FinalType = cast<PointerType>(FinalType)->getElementType(); 7490 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7491 FinalType, F.getCallingConv(), F.isVarArg()); 7492 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7493 Value != NumValues; ++Value) { 7494 EVT VT = ValueVTs[Value]; 7495 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7496 ISD::ArgFlagsTy Flags; 7497 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7498 7499 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7500 Flags.setZExt(); 7501 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7502 Flags.setSExt(); 7503 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7504 Flags.setInReg(); 7505 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7506 Flags.setSRet(); 7507 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7508 Flags.setByVal(); 7509 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7510 Flags.setInAlloca(); 7511 // Set the byval flag for CCAssignFn callbacks that don't know about 7512 // inalloca. This way we can know how many bytes we should've allocated 7513 // and how many bytes a callee cleanup function will pop. If we port 7514 // inalloca to more targets, we'll have to add custom inalloca handling 7515 // in the various CC lowering callbacks. 7516 Flags.setByVal(); 7517 } 7518 if (Flags.isByVal() || Flags.isInAlloca()) { 7519 PointerType *Ty = cast<PointerType>(I->getType()); 7520 Type *ElementTy = Ty->getElementType(); 7521 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7522 // For ByVal, alignment should be passed from FE. BE will guess if 7523 // this info is not there but there are cases it cannot get right. 7524 unsigned FrameAlign; 7525 if (F.getParamAlignment(Idx)) 7526 FrameAlign = F.getParamAlignment(Idx); 7527 else 7528 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7529 Flags.setByValAlign(FrameAlign); 7530 } 7531 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7532 Flags.setNest(); 7533 if (NeedsRegBlock) 7534 Flags.setInConsecutiveRegs(); 7535 Flags.setOrigAlign(OriginalAlignment); 7536 7537 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7538 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7539 for (unsigned i = 0; i != NumRegs; ++i) { 7540 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7541 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7542 if (NumRegs > 1 && i == 0) 7543 MyFlags.Flags.setSplit(); 7544 // if it isn't first piece, alignment must be 1 7545 else if (i > 0) 7546 MyFlags.Flags.setOrigAlign(1); 7547 7548 // Only mark the end at the last register of the last value. 7549 if (NeedsRegBlock && Value == NumValues - 1 && i == NumRegs - 1) 7550 MyFlags.Flags.setInConsecutiveRegsLast(); 7551 7552 Ins.push_back(MyFlags); 7553 } 7554 PartBase += VT.getStoreSize(); 7555 } 7556 } 7557 7558 // Call the target to set up the argument values. 7559 SmallVector<SDValue, 8> InVals; 7560 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7561 F.isVarArg(), Ins, 7562 dl, DAG, InVals); 7563 7564 // Verify that the target's LowerFormalArguments behaved as expected. 7565 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7566 "LowerFormalArguments didn't return a valid chain!"); 7567 assert(InVals.size() == Ins.size() && 7568 "LowerFormalArguments didn't emit the correct number of values!"); 7569 DEBUG({ 7570 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7571 assert(InVals[i].getNode() && 7572 "LowerFormalArguments emitted a null value!"); 7573 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7574 "LowerFormalArguments emitted a value with the wrong type!"); 7575 } 7576 }); 7577 7578 // Update the DAG with the new chain value resulting from argument lowering. 7579 DAG.setRoot(NewRoot); 7580 7581 // Set up the argument values. 7582 unsigned i = 0; 7583 Idx = 1; 7584 if (!FuncInfo->CanLowerReturn) { 7585 // Create a virtual register for the sret pointer, and put in a copy 7586 // from the sret argument into it. 7587 SmallVector<EVT, 1> ValueVTs; 7588 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7589 MVT VT = ValueVTs[0].getSimpleVT(); 7590 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7591 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7592 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7593 RegVT, VT, nullptr, AssertOp); 7594 7595 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7596 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7597 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7598 FuncInfo->DemoteRegister = SRetReg; 7599 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7600 SRetReg, ArgValue); 7601 DAG.setRoot(NewRoot); 7602 7603 // i indexes lowered arguments. Bump it past the hidden sret argument. 7604 // Idx indexes LLVM arguments. Don't touch it. 7605 ++i; 7606 } 7607 7608 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7609 ++I, ++Idx) { 7610 SmallVector<SDValue, 4> ArgValues; 7611 SmallVector<EVT, 4> ValueVTs; 7612 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7613 unsigned NumValues = ValueVTs.size(); 7614 7615 // If this argument is unused then remember its value. It is used to generate 7616 // debugging information. 7617 if (I->use_empty() && NumValues) { 7618 SDB->setUnusedArgValue(I, InVals[i]); 7619 7620 // Also remember any frame index for use in FastISel. 7621 if (FrameIndexSDNode *FI = 7622 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7623 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7624 } 7625 7626 for (unsigned Val = 0; Val != NumValues; ++Val) { 7627 EVT VT = ValueVTs[Val]; 7628 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7629 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7630 7631 if (!I->use_empty()) { 7632 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7633 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7634 AssertOp = ISD::AssertSext; 7635 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7636 AssertOp = ISD::AssertZext; 7637 7638 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7639 NumParts, PartVT, VT, 7640 nullptr, AssertOp)); 7641 } 7642 7643 i += NumParts; 7644 } 7645 7646 // We don't need to do anything else for unused arguments. 7647 if (ArgValues.empty()) 7648 continue; 7649 7650 // Note down frame index. 7651 if (FrameIndexSDNode *FI = 7652 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7653 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7654 7655 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7656 SDB->getCurSDLoc()); 7657 7658 SDB->setValue(I, Res); 7659 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7660 if (LoadSDNode *LNode = 7661 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7662 if (FrameIndexSDNode *FI = 7663 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7664 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7665 } 7666 7667 // If this argument is live outside of the entry block, insert a copy from 7668 // wherever we got it to the vreg that other BB's will reference it as. 7669 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7670 // If we can, though, try to skip creating an unnecessary vreg. 7671 // FIXME: This isn't very clean... it would be nice to make this more 7672 // general. It's also subtly incompatible with the hacks FastISel 7673 // uses with vregs. 7674 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7675 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7676 FuncInfo->ValueMap[I] = Reg; 7677 continue; 7678 } 7679 } 7680 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7681 FuncInfo->InitializeRegForValue(I); 7682 SDB->CopyToExportRegsIfNeeded(I); 7683 } 7684 } 7685 7686 assert(i == InVals.size() && "Argument register count mismatch!"); 7687 7688 // Finally, if the target has anything special to do, allow it to do so. 7689 // FIXME: this should insert code into the DAG! 7690 EmitFunctionEntryCode(); 7691 } 7692 7693 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7694 /// ensure constants are generated when needed. Remember the virtual registers 7695 /// that need to be added to the Machine PHI nodes as input. We cannot just 7696 /// directly add them, because expansion might result in multiple MBB's for one 7697 /// BB. As such, the start of the BB might correspond to a different MBB than 7698 /// the end. 7699 /// 7700 void 7701 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7702 const TerminatorInst *TI = LLVMBB->getTerminator(); 7703 7704 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7705 7706 // Check successor nodes' PHI nodes that expect a constant to be available 7707 // from this block. 7708 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7709 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7710 if (!isa<PHINode>(SuccBB->begin())) continue; 7711 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7712 7713 // If this terminator has multiple identical successors (common for 7714 // switches), only handle each succ once. 7715 if (!SuccsHandled.insert(SuccMBB)) continue; 7716 7717 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7718 7719 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7720 // nodes and Machine PHI nodes, but the incoming operands have not been 7721 // emitted yet. 7722 for (BasicBlock::const_iterator I = SuccBB->begin(); 7723 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7724 // Ignore dead phi's. 7725 if (PN->use_empty()) continue; 7726 7727 // Skip empty types 7728 if (PN->getType()->isEmptyTy()) 7729 continue; 7730 7731 unsigned Reg; 7732 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7733 7734 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7735 unsigned &RegOut = ConstantsOut[C]; 7736 if (RegOut == 0) { 7737 RegOut = FuncInfo.CreateRegs(C->getType()); 7738 CopyValueToVirtualRegister(C, RegOut); 7739 } 7740 Reg = RegOut; 7741 } else { 7742 DenseMap<const Value *, unsigned>::iterator I = 7743 FuncInfo.ValueMap.find(PHIOp); 7744 if (I != FuncInfo.ValueMap.end()) 7745 Reg = I->second; 7746 else { 7747 assert(isa<AllocaInst>(PHIOp) && 7748 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7749 "Didn't codegen value into a register!??"); 7750 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7751 CopyValueToVirtualRegister(PHIOp, Reg); 7752 } 7753 } 7754 7755 // Remember that this register needs to added to the machine PHI node as 7756 // the input for this MBB. 7757 SmallVector<EVT, 4> ValueVTs; 7758 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7759 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7760 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7761 EVT VT = ValueVTs[vti]; 7762 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7763 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7764 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7765 Reg += NumRegisters; 7766 } 7767 } 7768 } 7769 7770 ConstantsOut.clear(); 7771 } 7772 7773 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7774 /// is 0. 7775 MachineBasicBlock * 7776 SelectionDAGBuilder::StackProtectorDescriptor:: 7777 AddSuccessorMBB(const BasicBlock *BB, 7778 MachineBasicBlock *ParentMBB, 7779 MachineBasicBlock *SuccMBB) { 7780 // If SuccBB has not been created yet, create it. 7781 if (!SuccMBB) { 7782 MachineFunction *MF = ParentMBB->getParent(); 7783 MachineFunction::iterator BBI = ParentMBB; 7784 SuccMBB = MF->CreateMachineBasicBlock(BB); 7785 MF->insert(++BBI, SuccMBB); 7786 } 7787 // Add it as a successor of ParentMBB. 7788 ParentMBB->addSuccessor(SuccMBB); 7789 return SuccMBB; 7790 } 7791