1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/DiagnosticInfo.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/InlineAsm.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/IntrinsicsAArch64.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Statepoint.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/MC/MCContext.h" 92 #include "llvm/MC/MCSymbol.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Target/TargetIntrinsicInfo.h" 101 #include "llvm/Target/TargetMachine.h" 102 #include "llvm/Target/TargetOptions.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <cstddef> 105 #include <cstring> 106 #include <iterator> 107 #include <limits> 108 #include <numeric> 109 #include <tuple> 110 111 using namespace llvm; 112 using namespace PatternMatch; 113 using namespace SwitchCG; 114 115 #define DEBUG_TYPE "isel" 116 117 /// LimitFloatPrecision - Generate low-precision inline sequences for 118 /// some float libcalls (6, 8 or 12 bits). 119 static unsigned LimitFloatPrecision; 120 121 static cl::opt<bool> 122 InsertAssertAlign("insert-assert-align", cl::init(true), 123 cl::desc("Insert the experimental `assertalign` node."), 124 cl::ReallyHidden); 125 126 static cl::opt<unsigned, true> 127 LimitFPPrecision("limit-float-precision", 128 cl::desc("Generate low-precision inline sequences " 129 "for some float libcalls"), 130 cl::location(LimitFloatPrecision), cl::Hidden, 131 cl::init(0)); 132 133 static cl::opt<unsigned> SwitchPeelThreshold( 134 "switch-peel-threshold", cl::Hidden, cl::init(66), 135 cl::desc("Set the case probability threshold for peeling the case from a " 136 "switch statement. A value greater than 100 will void this " 137 "optimization")); 138 139 // Limit the width of DAG chains. This is important in general to prevent 140 // DAG-based analysis from blowing up. For example, alias analysis and 141 // load clustering may not complete in reasonable time. It is difficult to 142 // recognize and avoid this situation within each individual analysis, and 143 // future analyses are likely to have the same behavior. Limiting DAG width is 144 // the safe approach and will be especially important with global DAGs. 145 // 146 // MaxParallelChains default is arbitrarily high to avoid affecting 147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 148 // sequence over this should have been converted to llvm.memcpy by the 149 // frontend. It is easy to induce this behavior with .ll code such as: 150 // %buffer = alloca [4096 x i8] 151 // %data = load [4096 x i8]* %argPtr 152 // store [4096 x i8] %data, [4096 x i8]* %buffer 153 static const unsigned MaxParallelChains = 64; 154 155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 156 const SDValue *Parts, unsigned NumParts, 157 MVT PartVT, EVT ValueVT, const Value *V, 158 Optional<CallingConv::ID> CC); 159 160 /// getCopyFromParts - Create a value that contains the specified legal parts 161 /// combined into the value they represent. If the parts combine to a type 162 /// larger than ValueVT then AssertOp can be used to specify whether the extra 163 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 164 /// (ISD::AssertSext). 165 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 166 const SDValue *Parts, unsigned NumParts, 167 MVT PartVT, EVT ValueVT, const Value *V, 168 Optional<CallingConv::ID> CC = None, 169 Optional<ISD::NodeType> AssertOp = None) { 170 // Let the target assemble the parts if it wants to 171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 172 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 173 PartVT, ValueVT, CC)) 174 return Val; 175 176 if (ValueVT.isVector()) 177 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 178 CC); 179 180 assert(NumParts > 0 && "No parts to assemble!"); 181 SDValue Val = Parts[0]; 182 183 if (NumParts > 1) { 184 // Assemble the value from multiple parts. 185 if (ValueVT.isInteger()) { 186 unsigned PartBits = PartVT.getSizeInBits(); 187 unsigned ValueBits = ValueVT.getSizeInBits(); 188 189 // Assemble the power of 2 part. 190 unsigned RoundParts = 191 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 192 unsigned RoundBits = PartBits * RoundParts; 193 EVT RoundVT = RoundBits == ValueBits ? 194 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 195 SDValue Lo, Hi; 196 197 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 198 199 if (RoundParts > 2) { 200 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 201 PartVT, HalfVT, V); 202 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 203 RoundParts / 2, PartVT, HalfVT, V); 204 } else { 205 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 206 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 207 } 208 209 if (DAG.getDataLayout().isBigEndian()) 210 std::swap(Lo, Hi); 211 212 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 213 214 if (RoundParts < NumParts) { 215 // Assemble the trailing non-power-of-2 part. 216 unsigned OddParts = NumParts - RoundParts; 217 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 218 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 219 OddVT, V, CC); 220 221 // Combine the round and odd parts. 222 Lo = Val; 223 if (DAG.getDataLayout().isBigEndian()) 224 std::swap(Lo, Hi); 225 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 226 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 227 Hi = 228 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 229 DAG.getConstant(Lo.getValueSizeInBits(), DL, 230 TLI.getPointerTy(DAG.getDataLayout()))); 231 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 232 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 233 } 234 } else if (PartVT.isFloatingPoint()) { 235 // FP split into multiple FP parts (for ppcf128) 236 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 237 "Unexpected split"); 238 SDValue Lo, Hi; 239 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 241 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 242 std::swap(Lo, Hi); 243 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 244 } else { 245 // FP split into integer parts (soft fp) 246 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 247 !PartVT.isVector() && "Unexpected split"); 248 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 249 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 250 } 251 } 252 253 // There is now one part, held in Val. Correct it to match ValueVT. 254 // PartEVT is the type of the register class that holds the value. 255 // ValueVT is the type of the inline asm operation. 256 EVT PartEVT = Val.getValueType(); 257 258 if (PartEVT == ValueVT) 259 return Val; 260 261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 262 ValueVT.bitsLT(PartEVT)) { 263 // For an FP value in an integer part, we need to truncate to the right 264 // width first. 265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 267 } 268 269 // Handle types that have the same size. 270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 272 273 // Handle types with different sizes. 274 if (PartEVT.isInteger() && ValueVT.isInteger()) { 275 if (ValueVT.bitsLT(PartEVT)) { 276 // For a truncate, see if we have any information to 277 // indicate whether the truncated bits will always be 278 // zero or sign-extension. 279 if (AssertOp.hasValue()) 280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 281 DAG.getValueType(ValueVT)); 282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 283 } 284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 285 } 286 287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 288 // FP_ROUND's are always exact here. 289 if (ValueVT.bitsLT(Val.getValueType())) 290 return DAG.getNode( 291 ISD::FP_ROUND, DL, ValueVT, Val, 292 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 293 294 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 295 } 296 297 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 298 // then truncating. 299 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 300 ValueVT.bitsLT(PartEVT)) { 301 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 302 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 303 } 304 305 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 306 } 307 308 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 309 const Twine &ErrMsg) { 310 const Instruction *I = dyn_cast_or_null<Instruction>(V); 311 if (!V) 312 return Ctx.emitError(ErrMsg); 313 314 const char *AsmError = ", possible invalid constraint for vector type"; 315 if (const CallInst *CI = dyn_cast<CallInst>(I)) 316 if (CI->isInlineAsm()) 317 return Ctx.emitError(I, ErrMsg + AsmError); 318 319 return Ctx.emitError(I, ErrMsg); 320 } 321 322 /// getCopyFromPartsVector - Create a value that contains the specified legal 323 /// parts combined into the value they represent. If the parts combine to a 324 /// type larger than ValueVT then AssertOp can be used to specify whether the 325 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 326 /// ValueVT (ISD::AssertSext). 327 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 328 const SDValue *Parts, unsigned NumParts, 329 MVT PartVT, EVT ValueVT, const Value *V, 330 Optional<CallingConv::ID> CallConv) { 331 assert(ValueVT.isVector() && "Not a vector value"); 332 assert(NumParts > 0 && "No parts to assemble!"); 333 const bool IsABIRegCopy = CallConv.hasValue(); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 SDValue Val = Parts[0]; 337 338 // Handle a multi-element vector. 339 if (NumParts > 1) { 340 EVT IntermediateVT; 341 MVT RegisterVT; 342 unsigned NumIntermediates; 343 unsigned NumRegs; 344 345 if (IsABIRegCopy) { 346 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 347 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } else { 350 NumRegs = 351 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 352 NumIntermediates, RegisterVT); 353 } 354 355 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 356 NumParts = NumRegs; // Silence a compiler warning. 357 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 358 assert(RegisterVT.getSizeInBits() == 359 Parts[0].getSimpleValueType().getSizeInBits() && 360 "Part type sizes don't match!"); 361 362 // Assemble the parts into intermediate operands. 363 SmallVector<SDValue, 8> Ops(NumIntermediates); 364 if (NumIntermediates == NumParts) { 365 // If the register was not expanded, truncate or copy the value, 366 // as appropriate. 367 for (unsigned i = 0; i != NumParts; ++i) 368 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 369 PartVT, IntermediateVT, V, CallConv); 370 } else if (NumParts > 0) { 371 // If the intermediate type was expanded, build the intermediate 372 // operands from the parts. 373 assert(NumParts % NumIntermediates == 0 && 374 "Must expand into a divisible number of parts!"); 375 unsigned Factor = NumParts / NumIntermediates; 376 for (unsigned i = 0; i != NumIntermediates; ++i) 377 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 378 PartVT, IntermediateVT, V, CallConv); 379 } 380 381 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 382 // intermediate operands. 383 EVT BuiltVectorTy = 384 IntermediateVT.isVector() 385 ? EVT::getVectorVT( 386 *DAG.getContext(), IntermediateVT.getScalarType(), 387 IntermediateVT.getVectorElementCount() * NumParts) 388 : EVT::getVectorVT(*DAG.getContext(), 389 IntermediateVT.getScalarType(), 390 NumIntermediates); 391 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 392 : ISD::BUILD_VECTOR, 393 DL, BuiltVectorTy, Ops); 394 } 395 396 // There is now one part, held in Val. Correct it to match ValueVT. 397 EVT PartEVT = Val.getValueType(); 398 399 if (PartEVT == ValueVT) 400 return Val; 401 402 if (PartEVT.isVector()) { 403 // Vector/Vector bitcast. 404 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 405 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 406 407 // If the element type of the source/dest vectors are the same, but the 408 // parts vector has more elements than the value vector, then we have a 409 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 410 // elements we want. 411 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 412 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 413 ValueVT.getVectorElementCount().getKnownMinValue()) && 414 (PartEVT.getVectorElementCount().isScalable() == 415 ValueVT.getVectorElementCount().isScalable()) && 416 "Cannot narrow, it would be a lossy transformation"); 417 PartEVT = 418 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 419 ValueVT.getVectorElementCount()); 420 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 421 DAG.getVectorIdxConstant(0, DL)); 422 if (PartEVT == ValueVT) 423 return Val; 424 } 425 426 // Promoted vector extract 427 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 428 } 429 430 // Trivial bitcast if the types are the same size and the destination 431 // vector type is legal. 432 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 433 TLI.isTypeLegal(ValueVT)) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 if (ValueVT.getVectorNumElements() != 1) { 437 // Certain ABIs require that vectors are passed as integers. For vectors 438 // are the same size, this is an obvious bitcast. 439 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 440 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 441 } else if (ValueVT.bitsLT(PartEVT)) { 442 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 443 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 444 // Drop the extra bits. 445 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 446 return DAG.getBitcast(ValueVT, Val); 447 } 448 449 diagnosePossiblyInvalidConstraint( 450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 451 return DAG.getUNDEF(ValueVT); 452 } 453 454 // Handle cases such as i8 -> <1 x i1> 455 EVT ValueSVT = ValueVT.getVectorElementType(); 456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 459 else 460 Val = ValueVT.isFloatingPoint() 461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 463 } 464 465 return DAG.getBuildVector(ValueVT, DL, Val); 466 } 467 468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V, 471 Optional<CallingConv::ID> CallConv); 472 473 /// getCopyToParts - Create a series of nodes that contain the specified value 474 /// split into legal parts. If the parts contain more bits than Val, then, for 475 /// integers, ExtendKind can be used to specify how to generate the extra bits. 476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 477 SDValue *Parts, unsigned NumParts, MVT PartVT, 478 const Value *V, 479 Optional<CallingConv::ID> CallConv = None, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 481 // Let the target split the parts if it wants to 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 484 CallConv)) 485 return; 486 EVT ValueVT = Val.getValueType(); 487 488 // Handle the vector case separately. 489 if (ValueVT.isVector()) 490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 491 CallConv); 492 493 unsigned PartBits = PartVT.getSizeInBits(); 494 unsigned OrigNumParts = NumParts; 495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 496 "Copying to an illegal type!"); 497 498 if (NumParts == 0) 499 return; 500 501 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 assert(NumParts == 1 && "No-op copy with multiple parts!"); 505 Parts[0] = Val; 506 return; 507 } 508 509 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 510 // If the parts cover more bits than the value has, promote the value. 511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 512 assert(NumParts == 1 && "Do not know what to promote to!"); 513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 514 } else { 515 if (ValueVT.isFloatingPoint()) { 516 // FP values need to be bitcast, then extended if they are being put 517 // into a larger container. 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 520 } 521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 522 ValueVT.isInteger() && 523 "Unknown mismatch!"); 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 526 if (PartVT == MVT::x86mmx) 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } 529 } else if (PartBits == ValueVT.getSizeInBits()) { 530 // Different types of the same size. 531 assert(NumParts == 1 && PartEVT != ValueVT); 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 534 // If the parts cover less bits than value has, truncate the value. 535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 536 ValueVT.isInteger() && 537 "Unknown mismatch!"); 538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 540 if (PartVT == MVT::x86mmx) 541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 542 } 543 544 // The value may have changed - recompute ValueVT. 545 ValueVT = Val.getValueType(); 546 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 547 "Failed to tile the value with PartVT!"); 548 549 if (NumParts == 1) { 550 if (PartEVT != ValueVT) { 551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 552 "scalar-to-vector conversion failed"); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 Parts[0] = Val; 557 return; 558 } 559 560 // Expand the value into multiple parts. 561 if (NumParts & (NumParts - 1)) { 562 // The number of parts is not a power of 2. Split off and copy the tail. 563 assert(PartVT.isInteger() && ValueVT.isInteger() && 564 "Do not know what to expand to!"); 565 unsigned RoundParts = 1 << Log2_32(NumParts); 566 unsigned RoundBits = RoundParts * PartBits; 567 unsigned OddParts = NumParts - RoundParts; 568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 570 571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 572 CallConv); 573 574 if (DAG.getDataLayout().isBigEndian()) 575 // The odd parts were reversed by getCopyToParts - unreverse them. 576 std::reverse(Parts + RoundParts, Parts + NumParts); 577 578 NumParts = RoundParts; 579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 581 } 582 583 // The number of parts is a power of 2. Repeatedly bisect the value using 584 // EXTRACT_ELEMENT. 585 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 586 EVT::getIntegerVT(*DAG.getContext(), 587 ValueVT.getSizeInBits()), 588 Val); 589 590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 591 for (unsigned i = 0; i < NumParts; i += StepSize) { 592 unsigned ThisBits = StepSize * PartBits / 2; 593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 594 SDValue &Part0 = Parts[i]; 595 SDValue &Part1 = Parts[i+StepSize/2]; 596 597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 601 602 if (ThisBits == PartBits && ThisVT != PartVT) { 603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 605 } 606 } 607 } 608 609 if (DAG.getDataLayout().isBigEndian()) 610 std::reverse(Parts, Parts + OrigNumParts); 611 } 612 613 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 614 const SDLoc &DL, EVT PartVT) { 615 if (!PartVT.isVector()) 616 return SDValue(); 617 618 EVT ValueVT = Val.getValueType(); 619 ElementCount PartNumElts = PartVT.getVectorElementCount(); 620 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 621 622 // We only support widening vectors with equivalent element types and 623 // fixed/scalable properties. If a target needs to widen a fixed-length type 624 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 625 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 626 PartNumElts.isScalable() != ValueNumElts.isScalable() || 627 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 628 return SDValue(); 629 630 // Widening a scalable vector to another scalable vector is done by inserting 631 // the vector into a larger undef one. 632 if (PartNumElts.isScalable()) 633 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 634 Val, DAG.getVectorIdxConstant(0, DL)); 635 636 EVT ElementVT = PartVT.getVectorElementType(); 637 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 638 // undef elements. 639 SmallVector<SDValue, 16> Ops; 640 DAG.ExtractVectorElements(Val, Ops); 641 SDValue EltUndef = DAG.getUNDEF(ElementVT); 642 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 return DAG.getBuildVector(PartVT, DL, Ops); 646 } 647 648 /// getCopyToPartsVector - Create a series of nodes that contain the specified 649 /// value split into legal parts. 650 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 651 SDValue Val, SDValue *Parts, unsigned NumParts, 652 MVT PartVT, const Value *V, 653 Optional<CallingConv::ID> CallConv) { 654 EVT ValueVT = Val.getValueType(); 655 assert(ValueVT.isVector() && "Not a vector"); 656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 657 const bool IsABIRegCopy = CallConv.hasValue(); 658 659 if (NumParts == 1) { 660 EVT PartEVT = PartVT; 661 if (PartEVT == ValueVT) { 662 // Nothing to do. 663 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 664 // Bitconvert vector->vector case. 665 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 666 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 667 Val = Widened; 668 } else if (PartVT.isVector() && 669 PartEVT.getVectorElementType().bitsGE( 670 ValueVT.getVectorElementType()) && 671 PartEVT.getVectorElementCount() == 672 ValueVT.getVectorElementCount()) { 673 674 // Promoted vector extract 675 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 676 } else if (PartEVT.isVector() && 677 PartEVT.getVectorElementType() != 678 ValueVT.getVectorElementType() && 679 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 680 TargetLowering::TypeWidenVector) { 681 // Combination of widening and promotion. 682 EVT WidenVT = 683 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 684 PartVT.getVectorElementCount()); 685 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 686 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 687 } else { 688 if (ValueVT.getVectorElementCount().isScalar()) { 689 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 690 DAG.getVectorIdxConstant(0, DL)); 691 } else { 692 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 693 assert(PartVT.getFixedSizeInBits() > ValueSize && 694 "lossy conversion of vector to scalar type"); 695 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 696 Val = DAG.getBitcast(IntermediateType, Val); 697 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 698 } 699 } 700 701 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 702 Parts[0] = Val; 703 return; 704 } 705 706 // Handle a multi-element vector. 707 EVT IntermediateVT; 708 MVT RegisterVT; 709 unsigned NumIntermediates; 710 unsigned NumRegs; 711 if (IsABIRegCopy) { 712 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 713 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 714 NumIntermediates, RegisterVT); 715 } else { 716 NumRegs = 717 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 718 NumIntermediates, RegisterVT); 719 } 720 721 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 722 NumParts = NumRegs; // Silence a compiler warning. 723 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 724 725 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 726 "Mixing scalable and fixed vectors when copying in parts"); 727 728 Optional<ElementCount> DestEltCnt; 729 730 if (IntermediateVT.isVector()) 731 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 732 else 733 DestEltCnt = ElementCount::getFixed(NumIntermediates); 734 735 EVT BuiltVectorTy = EVT::getVectorVT( 736 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 737 738 if (ValueVT == BuiltVectorTy) { 739 // Nothing to do. 740 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 741 // Bitconvert vector->vector case. 742 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 743 } else { 744 if (BuiltVectorTy.getVectorElementType().bitsGT( 745 ValueVT.getVectorElementType())) { 746 // Integer promotion. 747 ValueVT = EVT::getVectorVT(*DAG.getContext(), 748 BuiltVectorTy.getVectorElementType(), 749 ValueVT.getVectorElementCount()); 750 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 751 } 752 753 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 754 Val = Widened; 755 } 756 } 757 758 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 759 760 // Split the vector into intermediate operands. 761 SmallVector<SDValue, 8> Ops(NumIntermediates); 762 for (unsigned i = 0; i != NumIntermediates; ++i) { 763 if (IntermediateVT.isVector()) { 764 // This does something sensible for scalable vectors - see the 765 // definition of EXTRACT_SUBVECTOR for further details. 766 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 767 Ops[i] = 768 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 769 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 770 } else { 771 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 772 DAG.getVectorIdxConstant(i, DL)); 773 } 774 } 775 776 // Split the intermediate operands into legal parts. 777 if (NumParts == NumIntermediates) { 778 // If the register was not expanded, promote or copy the value, 779 // as appropriate. 780 for (unsigned i = 0; i != NumParts; ++i) 781 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 782 } else if (NumParts > 0) { 783 // If the intermediate type was expanded, split each the value into 784 // legal parts. 785 assert(NumIntermediates != 0 && "division by zero"); 786 assert(NumParts % NumIntermediates == 0 && 787 "Must expand into a divisible number of parts!"); 788 unsigned Factor = NumParts / NumIntermediates; 789 for (unsigned i = 0; i != NumIntermediates; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 791 CallConv); 792 } 793 } 794 795 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 796 EVT valuevt, Optional<CallingConv::ID> CC) 797 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 798 RegCount(1, regs.size()), CallConv(CC) {} 799 800 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 801 const DataLayout &DL, unsigned Reg, Type *Ty, 802 Optional<CallingConv::ID> CC) { 803 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 804 805 CallConv = CC; 806 807 for (EVT ValueVT : ValueVTs) { 808 unsigned NumRegs = 809 isABIMangled() 810 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 811 : TLI.getNumRegisters(Context, ValueVT); 812 MVT RegisterVT = 813 isABIMangled() 814 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 815 : TLI.getRegisterType(Context, ValueVT); 816 for (unsigned i = 0; i != NumRegs; ++i) 817 Regs.push_back(Reg + i); 818 RegVTs.push_back(RegisterVT); 819 RegCount.push_back(NumRegs); 820 Reg += NumRegs; 821 } 822 } 823 824 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 825 FunctionLoweringInfo &FuncInfo, 826 const SDLoc &dl, SDValue &Chain, 827 SDValue *Flag, const Value *V) const { 828 // A Value with type {} or [0 x %t] needs no registers. 829 if (ValueVTs.empty()) 830 return SDValue(); 831 832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 833 834 // Assemble the legal parts into the final values. 835 SmallVector<SDValue, 4> Values(ValueVTs.size()); 836 SmallVector<SDValue, 8> Parts; 837 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 838 // Copy the legal parts from the registers. 839 EVT ValueVT = ValueVTs[Value]; 840 unsigned NumRegs = RegCount[Value]; 841 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 842 *DAG.getContext(), 843 CallConv.getValue(), RegVTs[Value]) 844 : RegVTs[Value]; 845 846 Parts.resize(NumRegs); 847 for (unsigned i = 0; i != NumRegs; ++i) { 848 SDValue P; 849 if (!Flag) { 850 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 851 } else { 852 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 853 *Flag = P.getValue(2); 854 } 855 856 Chain = P.getValue(1); 857 Parts[i] = P; 858 859 // If the source register was virtual and if we know something about it, 860 // add an assert node. 861 if (!Register::isVirtualRegister(Regs[Part + i]) || 862 !RegisterVT.isInteger()) 863 continue; 864 865 const FunctionLoweringInfo::LiveOutInfo *LOI = 866 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 867 if (!LOI) 868 continue; 869 870 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 871 unsigned NumSignBits = LOI->NumSignBits; 872 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 873 874 if (NumZeroBits == RegSize) { 875 // The current value is a zero. 876 // Explicitly express that as it would be easier for 877 // optimizations to kick in. 878 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 879 continue; 880 } 881 882 // FIXME: We capture more information than the dag can represent. For 883 // now, just use the tightest assertzext/assertsext possible. 884 bool isSExt; 885 EVT FromVT(MVT::Other); 886 if (NumZeroBits) { 887 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 888 isSExt = false; 889 } else if (NumSignBits > 1) { 890 FromVT = 891 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 892 isSExt = true; 893 } else { 894 continue; 895 } 896 // Add an assertion node. 897 assert(FromVT != MVT::Other); 898 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 899 RegisterVT, P, DAG.getValueType(FromVT)); 900 } 901 902 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 903 RegisterVT, ValueVT, V, CallConv); 904 Part += NumRegs; 905 Parts.clear(); 906 } 907 908 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 909 } 910 911 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 912 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 913 const Value *V, 914 ISD::NodeType PreferredExtendType) const { 915 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 916 ISD::NodeType ExtendKind = PreferredExtendType; 917 918 // Get the list of the values's legal parts. 919 unsigned NumRegs = Regs.size(); 920 SmallVector<SDValue, 8> Parts(NumRegs); 921 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 922 unsigned NumParts = RegCount[Value]; 923 924 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 925 *DAG.getContext(), 926 CallConv.getValue(), RegVTs[Value]) 927 : RegVTs[Value]; 928 929 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 930 ExtendKind = ISD::ZERO_EXTEND; 931 932 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 933 NumParts, RegisterVT, V, CallConv, ExtendKind); 934 Part += NumParts; 935 } 936 937 // Copy the parts into the registers. 938 SmallVector<SDValue, 8> Chains(NumRegs); 939 for (unsigned i = 0; i != NumRegs; ++i) { 940 SDValue Part; 941 if (!Flag) { 942 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 943 } else { 944 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 945 *Flag = Part.getValue(1); 946 } 947 948 Chains[i] = Part.getValue(0); 949 } 950 951 if (NumRegs == 1 || Flag) 952 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 953 // flagged to it. That is the CopyToReg nodes and the user are considered 954 // a single scheduling unit. If we create a TokenFactor and return it as 955 // chain, then the TokenFactor is both a predecessor (operand) of the 956 // user as well as a successor (the TF operands are flagged to the user). 957 // c1, f1 = CopyToReg 958 // c2, f2 = CopyToReg 959 // c3 = TokenFactor c1, c2 960 // ... 961 // = op c3, ..., f2 962 Chain = Chains[NumRegs-1]; 963 else 964 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 965 } 966 967 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 968 unsigned MatchingIdx, const SDLoc &dl, 969 SelectionDAG &DAG, 970 std::vector<SDValue> &Ops) const { 971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 972 973 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 974 if (HasMatching) 975 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 976 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 977 // Put the register class of the virtual registers in the flag word. That 978 // way, later passes can recompute register class constraints for inline 979 // assembly as well as normal instructions. 980 // Don't do this for tied operands that can use the regclass information 981 // from the def. 982 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 983 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 984 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 985 } 986 987 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 988 Ops.push_back(Res); 989 990 if (Code == InlineAsm::Kind_Clobber) { 991 // Clobbers should always have a 1:1 mapping with registers, and may 992 // reference registers that have illegal (e.g. vector) types. Hence, we 993 // shouldn't try to apply any sort of splitting logic to them. 994 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 995 "No 1:1 mapping from clobbers to regs?"); 996 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 997 (void)SP; 998 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 999 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1000 assert( 1001 (Regs[I] != SP || 1002 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1003 "If we clobbered the stack pointer, MFI should know about it."); 1004 } 1005 return; 1006 } 1007 1008 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1009 MVT RegisterVT = RegVTs[Value]; 1010 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1011 RegisterVT); 1012 for (unsigned i = 0; i != NumRegs; ++i) { 1013 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1014 unsigned TheReg = Regs[Reg++]; 1015 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1016 } 1017 } 1018 } 1019 1020 SmallVector<std::pair<unsigned, TypeSize>, 4> 1021 RegsForValue::getRegsAndSizes() const { 1022 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1023 unsigned I = 0; 1024 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1025 unsigned RegCount = std::get<0>(CountAndVT); 1026 MVT RegisterVT = std::get<1>(CountAndVT); 1027 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1028 for (unsigned E = I + RegCount; I != E; ++I) 1029 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1030 } 1031 return OutVec; 1032 } 1033 1034 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1035 const TargetLibraryInfo *li) { 1036 AA = aa; 1037 GFI = gfi; 1038 LibInfo = li; 1039 Context = DAG.getContext(); 1040 LPadToCallSiteMap.clear(); 1041 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1042 } 1043 1044 void SelectionDAGBuilder::clear() { 1045 NodeMap.clear(); 1046 UnusedArgNodeMap.clear(); 1047 PendingLoads.clear(); 1048 PendingExports.clear(); 1049 PendingConstrainedFP.clear(); 1050 PendingConstrainedFPStrict.clear(); 1051 CurInst = nullptr; 1052 HasTailCall = false; 1053 SDNodeOrder = LowestSDNodeOrder; 1054 StatepointLowering.clear(); 1055 } 1056 1057 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1058 DanglingDebugInfoMap.clear(); 1059 } 1060 1061 // Update DAG root to include dependencies on Pending chains. 1062 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1063 SDValue Root = DAG.getRoot(); 1064 1065 if (Pending.empty()) 1066 return Root; 1067 1068 // Add current root to PendingChains, unless we already indirectly 1069 // depend on it. 1070 if (Root.getOpcode() != ISD::EntryToken) { 1071 unsigned i = 0, e = Pending.size(); 1072 for (; i != e; ++i) { 1073 assert(Pending[i].getNode()->getNumOperands() > 1); 1074 if (Pending[i].getNode()->getOperand(0) == Root) 1075 break; // Don't add the root if we already indirectly depend on it. 1076 } 1077 1078 if (i == e) 1079 Pending.push_back(Root); 1080 } 1081 1082 if (Pending.size() == 1) 1083 Root = Pending[0]; 1084 else 1085 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1086 1087 DAG.setRoot(Root); 1088 Pending.clear(); 1089 return Root; 1090 } 1091 1092 SDValue SelectionDAGBuilder::getMemoryRoot() { 1093 return updateRoot(PendingLoads); 1094 } 1095 1096 SDValue SelectionDAGBuilder::getRoot() { 1097 // Chain up all pending constrained intrinsics together with all 1098 // pending loads, by simply appending them to PendingLoads and 1099 // then calling getMemoryRoot(). 1100 PendingLoads.reserve(PendingLoads.size() + 1101 PendingConstrainedFP.size() + 1102 PendingConstrainedFPStrict.size()); 1103 PendingLoads.append(PendingConstrainedFP.begin(), 1104 PendingConstrainedFP.end()); 1105 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1106 PendingConstrainedFPStrict.end()); 1107 PendingConstrainedFP.clear(); 1108 PendingConstrainedFPStrict.clear(); 1109 return getMemoryRoot(); 1110 } 1111 1112 SDValue SelectionDAGBuilder::getControlRoot() { 1113 // We need to emit pending fpexcept.strict constrained intrinsics, 1114 // so append them to the PendingExports list. 1115 PendingExports.append(PendingConstrainedFPStrict.begin(), 1116 PendingConstrainedFPStrict.end()); 1117 PendingConstrainedFPStrict.clear(); 1118 return updateRoot(PendingExports); 1119 } 1120 1121 void SelectionDAGBuilder::visit(const Instruction &I) { 1122 // Set up outgoing PHI node register values before emitting the terminator. 1123 if (I.isTerminator()) { 1124 HandlePHINodesInSuccessorBlocks(I.getParent()); 1125 } 1126 1127 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1128 if (!isa<DbgInfoIntrinsic>(I)) 1129 ++SDNodeOrder; 1130 1131 CurInst = &I; 1132 1133 visit(I.getOpcode(), I); 1134 1135 if (!I.isTerminator() && !HasTailCall && 1136 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1137 CopyToExportRegsIfNeeded(&I); 1138 1139 CurInst = nullptr; 1140 } 1141 1142 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1143 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1144 } 1145 1146 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1147 // Note: this doesn't use InstVisitor, because it has to work with 1148 // ConstantExpr's in addition to instructions. 1149 switch (Opcode) { 1150 default: llvm_unreachable("Unknown instruction type encountered!"); 1151 // Build the switch statement using the Instruction.def file. 1152 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1153 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1154 #include "llvm/IR/Instruction.def" 1155 } 1156 } 1157 1158 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1159 DebugLoc DL, unsigned Order) { 1160 // We treat variadic dbg_values differently at this stage. 1161 if (DI->hasArgList()) { 1162 // For variadic dbg_values we will now insert an undef. 1163 // FIXME: We can potentially recover these! 1164 SmallVector<SDDbgOperand, 2> Locs; 1165 for (const Value *V : DI->getValues()) { 1166 auto Undef = UndefValue::get(V->getType()); 1167 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1168 } 1169 SDDbgValue *SDV = DAG.getDbgValueList( 1170 DI->getVariable(), DI->getExpression(), Locs, {}, 1171 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1172 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1173 } else { 1174 // TODO: Dangling debug info will eventually either be resolved or produce 1175 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1176 // between the original dbg.value location and its resolved DBG_VALUE, 1177 // which we should ideally fill with an extra Undef DBG_VALUE. 1178 assert(DI->getNumVariableLocationOps() == 1 && 1179 "DbgValueInst without an ArgList should have a single location " 1180 "operand."); 1181 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1182 } 1183 } 1184 1185 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1186 const DIExpression *Expr) { 1187 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1188 const DbgValueInst *DI = DDI.getDI(); 1189 DIVariable *DanglingVariable = DI->getVariable(); 1190 DIExpression *DanglingExpr = DI->getExpression(); 1191 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1192 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1193 return true; 1194 } 1195 return false; 1196 }; 1197 1198 for (auto &DDIMI : DanglingDebugInfoMap) { 1199 DanglingDebugInfoVector &DDIV = DDIMI.second; 1200 1201 // If debug info is to be dropped, run it through final checks to see 1202 // whether it can be salvaged. 1203 for (auto &DDI : DDIV) 1204 if (isMatchingDbgValue(DDI)) 1205 salvageUnresolvedDbgValue(DDI); 1206 1207 erase_if(DDIV, isMatchingDbgValue); 1208 } 1209 } 1210 1211 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1212 // generate the debug data structures now that we've seen its definition. 1213 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1214 SDValue Val) { 1215 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1216 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1217 return; 1218 1219 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1220 for (auto &DDI : DDIV) { 1221 const DbgValueInst *DI = DDI.getDI(); 1222 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1223 assert(DI && "Ill-formed DanglingDebugInfo"); 1224 DebugLoc dl = DDI.getdl(); 1225 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1226 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1227 DILocalVariable *Variable = DI->getVariable(); 1228 DIExpression *Expr = DI->getExpression(); 1229 assert(Variable->isValidLocationForIntrinsic(dl) && 1230 "Expected inlined-at fields to agree"); 1231 SDDbgValue *SDV; 1232 if (Val.getNode()) { 1233 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1234 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1235 // we couldn't resolve it directly when examining the DbgValue intrinsic 1236 // in the first place we should not be more successful here). Unless we 1237 // have some test case that prove this to be correct we should avoid 1238 // calling EmitFuncArgumentDbgValue here. 1239 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1240 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1241 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1242 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1243 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1244 // inserted after the definition of Val when emitting the instructions 1245 // after ISel. An alternative could be to teach 1246 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1247 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1248 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1249 << ValSDNodeOrder << "\n"); 1250 SDV = getDbgValue(Val, Variable, Expr, dl, 1251 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1252 DAG.AddDbgValue(SDV, false); 1253 } else 1254 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1255 << "in EmitFuncArgumentDbgValue\n"); 1256 } else { 1257 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1258 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1259 auto SDV = 1260 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1261 DAG.AddDbgValue(SDV, false); 1262 } 1263 } 1264 DDIV.clear(); 1265 } 1266 1267 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1268 // TODO: For the variadic implementation, instead of only checking the fail 1269 // state of `handleDebugValue`, we need know specifically which values were 1270 // invalid, so that we attempt to salvage only those values when processing 1271 // a DIArgList. 1272 assert(!DDI.getDI()->hasArgList() && 1273 "Not implemented for variadic dbg_values"); 1274 Value *V = DDI.getDI()->getValue(0); 1275 DILocalVariable *Var = DDI.getDI()->getVariable(); 1276 DIExpression *Expr = DDI.getDI()->getExpression(); 1277 DebugLoc DL = DDI.getdl(); 1278 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1279 unsigned SDOrder = DDI.getSDNodeOrder(); 1280 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1281 // that DW_OP_stack_value is desired. 1282 assert(isa<DbgValueInst>(DDI.getDI())); 1283 bool StackValue = true; 1284 1285 // Can this Value can be encoded without any further work? 1286 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1287 return; 1288 1289 // Attempt to salvage back through as many instructions as possible. Bail if 1290 // a non-instruction is seen, such as a constant expression or global 1291 // variable. FIXME: Further work could recover those too. 1292 while (isa<Instruction>(V)) { 1293 Instruction &VAsInst = *cast<Instruction>(V); 1294 // Temporary "0", awaiting real implementation. 1295 SmallVector<uint64_t, 16> Ops; 1296 SmallVector<Value *, 4> AdditionalValues; 1297 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1298 AdditionalValues); 1299 // If we cannot salvage any further, and haven't yet found a suitable debug 1300 // expression, bail out. 1301 if (!V) 1302 break; 1303 1304 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1305 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1306 // here for variadic dbg_values, remove that condition. 1307 if (!AdditionalValues.empty()) 1308 break; 1309 1310 // New value and expr now represent this debuginfo. 1311 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1312 1313 // Some kind of simplification occurred: check whether the operand of the 1314 // salvaged debug expression can be encoded in this DAG. 1315 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1316 /*IsVariadic=*/false)) { 1317 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1318 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1319 return; 1320 } 1321 } 1322 1323 // This was the final opportunity to salvage this debug information, and it 1324 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1325 // any earlier variable location. 1326 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1327 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1328 DAG.AddDbgValue(SDV, false); 1329 1330 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1331 << "\n"); 1332 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1333 << "\n"); 1334 } 1335 1336 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1337 DILocalVariable *Var, 1338 DIExpression *Expr, DebugLoc dl, 1339 DebugLoc InstDL, unsigned Order, 1340 bool IsVariadic) { 1341 if (Values.empty()) 1342 return true; 1343 SmallVector<SDDbgOperand> LocationOps; 1344 SmallVector<SDNode *> Dependencies; 1345 for (const Value *V : Values) { 1346 // Constant value. 1347 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1348 isa<ConstantPointerNull>(V)) { 1349 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1350 continue; 1351 } 1352 1353 // If the Value is a frame index, we can create a FrameIndex debug value 1354 // without relying on the DAG at all. 1355 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1356 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1357 if (SI != FuncInfo.StaticAllocaMap.end()) { 1358 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1359 continue; 1360 } 1361 } 1362 1363 // Do not use getValue() in here; we don't want to generate code at 1364 // this point if it hasn't been done yet. 1365 SDValue N = NodeMap[V]; 1366 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1367 N = UnusedArgNodeMap[V]; 1368 if (N.getNode()) { 1369 // Only emit func arg dbg value for non-variadic dbg.values for now. 1370 if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1371 return true; 1372 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1373 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1374 // describe stack slot locations. 1375 // 1376 // Consider "int x = 0; int *px = &x;". There are two kinds of 1377 // interesting debug values here after optimization: 1378 // 1379 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1380 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1381 // 1382 // Both describe the direct values of their associated variables. 1383 Dependencies.push_back(N.getNode()); 1384 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1385 continue; 1386 } 1387 LocationOps.emplace_back( 1388 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1389 continue; 1390 } 1391 1392 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1393 // Special rules apply for the first dbg.values of parameter variables in a 1394 // function. Identify them by the fact they reference Argument Values, that 1395 // they're parameters, and they are parameters of the current function. We 1396 // need to let them dangle until they get an SDNode. 1397 bool IsParamOfFunc = 1398 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1399 if (IsParamOfFunc) 1400 return false; 1401 1402 // The value is not used in this block yet (or it would have an SDNode). 1403 // We still want the value to appear for the user if possible -- if it has 1404 // an associated VReg, we can refer to that instead. 1405 auto VMI = FuncInfo.ValueMap.find(V); 1406 if (VMI != FuncInfo.ValueMap.end()) { 1407 unsigned Reg = VMI->second; 1408 // If this is a PHI node, it may be split up into several MI PHI nodes 1409 // (in FunctionLoweringInfo::set). 1410 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1411 V->getType(), None); 1412 if (RFV.occupiesMultipleRegs()) { 1413 // FIXME: We could potentially support variadic dbg_values here. 1414 if (IsVariadic) 1415 return false; 1416 unsigned Offset = 0; 1417 unsigned BitsToDescribe = 0; 1418 if (auto VarSize = Var->getSizeInBits()) 1419 BitsToDescribe = *VarSize; 1420 if (auto Fragment = Expr->getFragmentInfo()) 1421 BitsToDescribe = Fragment->SizeInBits; 1422 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1423 // Bail out if all bits are described already. 1424 if (Offset >= BitsToDescribe) 1425 break; 1426 // TODO: handle scalable vectors. 1427 unsigned RegisterSize = RegAndSize.second; 1428 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1429 ? BitsToDescribe - Offset 1430 : RegisterSize; 1431 auto FragmentExpr = DIExpression::createFragmentExpression( 1432 Expr, Offset, FragmentSize); 1433 if (!FragmentExpr) 1434 continue; 1435 SDDbgValue *SDV = DAG.getVRegDbgValue( 1436 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1437 DAG.AddDbgValue(SDV, false); 1438 Offset += RegisterSize; 1439 } 1440 return true; 1441 } 1442 // We can use simple vreg locations for variadic dbg_values as well. 1443 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1444 continue; 1445 } 1446 // We failed to create a SDDbgOperand for V. 1447 return false; 1448 } 1449 1450 // We have created a SDDbgOperand for each Value in Values. 1451 // Should use Order instead of SDNodeOrder? 1452 assert(!LocationOps.empty()); 1453 SDDbgValue *SDV = 1454 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1455 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1456 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1457 return true; 1458 } 1459 1460 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1461 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1462 for (auto &Pair : DanglingDebugInfoMap) 1463 for (auto &DDI : Pair.second) 1464 salvageUnresolvedDbgValue(DDI); 1465 clearDanglingDebugInfo(); 1466 } 1467 1468 /// getCopyFromRegs - If there was virtual register allocated for the value V 1469 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1470 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1471 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1472 SDValue Result; 1473 1474 if (It != FuncInfo.ValueMap.end()) { 1475 Register InReg = It->second; 1476 1477 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1478 DAG.getDataLayout(), InReg, Ty, 1479 None); // This is not an ABI copy. 1480 SDValue Chain = DAG.getEntryNode(); 1481 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1482 V); 1483 resolveDanglingDebugInfo(V, Result); 1484 } 1485 1486 return Result; 1487 } 1488 1489 /// getValue - Return an SDValue for the given Value. 1490 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1491 // If we already have an SDValue for this value, use it. It's important 1492 // to do this first, so that we don't create a CopyFromReg if we already 1493 // have a regular SDValue. 1494 SDValue &N = NodeMap[V]; 1495 if (N.getNode()) return N; 1496 1497 // If there's a virtual register allocated and initialized for this 1498 // value, use it. 1499 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1500 return copyFromReg; 1501 1502 // Otherwise create a new SDValue and remember it. 1503 SDValue Val = getValueImpl(V); 1504 NodeMap[V] = Val; 1505 resolveDanglingDebugInfo(V, Val); 1506 return Val; 1507 } 1508 1509 /// getNonRegisterValue - Return an SDValue for the given Value, but 1510 /// don't look in FuncInfo.ValueMap for a virtual register. 1511 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1512 // If we already have an SDValue for this value, use it. 1513 SDValue &N = NodeMap[V]; 1514 if (N.getNode()) { 1515 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1516 // Remove the debug location from the node as the node is about to be used 1517 // in a location which may differ from the original debug location. This 1518 // is relevant to Constant and ConstantFP nodes because they can appear 1519 // as constant expressions inside PHI nodes. 1520 N->setDebugLoc(DebugLoc()); 1521 } 1522 return N; 1523 } 1524 1525 // Otherwise create a new SDValue and remember it. 1526 SDValue Val = getValueImpl(V); 1527 NodeMap[V] = Val; 1528 resolveDanglingDebugInfo(V, Val); 1529 return Val; 1530 } 1531 1532 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1533 /// Create an SDValue for the given value. 1534 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1536 1537 if (const Constant *C = dyn_cast<Constant>(V)) { 1538 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1539 1540 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1541 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1542 1543 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1544 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1545 1546 if (isa<ConstantPointerNull>(C)) { 1547 unsigned AS = V->getType()->getPointerAddressSpace(); 1548 return DAG.getConstant(0, getCurSDLoc(), 1549 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1550 } 1551 1552 if (match(C, m_VScale(DAG.getDataLayout()))) 1553 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1554 1555 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1556 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1557 1558 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1559 return DAG.getUNDEF(VT); 1560 1561 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1562 visit(CE->getOpcode(), *CE); 1563 SDValue N1 = NodeMap[V]; 1564 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1565 return N1; 1566 } 1567 1568 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1569 SmallVector<SDValue, 4> Constants; 1570 for (const Use &U : C->operands()) { 1571 SDNode *Val = getValue(U).getNode(); 1572 // If the operand is an empty aggregate, there are no values. 1573 if (!Val) continue; 1574 // Add each leaf value from the operand to the Constants list 1575 // to form a flattened list of all the values. 1576 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1577 Constants.push_back(SDValue(Val, i)); 1578 } 1579 1580 return DAG.getMergeValues(Constants, getCurSDLoc()); 1581 } 1582 1583 if (const ConstantDataSequential *CDS = 1584 dyn_cast<ConstantDataSequential>(C)) { 1585 SmallVector<SDValue, 4> Ops; 1586 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1587 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1588 // Add each leaf value from the operand to the Constants list 1589 // to form a flattened list of all the values. 1590 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1591 Ops.push_back(SDValue(Val, i)); 1592 } 1593 1594 if (isa<ArrayType>(CDS->getType())) 1595 return DAG.getMergeValues(Ops, getCurSDLoc()); 1596 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1597 } 1598 1599 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1600 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1601 "Unknown struct or array constant!"); 1602 1603 SmallVector<EVT, 4> ValueVTs; 1604 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1605 unsigned NumElts = ValueVTs.size(); 1606 if (NumElts == 0) 1607 return SDValue(); // empty struct 1608 SmallVector<SDValue, 4> Constants(NumElts); 1609 for (unsigned i = 0; i != NumElts; ++i) { 1610 EVT EltVT = ValueVTs[i]; 1611 if (isa<UndefValue>(C)) 1612 Constants[i] = DAG.getUNDEF(EltVT); 1613 else if (EltVT.isFloatingPoint()) 1614 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1615 else 1616 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1617 } 1618 1619 return DAG.getMergeValues(Constants, getCurSDLoc()); 1620 } 1621 1622 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1623 return DAG.getBlockAddress(BA, VT); 1624 1625 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1626 return getValue(Equiv->getGlobalValue()); 1627 1628 VectorType *VecTy = cast<VectorType>(V->getType()); 1629 1630 // Now that we know the number and type of the elements, get that number of 1631 // elements into the Ops array based on what kind of constant it is. 1632 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1633 SmallVector<SDValue, 16> Ops; 1634 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1635 for (unsigned i = 0; i != NumElements; ++i) 1636 Ops.push_back(getValue(CV->getOperand(i))); 1637 1638 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1639 } else if (isa<ConstantAggregateZero>(C)) { 1640 EVT EltVT = 1641 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1642 1643 SDValue Op; 1644 if (EltVT.isFloatingPoint()) 1645 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1646 else 1647 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1648 1649 if (isa<ScalableVectorType>(VecTy)) 1650 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1651 else { 1652 SmallVector<SDValue, 16> Ops; 1653 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1654 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1655 } 1656 } 1657 llvm_unreachable("Unknown vector constant"); 1658 } 1659 1660 // If this is a static alloca, generate it as the frameindex instead of 1661 // computation. 1662 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1663 DenseMap<const AllocaInst*, int>::iterator SI = 1664 FuncInfo.StaticAllocaMap.find(AI); 1665 if (SI != FuncInfo.StaticAllocaMap.end()) 1666 return DAG.getFrameIndex(SI->second, 1667 TLI.getFrameIndexTy(DAG.getDataLayout())); 1668 } 1669 1670 // If this is an instruction which fast-isel has deferred, select it now. 1671 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1672 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1673 1674 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1675 Inst->getType(), None); 1676 SDValue Chain = DAG.getEntryNode(); 1677 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1678 } 1679 1680 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1681 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1682 } 1683 llvm_unreachable("Can't get register for value!"); 1684 } 1685 1686 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1687 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1688 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1689 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1690 bool IsSEH = isAsynchronousEHPersonality(Pers); 1691 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1692 if (!IsSEH) 1693 CatchPadMBB->setIsEHScopeEntry(); 1694 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1695 if (IsMSVCCXX || IsCoreCLR) 1696 CatchPadMBB->setIsEHFuncletEntry(); 1697 } 1698 1699 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1700 // Update machine-CFG edge. 1701 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1702 FuncInfo.MBB->addSuccessor(TargetMBB); 1703 TargetMBB->setIsEHCatchretTarget(true); 1704 DAG.getMachineFunction().setHasEHCatchret(true); 1705 1706 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1707 bool IsSEH = isAsynchronousEHPersonality(Pers); 1708 if (IsSEH) { 1709 // If this is not a fall-through branch or optimizations are switched off, 1710 // emit the branch. 1711 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1712 TM.getOptLevel() == CodeGenOpt::None) 1713 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1714 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1715 return; 1716 } 1717 1718 // Figure out the funclet membership for the catchret's successor. 1719 // This will be used by the FuncletLayout pass to determine how to order the 1720 // BB's. 1721 // A 'catchret' returns to the outer scope's color. 1722 Value *ParentPad = I.getCatchSwitchParentPad(); 1723 const BasicBlock *SuccessorColor; 1724 if (isa<ConstantTokenNone>(ParentPad)) 1725 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1726 else 1727 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1728 assert(SuccessorColor && "No parent funclet for catchret!"); 1729 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1730 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1731 1732 // Create the terminator node. 1733 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1734 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1735 DAG.getBasicBlock(SuccessorColorMBB)); 1736 DAG.setRoot(Ret); 1737 } 1738 1739 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1740 // Don't emit any special code for the cleanuppad instruction. It just marks 1741 // the start of an EH scope/funclet. 1742 FuncInfo.MBB->setIsEHScopeEntry(); 1743 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1744 if (Pers != EHPersonality::Wasm_CXX) { 1745 FuncInfo.MBB->setIsEHFuncletEntry(); 1746 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1747 } 1748 } 1749 1750 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1751 // not match, it is OK to add only the first unwind destination catchpad to the 1752 // successors, because there will be at least one invoke instruction within the 1753 // catch scope that points to the next unwind destination, if one exists, so 1754 // CFGSort cannot mess up with BB sorting order. 1755 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1756 // call within them, and catchpads only consisting of 'catch (...)' have a 1757 // '__cxa_end_catch' call within them, both of which generate invokes in case 1758 // the next unwind destination exists, i.e., the next unwind destination is not 1759 // the caller.) 1760 // 1761 // Having at most one EH pad successor is also simpler and helps later 1762 // transformations. 1763 // 1764 // For example, 1765 // current: 1766 // invoke void @foo to ... unwind label %catch.dispatch 1767 // catch.dispatch: 1768 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1769 // catch.start: 1770 // ... 1771 // ... in this BB or some other child BB dominated by this BB there will be an 1772 // invoke that points to 'next' BB as an unwind destination 1773 // 1774 // next: ; We don't need to add this to 'current' BB's successor 1775 // ... 1776 static void findWasmUnwindDestinations( 1777 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1778 BranchProbability Prob, 1779 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1780 &UnwindDests) { 1781 while (EHPadBB) { 1782 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1783 if (isa<CleanupPadInst>(Pad)) { 1784 // Stop on cleanup pads. 1785 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1786 UnwindDests.back().first->setIsEHScopeEntry(); 1787 break; 1788 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1789 // Add the catchpad handlers to the possible destinations. We don't 1790 // continue to the unwind destination of the catchswitch for wasm. 1791 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1792 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1793 UnwindDests.back().first->setIsEHScopeEntry(); 1794 } 1795 break; 1796 } else { 1797 continue; 1798 } 1799 } 1800 } 1801 1802 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1803 /// many places it could ultimately go. In the IR, we have a single unwind 1804 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1805 /// This function skips over imaginary basic blocks that hold catchswitch 1806 /// instructions, and finds all the "real" machine 1807 /// basic block destinations. As those destinations may not be successors of 1808 /// EHPadBB, here we also calculate the edge probability to those destinations. 1809 /// The passed-in Prob is the edge probability to EHPadBB. 1810 static void findUnwindDestinations( 1811 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1812 BranchProbability Prob, 1813 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1814 &UnwindDests) { 1815 EHPersonality Personality = 1816 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1817 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1818 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1819 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1820 bool IsSEH = isAsynchronousEHPersonality(Personality); 1821 1822 if (IsWasmCXX) { 1823 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1824 assert(UnwindDests.size() <= 1 && 1825 "There should be at most one unwind destination for wasm"); 1826 return; 1827 } 1828 1829 while (EHPadBB) { 1830 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1831 BasicBlock *NewEHPadBB = nullptr; 1832 if (isa<LandingPadInst>(Pad)) { 1833 // Stop on landingpads. They are not funclets. 1834 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1835 break; 1836 } else if (isa<CleanupPadInst>(Pad)) { 1837 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1838 // personalities. 1839 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1840 UnwindDests.back().first->setIsEHScopeEntry(); 1841 UnwindDests.back().first->setIsEHFuncletEntry(); 1842 break; 1843 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1844 // Add the catchpad handlers to the possible destinations. 1845 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1846 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1847 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1848 if (IsMSVCCXX || IsCoreCLR) 1849 UnwindDests.back().first->setIsEHFuncletEntry(); 1850 if (!IsSEH) 1851 UnwindDests.back().first->setIsEHScopeEntry(); 1852 } 1853 NewEHPadBB = CatchSwitch->getUnwindDest(); 1854 } else { 1855 continue; 1856 } 1857 1858 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1859 if (BPI && NewEHPadBB) 1860 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1861 EHPadBB = NewEHPadBB; 1862 } 1863 } 1864 1865 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1866 // Update successor info. 1867 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1868 auto UnwindDest = I.getUnwindDest(); 1869 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1870 BranchProbability UnwindDestProb = 1871 (BPI && UnwindDest) 1872 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1873 : BranchProbability::getZero(); 1874 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1875 for (auto &UnwindDest : UnwindDests) { 1876 UnwindDest.first->setIsEHPad(); 1877 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1878 } 1879 FuncInfo.MBB->normalizeSuccProbs(); 1880 1881 // Create the terminator node. 1882 SDValue Ret = 1883 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1884 DAG.setRoot(Ret); 1885 } 1886 1887 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1888 report_fatal_error("visitCatchSwitch not yet implemented!"); 1889 } 1890 1891 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1893 auto &DL = DAG.getDataLayout(); 1894 SDValue Chain = getControlRoot(); 1895 SmallVector<ISD::OutputArg, 8> Outs; 1896 SmallVector<SDValue, 8> OutVals; 1897 1898 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1899 // lower 1900 // 1901 // %val = call <ty> @llvm.experimental.deoptimize() 1902 // ret <ty> %val 1903 // 1904 // differently. 1905 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1906 LowerDeoptimizingReturn(); 1907 return; 1908 } 1909 1910 if (!FuncInfo.CanLowerReturn) { 1911 unsigned DemoteReg = FuncInfo.DemoteRegister; 1912 const Function *F = I.getParent()->getParent(); 1913 1914 // Emit a store of the return value through the virtual register. 1915 // Leave Outs empty so that LowerReturn won't try to load return 1916 // registers the usual way. 1917 SmallVector<EVT, 1> PtrValueVTs; 1918 ComputeValueVTs(TLI, DL, 1919 F->getReturnType()->getPointerTo( 1920 DAG.getDataLayout().getAllocaAddrSpace()), 1921 PtrValueVTs); 1922 1923 SDValue RetPtr = 1924 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1925 SDValue RetOp = getValue(I.getOperand(0)); 1926 1927 SmallVector<EVT, 4> ValueVTs, MemVTs; 1928 SmallVector<uint64_t, 4> Offsets; 1929 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1930 &Offsets); 1931 unsigned NumValues = ValueVTs.size(); 1932 1933 SmallVector<SDValue, 4> Chains(NumValues); 1934 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1935 for (unsigned i = 0; i != NumValues; ++i) { 1936 // An aggregate return value cannot wrap around the address space, so 1937 // offsets to its parts don't wrap either. 1938 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1939 TypeSize::Fixed(Offsets[i])); 1940 1941 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1942 if (MemVTs[i] != ValueVTs[i]) 1943 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1944 Chains[i] = DAG.getStore( 1945 Chain, getCurSDLoc(), Val, 1946 // FIXME: better loc info would be nice. 1947 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1948 commonAlignment(BaseAlign, Offsets[i])); 1949 } 1950 1951 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1952 MVT::Other, Chains); 1953 } else if (I.getNumOperands() != 0) { 1954 SmallVector<EVT, 4> ValueVTs; 1955 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1956 unsigned NumValues = ValueVTs.size(); 1957 if (NumValues) { 1958 SDValue RetOp = getValue(I.getOperand(0)); 1959 1960 const Function *F = I.getParent()->getParent(); 1961 1962 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1963 I.getOperand(0)->getType(), F->getCallingConv(), 1964 /*IsVarArg*/ false, DL); 1965 1966 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1967 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1968 ExtendKind = ISD::SIGN_EXTEND; 1969 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1970 ExtendKind = ISD::ZERO_EXTEND; 1971 1972 LLVMContext &Context = F->getContext(); 1973 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1974 1975 for (unsigned j = 0; j != NumValues; ++j) { 1976 EVT VT = ValueVTs[j]; 1977 1978 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1979 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1980 1981 CallingConv::ID CC = F->getCallingConv(); 1982 1983 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1984 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1985 SmallVector<SDValue, 4> Parts(NumParts); 1986 getCopyToParts(DAG, getCurSDLoc(), 1987 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1988 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1989 1990 // 'inreg' on function refers to return value 1991 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1992 if (RetInReg) 1993 Flags.setInReg(); 1994 1995 if (I.getOperand(0)->getType()->isPointerTy()) { 1996 Flags.setPointer(); 1997 Flags.setPointerAddrSpace( 1998 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1999 } 2000 2001 if (NeedsRegBlock) { 2002 Flags.setInConsecutiveRegs(); 2003 if (j == NumValues - 1) 2004 Flags.setInConsecutiveRegsLast(); 2005 } 2006 2007 // Propagate extension type if any 2008 if (ExtendKind == ISD::SIGN_EXTEND) 2009 Flags.setSExt(); 2010 else if (ExtendKind == ISD::ZERO_EXTEND) 2011 Flags.setZExt(); 2012 2013 for (unsigned i = 0; i < NumParts; ++i) { 2014 Outs.push_back(ISD::OutputArg(Flags, 2015 Parts[i].getValueType().getSimpleVT(), 2016 VT, /*isfixed=*/true, 0, 0)); 2017 OutVals.push_back(Parts[i]); 2018 } 2019 } 2020 } 2021 } 2022 2023 // Push in swifterror virtual register as the last element of Outs. This makes 2024 // sure swifterror virtual register will be returned in the swifterror 2025 // physical register. 2026 const Function *F = I.getParent()->getParent(); 2027 if (TLI.supportSwiftError() && 2028 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2029 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2030 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2031 Flags.setSwiftError(); 2032 Outs.push_back(ISD::OutputArg( 2033 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2034 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2035 // Create SDNode for the swifterror virtual register. 2036 OutVals.push_back( 2037 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2038 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2039 EVT(TLI.getPointerTy(DL)))); 2040 } 2041 2042 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2043 CallingConv::ID CallConv = 2044 DAG.getMachineFunction().getFunction().getCallingConv(); 2045 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2046 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2047 2048 // Verify that the target's LowerReturn behaved as expected. 2049 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2050 "LowerReturn didn't return a valid chain!"); 2051 2052 // Update the DAG with the new chain value resulting from return lowering. 2053 DAG.setRoot(Chain); 2054 } 2055 2056 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2057 /// created for it, emit nodes to copy the value into the virtual 2058 /// registers. 2059 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2060 // Skip empty types 2061 if (V->getType()->isEmptyTy()) 2062 return; 2063 2064 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2065 if (VMI != FuncInfo.ValueMap.end()) { 2066 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2067 CopyValueToVirtualRegister(V, VMI->second); 2068 } 2069 } 2070 2071 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2072 /// the current basic block, add it to ValueMap now so that we'll get a 2073 /// CopyTo/FromReg. 2074 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2075 // No need to export constants. 2076 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2077 2078 // Already exported? 2079 if (FuncInfo.isExportedInst(V)) return; 2080 2081 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2082 CopyValueToVirtualRegister(V, Reg); 2083 } 2084 2085 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2086 const BasicBlock *FromBB) { 2087 // The operands of the setcc have to be in this block. We don't know 2088 // how to export them from some other block. 2089 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2090 // Can export from current BB. 2091 if (VI->getParent() == FromBB) 2092 return true; 2093 2094 // Is already exported, noop. 2095 return FuncInfo.isExportedInst(V); 2096 } 2097 2098 // If this is an argument, we can export it if the BB is the entry block or 2099 // if it is already exported. 2100 if (isa<Argument>(V)) { 2101 if (FromBB->isEntryBlock()) 2102 return true; 2103 2104 // Otherwise, can only export this if it is already exported. 2105 return FuncInfo.isExportedInst(V); 2106 } 2107 2108 // Otherwise, constants can always be exported. 2109 return true; 2110 } 2111 2112 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2113 BranchProbability 2114 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2115 const MachineBasicBlock *Dst) const { 2116 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2117 const BasicBlock *SrcBB = Src->getBasicBlock(); 2118 const BasicBlock *DstBB = Dst->getBasicBlock(); 2119 if (!BPI) { 2120 // If BPI is not available, set the default probability as 1 / N, where N is 2121 // the number of successors. 2122 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2123 return BranchProbability(1, SuccSize); 2124 } 2125 return BPI->getEdgeProbability(SrcBB, DstBB); 2126 } 2127 2128 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2129 MachineBasicBlock *Dst, 2130 BranchProbability Prob) { 2131 if (!FuncInfo.BPI) 2132 Src->addSuccessorWithoutProb(Dst); 2133 else { 2134 if (Prob.isUnknown()) 2135 Prob = getEdgeProbability(Src, Dst); 2136 Src->addSuccessor(Dst, Prob); 2137 } 2138 } 2139 2140 static bool InBlock(const Value *V, const BasicBlock *BB) { 2141 if (const Instruction *I = dyn_cast<Instruction>(V)) 2142 return I->getParent() == BB; 2143 return true; 2144 } 2145 2146 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2147 /// This function emits a branch and is used at the leaves of an OR or an 2148 /// AND operator tree. 2149 void 2150 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2151 MachineBasicBlock *TBB, 2152 MachineBasicBlock *FBB, 2153 MachineBasicBlock *CurBB, 2154 MachineBasicBlock *SwitchBB, 2155 BranchProbability TProb, 2156 BranchProbability FProb, 2157 bool InvertCond) { 2158 const BasicBlock *BB = CurBB->getBasicBlock(); 2159 2160 // If the leaf of the tree is a comparison, merge the condition into 2161 // the caseblock. 2162 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2163 // The operands of the cmp have to be in this block. We don't know 2164 // how to export them from some other block. If this is the first block 2165 // of the sequence, no exporting is needed. 2166 if (CurBB == SwitchBB || 2167 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2168 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2169 ISD::CondCode Condition; 2170 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2171 ICmpInst::Predicate Pred = 2172 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2173 Condition = getICmpCondCode(Pred); 2174 } else { 2175 const FCmpInst *FC = cast<FCmpInst>(Cond); 2176 FCmpInst::Predicate Pred = 2177 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2178 Condition = getFCmpCondCode(Pred); 2179 if (TM.Options.NoNaNsFPMath) 2180 Condition = getFCmpCodeWithoutNaN(Condition); 2181 } 2182 2183 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2184 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2185 SL->SwitchCases.push_back(CB); 2186 return; 2187 } 2188 } 2189 2190 // Create a CaseBlock record representing this branch. 2191 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2192 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2193 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2194 SL->SwitchCases.push_back(CB); 2195 } 2196 2197 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2198 MachineBasicBlock *TBB, 2199 MachineBasicBlock *FBB, 2200 MachineBasicBlock *CurBB, 2201 MachineBasicBlock *SwitchBB, 2202 Instruction::BinaryOps Opc, 2203 BranchProbability TProb, 2204 BranchProbability FProb, 2205 bool InvertCond) { 2206 // Skip over not part of the tree and remember to invert op and operands at 2207 // next level. 2208 Value *NotCond; 2209 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2210 InBlock(NotCond, CurBB->getBasicBlock())) { 2211 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2212 !InvertCond); 2213 return; 2214 } 2215 2216 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2217 const Value *BOpOp0, *BOpOp1; 2218 // Compute the effective opcode for Cond, taking into account whether it needs 2219 // to be inverted, e.g. 2220 // and (not (or A, B)), C 2221 // gets lowered as 2222 // and (and (not A, not B), C) 2223 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2224 if (BOp) { 2225 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2226 ? Instruction::And 2227 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2228 ? Instruction::Or 2229 : (Instruction::BinaryOps)0); 2230 if (InvertCond) { 2231 if (BOpc == Instruction::And) 2232 BOpc = Instruction::Or; 2233 else if (BOpc == Instruction::Or) 2234 BOpc = Instruction::And; 2235 } 2236 } 2237 2238 // If this node is not part of the or/and tree, emit it as a branch. 2239 // Note that all nodes in the tree should have same opcode. 2240 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2241 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2242 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2243 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2244 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2245 TProb, FProb, InvertCond); 2246 return; 2247 } 2248 2249 // Create TmpBB after CurBB. 2250 MachineFunction::iterator BBI(CurBB); 2251 MachineFunction &MF = DAG.getMachineFunction(); 2252 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2253 CurBB->getParent()->insert(++BBI, TmpBB); 2254 2255 if (Opc == Instruction::Or) { 2256 // Codegen X | Y as: 2257 // BB1: 2258 // jmp_if_X TBB 2259 // jmp TmpBB 2260 // TmpBB: 2261 // jmp_if_Y TBB 2262 // jmp FBB 2263 // 2264 2265 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2266 // The requirement is that 2267 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2268 // = TrueProb for original BB. 2269 // Assuming the original probabilities are A and B, one choice is to set 2270 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2271 // A/(1+B) and 2B/(1+B). This choice assumes that 2272 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2273 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2274 // TmpBB, but the math is more complicated. 2275 2276 auto NewTrueProb = TProb / 2; 2277 auto NewFalseProb = TProb / 2 + FProb; 2278 // Emit the LHS condition. 2279 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2280 NewFalseProb, InvertCond); 2281 2282 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2283 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2284 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2285 // Emit the RHS condition into TmpBB. 2286 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2287 Probs[1], InvertCond); 2288 } else { 2289 assert(Opc == Instruction::And && "Unknown merge op!"); 2290 // Codegen X & Y as: 2291 // BB1: 2292 // jmp_if_X TmpBB 2293 // jmp FBB 2294 // TmpBB: 2295 // jmp_if_Y TBB 2296 // jmp FBB 2297 // 2298 // This requires creation of TmpBB after CurBB. 2299 2300 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2301 // The requirement is that 2302 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2303 // = FalseProb for original BB. 2304 // Assuming the original probabilities are A and B, one choice is to set 2305 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2306 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2307 // TrueProb for BB1 * FalseProb for TmpBB. 2308 2309 auto NewTrueProb = TProb + FProb / 2; 2310 auto NewFalseProb = FProb / 2; 2311 // Emit the LHS condition. 2312 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2313 NewFalseProb, InvertCond); 2314 2315 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2316 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2317 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2318 // Emit the RHS condition into TmpBB. 2319 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2320 Probs[1], InvertCond); 2321 } 2322 } 2323 2324 /// If the set of cases should be emitted as a series of branches, return true. 2325 /// If we should emit this as a bunch of and/or'd together conditions, return 2326 /// false. 2327 bool 2328 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2329 if (Cases.size() != 2) return true; 2330 2331 // If this is two comparisons of the same values or'd or and'd together, they 2332 // will get folded into a single comparison, so don't emit two blocks. 2333 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2334 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2335 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2336 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2337 return false; 2338 } 2339 2340 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2341 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2342 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2343 Cases[0].CC == Cases[1].CC && 2344 isa<Constant>(Cases[0].CmpRHS) && 2345 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2346 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2347 return false; 2348 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2349 return false; 2350 } 2351 2352 return true; 2353 } 2354 2355 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2356 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2357 2358 // Update machine-CFG edges. 2359 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2360 2361 if (I.isUnconditional()) { 2362 // Update machine-CFG edges. 2363 BrMBB->addSuccessor(Succ0MBB); 2364 2365 // If this is not a fall-through branch or optimizations are switched off, 2366 // emit the branch. 2367 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2368 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2369 MVT::Other, getControlRoot(), 2370 DAG.getBasicBlock(Succ0MBB))); 2371 2372 return; 2373 } 2374 2375 // If this condition is one of the special cases we handle, do special stuff 2376 // now. 2377 const Value *CondVal = I.getCondition(); 2378 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2379 2380 // If this is a series of conditions that are or'd or and'd together, emit 2381 // this as a sequence of branches instead of setcc's with and/or operations. 2382 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2383 // unpredictable branches, and vector extracts because those jumps are likely 2384 // expensive for any target), this should improve performance. 2385 // For example, instead of something like: 2386 // cmp A, B 2387 // C = seteq 2388 // cmp D, E 2389 // F = setle 2390 // or C, F 2391 // jnz foo 2392 // Emit: 2393 // cmp A, B 2394 // je foo 2395 // cmp D, E 2396 // jle foo 2397 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2398 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2399 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2400 Value *Vec; 2401 const Value *BOp0, *BOp1; 2402 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2403 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2404 Opcode = Instruction::And; 2405 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2406 Opcode = Instruction::Or; 2407 2408 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2409 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2410 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2411 getEdgeProbability(BrMBB, Succ0MBB), 2412 getEdgeProbability(BrMBB, Succ1MBB), 2413 /*InvertCond=*/false); 2414 // If the compares in later blocks need to use values not currently 2415 // exported from this block, export them now. This block should always 2416 // be the first entry. 2417 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2418 2419 // Allow some cases to be rejected. 2420 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2421 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2422 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2423 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2424 } 2425 2426 // Emit the branch for this block. 2427 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2428 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2429 return; 2430 } 2431 2432 // Okay, we decided not to do this, remove any inserted MBB's and clear 2433 // SwitchCases. 2434 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2435 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2436 2437 SL->SwitchCases.clear(); 2438 } 2439 } 2440 2441 // Create a CaseBlock record representing this branch. 2442 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2443 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2444 2445 // Use visitSwitchCase to actually insert the fast branch sequence for this 2446 // cond branch. 2447 visitSwitchCase(CB, BrMBB); 2448 } 2449 2450 /// visitSwitchCase - Emits the necessary code to represent a single node in 2451 /// the binary search tree resulting from lowering a switch instruction. 2452 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2453 MachineBasicBlock *SwitchBB) { 2454 SDValue Cond; 2455 SDValue CondLHS = getValue(CB.CmpLHS); 2456 SDLoc dl = CB.DL; 2457 2458 if (CB.CC == ISD::SETTRUE) { 2459 // Branch or fall through to TrueBB. 2460 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2461 SwitchBB->normalizeSuccProbs(); 2462 if (CB.TrueBB != NextBlock(SwitchBB)) { 2463 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2464 DAG.getBasicBlock(CB.TrueBB))); 2465 } 2466 return; 2467 } 2468 2469 auto &TLI = DAG.getTargetLoweringInfo(); 2470 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2471 2472 // Build the setcc now. 2473 if (!CB.CmpMHS) { 2474 // Fold "(X == true)" to X and "(X == false)" to !X to 2475 // handle common cases produced by branch lowering. 2476 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2477 CB.CC == ISD::SETEQ) 2478 Cond = CondLHS; 2479 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2480 CB.CC == ISD::SETEQ) { 2481 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2482 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2483 } else { 2484 SDValue CondRHS = getValue(CB.CmpRHS); 2485 2486 // If a pointer's DAG type is larger than its memory type then the DAG 2487 // values are zero-extended. This breaks signed comparisons so truncate 2488 // back to the underlying type before doing the compare. 2489 if (CondLHS.getValueType() != MemVT) { 2490 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2491 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2492 } 2493 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2494 } 2495 } else { 2496 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2497 2498 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2499 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2500 2501 SDValue CmpOp = getValue(CB.CmpMHS); 2502 EVT VT = CmpOp.getValueType(); 2503 2504 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2505 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2506 ISD::SETLE); 2507 } else { 2508 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2509 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2510 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2511 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2512 } 2513 } 2514 2515 // Update successor info 2516 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2517 // TrueBB and FalseBB are always different unless the incoming IR is 2518 // degenerate. This only happens when running llc on weird IR. 2519 if (CB.TrueBB != CB.FalseBB) 2520 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2521 SwitchBB->normalizeSuccProbs(); 2522 2523 // If the lhs block is the next block, invert the condition so that we can 2524 // fall through to the lhs instead of the rhs block. 2525 if (CB.TrueBB == NextBlock(SwitchBB)) { 2526 std::swap(CB.TrueBB, CB.FalseBB); 2527 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2528 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2529 } 2530 2531 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2532 MVT::Other, getControlRoot(), Cond, 2533 DAG.getBasicBlock(CB.TrueBB)); 2534 2535 // Insert the false branch. Do this even if it's a fall through branch, 2536 // this makes it easier to do DAG optimizations which require inverting 2537 // the branch condition. 2538 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2539 DAG.getBasicBlock(CB.FalseBB)); 2540 2541 DAG.setRoot(BrCond); 2542 } 2543 2544 /// visitJumpTable - Emit JumpTable node in the current MBB 2545 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2546 // Emit the code for the jump table 2547 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2548 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2549 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2550 JT.Reg, PTy); 2551 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2552 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2553 MVT::Other, Index.getValue(1), 2554 Table, Index); 2555 DAG.setRoot(BrJumpTable); 2556 } 2557 2558 /// visitJumpTableHeader - This function emits necessary code to produce index 2559 /// in the JumpTable from switch case. 2560 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2561 JumpTableHeader &JTH, 2562 MachineBasicBlock *SwitchBB) { 2563 SDLoc dl = getCurSDLoc(); 2564 2565 // Subtract the lowest switch case value from the value being switched on. 2566 SDValue SwitchOp = getValue(JTH.SValue); 2567 EVT VT = SwitchOp.getValueType(); 2568 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2569 DAG.getConstant(JTH.First, dl, VT)); 2570 2571 // The SDNode we just created, which holds the value being switched on minus 2572 // the smallest case value, needs to be copied to a virtual register so it 2573 // can be used as an index into the jump table in a subsequent basic block. 2574 // This value may be smaller or larger than the target's pointer type, and 2575 // therefore require extension or truncating. 2576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2577 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2578 2579 unsigned JumpTableReg = 2580 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2581 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2582 JumpTableReg, SwitchOp); 2583 JT.Reg = JumpTableReg; 2584 2585 if (!JTH.FallthroughUnreachable) { 2586 // Emit the range check for the jump table, and branch to the default block 2587 // for the switch statement if the value being switched on exceeds the 2588 // largest case in the switch. 2589 SDValue CMP = DAG.getSetCC( 2590 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2591 Sub.getValueType()), 2592 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2593 2594 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2595 MVT::Other, CopyTo, CMP, 2596 DAG.getBasicBlock(JT.Default)); 2597 2598 // Avoid emitting unnecessary branches to the next block. 2599 if (JT.MBB != NextBlock(SwitchBB)) 2600 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2601 DAG.getBasicBlock(JT.MBB)); 2602 2603 DAG.setRoot(BrCond); 2604 } else { 2605 // Avoid emitting unnecessary branches to the next block. 2606 if (JT.MBB != NextBlock(SwitchBB)) 2607 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2608 DAG.getBasicBlock(JT.MBB))); 2609 else 2610 DAG.setRoot(CopyTo); 2611 } 2612 } 2613 2614 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2615 /// variable if there exists one. 2616 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2617 SDValue &Chain) { 2618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2619 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2620 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2621 MachineFunction &MF = DAG.getMachineFunction(); 2622 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2623 MachineSDNode *Node = 2624 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2625 if (Global) { 2626 MachinePointerInfo MPInfo(Global); 2627 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2628 MachineMemOperand::MODereferenceable; 2629 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2630 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2631 DAG.setNodeMemRefs(Node, {MemRef}); 2632 } 2633 if (PtrTy != PtrMemTy) 2634 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2635 return SDValue(Node, 0); 2636 } 2637 2638 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2639 /// tail spliced into a stack protector check success bb. 2640 /// 2641 /// For a high level explanation of how this fits into the stack protector 2642 /// generation see the comment on the declaration of class 2643 /// StackProtectorDescriptor. 2644 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2645 MachineBasicBlock *ParentBB) { 2646 2647 // First create the loads to the guard/stack slot for the comparison. 2648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2649 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2650 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2651 2652 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2653 int FI = MFI.getStackProtectorIndex(); 2654 2655 SDValue Guard; 2656 SDLoc dl = getCurSDLoc(); 2657 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2658 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2659 Align Align = 2660 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2661 2662 // Generate code to load the content of the guard slot. 2663 SDValue GuardVal = DAG.getLoad( 2664 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2665 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2666 MachineMemOperand::MOVolatile); 2667 2668 if (TLI.useStackGuardXorFP()) 2669 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2670 2671 // Retrieve guard check function, nullptr if instrumentation is inlined. 2672 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2673 // The target provides a guard check function to validate the guard value. 2674 // Generate a call to that function with the content of the guard slot as 2675 // argument. 2676 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2677 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2678 2679 TargetLowering::ArgListTy Args; 2680 TargetLowering::ArgListEntry Entry; 2681 Entry.Node = GuardVal; 2682 Entry.Ty = FnTy->getParamType(0); 2683 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2684 Entry.IsInReg = true; 2685 Args.push_back(Entry); 2686 2687 TargetLowering::CallLoweringInfo CLI(DAG); 2688 CLI.setDebugLoc(getCurSDLoc()) 2689 .setChain(DAG.getEntryNode()) 2690 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2691 getValue(GuardCheckFn), std::move(Args)); 2692 2693 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2694 DAG.setRoot(Result.second); 2695 return; 2696 } 2697 2698 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2699 // Otherwise, emit a volatile load to retrieve the stack guard value. 2700 SDValue Chain = DAG.getEntryNode(); 2701 if (TLI.useLoadStackGuardNode()) { 2702 Guard = getLoadStackGuard(DAG, dl, Chain); 2703 } else { 2704 const Value *IRGuard = TLI.getSDagStackGuard(M); 2705 SDValue GuardPtr = getValue(IRGuard); 2706 2707 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2708 MachinePointerInfo(IRGuard, 0), Align, 2709 MachineMemOperand::MOVolatile); 2710 } 2711 2712 // Perform the comparison via a getsetcc. 2713 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2714 *DAG.getContext(), 2715 Guard.getValueType()), 2716 Guard, GuardVal, ISD::SETNE); 2717 2718 // If the guard/stackslot do not equal, branch to failure MBB. 2719 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2720 MVT::Other, GuardVal.getOperand(0), 2721 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2722 // Otherwise branch to success MBB. 2723 SDValue Br = DAG.getNode(ISD::BR, dl, 2724 MVT::Other, BrCond, 2725 DAG.getBasicBlock(SPD.getSuccessMBB())); 2726 2727 DAG.setRoot(Br); 2728 } 2729 2730 /// Codegen the failure basic block for a stack protector check. 2731 /// 2732 /// A failure stack protector machine basic block consists simply of a call to 2733 /// __stack_chk_fail(). 2734 /// 2735 /// For a high level explanation of how this fits into the stack protector 2736 /// generation see the comment on the declaration of class 2737 /// StackProtectorDescriptor. 2738 void 2739 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2740 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2741 TargetLowering::MakeLibCallOptions CallOptions; 2742 CallOptions.setDiscardResult(true); 2743 SDValue Chain = 2744 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2745 None, CallOptions, getCurSDLoc()).second; 2746 // On PS4, the "return address" must still be within the calling function, 2747 // even if it's at the very end, so emit an explicit TRAP here. 2748 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2749 if (TM.getTargetTriple().isPS4CPU()) 2750 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2751 // WebAssembly needs an unreachable instruction after a non-returning call, 2752 // because the function return type can be different from __stack_chk_fail's 2753 // return type (void). 2754 if (TM.getTargetTriple().isWasm()) 2755 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2756 2757 DAG.setRoot(Chain); 2758 } 2759 2760 /// visitBitTestHeader - This function emits necessary code to produce value 2761 /// suitable for "bit tests" 2762 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2763 MachineBasicBlock *SwitchBB) { 2764 SDLoc dl = getCurSDLoc(); 2765 2766 // Subtract the minimum value. 2767 SDValue SwitchOp = getValue(B.SValue); 2768 EVT VT = SwitchOp.getValueType(); 2769 SDValue RangeSub = 2770 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2771 2772 // Determine the type of the test operands. 2773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2774 bool UsePtrType = false; 2775 if (!TLI.isTypeLegal(VT)) { 2776 UsePtrType = true; 2777 } else { 2778 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2779 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2780 // Switch table case range are encoded into series of masks. 2781 // Just use pointer type, it's guaranteed to fit. 2782 UsePtrType = true; 2783 break; 2784 } 2785 } 2786 SDValue Sub = RangeSub; 2787 if (UsePtrType) { 2788 VT = TLI.getPointerTy(DAG.getDataLayout()); 2789 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2790 } 2791 2792 B.RegVT = VT.getSimpleVT(); 2793 B.Reg = FuncInfo.CreateReg(B.RegVT); 2794 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2795 2796 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2797 2798 if (!B.FallthroughUnreachable) 2799 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2800 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2801 SwitchBB->normalizeSuccProbs(); 2802 2803 SDValue Root = CopyTo; 2804 if (!B.FallthroughUnreachable) { 2805 // Conditional branch to the default block. 2806 SDValue RangeCmp = DAG.getSetCC(dl, 2807 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2808 RangeSub.getValueType()), 2809 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2810 ISD::SETUGT); 2811 2812 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2813 DAG.getBasicBlock(B.Default)); 2814 } 2815 2816 // Avoid emitting unnecessary branches to the next block. 2817 if (MBB != NextBlock(SwitchBB)) 2818 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2819 2820 DAG.setRoot(Root); 2821 } 2822 2823 /// visitBitTestCase - this function produces one "bit test" 2824 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2825 MachineBasicBlock* NextMBB, 2826 BranchProbability BranchProbToNext, 2827 unsigned Reg, 2828 BitTestCase &B, 2829 MachineBasicBlock *SwitchBB) { 2830 SDLoc dl = getCurSDLoc(); 2831 MVT VT = BB.RegVT; 2832 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2833 SDValue Cmp; 2834 unsigned PopCount = countPopulation(B.Mask); 2835 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2836 if (PopCount == 1) { 2837 // Testing for a single bit; just compare the shift count with what it 2838 // would need to be to shift a 1 bit in that position. 2839 Cmp = DAG.getSetCC( 2840 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2841 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2842 ISD::SETEQ); 2843 } else if (PopCount == BB.Range) { 2844 // There is only one zero bit in the range, test for it directly. 2845 Cmp = DAG.getSetCC( 2846 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2847 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2848 ISD::SETNE); 2849 } else { 2850 // Make desired shift 2851 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2852 DAG.getConstant(1, dl, VT), ShiftOp); 2853 2854 // Emit bit tests and jumps 2855 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2856 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2857 Cmp = DAG.getSetCC( 2858 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2859 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2860 } 2861 2862 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2863 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2864 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2865 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2866 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2867 // one as they are relative probabilities (and thus work more like weights), 2868 // and hence we need to normalize them to let the sum of them become one. 2869 SwitchBB->normalizeSuccProbs(); 2870 2871 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2872 MVT::Other, getControlRoot(), 2873 Cmp, DAG.getBasicBlock(B.TargetBB)); 2874 2875 // Avoid emitting unnecessary branches to the next block. 2876 if (NextMBB != NextBlock(SwitchBB)) 2877 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2878 DAG.getBasicBlock(NextMBB)); 2879 2880 DAG.setRoot(BrAnd); 2881 } 2882 2883 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2884 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2885 2886 // Retrieve successors. Look through artificial IR level blocks like 2887 // catchswitch for successors. 2888 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2889 const BasicBlock *EHPadBB = I.getSuccessor(1); 2890 2891 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2892 // have to do anything here to lower funclet bundles. 2893 assert(!I.hasOperandBundlesOtherThan( 2894 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2895 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2896 LLVMContext::OB_cfguardtarget, 2897 LLVMContext::OB_clang_arc_attachedcall}) && 2898 "Cannot lower invokes with arbitrary operand bundles yet!"); 2899 2900 const Value *Callee(I.getCalledOperand()); 2901 const Function *Fn = dyn_cast<Function>(Callee); 2902 if (isa<InlineAsm>(Callee)) 2903 visitInlineAsm(I, EHPadBB); 2904 else if (Fn && Fn->isIntrinsic()) { 2905 switch (Fn->getIntrinsicID()) { 2906 default: 2907 llvm_unreachable("Cannot invoke this intrinsic"); 2908 case Intrinsic::donothing: 2909 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2910 case Intrinsic::seh_try_begin: 2911 case Intrinsic::seh_scope_begin: 2912 case Intrinsic::seh_try_end: 2913 case Intrinsic::seh_scope_end: 2914 break; 2915 case Intrinsic::experimental_patchpoint_void: 2916 case Intrinsic::experimental_patchpoint_i64: 2917 visitPatchpoint(I, EHPadBB); 2918 break; 2919 case Intrinsic::experimental_gc_statepoint: 2920 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2921 break; 2922 case Intrinsic::wasm_rethrow: { 2923 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2924 // special because it can be invoked, so we manually lower it to a DAG 2925 // node here. 2926 SmallVector<SDValue, 8> Ops; 2927 Ops.push_back(getRoot()); // inchain 2928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2929 Ops.push_back( 2930 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2931 TLI.getPointerTy(DAG.getDataLayout()))); 2932 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2933 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2934 break; 2935 } 2936 } 2937 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2938 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2939 // Eventually we will support lowering the @llvm.experimental.deoptimize 2940 // intrinsic, and right now there are no plans to support other intrinsics 2941 // with deopt state. 2942 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2943 } else { 2944 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2945 } 2946 2947 // If the value of the invoke is used outside of its defining block, make it 2948 // available as a virtual register. 2949 // We already took care of the exported value for the statepoint instruction 2950 // during call to the LowerStatepoint. 2951 if (!isa<GCStatepointInst>(I)) { 2952 CopyToExportRegsIfNeeded(&I); 2953 } 2954 2955 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2956 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2957 BranchProbability EHPadBBProb = 2958 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2959 : BranchProbability::getZero(); 2960 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2961 2962 // Update successor info. 2963 addSuccessorWithProb(InvokeMBB, Return); 2964 for (auto &UnwindDest : UnwindDests) { 2965 UnwindDest.first->setIsEHPad(); 2966 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2967 } 2968 InvokeMBB->normalizeSuccProbs(); 2969 2970 // Drop into normal successor. 2971 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2972 DAG.getBasicBlock(Return))); 2973 } 2974 2975 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2976 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2977 2978 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2979 // have to do anything here to lower funclet bundles. 2980 assert(!I.hasOperandBundlesOtherThan( 2981 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2982 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2983 2984 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2985 visitInlineAsm(I); 2986 CopyToExportRegsIfNeeded(&I); 2987 2988 // Retrieve successors. 2989 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2990 2991 // Update successor info. 2992 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2993 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2994 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2995 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2996 Target->setIsInlineAsmBrIndirectTarget(); 2997 } 2998 CallBrMBB->normalizeSuccProbs(); 2999 3000 // Drop into default successor. 3001 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3002 MVT::Other, getControlRoot(), 3003 DAG.getBasicBlock(Return))); 3004 } 3005 3006 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3007 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3008 } 3009 3010 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3011 assert(FuncInfo.MBB->isEHPad() && 3012 "Call to landingpad not in landing pad!"); 3013 3014 // If there aren't registers to copy the values into (e.g., during SjLj 3015 // exceptions), then don't bother to create these DAG nodes. 3016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3017 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3018 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3019 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3020 return; 3021 3022 // If landingpad's return type is token type, we don't create DAG nodes 3023 // for its exception pointer and selector value. The extraction of exception 3024 // pointer or selector value from token type landingpads is not currently 3025 // supported. 3026 if (LP.getType()->isTokenTy()) 3027 return; 3028 3029 SmallVector<EVT, 2> ValueVTs; 3030 SDLoc dl = getCurSDLoc(); 3031 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3032 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3033 3034 // Get the two live-in registers as SDValues. The physregs have already been 3035 // copied into virtual registers. 3036 SDValue Ops[2]; 3037 if (FuncInfo.ExceptionPointerVirtReg) { 3038 Ops[0] = DAG.getZExtOrTrunc( 3039 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3040 FuncInfo.ExceptionPointerVirtReg, 3041 TLI.getPointerTy(DAG.getDataLayout())), 3042 dl, ValueVTs[0]); 3043 } else { 3044 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3045 } 3046 Ops[1] = DAG.getZExtOrTrunc( 3047 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3048 FuncInfo.ExceptionSelectorVirtReg, 3049 TLI.getPointerTy(DAG.getDataLayout())), 3050 dl, ValueVTs[1]); 3051 3052 // Merge into one. 3053 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3054 DAG.getVTList(ValueVTs), Ops); 3055 setValue(&LP, Res); 3056 } 3057 3058 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3059 MachineBasicBlock *Last) { 3060 // Update JTCases. 3061 for (JumpTableBlock &JTB : SL->JTCases) 3062 if (JTB.first.HeaderBB == First) 3063 JTB.first.HeaderBB = Last; 3064 3065 // Update BitTestCases. 3066 for (BitTestBlock &BTB : SL->BitTestCases) 3067 if (BTB.Parent == First) 3068 BTB.Parent = Last; 3069 } 3070 3071 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3072 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3073 3074 // Update machine-CFG edges with unique successors. 3075 SmallSet<BasicBlock*, 32> Done; 3076 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3077 BasicBlock *BB = I.getSuccessor(i); 3078 bool Inserted = Done.insert(BB).second; 3079 if (!Inserted) 3080 continue; 3081 3082 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3083 addSuccessorWithProb(IndirectBrMBB, Succ); 3084 } 3085 IndirectBrMBB->normalizeSuccProbs(); 3086 3087 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3088 MVT::Other, getControlRoot(), 3089 getValue(I.getAddress()))); 3090 } 3091 3092 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3093 if (!DAG.getTarget().Options.TrapUnreachable) 3094 return; 3095 3096 // We may be able to ignore unreachable behind a noreturn call. 3097 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3098 const BasicBlock &BB = *I.getParent(); 3099 if (&I != &BB.front()) { 3100 BasicBlock::const_iterator PredI = 3101 std::prev(BasicBlock::const_iterator(&I)); 3102 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3103 if (Call->doesNotReturn()) 3104 return; 3105 } 3106 } 3107 } 3108 3109 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3110 } 3111 3112 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3113 SDNodeFlags Flags; 3114 3115 SDValue Op = getValue(I.getOperand(0)); 3116 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3117 Op, Flags); 3118 setValue(&I, UnNodeValue); 3119 } 3120 3121 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3122 SDNodeFlags Flags; 3123 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3124 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3125 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3126 } 3127 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3128 Flags.setExact(ExactOp->isExact()); 3129 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3130 Flags.copyFMF(*FPOp); 3131 3132 SDValue Op1 = getValue(I.getOperand(0)); 3133 SDValue Op2 = getValue(I.getOperand(1)); 3134 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3135 Op1, Op2, Flags); 3136 setValue(&I, BinNodeValue); 3137 } 3138 3139 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3140 SDValue Op1 = getValue(I.getOperand(0)); 3141 SDValue Op2 = getValue(I.getOperand(1)); 3142 3143 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3144 Op1.getValueType(), DAG.getDataLayout()); 3145 3146 // Coerce the shift amount to the right type if we can. 3147 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3148 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3149 unsigned Op2Size = Op2.getValueSizeInBits(); 3150 SDLoc DL = getCurSDLoc(); 3151 3152 // If the operand is smaller than the shift count type, promote it. 3153 if (ShiftSize > Op2Size) 3154 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3155 3156 // If the operand is larger than the shift count type but the shift 3157 // count type has enough bits to represent any shift value, truncate 3158 // it now. This is a common case and it exposes the truncate to 3159 // optimization early. 3160 else if (ShiftSize >= Log2_32_Ceil(Op1.getValueSizeInBits())) 3161 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3162 // Otherwise we'll need to temporarily settle for some other convenient 3163 // type. Type legalization will make adjustments once the shiftee is split. 3164 else 3165 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3166 } 3167 3168 bool nuw = false; 3169 bool nsw = false; 3170 bool exact = false; 3171 3172 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3173 3174 if (const OverflowingBinaryOperator *OFBinOp = 3175 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3176 nuw = OFBinOp->hasNoUnsignedWrap(); 3177 nsw = OFBinOp->hasNoSignedWrap(); 3178 } 3179 if (const PossiblyExactOperator *ExactOp = 3180 dyn_cast<const PossiblyExactOperator>(&I)) 3181 exact = ExactOp->isExact(); 3182 } 3183 SDNodeFlags Flags; 3184 Flags.setExact(exact); 3185 Flags.setNoSignedWrap(nsw); 3186 Flags.setNoUnsignedWrap(nuw); 3187 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3188 Flags); 3189 setValue(&I, Res); 3190 } 3191 3192 void SelectionDAGBuilder::visitSDiv(const User &I) { 3193 SDValue Op1 = getValue(I.getOperand(0)); 3194 SDValue Op2 = getValue(I.getOperand(1)); 3195 3196 SDNodeFlags Flags; 3197 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3198 cast<PossiblyExactOperator>(&I)->isExact()); 3199 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3200 Op2, Flags)); 3201 } 3202 3203 void SelectionDAGBuilder::visitICmp(const User &I) { 3204 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3205 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3206 predicate = IC->getPredicate(); 3207 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3208 predicate = ICmpInst::Predicate(IC->getPredicate()); 3209 SDValue Op1 = getValue(I.getOperand(0)); 3210 SDValue Op2 = getValue(I.getOperand(1)); 3211 ISD::CondCode Opcode = getICmpCondCode(predicate); 3212 3213 auto &TLI = DAG.getTargetLoweringInfo(); 3214 EVT MemVT = 3215 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3216 3217 // If a pointer's DAG type is larger than its memory type then the DAG values 3218 // are zero-extended. This breaks signed comparisons so truncate back to the 3219 // underlying type before doing the compare. 3220 if (Op1.getValueType() != MemVT) { 3221 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3222 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3223 } 3224 3225 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3226 I.getType()); 3227 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3228 } 3229 3230 void SelectionDAGBuilder::visitFCmp(const User &I) { 3231 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3232 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3233 predicate = FC->getPredicate(); 3234 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3235 predicate = FCmpInst::Predicate(FC->getPredicate()); 3236 SDValue Op1 = getValue(I.getOperand(0)); 3237 SDValue Op2 = getValue(I.getOperand(1)); 3238 3239 ISD::CondCode Condition = getFCmpCondCode(predicate); 3240 auto *FPMO = cast<FPMathOperator>(&I); 3241 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3242 Condition = getFCmpCodeWithoutNaN(Condition); 3243 3244 SDNodeFlags Flags; 3245 Flags.copyFMF(*FPMO); 3246 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3247 3248 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3249 I.getType()); 3250 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3251 } 3252 3253 // Check if the condition of the select has one use or two users that are both 3254 // selects with the same condition. 3255 static bool hasOnlySelectUsers(const Value *Cond) { 3256 return llvm::all_of(Cond->users(), [](const Value *V) { 3257 return isa<SelectInst>(V); 3258 }); 3259 } 3260 3261 void SelectionDAGBuilder::visitSelect(const User &I) { 3262 SmallVector<EVT, 4> ValueVTs; 3263 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3264 ValueVTs); 3265 unsigned NumValues = ValueVTs.size(); 3266 if (NumValues == 0) return; 3267 3268 SmallVector<SDValue, 4> Values(NumValues); 3269 SDValue Cond = getValue(I.getOperand(0)); 3270 SDValue LHSVal = getValue(I.getOperand(1)); 3271 SDValue RHSVal = getValue(I.getOperand(2)); 3272 SmallVector<SDValue, 1> BaseOps(1, Cond); 3273 ISD::NodeType OpCode = 3274 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3275 3276 bool IsUnaryAbs = false; 3277 bool Negate = false; 3278 3279 SDNodeFlags Flags; 3280 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3281 Flags.copyFMF(*FPOp); 3282 3283 // Min/max matching is only viable if all output VTs are the same. 3284 if (is_splat(ValueVTs)) { 3285 EVT VT = ValueVTs[0]; 3286 LLVMContext &Ctx = *DAG.getContext(); 3287 auto &TLI = DAG.getTargetLoweringInfo(); 3288 3289 // We care about the legality of the operation after it has been type 3290 // legalized. 3291 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3292 VT = TLI.getTypeToTransformTo(Ctx, VT); 3293 3294 // If the vselect is legal, assume we want to leave this as a vector setcc + 3295 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3296 // min/max is legal on the scalar type. 3297 bool UseScalarMinMax = VT.isVector() && 3298 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3299 3300 Value *LHS, *RHS; 3301 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3302 ISD::NodeType Opc = ISD::DELETED_NODE; 3303 switch (SPR.Flavor) { 3304 case SPF_UMAX: Opc = ISD::UMAX; break; 3305 case SPF_UMIN: Opc = ISD::UMIN; break; 3306 case SPF_SMAX: Opc = ISD::SMAX; break; 3307 case SPF_SMIN: Opc = ISD::SMIN; break; 3308 case SPF_FMINNUM: 3309 switch (SPR.NaNBehavior) { 3310 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3311 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3312 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3313 case SPNB_RETURNS_ANY: { 3314 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3315 Opc = ISD::FMINNUM; 3316 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3317 Opc = ISD::FMINIMUM; 3318 else if (UseScalarMinMax) 3319 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3320 ISD::FMINNUM : ISD::FMINIMUM; 3321 break; 3322 } 3323 } 3324 break; 3325 case SPF_FMAXNUM: 3326 switch (SPR.NaNBehavior) { 3327 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3328 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3329 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3330 case SPNB_RETURNS_ANY: 3331 3332 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3333 Opc = ISD::FMAXNUM; 3334 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3335 Opc = ISD::FMAXIMUM; 3336 else if (UseScalarMinMax) 3337 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3338 ISD::FMAXNUM : ISD::FMAXIMUM; 3339 break; 3340 } 3341 break; 3342 case SPF_NABS: 3343 Negate = true; 3344 LLVM_FALLTHROUGH; 3345 case SPF_ABS: 3346 IsUnaryAbs = true; 3347 Opc = ISD::ABS; 3348 break; 3349 default: break; 3350 } 3351 3352 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3353 (TLI.isOperationLegalOrCustom(Opc, VT) || 3354 (UseScalarMinMax && 3355 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3356 // If the underlying comparison instruction is used by any other 3357 // instruction, the consumed instructions won't be destroyed, so it is 3358 // not profitable to convert to a min/max. 3359 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3360 OpCode = Opc; 3361 LHSVal = getValue(LHS); 3362 RHSVal = getValue(RHS); 3363 BaseOps.clear(); 3364 } 3365 3366 if (IsUnaryAbs) { 3367 OpCode = Opc; 3368 LHSVal = getValue(LHS); 3369 BaseOps.clear(); 3370 } 3371 } 3372 3373 if (IsUnaryAbs) { 3374 for (unsigned i = 0; i != NumValues; ++i) { 3375 SDLoc dl = getCurSDLoc(); 3376 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3377 Values[i] = 3378 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3379 if (Negate) 3380 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3381 Values[i]); 3382 } 3383 } else { 3384 for (unsigned i = 0; i != NumValues; ++i) { 3385 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3386 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3387 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3388 Values[i] = DAG.getNode( 3389 OpCode, getCurSDLoc(), 3390 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3391 } 3392 } 3393 3394 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3395 DAG.getVTList(ValueVTs), Values)); 3396 } 3397 3398 void SelectionDAGBuilder::visitTrunc(const User &I) { 3399 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3400 SDValue N = getValue(I.getOperand(0)); 3401 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3402 I.getType()); 3403 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3404 } 3405 3406 void SelectionDAGBuilder::visitZExt(const User &I) { 3407 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3408 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3409 SDValue N = getValue(I.getOperand(0)); 3410 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3411 I.getType()); 3412 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3413 } 3414 3415 void SelectionDAGBuilder::visitSExt(const User &I) { 3416 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3417 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3418 SDValue N = getValue(I.getOperand(0)); 3419 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3420 I.getType()); 3421 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3422 } 3423 3424 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3425 // FPTrunc is never a no-op cast, no need to check 3426 SDValue N = getValue(I.getOperand(0)); 3427 SDLoc dl = getCurSDLoc(); 3428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3429 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3430 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3431 DAG.getTargetConstant( 3432 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3433 } 3434 3435 void SelectionDAGBuilder::visitFPExt(const User &I) { 3436 // FPExt is never a no-op cast, no need to check 3437 SDValue N = getValue(I.getOperand(0)); 3438 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3439 I.getType()); 3440 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3441 } 3442 3443 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3444 // FPToUI is never a no-op cast, no need to check 3445 SDValue N = getValue(I.getOperand(0)); 3446 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3447 I.getType()); 3448 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3449 } 3450 3451 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3452 // FPToSI is never a no-op cast, no need to check 3453 SDValue N = getValue(I.getOperand(0)); 3454 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3455 I.getType()); 3456 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3457 } 3458 3459 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3460 // UIToFP is never a no-op cast, no need to check 3461 SDValue N = getValue(I.getOperand(0)); 3462 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3463 I.getType()); 3464 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3465 } 3466 3467 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3468 // SIToFP is never a no-op cast, no need to check 3469 SDValue N = getValue(I.getOperand(0)); 3470 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3471 I.getType()); 3472 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3473 } 3474 3475 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3476 // What to do depends on the size of the integer and the size of the pointer. 3477 // We can either truncate, zero extend, or no-op, accordingly. 3478 SDValue N = getValue(I.getOperand(0)); 3479 auto &TLI = DAG.getTargetLoweringInfo(); 3480 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3481 I.getType()); 3482 EVT PtrMemVT = 3483 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3484 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3485 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3486 setValue(&I, N); 3487 } 3488 3489 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3490 // What to do depends on the size of the integer and the size of the pointer. 3491 // We can either truncate, zero extend, or no-op, accordingly. 3492 SDValue N = getValue(I.getOperand(0)); 3493 auto &TLI = DAG.getTargetLoweringInfo(); 3494 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3495 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3496 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3497 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3498 setValue(&I, N); 3499 } 3500 3501 void SelectionDAGBuilder::visitBitCast(const User &I) { 3502 SDValue N = getValue(I.getOperand(0)); 3503 SDLoc dl = getCurSDLoc(); 3504 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3505 I.getType()); 3506 3507 // BitCast assures us that source and destination are the same size so this is 3508 // either a BITCAST or a no-op. 3509 if (DestVT != N.getValueType()) 3510 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3511 DestVT, N)); // convert types. 3512 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3513 // might fold any kind of constant expression to an integer constant and that 3514 // is not what we are looking for. Only recognize a bitcast of a genuine 3515 // constant integer as an opaque constant. 3516 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3517 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3518 /*isOpaque*/true)); 3519 else 3520 setValue(&I, N); // noop cast. 3521 } 3522 3523 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3525 const Value *SV = I.getOperand(0); 3526 SDValue N = getValue(SV); 3527 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3528 3529 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3530 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3531 3532 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3533 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3534 3535 setValue(&I, N); 3536 } 3537 3538 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3539 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3540 SDValue InVec = getValue(I.getOperand(0)); 3541 SDValue InVal = getValue(I.getOperand(1)); 3542 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3543 TLI.getVectorIdxTy(DAG.getDataLayout())); 3544 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3545 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3546 InVec, InVal, InIdx)); 3547 } 3548 3549 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3551 SDValue InVec = getValue(I.getOperand(0)); 3552 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3553 TLI.getVectorIdxTy(DAG.getDataLayout())); 3554 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3555 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3556 InVec, InIdx)); 3557 } 3558 3559 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3560 SDValue Src1 = getValue(I.getOperand(0)); 3561 SDValue Src2 = getValue(I.getOperand(1)); 3562 ArrayRef<int> Mask; 3563 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3564 Mask = SVI->getShuffleMask(); 3565 else 3566 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3567 SDLoc DL = getCurSDLoc(); 3568 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3569 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3570 EVT SrcVT = Src1.getValueType(); 3571 3572 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3573 VT.isScalableVector()) { 3574 // Canonical splat form of first element of first input vector. 3575 SDValue FirstElt = 3576 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3577 DAG.getVectorIdxConstant(0, DL)); 3578 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3579 return; 3580 } 3581 3582 // For now, we only handle splats for scalable vectors. 3583 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3584 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3585 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3586 3587 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3588 unsigned MaskNumElts = Mask.size(); 3589 3590 if (SrcNumElts == MaskNumElts) { 3591 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3592 return; 3593 } 3594 3595 // Normalize the shuffle vector since mask and vector length don't match. 3596 if (SrcNumElts < MaskNumElts) { 3597 // Mask is longer than the source vectors. We can use concatenate vector to 3598 // make the mask and vectors lengths match. 3599 3600 if (MaskNumElts % SrcNumElts == 0) { 3601 // Mask length is a multiple of the source vector length. 3602 // Check if the shuffle is some kind of concatenation of the input 3603 // vectors. 3604 unsigned NumConcat = MaskNumElts / SrcNumElts; 3605 bool IsConcat = true; 3606 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3607 for (unsigned i = 0; i != MaskNumElts; ++i) { 3608 int Idx = Mask[i]; 3609 if (Idx < 0) 3610 continue; 3611 // Ensure the indices in each SrcVT sized piece are sequential and that 3612 // the same source is used for the whole piece. 3613 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3614 (ConcatSrcs[i / SrcNumElts] >= 0 && 3615 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3616 IsConcat = false; 3617 break; 3618 } 3619 // Remember which source this index came from. 3620 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3621 } 3622 3623 // The shuffle is concatenating multiple vectors together. Just emit 3624 // a CONCAT_VECTORS operation. 3625 if (IsConcat) { 3626 SmallVector<SDValue, 8> ConcatOps; 3627 for (auto Src : ConcatSrcs) { 3628 if (Src < 0) 3629 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3630 else if (Src == 0) 3631 ConcatOps.push_back(Src1); 3632 else 3633 ConcatOps.push_back(Src2); 3634 } 3635 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3636 return; 3637 } 3638 } 3639 3640 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3641 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3642 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3643 PaddedMaskNumElts); 3644 3645 // Pad both vectors with undefs to make them the same length as the mask. 3646 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3647 3648 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3649 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3650 MOps1[0] = Src1; 3651 MOps2[0] = Src2; 3652 3653 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3654 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3655 3656 // Readjust mask for new input vector length. 3657 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3658 for (unsigned i = 0; i != MaskNumElts; ++i) { 3659 int Idx = Mask[i]; 3660 if (Idx >= (int)SrcNumElts) 3661 Idx -= SrcNumElts - PaddedMaskNumElts; 3662 MappedOps[i] = Idx; 3663 } 3664 3665 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3666 3667 // If the concatenated vector was padded, extract a subvector with the 3668 // correct number of elements. 3669 if (MaskNumElts != PaddedMaskNumElts) 3670 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3671 DAG.getVectorIdxConstant(0, DL)); 3672 3673 setValue(&I, Result); 3674 return; 3675 } 3676 3677 if (SrcNumElts > MaskNumElts) { 3678 // Analyze the access pattern of the vector to see if we can extract 3679 // two subvectors and do the shuffle. 3680 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3681 bool CanExtract = true; 3682 for (int Idx : Mask) { 3683 unsigned Input = 0; 3684 if (Idx < 0) 3685 continue; 3686 3687 if (Idx >= (int)SrcNumElts) { 3688 Input = 1; 3689 Idx -= SrcNumElts; 3690 } 3691 3692 // If all the indices come from the same MaskNumElts sized portion of 3693 // the sources we can use extract. Also make sure the extract wouldn't 3694 // extract past the end of the source. 3695 int NewStartIdx = alignDown(Idx, MaskNumElts); 3696 if (NewStartIdx + MaskNumElts > SrcNumElts || 3697 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3698 CanExtract = false; 3699 // Make sure we always update StartIdx as we use it to track if all 3700 // elements are undef. 3701 StartIdx[Input] = NewStartIdx; 3702 } 3703 3704 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3705 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3706 return; 3707 } 3708 if (CanExtract) { 3709 // Extract appropriate subvector and generate a vector shuffle 3710 for (unsigned Input = 0; Input < 2; ++Input) { 3711 SDValue &Src = Input == 0 ? Src1 : Src2; 3712 if (StartIdx[Input] < 0) 3713 Src = DAG.getUNDEF(VT); 3714 else { 3715 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3716 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3717 } 3718 } 3719 3720 // Calculate new mask. 3721 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3722 for (int &Idx : MappedOps) { 3723 if (Idx >= (int)SrcNumElts) 3724 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3725 else if (Idx >= 0) 3726 Idx -= StartIdx[0]; 3727 } 3728 3729 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3730 return; 3731 } 3732 } 3733 3734 // We can't use either concat vectors or extract subvectors so fall back to 3735 // replacing the shuffle with extract and build vector. 3736 // to insert and build vector. 3737 EVT EltVT = VT.getVectorElementType(); 3738 SmallVector<SDValue,8> Ops; 3739 for (int Idx : Mask) { 3740 SDValue Res; 3741 3742 if (Idx < 0) { 3743 Res = DAG.getUNDEF(EltVT); 3744 } else { 3745 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3746 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3747 3748 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3749 DAG.getVectorIdxConstant(Idx, DL)); 3750 } 3751 3752 Ops.push_back(Res); 3753 } 3754 3755 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3756 } 3757 3758 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3759 ArrayRef<unsigned> Indices; 3760 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3761 Indices = IV->getIndices(); 3762 else 3763 Indices = cast<ConstantExpr>(&I)->getIndices(); 3764 3765 const Value *Op0 = I.getOperand(0); 3766 const Value *Op1 = I.getOperand(1); 3767 Type *AggTy = I.getType(); 3768 Type *ValTy = Op1->getType(); 3769 bool IntoUndef = isa<UndefValue>(Op0); 3770 bool FromUndef = isa<UndefValue>(Op1); 3771 3772 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3773 3774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3775 SmallVector<EVT, 4> AggValueVTs; 3776 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3777 SmallVector<EVT, 4> ValValueVTs; 3778 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3779 3780 unsigned NumAggValues = AggValueVTs.size(); 3781 unsigned NumValValues = ValValueVTs.size(); 3782 SmallVector<SDValue, 4> Values(NumAggValues); 3783 3784 // Ignore an insertvalue that produces an empty object 3785 if (!NumAggValues) { 3786 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3787 return; 3788 } 3789 3790 SDValue Agg = getValue(Op0); 3791 unsigned i = 0; 3792 // Copy the beginning value(s) from the original aggregate. 3793 for (; i != LinearIndex; ++i) 3794 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3795 SDValue(Agg.getNode(), Agg.getResNo() + i); 3796 // Copy values from the inserted value(s). 3797 if (NumValValues) { 3798 SDValue Val = getValue(Op1); 3799 for (; i != LinearIndex + NumValValues; ++i) 3800 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3801 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3802 } 3803 // Copy remaining value(s) from the original aggregate. 3804 for (; i != NumAggValues; ++i) 3805 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3806 SDValue(Agg.getNode(), Agg.getResNo() + i); 3807 3808 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3809 DAG.getVTList(AggValueVTs), Values)); 3810 } 3811 3812 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3813 ArrayRef<unsigned> Indices; 3814 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3815 Indices = EV->getIndices(); 3816 else 3817 Indices = cast<ConstantExpr>(&I)->getIndices(); 3818 3819 const Value *Op0 = I.getOperand(0); 3820 Type *AggTy = Op0->getType(); 3821 Type *ValTy = I.getType(); 3822 bool OutOfUndef = isa<UndefValue>(Op0); 3823 3824 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3825 3826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3827 SmallVector<EVT, 4> ValValueVTs; 3828 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3829 3830 unsigned NumValValues = ValValueVTs.size(); 3831 3832 // Ignore a extractvalue that produces an empty object 3833 if (!NumValValues) { 3834 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3835 return; 3836 } 3837 3838 SmallVector<SDValue, 4> Values(NumValValues); 3839 3840 SDValue Agg = getValue(Op0); 3841 // Copy out the selected value(s). 3842 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3843 Values[i - LinearIndex] = 3844 OutOfUndef ? 3845 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3846 SDValue(Agg.getNode(), Agg.getResNo() + i); 3847 3848 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3849 DAG.getVTList(ValValueVTs), Values)); 3850 } 3851 3852 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3853 Value *Op0 = I.getOperand(0); 3854 // Note that the pointer operand may be a vector of pointers. Take the scalar 3855 // element which holds a pointer. 3856 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3857 SDValue N = getValue(Op0); 3858 SDLoc dl = getCurSDLoc(); 3859 auto &TLI = DAG.getTargetLoweringInfo(); 3860 3861 // Normalize Vector GEP - all scalar operands should be converted to the 3862 // splat vector. 3863 bool IsVectorGEP = I.getType()->isVectorTy(); 3864 ElementCount VectorElementCount = 3865 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3866 : ElementCount::getFixed(0); 3867 3868 if (IsVectorGEP && !N.getValueType().isVector()) { 3869 LLVMContext &Context = *DAG.getContext(); 3870 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3871 if (VectorElementCount.isScalable()) 3872 N = DAG.getSplatVector(VT, dl, N); 3873 else 3874 N = DAG.getSplatBuildVector(VT, dl, N); 3875 } 3876 3877 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3878 GTI != E; ++GTI) { 3879 const Value *Idx = GTI.getOperand(); 3880 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3881 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3882 if (Field) { 3883 // N = N + Offset 3884 uint64_t Offset = 3885 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3886 3887 // In an inbounds GEP with an offset that is nonnegative even when 3888 // interpreted as signed, assume there is no unsigned overflow. 3889 SDNodeFlags Flags; 3890 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3891 Flags.setNoUnsignedWrap(true); 3892 3893 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3894 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3895 } 3896 } else { 3897 // IdxSize is the width of the arithmetic according to IR semantics. 3898 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3899 // (and fix up the result later). 3900 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3901 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3902 TypeSize ElementSize = 3903 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3904 // We intentionally mask away the high bits here; ElementSize may not 3905 // fit in IdxTy. 3906 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3907 bool ElementScalable = ElementSize.isScalable(); 3908 3909 // If this is a scalar constant or a splat vector of constants, 3910 // handle it quickly. 3911 const auto *C = dyn_cast<Constant>(Idx); 3912 if (C && isa<VectorType>(C->getType())) 3913 C = C->getSplatValue(); 3914 3915 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3916 if (CI && CI->isZero()) 3917 continue; 3918 if (CI && !ElementScalable) { 3919 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3920 LLVMContext &Context = *DAG.getContext(); 3921 SDValue OffsVal; 3922 if (IsVectorGEP) 3923 OffsVal = DAG.getConstant( 3924 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3925 else 3926 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3927 3928 // In an inbounds GEP with an offset that is nonnegative even when 3929 // interpreted as signed, assume there is no unsigned overflow. 3930 SDNodeFlags Flags; 3931 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3932 Flags.setNoUnsignedWrap(true); 3933 3934 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3935 3936 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3937 continue; 3938 } 3939 3940 // N = N + Idx * ElementMul; 3941 SDValue IdxN = getValue(Idx); 3942 3943 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3944 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3945 VectorElementCount); 3946 if (VectorElementCount.isScalable()) 3947 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3948 else 3949 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3950 } 3951 3952 // If the index is smaller or larger than intptr_t, truncate or extend 3953 // it. 3954 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3955 3956 if (ElementScalable) { 3957 EVT VScaleTy = N.getValueType().getScalarType(); 3958 SDValue VScale = DAG.getNode( 3959 ISD::VSCALE, dl, VScaleTy, 3960 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3961 if (IsVectorGEP) 3962 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3963 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3964 } else { 3965 // If this is a multiply by a power of two, turn it into a shl 3966 // immediately. This is a very common case. 3967 if (ElementMul != 1) { 3968 if (ElementMul.isPowerOf2()) { 3969 unsigned Amt = ElementMul.logBase2(); 3970 IdxN = DAG.getNode(ISD::SHL, dl, 3971 N.getValueType(), IdxN, 3972 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3973 } else { 3974 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3975 IdxN.getValueType()); 3976 IdxN = DAG.getNode(ISD::MUL, dl, 3977 N.getValueType(), IdxN, Scale); 3978 } 3979 } 3980 } 3981 3982 N = DAG.getNode(ISD::ADD, dl, 3983 N.getValueType(), N, IdxN); 3984 } 3985 } 3986 3987 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3988 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3989 if (IsVectorGEP) { 3990 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3991 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3992 } 3993 3994 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3995 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3996 3997 setValue(&I, N); 3998 } 3999 4000 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4001 // If this is a fixed sized alloca in the entry block of the function, 4002 // allocate it statically on the stack. 4003 if (FuncInfo.StaticAllocaMap.count(&I)) 4004 return; // getValue will auto-populate this. 4005 4006 SDLoc dl = getCurSDLoc(); 4007 Type *Ty = I.getAllocatedType(); 4008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4009 auto &DL = DAG.getDataLayout(); 4010 uint64_t TySize = DL.getTypeAllocSize(Ty); 4011 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4012 4013 SDValue AllocSize = getValue(I.getArraySize()); 4014 4015 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4016 if (AllocSize.getValueType() != IntPtr) 4017 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4018 4019 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 4020 AllocSize, 4021 DAG.getConstant(TySize, dl, IntPtr)); 4022 4023 // Handle alignment. If the requested alignment is less than or equal to 4024 // the stack alignment, ignore it. If the size is greater than or equal to 4025 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4026 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4027 if (*Alignment <= StackAlign) 4028 Alignment = None; 4029 4030 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4031 // Round the size of the allocation up to the stack alignment size 4032 // by add SA-1 to the size. This doesn't overflow because we're computing 4033 // an address inside an alloca. 4034 SDNodeFlags Flags; 4035 Flags.setNoUnsignedWrap(true); 4036 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4037 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4038 4039 // Mask out the low bits for alignment purposes. 4040 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4041 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4042 4043 SDValue Ops[] = { 4044 getRoot(), AllocSize, 4045 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4046 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4047 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4048 setValue(&I, DSA); 4049 DAG.setRoot(DSA.getValue(1)); 4050 4051 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4052 } 4053 4054 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4055 if (I.isAtomic()) 4056 return visitAtomicLoad(I); 4057 4058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4059 const Value *SV = I.getOperand(0); 4060 if (TLI.supportSwiftError()) { 4061 // Swifterror values can come from either a function parameter with 4062 // swifterror attribute or an alloca with swifterror attribute. 4063 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4064 if (Arg->hasSwiftErrorAttr()) 4065 return visitLoadFromSwiftError(I); 4066 } 4067 4068 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4069 if (Alloca->isSwiftError()) 4070 return visitLoadFromSwiftError(I); 4071 } 4072 } 4073 4074 SDValue Ptr = getValue(SV); 4075 4076 Type *Ty = I.getType(); 4077 Align Alignment = I.getAlign(); 4078 4079 AAMDNodes AAInfo = I.getAAMetadata(); 4080 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4081 4082 SmallVector<EVT, 4> ValueVTs, MemVTs; 4083 SmallVector<uint64_t, 4> Offsets; 4084 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4085 unsigned NumValues = ValueVTs.size(); 4086 if (NumValues == 0) 4087 return; 4088 4089 bool isVolatile = I.isVolatile(); 4090 4091 SDValue Root; 4092 bool ConstantMemory = false; 4093 if (isVolatile) 4094 // Serialize volatile loads with other side effects. 4095 Root = getRoot(); 4096 else if (NumValues > MaxParallelChains) 4097 Root = getMemoryRoot(); 4098 else if (AA && 4099 AA->pointsToConstantMemory(MemoryLocation( 4100 SV, 4101 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4102 AAInfo))) { 4103 // Do not serialize (non-volatile) loads of constant memory with anything. 4104 Root = DAG.getEntryNode(); 4105 ConstantMemory = true; 4106 } else { 4107 // Do not serialize non-volatile loads against each other. 4108 Root = DAG.getRoot(); 4109 } 4110 4111 SDLoc dl = getCurSDLoc(); 4112 4113 if (isVolatile) 4114 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4115 4116 // An aggregate load cannot wrap around the address space, so offsets to its 4117 // parts don't wrap either. 4118 SDNodeFlags Flags; 4119 Flags.setNoUnsignedWrap(true); 4120 4121 SmallVector<SDValue, 4> Values(NumValues); 4122 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4123 EVT PtrVT = Ptr.getValueType(); 4124 4125 MachineMemOperand::Flags MMOFlags 4126 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4127 4128 unsigned ChainI = 0; 4129 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4130 // Serializing loads here may result in excessive register pressure, and 4131 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4132 // could recover a bit by hoisting nodes upward in the chain by recognizing 4133 // they are side-effect free or do not alias. The optimizer should really 4134 // avoid this case by converting large object/array copies to llvm.memcpy 4135 // (MaxParallelChains should always remain as failsafe). 4136 if (ChainI == MaxParallelChains) { 4137 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4138 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4139 makeArrayRef(Chains.data(), ChainI)); 4140 Root = Chain; 4141 ChainI = 0; 4142 } 4143 SDValue A = DAG.getNode(ISD::ADD, dl, 4144 PtrVT, Ptr, 4145 DAG.getConstant(Offsets[i], dl, PtrVT), 4146 Flags); 4147 4148 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4149 MachinePointerInfo(SV, Offsets[i]), Alignment, 4150 MMOFlags, AAInfo, Ranges); 4151 Chains[ChainI] = L.getValue(1); 4152 4153 if (MemVTs[i] != ValueVTs[i]) 4154 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4155 4156 Values[i] = L; 4157 } 4158 4159 if (!ConstantMemory) { 4160 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4161 makeArrayRef(Chains.data(), ChainI)); 4162 if (isVolatile) 4163 DAG.setRoot(Chain); 4164 else 4165 PendingLoads.push_back(Chain); 4166 } 4167 4168 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4169 DAG.getVTList(ValueVTs), Values)); 4170 } 4171 4172 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4173 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4174 "call visitStoreToSwiftError when backend supports swifterror"); 4175 4176 SmallVector<EVT, 4> ValueVTs; 4177 SmallVector<uint64_t, 4> Offsets; 4178 const Value *SrcV = I.getOperand(0); 4179 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4180 SrcV->getType(), ValueVTs, &Offsets); 4181 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4182 "expect a single EVT for swifterror"); 4183 4184 SDValue Src = getValue(SrcV); 4185 // Create a virtual register, then update the virtual register. 4186 Register VReg = 4187 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4188 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4189 // Chain can be getRoot or getControlRoot. 4190 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4191 SDValue(Src.getNode(), Src.getResNo())); 4192 DAG.setRoot(CopyNode); 4193 } 4194 4195 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4196 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4197 "call visitLoadFromSwiftError when backend supports swifterror"); 4198 4199 assert(!I.isVolatile() && 4200 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4201 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4202 "Support volatile, non temporal, invariant for load_from_swift_error"); 4203 4204 const Value *SV = I.getOperand(0); 4205 Type *Ty = I.getType(); 4206 assert( 4207 (!AA || 4208 !AA->pointsToConstantMemory(MemoryLocation( 4209 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4210 I.getAAMetadata()))) && 4211 "load_from_swift_error should not be constant memory"); 4212 4213 SmallVector<EVT, 4> ValueVTs; 4214 SmallVector<uint64_t, 4> Offsets; 4215 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4216 ValueVTs, &Offsets); 4217 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4218 "expect a single EVT for swifterror"); 4219 4220 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4221 SDValue L = DAG.getCopyFromReg( 4222 getRoot(), getCurSDLoc(), 4223 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4224 4225 setValue(&I, L); 4226 } 4227 4228 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4229 if (I.isAtomic()) 4230 return visitAtomicStore(I); 4231 4232 const Value *SrcV = I.getOperand(0); 4233 const Value *PtrV = I.getOperand(1); 4234 4235 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4236 if (TLI.supportSwiftError()) { 4237 // Swifterror values can come from either a function parameter with 4238 // swifterror attribute or an alloca with swifterror attribute. 4239 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4240 if (Arg->hasSwiftErrorAttr()) 4241 return visitStoreToSwiftError(I); 4242 } 4243 4244 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4245 if (Alloca->isSwiftError()) 4246 return visitStoreToSwiftError(I); 4247 } 4248 } 4249 4250 SmallVector<EVT, 4> ValueVTs, MemVTs; 4251 SmallVector<uint64_t, 4> Offsets; 4252 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4253 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4254 unsigned NumValues = ValueVTs.size(); 4255 if (NumValues == 0) 4256 return; 4257 4258 // Get the lowered operands. Note that we do this after 4259 // checking if NumResults is zero, because with zero results 4260 // the operands won't have values in the map. 4261 SDValue Src = getValue(SrcV); 4262 SDValue Ptr = getValue(PtrV); 4263 4264 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4265 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4266 SDLoc dl = getCurSDLoc(); 4267 Align Alignment = I.getAlign(); 4268 AAMDNodes AAInfo = I.getAAMetadata(); 4269 4270 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4271 4272 // An aggregate load cannot wrap around the address space, so offsets to its 4273 // parts don't wrap either. 4274 SDNodeFlags Flags; 4275 Flags.setNoUnsignedWrap(true); 4276 4277 unsigned ChainI = 0; 4278 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4279 // See visitLoad comments. 4280 if (ChainI == MaxParallelChains) { 4281 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4282 makeArrayRef(Chains.data(), ChainI)); 4283 Root = Chain; 4284 ChainI = 0; 4285 } 4286 SDValue Add = 4287 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4288 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4289 if (MemVTs[i] != ValueVTs[i]) 4290 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4291 SDValue St = 4292 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4293 Alignment, MMOFlags, AAInfo); 4294 Chains[ChainI] = St; 4295 } 4296 4297 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4298 makeArrayRef(Chains.data(), ChainI)); 4299 DAG.setRoot(StoreNode); 4300 } 4301 4302 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4303 bool IsCompressing) { 4304 SDLoc sdl = getCurSDLoc(); 4305 4306 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4307 MaybeAlign &Alignment) { 4308 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4309 Src0 = I.getArgOperand(0); 4310 Ptr = I.getArgOperand(1); 4311 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4312 Mask = I.getArgOperand(3); 4313 }; 4314 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4315 MaybeAlign &Alignment) { 4316 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4317 Src0 = I.getArgOperand(0); 4318 Ptr = I.getArgOperand(1); 4319 Mask = I.getArgOperand(2); 4320 Alignment = None; 4321 }; 4322 4323 Value *PtrOperand, *MaskOperand, *Src0Operand; 4324 MaybeAlign Alignment; 4325 if (IsCompressing) 4326 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4327 else 4328 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4329 4330 SDValue Ptr = getValue(PtrOperand); 4331 SDValue Src0 = getValue(Src0Operand); 4332 SDValue Mask = getValue(MaskOperand); 4333 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4334 4335 EVT VT = Src0.getValueType(); 4336 if (!Alignment) 4337 Alignment = DAG.getEVTAlign(VT); 4338 4339 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4340 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4341 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4342 SDValue StoreNode = 4343 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4344 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4345 DAG.setRoot(StoreNode); 4346 setValue(&I, StoreNode); 4347 } 4348 4349 // Get a uniform base for the Gather/Scatter intrinsic. 4350 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4351 // We try to represent it as a base pointer + vector of indices. 4352 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4353 // The first operand of the GEP may be a single pointer or a vector of pointers 4354 // Example: 4355 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4356 // or 4357 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4358 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4359 // 4360 // When the first GEP operand is a single pointer - it is the uniform base we 4361 // are looking for. If first operand of the GEP is a splat vector - we 4362 // extract the splat value and use it as a uniform base. 4363 // In all other cases the function returns 'false'. 4364 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4365 ISD::MemIndexType &IndexType, SDValue &Scale, 4366 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4367 SelectionDAG& DAG = SDB->DAG; 4368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4369 const DataLayout &DL = DAG.getDataLayout(); 4370 4371 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4372 4373 // Handle splat constant pointer. 4374 if (auto *C = dyn_cast<Constant>(Ptr)) { 4375 C = C->getSplatValue(); 4376 if (!C) 4377 return false; 4378 4379 Base = SDB->getValue(C); 4380 4381 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4382 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4383 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4384 IndexType = ISD::SIGNED_SCALED; 4385 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4386 return true; 4387 } 4388 4389 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4390 if (!GEP || GEP->getParent() != CurBB) 4391 return false; 4392 4393 if (GEP->getNumOperands() != 2) 4394 return false; 4395 4396 const Value *BasePtr = GEP->getPointerOperand(); 4397 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4398 4399 // Make sure the base is scalar and the index is a vector. 4400 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4401 return false; 4402 4403 Base = SDB->getValue(BasePtr); 4404 Index = SDB->getValue(IndexVal); 4405 IndexType = ISD::SIGNED_SCALED; 4406 Scale = DAG.getTargetConstant( 4407 DL.getTypeAllocSize(GEP->getResultElementType()), 4408 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4409 return true; 4410 } 4411 4412 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4413 SDLoc sdl = getCurSDLoc(); 4414 4415 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4416 const Value *Ptr = I.getArgOperand(1); 4417 SDValue Src0 = getValue(I.getArgOperand(0)); 4418 SDValue Mask = getValue(I.getArgOperand(3)); 4419 EVT VT = Src0.getValueType(); 4420 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4421 ->getMaybeAlignValue() 4422 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4423 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4424 4425 SDValue Base; 4426 SDValue Index; 4427 ISD::MemIndexType IndexType; 4428 SDValue Scale; 4429 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4430 I.getParent()); 4431 4432 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4433 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4434 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4435 // TODO: Make MachineMemOperands aware of scalable 4436 // vectors. 4437 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4438 if (!UniformBase) { 4439 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4440 Index = getValue(Ptr); 4441 IndexType = ISD::SIGNED_UNSCALED; 4442 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4443 } 4444 4445 EVT IdxVT = Index.getValueType(); 4446 EVT EltTy = IdxVT.getVectorElementType(); 4447 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4448 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4449 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4450 } 4451 4452 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4453 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4454 Ops, MMO, IndexType, false); 4455 DAG.setRoot(Scatter); 4456 setValue(&I, Scatter); 4457 } 4458 4459 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4460 SDLoc sdl = getCurSDLoc(); 4461 4462 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4463 MaybeAlign &Alignment) { 4464 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4465 Ptr = I.getArgOperand(0); 4466 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4467 Mask = I.getArgOperand(2); 4468 Src0 = I.getArgOperand(3); 4469 }; 4470 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4471 MaybeAlign &Alignment) { 4472 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4473 Ptr = I.getArgOperand(0); 4474 Alignment = None; 4475 Mask = I.getArgOperand(1); 4476 Src0 = I.getArgOperand(2); 4477 }; 4478 4479 Value *PtrOperand, *MaskOperand, *Src0Operand; 4480 MaybeAlign Alignment; 4481 if (IsExpanding) 4482 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4483 else 4484 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4485 4486 SDValue Ptr = getValue(PtrOperand); 4487 SDValue Src0 = getValue(Src0Operand); 4488 SDValue Mask = getValue(MaskOperand); 4489 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4490 4491 EVT VT = Src0.getValueType(); 4492 if (!Alignment) 4493 Alignment = DAG.getEVTAlign(VT); 4494 4495 AAMDNodes AAInfo = I.getAAMetadata(); 4496 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4497 4498 // Do not serialize masked loads of constant memory with anything. 4499 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4500 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4501 4502 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4503 4504 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4505 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4506 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4507 4508 SDValue Load = 4509 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4510 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4511 if (AddToChain) 4512 PendingLoads.push_back(Load.getValue(1)); 4513 setValue(&I, Load); 4514 } 4515 4516 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4517 SDLoc sdl = getCurSDLoc(); 4518 4519 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4520 const Value *Ptr = I.getArgOperand(0); 4521 SDValue Src0 = getValue(I.getArgOperand(3)); 4522 SDValue Mask = getValue(I.getArgOperand(2)); 4523 4524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4525 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4526 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4527 ->getMaybeAlignValue() 4528 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4529 4530 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4531 4532 SDValue Root = DAG.getRoot(); 4533 SDValue Base; 4534 SDValue Index; 4535 ISD::MemIndexType IndexType; 4536 SDValue Scale; 4537 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4538 I.getParent()); 4539 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4540 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4541 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4542 // TODO: Make MachineMemOperands aware of scalable 4543 // vectors. 4544 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4545 4546 if (!UniformBase) { 4547 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4548 Index = getValue(Ptr); 4549 IndexType = ISD::SIGNED_UNSCALED; 4550 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4551 } 4552 4553 EVT IdxVT = Index.getValueType(); 4554 EVT EltTy = IdxVT.getVectorElementType(); 4555 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4556 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4557 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4558 } 4559 4560 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4561 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4562 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4563 4564 PendingLoads.push_back(Gather.getValue(1)); 4565 setValue(&I, Gather); 4566 } 4567 4568 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4569 SDLoc dl = getCurSDLoc(); 4570 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4571 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4572 SyncScope::ID SSID = I.getSyncScopeID(); 4573 4574 SDValue InChain = getRoot(); 4575 4576 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4577 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4578 4579 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4580 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4581 4582 MachineFunction &MF = DAG.getMachineFunction(); 4583 MachineMemOperand *MMO = MF.getMachineMemOperand( 4584 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4585 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4586 FailureOrdering); 4587 4588 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4589 dl, MemVT, VTs, InChain, 4590 getValue(I.getPointerOperand()), 4591 getValue(I.getCompareOperand()), 4592 getValue(I.getNewValOperand()), MMO); 4593 4594 SDValue OutChain = L.getValue(2); 4595 4596 setValue(&I, L); 4597 DAG.setRoot(OutChain); 4598 } 4599 4600 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4601 SDLoc dl = getCurSDLoc(); 4602 ISD::NodeType NT; 4603 switch (I.getOperation()) { 4604 default: llvm_unreachable("Unknown atomicrmw operation"); 4605 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4606 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4607 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4608 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4609 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4610 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4611 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4612 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4613 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4614 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4615 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4616 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4617 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4618 } 4619 AtomicOrdering Ordering = I.getOrdering(); 4620 SyncScope::ID SSID = I.getSyncScopeID(); 4621 4622 SDValue InChain = getRoot(); 4623 4624 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4625 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4626 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4627 4628 MachineFunction &MF = DAG.getMachineFunction(); 4629 MachineMemOperand *MMO = MF.getMachineMemOperand( 4630 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4631 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4632 4633 SDValue L = 4634 DAG.getAtomic(NT, dl, MemVT, InChain, 4635 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4636 MMO); 4637 4638 SDValue OutChain = L.getValue(1); 4639 4640 setValue(&I, L); 4641 DAG.setRoot(OutChain); 4642 } 4643 4644 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4645 SDLoc dl = getCurSDLoc(); 4646 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4647 SDValue Ops[3]; 4648 Ops[0] = getRoot(); 4649 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4650 TLI.getFenceOperandTy(DAG.getDataLayout())); 4651 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4652 TLI.getFenceOperandTy(DAG.getDataLayout())); 4653 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4654 } 4655 4656 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4657 SDLoc dl = getCurSDLoc(); 4658 AtomicOrdering Order = I.getOrdering(); 4659 SyncScope::ID SSID = I.getSyncScopeID(); 4660 4661 SDValue InChain = getRoot(); 4662 4663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4664 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4665 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4666 4667 if (!TLI.supportsUnalignedAtomics() && 4668 I.getAlignment() < MemVT.getSizeInBits() / 8) 4669 report_fatal_error("Cannot generate unaligned atomic load"); 4670 4671 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4672 4673 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4674 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4675 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4676 4677 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4678 4679 SDValue Ptr = getValue(I.getPointerOperand()); 4680 4681 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4682 // TODO: Once this is better exercised by tests, it should be merged with 4683 // the normal path for loads to prevent future divergence. 4684 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4685 if (MemVT != VT) 4686 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4687 4688 setValue(&I, L); 4689 SDValue OutChain = L.getValue(1); 4690 if (!I.isUnordered()) 4691 DAG.setRoot(OutChain); 4692 else 4693 PendingLoads.push_back(OutChain); 4694 return; 4695 } 4696 4697 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4698 Ptr, MMO); 4699 4700 SDValue OutChain = L.getValue(1); 4701 if (MemVT != VT) 4702 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4703 4704 setValue(&I, L); 4705 DAG.setRoot(OutChain); 4706 } 4707 4708 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4709 SDLoc dl = getCurSDLoc(); 4710 4711 AtomicOrdering Ordering = I.getOrdering(); 4712 SyncScope::ID SSID = I.getSyncScopeID(); 4713 4714 SDValue InChain = getRoot(); 4715 4716 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4717 EVT MemVT = 4718 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4719 4720 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4721 report_fatal_error("Cannot generate unaligned atomic store"); 4722 4723 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4724 4725 MachineFunction &MF = DAG.getMachineFunction(); 4726 MachineMemOperand *MMO = MF.getMachineMemOperand( 4727 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4728 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4729 4730 SDValue Val = getValue(I.getValueOperand()); 4731 if (Val.getValueType() != MemVT) 4732 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4733 SDValue Ptr = getValue(I.getPointerOperand()); 4734 4735 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4736 // TODO: Once this is better exercised by tests, it should be merged with 4737 // the normal path for stores to prevent future divergence. 4738 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4739 DAG.setRoot(S); 4740 return; 4741 } 4742 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4743 Ptr, Val, MMO); 4744 4745 4746 DAG.setRoot(OutChain); 4747 } 4748 4749 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4750 /// node. 4751 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4752 unsigned Intrinsic) { 4753 // Ignore the callsite's attributes. A specific call site may be marked with 4754 // readnone, but the lowering code will expect the chain based on the 4755 // definition. 4756 const Function *F = I.getCalledFunction(); 4757 bool HasChain = !F->doesNotAccessMemory(); 4758 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4759 4760 // Build the operand list. 4761 SmallVector<SDValue, 8> Ops; 4762 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4763 if (OnlyLoad) { 4764 // We don't need to serialize loads against other loads. 4765 Ops.push_back(DAG.getRoot()); 4766 } else { 4767 Ops.push_back(getRoot()); 4768 } 4769 } 4770 4771 // Info is set by getTgtMemInstrinsic 4772 TargetLowering::IntrinsicInfo Info; 4773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4774 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4775 DAG.getMachineFunction(), 4776 Intrinsic); 4777 4778 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4779 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4780 Info.opc == ISD::INTRINSIC_W_CHAIN) 4781 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4782 TLI.getPointerTy(DAG.getDataLayout()))); 4783 4784 // Add all operands of the call to the operand list. 4785 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4786 const Value *Arg = I.getArgOperand(i); 4787 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4788 Ops.push_back(getValue(Arg)); 4789 continue; 4790 } 4791 4792 // Use TargetConstant instead of a regular constant for immarg. 4793 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4794 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4795 assert(CI->getBitWidth() <= 64 && 4796 "large intrinsic immediates not handled"); 4797 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4798 } else { 4799 Ops.push_back( 4800 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4801 } 4802 } 4803 4804 SmallVector<EVT, 4> ValueVTs; 4805 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4806 4807 if (HasChain) 4808 ValueVTs.push_back(MVT::Other); 4809 4810 SDVTList VTs = DAG.getVTList(ValueVTs); 4811 4812 // Propagate fast-math-flags from IR to node(s). 4813 SDNodeFlags Flags; 4814 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4815 Flags.copyFMF(*FPMO); 4816 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4817 4818 // Create the node. 4819 SDValue Result; 4820 if (IsTgtIntrinsic) { 4821 // This is target intrinsic that touches memory 4822 Result = 4823 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4824 MachinePointerInfo(Info.ptrVal, Info.offset), 4825 Info.align, Info.flags, Info.size, 4826 I.getAAMetadata()); 4827 } else if (!HasChain) { 4828 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4829 } else if (!I.getType()->isVoidTy()) { 4830 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4831 } else { 4832 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4833 } 4834 4835 if (HasChain) { 4836 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4837 if (OnlyLoad) 4838 PendingLoads.push_back(Chain); 4839 else 4840 DAG.setRoot(Chain); 4841 } 4842 4843 if (!I.getType()->isVoidTy()) { 4844 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4845 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4846 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4847 } else 4848 Result = lowerRangeToAssertZExt(DAG, I, Result); 4849 4850 MaybeAlign Alignment = I.getRetAlign(); 4851 if (!Alignment) 4852 Alignment = F->getAttributes().getRetAlignment(); 4853 // Insert `assertalign` node if there's an alignment. 4854 if (InsertAssertAlign && Alignment) { 4855 Result = 4856 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4857 } 4858 4859 setValue(&I, Result); 4860 } 4861 } 4862 4863 /// GetSignificand - Get the significand and build it into a floating-point 4864 /// number with exponent of 1: 4865 /// 4866 /// Op = (Op & 0x007fffff) | 0x3f800000; 4867 /// 4868 /// where Op is the hexadecimal representation of floating point value. 4869 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4870 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4871 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4872 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4873 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4874 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4875 } 4876 4877 /// GetExponent - Get the exponent: 4878 /// 4879 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4880 /// 4881 /// where Op is the hexadecimal representation of floating point value. 4882 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4883 const TargetLowering &TLI, const SDLoc &dl) { 4884 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4885 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4886 SDValue t1 = DAG.getNode( 4887 ISD::SRL, dl, MVT::i32, t0, 4888 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4889 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4890 DAG.getConstant(127, dl, MVT::i32)); 4891 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4892 } 4893 4894 /// getF32Constant - Get 32-bit floating point constant. 4895 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4896 const SDLoc &dl) { 4897 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4898 MVT::f32); 4899 } 4900 4901 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4902 SelectionDAG &DAG) { 4903 // TODO: What fast-math-flags should be set on the floating-point nodes? 4904 4905 // IntegerPartOfX = ((int32_t)(t0); 4906 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4907 4908 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4909 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4910 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4911 4912 // IntegerPartOfX <<= 23; 4913 IntegerPartOfX = DAG.getNode( 4914 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4915 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4916 DAG.getDataLayout()))); 4917 4918 SDValue TwoToFractionalPartOfX; 4919 if (LimitFloatPrecision <= 6) { 4920 // For floating-point precision of 6: 4921 // 4922 // TwoToFractionalPartOfX = 4923 // 0.997535578f + 4924 // (0.735607626f + 0.252464424f * x) * x; 4925 // 4926 // error 0.0144103317, which is 6 bits 4927 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4928 getF32Constant(DAG, 0x3e814304, dl)); 4929 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4930 getF32Constant(DAG, 0x3f3c50c8, dl)); 4931 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4932 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4933 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4934 } else if (LimitFloatPrecision <= 12) { 4935 // For floating-point precision of 12: 4936 // 4937 // TwoToFractionalPartOfX = 4938 // 0.999892986f + 4939 // (0.696457318f + 4940 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4941 // 4942 // error 0.000107046256, which is 13 to 14 bits 4943 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4944 getF32Constant(DAG, 0x3da235e3, dl)); 4945 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4946 getF32Constant(DAG, 0x3e65b8f3, dl)); 4947 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4948 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4949 getF32Constant(DAG, 0x3f324b07, dl)); 4950 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4951 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4952 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4953 } else { // LimitFloatPrecision <= 18 4954 // For floating-point precision of 18: 4955 // 4956 // TwoToFractionalPartOfX = 4957 // 0.999999982f + 4958 // (0.693148872f + 4959 // (0.240227044f + 4960 // (0.554906021e-1f + 4961 // (0.961591928e-2f + 4962 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4963 // error 2.47208000*10^(-7), which is better than 18 bits 4964 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4965 getF32Constant(DAG, 0x3924b03e, dl)); 4966 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4967 getF32Constant(DAG, 0x3ab24b87, dl)); 4968 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4969 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4970 getF32Constant(DAG, 0x3c1d8c17, dl)); 4971 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4972 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4973 getF32Constant(DAG, 0x3d634a1d, dl)); 4974 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4975 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4976 getF32Constant(DAG, 0x3e75fe14, dl)); 4977 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4978 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4979 getF32Constant(DAG, 0x3f317234, dl)); 4980 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4981 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4982 getF32Constant(DAG, 0x3f800000, dl)); 4983 } 4984 4985 // Add the exponent into the result in integer domain. 4986 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4987 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4988 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4989 } 4990 4991 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4992 /// limited-precision mode. 4993 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4994 const TargetLowering &TLI, SDNodeFlags Flags) { 4995 if (Op.getValueType() == MVT::f32 && 4996 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4997 4998 // Put the exponent in the right bit position for later addition to the 4999 // final result: 5000 // 5001 // t0 = Op * log2(e) 5002 5003 // TODO: What fast-math-flags should be set here? 5004 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5005 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5006 return getLimitedPrecisionExp2(t0, dl, DAG); 5007 } 5008 5009 // No special expansion. 5010 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5011 } 5012 5013 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5014 /// limited-precision mode. 5015 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5016 const TargetLowering &TLI, SDNodeFlags Flags) { 5017 // TODO: What fast-math-flags should be set on the floating-point nodes? 5018 5019 if (Op.getValueType() == MVT::f32 && 5020 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5021 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5022 5023 // Scale the exponent by log(2). 5024 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5025 SDValue LogOfExponent = 5026 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5027 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5028 5029 // Get the significand and build it into a floating-point number with 5030 // exponent of 1. 5031 SDValue X = GetSignificand(DAG, Op1, dl); 5032 5033 SDValue LogOfMantissa; 5034 if (LimitFloatPrecision <= 6) { 5035 // For floating-point precision of 6: 5036 // 5037 // LogofMantissa = 5038 // -1.1609546f + 5039 // (1.4034025f - 0.23903021f * x) * x; 5040 // 5041 // error 0.0034276066, which is better than 8 bits 5042 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5043 getF32Constant(DAG, 0xbe74c456, dl)); 5044 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5045 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5046 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5047 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5048 getF32Constant(DAG, 0x3f949a29, dl)); 5049 } else if (LimitFloatPrecision <= 12) { 5050 // For floating-point precision of 12: 5051 // 5052 // LogOfMantissa = 5053 // -1.7417939f + 5054 // (2.8212026f + 5055 // (-1.4699568f + 5056 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5057 // 5058 // error 0.000061011436, which is 14 bits 5059 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5060 getF32Constant(DAG, 0xbd67b6d6, dl)); 5061 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5062 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5063 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5064 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5065 getF32Constant(DAG, 0x3fbc278b, dl)); 5066 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5067 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5068 getF32Constant(DAG, 0x40348e95, dl)); 5069 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5070 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5071 getF32Constant(DAG, 0x3fdef31a, dl)); 5072 } else { // LimitFloatPrecision <= 18 5073 // For floating-point precision of 18: 5074 // 5075 // LogOfMantissa = 5076 // -2.1072184f + 5077 // (4.2372794f + 5078 // (-3.7029485f + 5079 // (2.2781945f + 5080 // (-0.87823314f + 5081 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5082 // 5083 // error 0.0000023660568, which is better than 18 bits 5084 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5085 getF32Constant(DAG, 0xbc91e5ac, dl)); 5086 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5087 getF32Constant(DAG, 0x3e4350aa, dl)); 5088 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5089 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5090 getF32Constant(DAG, 0x3f60d3e3, dl)); 5091 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5092 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5093 getF32Constant(DAG, 0x4011cdf0, dl)); 5094 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5095 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5096 getF32Constant(DAG, 0x406cfd1c, dl)); 5097 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5098 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5099 getF32Constant(DAG, 0x408797cb, dl)); 5100 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5101 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5102 getF32Constant(DAG, 0x4006dcab, dl)); 5103 } 5104 5105 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5106 } 5107 5108 // No special expansion. 5109 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5110 } 5111 5112 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5113 /// limited-precision mode. 5114 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5115 const TargetLowering &TLI, SDNodeFlags Flags) { 5116 // TODO: What fast-math-flags should be set on the floating-point nodes? 5117 5118 if (Op.getValueType() == MVT::f32 && 5119 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5120 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5121 5122 // Get the exponent. 5123 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5124 5125 // Get the significand and build it into a floating-point number with 5126 // exponent of 1. 5127 SDValue X = GetSignificand(DAG, Op1, dl); 5128 5129 // Different possible minimax approximations of significand in 5130 // floating-point for various degrees of accuracy over [1,2]. 5131 SDValue Log2ofMantissa; 5132 if (LimitFloatPrecision <= 6) { 5133 // For floating-point precision of 6: 5134 // 5135 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5136 // 5137 // error 0.0049451742, which is more than 7 bits 5138 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5139 getF32Constant(DAG, 0xbeb08fe0, dl)); 5140 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5141 getF32Constant(DAG, 0x40019463, dl)); 5142 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5143 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5144 getF32Constant(DAG, 0x3fd6633d, dl)); 5145 } else if (LimitFloatPrecision <= 12) { 5146 // For floating-point precision of 12: 5147 // 5148 // Log2ofMantissa = 5149 // -2.51285454f + 5150 // (4.07009056f + 5151 // (-2.12067489f + 5152 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5153 // 5154 // error 0.0000876136000, which is better than 13 bits 5155 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5156 getF32Constant(DAG, 0xbda7262e, dl)); 5157 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5158 getF32Constant(DAG, 0x3f25280b, dl)); 5159 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5160 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5161 getF32Constant(DAG, 0x4007b923, dl)); 5162 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5163 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5164 getF32Constant(DAG, 0x40823e2f, dl)); 5165 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5166 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5167 getF32Constant(DAG, 0x4020d29c, dl)); 5168 } else { // LimitFloatPrecision <= 18 5169 // For floating-point precision of 18: 5170 // 5171 // Log2ofMantissa = 5172 // -3.0400495f + 5173 // (6.1129976f + 5174 // (-5.3420409f + 5175 // (3.2865683f + 5176 // (-1.2669343f + 5177 // (0.27515199f - 5178 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5179 // 5180 // error 0.0000018516, which is better than 18 bits 5181 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5182 getF32Constant(DAG, 0xbcd2769e, dl)); 5183 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5184 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5185 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5186 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5187 getF32Constant(DAG, 0x3fa22ae7, dl)); 5188 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5189 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5190 getF32Constant(DAG, 0x40525723, dl)); 5191 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5192 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5193 getF32Constant(DAG, 0x40aaf200, dl)); 5194 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5195 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5196 getF32Constant(DAG, 0x40c39dad, dl)); 5197 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5198 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5199 getF32Constant(DAG, 0x4042902c, dl)); 5200 } 5201 5202 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5203 } 5204 5205 // No special expansion. 5206 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5207 } 5208 5209 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5210 /// limited-precision mode. 5211 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5212 const TargetLowering &TLI, SDNodeFlags Flags) { 5213 // TODO: What fast-math-flags should be set on the floating-point nodes? 5214 5215 if (Op.getValueType() == MVT::f32 && 5216 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5217 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5218 5219 // Scale the exponent by log10(2) [0.30102999f]. 5220 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5221 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5222 getF32Constant(DAG, 0x3e9a209a, dl)); 5223 5224 // Get the significand and build it into a floating-point number with 5225 // exponent of 1. 5226 SDValue X = GetSignificand(DAG, Op1, dl); 5227 5228 SDValue Log10ofMantissa; 5229 if (LimitFloatPrecision <= 6) { 5230 // For floating-point precision of 6: 5231 // 5232 // Log10ofMantissa = 5233 // -0.50419619f + 5234 // (0.60948995f - 0.10380950f * x) * x; 5235 // 5236 // error 0.0014886165, which is 6 bits 5237 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5238 getF32Constant(DAG, 0xbdd49a13, dl)); 5239 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5240 getF32Constant(DAG, 0x3f1c0789, dl)); 5241 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5242 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5243 getF32Constant(DAG, 0x3f011300, dl)); 5244 } else if (LimitFloatPrecision <= 12) { 5245 // For floating-point precision of 12: 5246 // 5247 // Log10ofMantissa = 5248 // -0.64831180f + 5249 // (0.91751397f + 5250 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5251 // 5252 // error 0.00019228036, which is better than 12 bits 5253 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5254 getF32Constant(DAG, 0x3d431f31, dl)); 5255 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5256 getF32Constant(DAG, 0x3ea21fb2, dl)); 5257 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5258 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5259 getF32Constant(DAG, 0x3f6ae232, dl)); 5260 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5261 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5262 getF32Constant(DAG, 0x3f25f7c3, dl)); 5263 } else { // LimitFloatPrecision <= 18 5264 // For floating-point precision of 18: 5265 // 5266 // Log10ofMantissa = 5267 // -0.84299375f + 5268 // (1.5327582f + 5269 // (-1.0688956f + 5270 // (0.49102474f + 5271 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5272 // 5273 // error 0.0000037995730, which is better than 18 bits 5274 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5275 getF32Constant(DAG, 0x3c5d51ce, dl)); 5276 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5277 getF32Constant(DAG, 0x3e00685a, dl)); 5278 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5279 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5280 getF32Constant(DAG, 0x3efb6798, dl)); 5281 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5282 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5283 getF32Constant(DAG, 0x3f88d192, dl)); 5284 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5285 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5286 getF32Constant(DAG, 0x3fc4316c, dl)); 5287 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5288 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5289 getF32Constant(DAG, 0x3f57ce70, dl)); 5290 } 5291 5292 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5293 } 5294 5295 // No special expansion. 5296 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5297 } 5298 5299 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5300 /// limited-precision mode. 5301 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5302 const TargetLowering &TLI, SDNodeFlags Flags) { 5303 if (Op.getValueType() == MVT::f32 && 5304 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5305 return getLimitedPrecisionExp2(Op, dl, DAG); 5306 5307 // No special expansion. 5308 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5309 } 5310 5311 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5312 /// limited-precision mode with x == 10.0f. 5313 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5314 SelectionDAG &DAG, const TargetLowering &TLI, 5315 SDNodeFlags Flags) { 5316 bool IsExp10 = false; 5317 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5318 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5319 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5320 APFloat Ten(10.0f); 5321 IsExp10 = LHSC->isExactlyValue(Ten); 5322 } 5323 } 5324 5325 // TODO: What fast-math-flags should be set on the FMUL node? 5326 if (IsExp10) { 5327 // Put the exponent in the right bit position for later addition to the 5328 // final result: 5329 // 5330 // #define LOG2OF10 3.3219281f 5331 // t0 = Op * LOG2OF10; 5332 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5333 getF32Constant(DAG, 0x40549a78, dl)); 5334 return getLimitedPrecisionExp2(t0, dl, DAG); 5335 } 5336 5337 // No special expansion. 5338 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5339 } 5340 5341 /// ExpandPowI - Expand a llvm.powi intrinsic. 5342 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5343 SelectionDAG &DAG) { 5344 // If RHS is a constant, we can expand this out to a multiplication tree, 5345 // otherwise we end up lowering to a call to __powidf2 (for example). When 5346 // optimizing for size, we only want to do this if the expansion would produce 5347 // a small number of multiplies, otherwise we do the full expansion. 5348 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5349 // Get the exponent as a positive value. 5350 unsigned Val = RHSC->getSExtValue(); 5351 if ((int)Val < 0) Val = -Val; 5352 5353 // powi(x, 0) -> 1.0 5354 if (Val == 0) 5355 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5356 5357 bool OptForSize = DAG.shouldOptForSize(); 5358 if (!OptForSize || 5359 // If optimizing for size, don't insert too many multiplies. 5360 // This inserts up to 5 multiplies. 5361 countPopulation(Val) + Log2_32(Val) < 7) { 5362 // We use the simple binary decomposition method to generate the multiply 5363 // sequence. There are more optimal ways to do this (for example, 5364 // powi(x,15) generates one more multiply than it should), but this has 5365 // the benefit of being both really simple and much better than a libcall. 5366 SDValue Res; // Logically starts equal to 1.0 5367 SDValue CurSquare = LHS; 5368 // TODO: Intrinsics should have fast-math-flags that propagate to these 5369 // nodes. 5370 while (Val) { 5371 if (Val & 1) { 5372 if (Res.getNode()) 5373 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5374 else 5375 Res = CurSquare; // 1.0*CurSquare. 5376 } 5377 5378 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5379 CurSquare, CurSquare); 5380 Val >>= 1; 5381 } 5382 5383 // If the original was negative, invert the result, producing 1/(x*x*x). 5384 if (RHSC->getSExtValue() < 0) 5385 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5386 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5387 return Res; 5388 } 5389 } 5390 5391 // Otherwise, expand to a libcall. 5392 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5393 } 5394 5395 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5396 SDValue LHS, SDValue RHS, SDValue Scale, 5397 SelectionDAG &DAG, const TargetLowering &TLI) { 5398 EVT VT = LHS.getValueType(); 5399 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5400 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5401 LLVMContext &Ctx = *DAG.getContext(); 5402 5403 // If the type is legal but the operation isn't, this node might survive all 5404 // the way to operation legalization. If we end up there and we do not have 5405 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5406 // node. 5407 5408 // Coax the legalizer into expanding the node during type legalization instead 5409 // by bumping the size by one bit. This will force it to Promote, enabling the 5410 // early expansion and avoiding the need to expand later. 5411 5412 // We don't have to do this if Scale is 0; that can always be expanded, unless 5413 // it's a saturating signed operation. Those can experience true integer 5414 // division overflow, a case which we must avoid. 5415 5416 // FIXME: We wouldn't have to do this (or any of the early 5417 // expansion/promotion) if it was possible to expand a libcall of an 5418 // illegal type during operation legalization. But it's not, so things 5419 // get a bit hacky. 5420 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5421 if ((ScaleInt > 0 || (Saturating && Signed)) && 5422 (TLI.isTypeLegal(VT) || 5423 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5424 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5425 Opcode, VT, ScaleInt); 5426 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5427 EVT PromVT; 5428 if (VT.isScalarInteger()) 5429 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5430 else if (VT.isVector()) { 5431 PromVT = VT.getVectorElementType(); 5432 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5433 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5434 } else 5435 llvm_unreachable("Wrong VT for DIVFIX?"); 5436 if (Signed) { 5437 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5438 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5439 } else { 5440 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5441 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5442 } 5443 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5444 // For saturating operations, we need to shift up the LHS to get the 5445 // proper saturation width, and then shift down again afterwards. 5446 if (Saturating) 5447 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5448 DAG.getConstant(1, DL, ShiftTy)); 5449 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5450 if (Saturating) 5451 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5452 DAG.getConstant(1, DL, ShiftTy)); 5453 return DAG.getZExtOrTrunc(Res, DL, VT); 5454 } 5455 } 5456 5457 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5458 } 5459 5460 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5461 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5462 static void 5463 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5464 const SDValue &N) { 5465 switch (N.getOpcode()) { 5466 case ISD::CopyFromReg: { 5467 SDValue Op = N.getOperand(1); 5468 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5469 Op.getValueType().getSizeInBits()); 5470 return; 5471 } 5472 case ISD::BITCAST: 5473 case ISD::AssertZext: 5474 case ISD::AssertSext: 5475 case ISD::TRUNCATE: 5476 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5477 return; 5478 case ISD::BUILD_PAIR: 5479 case ISD::BUILD_VECTOR: 5480 case ISD::CONCAT_VECTORS: 5481 for (SDValue Op : N->op_values()) 5482 getUnderlyingArgRegs(Regs, Op); 5483 return; 5484 default: 5485 return; 5486 } 5487 } 5488 5489 /// If the DbgValueInst is a dbg_value of a function argument, create the 5490 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5491 /// instruction selection, they will be inserted to the entry BB. 5492 /// We don't currently support this for variadic dbg_values, as they shouldn't 5493 /// appear for function arguments or in the prologue. 5494 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5495 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5496 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5497 const Argument *Arg = dyn_cast<Argument>(V); 5498 if (!Arg) 5499 return false; 5500 5501 MachineFunction &MF = DAG.getMachineFunction(); 5502 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5503 5504 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5505 // we've been asked to pursue. 5506 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5507 bool Indirect) { 5508 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5509 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5510 // pointing at the VReg, which will be patched up later. 5511 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5512 auto MIB = BuildMI(MF, DL, Inst); 5513 MIB.addReg(Reg); 5514 MIB.addImm(0); 5515 MIB.addMetadata(Variable); 5516 auto *NewDIExpr = FragExpr; 5517 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5518 // the DIExpression. 5519 if (Indirect) 5520 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5521 MIB.addMetadata(NewDIExpr); 5522 return MIB; 5523 } else { 5524 // Create a completely standard DBG_VALUE. 5525 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5526 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5527 } 5528 }; 5529 5530 if (!IsDbgDeclare) { 5531 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5532 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5533 // the entry block. 5534 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5535 if (!IsInEntryBlock) 5536 return false; 5537 5538 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5539 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5540 // variable that also is a param. 5541 // 5542 // Although, if we are at the top of the entry block already, we can still 5543 // emit using ArgDbgValue. This might catch some situations when the 5544 // dbg.value refers to an argument that isn't used in the entry block, so 5545 // any CopyToReg node would be optimized out and the only way to express 5546 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5547 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5548 // we should only emit as ArgDbgValue if the Variable is an argument to the 5549 // current function, and the dbg.value intrinsic is found in the entry 5550 // block. 5551 bool VariableIsFunctionInputArg = Variable->isParameter() && 5552 !DL->getInlinedAt(); 5553 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5554 if (!IsInPrologue && !VariableIsFunctionInputArg) 5555 return false; 5556 5557 // Here we assume that a function argument on IR level only can be used to 5558 // describe one input parameter on source level. If we for example have 5559 // source code like this 5560 // 5561 // struct A { long x, y; }; 5562 // void foo(struct A a, long b) { 5563 // ... 5564 // b = a.x; 5565 // ... 5566 // } 5567 // 5568 // and IR like this 5569 // 5570 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5571 // entry: 5572 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5573 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5574 // call void @llvm.dbg.value(metadata i32 %b, "b", 5575 // ... 5576 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5577 // ... 5578 // 5579 // then the last dbg.value is describing a parameter "b" using a value that 5580 // is an argument. But since we already has used %a1 to describe a parameter 5581 // we should not handle that last dbg.value here (that would result in an 5582 // incorrect hoisting of the DBG_VALUE to the function entry). 5583 // Notice that we allow one dbg.value per IR level argument, to accommodate 5584 // for the situation with fragments above. 5585 if (VariableIsFunctionInputArg) { 5586 unsigned ArgNo = Arg->getArgNo(); 5587 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5588 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5589 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5590 return false; 5591 FuncInfo.DescribedArgs.set(ArgNo); 5592 } 5593 } 5594 5595 bool IsIndirect = false; 5596 Optional<MachineOperand> Op; 5597 // Some arguments' frame index is recorded during argument lowering. 5598 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5599 if (FI != std::numeric_limits<int>::max()) 5600 Op = MachineOperand::CreateFI(FI); 5601 5602 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5603 if (!Op && N.getNode()) { 5604 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5605 Register Reg; 5606 if (ArgRegsAndSizes.size() == 1) 5607 Reg = ArgRegsAndSizes.front().first; 5608 5609 if (Reg && Reg.isVirtual()) { 5610 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5611 Register PR = RegInfo.getLiveInPhysReg(Reg); 5612 if (PR) 5613 Reg = PR; 5614 } 5615 if (Reg) { 5616 Op = MachineOperand::CreateReg(Reg, false); 5617 IsIndirect = IsDbgDeclare; 5618 } 5619 } 5620 5621 if (!Op && N.getNode()) { 5622 // Check if frame index is available. 5623 SDValue LCandidate = peekThroughBitcasts(N); 5624 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5625 if (FrameIndexSDNode *FINode = 5626 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5627 Op = MachineOperand::CreateFI(FINode->getIndex()); 5628 } 5629 5630 if (!Op) { 5631 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5632 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5633 SplitRegs) { 5634 unsigned Offset = 0; 5635 for (const auto &RegAndSize : SplitRegs) { 5636 // If the expression is already a fragment, the current register 5637 // offset+size might extend beyond the fragment. In this case, only 5638 // the register bits that are inside the fragment are relevant. 5639 int RegFragmentSizeInBits = RegAndSize.second; 5640 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5641 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5642 // The register is entirely outside the expression fragment, 5643 // so is irrelevant for debug info. 5644 if (Offset >= ExprFragmentSizeInBits) 5645 break; 5646 // The register is partially outside the expression fragment, only 5647 // the low bits within the fragment are relevant for debug info. 5648 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5649 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5650 } 5651 } 5652 5653 auto FragmentExpr = DIExpression::createFragmentExpression( 5654 Expr, Offset, RegFragmentSizeInBits); 5655 Offset += RegAndSize.second; 5656 // If a valid fragment expression cannot be created, the variable's 5657 // correct value cannot be determined and so it is set as Undef. 5658 if (!FragmentExpr) { 5659 SDDbgValue *SDV = DAG.getConstantDbgValue( 5660 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5661 DAG.AddDbgValue(SDV, false); 5662 continue; 5663 } 5664 MachineInstr *NewMI = 5665 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare); 5666 FuncInfo.ArgDbgValues.push_back(NewMI); 5667 } 5668 }; 5669 5670 // Check if ValueMap has reg number. 5671 DenseMap<const Value *, Register>::const_iterator 5672 VMI = FuncInfo.ValueMap.find(V); 5673 if (VMI != FuncInfo.ValueMap.end()) { 5674 const auto &TLI = DAG.getTargetLoweringInfo(); 5675 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5676 V->getType(), None); 5677 if (RFV.occupiesMultipleRegs()) { 5678 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5679 return true; 5680 } 5681 5682 Op = MachineOperand::CreateReg(VMI->second, false); 5683 IsIndirect = IsDbgDeclare; 5684 } else if (ArgRegsAndSizes.size() > 1) { 5685 // This was split due to the calling convention, and no virtual register 5686 // mapping exists for the value. 5687 splitMultiRegDbgValue(ArgRegsAndSizes); 5688 return true; 5689 } 5690 } 5691 5692 if (!Op) 5693 return false; 5694 5695 assert(Variable->isValidLocationForIntrinsic(DL) && 5696 "Expected inlined-at fields to agree"); 5697 MachineInstr *NewMI = nullptr; 5698 5699 if (Op->isReg()) 5700 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5701 else 5702 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5703 Variable, Expr); 5704 5705 FuncInfo.ArgDbgValues.push_back(NewMI); 5706 return true; 5707 } 5708 5709 /// Return the appropriate SDDbgValue based on N. 5710 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5711 DILocalVariable *Variable, 5712 DIExpression *Expr, 5713 const DebugLoc &dl, 5714 unsigned DbgSDNodeOrder) { 5715 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5716 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5717 // stack slot locations. 5718 // 5719 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5720 // debug values here after optimization: 5721 // 5722 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5723 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5724 // 5725 // Both describe the direct values of their associated variables. 5726 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5727 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5728 } 5729 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5730 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5731 } 5732 5733 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5734 switch (Intrinsic) { 5735 case Intrinsic::smul_fix: 5736 return ISD::SMULFIX; 5737 case Intrinsic::umul_fix: 5738 return ISD::UMULFIX; 5739 case Intrinsic::smul_fix_sat: 5740 return ISD::SMULFIXSAT; 5741 case Intrinsic::umul_fix_sat: 5742 return ISD::UMULFIXSAT; 5743 case Intrinsic::sdiv_fix: 5744 return ISD::SDIVFIX; 5745 case Intrinsic::udiv_fix: 5746 return ISD::UDIVFIX; 5747 case Intrinsic::sdiv_fix_sat: 5748 return ISD::SDIVFIXSAT; 5749 case Intrinsic::udiv_fix_sat: 5750 return ISD::UDIVFIXSAT; 5751 default: 5752 llvm_unreachable("Unhandled fixed point intrinsic"); 5753 } 5754 } 5755 5756 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5757 const char *FunctionName) { 5758 assert(FunctionName && "FunctionName must not be nullptr"); 5759 SDValue Callee = DAG.getExternalSymbol( 5760 FunctionName, 5761 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5762 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5763 } 5764 5765 /// Given a @llvm.call.preallocated.setup, return the corresponding 5766 /// preallocated call. 5767 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5768 assert(cast<CallBase>(PreallocatedSetup) 5769 ->getCalledFunction() 5770 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5771 "expected call_preallocated_setup Value"); 5772 for (auto *U : PreallocatedSetup->users()) { 5773 auto *UseCall = cast<CallBase>(U); 5774 const Function *Fn = UseCall->getCalledFunction(); 5775 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5776 return UseCall; 5777 } 5778 } 5779 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5780 } 5781 5782 /// Lower the call to the specified intrinsic function. 5783 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5784 unsigned Intrinsic) { 5785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5786 SDLoc sdl = getCurSDLoc(); 5787 DebugLoc dl = getCurDebugLoc(); 5788 SDValue Res; 5789 5790 SDNodeFlags Flags; 5791 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5792 Flags.copyFMF(*FPOp); 5793 5794 switch (Intrinsic) { 5795 default: 5796 // By default, turn this into a target intrinsic node. 5797 visitTargetIntrinsic(I, Intrinsic); 5798 return; 5799 case Intrinsic::vscale: { 5800 match(&I, m_VScale(DAG.getDataLayout())); 5801 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5802 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5803 return; 5804 } 5805 case Intrinsic::vastart: visitVAStart(I); return; 5806 case Intrinsic::vaend: visitVAEnd(I); return; 5807 case Intrinsic::vacopy: visitVACopy(I); return; 5808 case Intrinsic::returnaddress: 5809 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5810 TLI.getPointerTy(DAG.getDataLayout()), 5811 getValue(I.getArgOperand(0)))); 5812 return; 5813 case Intrinsic::addressofreturnaddress: 5814 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5815 TLI.getPointerTy(DAG.getDataLayout()))); 5816 return; 5817 case Intrinsic::sponentry: 5818 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5819 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5820 return; 5821 case Intrinsic::frameaddress: 5822 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5823 TLI.getFrameIndexTy(DAG.getDataLayout()), 5824 getValue(I.getArgOperand(0)))); 5825 return; 5826 case Intrinsic::read_volatile_register: 5827 case Intrinsic::read_register: { 5828 Value *Reg = I.getArgOperand(0); 5829 SDValue Chain = getRoot(); 5830 SDValue RegName = 5831 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5832 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5833 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5834 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5835 setValue(&I, Res); 5836 DAG.setRoot(Res.getValue(1)); 5837 return; 5838 } 5839 case Intrinsic::write_register: { 5840 Value *Reg = I.getArgOperand(0); 5841 Value *RegValue = I.getArgOperand(1); 5842 SDValue Chain = getRoot(); 5843 SDValue RegName = 5844 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5845 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5846 RegName, getValue(RegValue))); 5847 return; 5848 } 5849 case Intrinsic::memcpy: { 5850 const auto &MCI = cast<MemCpyInst>(I); 5851 SDValue Op1 = getValue(I.getArgOperand(0)); 5852 SDValue Op2 = getValue(I.getArgOperand(1)); 5853 SDValue Op3 = getValue(I.getArgOperand(2)); 5854 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5855 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5856 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5857 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5858 bool isVol = MCI.isVolatile(); 5859 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5860 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5861 // node. 5862 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5863 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5864 /* AlwaysInline */ false, isTC, 5865 MachinePointerInfo(I.getArgOperand(0)), 5866 MachinePointerInfo(I.getArgOperand(1)), 5867 I.getAAMetadata()); 5868 updateDAGForMaybeTailCall(MC); 5869 return; 5870 } 5871 case Intrinsic::memcpy_inline: { 5872 const auto &MCI = cast<MemCpyInlineInst>(I); 5873 SDValue Dst = getValue(I.getArgOperand(0)); 5874 SDValue Src = getValue(I.getArgOperand(1)); 5875 SDValue Size = getValue(I.getArgOperand(2)); 5876 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5877 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5878 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5879 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5880 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5881 bool isVol = MCI.isVolatile(); 5882 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5883 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5884 // node. 5885 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5886 /* AlwaysInline */ true, isTC, 5887 MachinePointerInfo(I.getArgOperand(0)), 5888 MachinePointerInfo(I.getArgOperand(1)), 5889 I.getAAMetadata()); 5890 updateDAGForMaybeTailCall(MC); 5891 return; 5892 } 5893 case Intrinsic::memset: { 5894 const auto &MSI = cast<MemSetInst>(I); 5895 SDValue Op1 = getValue(I.getArgOperand(0)); 5896 SDValue Op2 = getValue(I.getArgOperand(1)); 5897 SDValue Op3 = getValue(I.getArgOperand(2)); 5898 // @llvm.memset defines 0 and 1 to both mean no alignment. 5899 Align Alignment = MSI.getDestAlign().valueOrOne(); 5900 bool isVol = MSI.isVolatile(); 5901 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5902 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5903 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5904 MachinePointerInfo(I.getArgOperand(0)), 5905 I.getAAMetadata()); 5906 updateDAGForMaybeTailCall(MS); 5907 return; 5908 } 5909 case Intrinsic::memmove: { 5910 const auto &MMI = cast<MemMoveInst>(I); 5911 SDValue Op1 = getValue(I.getArgOperand(0)); 5912 SDValue Op2 = getValue(I.getArgOperand(1)); 5913 SDValue Op3 = getValue(I.getArgOperand(2)); 5914 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5915 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5916 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5917 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5918 bool isVol = MMI.isVolatile(); 5919 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5920 // FIXME: Support passing different dest/src alignments to the memmove DAG 5921 // node. 5922 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5923 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5924 isTC, MachinePointerInfo(I.getArgOperand(0)), 5925 MachinePointerInfo(I.getArgOperand(1)), 5926 I.getAAMetadata()); 5927 updateDAGForMaybeTailCall(MM); 5928 return; 5929 } 5930 case Intrinsic::memcpy_element_unordered_atomic: { 5931 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5932 SDValue Dst = getValue(MI.getRawDest()); 5933 SDValue Src = getValue(MI.getRawSource()); 5934 SDValue Length = getValue(MI.getLength()); 5935 5936 unsigned DstAlign = MI.getDestAlignment(); 5937 unsigned SrcAlign = MI.getSourceAlignment(); 5938 Type *LengthTy = MI.getLength()->getType(); 5939 unsigned ElemSz = MI.getElementSizeInBytes(); 5940 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5941 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5942 SrcAlign, Length, LengthTy, ElemSz, isTC, 5943 MachinePointerInfo(MI.getRawDest()), 5944 MachinePointerInfo(MI.getRawSource())); 5945 updateDAGForMaybeTailCall(MC); 5946 return; 5947 } 5948 case Intrinsic::memmove_element_unordered_atomic: { 5949 auto &MI = cast<AtomicMemMoveInst>(I); 5950 SDValue Dst = getValue(MI.getRawDest()); 5951 SDValue Src = getValue(MI.getRawSource()); 5952 SDValue Length = getValue(MI.getLength()); 5953 5954 unsigned DstAlign = MI.getDestAlignment(); 5955 unsigned SrcAlign = MI.getSourceAlignment(); 5956 Type *LengthTy = MI.getLength()->getType(); 5957 unsigned ElemSz = MI.getElementSizeInBytes(); 5958 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5959 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5960 SrcAlign, Length, LengthTy, ElemSz, isTC, 5961 MachinePointerInfo(MI.getRawDest()), 5962 MachinePointerInfo(MI.getRawSource())); 5963 updateDAGForMaybeTailCall(MC); 5964 return; 5965 } 5966 case Intrinsic::memset_element_unordered_atomic: { 5967 auto &MI = cast<AtomicMemSetInst>(I); 5968 SDValue Dst = getValue(MI.getRawDest()); 5969 SDValue Val = getValue(MI.getValue()); 5970 SDValue Length = getValue(MI.getLength()); 5971 5972 unsigned DstAlign = MI.getDestAlignment(); 5973 Type *LengthTy = MI.getLength()->getType(); 5974 unsigned ElemSz = MI.getElementSizeInBytes(); 5975 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5976 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5977 LengthTy, ElemSz, isTC, 5978 MachinePointerInfo(MI.getRawDest())); 5979 updateDAGForMaybeTailCall(MC); 5980 return; 5981 } 5982 case Intrinsic::call_preallocated_setup: { 5983 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5984 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5985 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5986 getRoot(), SrcValue); 5987 setValue(&I, Res); 5988 DAG.setRoot(Res); 5989 return; 5990 } 5991 case Intrinsic::call_preallocated_arg: { 5992 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5993 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5994 SDValue Ops[3]; 5995 Ops[0] = getRoot(); 5996 Ops[1] = SrcValue; 5997 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5998 MVT::i32); // arg index 5999 SDValue Res = DAG.getNode( 6000 ISD::PREALLOCATED_ARG, sdl, 6001 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6002 setValue(&I, Res); 6003 DAG.setRoot(Res.getValue(1)); 6004 return; 6005 } 6006 case Intrinsic::dbg_addr: 6007 case Intrinsic::dbg_declare: { 6008 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6009 // they are non-variadic. 6010 const auto &DI = cast<DbgVariableIntrinsic>(I); 6011 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6012 DILocalVariable *Variable = DI.getVariable(); 6013 DIExpression *Expression = DI.getExpression(); 6014 dropDanglingDebugInfo(Variable, Expression); 6015 assert(Variable && "Missing variable"); 6016 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6017 << "\n"); 6018 // Check if address has undef value. 6019 const Value *Address = DI.getVariableLocationOp(0); 6020 if (!Address || isa<UndefValue>(Address) || 6021 (Address->use_empty() && !isa<Argument>(Address))) { 6022 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6023 << " (bad/undef/unused-arg address)\n"); 6024 return; 6025 } 6026 6027 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6028 6029 // Check if this variable can be described by a frame index, typically 6030 // either as a static alloca or a byval parameter. 6031 int FI = std::numeric_limits<int>::max(); 6032 if (const auto *AI = 6033 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6034 if (AI->isStaticAlloca()) { 6035 auto I = FuncInfo.StaticAllocaMap.find(AI); 6036 if (I != FuncInfo.StaticAllocaMap.end()) 6037 FI = I->second; 6038 } 6039 } else if (const auto *Arg = dyn_cast<Argument>( 6040 Address->stripInBoundsConstantOffsets())) { 6041 FI = FuncInfo.getArgumentFrameIndex(Arg); 6042 } 6043 6044 // llvm.dbg.addr is control dependent and always generates indirect 6045 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6046 // the MachineFunction variable table. 6047 if (FI != std::numeric_limits<int>::max()) { 6048 if (Intrinsic == Intrinsic::dbg_addr) { 6049 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6050 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6051 dl, SDNodeOrder); 6052 DAG.AddDbgValue(SDV, isParameter); 6053 } else { 6054 LLVM_DEBUG(dbgs() << "Skipping " << DI 6055 << " (variable info stashed in MF side table)\n"); 6056 } 6057 return; 6058 } 6059 6060 SDValue &N = NodeMap[Address]; 6061 if (!N.getNode() && isa<Argument>(Address)) 6062 // Check unused arguments map. 6063 N = UnusedArgNodeMap[Address]; 6064 SDDbgValue *SDV; 6065 if (N.getNode()) { 6066 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6067 Address = BCI->getOperand(0); 6068 // Parameters are handled specially. 6069 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6070 if (isParameter && FINode) { 6071 // Byval parameter. We have a frame index at this point. 6072 SDV = 6073 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6074 /*IsIndirect*/ true, dl, SDNodeOrder); 6075 } else if (isa<Argument>(Address)) { 6076 // Address is an argument, so try to emit its dbg value using 6077 // virtual register info from the FuncInfo.ValueMap. 6078 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6079 return; 6080 } else { 6081 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6082 true, dl, SDNodeOrder); 6083 } 6084 DAG.AddDbgValue(SDV, isParameter); 6085 } else { 6086 // If Address is an argument then try to emit its dbg value using 6087 // virtual register info from the FuncInfo.ValueMap. 6088 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6089 N)) { 6090 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6091 << " (could not emit func-arg dbg_value)\n"); 6092 } 6093 } 6094 return; 6095 } 6096 case Intrinsic::dbg_label: { 6097 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6098 DILabel *Label = DI.getLabel(); 6099 assert(Label && "Missing label"); 6100 6101 SDDbgLabel *SDV; 6102 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6103 DAG.AddDbgLabel(SDV); 6104 return; 6105 } 6106 case Intrinsic::dbg_value: { 6107 const DbgValueInst &DI = cast<DbgValueInst>(I); 6108 assert(DI.getVariable() && "Missing variable"); 6109 6110 DILocalVariable *Variable = DI.getVariable(); 6111 DIExpression *Expression = DI.getExpression(); 6112 dropDanglingDebugInfo(Variable, Expression); 6113 SmallVector<Value *, 4> Values(DI.getValues()); 6114 if (Values.empty()) 6115 return; 6116 6117 if (llvm::is_contained(Values, nullptr)) 6118 return; 6119 6120 bool IsVariadic = DI.hasArgList(); 6121 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6122 SDNodeOrder, IsVariadic)) 6123 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6124 return; 6125 } 6126 6127 case Intrinsic::eh_typeid_for: { 6128 // Find the type id for the given typeinfo. 6129 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6130 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6131 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6132 setValue(&I, Res); 6133 return; 6134 } 6135 6136 case Intrinsic::eh_return_i32: 6137 case Intrinsic::eh_return_i64: 6138 DAG.getMachineFunction().setCallsEHReturn(true); 6139 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6140 MVT::Other, 6141 getControlRoot(), 6142 getValue(I.getArgOperand(0)), 6143 getValue(I.getArgOperand(1)))); 6144 return; 6145 case Intrinsic::eh_unwind_init: 6146 DAG.getMachineFunction().setCallsUnwindInit(true); 6147 return; 6148 case Intrinsic::eh_dwarf_cfa: 6149 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6150 TLI.getPointerTy(DAG.getDataLayout()), 6151 getValue(I.getArgOperand(0)))); 6152 return; 6153 case Intrinsic::eh_sjlj_callsite: { 6154 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6155 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6156 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6157 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6158 6159 MMI.setCurrentCallSite(CI->getZExtValue()); 6160 return; 6161 } 6162 case Intrinsic::eh_sjlj_functioncontext: { 6163 // Get and store the index of the function context. 6164 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6165 AllocaInst *FnCtx = 6166 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6167 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6168 MFI.setFunctionContextIndex(FI); 6169 return; 6170 } 6171 case Intrinsic::eh_sjlj_setjmp: { 6172 SDValue Ops[2]; 6173 Ops[0] = getRoot(); 6174 Ops[1] = getValue(I.getArgOperand(0)); 6175 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6176 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6177 setValue(&I, Op.getValue(0)); 6178 DAG.setRoot(Op.getValue(1)); 6179 return; 6180 } 6181 case Intrinsic::eh_sjlj_longjmp: 6182 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6183 getRoot(), getValue(I.getArgOperand(0)))); 6184 return; 6185 case Intrinsic::eh_sjlj_setup_dispatch: 6186 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6187 getRoot())); 6188 return; 6189 case Intrinsic::masked_gather: 6190 visitMaskedGather(I); 6191 return; 6192 case Intrinsic::masked_load: 6193 visitMaskedLoad(I); 6194 return; 6195 case Intrinsic::masked_scatter: 6196 visitMaskedScatter(I); 6197 return; 6198 case Intrinsic::masked_store: 6199 visitMaskedStore(I); 6200 return; 6201 case Intrinsic::masked_expandload: 6202 visitMaskedLoad(I, true /* IsExpanding */); 6203 return; 6204 case Intrinsic::masked_compressstore: 6205 visitMaskedStore(I, true /* IsCompressing */); 6206 return; 6207 case Intrinsic::powi: 6208 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6209 getValue(I.getArgOperand(1)), DAG)); 6210 return; 6211 case Intrinsic::log: 6212 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6213 return; 6214 case Intrinsic::log2: 6215 setValue(&I, 6216 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6217 return; 6218 case Intrinsic::log10: 6219 setValue(&I, 6220 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6221 return; 6222 case Intrinsic::exp: 6223 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6224 return; 6225 case Intrinsic::exp2: 6226 setValue(&I, 6227 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6228 return; 6229 case Intrinsic::pow: 6230 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6231 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6232 return; 6233 case Intrinsic::sqrt: 6234 case Intrinsic::fabs: 6235 case Intrinsic::sin: 6236 case Intrinsic::cos: 6237 case Intrinsic::floor: 6238 case Intrinsic::ceil: 6239 case Intrinsic::trunc: 6240 case Intrinsic::rint: 6241 case Intrinsic::nearbyint: 6242 case Intrinsic::round: 6243 case Intrinsic::roundeven: 6244 case Intrinsic::canonicalize: { 6245 unsigned Opcode; 6246 switch (Intrinsic) { 6247 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6248 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6249 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6250 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6251 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6252 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6253 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6254 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6255 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6256 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6257 case Intrinsic::round: Opcode = ISD::FROUND; break; 6258 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6259 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6260 } 6261 6262 setValue(&I, DAG.getNode(Opcode, sdl, 6263 getValue(I.getArgOperand(0)).getValueType(), 6264 getValue(I.getArgOperand(0)), Flags)); 6265 return; 6266 } 6267 case Intrinsic::lround: 6268 case Intrinsic::llround: 6269 case Intrinsic::lrint: 6270 case Intrinsic::llrint: { 6271 unsigned Opcode; 6272 switch (Intrinsic) { 6273 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6274 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6275 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6276 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6277 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6278 } 6279 6280 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6281 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6282 getValue(I.getArgOperand(0)))); 6283 return; 6284 } 6285 case Intrinsic::minnum: 6286 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6287 getValue(I.getArgOperand(0)).getValueType(), 6288 getValue(I.getArgOperand(0)), 6289 getValue(I.getArgOperand(1)), Flags)); 6290 return; 6291 case Intrinsic::maxnum: 6292 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6293 getValue(I.getArgOperand(0)).getValueType(), 6294 getValue(I.getArgOperand(0)), 6295 getValue(I.getArgOperand(1)), Flags)); 6296 return; 6297 case Intrinsic::minimum: 6298 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6299 getValue(I.getArgOperand(0)).getValueType(), 6300 getValue(I.getArgOperand(0)), 6301 getValue(I.getArgOperand(1)), Flags)); 6302 return; 6303 case Intrinsic::maximum: 6304 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6305 getValue(I.getArgOperand(0)).getValueType(), 6306 getValue(I.getArgOperand(0)), 6307 getValue(I.getArgOperand(1)), Flags)); 6308 return; 6309 case Intrinsic::copysign: 6310 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6311 getValue(I.getArgOperand(0)).getValueType(), 6312 getValue(I.getArgOperand(0)), 6313 getValue(I.getArgOperand(1)), Flags)); 6314 return; 6315 case Intrinsic::arithmetic_fence: { 6316 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6317 getValue(I.getArgOperand(0)).getValueType(), 6318 getValue(I.getArgOperand(0)), Flags)); 6319 return; 6320 } 6321 case Intrinsic::fma: 6322 setValue(&I, DAG.getNode( 6323 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6324 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6325 getValue(I.getArgOperand(2)), Flags)); 6326 return; 6327 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6328 case Intrinsic::INTRINSIC: 6329 #include "llvm/IR/ConstrainedOps.def" 6330 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6331 return; 6332 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6333 #include "llvm/IR/VPIntrinsics.def" 6334 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6335 return; 6336 case Intrinsic::fmuladd: { 6337 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6338 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6339 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6340 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6341 getValue(I.getArgOperand(0)).getValueType(), 6342 getValue(I.getArgOperand(0)), 6343 getValue(I.getArgOperand(1)), 6344 getValue(I.getArgOperand(2)), Flags)); 6345 } else { 6346 // TODO: Intrinsic calls should have fast-math-flags. 6347 SDValue Mul = DAG.getNode( 6348 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6349 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6350 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6351 getValue(I.getArgOperand(0)).getValueType(), 6352 Mul, getValue(I.getArgOperand(2)), Flags); 6353 setValue(&I, Add); 6354 } 6355 return; 6356 } 6357 case Intrinsic::convert_to_fp16: 6358 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6359 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6360 getValue(I.getArgOperand(0)), 6361 DAG.getTargetConstant(0, sdl, 6362 MVT::i32)))); 6363 return; 6364 case Intrinsic::convert_from_fp16: 6365 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6366 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6367 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6368 getValue(I.getArgOperand(0))))); 6369 return; 6370 case Intrinsic::fptosi_sat: { 6371 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6372 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6373 getValue(I.getArgOperand(0)), 6374 DAG.getValueType(VT.getScalarType()))); 6375 return; 6376 } 6377 case Intrinsic::fptoui_sat: { 6378 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6379 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6380 getValue(I.getArgOperand(0)), 6381 DAG.getValueType(VT.getScalarType()))); 6382 return; 6383 } 6384 case Intrinsic::set_rounding: 6385 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6386 {getRoot(), getValue(I.getArgOperand(0))}); 6387 setValue(&I, Res); 6388 DAG.setRoot(Res.getValue(0)); 6389 return; 6390 case Intrinsic::pcmarker: { 6391 SDValue Tmp = getValue(I.getArgOperand(0)); 6392 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6393 return; 6394 } 6395 case Intrinsic::readcyclecounter: { 6396 SDValue Op = getRoot(); 6397 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6398 DAG.getVTList(MVT::i64, MVT::Other), Op); 6399 setValue(&I, Res); 6400 DAG.setRoot(Res.getValue(1)); 6401 return; 6402 } 6403 case Intrinsic::bitreverse: 6404 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6405 getValue(I.getArgOperand(0)).getValueType(), 6406 getValue(I.getArgOperand(0)))); 6407 return; 6408 case Intrinsic::bswap: 6409 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6410 getValue(I.getArgOperand(0)).getValueType(), 6411 getValue(I.getArgOperand(0)))); 6412 return; 6413 case Intrinsic::cttz: { 6414 SDValue Arg = getValue(I.getArgOperand(0)); 6415 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6416 EVT Ty = Arg.getValueType(); 6417 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6418 sdl, Ty, Arg)); 6419 return; 6420 } 6421 case Intrinsic::ctlz: { 6422 SDValue Arg = getValue(I.getArgOperand(0)); 6423 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6424 EVT Ty = Arg.getValueType(); 6425 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6426 sdl, Ty, Arg)); 6427 return; 6428 } 6429 case Intrinsic::ctpop: { 6430 SDValue Arg = getValue(I.getArgOperand(0)); 6431 EVT Ty = Arg.getValueType(); 6432 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6433 return; 6434 } 6435 case Intrinsic::fshl: 6436 case Intrinsic::fshr: { 6437 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6438 SDValue X = getValue(I.getArgOperand(0)); 6439 SDValue Y = getValue(I.getArgOperand(1)); 6440 SDValue Z = getValue(I.getArgOperand(2)); 6441 EVT VT = X.getValueType(); 6442 6443 if (X == Y) { 6444 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6445 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6446 } else { 6447 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6448 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6449 } 6450 return; 6451 } 6452 case Intrinsic::sadd_sat: { 6453 SDValue Op1 = getValue(I.getArgOperand(0)); 6454 SDValue Op2 = getValue(I.getArgOperand(1)); 6455 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6456 return; 6457 } 6458 case Intrinsic::uadd_sat: { 6459 SDValue Op1 = getValue(I.getArgOperand(0)); 6460 SDValue Op2 = getValue(I.getArgOperand(1)); 6461 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6462 return; 6463 } 6464 case Intrinsic::ssub_sat: { 6465 SDValue Op1 = getValue(I.getArgOperand(0)); 6466 SDValue Op2 = getValue(I.getArgOperand(1)); 6467 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6468 return; 6469 } 6470 case Intrinsic::usub_sat: { 6471 SDValue Op1 = getValue(I.getArgOperand(0)); 6472 SDValue Op2 = getValue(I.getArgOperand(1)); 6473 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6474 return; 6475 } 6476 case Intrinsic::sshl_sat: { 6477 SDValue Op1 = getValue(I.getArgOperand(0)); 6478 SDValue Op2 = getValue(I.getArgOperand(1)); 6479 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6480 return; 6481 } 6482 case Intrinsic::ushl_sat: { 6483 SDValue Op1 = getValue(I.getArgOperand(0)); 6484 SDValue Op2 = getValue(I.getArgOperand(1)); 6485 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6486 return; 6487 } 6488 case Intrinsic::smul_fix: 6489 case Intrinsic::umul_fix: 6490 case Intrinsic::smul_fix_sat: 6491 case Intrinsic::umul_fix_sat: { 6492 SDValue Op1 = getValue(I.getArgOperand(0)); 6493 SDValue Op2 = getValue(I.getArgOperand(1)); 6494 SDValue Op3 = getValue(I.getArgOperand(2)); 6495 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6496 Op1.getValueType(), Op1, Op2, Op3)); 6497 return; 6498 } 6499 case Intrinsic::sdiv_fix: 6500 case Intrinsic::udiv_fix: 6501 case Intrinsic::sdiv_fix_sat: 6502 case Intrinsic::udiv_fix_sat: { 6503 SDValue Op1 = getValue(I.getArgOperand(0)); 6504 SDValue Op2 = getValue(I.getArgOperand(1)); 6505 SDValue Op3 = getValue(I.getArgOperand(2)); 6506 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6507 Op1, Op2, Op3, DAG, TLI)); 6508 return; 6509 } 6510 case Intrinsic::smax: { 6511 SDValue Op1 = getValue(I.getArgOperand(0)); 6512 SDValue Op2 = getValue(I.getArgOperand(1)); 6513 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6514 return; 6515 } 6516 case Intrinsic::smin: { 6517 SDValue Op1 = getValue(I.getArgOperand(0)); 6518 SDValue Op2 = getValue(I.getArgOperand(1)); 6519 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6520 return; 6521 } 6522 case Intrinsic::umax: { 6523 SDValue Op1 = getValue(I.getArgOperand(0)); 6524 SDValue Op2 = getValue(I.getArgOperand(1)); 6525 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6526 return; 6527 } 6528 case Intrinsic::umin: { 6529 SDValue Op1 = getValue(I.getArgOperand(0)); 6530 SDValue Op2 = getValue(I.getArgOperand(1)); 6531 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6532 return; 6533 } 6534 case Intrinsic::abs: { 6535 // TODO: Preserve "int min is poison" arg in SDAG? 6536 SDValue Op1 = getValue(I.getArgOperand(0)); 6537 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6538 return; 6539 } 6540 case Intrinsic::stacksave: { 6541 SDValue Op = getRoot(); 6542 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6543 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6544 setValue(&I, Res); 6545 DAG.setRoot(Res.getValue(1)); 6546 return; 6547 } 6548 case Intrinsic::stackrestore: 6549 Res = getValue(I.getArgOperand(0)); 6550 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6551 return; 6552 case Intrinsic::get_dynamic_area_offset: { 6553 SDValue Op = getRoot(); 6554 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6555 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6556 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6557 // target. 6558 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6559 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6560 " intrinsic!"); 6561 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6562 Op); 6563 DAG.setRoot(Op); 6564 setValue(&I, Res); 6565 return; 6566 } 6567 case Intrinsic::stackguard: { 6568 MachineFunction &MF = DAG.getMachineFunction(); 6569 const Module &M = *MF.getFunction().getParent(); 6570 SDValue Chain = getRoot(); 6571 if (TLI.useLoadStackGuardNode()) { 6572 Res = getLoadStackGuard(DAG, sdl, Chain); 6573 } else { 6574 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6575 const Value *Global = TLI.getSDagStackGuard(M); 6576 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6577 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6578 MachinePointerInfo(Global, 0), Align, 6579 MachineMemOperand::MOVolatile); 6580 } 6581 if (TLI.useStackGuardXorFP()) 6582 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6583 DAG.setRoot(Chain); 6584 setValue(&I, Res); 6585 return; 6586 } 6587 case Intrinsic::stackprotector: { 6588 // Emit code into the DAG to store the stack guard onto the stack. 6589 MachineFunction &MF = DAG.getMachineFunction(); 6590 MachineFrameInfo &MFI = MF.getFrameInfo(); 6591 SDValue Src, Chain = getRoot(); 6592 6593 if (TLI.useLoadStackGuardNode()) 6594 Src = getLoadStackGuard(DAG, sdl, Chain); 6595 else 6596 Src = getValue(I.getArgOperand(0)); // The guard's value. 6597 6598 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6599 6600 int FI = FuncInfo.StaticAllocaMap[Slot]; 6601 MFI.setStackProtectorIndex(FI); 6602 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6603 6604 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6605 6606 // Store the stack protector onto the stack. 6607 Res = DAG.getStore( 6608 Chain, sdl, Src, FIN, 6609 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6610 MaybeAlign(), MachineMemOperand::MOVolatile); 6611 setValue(&I, Res); 6612 DAG.setRoot(Res); 6613 return; 6614 } 6615 case Intrinsic::objectsize: 6616 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6617 6618 case Intrinsic::is_constant: 6619 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6620 6621 case Intrinsic::annotation: 6622 case Intrinsic::ptr_annotation: 6623 case Intrinsic::launder_invariant_group: 6624 case Intrinsic::strip_invariant_group: 6625 // Drop the intrinsic, but forward the value 6626 setValue(&I, getValue(I.getOperand(0))); 6627 return; 6628 6629 case Intrinsic::assume: 6630 case Intrinsic::experimental_noalias_scope_decl: 6631 case Intrinsic::var_annotation: 6632 case Intrinsic::sideeffect: 6633 // Discard annotate attributes, noalias scope declarations, assumptions, and 6634 // artificial side-effects. 6635 return; 6636 6637 case Intrinsic::codeview_annotation: { 6638 // Emit a label associated with this metadata. 6639 MachineFunction &MF = DAG.getMachineFunction(); 6640 MCSymbol *Label = 6641 MF.getMMI().getContext().createTempSymbol("annotation", true); 6642 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6643 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6644 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6645 DAG.setRoot(Res); 6646 return; 6647 } 6648 6649 case Intrinsic::init_trampoline: { 6650 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6651 6652 SDValue Ops[6]; 6653 Ops[0] = getRoot(); 6654 Ops[1] = getValue(I.getArgOperand(0)); 6655 Ops[2] = getValue(I.getArgOperand(1)); 6656 Ops[3] = getValue(I.getArgOperand(2)); 6657 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6658 Ops[5] = DAG.getSrcValue(F); 6659 6660 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6661 6662 DAG.setRoot(Res); 6663 return; 6664 } 6665 case Intrinsic::adjust_trampoline: 6666 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6667 TLI.getPointerTy(DAG.getDataLayout()), 6668 getValue(I.getArgOperand(0)))); 6669 return; 6670 case Intrinsic::gcroot: { 6671 assert(DAG.getMachineFunction().getFunction().hasGC() && 6672 "only valid in functions with gc specified, enforced by Verifier"); 6673 assert(GFI && "implied by previous"); 6674 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6675 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6676 6677 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6678 GFI->addStackRoot(FI->getIndex(), TypeMap); 6679 return; 6680 } 6681 case Intrinsic::gcread: 6682 case Intrinsic::gcwrite: 6683 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6684 case Intrinsic::flt_rounds: 6685 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6686 setValue(&I, Res); 6687 DAG.setRoot(Res.getValue(1)); 6688 return; 6689 6690 case Intrinsic::expect: 6691 // Just replace __builtin_expect(exp, c) with EXP. 6692 setValue(&I, getValue(I.getArgOperand(0))); 6693 return; 6694 6695 case Intrinsic::ubsantrap: 6696 case Intrinsic::debugtrap: 6697 case Intrinsic::trap: { 6698 StringRef TrapFuncName = 6699 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6700 if (TrapFuncName.empty()) { 6701 switch (Intrinsic) { 6702 case Intrinsic::trap: 6703 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6704 break; 6705 case Intrinsic::debugtrap: 6706 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6707 break; 6708 case Intrinsic::ubsantrap: 6709 DAG.setRoot(DAG.getNode( 6710 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6711 DAG.getTargetConstant( 6712 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6713 MVT::i32))); 6714 break; 6715 default: llvm_unreachable("unknown trap intrinsic"); 6716 } 6717 return; 6718 } 6719 TargetLowering::ArgListTy Args; 6720 if (Intrinsic == Intrinsic::ubsantrap) { 6721 Args.push_back(TargetLoweringBase::ArgListEntry()); 6722 Args[0].Val = I.getArgOperand(0); 6723 Args[0].Node = getValue(Args[0].Val); 6724 Args[0].Ty = Args[0].Val->getType(); 6725 } 6726 6727 TargetLowering::CallLoweringInfo CLI(DAG); 6728 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6729 CallingConv::C, I.getType(), 6730 DAG.getExternalSymbol(TrapFuncName.data(), 6731 TLI.getPointerTy(DAG.getDataLayout())), 6732 std::move(Args)); 6733 6734 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6735 DAG.setRoot(Result.second); 6736 return; 6737 } 6738 6739 case Intrinsic::uadd_with_overflow: 6740 case Intrinsic::sadd_with_overflow: 6741 case Intrinsic::usub_with_overflow: 6742 case Intrinsic::ssub_with_overflow: 6743 case Intrinsic::umul_with_overflow: 6744 case Intrinsic::smul_with_overflow: { 6745 ISD::NodeType Op; 6746 switch (Intrinsic) { 6747 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6748 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6749 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6750 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6751 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6752 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6753 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6754 } 6755 SDValue Op1 = getValue(I.getArgOperand(0)); 6756 SDValue Op2 = getValue(I.getArgOperand(1)); 6757 6758 EVT ResultVT = Op1.getValueType(); 6759 EVT OverflowVT = MVT::i1; 6760 if (ResultVT.isVector()) 6761 OverflowVT = EVT::getVectorVT( 6762 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6763 6764 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6765 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6766 return; 6767 } 6768 case Intrinsic::prefetch: { 6769 SDValue Ops[5]; 6770 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6771 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6772 Ops[0] = DAG.getRoot(); 6773 Ops[1] = getValue(I.getArgOperand(0)); 6774 Ops[2] = getValue(I.getArgOperand(1)); 6775 Ops[3] = getValue(I.getArgOperand(2)); 6776 Ops[4] = getValue(I.getArgOperand(3)); 6777 SDValue Result = DAG.getMemIntrinsicNode( 6778 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6779 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6780 /* align */ None, Flags); 6781 6782 // Chain the prefetch in parallell with any pending loads, to stay out of 6783 // the way of later optimizations. 6784 PendingLoads.push_back(Result); 6785 Result = getRoot(); 6786 DAG.setRoot(Result); 6787 return; 6788 } 6789 case Intrinsic::lifetime_start: 6790 case Intrinsic::lifetime_end: { 6791 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6792 // Stack coloring is not enabled in O0, discard region information. 6793 if (TM.getOptLevel() == CodeGenOpt::None) 6794 return; 6795 6796 const int64_t ObjectSize = 6797 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6798 Value *const ObjectPtr = I.getArgOperand(1); 6799 SmallVector<const Value *, 4> Allocas; 6800 getUnderlyingObjects(ObjectPtr, Allocas); 6801 6802 for (const Value *Alloca : Allocas) { 6803 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6804 6805 // Could not find an Alloca. 6806 if (!LifetimeObject) 6807 continue; 6808 6809 // First check that the Alloca is static, otherwise it won't have a 6810 // valid frame index. 6811 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6812 if (SI == FuncInfo.StaticAllocaMap.end()) 6813 return; 6814 6815 const int FrameIndex = SI->second; 6816 int64_t Offset; 6817 if (GetPointerBaseWithConstantOffset( 6818 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6819 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6820 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6821 Offset); 6822 DAG.setRoot(Res); 6823 } 6824 return; 6825 } 6826 case Intrinsic::pseudoprobe: { 6827 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6828 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6829 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6830 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6831 DAG.setRoot(Res); 6832 return; 6833 } 6834 case Intrinsic::invariant_start: 6835 // Discard region information. 6836 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6837 return; 6838 case Intrinsic::invariant_end: 6839 // Discard region information. 6840 return; 6841 case Intrinsic::clear_cache: 6842 /// FunctionName may be null. 6843 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6844 lowerCallToExternalSymbol(I, FunctionName); 6845 return; 6846 case Intrinsic::donothing: 6847 case Intrinsic::seh_try_begin: 6848 case Intrinsic::seh_scope_begin: 6849 case Intrinsic::seh_try_end: 6850 case Intrinsic::seh_scope_end: 6851 // ignore 6852 return; 6853 case Intrinsic::experimental_stackmap: 6854 visitStackmap(I); 6855 return; 6856 case Intrinsic::experimental_patchpoint_void: 6857 case Intrinsic::experimental_patchpoint_i64: 6858 visitPatchpoint(I); 6859 return; 6860 case Intrinsic::experimental_gc_statepoint: 6861 LowerStatepoint(cast<GCStatepointInst>(I)); 6862 return; 6863 case Intrinsic::experimental_gc_result: 6864 visitGCResult(cast<GCResultInst>(I)); 6865 return; 6866 case Intrinsic::experimental_gc_relocate: 6867 visitGCRelocate(cast<GCRelocateInst>(I)); 6868 return; 6869 case Intrinsic::instrprof_increment: 6870 llvm_unreachable("instrprof failed to lower an increment"); 6871 case Intrinsic::instrprof_value_profile: 6872 llvm_unreachable("instrprof failed to lower a value profiling call"); 6873 case Intrinsic::localescape: { 6874 MachineFunction &MF = DAG.getMachineFunction(); 6875 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6876 6877 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6878 // is the same on all targets. 6879 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6880 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6881 if (isa<ConstantPointerNull>(Arg)) 6882 continue; // Skip null pointers. They represent a hole in index space. 6883 AllocaInst *Slot = cast<AllocaInst>(Arg); 6884 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6885 "can only escape static allocas"); 6886 int FI = FuncInfo.StaticAllocaMap[Slot]; 6887 MCSymbol *FrameAllocSym = 6888 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6889 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6890 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6891 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6892 .addSym(FrameAllocSym) 6893 .addFrameIndex(FI); 6894 } 6895 6896 return; 6897 } 6898 6899 case Intrinsic::localrecover: { 6900 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6901 MachineFunction &MF = DAG.getMachineFunction(); 6902 6903 // Get the symbol that defines the frame offset. 6904 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6905 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6906 unsigned IdxVal = 6907 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6908 MCSymbol *FrameAllocSym = 6909 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6910 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6911 6912 Value *FP = I.getArgOperand(1); 6913 SDValue FPVal = getValue(FP); 6914 EVT PtrVT = FPVal.getValueType(); 6915 6916 // Create a MCSymbol for the label to avoid any target lowering 6917 // that would make this PC relative. 6918 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6919 SDValue OffsetVal = 6920 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6921 6922 // Add the offset to the FP. 6923 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6924 setValue(&I, Add); 6925 6926 return; 6927 } 6928 6929 case Intrinsic::eh_exceptionpointer: 6930 case Intrinsic::eh_exceptioncode: { 6931 // Get the exception pointer vreg, copy from it, and resize it to fit. 6932 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6933 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6934 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6935 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6936 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 6937 if (Intrinsic == Intrinsic::eh_exceptioncode) 6938 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 6939 setValue(&I, N); 6940 return; 6941 } 6942 case Intrinsic::xray_customevent: { 6943 // Here we want to make sure that the intrinsic behaves as if it has a 6944 // specific calling convention, and only for x86_64. 6945 // FIXME: Support other platforms later. 6946 const auto &Triple = DAG.getTarget().getTargetTriple(); 6947 if (Triple.getArch() != Triple::x86_64) 6948 return; 6949 6950 SmallVector<SDValue, 8> Ops; 6951 6952 // We want to say that we always want the arguments in registers. 6953 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6954 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6955 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6956 SDValue Chain = getRoot(); 6957 Ops.push_back(LogEntryVal); 6958 Ops.push_back(StrSizeVal); 6959 Ops.push_back(Chain); 6960 6961 // We need to enforce the calling convention for the callsite, so that 6962 // argument ordering is enforced correctly, and that register allocation can 6963 // see that some registers may be assumed clobbered and have to preserve 6964 // them across calls to the intrinsic. 6965 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6966 sdl, NodeTys, Ops); 6967 SDValue patchableNode = SDValue(MN, 0); 6968 DAG.setRoot(patchableNode); 6969 setValue(&I, patchableNode); 6970 return; 6971 } 6972 case Intrinsic::xray_typedevent: { 6973 // Here we want to make sure that the intrinsic behaves as if it has a 6974 // specific calling convention, and only for x86_64. 6975 // FIXME: Support other platforms later. 6976 const auto &Triple = DAG.getTarget().getTargetTriple(); 6977 if (Triple.getArch() != Triple::x86_64) 6978 return; 6979 6980 SmallVector<SDValue, 8> Ops; 6981 6982 // We want to say that we always want the arguments in registers. 6983 // It's unclear to me how manipulating the selection DAG here forces callers 6984 // to provide arguments in registers instead of on the stack. 6985 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6986 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6987 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6988 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6989 SDValue Chain = getRoot(); 6990 Ops.push_back(LogTypeId); 6991 Ops.push_back(LogEntryVal); 6992 Ops.push_back(StrSizeVal); 6993 Ops.push_back(Chain); 6994 6995 // We need to enforce the calling convention for the callsite, so that 6996 // argument ordering is enforced correctly, and that register allocation can 6997 // see that some registers may be assumed clobbered and have to preserve 6998 // them across calls to the intrinsic. 6999 MachineSDNode *MN = DAG.getMachineNode( 7000 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7001 SDValue patchableNode = SDValue(MN, 0); 7002 DAG.setRoot(patchableNode); 7003 setValue(&I, patchableNode); 7004 return; 7005 } 7006 case Intrinsic::experimental_deoptimize: 7007 LowerDeoptimizeCall(&I); 7008 return; 7009 case Intrinsic::experimental_stepvector: 7010 visitStepVector(I); 7011 return; 7012 case Intrinsic::vector_reduce_fadd: 7013 case Intrinsic::vector_reduce_fmul: 7014 case Intrinsic::vector_reduce_add: 7015 case Intrinsic::vector_reduce_mul: 7016 case Intrinsic::vector_reduce_and: 7017 case Intrinsic::vector_reduce_or: 7018 case Intrinsic::vector_reduce_xor: 7019 case Intrinsic::vector_reduce_smax: 7020 case Intrinsic::vector_reduce_smin: 7021 case Intrinsic::vector_reduce_umax: 7022 case Intrinsic::vector_reduce_umin: 7023 case Intrinsic::vector_reduce_fmax: 7024 case Intrinsic::vector_reduce_fmin: 7025 visitVectorReduce(I, Intrinsic); 7026 return; 7027 7028 case Intrinsic::icall_branch_funnel: { 7029 SmallVector<SDValue, 16> Ops; 7030 Ops.push_back(getValue(I.getArgOperand(0))); 7031 7032 int64_t Offset; 7033 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7034 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7035 if (!Base) 7036 report_fatal_error( 7037 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7038 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7039 7040 struct BranchFunnelTarget { 7041 int64_t Offset; 7042 SDValue Target; 7043 }; 7044 SmallVector<BranchFunnelTarget, 8> Targets; 7045 7046 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7047 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7048 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7049 if (ElemBase != Base) 7050 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7051 "to the same GlobalValue"); 7052 7053 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7054 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7055 if (!GA) 7056 report_fatal_error( 7057 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7058 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7059 GA->getGlobal(), sdl, Val.getValueType(), 7060 GA->getOffset())}); 7061 } 7062 llvm::sort(Targets, 7063 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7064 return T1.Offset < T2.Offset; 7065 }); 7066 7067 for (auto &T : Targets) { 7068 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7069 Ops.push_back(T.Target); 7070 } 7071 7072 Ops.push_back(DAG.getRoot()); // Chain 7073 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7074 MVT::Other, Ops), 7075 0); 7076 DAG.setRoot(N); 7077 setValue(&I, N); 7078 HasTailCall = true; 7079 return; 7080 } 7081 7082 case Intrinsic::wasm_landingpad_index: 7083 // Information this intrinsic contained has been transferred to 7084 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7085 // delete it now. 7086 return; 7087 7088 case Intrinsic::aarch64_settag: 7089 case Intrinsic::aarch64_settag_zero: { 7090 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7091 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7092 SDValue Val = TSI.EmitTargetCodeForSetTag( 7093 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7094 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7095 ZeroMemory); 7096 DAG.setRoot(Val); 7097 setValue(&I, Val); 7098 return; 7099 } 7100 case Intrinsic::ptrmask: { 7101 SDValue Ptr = getValue(I.getOperand(0)); 7102 SDValue Const = getValue(I.getOperand(1)); 7103 7104 EVT PtrVT = Ptr.getValueType(); 7105 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7106 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7107 return; 7108 } 7109 case Intrinsic::get_active_lane_mask: { 7110 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7111 SDValue Index = getValue(I.getOperand(0)); 7112 EVT ElementVT = Index.getValueType(); 7113 7114 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7115 visitTargetIntrinsic(I, Intrinsic); 7116 return; 7117 } 7118 7119 SDValue TripCount = getValue(I.getOperand(1)); 7120 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7121 7122 SDValue VectorIndex, VectorTripCount; 7123 if (VecTy.isScalableVector()) { 7124 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7125 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7126 } else { 7127 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7128 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7129 } 7130 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7131 SDValue VectorInduction = DAG.getNode( 7132 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7133 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7134 VectorTripCount, ISD::CondCode::SETULT); 7135 setValue(&I, SetCC); 7136 return; 7137 } 7138 case Intrinsic::experimental_vector_insert: { 7139 SDValue Vec = getValue(I.getOperand(0)); 7140 SDValue SubVec = getValue(I.getOperand(1)); 7141 SDValue Index = getValue(I.getOperand(2)); 7142 7143 // The intrinsic's index type is i64, but the SDNode requires an index type 7144 // suitable for the target. Convert the index as required. 7145 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7146 if (Index.getValueType() != VectorIdxTy) 7147 Index = DAG.getVectorIdxConstant( 7148 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7149 7150 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7151 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7152 Index)); 7153 return; 7154 } 7155 case Intrinsic::experimental_vector_extract: { 7156 SDValue Vec = getValue(I.getOperand(0)); 7157 SDValue Index = getValue(I.getOperand(1)); 7158 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7159 7160 // The intrinsic's index type is i64, but the SDNode requires an index type 7161 // suitable for the target. Convert the index as required. 7162 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7163 if (Index.getValueType() != VectorIdxTy) 7164 Index = DAG.getVectorIdxConstant( 7165 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7166 7167 setValue(&I, 7168 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7169 return; 7170 } 7171 case Intrinsic::experimental_vector_reverse: 7172 visitVectorReverse(I); 7173 return; 7174 case Intrinsic::experimental_vector_splice: 7175 visitVectorSplice(I); 7176 return; 7177 } 7178 } 7179 7180 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7181 const ConstrainedFPIntrinsic &FPI) { 7182 SDLoc sdl = getCurSDLoc(); 7183 7184 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7185 SmallVector<EVT, 4> ValueVTs; 7186 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7187 ValueVTs.push_back(MVT::Other); // Out chain 7188 7189 // We do not need to serialize constrained FP intrinsics against 7190 // each other or against (nonvolatile) loads, so they can be 7191 // chained like loads. 7192 SDValue Chain = DAG.getRoot(); 7193 SmallVector<SDValue, 4> Opers; 7194 Opers.push_back(Chain); 7195 if (FPI.isUnaryOp()) { 7196 Opers.push_back(getValue(FPI.getArgOperand(0))); 7197 } else if (FPI.isTernaryOp()) { 7198 Opers.push_back(getValue(FPI.getArgOperand(0))); 7199 Opers.push_back(getValue(FPI.getArgOperand(1))); 7200 Opers.push_back(getValue(FPI.getArgOperand(2))); 7201 } else { 7202 Opers.push_back(getValue(FPI.getArgOperand(0))); 7203 Opers.push_back(getValue(FPI.getArgOperand(1))); 7204 } 7205 7206 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7207 assert(Result.getNode()->getNumValues() == 2); 7208 7209 // Push node to the appropriate list so that future instructions can be 7210 // chained up correctly. 7211 SDValue OutChain = Result.getValue(1); 7212 switch (EB) { 7213 case fp::ExceptionBehavior::ebIgnore: 7214 // The only reason why ebIgnore nodes still need to be chained is that 7215 // they might depend on the current rounding mode, and therefore must 7216 // not be moved across instruction that may change that mode. 7217 LLVM_FALLTHROUGH; 7218 case fp::ExceptionBehavior::ebMayTrap: 7219 // These must not be moved across calls or instructions that may change 7220 // floating-point exception masks. 7221 PendingConstrainedFP.push_back(OutChain); 7222 break; 7223 case fp::ExceptionBehavior::ebStrict: 7224 // These must not be moved across calls or instructions that may change 7225 // floating-point exception masks or read floating-point exception flags. 7226 // In addition, they cannot be optimized out even if unused. 7227 PendingConstrainedFPStrict.push_back(OutChain); 7228 break; 7229 } 7230 }; 7231 7232 SDVTList VTs = DAG.getVTList(ValueVTs); 7233 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7234 7235 SDNodeFlags Flags; 7236 if (EB == fp::ExceptionBehavior::ebIgnore) 7237 Flags.setNoFPExcept(true); 7238 7239 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7240 Flags.copyFMF(*FPOp); 7241 7242 unsigned Opcode; 7243 switch (FPI.getIntrinsicID()) { 7244 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7245 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7246 case Intrinsic::INTRINSIC: \ 7247 Opcode = ISD::STRICT_##DAGN; \ 7248 break; 7249 #include "llvm/IR/ConstrainedOps.def" 7250 case Intrinsic::experimental_constrained_fmuladd: { 7251 Opcode = ISD::STRICT_FMA; 7252 // Break fmuladd into fmul and fadd. 7253 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7254 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7255 ValueVTs[0])) { 7256 Opers.pop_back(); 7257 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7258 pushOutChain(Mul, EB); 7259 Opcode = ISD::STRICT_FADD; 7260 Opers.clear(); 7261 Opers.push_back(Mul.getValue(1)); 7262 Opers.push_back(Mul.getValue(0)); 7263 Opers.push_back(getValue(FPI.getArgOperand(2))); 7264 } 7265 break; 7266 } 7267 } 7268 7269 // A few strict DAG nodes carry additional operands that are not 7270 // set up by the default code above. 7271 switch (Opcode) { 7272 default: break; 7273 case ISD::STRICT_FP_ROUND: 7274 Opers.push_back( 7275 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7276 break; 7277 case ISD::STRICT_FSETCC: 7278 case ISD::STRICT_FSETCCS: { 7279 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7280 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7281 if (TM.Options.NoNaNsFPMath) 7282 Condition = getFCmpCodeWithoutNaN(Condition); 7283 Opers.push_back(DAG.getCondCode(Condition)); 7284 break; 7285 } 7286 } 7287 7288 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7289 pushOutChain(Result, EB); 7290 7291 SDValue FPResult = Result.getValue(0); 7292 setValue(&FPI, FPResult); 7293 } 7294 7295 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7296 Optional<unsigned> ResOPC; 7297 switch (VPIntrin.getIntrinsicID()) { 7298 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 7299 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) ResOPC = ISD::VPSD; 7300 #define END_REGISTER_VP_INTRINSIC(VPID) break; 7301 #include "llvm/IR/VPIntrinsics.def" 7302 } 7303 7304 if (!ResOPC.hasValue()) 7305 llvm_unreachable( 7306 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7307 7308 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7309 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7310 if (VPIntrin.getFastMathFlags().allowReassoc()) 7311 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7312 : ISD::VP_REDUCE_FMUL; 7313 } 7314 7315 return ResOPC.getValue(); 7316 } 7317 7318 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7319 SmallVector<SDValue, 7> &OpValues, 7320 bool IsGather) { 7321 SDLoc DL = getCurSDLoc(); 7322 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7323 Value *PtrOperand = VPIntrin.getArgOperand(0); 7324 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7325 if (!Alignment) 7326 Alignment = DAG.getEVTAlign(VT); 7327 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7328 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7329 SDValue LD; 7330 bool AddToChain = true; 7331 if (!IsGather) { 7332 // Do not serialize variable-length loads of constant memory with 7333 // anything. 7334 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7335 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7336 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7337 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7338 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7339 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7340 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7341 MMO, false /*IsExpanding */); 7342 } else { 7343 unsigned AS = 7344 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7345 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7346 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7347 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7348 SDValue Base, Index, Scale; 7349 ISD::MemIndexType IndexType; 7350 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7351 this, VPIntrin.getParent()); 7352 if (!UniformBase) { 7353 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7354 Index = getValue(PtrOperand); 7355 IndexType = ISD::SIGNED_UNSCALED; 7356 Scale = 7357 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7358 } 7359 EVT IdxVT = Index.getValueType(); 7360 EVT EltTy = IdxVT.getVectorElementType(); 7361 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7362 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7363 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7364 } 7365 LD = DAG.getGatherVP( 7366 DAG.getVTList(VT, MVT::Other), VT, DL, 7367 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7368 IndexType); 7369 } 7370 if (AddToChain) 7371 PendingLoads.push_back(LD.getValue(1)); 7372 setValue(&VPIntrin, LD); 7373 } 7374 7375 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7376 SmallVector<SDValue, 7> &OpValues, 7377 bool IsScatter) { 7378 SDLoc DL = getCurSDLoc(); 7379 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7380 Value *PtrOperand = VPIntrin.getArgOperand(1); 7381 EVT VT = OpValues[0].getValueType(); 7382 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7383 if (!Alignment) 7384 Alignment = DAG.getEVTAlign(VT); 7385 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7386 SDValue ST; 7387 if (!IsScatter) { 7388 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7389 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7390 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7391 ST = 7392 DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], OpValues[1], 7393 OpValues[2], OpValues[3], MMO, false /* IsTruncating */); 7394 } else { 7395 unsigned AS = 7396 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7397 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7398 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7399 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7400 SDValue Base, Index, Scale; 7401 ISD::MemIndexType IndexType; 7402 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7403 this, VPIntrin.getParent()); 7404 if (!UniformBase) { 7405 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7406 Index = getValue(PtrOperand); 7407 IndexType = ISD::SIGNED_UNSCALED; 7408 Scale = 7409 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7410 } 7411 EVT IdxVT = Index.getValueType(); 7412 EVT EltTy = IdxVT.getVectorElementType(); 7413 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7414 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7415 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7416 } 7417 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7418 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7419 OpValues[2], OpValues[3]}, 7420 MMO, IndexType); 7421 } 7422 DAG.setRoot(ST); 7423 setValue(&VPIntrin, ST); 7424 } 7425 7426 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7427 const VPIntrinsic &VPIntrin) { 7428 SDLoc DL = getCurSDLoc(); 7429 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7430 7431 SmallVector<EVT, 4> ValueVTs; 7432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7433 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7434 SDVTList VTs = DAG.getVTList(ValueVTs); 7435 7436 auto EVLParamPos = 7437 VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID()); 7438 7439 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7440 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7441 "Unexpected target EVL type"); 7442 7443 // Request operands. 7444 SmallVector<SDValue, 7> OpValues; 7445 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7446 auto Op = getValue(VPIntrin.getArgOperand(I)); 7447 if (I == EVLParamPos) 7448 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7449 OpValues.push_back(Op); 7450 } 7451 7452 switch (Opcode) { 7453 default: { 7454 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7455 setValue(&VPIntrin, Result); 7456 break; 7457 } 7458 case ISD::VP_LOAD: 7459 case ISD::VP_GATHER: 7460 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7461 Opcode == ISD::VP_GATHER); 7462 break; 7463 case ISD::VP_STORE: 7464 case ISD::VP_SCATTER: 7465 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7466 break; 7467 } 7468 } 7469 7470 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7471 const BasicBlock *EHPadBB, 7472 MCSymbol *&BeginLabel) { 7473 MachineFunction &MF = DAG.getMachineFunction(); 7474 MachineModuleInfo &MMI = MF.getMMI(); 7475 7476 // Insert a label before the invoke call to mark the try range. This can be 7477 // used to detect deletion of the invoke via the MachineModuleInfo. 7478 BeginLabel = MMI.getContext().createTempSymbol(); 7479 7480 // For SjLj, keep track of which landing pads go with which invokes 7481 // so as to maintain the ordering of pads in the LSDA. 7482 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7483 if (CallSiteIndex) { 7484 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7485 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7486 7487 // Now that the call site is handled, stop tracking it. 7488 MMI.setCurrentCallSite(0); 7489 } 7490 7491 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7492 } 7493 7494 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7495 const BasicBlock *EHPadBB, 7496 MCSymbol *BeginLabel) { 7497 assert(BeginLabel && "BeginLabel should've been set"); 7498 7499 MachineFunction &MF = DAG.getMachineFunction(); 7500 MachineModuleInfo &MMI = MF.getMMI(); 7501 7502 // Insert a label at the end of the invoke call to mark the try range. This 7503 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7504 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7505 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7506 7507 // Inform MachineModuleInfo of range. 7508 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7509 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7510 // actually use outlined funclets and their LSDA info style. 7511 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7512 assert(II && "II should've been set"); 7513 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7514 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7515 } else if (!isScopedEHPersonality(Pers)) { 7516 assert(EHPadBB); 7517 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7518 } 7519 7520 return Chain; 7521 } 7522 7523 std::pair<SDValue, SDValue> 7524 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7525 const BasicBlock *EHPadBB) { 7526 MCSymbol *BeginLabel = nullptr; 7527 7528 if (EHPadBB) { 7529 // Both PendingLoads and PendingExports must be flushed here; 7530 // this call might not return. 7531 (void)getRoot(); 7532 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7533 CLI.setChain(getRoot()); 7534 } 7535 7536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7537 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7538 7539 assert((CLI.IsTailCall || Result.second.getNode()) && 7540 "Non-null chain expected with non-tail call!"); 7541 assert((Result.second.getNode() || !Result.first.getNode()) && 7542 "Null value expected with tail call!"); 7543 7544 if (!Result.second.getNode()) { 7545 // As a special case, a null chain means that a tail call has been emitted 7546 // and the DAG root is already updated. 7547 HasTailCall = true; 7548 7549 // Since there's no actual continuation from this block, nothing can be 7550 // relying on us setting vregs for them. 7551 PendingExports.clear(); 7552 } else { 7553 DAG.setRoot(Result.second); 7554 } 7555 7556 if (EHPadBB) { 7557 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7558 BeginLabel)); 7559 } 7560 7561 return Result; 7562 } 7563 7564 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7565 bool isTailCall, 7566 bool isMustTailCall, 7567 const BasicBlock *EHPadBB) { 7568 auto &DL = DAG.getDataLayout(); 7569 FunctionType *FTy = CB.getFunctionType(); 7570 Type *RetTy = CB.getType(); 7571 7572 TargetLowering::ArgListTy Args; 7573 Args.reserve(CB.arg_size()); 7574 7575 const Value *SwiftErrorVal = nullptr; 7576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7577 7578 if (isTailCall) { 7579 // Avoid emitting tail calls in functions with the disable-tail-calls 7580 // attribute. 7581 auto *Caller = CB.getParent()->getParent(); 7582 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7583 "true" && !isMustTailCall) 7584 isTailCall = false; 7585 7586 // We can't tail call inside a function with a swifterror argument. Lowering 7587 // does not support this yet. It would have to move into the swifterror 7588 // register before the call. 7589 if (TLI.supportSwiftError() && 7590 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7591 isTailCall = false; 7592 } 7593 7594 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7595 TargetLowering::ArgListEntry Entry; 7596 const Value *V = *I; 7597 7598 // Skip empty types 7599 if (V->getType()->isEmptyTy()) 7600 continue; 7601 7602 SDValue ArgNode = getValue(V); 7603 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7604 7605 Entry.setAttributes(&CB, I - CB.arg_begin()); 7606 7607 // Use swifterror virtual register as input to the call. 7608 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7609 SwiftErrorVal = V; 7610 // We find the virtual register for the actual swifterror argument. 7611 // Instead of using the Value, we use the virtual register instead. 7612 Entry.Node = 7613 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7614 EVT(TLI.getPointerTy(DL))); 7615 } 7616 7617 Args.push_back(Entry); 7618 7619 // If we have an explicit sret argument that is an Instruction, (i.e., it 7620 // might point to function-local memory), we can't meaningfully tail-call. 7621 if (Entry.IsSRet && isa<Instruction>(V)) 7622 isTailCall = false; 7623 } 7624 7625 // If call site has a cfguardtarget operand bundle, create and add an 7626 // additional ArgListEntry. 7627 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7628 TargetLowering::ArgListEntry Entry; 7629 Value *V = Bundle->Inputs[0]; 7630 SDValue ArgNode = getValue(V); 7631 Entry.Node = ArgNode; 7632 Entry.Ty = V->getType(); 7633 Entry.IsCFGuardTarget = true; 7634 Args.push_back(Entry); 7635 } 7636 7637 // Check if target-independent constraints permit a tail call here. 7638 // Target-dependent constraints are checked within TLI->LowerCallTo. 7639 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7640 isTailCall = false; 7641 7642 // Disable tail calls if there is an swifterror argument. Targets have not 7643 // been updated to support tail calls. 7644 if (TLI.supportSwiftError() && SwiftErrorVal) 7645 isTailCall = false; 7646 7647 TargetLowering::CallLoweringInfo CLI(DAG); 7648 CLI.setDebugLoc(getCurSDLoc()) 7649 .setChain(getRoot()) 7650 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7651 .setTailCall(isTailCall) 7652 .setConvergent(CB.isConvergent()) 7653 .setIsPreallocated( 7654 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7655 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7656 7657 if (Result.first.getNode()) { 7658 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7659 setValue(&CB, Result.first); 7660 } 7661 7662 // The last element of CLI.InVals has the SDValue for swifterror return. 7663 // Here we copy it to a virtual register and update SwiftErrorMap for 7664 // book-keeping. 7665 if (SwiftErrorVal && TLI.supportSwiftError()) { 7666 // Get the last element of InVals. 7667 SDValue Src = CLI.InVals.back(); 7668 Register VReg = 7669 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7670 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7671 DAG.setRoot(CopyNode); 7672 } 7673 } 7674 7675 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7676 SelectionDAGBuilder &Builder) { 7677 // Check to see if this load can be trivially constant folded, e.g. if the 7678 // input is from a string literal. 7679 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7680 // Cast pointer to the type we really want to load. 7681 Type *LoadTy = 7682 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7683 if (LoadVT.isVector()) 7684 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7685 7686 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7687 PointerType::getUnqual(LoadTy)); 7688 7689 if (const Constant *LoadCst = 7690 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7691 LoadTy, Builder.DAG.getDataLayout())) 7692 return Builder.getValue(LoadCst); 7693 } 7694 7695 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7696 // still constant memory, the input chain can be the entry node. 7697 SDValue Root; 7698 bool ConstantMemory = false; 7699 7700 // Do not serialize (non-volatile) loads of constant memory with anything. 7701 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7702 Root = Builder.DAG.getEntryNode(); 7703 ConstantMemory = true; 7704 } else { 7705 // Do not serialize non-volatile loads against each other. 7706 Root = Builder.DAG.getRoot(); 7707 } 7708 7709 SDValue Ptr = Builder.getValue(PtrVal); 7710 SDValue LoadVal = 7711 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7712 MachinePointerInfo(PtrVal), Align(1)); 7713 7714 if (!ConstantMemory) 7715 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7716 return LoadVal; 7717 } 7718 7719 /// Record the value for an instruction that produces an integer result, 7720 /// converting the type where necessary. 7721 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7722 SDValue Value, 7723 bool IsSigned) { 7724 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7725 I.getType(), true); 7726 if (IsSigned) 7727 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7728 else 7729 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7730 setValue(&I, Value); 7731 } 7732 7733 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7734 /// true and lower it. Otherwise return false, and it will be lowered like a 7735 /// normal call. 7736 /// The caller already checked that \p I calls the appropriate LibFunc with a 7737 /// correct prototype. 7738 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7739 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7740 const Value *Size = I.getArgOperand(2); 7741 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7742 if (CSize && CSize->getZExtValue() == 0) { 7743 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7744 I.getType(), true); 7745 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7746 return true; 7747 } 7748 7749 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7750 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7751 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7752 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7753 if (Res.first.getNode()) { 7754 processIntegerCallValue(I, Res.first, true); 7755 PendingLoads.push_back(Res.second); 7756 return true; 7757 } 7758 7759 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7760 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7761 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7762 return false; 7763 7764 // If the target has a fast compare for the given size, it will return a 7765 // preferred load type for that size. Require that the load VT is legal and 7766 // that the target supports unaligned loads of that type. Otherwise, return 7767 // INVALID. 7768 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7770 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7771 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7772 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7773 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7774 // TODO: Check alignment of src and dest ptrs. 7775 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7776 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7777 if (!TLI.isTypeLegal(LVT) || 7778 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7779 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7780 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7781 } 7782 7783 return LVT; 7784 }; 7785 7786 // This turns into unaligned loads. We only do this if the target natively 7787 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7788 // we'll only produce a small number of byte loads. 7789 MVT LoadVT; 7790 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7791 switch (NumBitsToCompare) { 7792 default: 7793 return false; 7794 case 16: 7795 LoadVT = MVT::i16; 7796 break; 7797 case 32: 7798 LoadVT = MVT::i32; 7799 break; 7800 case 64: 7801 case 128: 7802 case 256: 7803 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7804 break; 7805 } 7806 7807 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7808 return false; 7809 7810 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7811 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7812 7813 // Bitcast to a wide integer type if the loads are vectors. 7814 if (LoadVT.isVector()) { 7815 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7816 LoadL = DAG.getBitcast(CmpVT, LoadL); 7817 LoadR = DAG.getBitcast(CmpVT, LoadR); 7818 } 7819 7820 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7821 processIntegerCallValue(I, Cmp, false); 7822 return true; 7823 } 7824 7825 /// See if we can lower a memchr call into an optimized form. If so, return 7826 /// true and lower it. Otherwise return false, and it will be lowered like a 7827 /// normal call. 7828 /// The caller already checked that \p I calls the appropriate LibFunc with a 7829 /// correct prototype. 7830 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7831 const Value *Src = I.getArgOperand(0); 7832 const Value *Char = I.getArgOperand(1); 7833 const Value *Length = I.getArgOperand(2); 7834 7835 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7836 std::pair<SDValue, SDValue> Res = 7837 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7838 getValue(Src), getValue(Char), getValue(Length), 7839 MachinePointerInfo(Src)); 7840 if (Res.first.getNode()) { 7841 setValue(&I, Res.first); 7842 PendingLoads.push_back(Res.second); 7843 return true; 7844 } 7845 7846 return false; 7847 } 7848 7849 /// See if we can lower a mempcpy call into an optimized form. If so, return 7850 /// true and lower it. Otherwise return false, and it will be lowered like a 7851 /// normal call. 7852 /// The caller already checked that \p I calls the appropriate LibFunc with a 7853 /// correct prototype. 7854 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7855 SDValue Dst = getValue(I.getArgOperand(0)); 7856 SDValue Src = getValue(I.getArgOperand(1)); 7857 SDValue Size = getValue(I.getArgOperand(2)); 7858 7859 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7860 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7861 // DAG::getMemcpy needs Alignment to be defined. 7862 Align Alignment = std::min(DstAlign, SrcAlign); 7863 7864 bool isVol = false; 7865 SDLoc sdl = getCurSDLoc(); 7866 7867 // In the mempcpy context we need to pass in a false value for isTailCall 7868 // because the return pointer needs to be adjusted by the size of 7869 // the copied memory. 7870 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7871 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7872 /*isTailCall=*/false, 7873 MachinePointerInfo(I.getArgOperand(0)), 7874 MachinePointerInfo(I.getArgOperand(1)), 7875 I.getAAMetadata()); 7876 assert(MC.getNode() != nullptr && 7877 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7878 DAG.setRoot(MC); 7879 7880 // Check if Size needs to be truncated or extended. 7881 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7882 7883 // Adjust return pointer to point just past the last dst byte. 7884 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7885 Dst, Size); 7886 setValue(&I, DstPlusSize); 7887 return true; 7888 } 7889 7890 /// See if we can lower a strcpy call into an optimized form. If so, return 7891 /// true and lower it, otherwise return false and it will be lowered like a 7892 /// normal call. 7893 /// The caller already checked that \p I calls the appropriate LibFunc with a 7894 /// correct prototype. 7895 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7896 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7897 7898 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7899 std::pair<SDValue, SDValue> Res = 7900 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7901 getValue(Arg0), getValue(Arg1), 7902 MachinePointerInfo(Arg0), 7903 MachinePointerInfo(Arg1), isStpcpy); 7904 if (Res.first.getNode()) { 7905 setValue(&I, Res.first); 7906 DAG.setRoot(Res.second); 7907 return true; 7908 } 7909 7910 return false; 7911 } 7912 7913 /// See if we can lower a strcmp call into an optimized form. If so, return 7914 /// true and lower it, otherwise return false and it will be lowered like a 7915 /// normal call. 7916 /// The caller already checked that \p I calls the appropriate LibFunc with a 7917 /// correct prototype. 7918 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7919 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7920 7921 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7922 std::pair<SDValue, SDValue> Res = 7923 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7924 getValue(Arg0), getValue(Arg1), 7925 MachinePointerInfo(Arg0), 7926 MachinePointerInfo(Arg1)); 7927 if (Res.first.getNode()) { 7928 processIntegerCallValue(I, Res.first, true); 7929 PendingLoads.push_back(Res.second); 7930 return true; 7931 } 7932 7933 return false; 7934 } 7935 7936 /// See if we can lower a strlen call into an optimized form. If so, return 7937 /// true and lower it, otherwise return false and it will be lowered like a 7938 /// normal call. 7939 /// The caller already checked that \p I calls the appropriate LibFunc with a 7940 /// correct prototype. 7941 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7942 const Value *Arg0 = I.getArgOperand(0); 7943 7944 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7945 std::pair<SDValue, SDValue> Res = 7946 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7947 getValue(Arg0), MachinePointerInfo(Arg0)); 7948 if (Res.first.getNode()) { 7949 processIntegerCallValue(I, Res.first, false); 7950 PendingLoads.push_back(Res.second); 7951 return true; 7952 } 7953 7954 return false; 7955 } 7956 7957 /// See if we can lower a strnlen call into an optimized form. If so, return 7958 /// true and lower it, otherwise return false and it will be lowered like a 7959 /// normal call. 7960 /// The caller already checked that \p I calls the appropriate LibFunc with a 7961 /// correct prototype. 7962 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7963 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7964 7965 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7966 std::pair<SDValue, SDValue> Res = 7967 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7968 getValue(Arg0), getValue(Arg1), 7969 MachinePointerInfo(Arg0)); 7970 if (Res.first.getNode()) { 7971 processIntegerCallValue(I, Res.first, false); 7972 PendingLoads.push_back(Res.second); 7973 return true; 7974 } 7975 7976 return false; 7977 } 7978 7979 /// See if we can lower a unary floating-point operation into an SDNode with 7980 /// the specified Opcode. If so, return true and lower it, otherwise return 7981 /// false and it will be lowered like a normal call. 7982 /// The caller already checked that \p I calls the appropriate LibFunc with a 7983 /// correct prototype. 7984 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7985 unsigned Opcode) { 7986 // We already checked this call's prototype; verify it doesn't modify errno. 7987 if (!I.onlyReadsMemory()) 7988 return false; 7989 7990 SDNodeFlags Flags; 7991 Flags.copyFMF(cast<FPMathOperator>(I)); 7992 7993 SDValue Tmp = getValue(I.getArgOperand(0)); 7994 setValue(&I, 7995 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 7996 return true; 7997 } 7998 7999 /// See if we can lower a binary floating-point operation into an SDNode with 8000 /// the specified Opcode. If so, return true and lower it. Otherwise return 8001 /// false, and it will be lowered like a normal call. 8002 /// The caller already checked that \p I calls the appropriate LibFunc with a 8003 /// correct prototype. 8004 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8005 unsigned Opcode) { 8006 // We already checked this call's prototype; verify it doesn't modify errno. 8007 if (!I.onlyReadsMemory()) 8008 return false; 8009 8010 SDNodeFlags Flags; 8011 Flags.copyFMF(cast<FPMathOperator>(I)); 8012 8013 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8014 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8015 EVT VT = Tmp0.getValueType(); 8016 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8017 return true; 8018 } 8019 8020 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8021 // Handle inline assembly differently. 8022 if (I.isInlineAsm()) { 8023 visitInlineAsm(I); 8024 return; 8025 } 8026 8027 if (Function *F = I.getCalledFunction()) { 8028 diagnoseDontCall(I); 8029 8030 if (F->isDeclaration()) { 8031 // Is this an LLVM intrinsic or a target-specific intrinsic? 8032 unsigned IID = F->getIntrinsicID(); 8033 if (!IID) 8034 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8035 IID = II->getIntrinsicID(F); 8036 8037 if (IID) { 8038 visitIntrinsicCall(I, IID); 8039 return; 8040 } 8041 } 8042 8043 // Check for well-known libc/libm calls. If the function is internal, it 8044 // can't be a library call. Don't do the check if marked as nobuiltin for 8045 // some reason or the call site requires strict floating point semantics. 8046 LibFunc Func; 8047 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8048 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8049 LibInfo->hasOptimizedCodeGen(Func)) { 8050 switch (Func) { 8051 default: break; 8052 case LibFunc_bcmp: 8053 if (visitMemCmpBCmpCall(I)) 8054 return; 8055 break; 8056 case LibFunc_copysign: 8057 case LibFunc_copysignf: 8058 case LibFunc_copysignl: 8059 // We already checked this call's prototype; verify it doesn't modify 8060 // errno. 8061 if (I.onlyReadsMemory()) { 8062 SDValue LHS = getValue(I.getArgOperand(0)); 8063 SDValue RHS = getValue(I.getArgOperand(1)); 8064 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8065 LHS.getValueType(), LHS, RHS)); 8066 return; 8067 } 8068 break; 8069 case LibFunc_fabs: 8070 case LibFunc_fabsf: 8071 case LibFunc_fabsl: 8072 if (visitUnaryFloatCall(I, ISD::FABS)) 8073 return; 8074 break; 8075 case LibFunc_fmin: 8076 case LibFunc_fminf: 8077 case LibFunc_fminl: 8078 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8079 return; 8080 break; 8081 case LibFunc_fmax: 8082 case LibFunc_fmaxf: 8083 case LibFunc_fmaxl: 8084 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8085 return; 8086 break; 8087 case LibFunc_sin: 8088 case LibFunc_sinf: 8089 case LibFunc_sinl: 8090 if (visitUnaryFloatCall(I, ISD::FSIN)) 8091 return; 8092 break; 8093 case LibFunc_cos: 8094 case LibFunc_cosf: 8095 case LibFunc_cosl: 8096 if (visitUnaryFloatCall(I, ISD::FCOS)) 8097 return; 8098 break; 8099 case LibFunc_sqrt: 8100 case LibFunc_sqrtf: 8101 case LibFunc_sqrtl: 8102 case LibFunc_sqrt_finite: 8103 case LibFunc_sqrtf_finite: 8104 case LibFunc_sqrtl_finite: 8105 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8106 return; 8107 break; 8108 case LibFunc_floor: 8109 case LibFunc_floorf: 8110 case LibFunc_floorl: 8111 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8112 return; 8113 break; 8114 case LibFunc_nearbyint: 8115 case LibFunc_nearbyintf: 8116 case LibFunc_nearbyintl: 8117 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8118 return; 8119 break; 8120 case LibFunc_ceil: 8121 case LibFunc_ceilf: 8122 case LibFunc_ceill: 8123 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8124 return; 8125 break; 8126 case LibFunc_rint: 8127 case LibFunc_rintf: 8128 case LibFunc_rintl: 8129 if (visitUnaryFloatCall(I, ISD::FRINT)) 8130 return; 8131 break; 8132 case LibFunc_round: 8133 case LibFunc_roundf: 8134 case LibFunc_roundl: 8135 if (visitUnaryFloatCall(I, ISD::FROUND)) 8136 return; 8137 break; 8138 case LibFunc_trunc: 8139 case LibFunc_truncf: 8140 case LibFunc_truncl: 8141 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8142 return; 8143 break; 8144 case LibFunc_log2: 8145 case LibFunc_log2f: 8146 case LibFunc_log2l: 8147 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8148 return; 8149 break; 8150 case LibFunc_exp2: 8151 case LibFunc_exp2f: 8152 case LibFunc_exp2l: 8153 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8154 return; 8155 break; 8156 case LibFunc_memcmp: 8157 if (visitMemCmpBCmpCall(I)) 8158 return; 8159 break; 8160 case LibFunc_mempcpy: 8161 if (visitMemPCpyCall(I)) 8162 return; 8163 break; 8164 case LibFunc_memchr: 8165 if (visitMemChrCall(I)) 8166 return; 8167 break; 8168 case LibFunc_strcpy: 8169 if (visitStrCpyCall(I, false)) 8170 return; 8171 break; 8172 case LibFunc_stpcpy: 8173 if (visitStrCpyCall(I, true)) 8174 return; 8175 break; 8176 case LibFunc_strcmp: 8177 if (visitStrCmpCall(I)) 8178 return; 8179 break; 8180 case LibFunc_strlen: 8181 if (visitStrLenCall(I)) 8182 return; 8183 break; 8184 case LibFunc_strnlen: 8185 if (visitStrNLenCall(I)) 8186 return; 8187 break; 8188 } 8189 } 8190 } 8191 8192 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8193 // have to do anything here to lower funclet bundles. 8194 // CFGuardTarget bundles are lowered in LowerCallTo. 8195 assert(!I.hasOperandBundlesOtherThan( 8196 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8197 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8198 LLVMContext::OB_clang_arc_attachedcall}) && 8199 "Cannot lower calls with arbitrary operand bundles!"); 8200 8201 SDValue Callee = getValue(I.getCalledOperand()); 8202 8203 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8204 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8205 else 8206 // Check if we can potentially perform a tail call. More detailed checking 8207 // is be done within LowerCallTo, after more information about the call is 8208 // known. 8209 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8210 } 8211 8212 namespace { 8213 8214 /// AsmOperandInfo - This contains information for each constraint that we are 8215 /// lowering. 8216 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8217 public: 8218 /// CallOperand - If this is the result output operand or a clobber 8219 /// this is null, otherwise it is the incoming operand to the CallInst. 8220 /// This gets modified as the asm is processed. 8221 SDValue CallOperand; 8222 8223 /// AssignedRegs - If this is a register or register class operand, this 8224 /// contains the set of register corresponding to the operand. 8225 RegsForValue AssignedRegs; 8226 8227 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8228 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8229 } 8230 8231 /// Whether or not this operand accesses memory 8232 bool hasMemory(const TargetLowering &TLI) const { 8233 // Indirect operand accesses access memory. 8234 if (isIndirect) 8235 return true; 8236 8237 for (const auto &Code : Codes) 8238 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8239 return true; 8240 8241 return false; 8242 } 8243 8244 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8245 /// corresponds to. If there is no Value* for this operand, it returns 8246 /// MVT::Other. 8247 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8248 const DataLayout &DL) const { 8249 if (!CallOperandVal) return MVT::Other; 8250 8251 if (isa<BasicBlock>(CallOperandVal)) 8252 return TLI.getProgramPointerTy(DL); 8253 8254 llvm::Type *OpTy = CallOperandVal->getType(); 8255 8256 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8257 // If this is an indirect operand, the operand is a pointer to the 8258 // accessed type. 8259 if (isIndirect) { 8260 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 8261 if (!PtrTy) 8262 report_fatal_error("Indirect operand for inline asm not a pointer!"); 8263 OpTy = PtrTy->getElementType(); 8264 } 8265 8266 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8267 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8268 if (STy->getNumElements() == 1) 8269 OpTy = STy->getElementType(0); 8270 8271 // If OpTy is not a single value, it may be a struct/union that we 8272 // can tile with integers. 8273 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8274 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8275 switch (BitSize) { 8276 default: break; 8277 case 1: 8278 case 8: 8279 case 16: 8280 case 32: 8281 case 64: 8282 case 128: 8283 OpTy = IntegerType::get(Context, BitSize); 8284 break; 8285 } 8286 } 8287 8288 return TLI.getAsmOperandValueType(DL, OpTy, true); 8289 } 8290 }; 8291 8292 8293 } // end anonymous namespace 8294 8295 /// Make sure that the output operand \p OpInfo and its corresponding input 8296 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8297 /// out). 8298 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8299 SDISelAsmOperandInfo &MatchingOpInfo, 8300 SelectionDAG &DAG) { 8301 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8302 return; 8303 8304 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8305 const auto &TLI = DAG.getTargetLoweringInfo(); 8306 8307 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8308 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8309 OpInfo.ConstraintVT); 8310 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8311 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8312 MatchingOpInfo.ConstraintVT); 8313 if ((OpInfo.ConstraintVT.isInteger() != 8314 MatchingOpInfo.ConstraintVT.isInteger()) || 8315 (MatchRC.second != InputRC.second)) { 8316 // FIXME: error out in a more elegant fashion 8317 report_fatal_error("Unsupported asm: input constraint" 8318 " with a matching output constraint of" 8319 " incompatible type!"); 8320 } 8321 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8322 } 8323 8324 /// Get a direct memory input to behave well as an indirect operand. 8325 /// This may introduce stores, hence the need for a \p Chain. 8326 /// \return The (possibly updated) chain. 8327 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8328 SDISelAsmOperandInfo &OpInfo, 8329 SelectionDAG &DAG) { 8330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8331 8332 // If we don't have an indirect input, put it in the constpool if we can, 8333 // otherwise spill it to a stack slot. 8334 // TODO: This isn't quite right. We need to handle these according to 8335 // the addressing mode that the constraint wants. Also, this may take 8336 // an additional register for the computation and we don't want that 8337 // either. 8338 8339 // If the operand is a float, integer, or vector constant, spill to a 8340 // constant pool entry to get its address. 8341 const Value *OpVal = OpInfo.CallOperandVal; 8342 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8343 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8344 OpInfo.CallOperand = DAG.getConstantPool( 8345 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8346 return Chain; 8347 } 8348 8349 // Otherwise, create a stack slot and emit a store to it before the asm. 8350 Type *Ty = OpVal->getType(); 8351 auto &DL = DAG.getDataLayout(); 8352 uint64_t TySize = DL.getTypeAllocSize(Ty); 8353 MachineFunction &MF = DAG.getMachineFunction(); 8354 int SSFI = MF.getFrameInfo().CreateStackObject( 8355 TySize, DL.getPrefTypeAlign(Ty), false); 8356 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8357 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8358 MachinePointerInfo::getFixedStack(MF, SSFI), 8359 TLI.getMemValueType(DL, Ty)); 8360 OpInfo.CallOperand = StackSlot; 8361 8362 return Chain; 8363 } 8364 8365 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8366 /// specified operand. We prefer to assign virtual registers, to allow the 8367 /// register allocator to handle the assignment process. However, if the asm 8368 /// uses features that we can't model on machineinstrs, we have SDISel do the 8369 /// allocation. This produces generally horrible, but correct, code. 8370 /// 8371 /// OpInfo describes the operand 8372 /// RefOpInfo describes the matching operand if any, the operand otherwise 8373 static llvm::Optional<unsigned> 8374 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8375 SDISelAsmOperandInfo &OpInfo, 8376 SDISelAsmOperandInfo &RefOpInfo) { 8377 LLVMContext &Context = *DAG.getContext(); 8378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8379 8380 MachineFunction &MF = DAG.getMachineFunction(); 8381 SmallVector<unsigned, 4> Regs; 8382 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8383 8384 // No work to do for memory operations. 8385 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8386 return None; 8387 8388 // If this is a constraint for a single physreg, or a constraint for a 8389 // register class, find it. 8390 unsigned AssignedReg; 8391 const TargetRegisterClass *RC; 8392 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8393 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8394 // RC is unset only on failure. Return immediately. 8395 if (!RC) 8396 return None; 8397 8398 // Get the actual register value type. This is important, because the user 8399 // may have asked for (e.g.) the AX register in i32 type. We need to 8400 // remember that AX is actually i16 to get the right extension. 8401 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8402 8403 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8404 // If this is an FP operand in an integer register (or visa versa), or more 8405 // generally if the operand value disagrees with the register class we plan 8406 // to stick it in, fix the operand type. 8407 // 8408 // If this is an input value, the bitcast to the new type is done now. 8409 // Bitcast for output value is done at the end of visitInlineAsm(). 8410 if ((OpInfo.Type == InlineAsm::isOutput || 8411 OpInfo.Type == InlineAsm::isInput) && 8412 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8413 // Try to convert to the first EVT that the reg class contains. If the 8414 // types are identical size, use a bitcast to convert (e.g. two differing 8415 // vector types). Note: output bitcast is done at the end of 8416 // visitInlineAsm(). 8417 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8418 // Exclude indirect inputs while they are unsupported because the code 8419 // to perform the load is missing and thus OpInfo.CallOperand still 8420 // refers to the input address rather than the pointed-to value. 8421 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8422 OpInfo.CallOperand = 8423 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8424 OpInfo.ConstraintVT = RegVT; 8425 // If the operand is an FP value and we want it in integer registers, 8426 // use the corresponding integer type. This turns an f64 value into 8427 // i64, which can be passed with two i32 values on a 32-bit machine. 8428 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8429 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8430 if (OpInfo.Type == InlineAsm::isInput) 8431 OpInfo.CallOperand = 8432 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8433 OpInfo.ConstraintVT = VT; 8434 } 8435 } 8436 } 8437 8438 // No need to allocate a matching input constraint since the constraint it's 8439 // matching to has already been allocated. 8440 if (OpInfo.isMatchingInputConstraint()) 8441 return None; 8442 8443 EVT ValueVT = OpInfo.ConstraintVT; 8444 if (OpInfo.ConstraintVT == MVT::Other) 8445 ValueVT = RegVT; 8446 8447 // Initialize NumRegs. 8448 unsigned NumRegs = 1; 8449 if (OpInfo.ConstraintVT != MVT::Other) 8450 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8451 8452 // If this is a constraint for a specific physical register, like {r17}, 8453 // assign it now. 8454 8455 // If this associated to a specific register, initialize iterator to correct 8456 // place. If virtual, make sure we have enough registers 8457 8458 // Initialize iterator if necessary 8459 TargetRegisterClass::iterator I = RC->begin(); 8460 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8461 8462 // Do not check for single registers. 8463 if (AssignedReg) { 8464 I = std::find(I, RC->end(), AssignedReg); 8465 if (I == RC->end()) { 8466 // RC does not contain the selected register, which indicates a 8467 // mismatch between the register and the required type/bitwidth. 8468 return {AssignedReg}; 8469 } 8470 } 8471 8472 for (; NumRegs; --NumRegs, ++I) { 8473 assert(I != RC->end() && "Ran out of registers to allocate!"); 8474 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8475 Regs.push_back(R); 8476 } 8477 8478 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8479 return None; 8480 } 8481 8482 static unsigned 8483 findMatchingInlineAsmOperand(unsigned OperandNo, 8484 const std::vector<SDValue> &AsmNodeOperands) { 8485 // Scan until we find the definition we already emitted of this operand. 8486 unsigned CurOp = InlineAsm::Op_FirstOperand; 8487 for (; OperandNo; --OperandNo) { 8488 // Advance to the next operand. 8489 unsigned OpFlag = 8490 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8491 assert((InlineAsm::isRegDefKind(OpFlag) || 8492 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8493 InlineAsm::isMemKind(OpFlag)) && 8494 "Skipped past definitions?"); 8495 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8496 } 8497 return CurOp; 8498 } 8499 8500 namespace { 8501 8502 class ExtraFlags { 8503 unsigned Flags = 0; 8504 8505 public: 8506 explicit ExtraFlags(const CallBase &Call) { 8507 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8508 if (IA->hasSideEffects()) 8509 Flags |= InlineAsm::Extra_HasSideEffects; 8510 if (IA->isAlignStack()) 8511 Flags |= InlineAsm::Extra_IsAlignStack; 8512 if (Call.isConvergent()) 8513 Flags |= InlineAsm::Extra_IsConvergent; 8514 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8515 } 8516 8517 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8518 // Ideally, we would only check against memory constraints. However, the 8519 // meaning of an Other constraint can be target-specific and we can't easily 8520 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8521 // for Other constraints as well. 8522 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8523 OpInfo.ConstraintType == TargetLowering::C_Other) { 8524 if (OpInfo.Type == InlineAsm::isInput) 8525 Flags |= InlineAsm::Extra_MayLoad; 8526 else if (OpInfo.Type == InlineAsm::isOutput) 8527 Flags |= InlineAsm::Extra_MayStore; 8528 else if (OpInfo.Type == InlineAsm::isClobber) 8529 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8530 } 8531 } 8532 8533 unsigned get() const { return Flags; } 8534 }; 8535 8536 } // end anonymous namespace 8537 8538 /// visitInlineAsm - Handle a call to an InlineAsm object. 8539 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8540 const BasicBlock *EHPadBB) { 8541 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8542 8543 /// ConstraintOperands - Information about all of the constraints. 8544 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8545 8546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8547 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8548 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8549 8550 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8551 // AsmDialect, MayLoad, MayStore). 8552 bool HasSideEffect = IA->hasSideEffects(); 8553 ExtraFlags ExtraInfo(Call); 8554 8555 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8556 unsigned ResNo = 0; // ResNo - The result number of the next output. 8557 unsigned NumMatchingOps = 0; 8558 for (auto &T : TargetConstraints) { 8559 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8560 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8561 8562 // Compute the value type for each operand. 8563 if (OpInfo.Type == InlineAsm::isInput || 8564 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8565 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8566 8567 // Process the call argument. BasicBlocks are labels, currently appearing 8568 // only in asm's. 8569 if (isa<CallBrInst>(Call) && 8570 ArgNo - 1 >= (cast<CallBrInst>(&Call)->arg_size() - 8571 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8572 NumMatchingOps) && 8573 (NumMatchingOps == 0 || 8574 ArgNo - 1 < 8575 (cast<CallBrInst>(&Call)->arg_size() - NumMatchingOps))) { 8576 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8577 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8578 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8579 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8580 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8581 } else { 8582 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8583 } 8584 8585 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8586 DAG.getDataLayout()); 8587 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8588 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8589 // The return value of the call is this value. As such, there is no 8590 // corresponding argument. 8591 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8592 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8593 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8594 DAG.getDataLayout(), STy->getElementType(ResNo)); 8595 } else { 8596 assert(ResNo == 0 && "Asm only has one result!"); 8597 OpInfo.ConstraintVT = TLI.getAsmOperandValueType( 8598 DAG.getDataLayout(), Call.getType()).getSimpleVT(); 8599 } 8600 ++ResNo; 8601 } else { 8602 OpInfo.ConstraintVT = MVT::Other; 8603 } 8604 8605 if (OpInfo.hasMatchingInput()) 8606 ++NumMatchingOps; 8607 8608 if (!HasSideEffect) 8609 HasSideEffect = OpInfo.hasMemory(TLI); 8610 8611 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8612 // FIXME: Could we compute this on OpInfo rather than T? 8613 8614 // Compute the constraint code and ConstraintType to use. 8615 TLI.ComputeConstraintToUse(T, SDValue()); 8616 8617 if (T.ConstraintType == TargetLowering::C_Immediate && 8618 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8619 // We've delayed emitting a diagnostic like the "n" constraint because 8620 // inlining could cause an integer showing up. 8621 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8622 "' expects an integer constant " 8623 "expression"); 8624 8625 ExtraInfo.update(T); 8626 } 8627 8628 // We won't need to flush pending loads if this asm doesn't touch 8629 // memory and is nonvolatile. 8630 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8631 8632 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8633 if (EmitEHLabels) { 8634 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8635 } 8636 bool IsCallBr = isa<CallBrInst>(Call); 8637 8638 if (IsCallBr || EmitEHLabels) { 8639 // If this is a callbr or invoke we need to flush pending exports since 8640 // inlineasm_br and invoke are terminators. 8641 // We need to do this before nodes are glued to the inlineasm_br node. 8642 Chain = getControlRoot(); 8643 } 8644 8645 MCSymbol *BeginLabel = nullptr; 8646 if (EmitEHLabels) { 8647 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8648 } 8649 8650 // Second pass over the constraints: compute which constraint option to use. 8651 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8652 // If this is an output operand with a matching input operand, look up the 8653 // matching input. If their types mismatch, e.g. one is an integer, the 8654 // other is floating point, or their sizes are different, flag it as an 8655 // error. 8656 if (OpInfo.hasMatchingInput()) { 8657 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8658 patchMatchingInput(OpInfo, Input, DAG); 8659 } 8660 8661 // Compute the constraint code and ConstraintType to use. 8662 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8663 8664 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8665 OpInfo.Type == InlineAsm::isClobber) 8666 continue; 8667 8668 // If this is a memory input, and if the operand is not indirect, do what we 8669 // need to provide an address for the memory input. 8670 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8671 !OpInfo.isIndirect) { 8672 assert((OpInfo.isMultipleAlternative || 8673 (OpInfo.Type == InlineAsm::isInput)) && 8674 "Can only indirectify direct input operands!"); 8675 8676 // Memory operands really want the address of the value. 8677 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8678 8679 // There is no longer a Value* corresponding to this operand. 8680 OpInfo.CallOperandVal = nullptr; 8681 8682 // It is now an indirect operand. 8683 OpInfo.isIndirect = true; 8684 } 8685 8686 } 8687 8688 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8689 std::vector<SDValue> AsmNodeOperands; 8690 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8691 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8692 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8693 8694 // If we have a !srcloc metadata node associated with it, we want to attach 8695 // this to the ultimately generated inline asm machineinstr. To do this, we 8696 // pass in the third operand as this (potentially null) inline asm MDNode. 8697 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8698 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8699 8700 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8701 // bits as operand 3. 8702 AsmNodeOperands.push_back(DAG.getTargetConstant( 8703 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8704 8705 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8706 // this, assign virtual and physical registers for inputs and otput. 8707 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8708 // Assign Registers. 8709 SDISelAsmOperandInfo &RefOpInfo = 8710 OpInfo.isMatchingInputConstraint() 8711 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8712 : OpInfo; 8713 const auto RegError = 8714 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8715 if (RegError.hasValue()) { 8716 const MachineFunction &MF = DAG.getMachineFunction(); 8717 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8718 const char *RegName = TRI.getName(RegError.getValue()); 8719 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8720 "' allocated for constraint '" + 8721 Twine(OpInfo.ConstraintCode) + 8722 "' does not match required type"); 8723 return; 8724 } 8725 8726 auto DetectWriteToReservedRegister = [&]() { 8727 const MachineFunction &MF = DAG.getMachineFunction(); 8728 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8729 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8730 if (Register::isPhysicalRegister(Reg) && 8731 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8732 const char *RegName = TRI.getName(Reg); 8733 emitInlineAsmError(Call, "write to reserved register '" + 8734 Twine(RegName) + "'"); 8735 return true; 8736 } 8737 } 8738 return false; 8739 }; 8740 8741 switch (OpInfo.Type) { 8742 case InlineAsm::isOutput: 8743 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8744 unsigned ConstraintID = 8745 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8746 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8747 "Failed to convert memory constraint code to constraint id."); 8748 8749 // Add information to the INLINEASM node to know about this output. 8750 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8751 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8752 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8753 MVT::i32)); 8754 AsmNodeOperands.push_back(OpInfo.CallOperand); 8755 } else { 8756 // Otherwise, this outputs to a register (directly for C_Register / 8757 // C_RegisterClass, and a target-defined fashion for 8758 // C_Immediate/C_Other). Find a register that we can use. 8759 if (OpInfo.AssignedRegs.Regs.empty()) { 8760 emitInlineAsmError( 8761 Call, "couldn't allocate output register for constraint '" + 8762 Twine(OpInfo.ConstraintCode) + "'"); 8763 return; 8764 } 8765 8766 if (DetectWriteToReservedRegister()) 8767 return; 8768 8769 // Add information to the INLINEASM node to know that this register is 8770 // set. 8771 OpInfo.AssignedRegs.AddInlineAsmOperands( 8772 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8773 : InlineAsm::Kind_RegDef, 8774 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8775 } 8776 break; 8777 8778 case InlineAsm::isInput: { 8779 SDValue InOperandVal = OpInfo.CallOperand; 8780 8781 if (OpInfo.isMatchingInputConstraint()) { 8782 // If this is required to match an output register we have already set, 8783 // just use its register. 8784 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8785 AsmNodeOperands); 8786 unsigned OpFlag = 8787 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8788 if (InlineAsm::isRegDefKind(OpFlag) || 8789 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8790 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8791 if (OpInfo.isIndirect) { 8792 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8793 emitInlineAsmError(Call, "inline asm not supported yet: " 8794 "don't know how to handle tied " 8795 "indirect register inputs"); 8796 return; 8797 } 8798 8799 SmallVector<unsigned, 4> Regs; 8800 MachineFunction &MF = DAG.getMachineFunction(); 8801 MachineRegisterInfo &MRI = MF.getRegInfo(); 8802 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8803 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8804 Register TiedReg = R->getReg(); 8805 MVT RegVT = R->getSimpleValueType(0); 8806 const TargetRegisterClass *RC = 8807 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8808 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8809 : TRI.getMinimalPhysRegClass(TiedReg); 8810 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8811 for (unsigned i = 0; i != NumRegs; ++i) 8812 Regs.push_back(MRI.createVirtualRegister(RC)); 8813 8814 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8815 8816 SDLoc dl = getCurSDLoc(); 8817 // Use the produced MatchedRegs object to 8818 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8819 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8820 true, OpInfo.getMatchedOperand(), dl, 8821 DAG, AsmNodeOperands); 8822 break; 8823 } 8824 8825 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8826 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8827 "Unexpected number of operands"); 8828 // Add information to the INLINEASM node to know about this input. 8829 // See InlineAsm.h isUseOperandTiedToDef. 8830 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8831 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8832 OpInfo.getMatchedOperand()); 8833 AsmNodeOperands.push_back(DAG.getTargetConstant( 8834 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8835 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8836 break; 8837 } 8838 8839 // Treat indirect 'X' constraint as memory. 8840 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8841 OpInfo.isIndirect) 8842 OpInfo.ConstraintType = TargetLowering::C_Memory; 8843 8844 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8845 OpInfo.ConstraintType == TargetLowering::C_Other) { 8846 std::vector<SDValue> Ops; 8847 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8848 Ops, DAG); 8849 if (Ops.empty()) { 8850 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8851 if (isa<ConstantSDNode>(InOperandVal)) { 8852 emitInlineAsmError(Call, "value out of range for constraint '" + 8853 Twine(OpInfo.ConstraintCode) + "'"); 8854 return; 8855 } 8856 8857 emitInlineAsmError(Call, 8858 "invalid operand for inline asm constraint '" + 8859 Twine(OpInfo.ConstraintCode) + "'"); 8860 return; 8861 } 8862 8863 // Add information to the INLINEASM node to know about this input. 8864 unsigned ResOpType = 8865 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8866 AsmNodeOperands.push_back(DAG.getTargetConstant( 8867 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8868 llvm::append_range(AsmNodeOperands, Ops); 8869 break; 8870 } 8871 8872 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8873 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8874 assert(InOperandVal.getValueType() == 8875 TLI.getPointerTy(DAG.getDataLayout()) && 8876 "Memory operands expect pointer values"); 8877 8878 unsigned ConstraintID = 8879 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8880 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8881 "Failed to convert memory constraint code to constraint id."); 8882 8883 // Add information to the INLINEASM node to know about this input. 8884 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8885 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8886 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8887 getCurSDLoc(), 8888 MVT::i32)); 8889 AsmNodeOperands.push_back(InOperandVal); 8890 break; 8891 } 8892 8893 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8894 OpInfo.ConstraintType == TargetLowering::C_Register) && 8895 "Unknown constraint type!"); 8896 8897 // TODO: Support this. 8898 if (OpInfo.isIndirect) { 8899 emitInlineAsmError( 8900 Call, "Don't know how to handle indirect register inputs yet " 8901 "for constraint '" + 8902 Twine(OpInfo.ConstraintCode) + "'"); 8903 return; 8904 } 8905 8906 // Copy the input into the appropriate registers. 8907 if (OpInfo.AssignedRegs.Regs.empty()) { 8908 emitInlineAsmError(Call, 8909 "couldn't allocate input reg for constraint '" + 8910 Twine(OpInfo.ConstraintCode) + "'"); 8911 return; 8912 } 8913 8914 if (DetectWriteToReservedRegister()) 8915 return; 8916 8917 SDLoc dl = getCurSDLoc(); 8918 8919 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8920 &Call); 8921 8922 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8923 dl, DAG, AsmNodeOperands); 8924 break; 8925 } 8926 case InlineAsm::isClobber: 8927 // Add the clobbered value to the operand list, so that the register 8928 // allocator is aware that the physreg got clobbered. 8929 if (!OpInfo.AssignedRegs.Regs.empty()) 8930 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8931 false, 0, getCurSDLoc(), DAG, 8932 AsmNodeOperands); 8933 break; 8934 } 8935 } 8936 8937 // Finish up input operands. Set the input chain and add the flag last. 8938 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8939 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8940 8941 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8942 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8943 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8944 Flag = Chain.getValue(1); 8945 8946 // Do additional work to generate outputs. 8947 8948 SmallVector<EVT, 1> ResultVTs; 8949 SmallVector<SDValue, 1> ResultValues; 8950 SmallVector<SDValue, 8> OutChains; 8951 8952 llvm::Type *CallResultType = Call.getType(); 8953 ArrayRef<Type *> ResultTypes; 8954 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8955 ResultTypes = StructResult->elements(); 8956 else if (!CallResultType->isVoidTy()) 8957 ResultTypes = makeArrayRef(CallResultType); 8958 8959 auto CurResultType = ResultTypes.begin(); 8960 auto handleRegAssign = [&](SDValue V) { 8961 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8962 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8963 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8964 ++CurResultType; 8965 // If the type of the inline asm call site return value is different but has 8966 // same size as the type of the asm output bitcast it. One example of this 8967 // is for vectors with different width / number of elements. This can 8968 // happen for register classes that can contain multiple different value 8969 // types. The preg or vreg allocated may not have the same VT as was 8970 // expected. 8971 // 8972 // This can also happen for a return value that disagrees with the register 8973 // class it is put in, eg. a double in a general-purpose register on a 8974 // 32-bit machine. 8975 if (ResultVT != V.getValueType() && 8976 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8977 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8978 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8979 V.getValueType().isInteger()) { 8980 // If a result value was tied to an input value, the computed result 8981 // may have a wider width than the expected result. Extract the 8982 // relevant portion. 8983 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8984 } 8985 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8986 ResultVTs.push_back(ResultVT); 8987 ResultValues.push_back(V); 8988 }; 8989 8990 // Deal with output operands. 8991 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8992 if (OpInfo.Type == InlineAsm::isOutput) { 8993 SDValue Val; 8994 // Skip trivial output operands. 8995 if (OpInfo.AssignedRegs.Regs.empty()) 8996 continue; 8997 8998 switch (OpInfo.ConstraintType) { 8999 case TargetLowering::C_Register: 9000 case TargetLowering::C_RegisterClass: 9001 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9002 Chain, &Flag, &Call); 9003 break; 9004 case TargetLowering::C_Immediate: 9005 case TargetLowering::C_Other: 9006 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9007 OpInfo, DAG); 9008 break; 9009 case TargetLowering::C_Memory: 9010 break; // Already handled. 9011 case TargetLowering::C_Unknown: 9012 assert(false && "Unexpected unknown constraint"); 9013 } 9014 9015 // Indirect output manifest as stores. Record output chains. 9016 if (OpInfo.isIndirect) { 9017 const Value *Ptr = OpInfo.CallOperandVal; 9018 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9019 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9020 MachinePointerInfo(Ptr)); 9021 OutChains.push_back(Store); 9022 } else { 9023 // generate CopyFromRegs to associated registers. 9024 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9025 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9026 for (const SDValue &V : Val->op_values()) 9027 handleRegAssign(V); 9028 } else 9029 handleRegAssign(Val); 9030 } 9031 } 9032 } 9033 9034 // Set results. 9035 if (!ResultValues.empty()) { 9036 assert(CurResultType == ResultTypes.end() && 9037 "Mismatch in number of ResultTypes"); 9038 assert(ResultValues.size() == ResultTypes.size() && 9039 "Mismatch in number of output operands in asm result"); 9040 9041 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9042 DAG.getVTList(ResultVTs), ResultValues); 9043 setValue(&Call, V); 9044 } 9045 9046 // Collect store chains. 9047 if (!OutChains.empty()) 9048 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9049 9050 if (EmitEHLabels) { 9051 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9052 } 9053 9054 // Only Update Root if inline assembly has a memory effect. 9055 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9056 EmitEHLabels) 9057 DAG.setRoot(Chain); 9058 } 9059 9060 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9061 const Twine &Message) { 9062 LLVMContext &Ctx = *DAG.getContext(); 9063 Ctx.emitError(&Call, Message); 9064 9065 // Make sure we leave the DAG in a valid state 9066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9067 SmallVector<EVT, 1> ValueVTs; 9068 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9069 9070 if (ValueVTs.empty()) 9071 return; 9072 9073 SmallVector<SDValue, 1> Ops; 9074 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9075 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9076 9077 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9078 } 9079 9080 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9081 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9082 MVT::Other, getRoot(), 9083 getValue(I.getArgOperand(0)), 9084 DAG.getSrcValue(I.getArgOperand(0)))); 9085 } 9086 9087 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9088 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9089 const DataLayout &DL = DAG.getDataLayout(); 9090 SDValue V = DAG.getVAArg( 9091 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9092 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9093 DL.getABITypeAlign(I.getType()).value()); 9094 DAG.setRoot(V.getValue(1)); 9095 9096 if (I.getType()->isPointerTy()) 9097 V = DAG.getPtrExtOrTrunc( 9098 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9099 setValue(&I, V); 9100 } 9101 9102 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9103 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9104 MVT::Other, getRoot(), 9105 getValue(I.getArgOperand(0)), 9106 DAG.getSrcValue(I.getArgOperand(0)))); 9107 } 9108 9109 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9110 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9111 MVT::Other, getRoot(), 9112 getValue(I.getArgOperand(0)), 9113 getValue(I.getArgOperand(1)), 9114 DAG.getSrcValue(I.getArgOperand(0)), 9115 DAG.getSrcValue(I.getArgOperand(1)))); 9116 } 9117 9118 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9119 const Instruction &I, 9120 SDValue Op) { 9121 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9122 if (!Range) 9123 return Op; 9124 9125 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9126 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9127 return Op; 9128 9129 APInt Lo = CR.getUnsignedMin(); 9130 if (!Lo.isMinValue()) 9131 return Op; 9132 9133 APInt Hi = CR.getUnsignedMax(); 9134 unsigned Bits = std::max(Hi.getActiveBits(), 9135 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9136 9137 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9138 9139 SDLoc SL = getCurSDLoc(); 9140 9141 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9142 DAG.getValueType(SmallVT)); 9143 unsigned NumVals = Op.getNode()->getNumValues(); 9144 if (NumVals == 1) 9145 return ZExt; 9146 9147 SmallVector<SDValue, 4> Ops; 9148 9149 Ops.push_back(ZExt); 9150 for (unsigned I = 1; I != NumVals; ++I) 9151 Ops.push_back(Op.getValue(I)); 9152 9153 return DAG.getMergeValues(Ops, SL); 9154 } 9155 9156 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9157 /// the call being lowered. 9158 /// 9159 /// This is a helper for lowering intrinsics that follow a target calling 9160 /// convention or require stack pointer adjustment. Only a subset of the 9161 /// intrinsic's operands need to participate in the calling convention. 9162 void SelectionDAGBuilder::populateCallLoweringInfo( 9163 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9164 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9165 bool IsPatchPoint) { 9166 TargetLowering::ArgListTy Args; 9167 Args.reserve(NumArgs); 9168 9169 // Populate the argument list. 9170 // Attributes for args start at offset 1, after the return attribute. 9171 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9172 ArgI != ArgE; ++ArgI) { 9173 const Value *V = Call->getOperand(ArgI); 9174 9175 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9176 9177 TargetLowering::ArgListEntry Entry; 9178 Entry.Node = getValue(V); 9179 Entry.Ty = V->getType(); 9180 Entry.setAttributes(Call, ArgI); 9181 Args.push_back(Entry); 9182 } 9183 9184 CLI.setDebugLoc(getCurSDLoc()) 9185 .setChain(getRoot()) 9186 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9187 .setDiscardResult(Call->use_empty()) 9188 .setIsPatchPoint(IsPatchPoint) 9189 .setIsPreallocated( 9190 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9191 } 9192 9193 /// Add a stack map intrinsic call's live variable operands to a stackmap 9194 /// or patchpoint target node's operand list. 9195 /// 9196 /// Constants are converted to TargetConstants purely as an optimization to 9197 /// avoid constant materialization and register allocation. 9198 /// 9199 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9200 /// generate addess computation nodes, and so FinalizeISel can convert the 9201 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9202 /// address materialization and register allocation, but may also be required 9203 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9204 /// alloca in the entry block, then the runtime may assume that the alloca's 9205 /// StackMap location can be read immediately after compilation and that the 9206 /// location is valid at any point during execution (this is similar to the 9207 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9208 /// only available in a register, then the runtime would need to trap when 9209 /// execution reaches the StackMap in order to read the alloca's location. 9210 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9211 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9212 SelectionDAGBuilder &Builder) { 9213 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9214 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9215 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9216 Ops.push_back( 9217 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9218 Ops.push_back( 9219 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9220 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9221 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9222 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9223 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9224 } else 9225 Ops.push_back(OpVal); 9226 } 9227 } 9228 9229 /// Lower llvm.experimental.stackmap directly to its target opcode. 9230 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9231 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9232 // [live variables...]) 9233 9234 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9235 9236 SDValue Chain, InFlag, Callee, NullPtr; 9237 SmallVector<SDValue, 32> Ops; 9238 9239 SDLoc DL = getCurSDLoc(); 9240 Callee = getValue(CI.getCalledOperand()); 9241 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9242 9243 // The stackmap intrinsic only records the live variables (the arguments 9244 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9245 // intrinsic, this won't be lowered to a function call. This means we don't 9246 // have to worry about calling conventions and target specific lowering code. 9247 // Instead we perform the call lowering right here. 9248 // 9249 // chain, flag = CALLSEQ_START(chain, 0, 0) 9250 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9251 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9252 // 9253 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9254 InFlag = Chain.getValue(1); 9255 9256 // Add the <id> and <numBytes> constants. 9257 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9258 Ops.push_back(DAG.getTargetConstant( 9259 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9260 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9261 Ops.push_back(DAG.getTargetConstant( 9262 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9263 MVT::i32)); 9264 9265 // Push live variables for the stack map. 9266 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9267 9268 // We are not pushing any register mask info here on the operands list, 9269 // because the stackmap doesn't clobber anything. 9270 9271 // Push the chain and the glue flag. 9272 Ops.push_back(Chain); 9273 Ops.push_back(InFlag); 9274 9275 // Create the STACKMAP node. 9276 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9277 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9278 Chain = SDValue(SM, 0); 9279 InFlag = Chain.getValue(1); 9280 9281 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9282 9283 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9284 9285 // Set the root to the target-lowered call chain. 9286 DAG.setRoot(Chain); 9287 9288 // Inform the Frame Information that we have a stackmap in this function. 9289 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9290 } 9291 9292 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9293 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9294 const BasicBlock *EHPadBB) { 9295 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9296 // i32 <numBytes>, 9297 // i8* <target>, 9298 // i32 <numArgs>, 9299 // [Args...], 9300 // [live variables...]) 9301 9302 CallingConv::ID CC = CB.getCallingConv(); 9303 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9304 bool HasDef = !CB.getType()->isVoidTy(); 9305 SDLoc dl = getCurSDLoc(); 9306 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9307 9308 // Handle immediate and symbolic callees. 9309 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9310 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9311 /*isTarget=*/true); 9312 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9313 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9314 SDLoc(SymbolicCallee), 9315 SymbolicCallee->getValueType(0)); 9316 9317 // Get the real number of arguments participating in the call <numArgs> 9318 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9319 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9320 9321 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9322 // Intrinsics include all meta-operands up to but not including CC. 9323 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9324 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9325 "Not enough arguments provided to the patchpoint intrinsic"); 9326 9327 // For AnyRegCC the arguments are lowered later on manually. 9328 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9329 Type *ReturnTy = 9330 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9331 9332 TargetLowering::CallLoweringInfo CLI(DAG); 9333 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9334 ReturnTy, true); 9335 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9336 9337 SDNode *CallEnd = Result.second.getNode(); 9338 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9339 CallEnd = CallEnd->getOperand(0).getNode(); 9340 9341 /// Get a call instruction from the call sequence chain. 9342 /// Tail calls are not allowed. 9343 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9344 "Expected a callseq node."); 9345 SDNode *Call = CallEnd->getOperand(0).getNode(); 9346 bool HasGlue = Call->getGluedNode(); 9347 9348 // Replace the target specific call node with the patchable intrinsic. 9349 SmallVector<SDValue, 8> Ops; 9350 9351 // Add the <id> and <numBytes> constants. 9352 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9353 Ops.push_back(DAG.getTargetConstant( 9354 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9355 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9356 Ops.push_back(DAG.getTargetConstant( 9357 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9358 MVT::i32)); 9359 9360 // Add the callee. 9361 Ops.push_back(Callee); 9362 9363 // Adjust <numArgs> to account for any arguments that have been passed on the 9364 // stack instead. 9365 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9366 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9367 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9368 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9369 9370 // Add the calling convention 9371 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9372 9373 // Add the arguments we omitted previously. The register allocator should 9374 // place these in any free register. 9375 if (IsAnyRegCC) 9376 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9377 Ops.push_back(getValue(CB.getArgOperand(i))); 9378 9379 // Push the arguments from the call instruction up to the register mask. 9380 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9381 Ops.append(Call->op_begin() + 2, e); 9382 9383 // Push live variables for the stack map. 9384 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9385 9386 // Push the register mask info. 9387 if (HasGlue) 9388 Ops.push_back(*(Call->op_end()-2)); 9389 else 9390 Ops.push_back(*(Call->op_end()-1)); 9391 9392 // Push the chain (this is originally the first operand of the call, but 9393 // becomes now the last or second to last operand). 9394 Ops.push_back(*(Call->op_begin())); 9395 9396 // Push the glue flag (last operand). 9397 if (HasGlue) 9398 Ops.push_back(*(Call->op_end()-1)); 9399 9400 SDVTList NodeTys; 9401 if (IsAnyRegCC && HasDef) { 9402 // Create the return types based on the intrinsic definition 9403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9404 SmallVector<EVT, 3> ValueVTs; 9405 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9406 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9407 9408 // There is always a chain and a glue type at the end 9409 ValueVTs.push_back(MVT::Other); 9410 ValueVTs.push_back(MVT::Glue); 9411 NodeTys = DAG.getVTList(ValueVTs); 9412 } else 9413 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9414 9415 // Replace the target specific call node with a PATCHPOINT node. 9416 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9417 dl, NodeTys, Ops); 9418 9419 // Update the NodeMap. 9420 if (HasDef) { 9421 if (IsAnyRegCC) 9422 setValue(&CB, SDValue(MN, 0)); 9423 else 9424 setValue(&CB, Result.first); 9425 } 9426 9427 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9428 // call sequence. Furthermore the location of the chain and glue can change 9429 // when the AnyReg calling convention is used and the intrinsic returns a 9430 // value. 9431 if (IsAnyRegCC && HasDef) { 9432 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9433 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9434 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9435 } else 9436 DAG.ReplaceAllUsesWith(Call, MN); 9437 DAG.DeleteNode(Call); 9438 9439 // Inform the Frame Information that we have a patchpoint in this function. 9440 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9441 } 9442 9443 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9444 unsigned Intrinsic) { 9445 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9446 SDValue Op1 = getValue(I.getArgOperand(0)); 9447 SDValue Op2; 9448 if (I.arg_size() > 1) 9449 Op2 = getValue(I.getArgOperand(1)); 9450 SDLoc dl = getCurSDLoc(); 9451 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9452 SDValue Res; 9453 SDNodeFlags SDFlags; 9454 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9455 SDFlags.copyFMF(*FPMO); 9456 9457 switch (Intrinsic) { 9458 case Intrinsic::vector_reduce_fadd: 9459 if (SDFlags.hasAllowReassociation()) 9460 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9461 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9462 SDFlags); 9463 else 9464 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9465 break; 9466 case Intrinsic::vector_reduce_fmul: 9467 if (SDFlags.hasAllowReassociation()) 9468 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9469 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9470 SDFlags); 9471 else 9472 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9473 break; 9474 case Intrinsic::vector_reduce_add: 9475 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9476 break; 9477 case Intrinsic::vector_reduce_mul: 9478 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9479 break; 9480 case Intrinsic::vector_reduce_and: 9481 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9482 break; 9483 case Intrinsic::vector_reduce_or: 9484 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9485 break; 9486 case Intrinsic::vector_reduce_xor: 9487 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9488 break; 9489 case Intrinsic::vector_reduce_smax: 9490 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9491 break; 9492 case Intrinsic::vector_reduce_smin: 9493 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9494 break; 9495 case Intrinsic::vector_reduce_umax: 9496 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9497 break; 9498 case Intrinsic::vector_reduce_umin: 9499 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9500 break; 9501 case Intrinsic::vector_reduce_fmax: 9502 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9503 break; 9504 case Intrinsic::vector_reduce_fmin: 9505 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9506 break; 9507 default: 9508 llvm_unreachable("Unhandled vector reduce intrinsic"); 9509 } 9510 setValue(&I, Res); 9511 } 9512 9513 /// Returns an AttributeList representing the attributes applied to the return 9514 /// value of the given call. 9515 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9516 SmallVector<Attribute::AttrKind, 2> Attrs; 9517 if (CLI.RetSExt) 9518 Attrs.push_back(Attribute::SExt); 9519 if (CLI.RetZExt) 9520 Attrs.push_back(Attribute::ZExt); 9521 if (CLI.IsInReg) 9522 Attrs.push_back(Attribute::InReg); 9523 9524 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9525 Attrs); 9526 } 9527 9528 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9529 /// implementation, which just calls LowerCall. 9530 /// FIXME: When all targets are 9531 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9532 std::pair<SDValue, SDValue> 9533 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9534 // Handle the incoming return values from the call. 9535 CLI.Ins.clear(); 9536 Type *OrigRetTy = CLI.RetTy; 9537 SmallVector<EVT, 4> RetTys; 9538 SmallVector<uint64_t, 4> Offsets; 9539 auto &DL = CLI.DAG.getDataLayout(); 9540 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9541 9542 if (CLI.IsPostTypeLegalization) { 9543 // If we are lowering a libcall after legalization, split the return type. 9544 SmallVector<EVT, 4> OldRetTys; 9545 SmallVector<uint64_t, 4> OldOffsets; 9546 RetTys.swap(OldRetTys); 9547 Offsets.swap(OldOffsets); 9548 9549 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9550 EVT RetVT = OldRetTys[i]; 9551 uint64_t Offset = OldOffsets[i]; 9552 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9553 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9554 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9555 RetTys.append(NumRegs, RegisterVT); 9556 for (unsigned j = 0; j != NumRegs; ++j) 9557 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9558 } 9559 } 9560 9561 SmallVector<ISD::OutputArg, 4> Outs; 9562 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9563 9564 bool CanLowerReturn = 9565 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9566 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9567 9568 SDValue DemoteStackSlot; 9569 int DemoteStackIdx = -100; 9570 if (!CanLowerReturn) { 9571 // FIXME: equivalent assert? 9572 // assert(!CS.hasInAllocaArgument() && 9573 // "sret demotion is incompatible with inalloca"); 9574 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9575 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9576 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9577 DemoteStackIdx = 9578 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9579 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9580 DL.getAllocaAddrSpace()); 9581 9582 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9583 ArgListEntry Entry; 9584 Entry.Node = DemoteStackSlot; 9585 Entry.Ty = StackSlotPtrType; 9586 Entry.IsSExt = false; 9587 Entry.IsZExt = false; 9588 Entry.IsInReg = false; 9589 Entry.IsSRet = true; 9590 Entry.IsNest = false; 9591 Entry.IsByVal = false; 9592 Entry.IsByRef = false; 9593 Entry.IsReturned = false; 9594 Entry.IsSwiftSelf = false; 9595 Entry.IsSwiftAsync = false; 9596 Entry.IsSwiftError = false; 9597 Entry.IsCFGuardTarget = false; 9598 Entry.Alignment = Alignment; 9599 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9600 CLI.NumFixedArgs += 1; 9601 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9602 9603 // sret demotion isn't compatible with tail-calls, since the sret argument 9604 // points into the callers stack frame. 9605 CLI.IsTailCall = false; 9606 } else { 9607 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9608 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9609 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9610 ISD::ArgFlagsTy Flags; 9611 if (NeedsRegBlock) { 9612 Flags.setInConsecutiveRegs(); 9613 if (I == RetTys.size() - 1) 9614 Flags.setInConsecutiveRegsLast(); 9615 } 9616 EVT VT = RetTys[I]; 9617 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9618 CLI.CallConv, VT); 9619 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9620 CLI.CallConv, VT); 9621 for (unsigned i = 0; i != NumRegs; ++i) { 9622 ISD::InputArg MyFlags; 9623 MyFlags.Flags = Flags; 9624 MyFlags.VT = RegisterVT; 9625 MyFlags.ArgVT = VT; 9626 MyFlags.Used = CLI.IsReturnValueUsed; 9627 if (CLI.RetTy->isPointerTy()) { 9628 MyFlags.Flags.setPointer(); 9629 MyFlags.Flags.setPointerAddrSpace( 9630 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9631 } 9632 if (CLI.RetSExt) 9633 MyFlags.Flags.setSExt(); 9634 if (CLI.RetZExt) 9635 MyFlags.Flags.setZExt(); 9636 if (CLI.IsInReg) 9637 MyFlags.Flags.setInReg(); 9638 CLI.Ins.push_back(MyFlags); 9639 } 9640 } 9641 } 9642 9643 // We push in swifterror return as the last element of CLI.Ins. 9644 ArgListTy &Args = CLI.getArgs(); 9645 if (supportSwiftError()) { 9646 for (const ArgListEntry &Arg : Args) { 9647 if (Arg.IsSwiftError) { 9648 ISD::InputArg MyFlags; 9649 MyFlags.VT = getPointerTy(DL); 9650 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9651 MyFlags.Flags.setSwiftError(); 9652 CLI.Ins.push_back(MyFlags); 9653 } 9654 } 9655 } 9656 9657 // Handle all of the outgoing arguments. 9658 CLI.Outs.clear(); 9659 CLI.OutVals.clear(); 9660 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9661 SmallVector<EVT, 4> ValueVTs; 9662 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9663 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9664 Type *FinalType = Args[i].Ty; 9665 if (Args[i].IsByVal) 9666 FinalType = Args[i].IndirectType; 9667 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9668 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9669 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9670 ++Value) { 9671 EVT VT = ValueVTs[Value]; 9672 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9673 SDValue Op = SDValue(Args[i].Node.getNode(), 9674 Args[i].Node.getResNo() + Value); 9675 ISD::ArgFlagsTy Flags; 9676 9677 // Certain targets (such as MIPS), may have a different ABI alignment 9678 // for a type depending on the context. Give the target a chance to 9679 // specify the alignment it wants. 9680 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9681 Flags.setOrigAlign(OriginalAlignment); 9682 9683 if (Args[i].Ty->isPointerTy()) { 9684 Flags.setPointer(); 9685 Flags.setPointerAddrSpace( 9686 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9687 } 9688 if (Args[i].IsZExt) 9689 Flags.setZExt(); 9690 if (Args[i].IsSExt) 9691 Flags.setSExt(); 9692 if (Args[i].IsInReg) { 9693 // If we are using vectorcall calling convention, a structure that is 9694 // passed InReg - is surely an HVA 9695 if (CLI.CallConv == CallingConv::X86_VectorCall && 9696 isa<StructType>(FinalType)) { 9697 // The first value of a structure is marked 9698 if (0 == Value) 9699 Flags.setHvaStart(); 9700 Flags.setHva(); 9701 } 9702 // Set InReg Flag 9703 Flags.setInReg(); 9704 } 9705 if (Args[i].IsSRet) 9706 Flags.setSRet(); 9707 if (Args[i].IsSwiftSelf) 9708 Flags.setSwiftSelf(); 9709 if (Args[i].IsSwiftAsync) 9710 Flags.setSwiftAsync(); 9711 if (Args[i].IsSwiftError) 9712 Flags.setSwiftError(); 9713 if (Args[i].IsCFGuardTarget) 9714 Flags.setCFGuardTarget(); 9715 if (Args[i].IsByVal) 9716 Flags.setByVal(); 9717 if (Args[i].IsByRef) 9718 Flags.setByRef(); 9719 if (Args[i].IsPreallocated) { 9720 Flags.setPreallocated(); 9721 // Set the byval flag for CCAssignFn callbacks that don't know about 9722 // preallocated. This way we can know how many bytes we should've 9723 // allocated and how many bytes a callee cleanup function will pop. If 9724 // we port preallocated to more targets, we'll have to add custom 9725 // preallocated handling in the various CC lowering callbacks. 9726 Flags.setByVal(); 9727 } 9728 if (Args[i].IsInAlloca) { 9729 Flags.setInAlloca(); 9730 // Set the byval flag for CCAssignFn callbacks that don't know about 9731 // inalloca. This way we can know how many bytes we should've allocated 9732 // and how many bytes a callee cleanup function will pop. If we port 9733 // inalloca to more targets, we'll have to add custom inalloca handling 9734 // in the various CC lowering callbacks. 9735 Flags.setByVal(); 9736 } 9737 Align MemAlign; 9738 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9739 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9740 Flags.setByValSize(FrameSize); 9741 9742 // info is not there but there are cases it cannot get right. 9743 if (auto MA = Args[i].Alignment) 9744 MemAlign = *MA; 9745 else 9746 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9747 } else if (auto MA = Args[i].Alignment) { 9748 MemAlign = *MA; 9749 } else { 9750 MemAlign = OriginalAlignment; 9751 } 9752 Flags.setMemAlign(MemAlign); 9753 if (Args[i].IsNest) 9754 Flags.setNest(); 9755 if (NeedsRegBlock) 9756 Flags.setInConsecutiveRegs(); 9757 9758 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9759 CLI.CallConv, VT); 9760 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9761 CLI.CallConv, VT); 9762 SmallVector<SDValue, 4> Parts(NumParts); 9763 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9764 9765 if (Args[i].IsSExt) 9766 ExtendKind = ISD::SIGN_EXTEND; 9767 else if (Args[i].IsZExt) 9768 ExtendKind = ISD::ZERO_EXTEND; 9769 9770 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9771 // for now. 9772 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9773 CanLowerReturn) { 9774 assert((CLI.RetTy == Args[i].Ty || 9775 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9776 CLI.RetTy->getPointerAddressSpace() == 9777 Args[i].Ty->getPointerAddressSpace())) && 9778 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9779 // Before passing 'returned' to the target lowering code, ensure that 9780 // either the register MVT and the actual EVT are the same size or that 9781 // the return value and argument are extended in the same way; in these 9782 // cases it's safe to pass the argument register value unchanged as the 9783 // return register value (although it's at the target's option whether 9784 // to do so) 9785 // TODO: allow code generation to take advantage of partially preserved 9786 // registers rather than clobbering the entire register when the 9787 // parameter extension method is not compatible with the return 9788 // extension method 9789 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9790 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9791 CLI.RetZExt == Args[i].IsZExt)) 9792 Flags.setReturned(); 9793 } 9794 9795 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9796 CLI.CallConv, ExtendKind); 9797 9798 for (unsigned j = 0; j != NumParts; ++j) { 9799 // if it isn't first piece, alignment must be 1 9800 // For scalable vectors the scalable part is currently handled 9801 // by individual targets, so we just use the known minimum size here. 9802 ISD::OutputArg MyFlags( 9803 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9804 i < CLI.NumFixedArgs, i, 9805 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9806 if (NumParts > 1 && j == 0) 9807 MyFlags.Flags.setSplit(); 9808 else if (j != 0) { 9809 MyFlags.Flags.setOrigAlign(Align(1)); 9810 if (j == NumParts - 1) 9811 MyFlags.Flags.setSplitEnd(); 9812 } 9813 9814 CLI.Outs.push_back(MyFlags); 9815 CLI.OutVals.push_back(Parts[j]); 9816 } 9817 9818 if (NeedsRegBlock && Value == NumValues - 1) 9819 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9820 } 9821 } 9822 9823 SmallVector<SDValue, 4> InVals; 9824 CLI.Chain = LowerCall(CLI, InVals); 9825 9826 // Update CLI.InVals to use outside of this function. 9827 CLI.InVals = InVals; 9828 9829 // Verify that the target's LowerCall behaved as expected. 9830 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9831 "LowerCall didn't return a valid chain!"); 9832 assert((!CLI.IsTailCall || InVals.empty()) && 9833 "LowerCall emitted a return value for a tail call!"); 9834 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9835 "LowerCall didn't emit the correct number of values!"); 9836 9837 // For a tail call, the return value is merely live-out and there aren't 9838 // any nodes in the DAG representing it. Return a special value to 9839 // indicate that a tail call has been emitted and no more Instructions 9840 // should be processed in the current block. 9841 if (CLI.IsTailCall) { 9842 CLI.DAG.setRoot(CLI.Chain); 9843 return std::make_pair(SDValue(), SDValue()); 9844 } 9845 9846 #ifndef NDEBUG 9847 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9848 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9849 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9850 "LowerCall emitted a value with the wrong type!"); 9851 } 9852 #endif 9853 9854 SmallVector<SDValue, 4> ReturnValues; 9855 if (!CanLowerReturn) { 9856 // The instruction result is the result of loading from the 9857 // hidden sret parameter. 9858 SmallVector<EVT, 1> PVTs; 9859 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9860 9861 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9862 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9863 EVT PtrVT = PVTs[0]; 9864 9865 unsigned NumValues = RetTys.size(); 9866 ReturnValues.resize(NumValues); 9867 SmallVector<SDValue, 4> Chains(NumValues); 9868 9869 // An aggregate return value cannot wrap around the address space, so 9870 // offsets to its parts don't wrap either. 9871 SDNodeFlags Flags; 9872 Flags.setNoUnsignedWrap(true); 9873 9874 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9875 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9876 for (unsigned i = 0; i < NumValues; ++i) { 9877 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9878 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9879 PtrVT), Flags); 9880 SDValue L = CLI.DAG.getLoad( 9881 RetTys[i], CLI.DL, CLI.Chain, Add, 9882 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9883 DemoteStackIdx, Offsets[i]), 9884 HiddenSRetAlign); 9885 ReturnValues[i] = L; 9886 Chains[i] = L.getValue(1); 9887 } 9888 9889 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9890 } else { 9891 // Collect the legal value parts into potentially illegal values 9892 // that correspond to the original function's return values. 9893 Optional<ISD::NodeType> AssertOp; 9894 if (CLI.RetSExt) 9895 AssertOp = ISD::AssertSext; 9896 else if (CLI.RetZExt) 9897 AssertOp = ISD::AssertZext; 9898 unsigned CurReg = 0; 9899 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9900 EVT VT = RetTys[I]; 9901 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9902 CLI.CallConv, VT); 9903 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9904 CLI.CallConv, VT); 9905 9906 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9907 NumRegs, RegisterVT, VT, nullptr, 9908 CLI.CallConv, AssertOp)); 9909 CurReg += NumRegs; 9910 } 9911 9912 // For a function returning void, there is no return value. We can't create 9913 // such a node, so we just return a null return value in that case. In 9914 // that case, nothing will actually look at the value. 9915 if (ReturnValues.empty()) 9916 return std::make_pair(SDValue(), CLI.Chain); 9917 } 9918 9919 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9920 CLI.DAG.getVTList(RetTys), ReturnValues); 9921 return std::make_pair(Res, CLI.Chain); 9922 } 9923 9924 /// Places new result values for the node in Results (their number 9925 /// and types must exactly match those of the original return values of 9926 /// the node), or leaves Results empty, which indicates that the node is not 9927 /// to be custom lowered after all. 9928 void TargetLowering::LowerOperationWrapper(SDNode *N, 9929 SmallVectorImpl<SDValue> &Results, 9930 SelectionDAG &DAG) const { 9931 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9932 9933 if (!Res.getNode()) 9934 return; 9935 9936 // If the original node has one result, take the return value from 9937 // LowerOperation as is. It might not be result number 0. 9938 if (N->getNumValues() == 1) { 9939 Results.push_back(Res); 9940 return; 9941 } 9942 9943 // If the original node has multiple results, then the return node should 9944 // have the same number of results. 9945 assert((N->getNumValues() == Res->getNumValues()) && 9946 "Lowering returned the wrong number of results!"); 9947 9948 // Places new result values base on N result number. 9949 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9950 Results.push_back(Res.getValue(I)); 9951 } 9952 9953 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9954 llvm_unreachable("LowerOperation not implemented for this target!"); 9955 } 9956 9957 void 9958 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9959 SDValue Op = getNonRegisterValue(V); 9960 assert((Op.getOpcode() != ISD::CopyFromReg || 9961 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9962 "Copy from a reg to the same reg!"); 9963 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9964 9965 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9966 // If this is an InlineAsm we have to match the registers required, not the 9967 // notional registers required by the type. 9968 9969 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9970 None); // This is not an ABI copy. 9971 SDValue Chain = DAG.getEntryNode(); 9972 9973 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 9974 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 9975 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 9976 ExtendType = PreferredExtendIt->second; 9977 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9978 PendingExports.push_back(Chain); 9979 } 9980 9981 #include "llvm/CodeGen/SelectionDAGISel.h" 9982 9983 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9984 /// entry block, return true. This includes arguments used by switches, since 9985 /// the switch may expand into multiple basic blocks. 9986 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9987 // With FastISel active, we may be splitting blocks, so force creation 9988 // of virtual registers for all non-dead arguments. 9989 if (FastISel) 9990 return A->use_empty(); 9991 9992 const BasicBlock &Entry = A->getParent()->front(); 9993 for (const User *U : A->users()) 9994 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9995 return false; // Use not in entry block. 9996 9997 return true; 9998 } 9999 10000 using ArgCopyElisionMapTy = 10001 DenseMap<const Argument *, 10002 std::pair<const AllocaInst *, const StoreInst *>>; 10003 10004 /// Scan the entry block of the function in FuncInfo for arguments that look 10005 /// like copies into a local alloca. Record any copied arguments in 10006 /// ArgCopyElisionCandidates. 10007 static void 10008 findArgumentCopyElisionCandidates(const DataLayout &DL, 10009 FunctionLoweringInfo *FuncInfo, 10010 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10011 // Record the state of every static alloca used in the entry block. Argument 10012 // allocas are all used in the entry block, so we need approximately as many 10013 // entries as we have arguments. 10014 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10015 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10016 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10017 StaticAllocas.reserve(NumArgs * 2); 10018 10019 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10020 if (!V) 10021 return nullptr; 10022 V = V->stripPointerCasts(); 10023 const auto *AI = dyn_cast<AllocaInst>(V); 10024 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10025 return nullptr; 10026 auto Iter = StaticAllocas.insert({AI, Unknown}); 10027 return &Iter.first->second; 10028 }; 10029 10030 // Look for stores of arguments to static allocas. Look through bitcasts and 10031 // GEPs to handle type coercions, as long as the alloca is fully initialized 10032 // by the store. Any non-store use of an alloca escapes it and any subsequent 10033 // unanalyzed store might write it. 10034 // FIXME: Handle structs initialized with multiple stores. 10035 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10036 // Look for stores, and handle non-store uses conservatively. 10037 const auto *SI = dyn_cast<StoreInst>(&I); 10038 if (!SI) { 10039 // We will look through cast uses, so ignore them completely. 10040 if (I.isCast()) 10041 continue; 10042 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10043 // to allocas. 10044 if (I.isDebugOrPseudoInst()) 10045 continue; 10046 // This is an unknown instruction. Assume it escapes or writes to all 10047 // static alloca operands. 10048 for (const Use &U : I.operands()) { 10049 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10050 *Info = StaticAllocaInfo::Clobbered; 10051 } 10052 continue; 10053 } 10054 10055 // If the stored value is a static alloca, mark it as escaped. 10056 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10057 *Info = StaticAllocaInfo::Clobbered; 10058 10059 // Check if the destination is a static alloca. 10060 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10061 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10062 if (!Info) 10063 continue; 10064 const AllocaInst *AI = cast<AllocaInst>(Dst); 10065 10066 // Skip allocas that have been initialized or clobbered. 10067 if (*Info != StaticAllocaInfo::Unknown) 10068 continue; 10069 10070 // Check if the stored value is an argument, and that this store fully 10071 // initializes the alloca. 10072 // If the argument type has padding bits we can't directly forward a pointer 10073 // as the upper bits may contain garbage. 10074 // Don't elide copies from the same argument twice. 10075 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10076 const auto *Arg = dyn_cast<Argument>(Val); 10077 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10078 Arg->getType()->isEmptyTy() || 10079 DL.getTypeStoreSize(Arg->getType()) != 10080 DL.getTypeAllocSize(AI->getAllocatedType()) || 10081 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10082 ArgCopyElisionCandidates.count(Arg)) { 10083 *Info = StaticAllocaInfo::Clobbered; 10084 continue; 10085 } 10086 10087 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10088 << '\n'); 10089 10090 // Mark this alloca and store for argument copy elision. 10091 *Info = StaticAllocaInfo::Elidable; 10092 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10093 10094 // Stop scanning if we've seen all arguments. This will happen early in -O0 10095 // builds, which is useful, because -O0 builds have large entry blocks and 10096 // many allocas. 10097 if (ArgCopyElisionCandidates.size() == NumArgs) 10098 break; 10099 } 10100 } 10101 10102 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10103 /// ArgVal is a load from a suitable fixed stack object. 10104 static void tryToElideArgumentCopy( 10105 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10106 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10107 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10108 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10109 SDValue ArgVal, bool &ArgHasUses) { 10110 // Check if this is a load from a fixed stack object. 10111 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10112 if (!LNode) 10113 return; 10114 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10115 if (!FINode) 10116 return; 10117 10118 // Check that the fixed stack object is the right size and alignment. 10119 // Look at the alignment that the user wrote on the alloca instead of looking 10120 // at the stack object. 10121 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10122 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10123 const AllocaInst *AI = ArgCopyIter->second.first; 10124 int FixedIndex = FINode->getIndex(); 10125 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10126 int OldIndex = AllocaIndex; 10127 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10128 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10129 LLVM_DEBUG( 10130 dbgs() << " argument copy elision failed due to bad fixed stack " 10131 "object size\n"); 10132 return; 10133 } 10134 Align RequiredAlignment = AI->getAlign(); 10135 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10136 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10137 "greater than stack argument alignment (" 10138 << DebugStr(RequiredAlignment) << " vs " 10139 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10140 return; 10141 } 10142 10143 // Perform the elision. Delete the old stack object and replace its only use 10144 // in the variable info map. Mark the stack object as mutable. 10145 LLVM_DEBUG({ 10146 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10147 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10148 << '\n'; 10149 }); 10150 MFI.RemoveStackObject(OldIndex); 10151 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10152 AllocaIndex = FixedIndex; 10153 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10154 Chains.push_back(ArgVal.getValue(1)); 10155 10156 // Avoid emitting code for the store implementing the copy. 10157 const StoreInst *SI = ArgCopyIter->second.second; 10158 ElidedArgCopyInstrs.insert(SI); 10159 10160 // Check for uses of the argument again so that we can avoid exporting ArgVal 10161 // if it is't used by anything other than the store. 10162 for (const Value *U : Arg.users()) { 10163 if (U != SI) { 10164 ArgHasUses = true; 10165 break; 10166 } 10167 } 10168 } 10169 10170 void SelectionDAGISel::LowerArguments(const Function &F) { 10171 SelectionDAG &DAG = SDB->DAG; 10172 SDLoc dl = SDB->getCurSDLoc(); 10173 const DataLayout &DL = DAG.getDataLayout(); 10174 SmallVector<ISD::InputArg, 16> Ins; 10175 10176 // In Naked functions we aren't going to save any registers. 10177 if (F.hasFnAttribute(Attribute::Naked)) 10178 return; 10179 10180 if (!FuncInfo->CanLowerReturn) { 10181 // Put in an sret pointer parameter before all the other parameters. 10182 SmallVector<EVT, 1> ValueVTs; 10183 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10184 F.getReturnType()->getPointerTo( 10185 DAG.getDataLayout().getAllocaAddrSpace()), 10186 ValueVTs); 10187 10188 // NOTE: Assuming that a pointer will never break down to more than one VT 10189 // or one register. 10190 ISD::ArgFlagsTy Flags; 10191 Flags.setSRet(); 10192 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10193 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10194 ISD::InputArg::NoArgIndex, 0); 10195 Ins.push_back(RetArg); 10196 } 10197 10198 // Look for stores of arguments to static allocas. Mark such arguments with a 10199 // flag to ask the target to give us the memory location of that argument if 10200 // available. 10201 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10202 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10203 ArgCopyElisionCandidates); 10204 10205 // Set up the incoming argument description vector. 10206 for (const Argument &Arg : F.args()) { 10207 unsigned ArgNo = Arg.getArgNo(); 10208 SmallVector<EVT, 4> ValueVTs; 10209 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10210 bool isArgValueUsed = !Arg.use_empty(); 10211 unsigned PartBase = 0; 10212 Type *FinalType = Arg.getType(); 10213 if (Arg.hasAttribute(Attribute::ByVal)) 10214 FinalType = Arg.getParamByValType(); 10215 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10216 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10217 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10218 Value != NumValues; ++Value) { 10219 EVT VT = ValueVTs[Value]; 10220 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10221 ISD::ArgFlagsTy Flags; 10222 10223 10224 if (Arg.getType()->isPointerTy()) { 10225 Flags.setPointer(); 10226 Flags.setPointerAddrSpace( 10227 cast<PointerType>(Arg.getType())->getAddressSpace()); 10228 } 10229 if (Arg.hasAttribute(Attribute::ZExt)) 10230 Flags.setZExt(); 10231 if (Arg.hasAttribute(Attribute::SExt)) 10232 Flags.setSExt(); 10233 if (Arg.hasAttribute(Attribute::InReg)) { 10234 // If we are using vectorcall calling convention, a structure that is 10235 // passed InReg - is surely an HVA 10236 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10237 isa<StructType>(Arg.getType())) { 10238 // The first value of a structure is marked 10239 if (0 == Value) 10240 Flags.setHvaStart(); 10241 Flags.setHva(); 10242 } 10243 // Set InReg Flag 10244 Flags.setInReg(); 10245 } 10246 if (Arg.hasAttribute(Attribute::StructRet)) 10247 Flags.setSRet(); 10248 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10249 Flags.setSwiftSelf(); 10250 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10251 Flags.setSwiftAsync(); 10252 if (Arg.hasAttribute(Attribute::SwiftError)) 10253 Flags.setSwiftError(); 10254 if (Arg.hasAttribute(Attribute::ByVal)) 10255 Flags.setByVal(); 10256 if (Arg.hasAttribute(Attribute::ByRef)) 10257 Flags.setByRef(); 10258 if (Arg.hasAttribute(Attribute::InAlloca)) { 10259 Flags.setInAlloca(); 10260 // Set the byval flag for CCAssignFn callbacks that don't know about 10261 // inalloca. This way we can know how many bytes we should've allocated 10262 // and how many bytes a callee cleanup function will pop. If we port 10263 // inalloca to more targets, we'll have to add custom inalloca handling 10264 // in the various CC lowering callbacks. 10265 Flags.setByVal(); 10266 } 10267 if (Arg.hasAttribute(Attribute::Preallocated)) { 10268 Flags.setPreallocated(); 10269 // Set the byval flag for CCAssignFn callbacks that don't know about 10270 // preallocated. This way we can know how many bytes we should've 10271 // allocated and how many bytes a callee cleanup function will pop. If 10272 // we port preallocated to more targets, we'll have to add custom 10273 // preallocated handling in the various CC lowering callbacks. 10274 Flags.setByVal(); 10275 } 10276 10277 // Certain targets (such as MIPS), may have a different ABI alignment 10278 // for a type depending on the context. Give the target a chance to 10279 // specify the alignment it wants. 10280 const Align OriginalAlignment( 10281 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10282 Flags.setOrigAlign(OriginalAlignment); 10283 10284 Align MemAlign; 10285 Type *ArgMemTy = nullptr; 10286 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10287 Flags.isByRef()) { 10288 if (!ArgMemTy) 10289 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10290 10291 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10292 10293 // For in-memory arguments, size and alignment should be passed from FE. 10294 // BE will guess if this info is not there but there are cases it cannot 10295 // get right. 10296 if (auto ParamAlign = Arg.getParamStackAlign()) 10297 MemAlign = *ParamAlign; 10298 else if ((ParamAlign = Arg.getParamAlign())) 10299 MemAlign = *ParamAlign; 10300 else 10301 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10302 if (Flags.isByRef()) 10303 Flags.setByRefSize(MemSize); 10304 else 10305 Flags.setByValSize(MemSize); 10306 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10307 MemAlign = *ParamAlign; 10308 } else { 10309 MemAlign = OriginalAlignment; 10310 } 10311 Flags.setMemAlign(MemAlign); 10312 10313 if (Arg.hasAttribute(Attribute::Nest)) 10314 Flags.setNest(); 10315 if (NeedsRegBlock) 10316 Flags.setInConsecutiveRegs(); 10317 if (ArgCopyElisionCandidates.count(&Arg)) 10318 Flags.setCopyElisionCandidate(); 10319 if (Arg.hasAttribute(Attribute::Returned)) 10320 Flags.setReturned(); 10321 10322 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10323 *CurDAG->getContext(), F.getCallingConv(), VT); 10324 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10325 *CurDAG->getContext(), F.getCallingConv(), VT); 10326 for (unsigned i = 0; i != NumRegs; ++i) { 10327 // For scalable vectors, use the minimum size; individual targets 10328 // are responsible for handling scalable vector arguments and 10329 // return values. 10330 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10331 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10332 if (NumRegs > 1 && i == 0) 10333 MyFlags.Flags.setSplit(); 10334 // if it isn't first piece, alignment must be 1 10335 else if (i > 0) { 10336 MyFlags.Flags.setOrigAlign(Align(1)); 10337 if (i == NumRegs - 1) 10338 MyFlags.Flags.setSplitEnd(); 10339 } 10340 Ins.push_back(MyFlags); 10341 } 10342 if (NeedsRegBlock && Value == NumValues - 1) 10343 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10344 PartBase += VT.getStoreSize().getKnownMinSize(); 10345 } 10346 } 10347 10348 // Call the target to set up the argument values. 10349 SmallVector<SDValue, 8> InVals; 10350 SDValue NewRoot = TLI->LowerFormalArguments( 10351 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10352 10353 // Verify that the target's LowerFormalArguments behaved as expected. 10354 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10355 "LowerFormalArguments didn't return a valid chain!"); 10356 assert(InVals.size() == Ins.size() && 10357 "LowerFormalArguments didn't emit the correct number of values!"); 10358 LLVM_DEBUG({ 10359 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10360 assert(InVals[i].getNode() && 10361 "LowerFormalArguments emitted a null value!"); 10362 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10363 "LowerFormalArguments emitted a value with the wrong type!"); 10364 } 10365 }); 10366 10367 // Update the DAG with the new chain value resulting from argument lowering. 10368 DAG.setRoot(NewRoot); 10369 10370 // Set up the argument values. 10371 unsigned i = 0; 10372 if (!FuncInfo->CanLowerReturn) { 10373 // Create a virtual register for the sret pointer, and put in a copy 10374 // from the sret argument into it. 10375 SmallVector<EVT, 1> ValueVTs; 10376 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10377 F.getReturnType()->getPointerTo( 10378 DAG.getDataLayout().getAllocaAddrSpace()), 10379 ValueVTs); 10380 MVT VT = ValueVTs[0].getSimpleVT(); 10381 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10382 Optional<ISD::NodeType> AssertOp = None; 10383 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10384 nullptr, F.getCallingConv(), AssertOp); 10385 10386 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10387 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10388 Register SRetReg = 10389 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10390 FuncInfo->DemoteRegister = SRetReg; 10391 NewRoot = 10392 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10393 DAG.setRoot(NewRoot); 10394 10395 // i indexes lowered arguments. Bump it past the hidden sret argument. 10396 ++i; 10397 } 10398 10399 SmallVector<SDValue, 4> Chains; 10400 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10401 for (const Argument &Arg : F.args()) { 10402 SmallVector<SDValue, 4> ArgValues; 10403 SmallVector<EVT, 4> ValueVTs; 10404 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10405 unsigned NumValues = ValueVTs.size(); 10406 if (NumValues == 0) 10407 continue; 10408 10409 bool ArgHasUses = !Arg.use_empty(); 10410 10411 // Elide the copying store if the target loaded this argument from a 10412 // suitable fixed stack object. 10413 if (Ins[i].Flags.isCopyElisionCandidate()) { 10414 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10415 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10416 InVals[i], ArgHasUses); 10417 } 10418 10419 // If this argument is unused then remember its value. It is used to generate 10420 // debugging information. 10421 bool isSwiftErrorArg = 10422 TLI->supportSwiftError() && 10423 Arg.hasAttribute(Attribute::SwiftError); 10424 if (!ArgHasUses && !isSwiftErrorArg) { 10425 SDB->setUnusedArgValue(&Arg, InVals[i]); 10426 10427 // Also remember any frame index for use in FastISel. 10428 if (FrameIndexSDNode *FI = 10429 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10430 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10431 } 10432 10433 for (unsigned Val = 0; Val != NumValues; ++Val) { 10434 EVT VT = ValueVTs[Val]; 10435 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10436 F.getCallingConv(), VT); 10437 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10438 *CurDAG->getContext(), F.getCallingConv(), VT); 10439 10440 // Even an apparent 'unused' swifterror argument needs to be returned. So 10441 // we do generate a copy for it that can be used on return from the 10442 // function. 10443 if (ArgHasUses || isSwiftErrorArg) { 10444 Optional<ISD::NodeType> AssertOp; 10445 if (Arg.hasAttribute(Attribute::SExt)) 10446 AssertOp = ISD::AssertSext; 10447 else if (Arg.hasAttribute(Attribute::ZExt)) 10448 AssertOp = ISD::AssertZext; 10449 10450 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10451 PartVT, VT, nullptr, 10452 F.getCallingConv(), AssertOp)); 10453 } 10454 10455 i += NumParts; 10456 } 10457 10458 // We don't need to do anything else for unused arguments. 10459 if (ArgValues.empty()) 10460 continue; 10461 10462 // Note down frame index. 10463 if (FrameIndexSDNode *FI = 10464 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10465 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10466 10467 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10468 SDB->getCurSDLoc()); 10469 10470 SDB->setValue(&Arg, Res); 10471 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10472 // We want to associate the argument with the frame index, among 10473 // involved operands, that correspond to the lowest address. The 10474 // getCopyFromParts function, called earlier, is swapping the order of 10475 // the operands to BUILD_PAIR depending on endianness. The result of 10476 // that swapping is that the least significant bits of the argument will 10477 // be in the first operand of the BUILD_PAIR node, and the most 10478 // significant bits will be in the second operand. 10479 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10480 if (LoadSDNode *LNode = 10481 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10482 if (FrameIndexSDNode *FI = 10483 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10484 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10485 } 10486 10487 // Analyses past this point are naive and don't expect an assertion. 10488 if (Res.getOpcode() == ISD::AssertZext) 10489 Res = Res.getOperand(0); 10490 10491 // Update the SwiftErrorVRegDefMap. 10492 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10493 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10494 if (Register::isVirtualRegister(Reg)) 10495 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10496 Reg); 10497 } 10498 10499 // If this argument is live outside of the entry block, insert a copy from 10500 // wherever we got it to the vreg that other BB's will reference it as. 10501 if (Res.getOpcode() == ISD::CopyFromReg) { 10502 // If we can, though, try to skip creating an unnecessary vreg. 10503 // FIXME: This isn't very clean... it would be nice to make this more 10504 // general. 10505 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10506 if (Register::isVirtualRegister(Reg)) { 10507 FuncInfo->ValueMap[&Arg] = Reg; 10508 continue; 10509 } 10510 } 10511 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10512 FuncInfo->InitializeRegForValue(&Arg); 10513 SDB->CopyToExportRegsIfNeeded(&Arg); 10514 } 10515 } 10516 10517 if (!Chains.empty()) { 10518 Chains.push_back(NewRoot); 10519 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10520 } 10521 10522 DAG.setRoot(NewRoot); 10523 10524 assert(i == InVals.size() && "Argument register count mismatch!"); 10525 10526 // If any argument copy elisions occurred and we have debug info, update the 10527 // stale frame indices used in the dbg.declare variable info table. 10528 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10529 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10530 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10531 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10532 if (I != ArgCopyElisionFrameIndexMap.end()) 10533 VI.Slot = I->second; 10534 } 10535 } 10536 10537 // Finally, if the target has anything special to do, allow it to do so. 10538 emitFunctionEntryCode(); 10539 } 10540 10541 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10542 /// ensure constants are generated when needed. Remember the virtual registers 10543 /// that need to be added to the Machine PHI nodes as input. We cannot just 10544 /// directly add them, because expansion might result in multiple MBB's for one 10545 /// BB. As such, the start of the BB might correspond to a different MBB than 10546 /// the end. 10547 void 10548 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10549 const Instruction *TI = LLVMBB->getTerminator(); 10550 10551 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10552 10553 // Check PHI nodes in successors that expect a value to be available from this 10554 // block. 10555 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10556 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10557 if (!isa<PHINode>(SuccBB->begin())) continue; 10558 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10559 10560 // If this terminator has multiple identical successors (common for 10561 // switches), only handle each succ once. 10562 if (!SuccsHandled.insert(SuccMBB).second) 10563 continue; 10564 10565 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10566 10567 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10568 // nodes and Machine PHI nodes, but the incoming operands have not been 10569 // emitted yet. 10570 for (const PHINode &PN : SuccBB->phis()) { 10571 // Ignore dead phi's. 10572 if (PN.use_empty()) 10573 continue; 10574 10575 // Skip empty types 10576 if (PN.getType()->isEmptyTy()) 10577 continue; 10578 10579 unsigned Reg; 10580 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10581 10582 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10583 unsigned &RegOut = ConstantsOut[C]; 10584 if (RegOut == 0) { 10585 RegOut = FuncInfo.CreateRegs(C); 10586 CopyValueToVirtualRegister(C, RegOut); 10587 } 10588 Reg = RegOut; 10589 } else { 10590 DenseMap<const Value *, Register>::iterator I = 10591 FuncInfo.ValueMap.find(PHIOp); 10592 if (I != FuncInfo.ValueMap.end()) 10593 Reg = I->second; 10594 else { 10595 assert(isa<AllocaInst>(PHIOp) && 10596 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10597 "Didn't codegen value into a register!??"); 10598 Reg = FuncInfo.CreateRegs(PHIOp); 10599 CopyValueToVirtualRegister(PHIOp, Reg); 10600 } 10601 } 10602 10603 // Remember that this register needs to added to the machine PHI node as 10604 // the input for this MBB. 10605 SmallVector<EVT, 4> ValueVTs; 10606 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10607 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10608 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10609 EVT VT = ValueVTs[vti]; 10610 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10611 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10612 FuncInfo.PHINodesToUpdate.push_back( 10613 std::make_pair(&*MBBI++, Reg + i)); 10614 Reg += NumRegisters; 10615 } 10616 } 10617 } 10618 10619 ConstantsOut.clear(); 10620 } 10621 10622 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10623 MachineFunction::iterator I(MBB); 10624 if (++I == FuncInfo.MF->end()) 10625 return nullptr; 10626 return &*I; 10627 } 10628 10629 /// During lowering new call nodes can be created (such as memset, etc.). 10630 /// Those will become new roots of the current DAG, but complications arise 10631 /// when they are tail calls. In such cases, the call lowering will update 10632 /// the root, but the builder still needs to know that a tail call has been 10633 /// lowered in order to avoid generating an additional return. 10634 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10635 // If the node is null, we do have a tail call. 10636 if (MaybeTC.getNode() != nullptr) 10637 DAG.setRoot(MaybeTC); 10638 else 10639 HasTailCall = true; 10640 } 10641 10642 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10643 MachineBasicBlock *SwitchMBB, 10644 MachineBasicBlock *DefaultMBB) { 10645 MachineFunction *CurMF = FuncInfo.MF; 10646 MachineBasicBlock *NextMBB = nullptr; 10647 MachineFunction::iterator BBI(W.MBB); 10648 if (++BBI != FuncInfo.MF->end()) 10649 NextMBB = &*BBI; 10650 10651 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10652 10653 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10654 10655 if (Size == 2 && W.MBB == SwitchMBB) { 10656 // If any two of the cases has the same destination, and if one value 10657 // is the same as the other, but has one bit unset that the other has set, 10658 // use bit manipulation to do two compares at once. For example: 10659 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10660 // TODO: This could be extended to merge any 2 cases in switches with 3 10661 // cases. 10662 // TODO: Handle cases where W.CaseBB != SwitchBB. 10663 CaseCluster &Small = *W.FirstCluster; 10664 CaseCluster &Big = *W.LastCluster; 10665 10666 if (Small.Low == Small.High && Big.Low == Big.High && 10667 Small.MBB == Big.MBB) { 10668 const APInt &SmallValue = Small.Low->getValue(); 10669 const APInt &BigValue = Big.Low->getValue(); 10670 10671 // Check that there is only one bit different. 10672 APInt CommonBit = BigValue ^ SmallValue; 10673 if (CommonBit.isPowerOf2()) { 10674 SDValue CondLHS = getValue(Cond); 10675 EVT VT = CondLHS.getValueType(); 10676 SDLoc DL = getCurSDLoc(); 10677 10678 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10679 DAG.getConstant(CommonBit, DL, VT)); 10680 SDValue Cond = DAG.getSetCC( 10681 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10682 ISD::SETEQ); 10683 10684 // Update successor info. 10685 // Both Small and Big will jump to Small.BB, so we sum up the 10686 // probabilities. 10687 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10688 if (BPI) 10689 addSuccessorWithProb( 10690 SwitchMBB, DefaultMBB, 10691 // The default destination is the first successor in IR. 10692 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10693 else 10694 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10695 10696 // Insert the true branch. 10697 SDValue BrCond = 10698 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10699 DAG.getBasicBlock(Small.MBB)); 10700 // Insert the false branch. 10701 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10702 DAG.getBasicBlock(DefaultMBB)); 10703 10704 DAG.setRoot(BrCond); 10705 return; 10706 } 10707 } 10708 } 10709 10710 if (TM.getOptLevel() != CodeGenOpt::None) { 10711 // Here, we order cases by probability so the most likely case will be 10712 // checked first. However, two clusters can have the same probability in 10713 // which case their relative ordering is non-deterministic. So we use Low 10714 // as a tie-breaker as clusters are guaranteed to never overlap. 10715 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10716 [](const CaseCluster &a, const CaseCluster &b) { 10717 return a.Prob != b.Prob ? 10718 a.Prob > b.Prob : 10719 a.Low->getValue().slt(b.Low->getValue()); 10720 }); 10721 10722 // Rearrange the case blocks so that the last one falls through if possible 10723 // without changing the order of probabilities. 10724 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10725 --I; 10726 if (I->Prob > W.LastCluster->Prob) 10727 break; 10728 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10729 std::swap(*I, *W.LastCluster); 10730 break; 10731 } 10732 } 10733 } 10734 10735 // Compute total probability. 10736 BranchProbability DefaultProb = W.DefaultProb; 10737 BranchProbability UnhandledProbs = DefaultProb; 10738 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10739 UnhandledProbs += I->Prob; 10740 10741 MachineBasicBlock *CurMBB = W.MBB; 10742 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10743 bool FallthroughUnreachable = false; 10744 MachineBasicBlock *Fallthrough; 10745 if (I == W.LastCluster) { 10746 // For the last cluster, fall through to the default destination. 10747 Fallthrough = DefaultMBB; 10748 FallthroughUnreachable = isa<UnreachableInst>( 10749 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10750 } else { 10751 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10752 CurMF->insert(BBI, Fallthrough); 10753 // Put Cond in a virtual register to make it available from the new blocks. 10754 ExportFromCurrentBlock(Cond); 10755 } 10756 UnhandledProbs -= I->Prob; 10757 10758 switch (I->Kind) { 10759 case CC_JumpTable: { 10760 // FIXME: Optimize away range check based on pivot comparisons. 10761 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10762 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10763 10764 // The jump block hasn't been inserted yet; insert it here. 10765 MachineBasicBlock *JumpMBB = JT->MBB; 10766 CurMF->insert(BBI, JumpMBB); 10767 10768 auto JumpProb = I->Prob; 10769 auto FallthroughProb = UnhandledProbs; 10770 10771 // If the default statement is a target of the jump table, we evenly 10772 // distribute the default probability to successors of CurMBB. Also 10773 // update the probability on the edge from JumpMBB to Fallthrough. 10774 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10775 SE = JumpMBB->succ_end(); 10776 SI != SE; ++SI) { 10777 if (*SI == DefaultMBB) { 10778 JumpProb += DefaultProb / 2; 10779 FallthroughProb -= DefaultProb / 2; 10780 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10781 JumpMBB->normalizeSuccProbs(); 10782 break; 10783 } 10784 } 10785 10786 if (FallthroughUnreachable) 10787 JTH->FallthroughUnreachable = true; 10788 10789 if (!JTH->FallthroughUnreachable) 10790 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10791 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10792 CurMBB->normalizeSuccProbs(); 10793 10794 // The jump table header will be inserted in our current block, do the 10795 // range check, and fall through to our fallthrough block. 10796 JTH->HeaderBB = CurMBB; 10797 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10798 10799 // If we're in the right place, emit the jump table header right now. 10800 if (CurMBB == SwitchMBB) { 10801 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10802 JTH->Emitted = true; 10803 } 10804 break; 10805 } 10806 case CC_BitTests: { 10807 // FIXME: Optimize away range check based on pivot comparisons. 10808 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10809 10810 // The bit test blocks haven't been inserted yet; insert them here. 10811 for (BitTestCase &BTC : BTB->Cases) 10812 CurMF->insert(BBI, BTC.ThisBB); 10813 10814 // Fill in fields of the BitTestBlock. 10815 BTB->Parent = CurMBB; 10816 BTB->Default = Fallthrough; 10817 10818 BTB->DefaultProb = UnhandledProbs; 10819 // If the cases in bit test don't form a contiguous range, we evenly 10820 // distribute the probability on the edge to Fallthrough to two 10821 // successors of CurMBB. 10822 if (!BTB->ContiguousRange) { 10823 BTB->Prob += DefaultProb / 2; 10824 BTB->DefaultProb -= DefaultProb / 2; 10825 } 10826 10827 if (FallthroughUnreachable) 10828 BTB->FallthroughUnreachable = true; 10829 10830 // If we're in the right place, emit the bit test header right now. 10831 if (CurMBB == SwitchMBB) { 10832 visitBitTestHeader(*BTB, SwitchMBB); 10833 BTB->Emitted = true; 10834 } 10835 break; 10836 } 10837 case CC_Range: { 10838 const Value *RHS, *LHS, *MHS; 10839 ISD::CondCode CC; 10840 if (I->Low == I->High) { 10841 // Check Cond == I->Low. 10842 CC = ISD::SETEQ; 10843 LHS = Cond; 10844 RHS=I->Low; 10845 MHS = nullptr; 10846 } else { 10847 // Check I->Low <= Cond <= I->High. 10848 CC = ISD::SETLE; 10849 LHS = I->Low; 10850 MHS = Cond; 10851 RHS = I->High; 10852 } 10853 10854 // If Fallthrough is unreachable, fold away the comparison. 10855 if (FallthroughUnreachable) 10856 CC = ISD::SETTRUE; 10857 10858 // The false probability is the sum of all unhandled cases. 10859 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10860 getCurSDLoc(), I->Prob, UnhandledProbs); 10861 10862 if (CurMBB == SwitchMBB) 10863 visitSwitchCase(CB, SwitchMBB); 10864 else 10865 SL->SwitchCases.push_back(CB); 10866 10867 break; 10868 } 10869 } 10870 CurMBB = Fallthrough; 10871 } 10872 } 10873 10874 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10875 CaseClusterIt First, 10876 CaseClusterIt Last) { 10877 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10878 if (X.Prob != CC.Prob) 10879 return X.Prob > CC.Prob; 10880 10881 // Ties are broken by comparing the case value. 10882 return X.Low->getValue().slt(CC.Low->getValue()); 10883 }); 10884 } 10885 10886 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10887 const SwitchWorkListItem &W, 10888 Value *Cond, 10889 MachineBasicBlock *SwitchMBB) { 10890 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10891 "Clusters not sorted?"); 10892 10893 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10894 10895 // Balance the tree based on branch probabilities to create a near-optimal (in 10896 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10897 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10898 CaseClusterIt LastLeft = W.FirstCluster; 10899 CaseClusterIt FirstRight = W.LastCluster; 10900 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10901 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10902 10903 // Move LastLeft and FirstRight towards each other from opposite directions to 10904 // find a partitioning of the clusters which balances the probability on both 10905 // sides. If LeftProb and RightProb are equal, alternate which side is 10906 // taken to ensure 0-probability nodes are distributed evenly. 10907 unsigned I = 0; 10908 while (LastLeft + 1 < FirstRight) { 10909 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10910 LeftProb += (++LastLeft)->Prob; 10911 else 10912 RightProb += (--FirstRight)->Prob; 10913 I++; 10914 } 10915 10916 while (true) { 10917 // Our binary search tree differs from a typical BST in that ours can have up 10918 // to three values in each leaf. The pivot selection above doesn't take that 10919 // into account, which means the tree might require more nodes and be less 10920 // efficient. We compensate for this here. 10921 10922 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10923 unsigned NumRight = W.LastCluster - FirstRight + 1; 10924 10925 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10926 // If one side has less than 3 clusters, and the other has more than 3, 10927 // consider taking a cluster from the other side. 10928 10929 if (NumLeft < NumRight) { 10930 // Consider moving the first cluster on the right to the left side. 10931 CaseCluster &CC = *FirstRight; 10932 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10933 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10934 if (LeftSideRank <= RightSideRank) { 10935 // Moving the cluster to the left does not demote it. 10936 ++LastLeft; 10937 ++FirstRight; 10938 continue; 10939 } 10940 } else { 10941 assert(NumRight < NumLeft); 10942 // Consider moving the last element on the left to the right side. 10943 CaseCluster &CC = *LastLeft; 10944 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10945 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10946 if (RightSideRank <= LeftSideRank) { 10947 // Moving the cluster to the right does not demot it. 10948 --LastLeft; 10949 --FirstRight; 10950 continue; 10951 } 10952 } 10953 } 10954 break; 10955 } 10956 10957 assert(LastLeft + 1 == FirstRight); 10958 assert(LastLeft >= W.FirstCluster); 10959 assert(FirstRight <= W.LastCluster); 10960 10961 // Use the first element on the right as pivot since we will make less-than 10962 // comparisons against it. 10963 CaseClusterIt PivotCluster = FirstRight; 10964 assert(PivotCluster > W.FirstCluster); 10965 assert(PivotCluster <= W.LastCluster); 10966 10967 CaseClusterIt FirstLeft = W.FirstCluster; 10968 CaseClusterIt LastRight = W.LastCluster; 10969 10970 const ConstantInt *Pivot = PivotCluster->Low; 10971 10972 // New blocks will be inserted immediately after the current one. 10973 MachineFunction::iterator BBI(W.MBB); 10974 ++BBI; 10975 10976 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10977 // we can branch to its destination directly if it's squeezed exactly in 10978 // between the known lower bound and Pivot - 1. 10979 MachineBasicBlock *LeftMBB; 10980 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10981 FirstLeft->Low == W.GE && 10982 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10983 LeftMBB = FirstLeft->MBB; 10984 } else { 10985 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10986 FuncInfo.MF->insert(BBI, LeftMBB); 10987 WorkList.push_back( 10988 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10989 // Put Cond in a virtual register to make it available from the new blocks. 10990 ExportFromCurrentBlock(Cond); 10991 } 10992 10993 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10994 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10995 // directly if RHS.High equals the current upper bound. 10996 MachineBasicBlock *RightMBB; 10997 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10998 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10999 RightMBB = FirstRight->MBB; 11000 } else { 11001 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11002 FuncInfo.MF->insert(BBI, RightMBB); 11003 WorkList.push_back( 11004 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11005 // Put Cond in a virtual register to make it available from the new blocks. 11006 ExportFromCurrentBlock(Cond); 11007 } 11008 11009 // Create the CaseBlock record that will be used to lower the branch. 11010 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11011 getCurSDLoc(), LeftProb, RightProb); 11012 11013 if (W.MBB == SwitchMBB) 11014 visitSwitchCase(CB, SwitchMBB); 11015 else 11016 SL->SwitchCases.push_back(CB); 11017 } 11018 11019 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11020 // from the swith statement. 11021 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11022 BranchProbability PeeledCaseProb) { 11023 if (PeeledCaseProb == BranchProbability::getOne()) 11024 return BranchProbability::getZero(); 11025 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11026 11027 uint32_t Numerator = CaseProb.getNumerator(); 11028 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11029 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11030 } 11031 11032 // Try to peel the top probability case if it exceeds the threshold. 11033 // Return current MachineBasicBlock for the switch statement if the peeling 11034 // does not occur. 11035 // If the peeling is performed, return the newly created MachineBasicBlock 11036 // for the peeled switch statement. Also update Clusters to remove the peeled 11037 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11038 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11039 const SwitchInst &SI, CaseClusterVector &Clusters, 11040 BranchProbability &PeeledCaseProb) { 11041 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11042 // Don't perform if there is only one cluster or optimizing for size. 11043 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11044 TM.getOptLevel() == CodeGenOpt::None || 11045 SwitchMBB->getParent()->getFunction().hasMinSize()) 11046 return SwitchMBB; 11047 11048 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11049 unsigned PeeledCaseIndex = 0; 11050 bool SwitchPeeled = false; 11051 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11052 CaseCluster &CC = Clusters[Index]; 11053 if (CC.Prob < TopCaseProb) 11054 continue; 11055 TopCaseProb = CC.Prob; 11056 PeeledCaseIndex = Index; 11057 SwitchPeeled = true; 11058 } 11059 if (!SwitchPeeled) 11060 return SwitchMBB; 11061 11062 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11063 << TopCaseProb << "\n"); 11064 11065 // Record the MBB for the peeled switch statement. 11066 MachineFunction::iterator BBI(SwitchMBB); 11067 ++BBI; 11068 MachineBasicBlock *PeeledSwitchMBB = 11069 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11070 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11071 11072 ExportFromCurrentBlock(SI.getCondition()); 11073 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11074 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11075 nullptr, nullptr, TopCaseProb.getCompl()}; 11076 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11077 11078 Clusters.erase(PeeledCaseIt); 11079 for (CaseCluster &CC : Clusters) { 11080 LLVM_DEBUG( 11081 dbgs() << "Scale the probablity for one cluster, before scaling: " 11082 << CC.Prob << "\n"); 11083 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11084 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11085 } 11086 PeeledCaseProb = TopCaseProb; 11087 return PeeledSwitchMBB; 11088 } 11089 11090 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11091 // Extract cases from the switch. 11092 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11093 CaseClusterVector Clusters; 11094 Clusters.reserve(SI.getNumCases()); 11095 for (auto I : SI.cases()) { 11096 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11097 const ConstantInt *CaseVal = I.getCaseValue(); 11098 BranchProbability Prob = 11099 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11100 : BranchProbability(1, SI.getNumCases() + 1); 11101 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11102 } 11103 11104 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11105 11106 // Cluster adjacent cases with the same destination. We do this at all 11107 // optimization levels because it's cheap to do and will make codegen faster 11108 // if there are many clusters. 11109 sortAndRangeify(Clusters); 11110 11111 // The branch probablity of the peeled case. 11112 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11113 MachineBasicBlock *PeeledSwitchMBB = 11114 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11115 11116 // If there is only the default destination, jump there directly. 11117 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11118 if (Clusters.empty()) { 11119 assert(PeeledSwitchMBB == SwitchMBB); 11120 SwitchMBB->addSuccessor(DefaultMBB); 11121 if (DefaultMBB != NextBlock(SwitchMBB)) { 11122 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11123 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11124 } 11125 return; 11126 } 11127 11128 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11129 SL->findBitTestClusters(Clusters, &SI); 11130 11131 LLVM_DEBUG({ 11132 dbgs() << "Case clusters: "; 11133 for (const CaseCluster &C : Clusters) { 11134 if (C.Kind == CC_JumpTable) 11135 dbgs() << "JT:"; 11136 if (C.Kind == CC_BitTests) 11137 dbgs() << "BT:"; 11138 11139 C.Low->getValue().print(dbgs(), true); 11140 if (C.Low != C.High) { 11141 dbgs() << '-'; 11142 C.High->getValue().print(dbgs(), true); 11143 } 11144 dbgs() << ' '; 11145 } 11146 dbgs() << '\n'; 11147 }); 11148 11149 assert(!Clusters.empty()); 11150 SwitchWorkList WorkList; 11151 CaseClusterIt First = Clusters.begin(); 11152 CaseClusterIt Last = Clusters.end() - 1; 11153 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11154 // Scale the branchprobability for DefaultMBB if the peel occurs and 11155 // DefaultMBB is not replaced. 11156 if (PeeledCaseProb != BranchProbability::getZero() && 11157 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11158 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11159 WorkList.push_back( 11160 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11161 11162 while (!WorkList.empty()) { 11163 SwitchWorkListItem W = WorkList.pop_back_val(); 11164 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11165 11166 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11167 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11168 // For optimized builds, lower large range as a balanced binary tree. 11169 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11170 continue; 11171 } 11172 11173 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11174 } 11175 } 11176 11177 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11179 auto DL = getCurSDLoc(); 11180 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11181 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11182 } 11183 11184 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11185 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11186 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11187 11188 SDLoc DL = getCurSDLoc(); 11189 SDValue V = getValue(I.getOperand(0)); 11190 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11191 11192 if (VT.isScalableVector()) { 11193 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11194 return; 11195 } 11196 11197 // Use VECTOR_SHUFFLE for the fixed-length vector 11198 // to maintain existing behavior. 11199 SmallVector<int, 8> Mask; 11200 unsigned NumElts = VT.getVectorMinNumElements(); 11201 for (unsigned i = 0; i != NumElts; ++i) 11202 Mask.push_back(NumElts - 1 - i); 11203 11204 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11205 } 11206 11207 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11208 SmallVector<EVT, 4> ValueVTs; 11209 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11210 ValueVTs); 11211 unsigned NumValues = ValueVTs.size(); 11212 if (NumValues == 0) return; 11213 11214 SmallVector<SDValue, 4> Values(NumValues); 11215 SDValue Op = getValue(I.getOperand(0)); 11216 11217 for (unsigned i = 0; i != NumValues; ++i) 11218 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11219 SDValue(Op.getNode(), Op.getResNo() + i)); 11220 11221 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11222 DAG.getVTList(ValueVTs), Values)); 11223 } 11224 11225 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11226 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11227 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11228 11229 SDLoc DL = getCurSDLoc(); 11230 SDValue V1 = getValue(I.getOperand(0)); 11231 SDValue V2 = getValue(I.getOperand(1)); 11232 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11233 11234 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11235 if (VT.isScalableVector()) { 11236 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11237 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11238 DAG.getConstant(Imm, DL, IdxVT))); 11239 return; 11240 } 11241 11242 unsigned NumElts = VT.getVectorNumElements(); 11243 11244 if ((-Imm > NumElts) || (Imm >= NumElts)) { 11245 // Result is undefined if immediate is out-of-bounds. 11246 setValue(&I, DAG.getUNDEF(VT)); 11247 return; 11248 } 11249 11250 uint64_t Idx = (NumElts + Imm) % NumElts; 11251 11252 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11253 SmallVector<int, 8> Mask; 11254 for (unsigned i = 0; i < NumElts; ++i) 11255 Mask.push_back(Idx + i); 11256 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11257 } 11258