1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/ValueTypes.h" 64 #include "llvm/CodeGen/WinEHFuncInfo.h" 65 #include "llvm/IR/Argument.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/BasicBlock.h" 68 #include "llvm/IR/CFG.h" 69 #include "llvm/IR/CallSite.h" 70 #include "llvm/IR/CallingConv.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfoMetadata.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/Intrinsics.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Metadata.h" 88 #include "llvm/IR/Module.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include "llvm/Transforms/Utils/Local.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstring> 117 #include <iterator> 118 #include <limits> 119 #include <numeric> 120 #include <tuple> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using namespace PatternMatch; 126 127 #define DEBUG_TYPE "isel" 128 129 /// LimitFloatPrecision - Generate low-precision inline sequences for 130 /// some float libcalls (6, 8 or 12 bits). 131 static unsigned LimitFloatPrecision; 132 133 static cl::opt<unsigned, true> 134 LimitFPPrecision("limit-float-precision", 135 cl::desc("Generate low-precision inline sequences " 136 "for some float libcalls"), 137 cl::location(LimitFloatPrecision), cl::Hidden, 138 cl::init(0)); 139 140 static cl::opt<unsigned> SwitchPeelThreshold( 141 "switch-peel-threshold", cl::Hidden, cl::init(66), 142 cl::desc("Set the case probability threshold for peeling the case from a " 143 "switch statement. A value greater than 100 will void this " 144 "optimization")); 145 146 // Limit the width of DAG chains. This is important in general to prevent 147 // DAG-based analysis from blowing up. For example, alias analysis and 148 // load clustering may not complete in reasonable time. It is difficult to 149 // recognize and avoid this situation within each individual analysis, and 150 // future analyses are likely to have the same behavior. Limiting DAG width is 151 // the safe approach and will be especially important with global DAGs. 152 // 153 // MaxParallelChains default is arbitrarily high to avoid affecting 154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 155 // sequence over this should have been converted to llvm.memcpy by the 156 // frontend. It is easy to induce this behavior with .ll code such as: 157 // %buffer = alloca [4096 x i8] 158 // %data = load [4096 x i8]* %argPtr 159 // store [4096 x i8] %data, [4096 x i8]* %buffer 160 static const unsigned MaxParallelChains = 64; 161 162 // Return the calling convention if the Value passed requires ABI mangling as it 163 // is a parameter to a function or a return value from a function which is not 164 // an intrinsic. 165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 166 if (auto *R = dyn_cast<ReturnInst>(V)) 167 return R->getParent()->getParent()->getCallingConv(); 168 169 if (auto *CI = dyn_cast<CallInst>(V)) { 170 const bool IsInlineAsm = CI->isInlineAsm(); 171 const bool IsIndirectFunctionCall = 172 !IsInlineAsm && !CI->getCalledFunction(); 173 174 // It is possible that the call instruction is an inline asm statement or an 175 // indirect function call in which case the return value of 176 // getCalledFunction() would be nullptr. 177 const bool IsInstrinsicCall = 178 !IsInlineAsm && !IsIndirectFunctionCall && 179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 180 181 if (!IsInlineAsm && !IsInstrinsicCall) 182 return CI->getCallingConv(); 183 } 184 185 return None; 186 } 187 188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC); 192 193 /// getCopyFromParts - Create a value that contains the specified legal parts 194 /// combined into the value they represent. If the parts combine to a type 195 /// larger than ValueVT then AssertOp can be used to specify whether the extra 196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 197 /// (ISD::AssertSext). 198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC = None, 202 Optional<ISD::NodeType> AssertOp = None) { 203 if (ValueVT.isVector()) 204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 205 CC); 206 207 assert(NumParts > 0 && "No parts to assemble!"); 208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 209 SDValue Val = Parts[0]; 210 211 if (NumParts > 1) { 212 // Assemble the value from multiple parts. 213 if (ValueVT.isInteger()) { 214 unsigned PartBits = PartVT.getSizeInBits(); 215 unsigned ValueBits = ValueVT.getSizeInBits(); 216 217 // Assemble the power of 2 part. 218 unsigned RoundParts = NumParts & (NumParts - 1) ? 219 1 << Log2_32(NumParts) : NumParts; 220 unsigned RoundBits = PartBits * RoundParts; 221 EVT RoundVT = RoundBits == ValueBits ? 222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 223 SDValue Lo, Hi; 224 225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 226 227 if (RoundParts > 2) { 228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 229 PartVT, HalfVT, V); 230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 231 RoundParts / 2, PartVT, HalfVT, V); 232 } else { 233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 235 } 236 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 241 242 if (RoundParts < NumParts) { 243 // Assemble the trailing non-power-of-2 part. 244 unsigned OddParts = NumParts - RoundParts; 245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 247 OddVT, V, CC); 248 249 // Combine the round and odd parts. 250 Lo = Val; 251 if (DAG.getDataLayout().isBigEndian()) 252 std::swap(Lo, Hi); 253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 255 Hi = 256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 257 DAG.getConstant(Lo.getValueSizeInBits(), DL, 258 TLI.getPointerTy(DAG.getDataLayout()))); 259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 261 } 262 } else if (PartVT.isFloatingPoint()) { 263 // FP split into multiple FP parts (for ppcf128) 264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 265 "Unexpected split"); 266 SDValue Lo, Hi; 267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 270 std::swap(Lo, Hi); 271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 272 } else { 273 // FP split into integer parts (soft fp) 274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 275 !PartVT.isVector() && "Unexpected split"); 276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 278 } 279 } 280 281 // There is now one part, held in Val. Correct it to match ValueVT. 282 // PartEVT is the type of the register class that holds the value. 283 // ValueVT is the type of the inline asm operation. 284 EVT PartEVT = Val.getValueType(); 285 286 if (PartEVT == ValueVT) 287 return Val; 288 289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 290 ValueVT.bitsLT(PartEVT)) { 291 // For an FP value in an integer part, we need to truncate to the right 292 // width first. 293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 295 } 296 297 // Handle types that have the same size. 298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle types with different sizes. 302 if (PartEVT.isInteger() && ValueVT.isInteger()) { 303 if (ValueVT.bitsLT(PartEVT)) { 304 // For a truncate, see if we have any information to 305 // indicate whether the truncated bits will always be 306 // zero or sign-extension. 307 if (AssertOp.hasValue()) 308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 309 DAG.getValueType(ValueVT)); 310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 311 } 312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 313 } 314 315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 // FP_ROUND's are always exact here. 317 if (ValueVT.bitsLT(Val.getValueType())) 318 return DAG.getNode( 319 ISD::FP_ROUND, DL, ValueVT, Val, 320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 321 322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 323 } 324 325 llvm_unreachable("Unknown mismatch!"); 326 } 327 328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 329 const Twine &ErrMsg) { 330 const Instruction *I = dyn_cast_or_null<Instruction>(V); 331 if (!V) 332 return Ctx.emitError(ErrMsg); 333 334 const char *AsmError = ", possible invalid constraint for vector type"; 335 if (const CallInst *CI = dyn_cast<CallInst>(I)) 336 if (isa<InlineAsm>(CI->getCalledValue())) 337 return Ctx.emitError(I, ErrMsg + AsmError); 338 339 return Ctx.emitError(I, ErrMsg); 340 } 341 342 /// getCopyFromPartsVector - Create a value that contains the specified legal 343 /// parts combined into the value they represent. If the parts combine to a 344 /// type larger than ValueVT then AssertOp can be used to specify whether the 345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 346 /// ValueVT (ISD::AssertSext). 347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 348 const SDValue *Parts, unsigned NumParts, 349 MVT PartVT, EVT ValueVT, const Value *V, 350 Optional<CallingConv::ID> CallConv) { 351 assert(ValueVT.isVector() && "Not a vector value"); 352 assert(NumParts > 0 && "No parts to assemble!"); 353 const bool IsABIRegCopy = CallConv.hasValue(); 354 355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 356 SDValue Val = Parts[0]; 357 358 // Handle a multi-element vector. 359 if (NumParts > 1) { 360 EVT IntermediateVT; 361 MVT RegisterVT; 362 unsigned NumIntermediates; 363 unsigned NumRegs; 364 365 if (IsABIRegCopy) { 366 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 367 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 368 NumIntermediates, RegisterVT); 369 } else { 370 NumRegs = 371 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 372 NumIntermediates, RegisterVT); 373 } 374 375 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 376 NumParts = NumRegs; // Silence a compiler warning. 377 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 378 assert(RegisterVT.getSizeInBits() == 379 Parts[0].getSimpleValueType().getSizeInBits() && 380 "Part type sizes don't match!"); 381 382 // Assemble the parts into intermediate operands. 383 SmallVector<SDValue, 8> Ops(NumIntermediates); 384 if (NumIntermediates == NumParts) { 385 // If the register was not expanded, truncate or copy the value, 386 // as appropriate. 387 for (unsigned i = 0; i != NumParts; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 389 PartVT, IntermediateVT, V); 390 } else if (NumParts > 0) { 391 // If the intermediate type was expanded, build the intermediate 392 // operands from the parts. 393 assert(NumParts % NumIntermediates == 0 && 394 "Must expand into a divisible number of parts!"); 395 unsigned Factor = NumParts / NumIntermediates; 396 for (unsigned i = 0; i != NumIntermediates; ++i) 397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 398 PartVT, IntermediateVT, V); 399 } 400 401 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 402 // intermediate operands. 403 EVT BuiltVectorTy = 404 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 405 (IntermediateVT.isVector() 406 ? IntermediateVT.getVectorNumElements() * NumParts 407 : NumIntermediates)); 408 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 409 : ISD::BUILD_VECTOR, 410 DL, BuiltVectorTy, Ops); 411 } 412 413 // There is now one part, held in Val. Correct it to match ValueVT. 414 EVT PartEVT = Val.getValueType(); 415 416 if (PartEVT == ValueVT) 417 return Val; 418 419 if (PartEVT.isVector()) { 420 // If the element type of the source/dest vectors are the same, but the 421 // parts vector has more elements than the value vector, then we have a 422 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 423 // elements we want. 424 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 425 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 426 "Cannot narrow, it would be a lossy transformation"); 427 return DAG.getNode( 428 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 429 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 430 } 431 432 // Vector/Vector bitcast. 433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 437 "Cannot handle this kind of promotion"); 438 // Promoted vector extract 439 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 440 441 } 442 443 // Trivial bitcast if the types are the same size and the destination 444 // vector type is legal. 445 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 446 TLI.isTypeLegal(ValueVT)) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 if (ValueVT.getVectorNumElements() != 1) { 450 // Certain ABIs require that vectors are passed as integers. For vectors 451 // are the same size, this is an obvious bitcast. 452 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 455 // Bitcast Val back the original type and extract the corresponding 456 // vector we want. 457 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 458 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 459 ValueVT.getVectorElementType(), Elts); 460 Val = DAG.getBitcast(WiderVecType, Val); 461 return DAG.getNode( 462 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 463 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 464 } 465 466 diagnosePossiblyInvalidConstraint( 467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 468 return DAG.getUNDEF(ValueVT); 469 } 470 471 // Handle cases such as i8 -> <1 x i1> 472 EVT ValueSVT = ValueVT.getVectorElementType(); 473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 474 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 475 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 476 477 return DAG.getBuildVector(ValueVT, DL, Val); 478 } 479 480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 481 SDValue Val, SDValue *Parts, unsigned NumParts, 482 MVT PartVT, const Value *V, 483 Optional<CallingConv::ID> CallConv); 484 485 /// getCopyToParts - Create a series of nodes that contain the specified value 486 /// split into legal parts. If the parts contain more bits than Val, then, for 487 /// integers, ExtendKind can be used to specify how to generate the extra bits. 488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 489 SDValue *Parts, unsigned NumParts, MVT PartVT, 490 const Value *V, 491 Optional<CallingConv::ID> CallConv = None, 492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 493 EVT ValueVT = Val.getValueType(); 494 495 // Handle the vector case separately. 496 if (ValueVT.isVector()) 497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 498 CallConv); 499 500 unsigned PartBits = PartVT.getSizeInBits(); 501 unsigned OrigNumParts = NumParts; 502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 503 "Copying to an illegal type!"); 504 505 if (NumParts == 0) 506 return; 507 508 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 509 EVT PartEVT = PartVT; 510 if (PartEVT == ValueVT) { 511 assert(NumParts == 1 && "No-op copy with multiple parts!"); 512 Parts[0] = Val; 513 return; 514 } 515 516 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 517 // If the parts cover more bits than the value has, promote the value. 518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 519 assert(NumParts == 1 && "Do not know what to promote to!"); 520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 521 } else { 522 if (ValueVT.isFloatingPoint()) { 523 // FP values need to be bitcast, then extended if they are being put 524 // into a larger container. 525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 527 } 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 } else if (PartBits == ValueVT.getSizeInBits()) { 537 // Different types of the same size. 538 assert(NumParts == 1 && PartEVT != ValueVT); 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 541 // If the parts cover less bits than value has, truncate the value. 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 551 // The value may have changed - recompute ValueVT. 552 ValueVT = Val.getValueType(); 553 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 554 "Failed to tile the value with PartVT!"); 555 556 if (NumParts == 1) { 557 if (PartEVT != ValueVT) { 558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 559 "scalar-to-vector conversion failed"); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } 562 563 Parts[0] = Val; 564 return; 565 } 566 567 // Expand the value into multiple parts. 568 if (NumParts & (NumParts - 1)) { 569 // The number of parts is not a power of 2. Split off and copy the tail. 570 assert(PartVT.isInteger() && ValueVT.isInteger() && 571 "Do not know what to expand to!"); 572 unsigned RoundParts = 1 << Log2_32(NumParts); 573 unsigned RoundBits = RoundParts * PartBits; 574 unsigned OddParts = NumParts - RoundParts; 575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 576 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 577 578 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 579 CallConv); 580 581 if (DAG.getDataLayout().isBigEndian()) 582 // The odd parts were reversed by getCopyToParts - unreverse them. 583 std::reverse(Parts + RoundParts, Parts + NumParts); 584 585 NumParts = RoundParts; 586 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 587 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 588 } 589 590 // The number of parts is a power of 2. Repeatedly bisect the value using 591 // EXTRACT_ELEMENT. 592 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 593 EVT::getIntegerVT(*DAG.getContext(), 594 ValueVT.getSizeInBits()), 595 Val); 596 597 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 598 for (unsigned i = 0; i < NumParts; i += StepSize) { 599 unsigned ThisBits = StepSize * PartBits / 2; 600 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 601 SDValue &Part0 = Parts[i]; 602 SDValue &Part1 = Parts[i+StepSize/2]; 603 604 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 606 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 607 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 608 609 if (ThisBits == PartBits && ThisVT != PartVT) { 610 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 611 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 612 } 613 } 614 } 615 616 if (DAG.getDataLayout().isBigEndian()) 617 std::reverse(Parts, Parts + OrigNumParts); 618 } 619 620 static SDValue widenVectorToPartType(SelectionDAG &DAG, 621 SDValue Val, const SDLoc &DL, EVT PartVT) { 622 if (!PartVT.isVector()) 623 return SDValue(); 624 625 EVT ValueVT = Val.getValueType(); 626 unsigned PartNumElts = PartVT.getVectorNumElements(); 627 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 628 if (PartNumElts > ValueNumElts && 629 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 630 EVT ElementVT = PartVT.getVectorElementType(); 631 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 632 // undef elements. 633 SmallVector<SDValue, 16> Ops; 634 DAG.ExtractVectorElements(Val, Ops); 635 SDValue EltUndef = DAG.getUNDEF(ElementVT); 636 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 637 Ops.push_back(EltUndef); 638 639 // FIXME: Use CONCAT for 2x -> 4x. 640 return DAG.getBuildVector(PartVT, DL, Ops); 641 } 642 643 return SDValue(); 644 } 645 646 /// getCopyToPartsVector - Create a series of nodes that contain the specified 647 /// value split into legal parts. 648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 649 SDValue Val, SDValue *Parts, unsigned NumParts, 650 MVT PartVT, const Value *V, 651 Optional<CallingConv::ID> CallConv) { 652 EVT ValueVT = Val.getValueType(); 653 assert(ValueVT.isVector() && "Not a vector"); 654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 655 const bool IsABIRegCopy = CallConv.hasValue(); 656 657 if (NumParts == 1) { 658 EVT PartEVT = PartVT; 659 if (PartEVT == ValueVT) { 660 // Nothing to do. 661 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 662 // Bitconvert vector->vector case. 663 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 664 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 665 Val = Widened; 666 } else if (PartVT.isVector() && 667 PartEVT.getVectorElementType().bitsGE( 668 ValueVT.getVectorElementType()) && 669 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 670 671 // Promoted vector extract 672 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 673 } else { 674 if (ValueVT.getVectorNumElements() == 1) { 675 Val = DAG.getNode( 676 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 677 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 678 } else { 679 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 680 "lossy conversion of vector to scalar type"); 681 EVT IntermediateType = 682 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 683 Val = DAG.getBitcast(IntermediateType, Val); 684 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 685 } 686 } 687 688 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 689 Parts[0] = Val; 690 return; 691 } 692 693 // Handle a multi-element vector. 694 EVT IntermediateVT; 695 MVT RegisterVT; 696 unsigned NumIntermediates; 697 unsigned NumRegs; 698 if (IsABIRegCopy) { 699 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 700 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 701 NumIntermediates, RegisterVT); 702 } else { 703 NumRegs = 704 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 705 NumIntermediates, RegisterVT); 706 } 707 708 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 709 NumParts = NumRegs; // Silence a compiler warning. 710 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 711 712 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 713 IntermediateVT.getVectorNumElements() : 1; 714 715 // Convert the vector to the appropiate type if necessary. 716 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 717 718 EVT BuiltVectorTy = EVT::getVectorVT( 719 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 720 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 721 if (ValueVT != BuiltVectorTy) { 722 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 723 Val = Widened; 724 725 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 726 } 727 728 // Split the vector into intermediate operands. 729 SmallVector<SDValue, 8> Ops(NumIntermediates); 730 for (unsigned i = 0; i != NumIntermediates; ++i) { 731 if (IntermediateVT.isVector()) { 732 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 734 } else { 735 Ops[i] = DAG.getNode( 736 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 737 DAG.getConstant(i, DL, IdxVT)); 738 } 739 } 740 741 // Split the intermediate operands into legal parts. 742 if (NumParts == NumIntermediates) { 743 // If the register was not expanded, promote or copy the value, 744 // as appropriate. 745 for (unsigned i = 0; i != NumParts; ++i) 746 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 747 } else if (NumParts > 0) { 748 // If the intermediate type was expanded, split each the value into 749 // legal parts. 750 assert(NumIntermediates != 0 && "division by zero"); 751 assert(NumParts % NumIntermediates == 0 && 752 "Must expand into a divisible number of parts!"); 753 unsigned Factor = NumParts / NumIntermediates; 754 for (unsigned i = 0; i != NumIntermediates; ++i) 755 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 756 CallConv); 757 } 758 } 759 760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 761 EVT valuevt, Optional<CallingConv::ID> CC) 762 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 763 RegCount(1, regs.size()), CallConv(CC) {} 764 765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 766 const DataLayout &DL, unsigned Reg, Type *Ty, 767 Optional<CallingConv::ID> CC) { 768 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 769 770 CallConv = CC; 771 772 for (EVT ValueVT : ValueVTs) { 773 unsigned NumRegs = 774 isABIMangled() 775 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 776 : TLI.getNumRegisters(Context, ValueVT); 777 MVT RegisterVT = 778 isABIMangled() 779 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 780 : TLI.getRegisterType(Context, ValueVT); 781 for (unsigned i = 0; i != NumRegs; ++i) 782 Regs.push_back(Reg + i); 783 RegVTs.push_back(RegisterVT); 784 RegCount.push_back(NumRegs); 785 Reg += NumRegs; 786 } 787 } 788 789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 790 FunctionLoweringInfo &FuncInfo, 791 const SDLoc &dl, SDValue &Chain, 792 SDValue *Flag, const Value *V) const { 793 // A Value with type {} or [0 x %t] needs no registers. 794 if (ValueVTs.empty()) 795 return SDValue(); 796 797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 798 799 // Assemble the legal parts into the final values. 800 SmallVector<SDValue, 4> Values(ValueVTs.size()); 801 SmallVector<SDValue, 8> Parts; 802 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 803 // Copy the legal parts from the registers. 804 EVT ValueVT = ValueVTs[Value]; 805 unsigned NumRegs = RegCount[Value]; 806 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 807 *DAG.getContext(), 808 CallConv.getValue(), RegVTs[Value]) 809 : RegVTs[Value]; 810 811 Parts.resize(NumRegs); 812 for (unsigned i = 0; i != NumRegs; ++i) { 813 SDValue P; 814 if (!Flag) { 815 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 816 } else { 817 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 818 *Flag = P.getValue(2); 819 } 820 821 Chain = P.getValue(1); 822 Parts[i] = P; 823 824 // If the source register was virtual and if we know something about it, 825 // add an assert node. 826 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 827 !RegisterVT.isInteger()) 828 continue; 829 830 const FunctionLoweringInfo::LiveOutInfo *LOI = 831 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 832 if (!LOI) 833 continue; 834 835 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 836 unsigned NumSignBits = LOI->NumSignBits; 837 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 838 839 if (NumZeroBits == RegSize) { 840 // The current value is a zero. 841 // Explicitly express that as it would be easier for 842 // optimizations to kick in. 843 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 844 continue; 845 } 846 847 // FIXME: We capture more information than the dag can represent. For 848 // now, just use the tightest assertzext/assertsext possible. 849 bool isSExt; 850 EVT FromVT(MVT::Other); 851 if (NumZeroBits) { 852 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 853 isSExt = false; 854 } else if (NumSignBits > 1) { 855 FromVT = 856 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 857 isSExt = true; 858 } else { 859 continue; 860 } 861 // Add an assertion node. 862 assert(FromVT != MVT::Other); 863 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 864 RegisterVT, P, DAG.getValueType(FromVT)); 865 } 866 867 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 868 RegisterVT, ValueVT, V, CallConv); 869 Part += NumRegs; 870 Parts.clear(); 871 } 872 873 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 874 } 875 876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 877 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 878 const Value *V, 879 ISD::NodeType PreferredExtendType) const { 880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 881 ISD::NodeType ExtendKind = PreferredExtendType; 882 883 // Get the list of the values's legal parts. 884 unsigned NumRegs = Regs.size(); 885 SmallVector<SDValue, 8> Parts(NumRegs); 886 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 887 unsigned NumParts = RegCount[Value]; 888 889 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 890 *DAG.getContext(), 891 CallConv.getValue(), RegVTs[Value]) 892 : RegVTs[Value]; 893 894 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 895 ExtendKind = ISD::ZERO_EXTEND; 896 897 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 898 NumParts, RegisterVT, V, CallConv, ExtendKind); 899 Part += NumParts; 900 } 901 902 // Copy the parts into the registers. 903 SmallVector<SDValue, 8> Chains(NumRegs); 904 for (unsigned i = 0; i != NumRegs; ++i) { 905 SDValue Part; 906 if (!Flag) { 907 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 908 } else { 909 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 910 *Flag = Part.getValue(1); 911 } 912 913 Chains[i] = Part.getValue(0); 914 } 915 916 if (NumRegs == 1 || Flag) 917 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 918 // flagged to it. That is the CopyToReg nodes and the user are considered 919 // a single scheduling unit. If we create a TokenFactor and return it as 920 // chain, then the TokenFactor is both a predecessor (operand) of the 921 // user as well as a successor (the TF operands are flagged to the user). 922 // c1, f1 = CopyToReg 923 // c2, f2 = CopyToReg 924 // c3 = TokenFactor c1, c2 925 // ... 926 // = op c3, ..., f2 927 Chain = Chains[NumRegs-1]; 928 else 929 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 930 } 931 932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 933 unsigned MatchingIdx, const SDLoc &dl, 934 SelectionDAG &DAG, 935 std::vector<SDValue> &Ops) const { 936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 937 938 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 939 if (HasMatching) 940 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 941 else if (!Regs.empty() && 942 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 943 // Put the register class of the virtual registers in the flag word. That 944 // way, later passes can recompute register class constraints for inline 945 // assembly as well as normal instructions. 946 // Don't do this for tied operands that can use the regclass information 947 // from the def. 948 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 949 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 950 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 951 } 952 953 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 954 Ops.push_back(Res); 955 956 if (Code == InlineAsm::Kind_Clobber) { 957 // Clobbers should always have a 1:1 mapping with registers, and may 958 // reference registers that have illegal (e.g. vector) types. Hence, we 959 // shouldn't try to apply any sort of splitting logic to them. 960 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 961 "No 1:1 mapping from clobbers to regs?"); 962 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 963 (void)SP; 964 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 965 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 966 assert( 967 (Regs[I] != SP || 968 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 969 "If we clobbered the stack pointer, MFI should know about it."); 970 } 971 return; 972 } 973 974 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 976 MVT RegisterVT = RegVTs[Value]; 977 for (unsigned i = 0; i != NumRegs; ++i) { 978 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 979 unsigned TheReg = Regs[Reg++]; 980 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 981 } 982 } 983 } 984 985 SmallVector<std::pair<unsigned, unsigned>, 4> 986 RegsForValue::getRegsAndSizes() const { 987 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 988 unsigned I = 0; 989 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 990 unsigned RegCount = std::get<0>(CountAndVT); 991 MVT RegisterVT = std::get<1>(CountAndVT); 992 unsigned RegisterSize = RegisterVT.getSizeInBits(); 993 for (unsigned E = I + RegCount; I != E; ++I) 994 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 995 } 996 return OutVec; 997 } 998 999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1000 const TargetLibraryInfo *li) { 1001 AA = aa; 1002 GFI = gfi; 1003 LibInfo = li; 1004 DL = &DAG.getDataLayout(); 1005 Context = DAG.getContext(); 1006 LPadToCallSiteMap.clear(); 1007 } 1008 1009 void SelectionDAGBuilder::clear() { 1010 NodeMap.clear(); 1011 UnusedArgNodeMap.clear(); 1012 PendingLoads.clear(); 1013 PendingExports.clear(); 1014 CurInst = nullptr; 1015 HasTailCall = false; 1016 SDNodeOrder = LowestSDNodeOrder; 1017 StatepointLowering.clear(); 1018 } 1019 1020 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1021 DanglingDebugInfoMap.clear(); 1022 } 1023 1024 SDValue SelectionDAGBuilder::getRoot() { 1025 if (PendingLoads.empty()) 1026 return DAG.getRoot(); 1027 1028 if (PendingLoads.size() == 1) { 1029 SDValue Root = PendingLoads[0]; 1030 DAG.setRoot(Root); 1031 PendingLoads.clear(); 1032 return Root; 1033 } 1034 1035 // Otherwise, we have to make a token factor node. 1036 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1037 PendingLoads.clear(); 1038 DAG.setRoot(Root); 1039 return Root; 1040 } 1041 1042 SDValue SelectionDAGBuilder::getControlRoot() { 1043 SDValue Root = DAG.getRoot(); 1044 1045 if (PendingExports.empty()) 1046 return Root; 1047 1048 // Turn all of the CopyToReg chains into one factored node. 1049 if (Root.getOpcode() != ISD::EntryToken) { 1050 unsigned i = 0, e = PendingExports.size(); 1051 for (; i != e; ++i) { 1052 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1053 if (PendingExports[i].getNode()->getOperand(0) == Root) 1054 break; // Don't add the root if we already indirectly depend on it. 1055 } 1056 1057 if (i == e) 1058 PendingExports.push_back(Root); 1059 } 1060 1061 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1062 PendingExports); 1063 PendingExports.clear(); 1064 DAG.setRoot(Root); 1065 return Root; 1066 } 1067 1068 void SelectionDAGBuilder::visit(const Instruction &I) { 1069 // Set up outgoing PHI node register values before emitting the terminator. 1070 if (I.isTerminator()) { 1071 HandlePHINodesInSuccessorBlocks(I.getParent()); 1072 } 1073 1074 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1075 if (!isa<DbgInfoIntrinsic>(I)) 1076 ++SDNodeOrder; 1077 1078 CurInst = &I; 1079 1080 visit(I.getOpcode(), I); 1081 1082 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1083 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1084 // maps to this instruction. 1085 // TODO: We could handle all flags (nsw, etc) here. 1086 // TODO: If an IR instruction maps to >1 node, only the final node will have 1087 // flags set. 1088 if (SDNode *Node = getNodeForIRValue(&I)) { 1089 SDNodeFlags IncomingFlags; 1090 IncomingFlags.copyFMF(*FPMO); 1091 if (!Node->getFlags().isDefined()) 1092 Node->setFlags(IncomingFlags); 1093 else 1094 Node->intersectFlagsWith(IncomingFlags); 1095 } 1096 } 1097 1098 if (!I.isTerminator() && !HasTailCall && 1099 !isStatepoint(&I)) // statepoints handle their exports internally 1100 CopyToExportRegsIfNeeded(&I); 1101 1102 CurInst = nullptr; 1103 } 1104 1105 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1106 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1107 } 1108 1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1110 // Note: this doesn't use InstVisitor, because it has to work with 1111 // ConstantExpr's in addition to instructions. 1112 switch (Opcode) { 1113 default: llvm_unreachable("Unknown instruction type encountered!"); 1114 // Build the switch statement using the Instruction.def file. 1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1116 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1117 #include "llvm/IR/Instruction.def" 1118 } 1119 } 1120 1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1122 const DIExpression *Expr) { 1123 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1124 const DbgValueInst *DI = DDI.getDI(); 1125 DIVariable *DanglingVariable = DI->getVariable(); 1126 DIExpression *DanglingExpr = DI->getExpression(); 1127 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1128 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1129 return true; 1130 } 1131 return false; 1132 }; 1133 1134 for (auto &DDIMI : DanglingDebugInfoMap) { 1135 DanglingDebugInfoVector &DDIV = DDIMI.second; 1136 1137 // If debug info is to be dropped, run it through final checks to see 1138 // whether it can be salvaged. 1139 for (auto &DDI : DDIV) 1140 if (isMatchingDbgValue(DDI)) 1141 salvageUnresolvedDbgValue(DDI); 1142 1143 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1144 } 1145 } 1146 1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1148 // generate the debug data structures now that we've seen its definition. 1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1150 SDValue Val) { 1151 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1152 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1153 return; 1154 1155 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1156 for (auto &DDI : DDIV) { 1157 const DbgValueInst *DI = DDI.getDI(); 1158 assert(DI && "Ill-formed DanglingDebugInfo"); 1159 DebugLoc dl = DDI.getdl(); 1160 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1161 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1162 DILocalVariable *Variable = DI->getVariable(); 1163 DIExpression *Expr = DI->getExpression(); 1164 assert(Variable->isValidLocationForIntrinsic(dl) && 1165 "Expected inlined-at fields to agree"); 1166 SDDbgValue *SDV; 1167 if (Val.getNode()) { 1168 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1169 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1170 // we couldn't resolve it directly when examining the DbgValue intrinsic 1171 // in the first place we should not be more successful here). Unless we 1172 // have some test case that prove this to be correct we should avoid 1173 // calling EmitFuncArgumentDbgValue here. 1174 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1175 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1176 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1177 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1178 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1179 // inserted after the definition of Val when emitting the instructions 1180 // after ISel. An alternative could be to teach 1181 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1182 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1183 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1184 << ValSDNodeOrder << "\n"); 1185 SDV = getDbgValue(Val, Variable, Expr, dl, 1186 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1187 DAG.AddDbgValue(SDV, Val.getNode(), false); 1188 } else 1189 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1190 << "in EmitFuncArgumentDbgValue\n"); 1191 } else { 1192 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1193 auto Undef = 1194 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1195 auto SDV = 1196 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1197 DAG.AddDbgValue(SDV, nullptr, false); 1198 } 1199 } 1200 DDIV.clear(); 1201 } 1202 1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1204 Value *V = DDI.getDI()->getValue(); 1205 DILocalVariable *Var = DDI.getDI()->getVariable(); 1206 DIExpression *Expr = DDI.getDI()->getExpression(); 1207 DebugLoc DL = DDI.getdl(); 1208 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1209 unsigned SDOrder = DDI.getSDNodeOrder(); 1210 1211 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1212 // that DW_OP_stack_value is desired. 1213 assert(isa<DbgValueInst>(DDI.getDI())); 1214 bool StackValue = true; 1215 1216 // Can this Value can be encoded without any further work? 1217 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1218 return; 1219 1220 // Attempt to salvage back through as many instructions as possible. Bail if 1221 // a non-instruction is seen, such as a constant expression or global 1222 // variable. FIXME: Further work could recover those too. 1223 while (isa<Instruction>(V)) { 1224 Instruction &VAsInst = *cast<Instruction>(V); 1225 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1226 1227 // If we cannot salvage any further, and haven't yet found a suitable debug 1228 // expression, bail out. 1229 if (!NewExpr) 1230 break; 1231 1232 // New value and expr now represent this debuginfo. 1233 V = VAsInst.getOperand(0); 1234 Expr = NewExpr; 1235 1236 // Some kind of simplification occurred: check whether the operand of the 1237 // salvaged debug expression can be encoded in this DAG. 1238 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1239 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1240 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1241 return; 1242 } 1243 } 1244 1245 // This was the final opportunity to salvage this debug information, and it 1246 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1247 // any earlier variable location. 1248 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1249 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1250 DAG.AddDbgValue(SDV, nullptr, false); 1251 1252 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1253 << "\n"); 1254 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1255 << "\n"); 1256 } 1257 1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1259 DIExpression *Expr, DebugLoc dl, 1260 DebugLoc InstDL, unsigned Order) { 1261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1262 SDDbgValue *SDV; 1263 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1264 isa<ConstantPointerNull>(V)) { 1265 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1266 DAG.AddDbgValue(SDV, nullptr, false); 1267 return true; 1268 } 1269 1270 // If the Value is a frame index, we can create a FrameIndex debug value 1271 // without relying on the DAG at all. 1272 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1273 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1274 if (SI != FuncInfo.StaticAllocaMap.end()) { 1275 auto SDV = 1276 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1277 /*IsIndirect*/ false, dl, SDNodeOrder); 1278 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1279 // is still available even if the SDNode gets optimized out. 1280 DAG.AddDbgValue(SDV, nullptr, false); 1281 return true; 1282 } 1283 } 1284 1285 // Do not use getValue() in here; we don't want to generate code at 1286 // this point if it hasn't been done yet. 1287 SDValue N = NodeMap[V]; 1288 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1289 N = UnusedArgNodeMap[V]; 1290 if (N.getNode()) { 1291 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1292 return true; 1293 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1294 DAG.AddDbgValue(SDV, N.getNode(), false); 1295 return true; 1296 } 1297 1298 // Special rules apply for the first dbg.values of parameter variables in a 1299 // function. Identify them by the fact they reference Argument Values, that 1300 // they're parameters, and they are parameters of the current function. We 1301 // need to let them dangle until they get an SDNode. 1302 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1303 !InstDL.getInlinedAt(); 1304 if (!IsParamOfFunc) { 1305 // The value is not used in this block yet (or it would have an SDNode). 1306 // We still want the value to appear for the user if possible -- if it has 1307 // an associated VReg, we can refer to that instead. 1308 auto VMI = FuncInfo.ValueMap.find(V); 1309 if (VMI != FuncInfo.ValueMap.end()) { 1310 unsigned Reg = VMI->second; 1311 // If this is a PHI node, it may be split up into several MI PHI nodes 1312 // (in FunctionLoweringInfo::set). 1313 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1314 V->getType(), None); 1315 if (RFV.occupiesMultipleRegs()) { 1316 unsigned Offset = 0; 1317 unsigned BitsToDescribe = 0; 1318 if (auto VarSize = Var->getSizeInBits()) 1319 BitsToDescribe = *VarSize; 1320 if (auto Fragment = Expr->getFragmentInfo()) 1321 BitsToDescribe = Fragment->SizeInBits; 1322 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1323 unsigned RegisterSize = RegAndSize.second; 1324 // Bail out if all bits are described already. 1325 if (Offset >= BitsToDescribe) 1326 break; 1327 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1328 ? BitsToDescribe - Offset 1329 : RegisterSize; 1330 auto FragmentExpr = DIExpression::createFragmentExpression( 1331 Expr, Offset, FragmentSize); 1332 if (!FragmentExpr) 1333 continue; 1334 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1335 false, dl, SDNodeOrder); 1336 DAG.AddDbgValue(SDV, nullptr, false); 1337 Offset += RegisterSize; 1338 } 1339 } else { 1340 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1341 DAG.AddDbgValue(SDV, nullptr, false); 1342 } 1343 return true; 1344 } 1345 } 1346 1347 return false; 1348 } 1349 1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1351 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1352 for (auto &Pair : DanglingDebugInfoMap) 1353 for (auto &DDI : Pair.getSecond()) 1354 salvageUnresolvedDbgValue(DDI); 1355 clearDanglingDebugInfo(); 1356 } 1357 1358 /// getCopyFromRegs - If there was virtual register allocated for the value V 1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1361 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1362 SDValue Result; 1363 1364 if (It != FuncInfo.ValueMap.end()) { 1365 unsigned InReg = It->second; 1366 1367 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1368 DAG.getDataLayout(), InReg, Ty, 1369 None); // This is not an ABI copy. 1370 SDValue Chain = DAG.getEntryNode(); 1371 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1372 V); 1373 resolveDanglingDebugInfo(V, Result); 1374 } 1375 1376 return Result; 1377 } 1378 1379 /// getValue - Return an SDValue for the given Value. 1380 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1381 // If we already have an SDValue for this value, use it. It's important 1382 // to do this first, so that we don't create a CopyFromReg if we already 1383 // have a regular SDValue. 1384 SDValue &N = NodeMap[V]; 1385 if (N.getNode()) return N; 1386 1387 // If there's a virtual register allocated and initialized for this 1388 // value, use it. 1389 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1390 return copyFromReg; 1391 1392 // Otherwise create a new SDValue and remember it. 1393 SDValue Val = getValueImpl(V); 1394 NodeMap[V] = Val; 1395 resolveDanglingDebugInfo(V, Val); 1396 return Val; 1397 } 1398 1399 // Return true if SDValue exists for the given Value 1400 bool SelectionDAGBuilder::findValue(const Value *V) const { 1401 return (NodeMap.find(V) != NodeMap.end()) || 1402 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1403 } 1404 1405 /// getNonRegisterValue - Return an SDValue for the given Value, but 1406 /// don't look in FuncInfo.ValueMap for a virtual register. 1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1408 // If we already have an SDValue for this value, use it. 1409 SDValue &N = NodeMap[V]; 1410 if (N.getNode()) { 1411 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1412 // Remove the debug location from the node as the node is about to be used 1413 // in a location which may differ from the original debug location. This 1414 // is relevant to Constant and ConstantFP nodes because they can appear 1415 // as constant expressions inside PHI nodes. 1416 N->setDebugLoc(DebugLoc()); 1417 } 1418 return N; 1419 } 1420 1421 // Otherwise create a new SDValue and remember it. 1422 SDValue Val = getValueImpl(V); 1423 NodeMap[V] = Val; 1424 resolveDanglingDebugInfo(V, Val); 1425 return Val; 1426 } 1427 1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1429 /// Create an SDValue for the given value. 1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1432 1433 if (const Constant *C = dyn_cast<Constant>(V)) { 1434 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1435 1436 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1437 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1438 1439 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1440 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1441 1442 if (isa<ConstantPointerNull>(C)) { 1443 unsigned AS = V->getType()->getPointerAddressSpace(); 1444 return DAG.getConstant(0, getCurSDLoc(), 1445 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1446 } 1447 1448 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1449 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1450 1451 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1452 return DAG.getUNDEF(VT); 1453 1454 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1455 visit(CE->getOpcode(), *CE); 1456 SDValue N1 = NodeMap[V]; 1457 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1458 return N1; 1459 } 1460 1461 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1462 SmallVector<SDValue, 4> Constants; 1463 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1464 OI != OE; ++OI) { 1465 SDNode *Val = getValue(*OI).getNode(); 1466 // If the operand is an empty aggregate, there are no values. 1467 if (!Val) continue; 1468 // Add each leaf value from the operand to the Constants list 1469 // to form a flattened list of all the values. 1470 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1471 Constants.push_back(SDValue(Val, i)); 1472 } 1473 1474 return DAG.getMergeValues(Constants, getCurSDLoc()); 1475 } 1476 1477 if (const ConstantDataSequential *CDS = 1478 dyn_cast<ConstantDataSequential>(C)) { 1479 SmallVector<SDValue, 4> Ops; 1480 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1481 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1482 // Add each leaf value from the operand to the Constants list 1483 // to form a flattened list of all the values. 1484 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1485 Ops.push_back(SDValue(Val, i)); 1486 } 1487 1488 if (isa<ArrayType>(CDS->getType())) 1489 return DAG.getMergeValues(Ops, getCurSDLoc()); 1490 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1491 } 1492 1493 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1494 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1495 "Unknown struct or array constant!"); 1496 1497 SmallVector<EVT, 4> ValueVTs; 1498 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1499 unsigned NumElts = ValueVTs.size(); 1500 if (NumElts == 0) 1501 return SDValue(); // empty struct 1502 SmallVector<SDValue, 4> Constants(NumElts); 1503 for (unsigned i = 0; i != NumElts; ++i) { 1504 EVT EltVT = ValueVTs[i]; 1505 if (isa<UndefValue>(C)) 1506 Constants[i] = DAG.getUNDEF(EltVT); 1507 else if (EltVT.isFloatingPoint()) 1508 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1509 else 1510 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1511 } 1512 1513 return DAG.getMergeValues(Constants, getCurSDLoc()); 1514 } 1515 1516 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1517 return DAG.getBlockAddress(BA, VT); 1518 1519 VectorType *VecTy = cast<VectorType>(V->getType()); 1520 unsigned NumElements = VecTy->getNumElements(); 1521 1522 // Now that we know the number and type of the elements, get that number of 1523 // elements into the Ops array based on what kind of constant it is. 1524 SmallVector<SDValue, 16> Ops; 1525 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1526 for (unsigned i = 0; i != NumElements; ++i) 1527 Ops.push_back(getValue(CV->getOperand(i))); 1528 } else { 1529 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1530 EVT EltVT = 1531 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1532 1533 SDValue Op; 1534 if (EltVT.isFloatingPoint()) 1535 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1536 else 1537 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1538 Ops.assign(NumElements, Op); 1539 } 1540 1541 // Create a BUILD_VECTOR node. 1542 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1543 } 1544 1545 // If this is a static alloca, generate it as the frameindex instead of 1546 // computation. 1547 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1548 DenseMap<const AllocaInst*, int>::iterator SI = 1549 FuncInfo.StaticAllocaMap.find(AI); 1550 if (SI != FuncInfo.StaticAllocaMap.end()) 1551 return DAG.getFrameIndex(SI->second, 1552 TLI.getFrameIndexTy(DAG.getDataLayout())); 1553 } 1554 1555 // If this is an instruction which fast-isel has deferred, select it now. 1556 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1557 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1558 1559 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1560 Inst->getType(), getABIRegCopyCC(V)); 1561 SDValue Chain = DAG.getEntryNode(); 1562 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1563 } 1564 1565 llvm_unreachable("Can't get register for value!"); 1566 } 1567 1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1569 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1570 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1571 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1572 bool IsSEH = isAsynchronousEHPersonality(Pers); 1573 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1574 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1575 if (!IsSEH) 1576 CatchPadMBB->setIsEHScopeEntry(); 1577 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1578 if (IsMSVCCXX || IsCoreCLR) 1579 CatchPadMBB->setIsEHFuncletEntry(); 1580 // Wasm does not need catchpads anymore 1581 if (!IsWasmCXX) 1582 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1583 getControlRoot())); 1584 } 1585 1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1587 // Update machine-CFG edge. 1588 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1589 FuncInfo.MBB->addSuccessor(TargetMBB); 1590 1591 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1592 bool IsSEH = isAsynchronousEHPersonality(Pers); 1593 if (IsSEH) { 1594 // If this is not a fall-through branch or optimizations are switched off, 1595 // emit the branch. 1596 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1597 TM.getOptLevel() == CodeGenOpt::None) 1598 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1599 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1600 return; 1601 } 1602 1603 // Figure out the funclet membership for the catchret's successor. 1604 // This will be used by the FuncletLayout pass to determine how to order the 1605 // BB's. 1606 // A 'catchret' returns to the outer scope's color. 1607 Value *ParentPad = I.getCatchSwitchParentPad(); 1608 const BasicBlock *SuccessorColor; 1609 if (isa<ConstantTokenNone>(ParentPad)) 1610 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1611 else 1612 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1613 assert(SuccessorColor && "No parent funclet for catchret!"); 1614 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1615 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1616 1617 // Create the terminator node. 1618 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1619 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1620 DAG.getBasicBlock(SuccessorColorMBB)); 1621 DAG.setRoot(Ret); 1622 } 1623 1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1625 // Don't emit any special code for the cleanuppad instruction. It just marks 1626 // the start of an EH scope/funclet. 1627 FuncInfo.MBB->setIsEHScopeEntry(); 1628 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1629 if (Pers != EHPersonality::Wasm_CXX) { 1630 FuncInfo.MBB->setIsEHFuncletEntry(); 1631 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1632 } 1633 } 1634 1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1636 // the control flow always stops at the single catch pad, as it does for a 1637 // cleanup pad. In case the exception caught is not of the types the catch pad 1638 // catches, it will be rethrown by a rethrow. 1639 static void findWasmUnwindDestinations( 1640 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1641 BranchProbability Prob, 1642 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1643 &UnwindDests) { 1644 while (EHPadBB) { 1645 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1646 if (isa<CleanupPadInst>(Pad)) { 1647 // Stop on cleanup pads. 1648 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1649 UnwindDests.back().first->setIsEHScopeEntry(); 1650 break; 1651 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1652 // Add the catchpad handlers to the possible destinations. We don't 1653 // continue to the unwind destination of the catchswitch for wasm. 1654 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1655 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1656 UnwindDests.back().first->setIsEHScopeEntry(); 1657 } 1658 break; 1659 } else { 1660 continue; 1661 } 1662 } 1663 } 1664 1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1666 /// many places it could ultimately go. In the IR, we have a single unwind 1667 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1668 /// This function skips over imaginary basic blocks that hold catchswitch 1669 /// instructions, and finds all the "real" machine 1670 /// basic block destinations. As those destinations may not be successors of 1671 /// EHPadBB, here we also calculate the edge probability to those destinations. 1672 /// The passed-in Prob is the edge probability to EHPadBB. 1673 static void findUnwindDestinations( 1674 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1675 BranchProbability Prob, 1676 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1677 &UnwindDests) { 1678 EHPersonality Personality = 1679 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1680 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1681 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1682 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1683 bool IsSEH = isAsynchronousEHPersonality(Personality); 1684 1685 if (IsWasmCXX) { 1686 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1687 assert(UnwindDests.size() <= 1 && 1688 "There should be at most one unwind destination for wasm"); 1689 return; 1690 } 1691 1692 while (EHPadBB) { 1693 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1694 BasicBlock *NewEHPadBB = nullptr; 1695 if (isa<LandingPadInst>(Pad)) { 1696 // Stop on landingpads. They are not funclets. 1697 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1698 break; 1699 } else if (isa<CleanupPadInst>(Pad)) { 1700 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1701 // personalities. 1702 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1703 UnwindDests.back().first->setIsEHScopeEntry(); 1704 UnwindDests.back().first->setIsEHFuncletEntry(); 1705 break; 1706 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1707 // Add the catchpad handlers to the possible destinations. 1708 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1709 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1710 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1711 if (IsMSVCCXX || IsCoreCLR) 1712 UnwindDests.back().first->setIsEHFuncletEntry(); 1713 if (!IsSEH) 1714 UnwindDests.back().first->setIsEHScopeEntry(); 1715 } 1716 NewEHPadBB = CatchSwitch->getUnwindDest(); 1717 } else { 1718 continue; 1719 } 1720 1721 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1722 if (BPI && NewEHPadBB) 1723 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1724 EHPadBB = NewEHPadBB; 1725 } 1726 } 1727 1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1729 // Update successor info. 1730 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1731 auto UnwindDest = I.getUnwindDest(); 1732 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1733 BranchProbability UnwindDestProb = 1734 (BPI && UnwindDest) 1735 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1736 : BranchProbability::getZero(); 1737 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1738 for (auto &UnwindDest : UnwindDests) { 1739 UnwindDest.first->setIsEHPad(); 1740 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1741 } 1742 FuncInfo.MBB->normalizeSuccProbs(); 1743 1744 // Create the terminator node. 1745 SDValue Ret = 1746 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1747 DAG.setRoot(Ret); 1748 } 1749 1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1751 report_fatal_error("visitCatchSwitch not yet implemented!"); 1752 } 1753 1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1756 auto &DL = DAG.getDataLayout(); 1757 SDValue Chain = getControlRoot(); 1758 SmallVector<ISD::OutputArg, 8> Outs; 1759 SmallVector<SDValue, 8> OutVals; 1760 1761 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1762 // lower 1763 // 1764 // %val = call <ty> @llvm.experimental.deoptimize() 1765 // ret <ty> %val 1766 // 1767 // differently. 1768 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1769 LowerDeoptimizingReturn(); 1770 return; 1771 } 1772 1773 if (!FuncInfo.CanLowerReturn) { 1774 unsigned DemoteReg = FuncInfo.DemoteRegister; 1775 const Function *F = I.getParent()->getParent(); 1776 1777 // Emit a store of the return value through the virtual register. 1778 // Leave Outs empty so that LowerReturn won't try to load return 1779 // registers the usual way. 1780 SmallVector<EVT, 1> PtrValueVTs; 1781 ComputeValueVTs(TLI, DL, 1782 F->getReturnType()->getPointerTo( 1783 DAG.getDataLayout().getAllocaAddrSpace()), 1784 PtrValueVTs); 1785 1786 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1787 DemoteReg, PtrValueVTs[0]); 1788 SDValue RetOp = getValue(I.getOperand(0)); 1789 1790 SmallVector<EVT, 4> ValueVTs; 1791 SmallVector<uint64_t, 4> Offsets; 1792 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1793 unsigned NumValues = ValueVTs.size(); 1794 1795 SmallVector<SDValue, 4> Chains(NumValues); 1796 for (unsigned i = 0; i != NumValues; ++i) { 1797 // An aggregate return value cannot wrap around the address space, so 1798 // offsets to its parts don't wrap either. 1799 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1800 Chains[i] = DAG.getStore( 1801 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1802 // FIXME: better loc info would be nice. 1803 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1804 } 1805 1806 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1807 MVT::Other, Chains); 1808 } else if (I.getNumOperands() != 0) { 1809 SmallVector<EVT, 4> ValueVTs; 1810 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1811 unsigned NumValues = ValueVTs.size(); 1812 if (NumValues) { 1813 SDValue RetOp = getValue(I.getOperand(0)); 1814 1815 const Function *F = I.getParent()->getParent(); 1816 1817 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1818 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1819 Attribute::SExt)) 1820 ExtendKind = ISD::SIGN_EXTEND; 1821 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1822 Attribute::ZExt)) 1823 ExtendKind = ISD::ZERO_EXTEND; 1824 1825 LLVMContext &Context = F->getContext(); 1826 bool RetInReg = F->getAttributes().hasAttribute( 1827 AttributeList::ReturnIndex, Attribute::InReg); 1828 1829 for (unsigned j = 0; j != NumValues; ++j) { 1830 EVT VT = ValueVTs[j]; 1831 1832 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1833 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1834 1835 CallingConv::ID CC = F->getCallingConv(); 1836 1837 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1838 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1839 SmallVector<SDValue, 4> Parts(NumParts); 1840 getCopyToParts(DAG, getCurSDLoc(), 1841 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1842 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1843 1844 // 'inreg' on function refers to return value 1845 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1846 if (RetInReg) 1847 Flags.setInReg(); 1848 1849 // Propagate extension type if any 1850 if (ExtendKind == ISD::SIGN_EXTEND) 1851 Flags.setSExt(); 1852 else if (ExtendKind == ISD::ZERO_EXTEND) 1853 Flags.setZExt(); 1854 1855 for (unsigned i = 0; i < NumParts; ++i) { 1856 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1857 VT, /*isfixed=*/true, 0, 0)); 1858 OutVals.push_back(Parts[i]); 1859 } 1860 } 1861 } 1862 } 1863 1864 // Push in swifterror virtual register as the last element of Outs. This makes 1865 // sure swifterror virtual register will be returned in the swifterror 1866 // physical register. 1867 const Function *F = I.getParent()->getParent(); 1868 if (TLI.supportSwiftError() && 1869 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1870 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1871 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1872 Flags.setSwiftError(); 1873 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1874 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1875 true /*isfixed*/, 1 /*origidx*/, 1876 0 /*partOffs*/)); 1877 // Create SDNode for the swifterror virtual register. 1878 OutVals.push_back( 1879 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1880 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1881 EVT(TLI.getPointerTy(DL)))); 1882 } 1883 1884 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1885 CallingConv::ID CallConv = 1886 DAG.getMachineFunction().getFunction().getCallingConv(); 1887 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1888 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1889 1890 // Verify that the target's LowerReturn behaved as expected. 1891 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1892 "LowerReturn didn't return a valid chain!"); 1893 1894 // Update the DAG with the new chain value resulting from return lowering. 1895 DAG.setRoot(Chain); 1896 } 1897 1898 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1899 /// created for it, emit nodes to copy the value into the virtual 1900 /// registers. 1901 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1902 // Skip empty types 1903 if (V->getType()->isEmptyTy()) 1904 return; 1905 1906 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1907 if (VMI != FuncInfo.ValueMap.end()) { 1908 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1909 CopyValueToVirtualRegister(V, VMI->second); 1910 } 1911 } 1912 1913 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1914 /// the current basic block, add it to ValueMap now so that we'll get a 1915 /// CopyTo/FromReg. 1916 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1917 // No need to export constants. 1918 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1919 1920 // Already exported? 1921 if (FuncInfo.isExportedInst(V)) return; 1922 1923 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1924 CopyValueToVirtualRegister(V, Reg); 1925 } 1926 1927 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1928 const BasicBlock *FromBB) { 1929 // The operands of the setcc have to be in this block. We don't know 1930 // how to export them from some other block. 1931 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1932 // Can export from current BB. 1933 if (VI->getParent() == FromBB) 1934 return true; 1935 1936 // Is already exported, noop. 1937 return FuncInfo.isExportedInst(V); 1938 } 1939 1940 // If this is an argument, we can export it if the BB is the entry block or 1941 // if it is already exported. 1942 if (isa<Argument>(V)) { 1943 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1944 return true; 1945 1946 // Otherwise, can only export this if it is already exported. 1947 return FuncInfo.isExportedInst(V); 1948 } 1949 1950 // Otherwise, constants can always be exported. 1951 return true; 1952 } 1953 1954 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1955 BranchProbability 1956 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1957 const MachineBasicBlock *Dst) const { 1958 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1959 const BasicBlock *SrcBB = Src->getBasicBlock(); 1960 const BasicBlock *DstBB = Dst->getBasicBlock(); 1961 if (!BPI) { 1962 // If BPI is not available, set the default probability as 1 / N, where N is 1963 // the number of successors. 1964 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1965 return BranchProbability(1, SuccSize); 1966 } 1967 return BPI->getEdgeProbability(SrcBB, DstBB); 1968 } 1969 1970 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1971 MachineBasicBlock *Dst, 1972 BranchProbability Prob) { 1973 if (!FuncInfo.BPI) 1974 Src->addSuccessorWithoutProb(Dst); 1975 else { 1976 if (Prob.isUnknown()) 1977 Prob = getEdgeProbability(Src, Dst); 1978 Src->addSuccessor(Dst, Prob); 1979 } 1980 } 1981 1982 static bool InBlock(const Value *V, const BasicBlock *BB) { 1983 if (const Instruction *I = dyn_cast<Instruction>(V)) 1984 return I->getParent() == BB; 1985 return true; 1986 } 1987 1988 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1989 /// This function emits a branch and is used at the leaves of an OR or an 1990 /// AND operator tree. 1991 void 1992 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1993 MachineBasicBlock *TBB, 1994 MachineBasicBlock *FBB, 1995 MachineBasicBlock *CurBB, 1996 MachineBasicBlock *SwitchBB, 1997 BranchProbability TProb, 1998 BranchProbability FProb, 1999 bool InvertCond) { 2000 const BasicBlock *BB = CurBB->getBasicBlock(); 2001 2002 // If the leaf of the tree is a comparison, merge the condition into 2003 // the caseblock. 2004 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2005 // The operands of the cmp have to be in this block. We don't know 2006 // how to export them from some other block. If this is the first block 2007 // of the sequence, no exporting is needed. 2008 if (CurBB == SwitchBB || 2009 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2010 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2011 ISD::CondCode Condition; 2012 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2013 ICmpInst::Predicate Pred = 2014 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2015 Condition = getICmpCondCode(Pred); 2016 } else { 2017 const FCmpInst *FC = cast<FCmpInst>(Cond); 2018 FCmpInst::Predicate Pred = 2019 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2020 Condition = getFCmpCondCode(Pred); 2021 if (TM.Options.NoNaNsFPMath) 2022 Condition = getFCmpCodeWithoutNaN(Condition); 2023 } 2024 2025 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2026 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2027 SwitchCases.push_back(CB); 2028 return; 2029 } 2030 } 2031 2032 // Create a CaseBlock record representing this branch. 2033 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2034 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2035 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2036 SwitchCases.push_back(CB); 2037 } 2038 2039 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2040 MachineBasicBlock *TBB, 2041 MachineBasicBlock *FBB, 2042 MachineBasicBlock *CurBB, 2043 MachineBasicBlock *SwitchBB, 2044 Instruction::BinaryOps Opc, 2045 BranchProbability TProb, 2046 BranchProbability FProb, 2047 bool InvertCond) { 2048 // Skip over not part of the tree and remember to invert op and operands at 2049 // next level. 2050 Value *NotCond; 2051 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2052 InBlock(NotCond, CurBB->getBasicBlock())) { 2053 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2054 !InvertCond); 2055 return; 2056 } 2057 2058 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2059 // Compute the effective opcode for Cond, taking into account whether it needs 2060 // to be inverted, e.g. 2061 // and (not (or A, B)), C 2062 // gets lowered as 2063 // and (and (not A, not B), C) 2064 unsigned BOpc = 0; 2065 if (BOp) { 2066 BOpc = BOp->getOpcode(); 2067 if (InvertCond) { 2068 if (BOpc == Instruction::And) 2069 BOpc = Instruction::Or; 2070 else if (BOpc == Instruction::Or) 2071 BOpc = Instruction::And; 2072 } 2073 } 2074 2075 // If this node is not part of the or/and tree, emit it as a branch. 2076 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2077 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2078 BOp->getParent() != CurBB->getBasicBlock() || 2079 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2080 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2081 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2082 TProb, FProb, InvertCond); 2083 return; 2084 } 2085 2086 // Create TmpBB after CurBB. 2087 MachineFunction::iterator BBI(CurBB); 2088 MachineFunction &MF = DAG.getMachineFunction(); 2089 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2090 CurBB->getParent()->insert(++BBI, TmpBB); 2091 2092 if (Opc == Instruction::Or) { 2093 // Codegen X | Y as: 2094 // BB1: 2095 // jmp_if_X TBB 2096 // jmp TmpBB 2097 // TmpBB: 2098 // jmp_if_Y TBB 2099 // jmp FBB 2100 // 2101 2102 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2103 // The requirement is that 2104 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2105 // = TrueProb for original BB. 2106 // Assuming the original probabilities are A and B, one choice is to set 2107 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2108 // A/(1+B) and 2B/(1+B). This choice assumes that 2109 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2110 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2111 // TmpBB, but the math is more complicated. 2112 2113 auto NewTrueProb = TProb / 2; 2114 auto NewFalseProb = TProb / 2 + FProb; 2115 // Emit the LHS condition. 2116 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2117 NewTrueProb, NewFalseProb, InvertCond); 2118 2119 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2120 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2121 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2122 // Emit the RHS condition into TmpBB. 2123 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2124 Probs[0], Probs[1], InvertCond); 2125 } else { 2126 assert(Opc == Instruction::And && "Unknown merge op!"); 2127 // Codegen X & Y as: 2128 // BB1: 2129 // jmp_if_X TmpBB 2130 // jmp FBB 2131 // TmpBB: 2132 // jmp_if_Y TBB 2133 // jmp FBB 2134 // 2135 // This requires creation of TmpBB after CurBB. 2136 2137 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2138 // The requirement is that 2139 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2140 // = FalseProb for original BB. 2141 // Assuming the original probabilities are A and B, one choice is to set 2142 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2143 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2144 // TrueProb for BB1 * FalseProb for TmpBB. 2145 2146 auto NewTrueProb = TProb + FProb / 2; 2147 auto NewFalseProb = FProb / 2; 2148 // Emit the LHS condition. 2149 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2150 NewTrueProb, NewFalseProb, InvertCond); 2151 2152 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2153 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2154 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2155 // Emit the RHS condition into TmpBB. 2156 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2157 Probs[0], Probs[1], InvertCond); 2158 } 2159 } 2160 2161 /// If the set of cases should be emitted as a series of branches, return true. 2162 /// If we should emit this as a bunch of and/or'd together conditions, return 2163 /// false. 2164 bool 2165 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2166 if (Cases.size() != 2) return true; 2167 2168 // If this is two comparisons of the same values or'd or and'd together, they 2169 // will get folded into a single comparison, so don't emit two blocks. 2170 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2171 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2172 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2173 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2174 return false; 2175 } 2176 2177 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2178 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2179 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2180 Cases[0].CC == Cases[1].CC && 2181 isa<Constant>(Cases[0].CmpRHS) && 2182 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2183 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2184 return false; 2185 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2186 return false; 2187 } 2188 2189 return true; 2190 } 2191 2192 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2193 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2194 2195 // Update machine-CFG edges. 2196 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2197 2198 if (I.isUnconditional()) { 2199 // Update machine-CFG edges. 2200 BrMBB->addSuccessor(Succ0MBB); 2201 2202 // If this is not a fall-through branch or optimizations are switched off, 2203 // emit the branch. 2204 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2205 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2206 MVT::Other, getControlRoot(), 2207 DAG.getBasicBlock(Succ0MBB))); 2208 2209 return; 2210 } 2211 2212 // If this condition is one of the special cases we handle, do special stuff 2213 // now. 2214 const Value *CondVal = I.getCondition(); 2215 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2216 2217 // If this is a series of conditions that are or'd or and'd together, emit 2218 // this as a sequence of branches instead of setcc's with and/or operations. 2219 // As long as jumps are not expensive, this should improve performance. 2220 // For example, instead of something like: 2221 // cmp A, B 2222 // C = seteq 2223 // cmp D, E 2224 // F = setle 2225 // or C, F 2226 // jnz foo 2227 // Emit: 2228 // cmp A, B 2229 // je foo 2230 // cmp D, E 2231 // jle foo 2232 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2233 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2234 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2235 !I.getMetadata(LLVMContext::MD_unpredictable) && 2236 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2237 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2238 Opcode, 2239 getEdgeProbability(BrMBB, Succ0MBB), 2240 getEdgeProbability(BrMBB, Succ1MBB), 2241 /*InvertCond=*/false); 2242 // If the compares in later blocks need to use values not currently 2243 // exported from this block, export them now. This block should always 2244 // be the first entry. 2245 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2246 2247 // Allow some cases to be rejected. 2248 if (ShouldEmitAsBranches(SwitchCases)) { 2249 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2250 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2251 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2252 } 2253 2254 // Emit the branch for this block. 2255 visitSwitchCase(SwitchCases[0], BrMBB); 2256 SwitchCases.erase(SwitchCases.begin()); 2257 return; 2258 } 2259 2260 // Okay, we decided not to do this, remove any inserted MBB's and clear 2261 // SwitchCases. 2262 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2263 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2264 2265 SwitchCases.clear(); 2266 } 2267 } 2268 2269 // Create a CaseBlock record representing this branch. 2270 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2271 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2272 2273 // Use visitSwitchCase to actually insert the fast branch sequence for this 2274 // cond branch. 2275 visitSwitchCase(CB, BrMBB); 2276 } 2277 2278 /// visitSwitchCase - Emits the necessary code to represent a single node in 2279 /// the binary search tree resulting from lowering a switch instruction. 2280 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2281 MachineBasicBlock *SwitchBB) { 2282 SDValue Cond; 2283 SDValue CondLHS = getValue(CB.CmpLHS); 2284 SDLoc dl = CB.DL; 2285 2286 // Build the setcc now. 2287 if (!CB.CmpMHS) { 2288 // Fold "(X == true)" to X and "(X == false)" to !X to 2289 // handle common cases produced by branch lowering. 2290 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2291 CB.CC == ISD::SETEQ) 2292 Cond = CondLHS; 2293 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2294 CB.CC == ISD::SETEQ) { 2295 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2296 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2297 } else 2298 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2299 } else { 2300 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2301 2302 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2303 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2304 2305 SDValue CmpOp = getValue(CB.CmpMHS); 2306 EVT VT = CmpOp.getValueType(); 2307 2308 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2309 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2310 ISD::SETLE); 2311 } else { 2312 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2313 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2314 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2315 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2316 } 2317 } 2318 2319 // Update successor info 2320 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2321 // TrueBB and FalseBB are always different unless the incoming IR is 2322 // degenerate. This only happens when running llc on weird IR. 2323 if (CB.TrueBB != CB.FalseBB) 2324 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2325 SwitchBB->normalizeSuccProbs(); 2326 2327 // If the lhs block is the next block, invert the condition so that we can 2328 // fall through to the lhs instead of the rhs block. 2329 if (CB.TrueBB == NextBlock(SwitchBB)) { 2330 std::swap(CB.TrueBB, CB.FalseBB); 2331 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2332 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2333 } 2334 2335 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2336 MVT::Other, getControlRoot(), Cond, 2337 DAG.getBasicBlock(CB.TrueBB)); 2338 2339 // Insert the false branch. Do this even if it's a fall through branch, 2340 // this makes it easier to do DAG optimizations which require inverting 2341 // the branch condition. 2342 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2343 DAG.getBasicBlock(CB.FalseBB)); 2344 2345 DAG.setRoot(BrCond); 2346 } 2347 2348 /// visitJumpTable - Emit JumpTable node in the current MBB 2349 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2350 // Emit the code for the jump table 2351 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2352 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2353 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2354 JT.Reg, PTy); 2355 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2356 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2357 MVT::Other, Index.getValue(1), 2358 Table, Index); 2359 DAG.setRoot(BrJumpTable); 2360 } 2361 2362 /// visitJumpTableHeader - This function emits necessary code to produce index 2363 /// in the JumpTable from switch case. 2364 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2365 JumpTableHeader &JTH, 2366 MachineBasicBlock *SwitchBB) { 2367 SDLoc dl = getCurSDLoc(); 2368 2369 // Subtract the lowest switch case value from the value being switched on and 2370 // conditional branch to default mbb if the result is greater than the 2371 // difference between smallest and largest cases. 2372 SDValue SwitchOp = getValue(JTH.SValue); 2373 EVT VT = SwitchOp.getValueType(); 2374 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2375 DAG.getConstant(JTH.First, dl, VT)); 2376 2377 // The SDNode we just created, which holds the value being switched on minus 2378 // the smallest case value, needs to be copied to a virtual register so it 2379 // can be used as an index into the jump table in a subsequent basic block. 2380 // This value may be smaller or larger than the target's pointer type, and 2381 // therefore require extension or truncating. 2382 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2383 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2384 2385 unsigned JumpTableReg = 2386 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2387 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2388 JumpTableReg, SwitchOp); 2389 JT.Reg = JumpTableReg; 2390 2391 // Emit the range check for the jump table, and branch to the default block 2392 // for the switch statement if the value being switched on exceeds the largest 2393 // case in the switch. 2394 SDValue CMP = DAG.getSetCC( 2395 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2396 Sub.getValueType()), 2397 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2398 2399 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2400 MVT::Other, CopyTo, CMP, 2401 DAG.getBasicBlock(JT.Default)); 2402 2403 // Avoid emitting unnecessary branches to the next block. 2404 if (JT.MBB != NextBlock(SwitchBB)) 2405 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2406 DAG.getBasicBlock(JT.MBB)); 2407 2408 DAG.setRoot(BrCond); 2409 } 2410 2411 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2412 /// variable if there exists one. 2413 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2414 SDValue &Chain) { 2415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2416 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2417 MachineFunction &MF = DAG.getMachineFunction(); 2418 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2419 MachineSDNode *Node = 2420 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2421 if (Global) { 2422 MachinePointerInfo MPInfo(Global); 2423 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2424 MachineMemOperand::MODereferenceable; 2425 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2426 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2427 DAG.setNodeMemRefs(Node, {MemRef}); 2428 } 2429 return SDValue(Node, 0); 2430 } 2431 2432 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2433 /// tail spliced into a stack protector check success bb. 2434 /// 2435 /// For a high level explanation of how this fits into the stack protector 2436 /// generation see the comment on the declaration of class 2437 /// StackProtectorDescriptor. 2438 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2439 MachineBasicBlock *ParentBB) { 2440 2441 // First create the loads to the guard/stack slot for the comparison. 2442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2443 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2444 2445 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2446 int FI = MFI.getStackProtectorIndex(); 2447 2448 SDValue Guard; 2449 SDLoc dl = getCurSDLoc(); 2450 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2451 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2452 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2453 2454 // Generate code to load the content of the guard slot. 2455 SDValue GuardVal = DAG.getLoad( 2456 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2457 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2458 MachineMemOperand::MOVolatile); 2459 2460 if (TLI.useStackGuardXorFP()) 2461 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2462 2463 // Retrieve guard check function, nullptr if instrumentation is inlined. 2464 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2465 // The target provides a guard check function to validate the guard value. 2466 // Generate a call to that function with the content of the guard slot as 2467 // argument. 2468 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2469 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2470 2471 TargetLowering::ArgListTy Args; 2472 TargetLowering::ArgListEntry Entry; 2473 Entry.Node = GuardVal; 2474 Entry.Ty = FnTy->getParamType(0); 2475 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2476 Entry.IsInReg = true; 2477 Args.push_back(Entry); 2478 2479 TargetLowering::CallLoweringInfo CLI(DAG); 2480 CLI.setDebugLoc(getCurSDLoc()) 2481 .setChain(DAG.getEntryNode()) 2482 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2483 getValue(GuardCheckFn), std::move(Args)); 2484 2485 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2486 DAG.setRoot(Result.second); 2487 return; 2488 } 2489 2490 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2491 // Otherwise, emit a volatile load to retrieve the stack guard value. 2492 SDValue Chain = DAG.getEntryNode(); 2493 if (TLI.useLoadStackGuardNode()) { 2494 Guard = getLoadStackGuard(DAG, dl, Chain); 2495 } else { 2496 const Value *IRGuard = TLI.getSDagStackGuard(M); 2497 SDValue GuardPtr = getValue(IRGuard); 2498 2499 Guard = 2500 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2501 Align, MachineMemOperand::MOVolatile); 2502 } 2503 2504 // Perform the comparison via a subtract/getsetcc. 2505 EVT VT = Guard.getValueType(); 2506 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2507 2508 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2509 *DAG.getContext(), 2510 Sub.getValueType()), 2511 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2512 2513 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2514 // branch to failure MBB. 2515 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2516 MVT::Other, GuardVal.getOperand(0), 2517 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2518 // Otherwise branch to success MBB. 2519 SDValue Br = DAG.getNode(ISD::BR, dl, 2520 MVT::Other, BrCond, 2521 DAG.getBasicBlock(SPD.getSuccessMBB())); 2522 2523 DAG.setRoot(Br); 2524 } 2525 2526 /// Codegen the failure basic block for a stack protector check. 2527 /// 2528 /// A failure stack protector machine basic block consists simply of a call to 2529 /// __stack_chk_fail(). 2530 /// 2531 /// For a high level explanation of how this fits into the stack protector 2532 /// generation see the comment on the declaration of class 2533 /// StackProtectorDescriptor. 2534 void 2535 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2537 SDValue Chain = 2538 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2539 None, false, getCurSDLoc(), false, false).second; 2540 DAG.setRoot(Chain); 2541 } 2542 2543 /// visitBitTestHeader - This function emits necessary code to produce value 2544 /// suitable for "bit tests" 2545 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2546 MachineBasicBlock *SwitchBB) { 2547 SDLoc dl = getCurSDLoc(); 2548 2549 // Subtract the minimum value 2550 SDValue SwitchOp = getValue(B.SValue); 2551 EVT VT = SwitchOp.getValueType(); 2552 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2553 DAG.getConstant(B.First, dl, VT)); 2554 2555 // Check range 2556 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2557 SDValue RangeCmp = DAG.getSetCC( 2558 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2559 Sub.getValueType()), 2560 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2561 2562 // Determine the type of the test operands. 2563 bool UsePtrType = false; 2564 if (!TLI.isTypeLegal(VT)) 2565 UsePtrType = true; 2566 else { 2567 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2568 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2569 // Switch table case range are encoded into series of masks. 2570 // Just use pointer type, it's guaranteed to fit. 2571 UsePtrType = true; 2572 break; 2573 } 2574 } 2575 if (UsePtrType) { 2576 VT = TLI.getPointerTy(DAG.getDataLayout()); 2577 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2578 } 2579 2580 B.RegVT = VT.getSimpleVT(); 2581 B.Reg = FuncInfo.CreateReg(B.RegVT); 2582 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2583 2584 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2585 2586 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2587 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2588 SwitchBB->normalizeSuccProbs(); 2589 2590 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2591 MVT::Other, CopyTo, RangeCmp, 2592 DAG.getBasicBlock(B.Default)); 2593 2594 // Avoid emitting unnecessary branches to the next block. 2595 if (MBB != NextBlock(SwitchBB)) 2596 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2597 DAG.getBasicBlock(MBB)); 2598 2599 DAG.setRoot(BrRange); 2600 } 2601 2602 /// visitBitTestCase - this function produces one "bit test" 2603 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2604 MachineBasicBlock* NextMBB, 2605 BranchProbability BranchProbToNext, 2606 unsigned Reg, 2607 BitTestCase &B, 2608 MachineBasicBlock *SwitchBB) { 2609 SDLoc dl = getCurSDLoc(); 2610 MVT VT = BB.RegVT; 2611 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2612 SDValue Cmp; 2613 unsigned PopCount = countPopulation(B.Mask); 2614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2615 if (PopCount == 1) { 2616 // Testing for a single bit; just compare the shift count with what it 2617 // would need to be to shift a 1 bit in that position. 2618 Cmp = DAG.getSetCC( 2619 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2620 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2621 ISD::SETEQ); 2622 } else if (PopCount == BB.Range) { 2623 // There is only one zero bit in the range, test for it directly. 2624 Cmp = DAG.getSetCC( 2625 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2626 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2627 ISD::SETNE); 2628 } else { 2629 // Make desired shift 2630 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2631 DAG.getConstant(1, dl, VT), ShiftOp); 2632 2633 // Emit bit tests and jumps 2634 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2635 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2636 Cmp = DAG.getSetCC( 2637 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2638 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2639 } 2640 2641 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2642 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2643 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2644 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2645 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2646 // one as they are relative probabilities (and thus work more like weights), 2647 // and hence we need to normalize them to let the sum of them become one. 2648 SwitchBB->normalizeSuccProbs(); 2649 2650 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2651 MVT::Other, getControlRoot(), 2652 Cmp, DAG.getBasicBlock(B.TargetBB)); 2653 2654 // Avoid emitting unnecessary branches to the next block. 2655 if (NextMBB != NextBlock(SwitchBB)) 2656 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2657 DAG.getBasicBlock(NextMBB)); 2658 2659 DAG.setRoot(BrAnd); 2660 } 2661 2662 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2663 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2664 2665 // Retrieve successors. Look through artificial IR level blocks like 2666 // catchswitch for successors. 2667 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2668 const BasicBlock *EHPadBB = I.getSuccessor(1); 2669 2670 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2671 // have to do anything here to lower funclet bundles. 2672 assert(!I.hasOperandBundlesOtherThan( 2673 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2674 "Cannot lower invokes with arbitrary operand bundles yet!"); 2675 2676 const Value *Callee(I.getCalledValue()); 2677 const Function *Fn = dyn_cast<Function>(Callee); 2678 if (isa<InlineAsm>(Callee)) 2679 visitInlineAsm(&I); 2680 else if (Fn && Fn->isIntrinsic()) { 2681 switch (Fn->getIntrinsicID()) { 2682 default: 2683 llvm_unreachable("Cannot invoke this intrinsic"); 2684 case Intrinsic::donothing: 2685 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2686 break; 2687 case Intrinsic::experimental_patchpoint_void: 2688 case Intrinsic::experimental_patchpoint_i64: 2689 visitPatchpoint(&I, EHPadBB); 2690 break; 2691 case Intrinsic::experimental_gc_statepoint: 2692 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2693 break; 2694 } 2695 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2696 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2697 // Eventually we will support lowering the @llvm.experimental.deoptimize 2698 // intrinsic, and right now there are no plans to support other intrinsics 2699 // with deopt state. 2700 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2701 } else { 2702 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2703 } 2704 2705 // If the value of the invoke is used outside of its defining block, make it 2706 // available as a virtual register. 2707 // We already took care of the exported value for the statepoint instruction 2708 // during call to the LowerStatepoint. 2709 if (!isStatepoint(I)) { 2710 CopyToExportRegsIfNeeded(&I); 2711 } 2712 2713 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2714 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2715 BranchProbability EHPadBBProb = 2716 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2717 : BranchProbability::getZero(); 2718 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2719 2720 // Update successor info. 2721 addSuccessorWithProb(InvokeMBB, Return); 2722 for (auto &UnwindDest : UnwindDests) { 2723 UnwindDest.first->setIsEHPad(); 2724 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2725 } 2726 InvokeMBB->normalizeSuccProbs(); 2727 2728 // Drop into normal successor. 2729 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2730 DAG.getBasicBlock(Return))); 2731 } 2732 2733 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2734 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2735 2736 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2737 // have to do anything here to lower funclet bundles. 2738 assert(!I.hasOperandBundlesOtherThan( 2739 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2740 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2741 2742 assert(isa<InlineAsm>(I.getCalledValue()) && 2743 "Only know how to handle inlineasm callbr"); 2744 visitInlineAsm(&I); 2745 2746 // Retrieve successors. 2747 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2748 2749 // Update successor info. 2750 addSuccessorWithProb(CallBrMBB, Return); 2751 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2752 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2753 addSuccessorWithProb(CallBrMBB, Target); 2754 } 2755 CallBrMBB->normalizeSuccProbs(); 2756 2757 // Drop into default successor. 2758 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2759 MVT::Other, getControlRoot(), 2760 DAG.getBasicBlock(Return))); 2761 } 2762 2763 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2764 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2765 } 2766 2767 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2768 assert(FuncInfo.MBB->isEHPad() && 2769 "Call to landingpad not in landing pad!"); 2770 2771 // If there aren't registers to copy the values into (e.g., during SjLj 2772 // exceptions), then don't bother to create these DAG nodes. 2773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2774 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2775 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2776 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2777 return; 2778 2779 // If landingpad's return type is token type, we don't create DAG nodes 2780 // for its exception pointer and selector value. The extraction of exception 2781 // pointer or selector value from token type landingpads is not currently 2782 // supported. 2783 if (LP.getType()->isTokenTy()) 2784 return; 2785 2786 SmallVector<EVT, 2> ValueVTs; 2787 SDLoc dl = getCurSDLoc(); 2788 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2789 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2790 2791 // Get the two live-in registers as SDValues. The physregs have already been 2792 // copied into virtual registers. 2793 SDValue Ops[2]; 2794 if (FuncInfo.ExceptionPointerVirtReg) { 2795 Ops[0] = DAG.getZExtOrTrunc( 2796 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2797 FuncInfo.ExceptionPointerVirtReg, 2798 TLI.getPointerTy(DAG.getDataLayout())), 2799 dl, ValueVTs[0]); 2800 } else { 2801 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2802 } 2803 Ops[1] = DAG.getZExtOrTrunc( 2804 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2805 FuncInfo.ExceptionSelectorVirtReg, 2806 TLI.getPointerTy(DAG.getDataLayout())), 2807 dl, ValueVTs[1]); 2808 2809 // Merge into one. 2810 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2811 DAG.getVTList(ValueVTs), Ops); 2812 setValue(&LP, Res); 2813 } 2814 2815 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2816 #ifndef NDEBUG 2817 for (const CaseCluster &CC : Clusters) 2818 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2819 #endif 2820 2821 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2822 return a.Low->getValue().slt(b.Low->getValue()); 2823 }); 2824 2825 // Merge adjacent clusters with the same destination. 2826 const unsigned N = Clusters.size(); 2827 unsigned DstIndex = 0; 2828 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2829 CaseCluster &CC = Clusters[SrcIndex]; 2830 const ConstantInt *CaseVal = CC.Low; 2831 MachineBasicBlock *Succ = CC.MBB; 2832 2833 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2834 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2835 // If this case has the same successor and is a neighbour, merge it into 2836 // the previous cluster. 2837 Clusters[DstIndex - 1].High = CaseVal; 2838 Clusters[DstIndex - 1].Prob += CC.Prob; 2839 } else { 2840 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2841 sizeof(Clusters[SrcIndex])); 2842 } 2843 } 2844 Clusters.resize(DstIndex); 2845 } 2846 2847 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2848 MachineBasicBlock *Last) { 2849 // Update JTCases. 2850 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2851 if (JTCases[i].first.HeaderBB == First) 2852 JTCases[i].first.HeaderBB = Last; 2853 2854 // Update BitTestCases. 2855 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2856 if (BitTestCases[i].Parent == First) 2857 BitTestCases[i].Parent = Last; 2858 } 2859 2860 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2861 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2862 2863 // Update machine-CFG edges with unique successors. 2864 SmallSet<BasicBlock*, 32> Done; 2865 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2866 BasicBlock *BB = I.getSuccessor(i); 2867 bool Inserted = Done.insert(BB).second; 2868 if (!Inserted) 2869 continue; 2870 2871 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2872 addSuccessorWithProb(IndirectBrMBB, Succ); 2873 } 2874 IndirectBrMBB->normalizeSuccProbs(); 2875 2876 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2877 MVT::Other, getControlRoot(), 2878 getValue(I.getAddress()))); 2879 } 2880 2881 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2882 if (!DAG.getTarget().Options.TrapUnreachable) 2883 return; 2884 2885 // We may be able to ignore unreachable behind a noreturn call. 2886 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2887 const BasicBlock &BB = *I.getParent(); 2888 if (&I != &BB.front()) { 2889 BasicBlock::const_iterator PredI = 2890 std::prev(BasicBlock::const_iterator(&I)); 2891 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2892 if (Call->doesNotReturn()) 2893 return; 2894 } 2895 } 2896 } 2897 2898 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2899 } 2900 2901 void SelectionDAGBuilder::visitFSub(const User &I) { 2902 // -0.0 - X --> fneg 2903 Type *Ty = I.getType(); 2904 if (isa<Constant>(I.getOperand(0)) && 2905 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2906 SDValue Op2 = getValue(I.getOperand(1)); 2907 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2908 Op2.getValueType(), Op2)); 2909 return; 2910 } 2911 2912 visitBinary(I, ISD::FSUB); 2913 } 2914 2915 /// Checks if the given instruction performs a vector reduction, in which case 2916 /// we have the freedom to alter the elements in the result as long as the 2917 /// reduction of them stays unchanged. 2918 static bool isVectorReductionOp(const User *I) { 2919 const Instruction *Inst = dyn_cast<Instruction>(I); 2920 if (!Inst || !Inst->getType()->isVectorTy()) 2921 return false; 2922 2923 auto OpCode = Inst->getOpcode(); 2924 switch (OpCode) { 2925 case Instruction::Add: 2926 case Instruction::Mul: 2927 case Instruction::And: 2928 case Instruction::Or: 2929 case Instruction::Xor: 2930 break; 2931 case Instruction::FAdd: 2932 case Instruction::FMul: 2933 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2934 if (FPOp->getFastMathFlags().isFast()) 2935 break; 2936 LLVM_FALLTHROUGH; 2937 default: 2938 return false; 2939 } 2940 2941 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2942 // Ensure the reduction size is a power of 2. 2943 if (!isPowerOf2_32(ElemNum)) 2944 return false; 2945 2946 unsigned ElemNumToReduce = ElemNum; 2947 2948 // Do DFS search on the def-use chain from the given instruction. We only 2949 // allow four kinds of operations during the search until we reach the 2950 // instruction that extracts the first element from the vector: 2951 // 2952 // 1. The reduction operation of the same opcode as the given instruction. 2953 // 2954 // 2. PHI node. 2955 // 2956 // 3. ShuffleVector instruction together with a reduction operation that 2957 // does a partial reduction. 2958 // 2959 // 4. ExtractElement that extracts the first element from the vector, and we 2960 // stop searching the def-use chain here. 2961 // 2962 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2963 // from 1-3 to the stack to continue the DFS. The given instruction is not 2964 // a reduction operation if we meet any other instructions other than those 2965 // listed above. 2966 2967 SmallVector<const User *, 16> UsersToVisit{Inst}; 2968 SmallPtrSet<const User *, 16> Visited; 2969 bool ReduxExtracted = false; 2970 2971 while (!UsersToVisit.empty()) { 2972 auto User = UsersToVisit.back(); 2973 UsersToVisit.pop_back(); 2974 if (!Visited.insert(User).second) 2975 continue; 2976 2977 for (const auto &U : User->users()) { 2978 auto Inst = dyn_cast<Instruction>(U); 2979 if (!Inst) 2980 return false; 2981 2982 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2983 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2984 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2985 return false; 2986 UsersToVisit.push_back(U); 2987 } else if (const ShuffleVectorInst *ShufInst = 2988 dyn_cast<ShuffleVectorInst>(U)) { 2989 // Detect the following pattern: A ShuffleVector instruction together 2990 // with a reduction that do partial reduction on the first and second 2991 // ElemNumToReduce / 2 elements, and store the result in 2992 // ElemNumToReduce / 2 elements in another vector. 2993 2994 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2995 if (ResultElements < ElemNum) 2996 return false; 2997 2998 if (ElemNumToReduce == 1) 2999 return false; 3000 if (!isa<UndefValue>(U->getOperand(1))) 3001 return false; 3002 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3003 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3004 return false; 3005 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3006 if (ShufInst->getMaskValue(i) != -1) 3007 return false; 3008 3009 // There is only one user of this ShuffleVector instruction, which 3010 // must be a reduction operation. 3011 if (!U->hasOneUse()) 3012 return false; 3013 3014 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3015 if (!U2 || U2->getOpcode() != OpCode) 3016 return false; 3017 3018 // Check operands of the reduction operation. 3019 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3020 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3021 UsersToVisit.push_back(U2); 3022 ElemNumToReduce /= 2; 3023 } else 3024 return false; 3025 } else if (isa<ExtractElementInst>(U)) { 3026 // At this moment we should have reduced all elements in the vector. 3027 if (ElemNumToReduce != 1) 3028 return false; 3029 3030 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3031 if (!Val || !Val->isZero()) 3032 return false; 3033 3034 ReduxExtracted = true; 3035 } else 3036 return false; 3037 } 3038 } 3039 return ReduxExtracted; 3040 } 3041 3042 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3043 SDNodeFlags Flags; 3044 3045 SDValue Op = getValue(I.getOperand(0)); 3046 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3047 Op, Flags); 3048 setValue(&I, UnNodeValue); 3049 } 3050 3051 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3052 SDNodeFlags Flags; 3053 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3054 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3055 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3056 } 3057 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3058 Flags.setExact(ExactOp->isExact()); 3059 } 3060 if (isVectorReductionOp(&I)) { 3061 Flags.setVectorReduction(true); 3062 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3063 } 3064 3065 SDValue Op1 = getValue(I.getOperand(0)); 3066 SDValue Op2 = getValue(I.getOperand(1)); 3067 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3068 Op1, Op2, Flags); 3069 setValue(&I, BinNodeValue); 3070 } 3071 3072 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3073 SDValue Op1 = getValue(I.getOperand(0)); 3074 SDValue Op2 = getValue(I.getOperand(1)); 3075 3076 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3077 Op1.getValueType(), DAG.getDataLayout()); 3078 3079 // Coerce the shift amount to the right type if we can. 3080 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3081 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3082 unsigned Op2Size = Op2.getValueSizeInBits(); 3083 SDLoc DL = getCurSDLoc(); 3084 3085 // If the operand is smaller than the shift count type, promote it. 3086 if (ShiftSize > Op2Size) 3087 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3088 3089 // If the operand is larger than the shift count type but the shift 3090 // count type has enough bits to represent any shift value, truncate 3091 // it now. This is a common case and it exposes the truncate to 3092 // optimization early. 3093 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3094 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3095 // Otherwise we'll need to temporarily settle for some other convenient 3096 // type. Type legalization will make adjustments once the shiftee is split. 3097 else 3098 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3099 } 3100 3101 bool nuw = false; 3102 bool nsw = false; 3103 bool exact = false; 3104 3105 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3106 3107 if (const OverflowingBinaryOperator *OFBinOp = 3108 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3109 nuw = OFBinOp->hasNoUnsignedWrap(); 3110 nsw = OFBinOp->hasNoSignedWrap(); 3111 } 3112 if (const PossiblyExactOperator *ExactOp = 3113 dyn_cast<const PossiblyExactOperator>(&I)) 3114 exact = ExactOp->isExact(); 3115 } 3116 SDNodeFlags Flags; 3117 Flags.setExact(exact); 3118 Flags.setNoSignedWrap(nsw); 3119 Flags.setNoUnsignedWrap(nuw); 3120 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3121 Flags); 3122 setValue(&I, Res); 3123 } 3124 3125 void SelectionDAGBuilder::visitSDiv(const User &I) { 3126 SDValue Op1 = getValue(I.getOperand(0)); 3127 SDValue Op2 = getValue(I.getOperand(1)); 3128 3129 SDNodeFlags Flags; 3130 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3131 cast<PossiblyExactOperator>(&I)->isExact()); 3132 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3133 Op2, Flags)); 3134 } 3135 3136 void SelectionDAGBuilder::visitICmp(const User &I) { 3137 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3138 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3139 predicate = IC->getPredicate(); 3140 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3141 predicate = ICmpInst::Predicate(IC->getPredicate()); 3142 SDValue Op1 = getValue(I.getOperand(0)); 3143 SDValue Op2 = getValue(I.getOperand(1)); 3144 ISD::CondCode Opcode = getICmpCondCode(predicate); 3145 3146 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3147 I.getType()); 3148 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3149 } 3150 3151 void SelectionDAGBuilder::visitFCmp(const User &I) { 3152 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3153 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3154 predicate = FC->getPredicate(); 3155 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3156 predicate = FCmpInst::Predicate(FC->getPredicate()); 3157 SDValue Op1 = getValue(I.getOperand(0)); 3158 SDValue Op2 = getValue(I.getOperand(1)); 3159 3160 ISD::CondCode Condition = getFCmpCondCode(predicate); 3161 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3162 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3163 Condition = getFCmpCodeWithoutNaN(Condition); 3164 3165 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3166 I.getType()); 3167 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3168 } 3169 3170 // Check if the condition of the select has one use or two users that are both 3171 // selects with the same condition. 3172 static bool hasOnlySelectUsers(const Value *Cond) { 3173 return llvm::all_of(Cond->users(), [](const Value *V) { 3174 return isa<SelectInst>(V); 3175 }); 3176 } 3177 3178 void SelectionDAGBuilder::visitSelect(const User &I) { 3179 SmallVector<EVT, 4> ValueVTs; 3180 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3181 ValueVTs); 3182 unsigned NumValues = ValueVTs.size(); 3183 if (NumValues == 0) return; 3184 3185 SmallVector<SDValue, 4> Values(NumValues); 3186 SDValue Cond = getValue(I.getOperand(0)); 3187 SDValue LHSVal = getValue(I.getOperand(1)); 3188 SDValue RHSVal = getValue(I.getOperand(2)); 3189 auto BaseOps = {Cond}; 3190 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3191 ISD::VSELECT : ISD::SELECT; 3192 3193 // Min/max matching is only viable if all output VTs are the same. 3194 if (is_splat(ValueVTs)) { 3195 EVT VT = ValueVTs[0]; 3196 LLVMContext &Ctx = *DAG.getContext(); 3197 auto &TLI = DAG.getTargetLoweringInfo(); 3198 3199 // We care about the legality of the operation after it has been type 3200 // legalized. 3201 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3202 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3203 VT = TLI.getTypeToTransformTo(Ctx, VT); 3204 3205 // If the vselect is legal, assume we want to leave this as a vector setcc + 3206 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3207 // min/max is legal on the scalar type. 3208 bool UseScalarMinMax = VT.isVector() && 3209 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3210 3211 Value *LHS, *RHS; 3212 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3213 ISD::NodeType Opc = ISD::DELETED_NODE; 3214 switch (SPR.Flavor) { 3215 case SPF_UMAX: Opc = ISD::UMAX; break; 3216 case SPF_UMIN: Opc = ISD::UMIN; break; 3217 case SPF_SMAX: Opc = ISD::SMAX; break; 3218 case SPF_SMIN: Opc = ISD::SMIN; break; 3219 case SPF_FMINNUM: 3220 switch (SPR.NaNBehavior) { 3221 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3222 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3223 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3224 case SPNB_RETURNS_ANY: { 3225 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3226 Opc = ISD::FMINNUM; 3227 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3228 Opc = ISD::FMINIMUM; 3229 else if (UseScalarMinMax) 3230 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3231 ISD::FMINNUM : ISD::FMINIMUM; 3232 break; 3233 } 3234 } 3235 break; 3236 case SPF_FMAXNUM: 3237 switch (SPR.NaNBehavior) { 3238 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3239 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3240 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3241 case SPNB_RETURNS_ANY: 3242 3243 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3244 Opc = ISD::FMAXNUM; 3245 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3246 Opc = ISD::FMAXIMUM; 3247 else if (UseScalarMinMax) 3248 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3249 ISD::FMAXNUM : ISD::FMAXIMUM; 3250 break; 3251 } 3252 break; 3253 default: break; 3254 } 3255 3256 if (Opc != ISD::DELETED_NODE && 3257 (TLI.isOperationLegalOrCustom(Opc, VT) || 3258 (UseScalarMinMax && 3259 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3260 // If the underlying comparison instruction is used by any other 3261 // instruction, the consumed instructions won't be destroyed, so it is 3262 // not profitable to convert to a min/max. 3263 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3264 OpCode = Opc; 3265 LHSVal = getValue(LHS); 3266 RHSVal = getValue(RHS); 3267 BaseOps = {}; 3268 } 3269 } 3270 3271 for (unsigned i = 0; i != NumValues; ++i) { 3272 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3273 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3274 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3275 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3276 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3277 Ops); 3278 } 3279 3280 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3281 DAG.getVTList(ValueVTs), Values)); 3282 } 3283 3284 void SelectionDAGBuilder::visitTrunc(const User &I) { 3285 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3286 SDValue N = getValue(I.getOperand(0)); 3287 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3288 I.getType()); 3289 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3290 } 3291 3292 void SelectionDAGBuilder::visitZExt(const User &I) { 3293 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3294 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3295 SDValue N = getValue(I.getOperand(0)); 3296 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3297 I.getType()); 3298 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3299 } 3300 3301 void SelectionDAGBuilder::visitSExt(const User &I) { 3302 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3303 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3304 SDValue N = getValue(I.getOperand(0)); 3305 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3306 I.getType()); 3307 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3308 } 3309 3310 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3311 // FPTrunc is never a no-op cast, no need to check 3312 SDValue N = getValue(I.getOperand(0)); 3313 SDLoc dl = getCurSDLoc(); 3314 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3315 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3316 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3317 DAG.getTargetConstant( 3318 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3319 } 3320 3321 void SelectionDAGBuilder::visitFPExt(const User &I) { 3322 // FPExt is never a no-op cast, no need to check 3323 SDValue N = getValue(I.getOperand(0)); 3324 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3325 I.getType()); 3326 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3327 } 3328 3329 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3330 // FPToUI is never a no-op cast, no need to check 3331 SDValue N = getValue(I.getOperand(0)); 3332 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3333 I.getType()); 3334 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3335 } 3336 3337 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3338 // FPToSI is never a no-op cast, no need to check 3339 SDValue N = getValue(I.getOperand(0)); 3340 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3341 I.getType()); 3342 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3343 } 3344 3345 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3346 // UIToFP is never a no-op cast, no need to check 3347 SDValue N = getValue(I.getOperand(0)); 3348 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3349 I.getType()); 3350 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3351 } 3352 3353 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3354 // SIToFP is never a no-op cast, no need to check 3355 SDValue N = getValue(I.getOperand(0)); 3356 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3357 I.getType()); 3358 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3359 } 3360 3361 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3362 // What to do depends on the size of the integer and the size of the pointer. 3363 // We can either truncate, zero extend, or no-op, accordingly. 3364 SDValue N = getValue(I.getOperand(0)); 3365 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3366 I.getType()); 3367 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3368 } 3369 3370 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3371 // What to do depends on the size of the integer and the size of the pointer. 3372 // We can either truncate, zero extend, or no-op, accordingly. 3373 SDValue N = getValue(I.getOperand(0)); 3374 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3375 I.getType()); 3376 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3377 } 3378 3379 void SelectionDAGBuilder::visitBitCast(const User &I) { 3380 SDValue N = getValue(I.getOperand(0)); 3381 SDLoc dl = getCurSDLoc(); 3382 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3383 I.getType()); 3384 3385 // BitCast assures us that source and destination are the same size so this is 3386 // either a BITCAST or a no-op. 3387 if (DestVT != N.getValueType()) 3388 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3389 DestVT, N)); // convert types. 3390 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3391 // might fold any kind of constant expression to an integer constant and that 3392 // is not what we are looking for. Only recognize a bitcast of a genuine 3393 // constant integer as an opaque constant. 3394 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3395 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3396 /*isOpaque*/true)); 3397 else 3398 setValue(&I, N); // noop cast. 3399 } 3400 3401 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3403 const Value *SV = I.getOperand(0); 3404 SDValue N = getValue(SV); 3405 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3406 3407 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3408 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3409 3410 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3411 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3412 3413 setValue(&I, N); 3414 } 3415 3416 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3418 SDValue InVec = getValue(I.getOperand(0)); 3419 SDValue InVal = getValue(I.getOperand(1)); 3420 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3421 TLI.getVectorIdxTy(DAG.getDataLayout())); 3422 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3423 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3424 InVec, InVal, InIdx)); 3425 } 3426 3427 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3429 SDValue InVec = getValue(I.getOperand(0)); 3430 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3431 TLI.getVectorIdxTy(DAG.getDataLayout())); 3432 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3433 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3434 InVec, InIdx)); 3435 } 3436 3437 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3438 SDValue Src1 = getValue(I.getOperand(0)); 3439 SDValue Src2 = getValue(I.getOperand(1)); 3440 SDLoc DL = getCurSDLoc(); 3441 3442 SmallVector<int, 8> Mask; 3443 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3444 unsigned MaskNumElts = Mask.size(); 3445 3446 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3447 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3448 EVT SrcVT = Src1.getValueType(); 3449 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3450 3451 if (SrcNumElts == MaskNumElts) { 3452 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3453 return; 3454 } 3455 3456 // Normalize the shuffle vector since mask and vector length don't match. 3457 if (SrcNumElts < MaskNumElts) { 3458 // Mask is longer than the source vectors. We can use concatenate vector to 3459 // make the mask and vectors lengths match. 3460 3461 if (MaskNumElts % SrcNumElts == 0) { 3462 // Mask length is a multiple of the source vector length. 3463 // Check if the shuffle is some kind of concatenation of the input 3464 // vectors. 3465 unsigned NumConcat = MaskNumElts / SrcNumElts; 3466 bool IsConcat = true; 3467 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3468 for (unsigned i = 0; i != MaskNumElts; ++i) { 3469 int Idx = Mask[i]; 3470 if (Idx < 0) 3471 continue; 3472 // Ensure the indices in each SrcVT sized piece are sequential and that 3473 // the same source is used for the whole piece. 3474 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3475 (ConcatSrcs[i / SrcNumElts] >= 0 && 3476 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3477 IsConcat = false; 3478 break; 3479 } 3480 // Remember which source this index came from. 3481 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3482 } 3483 3484 // The shuffle is concatenating multiple vectors together. Just emit 3485 // a CONCAT_VECTORS operation. 3486 if (IsConcat) { 3487 SmallVector<SDValue, 8> ConcatOps; 3488 for (auto Src : ConcatSrcs) { 3489 if (Src < 0) 3490 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3491 else if (Src == 0) 3492 ConcatOps.push_back(Src1); 3493 else 3494 ConcatOps.push_back(Src2); 3495 } 3496 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3497 return; 3498 } 3499 } 3500 3501 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3502 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3503 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3504 PaddedMaskNumElts); 3505 3506 // Pad both vectors with undefs to make them the same length as the mask. 3507 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3508 3509 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3510 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3511 MOps1[0] = Src1; 3512 MOps2[0] = Src2; 3513 3514 Src1 = Src1.isUndef() 3515 ? DAG.getUNDEF(PaddedVT) 3516 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3517 Src2 = Src2.isUndef() 3518 ? DAG.getUNDEF(PaddedVT) 3519 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3520 3521 // Readjust mask for new input vector length. 3522 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3523 for (unsigned i = 0; i != MaskNumElts; ++i) { 3524 int Idx = Mask[i]; 3525 if (Idx >= (int)SrcNumElts) 3526 Idx -= SrcNumElts - PaddedMaskNumElts; 3527 MappedOps[i] = Idx; 3528 } 3529 3530 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3531 3532 // If the concatenated vector was padded, extract a subvector with the 3533 // correct number of elements. 3534 if (MaskNumElts != PaddedMaskNumElts) 3535 Result = DAG.getNode( 3536 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3537 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3538 3539 setValue(&I, Result); 3540 return; 3541 } 3542 3543 if (SrcNumElts > MaskNumElts) { 3544 // Analyze the access pattern of the vector to see if we can extract 3545 // two subvectors and do the shuffle. 3546 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3547 bool CanExtract = true; 3548 for (int Idx : Mask) { 3549 unsigned Input = 0; 3550 if (Idx < 0) 3551 continue; 3552 3553 if (Idx >= (int)SrcNumElts) { 3554 Input = 1; 3555 Idx -= SrcNumElts; 3556 } 3557 3558 // If all the indices come from the same MaskNumElts sized portion of 3559 // the sources we can use extract. Also make sure the extract wouldn't 3560 // extract past the end of the source. 3561 int NewStartIdx = alignDown(Idx, MaskNumElts); 3562 if (NewStartIdx + MaskNumElts > SrcNumElts || 3563 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3564 CanExtract = false; 3565 // Make sure we always update StartIdx as we use it to track if all 3566 // elements are undef. 3567 StartIdx[Input] = NewStartIdx; 3568 } 3569 3570 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3571 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3572 return; 3573 } 3574 if (CanExtract) { 3575 // Extract appropriate subvector and generate a vector shuffle 3576 for (unsigned Input = 0; Input < 2; ++Input) { 3577 SDValue &Src = Input == 0 ? Src1 : Src2; 3578 if (StartIdx[Input] < 0) 3579 Src = DAG.getUNDEF(VT); 3580 else { 3581 Src = DAG.getNode( 3582 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3583 DAG.getConstant(StartIdx[Input], DL, 3584 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3585 } 3586 } 3587 3588 // Calculate new mask. 3589 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3590 for (int &Idx : MappedOps) { 3591 if (Idx >= (int)SrcNumElts) 3592 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3593 else if (Idx >= 0) 3594 Idx -= StartIdx[0]; 3595 } 3596 3597 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3598 return; 3599 } 3600 } 3601 3602 // We can't use either concat vectors or extract subvectors so fall back to 3603 // replacing the shuffle with extract and build vector. 3604 // to insert and build vector. 3605 EVT EltVT = VT.getVectorElementType(); 3606 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3607 SmallVector<SDValue,8> Ops; 3608 for (int Idx : Mask) { 3609 SDValue Res; 3610 3611 if (Idx < 0) { 3612 Res = DAG.getUNDEF(EltVT); 3613 } else { 3614 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3615 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3616 3617 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3618 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3619 } 3620 3621 Ops.push_back(Res); 3622 } 3623 3624 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3625 } 3626 3627 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3628 ArrayRef<unsigned> Indices; 3629 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3630 Indices = IV->getIndices(); 3631 else 3632 Indices = cast<ConstantExpr>(&I)->getIndices(); 3633 3634 const Value *Op0 = I.getOperand(0); 3635 const Value *Op1 = I.getOperand(1); 3636 Type *AggTy = I.getType(); 3637 Type *ValTy = Op1->getType(); 3638 bool IntoUndef = isa<UndefValue>(Op0); 3639 bool FromUndef = isa<UndefValue>(Op1); 3640 3641 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3642 3643 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3644 SmallVector<EVT, 4> AggValueVTs; 3645 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3646 SmallVector<EVT, 4> ValValueVTs; 3647 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3648 3649 unsigned NumAggValues = AggValueVTs.size(); 3650 unsigned NumValValues = ValValueVTs.size(); 3651 SmallVector<SDValue, 4> Values(NumAggValues); 3652 3653 // Ignore an insertvalue that produces an empty object 3654 if (!NumAggValues) { 3655 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3656 return; 3657 } 3658 3659 SDValue Agg = getValue(Op0); 3660 unsigned i = 0; 3661 // Copy the beginning value(s) from the original aggregate. 3662 for (; i != LinearIndex; ++i) 3663 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3664 SDValue(Agg.getNode(), Agg.getResNo() + i); 3665 // Copy values from the inserted value(s). 3666 if (NumValValues) { 3667 SDValue Val = getValue(Op1); 3668 for (; i != LinearIndex + NumValValues; ++i) 3669 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3670 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3671 } 3672 // Copy remaining value(s) from the original aggregate. 3673 for (; i != NumAggValues; ++i) 3674 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3675 SDValue(Agg.getNode(), Agg.getResNo() + i); 3676 3677 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3678 DAG.getVTList(AggValueVTs), Values)); 3679 } 3680 3681 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3682 ArrayRef<unsigned> Indices; 3683 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3684 Indices = EV->getIndices(); 3685 else 3686 Indices = cast<ConstantExpr>(&I)->getIndices(); 3687 3688 const Value *Op0 = I.getOperand(0); 3689 Type *AggTy = Op0->getType(); 3690 Type *ValTy = I.getType(); 3691 bool OutOfUndef = isa<UndefValue>(Op0); 3692 3693 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3694 3695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3696 SmallVector<EVT, 4> ValValueVTs; 3697 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3698 3699 unsigned NumValValues = ValValueVTs.size(); 3700 3701 // Ignore a extractvalue that produces an empty object 3702 if (!NumValValues) { 3703 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3704 return; 3705 } 3706 3707 SmallVector<SDValue, 4> Values(NumValValues); 3708 3709 SDValue Agg = getValue(Op0); 3710 // Copy out the selected value(s). 3711 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3712 Values[i - LinearIndex] = 3713 OutOfUndef ? 3714 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3715 SDValue(Agg.getNode(), Agg.getResNo() + i); 3716 3717 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3718 DAG.getVTList(ValValueVTs), Values)); 3719 } 3720 3721 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3722 Value *Op0 = I.getOperand(0); 3723 // Note that the pointer operand may be a vector of pointers. Take the scalar 3724 // element which holds a pointer. 3725 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3726 SDValue N = getValue(Op0); 3727 SDLoc dl = getCurSDLoc(); 3728 3729 // Normalize Vector GEP - all scalar operands should be converted to the 3730 // splat vector. 3731 unsigned VectorWidth = I.getType()->isVectorTy() ? 3732 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3733 3734 if (VectorWidth && !N.getValueType().isVector()) { 3735 LLVMContext &Context = *DAG.getContext(); 3736 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3737 N = DAG.getSplatBuildVector(VT, dl, N); 3738 } 3739 3740 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3741 GTI != E; ++GTI) { 3742 const Value *Idx = GTI.getOperand(); 3743 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3744 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3745 if (Field) { 3746 // N = N + Offset 3747 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3748 3749 // In an inbounds GEP with an offset that is nonnegative even when 3750 // interpreted as signed, assume there is no unsigned overflow. 3751 SDNodeFlags Flags; 3752 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3753 Flags.setNoUnsignedWrap(true); 3754 3755 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3756 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3757 } 3758 } else { 3759 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3760 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3761 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3762 3763 // If this is a scalar constant or a splat vector of constants, 3764 // handle it quickly. 3765 const auto *CI = dyn_cast<ConstantInt>(Idx); 3766 if (!CI && isa<ConstantDataVector>(Idx) && 3767 cast<ConstantDataVector>(Idx)->getSplatValue()) 3768 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3769 3770 if (CI) { 3771 if (CI->isZero()) 3772 continue; 3773 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3774 LLVMContext &Context = *DAG.getContext(); 3775 SDValue OffsVal = VectorWidth ? 3776 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3777 DAG.getConstant(Offs, dl, IdxTy); 3778 3779 // In an inbouds GEP with an offset that is nonnegative even when 3780 // interpreted as signed, assume there is no unsigned overflow. 3781 SDNodeFlags Flags; 3782 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3783 Flags.setNoUnsignedWrap(true); 3784 3785 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3786 continue; 3787 } 3788 3789 // N = N + Idx * ElementSize; 3790 SDValue IdxN = getValue(Idx); 3791 3792 if (!IdxN.getValueType().isVector() && VectorWidth) { 3793 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3794 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3795 } 3796 3797 // If the index is smaller or larger than intptr_t, truncate or extend 3798 // it. 3799 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3800 3801 // If this is a multiply by a power of two, turn it into a shl 3802 // immediately. This is a very common case. 3803 if (ElementSize != 1) { 3804 if (ElementSize.isPowerOf2()) { 3805 unsigned Amt = ElementSize.logBase2(); 3806 IdxN = DAG.getNode(ISD::SHL, dl, 3807 N.getValueType(), IdxN, 3808 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3809 } else { 3810 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3811 IdxN = DAG.getNode(ISD::MUL, dl, 3812 N.getValueType(), IdxN, Scale); 3813 } 3814 } 3815 3816 N = DAG.getNode(ISD::ADD, dl, 3817 N.getValueType(), N, IdxN); 3818 } 3819 } 3820 3821 setValue(&I, N); 3822 } 3823 3824 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3825 // If this is a fixed sized alloca in the entry block of the function, 3826 // allocate it statically on the stack. 3827 if (FuncInfo.StaticAllocaMap.count(&I)) 3828 return; // getValue will auto-populate this. 3829 3830 SDLoc dl = getCurSDLoc(); 3831 Type *Ty = I.getAllocatedType(); 3832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3833 auto &DL = DAG.getDataLayout(); 3834 uint64_t TySize = DL.getTypeAllocSize(Ty); 3835 unsigned Align = 3836 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3837 3838 SDValue AllocSize = getValue(I.getArraySize()); 3839 3840 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3841 if (AllocSize.getValueType() != IntPtr) 3842 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3843 3844 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3845 AllocSize, 3846 DAG.getConstant(TySize, dl, IntPtr)); 3847 3848 // Handle alignment. If the requested alignment is less than or equal to 3849 // the stack alignment, ignore it. If the size is greater than or equal to 3850 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3851 unsigned StackAlign = 3852 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3853 if (Align <= StackAlign) 3854 Align = 0; 3855 3856 // Round the size of the allocation up to the stack alignment size 3857 // by add SA-1 to the size. This doesn't overflow because we're computing 3858 // an address inside an alloca. 3859 SDNodeFlags Flags; 3860 Flags.setNoUnsignedWrap(true); 3861 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3862 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3863 3864 // Mask out the low bits for alignment purposes. 3865 AllocSize = 3866 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3867 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3868 3869 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3870 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3871 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3872 setValue(&I, DSA); 3873 DAG.setRoot(DSA.getValue(1)); 3874 3875 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3876 } 3877 3878 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3879 if (I.isAtomic()) 3880 return visitAtomicLoad(I); 3881 3882 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3883 const Value *SV = I.getOperand(0); 3884 if (TLI.supportSwiftError()) { 3885 // Swifterror values can come from either a function parameter with 3886 // swifterror attribute or an alloca with swifterror attribute. 3887 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3888 if (Arg->hasSwiftErrorAttr()) 3889 return visitLoadFromSwiftError(I); 3890 } 3891 3892 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3893 if (Alloca->isSwiftError()) 3894 return visitLoadFromSwiftError(I); 3895 } 3896 } 3897 3898 SDValue Ptr = getValue(SV); 3899 3900 Type *Ty = I.getType(); 3901 3902 bool isVolatile = I.isVolatile(); 3903 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3904 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3905 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3906 unsigned Alignment = I.getAlignment(); 3907 3908 AAMDNodes AAInfo; 3909 I.getAAMetadata(AAInfo); 3910 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3911 3912 SmallVector<EVT, 4> ValueVTs; 3913 SmallVector<uint64_t, 4> Offsets; 3914 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3915 unsigned NumValues = ValueVTs.size(); 3916 if (NumValues == 0) 3917 return; 3918 3919 SDValue Root; 3920 bool ConstantMemory = false; 3921 if (isVolatile || NumValues > MaxParallelChains) 3922 // Serialize volatile loads with other side effects. 3923 Root = getRoot(); 3924 else if (AA && 3925 AA->pointsToConstantMemory(MemoryLocation( 3926 SV, 3927 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3928 AAInfo))) { 3929 // Do not serialize (non-volatile) loads of constant memory with anything. 3930 Root = DAG.getEntryNode(); 3931 ConstantMemory = true; 3932 } else { 3933 // Do not serialize non-volatile loads against each other. 3934 Root = DAG.getRoot(); 3935 } 3936 3937 SDLoc dl = getCurSDLoc(); 3938 3939 if (isVolatile) 3940 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3941 3942 // An aggregate load cannot wrap around the address space, so offsets to its 3943 // parts don't wrap either. 3944 SDNodeFlags Flags; 3945 Flags.setNoUnsignedWrap(true); 3946 3947 SmallVector<SDValue, 4> Values(NumValues); 3948 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3949 EVT PtrVT = Ptr.getValueType(); 3950 unsigned ChainI = 0; 3951 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3952 // Serializing loads here may result in excessive register pressure, and 3953 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3954 // could recover a bit by hoisting nodes upward in the chain by recognizing 3955 // they are side-effect free or do not alias. The optimizer should really 3956 // avoid this case by converting large object/array copies to llvm.memcpy 3957 // (MaxParallelChains should always remain as failsafe). 3958 if (ChainI == MaxParallelChains) { 3959 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3960 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3961 makeArrayRef(Chains.data(), ChainI)); 3962 Root = Chain; 3963 ChainI = 0; 3964 } 3965 SDValue A = DAG.getNode(ISD::ADD, dl, 3966 PtrVT, Ptr, 3967 DAG.getConstant(Offsets[i], dl, PtrVT), 3968 Flags); 3969 auto MMOFlags = MachineMemOperand::MONone; 3970 if (isVolatile) 3971 MMOFlags |= MachineMemOperand::MOVolatile; 3972 if (isNonTemporal) 3973 MMOFlags |= MachineMemOperand::MONonTemporal; 3974 if (isInvariant) 3975 MMOFlags |= MachineMemOperand::MOInvariant; 3976 if (isDereferenceable) 3977 MMOFlags |= MachineMemOperand::MODereferenceable; 3978 MMOFlags |= TLI.getMMOFlags(I); 3979 3980 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3981 MachinePointerInfo(SV, Offsets[i]), Alignment, 3982 MMOFlags, AAInfo, Ranges); 3983 3984 Values[i] = L; 3985 Chains[ChainI] = L.getValue(1); 3986 } 3987 3988 if (!ConstantMemory) { 3989 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3990 makeArrayRef(Chains.data(), ChainI)); 3991 if (isVolatile) 3992 DAG.setRoot(Chain); 3993 else 3994 PendingLoads.push_back(Chain); 3995 } 3996 3997 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3998 DAG.getVTList(ValueVTs), Values)); 3999 } 4000 4001 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4002 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4003 "call visitStoreToSwiftError when backend supports swifterror"); 4004 4005 SmallVector<EVT, 4> ValueVTs; 4006 SmallVector<uint64_t, 4> Offsets; 4007 const Value *SrcV = I.getOperand(0); 4008 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4009 SrcV->getType(), ValueVTs, &Offsets); 4010 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4011 "expect a single EVT for swifterror"); 4012 4013 SDValue Src = getValue(SrcV); 4014 // Create a virtual register, then update the virtual register. 4015 unsigned VReg; bool CreatedVReg; 4016 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 4017 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4018 // Chain can be getRoot or getControlRoot. 4019 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4020 SDValue(Src.getNode(), Src.getResNo())); 4021 DAG.setRoot(CopyNode); 4022 if (CreatedVReg) 4023 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 4024 } 4025 4026 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4027 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4028 "call visitLoadFromSwiftError when backend supports swifterror"); 4029 4030 assert(!I.isVolatile() && 4031 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4032 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4033 "Support volatile, non temporal, invariant for load_from_swift_error"); 4034 4035 const Value *SV = I.getOperand(0); 4036 Type *Ty = I.getType(); 4037 AAMDNodes AAInfo; 4038 I.getAAMetadata(AAInfo); 4039 assert( 4040 (!AA || 4041 !AA->pointsToConstantMemory(MemoryLocation( 4042 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4043 AAInfo))) && 4044 "load_from_swift_error should not be constant memory"); 4045 4046 SmallVector<EVT, 4> ValueVTs; 4047 SmallVector<uint64_t, 4> Offsets; 4048 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4049 ValueVTs, &Offsets); 4050 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4051 "expect a single EVT for swifterror"); 4052 4053 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4054 SDValue L = DAG.getCopyFromReg( 4055 getRoot(), getCurSDLoc(), 4056 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 4057 ValueVTs[0]); 4058 4059 setValue(&I, L); 4060 } 4061 4062 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4063 if (I.isAtomic()) 4064 return visitAtomicStore(I); 4065 4066 const Value *SrcV = I.getOperand(0); 4067 const Value *PtrV = I.getOperand(1); 4068 4069 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4070 if (TLI.supportSwiftError()) { 4071 // Swifterror values can come from either a function parameter with 4072 // swifterror attribute or an alloca with swifterror attribute. 4073 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4074 if (Arg->hasSwiftErrorAttr()) 4075 return visitStoreToSwiftError(I); 4076 } 4077 4078 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4079 if (Alloca->isSwiftError()) 4080 return visitStoreToSwiftError(I); 4081 } 4082 } 4083 4084 SmallVector<EVT, 4> ValueVTs; 4085 SmallVector<uint64_t, 4> Offsets; 4086 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4087 SrcV->getType(), ValueVTs, &Offsets); 4088 unsigned NumValues = ValueVTs.size(); 4089 if (NumValues == 0) 4090 return; 4091 4092 // Get the lowered operands. Note that we do this after 4093 // checking if NumResults is zero, because with zero results 4094 // the operands won't have values in the map. 4095 SDValue Src = getValue(SrcV); 4096 SDValue Ptr = getValue(PtrV); 4097 4098 SDValue Root = getRoot(); 4099 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4100 SDLoc dl = getCurSDLoc(); 4101 EVT PtrVT = Ptr.getValueType(); 4102 unsigned Alignment = I.getAlignment(); 4103 AAMDNodes AAInfo; 4104 I.getAAMetadata(AAInfo); 4105 4106 auto MMOFlags = MachineMemOperand::MONone; 4107 if (I.isVolatile()) 4108 MMOFlags |= MachineMemOperand::MOVolatile; 4109 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4110 MMOFlags |= MachineMemOperand::MONonTemporal; 4111 MMOFlags |= TLI.getMMOFlags(I); 4112 4113 // An aggregate load cannot wrap around the address space, so offsets to its 4114 // parts don't wrap either. 4115 SDNodeFlags Flags; 4116 Flags.setNoUnsignedWrap(true); 4117 4118 unsigned ChainI = 0; 4119 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4120 // See visitLoad comments. 4121 if (ChainI == MaxParallelChains) { 4122 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4123 makeArrayRef(Chains.data(), ChainI)); 4124 Root = Chain; 4125 ChainI = 0; 4126 } 4127 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4128 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4129 SDValue St = DAG.getStore( 4130 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 4131 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 4132 Chains[ChainI] = St; 4133 } 4134 4135 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4136 makeArrayRef(Chains.data(), ChainI)); 4137 DAG.setRoot(StoreNode); 4138 } 4139 4140 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4141 bool IsCompressing) { 4142 SDLoc sdl = getCurSDLoc(); 4143 4144 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4145 unsigned& Alignment) { 4146 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4147 Src0 = I.getArgOperand(0); 4148 Ptr = I.getArgOperand(1); 4149 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4150 Mask = I.getArgOperand(3); 4151 }; 4152 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4153 unsigned& Alignment) { 4154 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4155 Src0 = I.getArgOperand(0); 4156 Ptr = I.getArgOperand(1); 4157 Mask = I.getArgOperand(2); 4158 Alignment = 0; 4159 }; 4160 4161 Value *PtrOperand, *MaskOperand, *Src0Operand; 4162 unsigned Alignment; 4163 if (IsCompressing) 4164 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4165 else 4166 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4167 4168 SDValue Ptr = getValue(PtrOperand); 4169 SDValue Src0 = getValue(Src0Operand); 4170 SDValue Mask = getValue(MaskOperand); 4171 4172 EVT VT = Src0.getValueType(); 4173 if (!Alignment) 4174 Alignment = DAG.getEVTAlignment(VT); 4175 4176 AAMDNodes AAInfo; 4177 I.getAAMetadata(AAInfo); 4178 4179 MachineMemOperand *MMO = 4180 DAG.getMachineFunction(). 4181 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4182 MachineMemOperand::MOStore, VT.getStoreSize(), 4183 Alignment, AAInfo); 4184 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4185 MMO, false /* Truncating */, 4186 IsCompressing); 4187 DAG.setRoot(StoreNode); 4188 setValue(&I, StoreNode); 4189 } 4190 4191 // Get a uniform base for the Gather/Scatter intrinsic. 4192 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4193 // We try to represent it as a base pointer + vector of indices. 4194 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4195 // The first operand of the GEP may be a single pointer or a vector of pointers 4196 // Example: 4197 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4198 // or 4199 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4200 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4201 // 4202 // When the first GEP operand is a single pointer - it is the uniform base we 4203 // are looking for. If first operand of the GEP is a splat vector - we 4204 // extract the splat value and use it as a uniform base. 4205 // In all other cases the function returns 'false'. 4206 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4207 SDValue &Scale, SelectionDAGBuilder* SDB) { 4208 SelectionDAG& DAG = SDB->DAG; 4209 LLVMContext &Context = *DAG.getContext(); 4210 4211 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4212 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4213 if (!GEP) 4214 return false; 4215 4216 const Value *GEPPtr = GEP->getPointerOperand(); 4217 if (!GEPPtr->getType()->isVectorTy()) 4218 Ptr = GEPPtr; 4219 else if (!(Ptr = getSplatValue(GEPPtr))) 4220 return false; 4221 4222 unsigned FinalIndex = GEP->getNumOperands() - 1; 4223 Value *IndexVal = GEP->getOperand(FinalIndex); 4224 4225 // Ensure all the other indices are 0. 4226 for (unsigned i = 1; i < FinalIndex; ++i) { 4227 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4228 if (!C || !C->isZero()) 4229 return false; 4230 } 4231 4232 // The operands of the GEP may be defined in another basic block. 4233 // In this case we'll not find nodes for the operands. 4234 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4235 return false; 4236 4237 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4238 const DataLayout &DL = DAG.getDataLayout(); 4239 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4240 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4241 Base = SDB->getValue(Ptr); 4242 Index = SDB->getValue(IndexVal); 4243 4244 if (!Index.getValueType().isVector()) { 4245 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4246 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4247 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4248 } 4249 return true; 4250 } 4251 4252 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4253 SDLoc sdl = getCurSDLoc(); 4254 4255 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4256 const Value *Ptr = I.getArgOperand(1); 4257 SDValue Src0 = getValue(I.getArgOperand(0)); 4258 SDValue Mask = getValue(I.getArgOperand(3)); 4259 EVT VT = Src0.getValueType(); 4260 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4261 if (!Alignment) 4262 Alignment = DAG.getEVTAlignment(VT); 4263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4264 4265 AAMDNodes AAInfo; 4266 I.getAAMetadata(AAInfo); 4267 4268 SDValue Base; 4269 SDValue Index; 4270 SDValue Scale; 4271 const Value *BasePtr = Ptr; 4272 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4273 4274 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4275 MachineMemOperand *MMO = DAG.getMachineFunction(). 4276 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4277 MachineMemOperand::MOStore, VT.getStoreSize(), 4278 Alignment, AAInfo); 4279 if (!UniformBase) { 4280 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4281 Index = getValue(Ptr); 4282 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4283 } 4284 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4285 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4286 Ops, MMO); 4287 DAG.setRoot(Scatter); 4288 setValue(&I, Scatter); 4289 } 4290 4291 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4292 SDLoc sdl = getCurSDLoc(); 4293 4294 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4295 unsigned& Alignment) { 4296 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4297 Ptr = I.getArgOperand(0); 4298 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4299 Mask = I.getArgOperand(2); 4300 Src0 = I.getArgOperand(3); 4301 }; 4302 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4303 unsigned& Alignment) { 4304 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4305 Ptr = I.getArgOperand(0); 4306 Alignment = 0; 4307 Mask = I.getArgOperand(1); 4308 Src0 = I.getArgOperand(2); 4309 }; 4310 4311 Value *PtrOperand, *MaskOperand, *Src0Operand; 4312 unsigned Alignment; 4313 if (IsExpanding) 4314 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4315 else 4316 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4317 4318 SDValue Ptr = getValue(PtrOperand); 4319 SDValue Src0 = getValue(Src0Operand); 4320 SDValue Mask = getValue(MaskOperand); 4321 4322 EVT VT = Src0.getValueType(); 4323 if (!Alignment) 4324 Alignment = DAG.getEVTAlignment(VT); 4325 4326 AAMDNodes AAInfo; 4327 I.getAAMetadata(AAInfo); 4328 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4329 4330 // Do not serialize masked loads of constant memory with anything. 4331 bool AddToChain = 4332 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4333 PtrOperand, 4334 LocationSize::precise( 4335 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4336 AAInfo)); 4337 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4338 4339 MachineMemOperand *MMO = 4340 DAG.getMachineFunction(). 4341 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4342 MachineMemOperand::MOLoad, VT.getStoreSize(), 4343 Alignment, AAInfo, Ranges); 4344 4345 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4346 ISD::NON_EXTLOAD, IsExpanding); 4347 if (AddToChain) 4348 PendingLoads.push_back(Load.getValue(1)); 4349 setValue(&I, Load); 4350 } 4351 4352 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4353 SDLoc sdl = getCurSDLoc(); 4354 4355 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4356 const Value *Ptr = I.getArgOperand(0); 4357 SDValue Src0 = getValue(I.getArgOperand(3)); 4358 SDValue Mask = getValue(I.getArgOperand(2)); 4359 4360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4361 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4362 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4363 if (!Alignment) 4364 Alignment = DAG.getEVTAlignment(VT); 4365 4366 AAMDNodes AAInfo; 4367 I.getAAMetadata(AAInfo); 4368 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4369 4370 SDValue Root = DAG.getRoot(); 4371 SDValue Base; 4372 SDValue Index; 4373 SDValue Scale; 4374 const Value *BasePtr = Ptr; 4375 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4376 bool ConstantMemory = false; 4377 if (UniformBase && AA && 4378 AA->pointsToConstantMemory( 4379 MemoryLocation(BasePtr, 4380 LocationSize::precise( 4381 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4382 AAInfo))) { 4383 // Do not serialize (non-volatile) loads of constant memory with anything. 4384 Root = DAG.getEntryNode(); 4385 ConstantMemory = true; 4386 } 4387 4388 MachineMemOperand *MMO = 4389 DAG.getMachineFunction(). 4390 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4391 MachineMemOperand::MOLoad, VT.getStoreSize(), 4392 Alignment, AAInfo, Ranges); 4393 4394 if (!UniformBase) { 4395 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4396 Index = getValue(Ptr); 4397 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4398 } 4399 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4400 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4401 Ops, MMO); 4402 4403 SDValue OutChain = Gather.getValue(1); 4404 if (!ConstantMemory) 4405 PendingLoads.push_back(OutChain); 4406 setValue(&I, Gather); 4407 } 4408 4409 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4410 SDLoc dl = getCurSDLoc(); 4411 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4412 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4413 SyncScope::ID SSID = I.getSyncScopeID(); 4414 4415 SDValue InChain = getRoot(); 4416 4417 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4418 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4419 4420 auto Alignment = DAG.getEVTAlignment(MemVT); 4421 4422 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4423 if (I.isVolatile()) 4424 Flags |= MachineMemOperand::MOVolatile; 4425 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4426 4427 MachineFunction &MF = DAG.getMachineFunction(); 4428 MachineMemOperand *MMO = 4429 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4430 Flags, MemVT.getStoreSize(), Alignment, 4431 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4432 FailureOrdering); 4433 4434 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4435 dl, MemVT, VTs, InChain, 4436 getValue(I.getPointerOperand()), 4437 getValue(I.getCompareOperand()), 4438 getValue(I.getNewValOperand()), MMO); 4439 4440 SDValue OutChain = L.getValue(2); 4441 4442 setValue(&I, L); 4443 DAG.setRoot(OutChain); 4444 } 4445 4446 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4447 SDLoc dl = getCurSDLoc(); 4448 ISD::NodeType NT; 4449 switch (I.getOperation()) { 4450 default: llvm_unreachable("Unknown atomicrmw operation"); 4451 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4452 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4453 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4454 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4455 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4456 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4457 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4458 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4459 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4460 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4461 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4462 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4463 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4464 } 4465 AtomicOrdering Ordering = I.getOrdering(); 4466 SyncScope::ID SSID = I.getSyncScopeID(); 4467 4468 SDValue InChain = getRoot(); 4469 4470 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4471 auto Alignment = DAG.getEVTAlignment(MemVT); 4472 4473 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4474 if (I.isVolatile()) 4475 Flags |= MachineMemOperand::MOVolatile; 4476 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4477 4478 MachineFunction &MF = DAG.getMachineFunction(); 4479 MachineMemOperand *MMO = 4480 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4481 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4482 nullptr, SSID, Ordering); 4483 4484 SDValue L = 4485 DAG.getAtomic(NT, dl, MemVT, InChain, 4486 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4487 MMO); 4488 4489 SDValue OutChain = L.getValue(1); 4490 4491 setValue(&I, L); 4492 DAG.setRoot(OutChain); 4493 } 4494 4495 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4496 SDLoc dl = getCurSDLoc(); 4497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4498 SDValue Ops[3]; 4499 Ops[0] = getRoot(); 4500 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4501 TLI.getFenceOperandTy(DAG.getDataLayout())); 4502 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4503 TLI.getFenceOperandTy(DAG.getDataLayout())); 4504 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4505 } 4506 4507 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4508 SDLoc dl = getCurSDLoc(); 4509 AtomicOrdering Order = I.getOrdering(); 4510 SyncScope::ID SSID = I.getSyncScopeID(); 4511 4512 SDValue InChain = getRoot(); 4513 4514 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4515 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4516 4517 if (!TLI.supportsUnalignedAtomics() && 4518 I.getAlignment() < VT.getStoreSize()) 4519 report_fatal_error("Cannot generate unaligned atomic load"); 4520 4521 auto Flags = MachineMemOperand::MOLoad; 4522 if (I.isVolatile()) 4523 Flags |= MachineMemOperand::MOVolatile; 4524 Flags |= TLI.getMMOFlags(I); 4525 4526 MachineMemOperand *MMO = 4527 DAG.getMachineFunction(). 4528 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4529 Flags, VT.getStoreSize(), 4530 I.getAlignment() ? I.getAlignment() : 4531 DAG.getEVTAlignment(VT), 4532 AAMDNodes(), nullptr, SSID, Order); 4533 4534 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4535 SDValue L = 4536 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4537 getValue(I.getPointerOperand()), MMO); 4538 4539 SDValue OutChain = L.getValue(1); 4540 4541 setValue(&I, L); 4542 DAG.setRoot(OutChain); 4543 } 4544 4545 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4546 SDLoc dl = getCurSDLoc(); 4547 4548 AtomicOrdering Ordering = I.getOrdering(); 4549 SyncScope::ID SSID = I.getSyncScopeID(); 4550 4551 SDValue InChain = getRoot(); 4552 4553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4554 EVT VT = 4555 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4556 4557 if (I.getAlignment() < VT.getStoreSize()) 4558 report_fatal_error("Cannot generate unaligned atomic store"); 4559 4560 auto Flags = MachineMemOperand::MOStore; 4561 if (I.isVolatile()) 4562 Flags |= MachineMemOperand::MOVolatile; 4563 Flags |= TLI.getMMOFlags(I); 4564 4565 MachineFunction &MF = DAG.getMachineFunction(); 4566 MachineMemOperand *MMO = 4567 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4568 VT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4569 nullptr, SSID, Ordering); 4570 SDValue OutChain = 4571 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain, 4572 getValue(I.getPointerOperand()), getValue(I.getValueOperand()), 4573 MMO); 4574 4575 4576 DAG.setRoot(OutChain); 4577 } 4578 4579 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4580 /// node. 4581 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4582 unsigned Intrinsic) { 4583 // Ignore the callsite's attributes. A specific call site may be marked with 4584 // readnone, but the lowering code will expect the chain based on the 4585 // definition. 4586 const Function *F = I.getCalledFunction(); 4587 bool HasChain = !F->doesNotAccessMemory(); 4588 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4589 4590 // Build the operand list. 4591 SmallVector<SDValue, 8> Ops; 4592 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4593 if (OnlyLoad) { 4594 // We don't need to serialize loads against other loads. 4595 Ops.push_back(DAG.getRoot()); 4596 } else { 4597 Ops.push_back(getRoot()); 4598 } 4599 } 4600 4601 // Info is set by getTgtMemInstrinsic 4602 TargetLowering::IntrinsicInfo Info; 4603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4604 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4605 DAG.getMachineFunction(), 4606 Intrinsic); 4607 4608 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4609 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4610 Info.opc == ISD::INTRINSIC_W_CHAIN) 4611 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4612 TLI.getPointerTy(DAG.getDataLayout()))); 4613 4614 // Add all operands of the call to the operand list. 4615 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4616 SDValue Op = getValue(I.getArgOperand(i)); 4617 Ops.push_back(Op); 4618 } 4619 4620 SmallVector<EVT, 4> ValueVTs; 4621 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4622 4623 if (HasChain) 4624 ValueVTs.push_back(MVT::Other); 4625 4626 SDVTList VTs = DAG.getVTList(ValueVTs); 4627 4628 // Create the node. 4629 SDValue Result; 4630 if (IsTgtIntrinsic) { 4631 // This is target intrinsic that touches memory 4632 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4633 Ops, Info.memVT, 4634 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4635 Info.flags, Info.size); 4636 } else if (!HasChain) { 4637 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4638 } else if (!I.getType()->isVoidTy()) { 4639 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4640 } else { 4641 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4642 } 4643 4644 if (HasChain) { 4645 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4646 if (OnlyLoad) 4647 PendingLoads.push_back(Chain); 4648 else 4649 DAG.setRoot(Chain); 4650 } 4651 4652 if (!I.getType()->isVoidTy()) { 4653 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4654 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4655 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4656 } else 4657 Result = lowerRangeToAssertZExt(DAG, I, Result); 4658 4659 setValue(&I, Result); 4660 } 4661 } 4662 4663 /// GetSignificand - Get the significand and build it into a floating-point 4664 /// number with exponent of 1: 4665 /// 4666 /// Op = (Op & 0x007fffff) | 0x3f800000; 4667 /// 4668 /// where Op is the hexadecimal representation of floating point value. 4669 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4670 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4671 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4672 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4673 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4674 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4675 } 4676 4677 /// GetExponent - Get the exponent: 4678 /// 4679 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4680 /// 4681 /// where Op is the hexadecimal representation of floating point value. 4682 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4683 const TargetLowering &TLI, const SDLoc &dl) { 4684 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4685 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4686 SDValue t1 = DAG.getNode( 4687 ISD::SRL, dl, MVT::i32, t0, 4688 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4689 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4690 DAG.getConstant(127, dl, MVT::i32)); 4691 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4692 } 4693 4694 /// getF32Constant - Get 32-bit floating point constant. 4695 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4696 const SDLoc &dl) { 4697 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4698 MVT::f32); 4699 } 4700 4701 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4702 SelectionDAG &DAG) { 4703 // TODO: What fast-math-flags should be set on the floating-point nodes? 4704 4705 // IntegerPartOfX = ((int32_t)(t0); 4706 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4707 4708 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4709 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4710 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4711 4712 // IntegerPartOfX <<= 23; 4713 IntegerPartOfX = DAG.getNode( 4714 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4715 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4716 DAG.getDataLayout()))); 4717 4718 SDValue TwoToFractionalPartOfX; 4719 if (LimitFloatPrecision <= 6) { 4720 // For floating-point precision of 6: 4721 // 4722 // TwoToFractionalPartOfX = 4723 // 0.997535578f + 4724 // (0.735607626f + 0.252464424f * x) * x; 4725 // 4726 // error 0.0144103317, which is 6 bits 4727 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4728 getF32Constant(DAG, 0x3e814304, dl)); 4729 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4730 getF32Constant(DAG, 0x3f3c50c8, dl)); 4731 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4732 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4733 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4734 } else if (LimitFloatPrecision <= 12) { 4735 // For floating-point precision of 12: 4736 // 4737 // TwoToFractionalPartOfX = 4738 // 0.999892986f + 4739 // (0.696457318f + 4740 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4741 // 4742 // error 0.000107046256, which is 13 to 14 bits 4743 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4744 getF32Constant(DAG, 0x3da235e3, dl)); 4745 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4746 getF32Constant(DAG, 0x3e65b8f3, dl)); 4747 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4748 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4749 getF32Constant(DAG, 0x3f324b07, dl)); 4750 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4751 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4752 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4753 } else { // LimitFloatPrecision <= 18 4754 // For floating-point precision of 18: 4755 // 4756 // TwoToFractionalPartOfX = 4757 // 0.999999982f + 4758 // (0.693148872f + 4759 // (0.240227044f + 4760 // (0.554906021e-1f + 4761 // (0.961591928e-2f + 4762 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4763 // error 2.47208000*10^(-7), which is better than 18 bits 4764 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4765 getF32Constant(DAG, 0x3924b03e, dl)); 4766 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4767 getF32Constant(DAG, 0x3ab24b87, dl)); 4768 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4769 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4770 getF32Constant(DAG, 0x3c1d8c17, dl)); 4771 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4772 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4773 getF32Constant(DAG, 0x3d634a1d, dl)); 4774 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4775 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4776 getF32Constant(DAG, 0x3e75fe14, dl)); 4777 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4778 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4779 getF32Constant(DAG, 0x3f317234, dl)); 4780 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4781 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4782 getF32Constant(DAG, 0x3f800000, dl)); 4783 } 4784 4785 // Add the exponent into the result in integer domain. 4786 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4787 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4788 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4789 } 4790 4791 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4792 /// limited-precision mode. 4793 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4794 const TargetLowering &TLI) { 4795 if (Op.getValueType() == MVT::f32 && 4796 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4797 4798 // Put the exponent in the right bit position for later addition to the 4799 // final result: 4800 // 4801 // #define LOG2OFe 1.4426950f 4802 // t0 = Op * LOG2OFe 4803 4804 // TODO: What fast-math-flags should be set here? 4805 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4806 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4807 return getLimitedPrecisionExp2(t0, dl, DAG); 4808 } 4809 4810 // No special expansion. 4811 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4812 } 4813 4814 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4815 /// limited-precision mode. 4816 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4817 const TargetLowering &TLI) { 4818 // TODO: What fast-math-flags should be set on the floating-point nodes? 4819 4820 if (Op.getValueType() == MVT::f32 && 4821 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4822 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4823 4824 // Scale the exponent by log(2) [0.69314718f]. 4825 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4826 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4827 getF32Constant(DAG, 0x3f317218, dl)); 4828 4829 // Get the significand and build it into a floating-point number with 4830 // exponent of 1. 4831 SDValue X = GetSignificand(DAG, Op1, dl); 4832 4833 SDValue LogOfMantissa; 4834 if (LimitFloatPrecision <= 6) { 4835 // For floating-point precision of 6: 4836 // 4837 // LogofMantissa = 4838 // -1.1609546f + 4839 // (1.4034025f - 0.23903021f * x) * x; 4840 // 4841 // error 0.0034276066, which is better than 8 bits 4842 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4843 getF32Constant(DAG, 0xbe74c456, dl)); 4844 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4845 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4846 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4847 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4848 getF32Constant(DAG, 0x3f949a29, dl)); 4849 } else if (LimitFloatPrecision <= 12) { 4850 // For floating-point precision of 12: 4851 // 4852 // LogOfMantissa = 4853 // -1.7417939f + 4854 // (2.8212026f + 4855 // (-1.4699568f + 4856 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4857 // 4858 // error 0.000061011436, which is 14 bits 4859 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4860 getF32Constant(DAG, 0xbd67b6d6, dl)); 4861 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4862 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4863 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4864 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4865 getF32Constant(DAG, 0x3fbc278b, dl)); 4866 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4867 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4868 getF32Constant(DAG, 0x40348e95, dl)); 4869 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4870 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4871 getF32Constant(DAG, 0x3fdef31a, dl)); 4872 } else { // LimitFloatPrecision <= 18 4873 // For floating-point precision of 18: 4874 // 4875 // LogOfMantissa = 4876 // -2.1072184f + 4877 // (4.2372794f + 4878 // (-3.7029485f + 4879 // (2.2781945f + 4880 // (-0.87823314f + 4881 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4882 // 4883 // error 0.0000023660568, which is better than 18 bits 4884 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4885 getF32Constant(DAG, 0xbc91e5ac, dl)); 4886 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4887 getF32Constant(DAG, 0x3e4350aa, dl)); 4888 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4889 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4890 getF32Constant(DAG, 0x3f60d3e3, dl)); 4891 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4892 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4893 getF32Constant(DAG, 0x4011cdf0, dl)); 4894 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4895 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4896 getF32Constant(DAG, 0x406cfd1c, dl)); 4897 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4898 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4899 getF32Constant(DAG, 0x408797cb, dl)); 4900 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4901 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4902 getF32Constant(DAG, 0x4006dcab, dl)); 4903 } 4904 4905 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4906 } 4907 4908 // No special expansion. 4909 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4910 } 4911 4912 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4913 /// limited-precision mode. 4914 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4915 const TargetLowering &TLI) { 4916 // TODO: What fast-math-flags should be set on the floating-point nodes? 4917 4918 if (Op.getValueType() == MVT::f32 && 4919 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4920 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4921 4922 // Get the exponent. 4923 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4924 4925 // Get the significand and build it into a floating-point number with 4926 // exponent of 1. 4927 SDValue X = GetSignificand(DAG, Op1, dl); 4928 4929 // Different possible minimax approximations of significand in 4930 // floating-point for various degrees of accuracy over [1,2]. 4931 SDValue Log2ofMantissa; 4932 if (LimitFloatPrecision <= 6) { 4933 // For floating-point precision of 6: 4934 // 4935 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4936 // 4937 // error 0.0049451742, which is more than 7 bits 4938 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4939 getF32Constant(DAG, 0xbeb08fe0, dl)); 4940 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4941 getF32Constant(DAG, 0x40019463, dl)); 4942 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4943 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4944 getF32Constant(DAG, 0x3fd6633d, dl)); 4945 } else if (LimitFloatPrecision <= 12) { 4946 // For floating-point precision of 12: 4947 // 4948 // Log2ofMantissa = 4949 // -2.51285454f + 4950 // (4.07009056f + 4951 // (-2.12067489f + 4952 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4953 // 4954 // error 0.0000876136000, which is better than 13 bits 4955 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4956 getF32Constant(DAG, 0xbda7262e, dl)); 4957 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4958 getF32Constant(DAG, 0x3f25280b, dl)); 4959 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4960 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4961 getF32Constant(DAG, 0x4007b923, dl)); 4962 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4963 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4964 getF32Constant(DAG, 0x40823e2f, dl)); 4965 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4966 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4967 getF32Constant(DAG, 0x4020d29c, dl)); 4968 } else { // LimitFloatPrecision <= 18 4969 // For floating-point precision of 18: 4970 // 4971 // Log2ofMantissa = 4972 // -3.0400495f + 4973 // (6.1129976f + 4974 // (-5.3420409f + 4975 // (3.2865683f + 4976 // (-1.2669343f + 4977 // (0.27515199f - 4978 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4979 // 4980 // error 0.0000018516, which is better than 18 bits 4981 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4982 getF32Constant(DAG, 0xbcd2769e, dl)); 4983 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4984 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4985 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4986 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4987 getF32Constant(DAG, 0x3fa22ae7, dl)); 4988 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4989 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4990 getF32Constant(DAG, 0x40525723, dl)); 4991 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4992 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4993 getF32Constant(DAG, 0x40aaf200, dl)); 4994 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4995 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4996 getF32Constant(DAG, 0x40c39dad, dl)); 4997 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4998 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4999 getF32Constant(DAG, 0x4042902c, dl)); 5000 } 5001 5002 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5003 } 5004 5005 // No special expansion. 5006 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5007 } 5008 5009 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5010 /// limited-precision mode. 5011 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5012 const TargetLowering &TLI) { 5013 // TODO: What fast-math-flags should be set on the floating-point nodes? 5014 5015 if (Op.getValueType() == MVT::f32 && 5016 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5017 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5018 5019 // Scale the exponent by log10(2) [0.30102999f]. 5020 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5021 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5022 getF32Constant(DAG, 0x3e9a209a, dl)); 5023 5024 // Get the significand and build it into a floating-point number with 5025 // exponent of 1. 5026 SDValue X = GetSignificand(DAG, Op1, dl); 5027 5028 SDValue Log10ofMantissa; 5029 if (LimitFloatPrecision <= 6) { 5030 // For floating-point precision of 6: 5031 // 5032 // Log10ofMantissa = 5033 // -0.50419619f + 5034 // (0.60948995f - 0.10380950f * x) * x; 5035 // 5036 // error 0.0014886165, which is 6 bits 5037 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5038 getF32Constant(DAG, 0xbdd49a13, dl)); 5039 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5040 getF32Constant(DAG, 0x3f1c0789, dl)); 5041 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5042 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5043 getF32Constant(DAG, 0x3f011300, dl)); 5044 } else if (LimitFloatPrecision <= 12) { 5045 // For floating-point precision of 12: 5046 // 5047 // Log10ofMantissa = 5048 // -0.64831180f + 5049 // (0.91751397f + 5050 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5051 // 5052 // error 0.00019228036, which is better than 12 bits 5053 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5054 getF32Constant(DAG, 0x3d431f31, dl)); 5055 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5056 getF32Constant(DAG, 0x3ea21fb2, dl)); 5057 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5058 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5059 getF32Constant(DAG, 0x3f6ae232, dl)); 5060 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5061 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5062 getF32Constant(DAG, 0x3f25f7c3, dl)); 5063 } else { // LimitFloatPrecision <= 18 5064 // For floating-point precision of 18: 5065 // 5066 // Log10ofMantissa = 5067 // -0.84299375f + 5068 // (1.5327582f + 5069 // (-1.0688956f + 5070 // (0.49102474f + 5071 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5072 // 5073 // error 0.0000037995730, which is better than 18 bits 5074 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5075 getF32Constant(DAG, 0x3c5d51ce, dl)); 5076 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5077 getF32Constant(DAG, 0x3e00685a, dl)); 5078 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5079 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5080 getF32Constant(DAG, 0x3efb6798, dl)); 5081 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5082 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5083 getF32Constant(DAG, 0x3f88d192, dl)); 5084 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5085 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5086 getF32Constant(DAG, 0x3fc4316c, dl)); 5087 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5088 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5089 getF32Constant(DAG, 0x3f57ce70, dl)); 5090 } 5091 5092 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5093 } 5094 5095 // No special expansion. 5096 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5097 } 5098 5099 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5100 /// limited-precision mode. 5101 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5102 const TargetLowering &TLI) { 5103 if (Op.getValueType() == MVT::f32 && 5104 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5105 return getLimitedPrecisionExp2(Op, dl, DAG); 5106 5107 // No special expansion. 5108 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5109 } 5110 5111 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5112 /// limited-precision mode with x == 10.0f. 5113 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5114 SelectionDAG &DAG, const TargetLowering &TLI) { 5115 bool IsExp10 = false; 5116 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5117 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5118 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5119 APFloat Ten(10.0f); 5120 IsExp10 = LHSC->isExactlyValue(Ten); 5121 } 5122 } 5123 5124 // TODO: What fast-math-flags should be set on the FMUL node? 5125 if (IsExp10) { 5126 // Put the exponent in the right bit position for later addition to the 5127 // final result: 5128 // 5129 // #define LOG2OF10 3.3219281f 5130 // t0 = Op * LOG2OF10; 5131 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5132 getF32Constant(DAG, 0x40549a78, dl)); 5133 return getLimitedPrecisionExp2(t0, dl, DAG); 5134 } 5135 5136 // No special expansion. 5137 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5138 } 5139 5140 /// ExpandPowI - Expand a llvm.powi intrinsic. 5141 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5142 SelectionDAG &DAG) { 5143 // If RHS is a constant, we can expand this out to a multiplication tree, 5144 // otherwise we end up lowering to a call to __powidf2 (for example). When 5145 // optimizing for size, we only want to do this if the expansion would produce 5146 // a small number of multiplies, otherwise we do the full expansion. 5147 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5148 // Get the exponent as a positive value. 5149 unsigned Val = RHSC->getSExtValue(); 5150 if ((int)Val < 0) Val = -Val; 5151 5152 // powi(x, 0) -> 1.0 5153 if (Val == 0) 5154 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5155 5156 const Function &F = DAG.getMachineFunction().getFunction(); 5157 if (!F.optForSize() || 5158 // If optimizing for size, don't insert too many multiplies. 5159 // This inserts up to 5 multiplies. 5160 countPopulation(Val) + Log2_32(Val) < 7) { 5161 // We use the simple binary decomposition method to generate the multiply 5162 // sequence. There are more optimal ways to do this (for example, 5163 // powi(x,15) generates one more multiply than it should), but this has 5164 // the benefit of being both really simple and much better than a libcall. 5165 SDValue Res; // Logically starts equal to 1.0 5166 SDValue CurSquare = LHS; 5167 // TODO: Intrinsics should have fast-math-flags that propagate to these 5168 // nodes. 5169 while (Val) { 5170 if (Val & 1) { 5171 if (Res.getNode()) 5172 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5173 else 5174 Res = CurSquare; // 1.0*CurSquare. 5175 } 5176 5177 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5178 CurSquare, CurSquare); 5179 Val >>= 1; 5180 } 5181 5182 // If the original was negative, invert the result, producing 1/(x*x*x). 5183 if (RHSC->getSExtValue() < 0) 5184 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5185 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5186 return Res; 5187 } 5188 } 5189 5190 // Otherwise, expand to a libcall. 5191 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5192 } 5193 5194 // getUnderlyingArgReg - Find underlying register used for a truncated or 5195 // bitcasted argument. 5196 static unsigned getUnderlyingArgReg(const SDValue &N) { 5197 switch (N.getOpcode()) { 5198 case ISD::CopyFromReg: 5199 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 5200 case ISD::BITCAST: 5201 case ISD::AssertZext: 5202 case ISD::AssertSext: 5203 case ISD::TRUNCATE: 5204 return getUnderlyingArgReg(N.getOperand(0)); 5205 default: 5206 return 0; 5207 } 5208 } 5209 5210 /// If the DbgValueInst is a dbg_value of a function argument, create the 5211 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5212 /// instruction selection, they will be inserted to the entry BB. 5213 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5214 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5215 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5216 const Argument *Arg = dyn_cast<Argument>(V); 5217 if (!Arg) 5218 return false; 5219 5220 if (!IsDbgDeclare) { 5221 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5222 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5223 // the entry block. 5224 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5225 if (!IsInEntryBlock) 5226 return false; 5227 5228 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5229 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5230 // variable that also is a param. 5231 // 5232 // Although, if we are at the top of the entry block already, we can still 5233 // emit using ArgDbgValue. This might catch some situations when the 5234 // dbg.value refers to an argument that isn't used in the entry block, so 5235 // any CopyToReg node would be optimized out and the only way to express 5236 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5237 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5238 // we should only emit as ArgDbgValue if the Variable is an argument to the 5239 // current function, and the dbg.value intrinsic is found in the entry 5240 // block. 5241 bool VariableIsFunctionInputArg = Variable->isParameter() && 5242 !DL->getInlinedAt(); 5243 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5244 if (!IsInPrologue && !VariableIsFunctionInputArg) 5245 return false; 5246 5247 // Here we assume that a function argument on IR level only can be used to 5248 // describe one input parameter on source level. If we for example have 5249 // source code like this 5250 // 5251 // struct A { long x, y; }; 5252 // void foo(struct A a, long b) { 5253 // ... 5254 // b = a.x; 5255 // ... 5256 // } 5257 // 5258 // and IR like this 5259 // 5260 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5261 // entry: 5262 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5263 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5264 // call void @llvm.dbg.value(metadata i32 %b, "b", 5265 // ... 5266 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5267 // ... 5268 // 5269 // then the last dbg.value is describing a parameter "b" using a value that 5270 // is an argument. But since we already has used %a1 to describe a parameter 5271 // we should not handle that last dbg.value here (that would result in an 5272 // incorrect hoisting of the DBG_VALUE to the function entry). 5273 // Notice that we allow one dbg.value per IR level argument, to accomodate 5274 // for the situation with fragments above. 5275 if (VariableIsFunctionInputArg) { 5276 unsigned ArgNo = Arg->getArgNo(); 5277 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5278 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5279 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5280 return false; 5281 FuncInfo.DescribedArgs.set(ArgNo); 5282 } 5283 } 5284 5285 MachineFunction &MF = DAG.getMachineFunction(); 5286 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5287 5288 bool IsIndirect = false; 5289 Optional<MachineOperand> Op; 5290 // Some arguments' frame index is recorded during argument lowering. 5291 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5292 if (FI != std::numeric_limits<int>::max()) 5293 Op = MachineOperand::CreateFI(FI); 5294 5295 if (!Op && N.getNode()) { 5296 unsigned Reg = getUnderlyingArgReg(N); 5297 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5298 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5299 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5300 if (PR) 5301 Reg = PR; 5302 } 5303 if (Reg) { 5304 Op = MachineOperand::CreateReg(Reg, false); 5305 IsIndirect = IsDbgDeclare; 5306 } 5307 } 5308 5309 if (!Op && N.getNode()) 5310 // Check if frame index is available. 5311 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 5312 if (FrameIndexSDNode *FINode = 5313 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5314 Op = MachineOperand::CreateFI(FINode->getIndex()); 5315 5316 if (!Op) { 5317 // Check if ValueMap has reg number. 5318 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5319 if (VMI != FuncInfo.ValueMap.end()) { 5320 const auto &TLI = DAG.getTargetLoweringInfo(); 5321 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5322 V->getType(), getABIRegCopyCC(V)); 5323 if (RFV.occupiesMultipleRegs()) { 5324 unsigned Offset = 0; 5325 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5326 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5327 auto FragmentExpr = DIExpression::createFragmentExpression( 5328 Expr, Offset, RegAndSize.second); 5329 if (!FragmentExpr) 5330 continue; 5331 FuncInfo.ArgDbgValues.push_back( 5332 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5333 Op->getReg(), Variable, *FragmentExpr)); 5334 Offset += RegAndSize.second; 5335 } 5336 return true; 5337 } 5338 Op = MachineOperand::CreateReg(VMI->second, false); 5339 IsIndirect = IsDbgDeclare; 5340 } 5341 } 5342 5343 if (!Op) 5344 return false; 5345 5346 assert(Variable->isValidLocationForIntrinsic(DL) && 5347 "Expected inlined-at fields to agree"); 5348 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5349 FuncInfo.ArgDbgValues.push_back( 5350 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5351 *Op, Variable, Expr)); 5352 5353 return true; 5354 } 5355 5356 /// Return the appropriate SDDbgValue based on N. 5357 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5358 DILocalVariable *Variable, 5359 DIExpression *Expr, 5360 const DebugLoc &dl, 5361 unsigned DbgSDNodeOrder) { 5362 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5363 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5364 // stack slot locations. 5365 // 5366 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5367 // debug values here after optimization: 5368 // 5369 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5370 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5371 // 5372 // Both describe the direct values of their associated variables. 5373 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5374 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5375 } 5376 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5377 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5378 } 5379 5380 // VisualStudio defines setjmp as _setjmp 5381 #if defined(_MSC_VER) && defined(setjmp) && \ 5382 !defined(setjmp_undefined_for_msvc) 5383 # pragma push_macro("setjmp") 5384 # undef setjmp 5385 # define setjmp_undefined_for_msvc 5386 #endif 5387 5388 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5389 switch (Intrinsic) { 5390 case Intrinsic::smul_fix: 5391 return ISD::SMULFIX; 5392 case Intrinsic::umul_fix: 5393 return ISD::UMULFIX; 5394 default: 5395 llvm_unreachable("Unhandled fixed point intrinsic"); 5396 } 5397 } 5398 5399 /// Lower the call to the specified intrinsic function. If we want to emit this 5400 /// as a call to a named external function, return the name. Otherwise, lower it 5401 /// and return null. 5402 const char * 5403 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5405 SDLoc sdl = getCurSDLoc(); 5406 DebugLoc dl = getCurDebugLoc(); 5407 SDValue Res; 5408 5409 switch (Intrinsic) { 5410 default: 5411 // By default, turn this into a target intrinsic node. 5412 visitTargetIntrinsic(I, Intrinsic); 5413 return nullptr; 5414 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5415 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5416 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5417 case Intrinsic::returnaddress: 5418 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5419 TLI.getPointerTy(DAG.getDataLayout()), 5420 getValue(I.getArgOperand(0)))); 5421 return nullptr; 5422 case Intrinsic::addressofreturnaddress: 5423 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5424 TLI.getPointerTy(DAG.getDataLayout()))); 5425 return nullptr; 5426 case Intrinsic::sponentry: 5427 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5428 TLI.getPointerTy(DAG.getDataLayout()))); 5429 return nullptr; 5430 case Intrinsic::frameaddress: 5431 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5432 TLI.getPointerTy(DAG.getDataLayout()), 5433 getValue(I.getArgOperand(0)))); 5434 return nullptr; 5435 case Intrinsic::read_register: { 5436 Value *Reg = I.getArgOperand(0); 5437 SDValue Chain = getRoot(); 5438 SDValue RegName = 5439 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5440 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5441 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5442 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5443 setValue(&I, Res); 5444 DAG.setRoot(Res.getValue(1)); 5445 return nullptr; 5446 } 5447 case Intrinsic::write_register: { 5448 Value *Reg = I.getArgOperand(0); 5449 Value *RegValue = I.getArgOperand(1); 5450 SDValue Chain = getRoot(); 5451 SDValue RegName = 5452 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5453 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5454 RegName, getValue(RegValue))); 5455 return nullptr; 5456 } 5457 case Intrinsic::setjmp: 5458 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5459 case Intrinsic::longjmp: 5460 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5461 case Intrinsic::memcpy: { 5462 const auto &MCI = cast<MemCpyInst>(I); 5463 SDValue Op1 = getValue(I.getArgOperand(0)); 5464 SDValue Op2 = getValue(I.getArgOperand(1)); 5465 SDValue Op3 = getValue(I.getArgOperand(2)); 5466 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5467 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5468 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5469 unsigned Align = MinAlign(DstAlign, SrcAlign); 5470 bool isVol = MCI.isVolatile(); 5471 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5472 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5473 // node. 5474 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5475 false, isTC, 5476 MachinePointerInfo(I.getArgOperand(0)), 5477 MachinePointerInfo(I.getArgOperand(1))); 5478 updateDAGForMaybeTailCall(MC); 5479 return nullptr; 5480 } 5481 case Intrinsic::memset: { 5482 const auto &MSI = cast<MemSetInst>(I); 5483 SDValue Op1 = getValue(I.getArgOperand(0)); 5484 SDValue Op2 = getValue(I.getArgOperand(1)); 5485 SDValue Op3 = getValue(I.getArgOperand(2)); 5486 // @llvm.memset defines 0 and 1 to both mean no alignment. 5487 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5488 bool isVol = MSI.isVolatile(); 5489 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5490 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5491 isTC, MachinePointerInfo(I.getArgOperand(0))); 5492 updateDAGForMaybeTailCall(MS); 5493 return nullptr; 5494 } 5495 case Intrinsic::memmove: { 5496 const auto &MMI = cast<MemMoveInst>(I); 5497 SDValue Op1 = getValue(I.getArgOperand(0)); 5498 SDValue Op2 = getValue(I.getArgOperand(1)); 5499 SDValue Op3 = getValue(I.getArgOperand(2)); 5500 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5501 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5502 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5503 unsigned Align = MinAlign(DstAlign, SrcAlign); 5504 bool isVol = MMI.isVolatile(); 5505 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5506 // FIXME: Support passing different dest/src alignments to the memmove DAG 5507 // node. 5508 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5509 isTC, MachinePointerInfo(I.getArgOperand(0)), 5510 MachinePointerInfo(I.getArgOperand(1))); 5511 updateDAGForMaybeTailCall(MM); 5512 return nullptr; 5513 } 5514 case Intrinsic::memcpy_element_unordered_atomic: { 5515 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5516 SDValue Dst = getValue(MI.getRawDest()); 5517 SDValue Src = getValue(MI.getRawSource()); 5518 SDValue Length = getValue(MI.getLength()); 5519 5520 unsigned DstAlign = MI.getDestAlignment(); 5521 unsigned SrcAlign = MI.getSourceAlignment(); 5522 Type *LengthTy = MI.getLength()->getType(); 5523 unsigned ElemSz = MI.getElementSizeInBytes(); 5524 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5525 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5526 SrcAlign, Length, LengthTy, ElemSz, isTC, 5527 MachinePointerInfo(MI.getRawDest()), 5528 MachinePointerInfo(MI.getRawSource())); 5529 updateDAGForMaybeTailCall(MC); 5530 return nullptr; 5531 } 5532 case Intrinsic::memmove_element_unordered_atomic: { 5533 auto &MI = cast<AtomicMemMoveInst>(I); 5534 SDValue Dst = getValue(MI.getRawDest()); 5535 SDValue Src = getValue(MI.getRawSource()); 5536 SDValue Length = getValue(MI.getLength()); 5537 5538 unsigned DstAlign = MI.getDestAlignment(); 5539 unsigned SrcAlign = MI.getSourceAlignment(); 5540 Type *LengthTy = MI.getLength()->getType(); 5541 unsigned ElemSz = MI.getElementSizeInBytes(); 5542 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5543 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5544 SrcAlign, Length, LengthTy, ElemSz, isTC, 5545 MachinePointerInfo(MI.getRawDest()), 5546 MachinePointerInfo(MI.getRawSource())); 5547 updateDAGForMaybeTailCall(MC); 5548 return nullptr; 5549 } 5550 case Intrinsic::memset_element_unordered_atomic: { 5551 auto &MI = cast<AtomicMemSetInst>(I); 5552 SDValue Dst = getValue(MI.getRawDest()); 5553 SDValue Val = getValue(MI.getValue()); 5554 SDValue Length = getValue(MI.getLength()); 5555 5556 unsigned DstAlign = MI.getDestAlignment(); 5557 Type *LengthTy = MI.getLength()->getType(); 5558 unsigned ElemSz = MI.getElementSizeInBytes(); 5559 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5560 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5561 LengthTy, ElemSz, isTC, 5562 MachinePointerInfo(MI.getRawDest())); 5563 updateDAGForMaybeTailCall(MC); 5564 return nullptr; 5565 } 5566 case Intrinsic::dbg_addr: 5567 case Intrinsic::dbg_declare: { 5568 const auto &DI = cast<DbgVariableIntrinsic>(I); 5569 DILocalVariable *Variable = DI.getVariable(); 5570 DIExpression *Expression = DI.getExpression(); 5571 dropDanglingDebugInfo(Variable, Expression); 5572 assert(Variable && "Missing variable"); 5573 5574 // Check if address has undef value. 5575 const Value *Address = DI.getVariableLocation(); 5576 if (!Address || isa<UndefValue>(Address) || 5577 (Address->use_empty() && !isa<Argument>(Address))) { 5578 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5579 return nullptr; 5580 } 5581 5582 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5583 5584 // Check if this variable can be described by a frame index, typically 5585 // either as a static alloca or a byval parameter. 5586 int FI = std::numeric_limits<int>::max(); 5587 if (const auto *AI = 5588 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5589 if (AI->isStaticAlloca()) { 5590 auto I = FuncInfo.StaticAllocaMap.find(AI); 5591 if (I != FuncInfo.StaticAllocaMap.end()) 5592 FI = I->second; 5593 } 5594 } else if (const auto *Arg = dyn_cast<Argument>( 5595 Address->stripInBoundsConstantOffsets())) { 5596 FI = FuncInfo.getArgumentFrameIndex(Arg); 5597 } 5598 5599 // llvm.dbg.addr is control dependent and always generates indirect 5600 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5601 // the MachineFunction variable table. 5602 if (FI != std::numeric_limits<int>::max()) { 5603 if (Intrinsic == Intrinsic::dbg_addr) { 5604 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5605 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5606 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5607 } 5608 return nullptr; 5609 } 5610 5611 SDValue &N = NodeMap[Address]; 5612 if (!N.getNode() && isa<Argument>(Address)) 5613 // Check unused arguments map. 5614 N = UnusedArgNodeMap[Address]; 5615 SDDbgValue *SDV; 5616 if (N.getNode()) { 5617 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5618 Address = BCI->getOperand(0); 5619 // Parameters are handled specially. 5620 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5621 if (isParameter && FINode) { 5622 // Byval parameter. We have a frame index at this point. 5623 SDV = 5624 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5625 /*IsIndirect*/ true, dl, SDNodeOrder); 5626 } else if (isa<Argument>(Address)) { 5627 // Address is an argument, so try to emit its dbg value using 5628 // virtual register info from the FuncInfo.ValueMap. 5629 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5630 return nullptr; 5631 } else { 5632 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5633 true, dl, SDNodeOrder); 5634 } 5635 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5636 } else { 5637 // If Address is an argument then try to emit its dbg value using 5638 // virtual register info from the FuncInfo.ValueMap. 5639 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5640 N)) { 5641 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5642 } 5643 } 5644 return nullptr; 5645 } 5646 case Intrinsic::dbg_label: { 5647 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5648 DILabel *Label = DI.getLabel(); 5649 assert(Label && "Missing label"); 5650 5651 SDDbgLabel *SDV; 5652 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5653 DAG.AddDbgLabel(SDV); 5654 return nullptr; 5655 } 5656 case Intrinsic::dbg_value: { 5657 const DbgValueInst &DI = cast<DbgValueInst>(I); 5658 assert(DI.getVariable() && "Missing variable"); 5659 5660 DILocalVariable *Variable = DI.getVariable(); 5661 DIExpression *Expression = DI.getExpression(); 5662 dropDanglingDebugInfo(Variable, Expression); 5663 const Value *V = DI.getValue(); 5664 if (!V) 5665 return nullptr; 5666 5667 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5668 SDNodeOrder)) 5669 return nullptr; 5670 5671 // TODO: Dangling debug info will eventually either be resolved or produce 5672 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5673 // between the original dbg.value location and its resolved DBG_VALUE, which 5674 // we should ideally fill with an extra Undef DBG_VALUE. 5675 5676 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5677 return nullptr; 5678 } 5679 5680 case Intrinsic::eh_typeid_for: { 5681 // Find the type id for the given typeinfo. 5682 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5683 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5684 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5685 setValue(&I, Res); 5686 return nullptr; 5687 } 5688 5689 case Intrinsic::eh_return_i32: 5690 case Intrinsic::eh_return_i64: 5691 DAG.getMachineFunction().setCallsEHReturn(true); 5692 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5693 MVT::Other, 5694 getControlRoot(), 5695 getValue(I.getArgOperand(0)), 5696 getValue(I.getArgOperand(1)))); 5697 return nullptr; 5698 case Intrinsic::eh_unwind_init: 5699 DAG.getMachineFunction().setCallsUnwindInit(true); 5700 return nullptr; 5701 case Intrinsic::eh_dwarf_cfa: 5702 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5703 TLI.getPointerTy(DAG.getDataLayout()), 5704 getValue(I.getArgOperand(0)))); 5705 return nullptr; 5706 case Intrinsic::eh_sjlj_callsite: { 5707 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5708 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5709 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5710 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5711 5712 MMI.setCurrentCallSite(CI->getZExtValue()); 5713 return nullptr; 5714 } 5715 case Intrinsic::eh_sjlj_functioncontext: { 5716 // Get and store the index of the function context. 5717 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5718 AllocaInst *FnCtx = 5719 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5720 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5721 MFI.setFunctionContextIndex(FI); 5722 return nullptr; 5723 } 5724 case Intrinsic::eh_sjlj_setjmp: { 5725 SDValue Ops[2]; 5726 Ops[0] = getRoot(); 5727 Ops[1] = getValue(I.getArgOperand(0)); 5728 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5729 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5730 setValue(&I, Op.getValue(0)); 5731 DAG.setRoot(Op.getValue(1)); 5732 return nullptr; 5733 } 5734 case Intrinsic::eh_sjlj_longjmp: 5735 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5736 getRoot(), getValue(I.getArgOperand(0)))); 5737 return nullptr; 5738 case Intrinsic::eh_sjlj_setup_dispatch: 5739 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5740 getRoot())); 5741 return nullptr; 5742 case Intrinsic::masked_gather: 5743 visitMaskedGather(I); 5744 return nullptr; 5745 case Intrinsic::masked_load: 5746 visitMaskedLoad(I); 5747 return nullptr; 5748 case Intrinsic::masked_scatter: 5749 visitMaskedScatter(I); 5750 return nullptr; 5751 case Intrinsic::masked_store: 5752 visitMaskedStore(I); 5753 return nullptr; 5754 case Intrinsic::masked_expandload: 5755 visitMaskedLoad(I, true /* IsExpanding */); 5756 return nullptr; 5757 case Intrinsic::masked_compressstore: 5758 visitMaskedStore(I, true /* IsCompressing */); 5759 return nullptr; 5760 case Intrinsic::x86_mmx_pslli_w: 5761 case Intrinsic::x86_mmx_pslli_d: 5762 case Intrinsic::x86_mmx_pslli_q: 5763 case Intrinsic::x86_mmx_psrli_w: 5764 case Intrinsic::x86_mmx_psrli_d: 5765 case Intrinsic::x86_mmx_psrli_q: 5766 case Intrinsic::x86_mmx_psrai_w: 5767 case Intrinsic::x86_mmx_psrai_d: { 5768 SDValue ShAmt = getValue(I.getArgOperand(1)); 5769 if (isa<ConstantSDNode>(ShAmt)) { 5770 visitTargetIntrinsic(I, Intrinsic); 5771 return nullptr; 5772 } 5773 unsigned NewIntrinsic = 0; 5774 EVT ShAmtVT = MVT::v2i32; 5775 switch (Intrinsic) { 5776 case Intrinsic::x86_mmx_pslli_w: 5777 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5778 break; 5779 case Intrinsic::x86_mmx_pslli_d: 5780 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5781 break; 5782 case Intrinsic::x86_mmx_pslli_q: 5783 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5784 break; 5785 case Intrinsic::x86_mmx_psrli_w: 5786 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5787 break; 5788 case Intrinsic::x86_mmx_psrli_d: 5789 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5790 break; 5791 case Intrinsic::x86_mmx_psrli_q: 5792 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5793 break; 5794 case Intrinsic::x86_mmx_psrai_w: 5795 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5796 break; 5797 case Intrinsic::x86_mmx_psrai_d: 5798 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5799 break; 5800 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5801 } 5802 5803 // The vector shift intrinsics with scalars uses 32b shift amounts but 5804 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5805 // to be zero. 5806 // We must do this early because v2i32 is not a legal type. 5807 SDValue ShOps[2]; 5808 ShOps[0] = ShAmt; 5809 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5810 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5811 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5812 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5813 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5814 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5815 getValue(I.getArgOperand(0)), ShAmt); 5816 setValue(&I, Res); 5817 return nullptr; 5818 } 5819 case Intrinsic::powi: 5820 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5821 getValue(I.getArgOperand(1)), DAG)); 5822 return nullptr; 5823 case Intrinsic::log: 5824 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5825 return nullptr; 5826 case Intrinsic::log2: 5827 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5828 return nullptr; 5829 case Intrinsic::log10: 5830 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5831 return nullptr; 5832 case Intrinsic::exp: 5833 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5834 return nullptr; 5835 case Intrinsic::exp2: 5836 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5837 return nullptr; 5838 case Intrinsic::pow: 5839 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5840 getValue(I.getArgOperand(1)), DAG, TLI)); 5841 return nullptr; 5842 case Intrinsic::sqrt: 5843 case Intrinsic::fabs: 5844 case Intrinsic::sin: 5845 case Intrinsic::cos: 5846 case Intrinsic::floor: 5847 case Intrinsic::ceil: 5848 case Intrinsic::trunc: 5849 case Intrinsic::rint: 5850 case Intrinsic::nearbyint: 5851 case Intrinsic::round: 5852 case Intrinsic::canonicalize: { 5853 unsigned Opcode; 5854 switch (Intrinsic) { 5855 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5856 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5857 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5858 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5859 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5860 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5861 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5862 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5863 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5864 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5865 case Intrinsic::round: Opcode = ISD::FROUND; break; 5866 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5867 } 5868 5869 setValue(&I, DAG.getNode(Opcode, sdl, 5870 getValue(I.getArgOperand(0)).getValueType(), 5871 getValue(I.getArgOperand(0)))); 5872 return nullptr; 5873 } 5874 case Intrinsic::minnum: { 5875 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5876 unsigned Opc = 5877 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 5878 ? ISD::FMINIMUM 5879 : ISD::FMINNUM; 5880 setValue(&I, DAG.getNode(Opc, sdl, VT, 5881 getValue(I.getArgOperand(0)), 5882 getValue(I.getArgOperand(1)))); 5883 return nullptr; 5884 } 5885 case Intrinsic::maxnum: { 5886 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5887 unsigned Opc = 5888 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 5889 ? ISD::FMAXIMUM 5890 : ISD::FMAXNUM; 5891 setValue(&I, DAG.getNode(Opc, sdl, VT, 5892 getValue(I.getArgOperand(0)), 5893 getValue(I.getArgOperand(1)))); 5894 return nullptr; 5895 } 5896 case Intrinsic::minimum: 5897 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 5898 getValue(I.getArgOperand(0)).getValueType(), 5899 getValue(I.getArgOperand(0)), 5900 getValue(I.getArgOperand(1)))); 5901 return nullptr; 5902 case Intrinsic::maximum: 5903 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 5904 getValue(I.getArgOperand(0)).getValueType(), 5905 getValue(I.getArgOperand(0)), 5906 getValue(I.getArgOperand(1)))); 5907 return nullptr; 5908 case Intrinsic::copysign: 5909 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5910 getValue(I.getArgOperand(0)).getValueType(), 5911 getValue(I.getArgOperand(0)), 5912 getValue(I.getArgOperand(1)))); 5913 return nullptr; 5914 case Intrinsic::fma: 5915 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5916 getValue(I.getArgOperand(0)).getValueType(), 5917 getValue(I.getArgOperand(0)), 5918 getValue(I.getArgOperand(1)), 5919 getValue(I.getArgOperand(2)))); 5920 return nullptr; 5921 case Intrinsic::experimental_constrained_fadd: 5922 case Intrinsic::experimental_constrained_fsub: 5923 case Intrinsic::experimental_constrained_fmul: 5924 case Intrinsic::experimental_constrained_fdiv: 5925 case Intrinsic::experimental_constrained_frem: 5926 case Intrinsic::experimental_constrained_fma: 5927 case Intrinsic::experimental_constrained_sqrt: 5928 case Intrinsic::experimental_constrained_pow: 5929 case Intrinsic::experimental_constrained_powi: 5930 case Intrinsic::experimental_constrained_sin: 5931 case Intrinsic::experimental_constrained_cos: 5932 case Intrinsic::experimental_constrained_exp: 5933 case Intrinsic::experimental_constrained_exp2: 5934 case Intrinsic::experimental_constrained_log: 5935 case Intrinsic::experimental_constrained_log10: 5936 case Intrinsic::experimental_constrained_log2: 5937 case Intrinsic::experimental_constrained_rint: 5938 case Intrinsic::experimental_constrained_nearbyint: 5939 case Intrinsic::experimental_constrained_maxnum: 5940 case Intrinsic::experimental_constrained_minnum: 5941 case Intrinsic::experimental_constrained_ceil: 5942 case Intrinsic::experimental_constrained_floor: 5943 case Intrinsic::experimental_constrained_round: 5944 case Intrinsic::experimental_constrained_trunc: 5945 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5946 return nullptr; 5947 case Intrinsic::fmuladd: { 5948 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5949 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5950 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5951 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5952 getValue(I.getArgOperand(0)).getValueType(), 5953 getValue(I.getArgOperand(0)), 5954 getValue(I.getArgOperand(1)), 5955 getValue(I.getArgOperand(2)))); 5956 } else { 5957 // TODO: Intrinsic calls should have fast-math-flags. 5958 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5959 getValue(I.getArgOperand(0)).getValueType(), 5960 getValue(I.getArgOperand(0)), 5961 getValue(I.getArgOperand(1))); 5962 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5963 getValue(I.getArgOperand(0)).getValueType(), 5964 Mul, 5965 getValue(I.getArgOperand(2))); 5966 setValue(&I, Add); 5967 } 5968 return nullptr; 5969 } 5970 case Intrinsic::convert_to_fp16: 5971 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5972 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5973 getValue(I.getArgOperand(0)), 5974 DAG.getTargetConstant(0, sdl, 5975 MVT::i32)))); 5976 return nullptr; 5977 case Intrinsic::convert_from_fp16: 5978 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5979 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5980 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5981 getValue(I.getArgOperand(0))))); 5982 return nullptr; 5983 case Intrinsic::pcmarker: { 5984 SDValue Tmp = getValue(I.getArgOperand(0)); 5985 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5986 return nullptr; 5987 } 5988 case Intrinsic::readcyclecounter: { 5989 SDValue Op = getRoot(); 5990 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5991 DAG.getVTList(MVT::i64, MVT::Other), Op); 5992 setValue(&I, Res); 5993 DAG.setRoot(Res.getValue(1)); 5994 return nullptr; 5995 } 5996 case Intrinsic::bitreverse: 5997 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5998 getValue(I.getArgOperand(0)).getValueType(), 5999 getValue(I.getArgOperand(0)))); 6000 return nullptr; 6001 case Intrinsic::bswap: 6002 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6003 getValue(I.getArgOperand(0)).getValueType(), 6004 getValue(I.getArgOperand(0)))); 6005 return nullptr; 6006 case Intrinsic::cttz: { 6007 SDValue Arg = getValue(I.getArgOperand(0)); 6008 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6009 EVT Ty = Arg.getValueType(); 6010 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6011 sdl, Ty, Arg)); 6012 return nullptr; 6013 } 6014 case Intrinsic::ctlz: { 6015 SDValue Arg = getValue(I.getArgOperand(0)); 6016 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6017 EVT Ty = Arg.getValueType(); 6018 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6019 sdl, Ty, Arg)); 6020 return nullptr; 6021 } 6022 case Intrinsic::ctpop: { 6023 SDValue Arg = getValue(I.getArgOperand(0)); 6024 EVT Ty = Arg.getValueType(); 6025 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6026 return nullptr; 6027 } 6028 case Intrinsic::fshl: 6029 case Intrinsic::fshr: { 6030 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6031 SDValue X = getValue(I.getArgOperand(0)); 6032 SDValue Y = getValue(I.getArgOperand(1)); 6033 SDValue Z = getValue(I.getArgOperand(2)); 6034 EVT VT = X.getValueType(); 6035 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6036 SDValue Zero = DAG.getConstant(0, sdl, VT); 6037 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6038 6039 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6040 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6041 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6042 return nullptr; 6043 } 6044 6045 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6046 // avoid the select that is necessary in the general case to filter out 6047 // the 0-shift possibility that leads to UB. 6048 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6049 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6050 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6051 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6052 return nullptr; 6053 } 6054 6055 // Some targets only rotate one way. Try the opposite direction. 6056 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6057 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6058 // Negate the shift amount because it is safe to ignore the high bits. 6059 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6060 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6061 return nullptr; 6062 } 6063 6064 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6065 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6066 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6067 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6068 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6069 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6070 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6071 return nullptr; 6072 } 6073 6074 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6075 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6076 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6077 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6078 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6079 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6080 6081 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6082 // and that is undefined. We must compare and select to avoid UB. 6083 EVT CCVT = MVT::i1; 6084 if (VT.isVector()) 6085 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6086 6087 // For fshl, 0-shift returns the 1st arg (X). 6088 // For fshr, 0-shift returns the 2nd arg (Y). 6089 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6090 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6091 return nullptr; 6092 } 6093 case Intrinsic::sadd_sat: { 6094 SDValue Op1 = getValue(I.getArgOperand(0)); 6095 SDValue Op2 = getValue(I.getArgOperand(1)); 6096 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6097 return nullptr; 6098 } 6099 case Intrinsic::uadd_sat: { 6100 SDValue Op1 = getValue(I.getArgOperand(0)); 6101 SDValue Op2 = getValue(I.getArgOperand(1)); 6102 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6103 return nullptr; 6104 } 6105 case Intrinsic::ssub_sat: { 6106 SDValue Op1 = getValue(I.getArgOperand(0)); 6107 SDValue Op2 = getValue(I.getArgOperand(1)); 6108 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6109 return nullptr; 6110 } 6111 case Intrinsic::usub_sat: { 6112 SDValue Op1 = getValue(I.getArgOperand(0)); 6113 SDValue Op2 = getValue(I.getArgOperand(1)); 6114 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6115 return nullptr; 6116 } 6117 case Intrinsic::smul_fix: 6118 case Intrinsic::umul_fix: { 6119 SDValue Op1 = getValue(I.getArgOperand(0)); 6120 SDValue Op2 = getValue(I.getArgOperand(1)); 6121 SDValue Op3 = getValue(I.getArgOperand(2)); 6122 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6123 Op1.getValueType(), Op1, Op2, Op3)); 6124 return nullptr; 6125 } 6126 case Intrinsic::stacksave: { 6127 SDValue Op = getRoot(); 6128 Res = DAG.getNode( 6129 ISD::STACKSAVE, sdl, 6130 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6131 setValue(&I, Res); 6132 DAG.setRoot(Res.getValue(1)); 6133 return nullptr; 6134 } 6135 case Intrinsic::stackrestore: 6136 Res = getValue(I.getArgOperand(0)); 6137 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6138 return nullptr; 6139 case Intrinsic::get_dynamic_area_offset: { 6140 SDValue Op = getRoot(); 6141 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6142 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6143 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6144 // target. 6145 if (PtrTy != ResTy) 6146 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6147 " intrinsic!"); 6148 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6149 Op); 6150 DAG.setRoot(Op); 6151 setValue(&I, Res); 6152 return nullptr; 6153 } 6154 case Intrinsic::stackguard: { 6155 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6156 MachineFunction &MF = DAG.getMachineFunction(); 6157 const Module &M = *MF.getFunction().getParent(); 6158 SDValue Chain = getRoot(); 6159 if (TLI.useLoadStackGuardNode()) { 6160 Res = getLoadStackGuard(DAG, sdl, Chain); 6161 } else { 6162 const Value *Global = TLI.getSDagStackGuard(M); 6163 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6164 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6165 MachinePointerInfo(Global, 0), Align, 6166 MachineMemOperand::MOVolatile); 6167 } 6168 if (TLI.useStackGuardXorFP()) 6169 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6170 DAG.setRoot(Chain); 6171 setValue(&I, Res); 6172 return nullptr; 6173 } 6174 case Intrinsic::stackprotector: { 6175 // Emit code into the DAG to store the stack guard onto the stack. 6176 MachineFunction &MF = DAG.getMachineFunction(); 6177 MachineFrameInfo &MFI = MF.getFrameInfo(); 6178 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6179 SDValue Src, Chain = getRoot(); 6180 6181 if (TLI.useLoadStackGuardNode()) 6182 Src = getLoadStackGuard(DAG, sdl, Chain); 6183 else 6184 Src = getValue(I.getArgOperand(0)); // The guard's value. 6185 6186 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6187 6188 int FI = FuncInfo.StaticAllocaMap[Slot]; 6189 MFI.setStackProtectorIndex(FI); 6190 6191 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6192 6193 // Store the stack protector onto the stack. 6194 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6195 DAG.getMachineFunction(), FI), 6196 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6197 setValue(&I, Res); 6198 DAG.setRoot(Res); 6199 return nullptr; 6200 } 6201 case Intrinsic::objectsize: { 6202 // If we don't know by now, we're never going to know. 6203 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6204 6205 assert(CI && "Non-constant type in __builtin_object_size?"); 6206 6207 SDValue Arg = getValue(I.getCalledValue()); 6208 EVT Ty = Arg.getValueType(); 6209 6210 if (CI->isZero()) 6211 Res = DAG.getConstant(-1ULL, sdl, Ty); 6212 else 6213 Res = DAG.getConstant(0, sdl, Ty); 6214 6215 setValue(&I, Res); 6216 return nullptr; 6217 } 6218 6219 case Intrinsic::is_constant: 6220 // If this wasn't constant-folded away by now, then it's not a 6221 // constant. 6222 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6223 return nullptr; 6224 6225 case Intrinsic::annotation: 6226 case Intrinsic::ptr_annotation: 6227 case Intrinsic::launder_invariant_group: 6228 case Intrinsic::strip_invariant_group: 6229 // Drop the intrinsic, but forward the value 6230 setValue(&I, getValue(I.getOperand(0))); 6231 return nullptr; 6232 case Intrinsic::assume: 6233 case Intrinsic::var_annotation: 6234 case Intrinsic::sideeffect: 6235 // Discard annotate attributes, assumptions, and artificial side-effects. 6236 return nullptr; 6237 6238 case Intrinsic::codeview_annotation: { 6239 // Emit a label associated with this metadata. 6240 MachineFunction &MF = DAG.getMachineFunction(); 6241 MCSymbol *Label = 6242 MF.getMMI().getContext().createTempSymbol("annotation", true); 6243 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6244 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6245 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6246 DAG.setRoot(Res); 6247 return nullptr; 6248 } 6249 6250 case Intrinsic::init_trampoline: { 6251 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6252 6253 SDValue Ops[6]; 6254 Ops[0] = getRoot(); 6255 Ops[1] = getValue(I.getArgOperand(0)); 6256 Ops[2] = getValue(I.getArgOperand(1)); 6257 Ops[3] = getValue(I.getArgOperand(2)); 6258 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6259 Ops[5] = DAG.getSrcValue(F); 6260 6261 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6262 6263 DAG.setRoot(Res); 6264 return nullptr; 6265 } 6266 case Intrinsic::adjust_trampoline: 6267 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6268 TLI.getPointerTy(DAG.getDataLayout()), 6269 getValue(I.getArgOperand(0)))); 6270 return nullptr; 6271 case Intrinsic::gcroot: { 6272 assert(DAG.getMachineFunction().getFunction().hasGC() && 6273 "only valid in functions with gc specified, enforced by Verifier"); 6274 assert(GFI && "implied by previous"); 6275 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6276 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6277 6278 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6279 GFI->addStackRoot(FI->getIndex(), TypeMap); 6280 return nullptr; 6281 } 6282 case Intrinsic::gcread: 6283 case Intrinsic::gcwrite: 6284 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6285 case Intrinsic::flt_rounds: 6286 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6287 return nullptr; 6288 6289 case Intrinsic::expect: 6290 // Just replace __builtin_expect(exp, c) with EXP. 6291 setValue(&I, getValue(I.getArgOperand(0))); 6292 return nullptr; 6293 6294 case Intrinsic::debugtrap: 6295 case Intrinsic::trap: { 6296 StringRef TrapFuncName = 6297 I.getAttributes() 6298 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6299 .getValueAsString(); 6300 if (TrapFuncName.empty()) { 6301 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6302 ISD::TRAP : ISD::DEBUGTRAP; 6303 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6304 return nullptr; 6305 } 6306 TargetLowering::ArgListTy Args; 6307 6308 TargetLowering::CallLoweringInfo CLI(DAG); 6309 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6310 CallingConv::C, I.getType(), 6311 DAG.getExternalSymbol(TrapFuncName.data(), 6312 TLI.getPointerTy(DAG.getDataLayout())), 6313 std::move(Args)); 6314 6315 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6316 DAG.setRoot(Result.second); 6317 return nullptr; 6318 } 6319 6320 case Intrinsic::uadd_with_overflow: 6321 case Intrinsic::sadd_with_overflow: 6322 case Intrinsic::usub_with_overflow: 6323 case Intrinsic::ssub_with_overflow: 6324 case Intrinsic::umul_with_overflow: 6325 case Intrinsic::smul_with_overflow: { 6326 ISD::NodeType Op; 6327 switch (Intrinsic) { 6328 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6329 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6330 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6331 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6332 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6333 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6334 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6335 } 6336 SDValue Op1 = getValue(I.getArgOperand(0)); 6337 SDValue Op2 = getValue(I.getArgOperand(1)); 6338 6339 EVT ResultVT = Op1.getValueType(); 6340 EVT OverflowVT = MVT::i1; 6341 if (ResultVT.isVector()) 6342 OverflowVT = EVT::getVectorVT( 6343 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6344 6345 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6346 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6347 return nullptr; 6348 } 6349 case Intrinsic::prefetch: { 6350 SDValue Ops[5]; 6351 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6352 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6353 Ops[0] = DAG.getRoot(); 6354 Ops[1] = getValue(I.getArgOperand(0)); 6355 Ops[2] = getValue(I.getArgOperand(1)); 6356 Ops[3] = getValue(I.getArgOperand(2)); 6357 Ops[4] = getValue(I.getArgOperand(3)); 6358 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6359 DAG.getVTList(MVT::Other), Ops, 6360 EVT::getIntegerVT(*Context, 8), 6361 MachinePointerInfo(I.getArgOperand(0)), 6362 0, /* align */ 6363 Flags); 6364 6365 // Chain the prefetch in parallell with any pending loads, to stay out of 6366 // the way of later optimizations. 6367 PendingLoads.push_back(Result); 6368 Result = getRoot(); 6369 DAG.setRoot(Result); 6370 return nullptr; 6371 } 6372 case Intrinsic::lifetime_start: 6373 case Intrinsic::lifetime_end: { 6374 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6375 // Stack coloring is not enabled in O0, discard region information. 6376 if (TM.getOptLevel() == CodeGenOpt::None) 6377 return nullptr; 6378 6379 const int64_t ObjectSize = 6380 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6381 Value *const ObjectPtr = I.getArgOperand(1); 6382 SmallVector<Value *, 4> Allocas; 6383 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6384 6385 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6386 E = Allocas.end(); Object != E; ++Object) { 6387 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6388 6389 // Could not find an Alloca. 6390 if (!LifetimeObject) 6391 continue; 6392 6393 // First check that the Alloca is static, otherwise it won't have a 6394 // valid frame index. 6395 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6396 if (SI == FuncInfo.StaticAllocaMap.end()) 6397 return nullptr; 6398 6399 const int FrameIndex = SI->second; 6400 int64_t Offset; 6401 if (GetPointerBaseWithConstantOffset( 6402 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6403 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6404 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6405 Offset); 6406 DAG.setRoot(Res); 6407 } 6408 return nullptr; 6409 } 6410 case Intrinsic::invariant_start: 6411 // Discard region information. 6412 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6413 return nullptr; 6414 case Intrinsic::invariant_end: 6415 // Discard region information. 6416 return nullptr; 6417 case Intrinsic::clear_cache: 6418 return TLI.getClearCacheBuiltinName(); 6419 case Intrinsic::donothing: 6420 // ignore 6421 return nullptr; 6422 case Intrinsic::experimental_stackmap: 6423 visitStackmap(I); 6424 return nullptr; 6425 case Intrinsic::experimental_patchpoint_void: 6426 case Intrinsic::experimental_patchpoint_i64: 6427 visitPatchpoint(&I); 6428 return nullptr; 6429 case Intrinsic::experimental_gc_statepoint: 6430 LowerStatepoint(ImmutableStatepoint(&I)); 6431 return nullptr; 6432 case Intrinsic::experimental_gc_result: 6433 visitGCResult(cast<GCResultInst>(I)); 6434 return nullptr; 6435 case Intrinsic::experimental_gc_relocate: 6436 visitGCRelocate(cast<GCRelocateInst>(I)); 6437 return nullptr; 6438 case Intrinsic::instrprof_increment: 6439 llvm_unreachable("instrprof failed to lower an increment"); 6440 case Intrinsic::instrprof_value_profile: 6441 llvm_unreachable("instrprof failed to lower a value profiling call"); 6442 case Intrinsic::localescape: { 6443 MachineFunction &MF = DAG.getMachineFunction(); 6444 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6445 6446 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6447 // is the same on all targets. 6448 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6449 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6450 if (isa<ConstantPointerNull>(Arg)) 6451 continue; // Skip null pointers. They represent a hole in index space. 6452 AllocaInst *Slot = cast<AllocaInst>(Arg); 6453 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6454 "can only escape static allocas"); 6455 int FI = FuncInfo.StaticAllocaMap[Slot]; 6456 MCSymbol *FrameAllocSym = 6457 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6458 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6459 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6460 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6461 .addSym(FrameAllocSym) 6462 .addFrameIndex(FI); 6463 } 6464 6465 return nullptr; 6466 } 6467 6468 case Intrinsic::localrecover: { 6469 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6470 MachineFunction &MF = DAG.getMachineFunction(); 6471 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6472 6473 // Get the symbol that defines the frame offset. 6474 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6475 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6476 unsigned IdxVal = 6477 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6478 MCSymbol *FrameAllocSym = 6479 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6480 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6481 6482 // Create a MCSymbol for the label to avoid any target lowering 6483 // that would make this PC relative. 6484 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6485 SDValue OffsetVal = 6486 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6487 6488 // Add the offset to the FP. 6489 Value *FP = I.getArgOperand(1); 6490 SDValue FPVal = getValue(FP); 6491 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6492 setValue(&I, Add); 6493 6494 return nullptr; 6495 } 6496 6497 case Intrinsic::eh_exceptionpointer: 6498 case Intrinsic::eh_exceptioncode: { 6499 // Get the exception pointer vreg, copy from it, and resize it to fit. 6500 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6501 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6502 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6503 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6504 SDValue N = 6505 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6506 if (Intrinsic == Intrinsic::eh_exceptioncode) 6507 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6508 setValue(&I, N); 6509 return nullptr; 6510 } 6511 case Intrinsic::xray_customevent: { 6512 // Here we want to make sure that the intrinsic behaves as if it has a 6513 // specific calling convention, and only for x86_64. 6514 // FIXME: Support other platforms later. 6515 const auto &Triple = DAG.getTarget().getTargetTriple(); 6516 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6517 return nullptr; 6518 6519 SDLoc DL = getCurSDLoc(); 6520 SmallVector<SDValue, 8> Ops; 6521 6522 // We want to say that we always want the arguments in registers. 6523 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6524 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6525 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6526 SDValue Chain = getRoot(); 6527 Ops.push_back(LogEntryVal); 6528 Ops.push_back(StrSizeVal); 6529 Ops.push_back(Chain); 6530 6531 // We need to enforce the calling convention for the callsite, so that 6532 // argument ordering is enforced correctly, and that register allocation can 6533 // see that some registers may be assumed clobbered and have to preserve 6534 // them across calls to the intrinsic. 6535 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6536 DL, NodeTys, Ops); 6537 SDValue patchableNode = SDValue(MN, 0); 6538 DAG.setRoot(patchableNode); 6539 setValue(&I, patchableNode); 6540 return nullptr; 6541 } 6542 case Intrinsic::xray_typedevent: { 6543 // Here we want to make sure that the intrinsic behaves as if it has a 6544 // specific calling convention, and only for x86_64. 6545 // FIXME: Support other platforms later. 6546 const auto &Triple = DAG.getTarget().getTargetTriple(); 6547 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6548 return nullptr; 6549 6550 SDLoc DL = getCurSDLoc(); 6551 SmallVector<SDValue, 8> Ops; 6552 6553 // We want to say that we always want the arguments in registers. 6554 // It's unclear to me how manipulating the selection DAG here forces callers 6555 // to provide arguments in registers instead of on the stack. 6556 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6557 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6558 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6559 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6560 SDValue Chain = getRoot(); 6561 Ops.push_back(LogTypeId); 6562 Ops.push_back(LogEntryVal); 6563 Ops.push_back(StrSizeVal); 6564 Ops.push_back(Chain); 6565 6566 // We need to enforce the calling convention for the callsite, so that 6567 // argument ordering is enforced correctly, and that register allocation can 6568 // see that some registers may be assumed clobbered and have to preserve 6569 // them across calls to the intrinsic. 6570 MachineSDNode *MN = DAG.getMachineNode( 6571 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6572 SDValue patchableNode = SDValue(MN, 0); 6573 DAG.setRoot(patchableNode); 6574 setValue(&I, patchableNode); 6575 return nullptr; 6576 } 6577 case Intrinsic::experimental_deoptimize: 6578 LowerDeoptimizeCall(&I); 6579 return nullptr; 6580 6581 case Intrinsic::experimental_vector_reduce_fadd: 6582 case Intrinsic::experimental_vector_reduce_fmul: 6583 case Intrinsic::experimental_vector_reduce_add: 6584 case Intrinsic::experimental_vector_reduce_mul: 6585 case Intrinsic::experimental_vector_reduce_and: 6586 case Intrinsic::experimental_vector_reduce_or: 6587 case Intrinsic::experimental_vector_reduce_xor: 6588 case Intrinsic::experimental_vector_reduce_smax: 6589 case Intrinsic::experimental_vector_reduce_smin: 6590 case Intrinsic::experimental_vector_reduce_umax: 6591 case Intrinsic::experimental_vector_reduce_umin: 6592 case Intrinsic::experimental_vector_reduce_fmax: 6593 case Intrinsic::experimental_vector_reduce_fmin: 6594 visitVectorReduce(I, Intrinsic); 6595 return nullptr; 6596 6597 case Intrinsic::icall_branch_funnel: { 6598 SmallVector<SDValue, 16> Ops; 6599 Ops.push_back(DAG.getRoot()); 6600 Ops.push_back(getValue(I.getArgOperand(0))); 6601 6602 int64_t Offset; 6603 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6604 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6605 if (!Base) 6606 report_fatal_error( 6607 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6608 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6609 6610 struct BranchFunnelTarget { 6611 int64_t Offset; 6612 SDValue Target; 6613 }; 6614 SmallVector<BranchFunnelTarget, 8> Targets; 6615 6616 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6617 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6618 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6619 if (ElemBase != Base) 6620 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6621 "to the same GlobalValue"); 6622 6623 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6624 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6625 if (!GA) 6626 report_fatal_error( 6627 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6628 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6629 GA->getGlobal(), getCurSDLoc(), 6630 Val.getValueType(), GA->getOffset())}); 6631 } 6632 llvm::sort(Targets, 6633 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6634 return T1.Offset < T2.Offset; 6635 }); 6636 6637 for (auto &T : Targets) { 6638 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6639 Ops.push_back(T.Target); 6640 } 6641 6642 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6643 getCurSDLoc(), MVT::Other, Ops), 6644 0); 6645 DAG.setRoot(N); 6646 setValue(&I, N); 6647 HasTailCall = true; 6648 return nullptr; 6649 } 6650 6651 case Intrinsic::wasm_landingpad_index: 6652 // Information this intrinsic contained has been transferred to 6653 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6654 // delete it now. 6655 return nullptr; 6656 } 6657 } 6658 6659 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6660 const ConstrainedFPIntrinsic &FPI) { 6661 SDLoc sdl = getCurSDLoc(); 6662 unsigned Opcode; 6663 switch (FPI.getIntrinsicID()) { 6664 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6665 case Intrinsic::experimental_constrained_fadd: 6666 Opcode = ISD::STRICT_FADD; 6667 break; 6668 case Intrinsic::experimental_constrained_fsub: 6669 Opcode = ISD::STRICT_FSUB; 6670 break; 6671 case Intrinsic::experimental_constrained_fmul: 6672 Opcode = ISD::STRICT_FMUL; 6673 break; 6674 case Intrinsic::experimental_constrained_fdiv: 6675 Opcode = ISD::STRICT_FDIV; 6676 break; 6677 case Intrinsic::experimental_constrained_frem: 6678 Opcode = ISD::STRICT_FREM; 6679 break; 6680 case Intrinsic::experimental_constrained_fma: 6681 Opcode = ISD::STRICT_FMA; 6682 break; 6683 case Intrinsic::experimental_constrained_sqrt: 6684 Opcode = ISD::STRICT_FSQRT; 6685 break; 6686 case Intrinsic::experimental_constrained_pow: 6687 Opcode = ISD::STRICT_FPOW; 6688 break; 6689 case Intrinsic::experimental_constrained_powi: 6690 Opcode = ISD::STRICT_FPOWI; 6691 break; 6692 case Intrinsic::experimental_constrained_sin: 6693 Opcode = ISD::STRICT_FSIN; 6694 break; 6695 case Intrinsic::experimental_constrained_cos: 6696 Opcode = ISD::STRICT_FCOS; 6697 break; 6698 case Intrinsic::experimental_constrained_exp: 6699 Opcode = ISD::STRICT_FEXP; 6700 break; 6701 case Intrinsic::experimental_constrained_exp2: 6702 Opcode = ISD::STRICT_FEXP2; 6703 break; 6704 case Intrinsic::experimental_constrained_log: 6705 Opcode = ISD::STRICT_FLOG; 6706 break; 6707 case Intrinsic::experimental_constrained_log10: 6708 Opcode = ISD::STRICT_FLOG10; 6709 break; 6710 case Intrinsic::experimental_constrained_log2: 6711 Opcode = ISD::STRICT_FLOG2; 6712 break; 6713 case Intrinsic::experimental_constrained_rint: 6714 Opcode = ISD::STRICT_FRINT; 6715 break; 6716 case Intrinsic::experimental_constrained_nearbyint: 6717 Opcode = ISD::STRICT_FNEARBYINT; 6718 break; 6719 case Intrinsic::experimental_constrained_maxnum: 6720 Opcode = ISD::STRICT_FMAXNUM; 6721 break; 6722 case Intrinsic::experimental_constrained_minnum: 6723 Opcode = ISD::STRICT_FMINNUM; 6724 break; 6725 case Intrinsic::experimental_constrained_ceil: 6726 Opcode = ISD::STRICT_FCEIL; 6727 break; 6728 case Intrinsic::experimental_constrained_floor: 6729 Opcode = ISD::STRICT_FFLOOR; 6730 break; 6731 case Intrinsic::experimental_constrained_round: 6732 Opcode = ISD::STRICT_FROUND; 6733 break; 6734 case Intrinsic::experimental_constrained_trunc: 6735 Opcode = ISD::STRICT_FTRUNC; 6736 break; 6737 } 6738 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6739 SDValue Chain = getRoot(); 6740 SmallVector<EVT, 4> ValueVTs; 6741 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6742 ValueVTs.push_back(MVT::Other); // Out chain 6743 6744 SDVTList VTs = DAG.getVTList(ValueVTs); 6745 SDValue Result; 6746 if (FPI.isUnaryOp()) 6747 Result = DAG.getNode(Opcode, sdl, VTs, 6748 { Chain, getValue(FPI.getArgOperand(0)) }); 6749 else if (FPI.isTernaryOp()) 6750 Result = DAG.getNode(Opcode, sdl, VTs, 6751 { Chain, getValue(FPI.getArgOperand(0)), 6752 getValue(FPI.getArgOperand(1)), 6753 getValue(FPI.getArgOperand(2)) }); 6754 else 6755 Result = DAG.getNode(Opcode, sdl, VTs, 6756 { Chain, getValue(FPI.getArgOperand(0)), 6757 getValue(FPI.getArgOperand(1)) }); 6758 6759 assert(Result.getNode()->getNumValues() == 2); 6760 SDValue OutChain = Result.getValue(1); 6761 DAG.setRoot(OutChain); 6762 SDValue FPResult = Result.getValue(0); 6763 setValue(&FPI, FPResult); 6764 } 6765 6766 std::pair<SDValue, SDValue> 6767 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6768 const BasicBlock *EHPadBB) { 6769 MachineFunction &MF = DAG.getMachineFunction(); 6770 MachineModuleInfo &MMI = MF.getMMI(); 6771 MCSymbol *BeginLabel = nullptr; 6772 6773 if (EHPadBB) { 6774 // Insert a label before the invoke call to mark the try range. This can be 6775 // used to detect deletion of the invoke via the MachineModuleInfo. 6776 BeginLabel = MMI.getContext().createTempSymbol(); 6777 6778 // For SjLj, keep track of which landing pads go with which invokes 6779 // so as to maintain the ordering of pads in the LSDA. 6780 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6781 if (CallSiteIndex) { 6782 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6783 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6784 6785 // Now that the call site is handled, stop tracking it. 6786 MMI.setCurrentCallSite(0); 6787 } 6788 6789 // Both PendingLoads and PendingExports must be flushed here; 6790 // this call might not return. 6791 (void)getRoot(); 6792 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6793 6794 CLI.setChain(getRoot()); 6795 } 6796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6797 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6798 6799 assert((CLI.IsTailCall || Result.second.getNode()) && 6800 "Non-null chain expected with non-tail call!"); 6801 assert((Result.second.getNode() || !Result.first.getNode()) && 6802 "Null value expected with tail call!"); 6803 6804 if (!Result.second.getNode()) { 6805 // As a special case, a null chain means that a tail call has been emitted 6806 // and the DAG root is already updated. 6807 HasTailCall = true; 6808 6809 // Since there's no actual continuation from this block, nothing can be 6810 // relying on us setting vregs for them. 6811 PendingExports.clear(); 6812 } else { 6813 DAG.setRoot(Result.second); 6814 } 6815 6816 if (EHPadBB) { 6817 // Insert a label at the end of the invoke call to mark the try range. This 6818 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6819 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6820 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6821 6822 // Inform MachineModuleInfo of range. 6823 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6824 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6825 // actually use outlined funclets and their LSDA info style. 6826 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6827 assert(CLI.CS); 6828 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6829 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6830 BeginLabel, EndLabel); 6831 } else if (!isScopedEHPersonality(Pers)) { 6832 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6833 } 6834 } 6835 6836 return Result; 6837 } 6838 6839 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6840 bool isTailCall, 6841 const BasicBlock *EHPadBB) { 6842 auto &DL = DAG.getDataLayout(); 6843 FunctionType *FTy = CS.getFunctionType(); 6844 Type *RetTy = CS.getType(); 6845 6846 TargetLowering::ArgListTy Args; 6847 Args.reserve(CS.arg_size()); 6848 6849 const Value *SwiftErrorVal = nullptr; 6850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6851 6852 // We can't tail call inside a function with a swifterror argument. Lowering 6853 // does not support this yet. It would have to move into the swifterror 6854 // register before the call. 6855 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6856 if (TLI.supportSwiftError() && 6857 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6858 isTailCall = false; 6859 6860 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6861 i != e; ++i) { 6862 TargetLowering::ArgListEntry Entry; 6863 const Value *V = *i; 6864 6865 // Skip empty types 6866 if (V->getType()->isEmptyTy()) 6867 continue; 6868 6869 SDValue ArgNode = getValue(V); 6870 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6871 6872 Entry.setAttributes(&CS, i - CS.arg_begin()); 6873 6874 // Use swifterror virtual register as input to the call. 6875 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6876 SwiftErrorVal = V; 6877 // We find the virtual register for the actual swifterror argument. 6878 // Instead of using the Value, we use the virtual register instead. 6879 Entry.Node = DAG.getRegister(FuncInfo 6880 .getOrCreateSwiftErrorVRegUseAt( 6881 CS.getInstruction(), FuncInfo.MBB, V) 6882 .first, 6883 EVT(TLI.getPointerTy(DL))); 6884 } 6885 6886 Args.push_back(Entry); 6887 6888 // If we have an explicit sret argument that is an Instruction, (i.e., it 6889 // might point to function-local memory), we can't meaningfully tail-call. 6890 if (Entry.IsSRet && isa<Instruction>(V)) 6891 isTailCall = false; 6892 } 6893 6894 // Check if target-independent constraints permit a tail call here. 6895 // Target-dependent constraints are checked within TLI->LowerCallTo. 6896 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6897 isTailCall = false; 6898 6899 // Disable tail calls if there is an swifterror argument. Targets have not 6900 // been updated to support tail calls. 6901 if (TLI.supportSwiftError() && SwiftErrorVal) 6902 isTailCall = false; 6903 6904 TargetLowering::CallLoweringInfo CLI(DAG); 6905 CLI.setDebugLoc(getCurSDLoc()) 6906 .setChain(getRoot()) 6907 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6908 .setTailCall(isTailCall) 6909 .setConvergent(CS.isConvergent()); 6910 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6911 6912 if (Result.first.getNode()) { 6913 const Instruction *Inst = CS.getInstruction(); 6914 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6915 setValue(Inst, Result.first); 6916 } 6917 6918 // The last element of CLI.InVals has the SDValue for swifterror return. 6919 // Here we copy it to a virtual register and update SwiftErrorMap for 6920 // book-keeping. 6921 if (SwiftErrorVal && TLI.supportSwiftError()) { 6922 // Get the last element of InVals. 6923 SDValue Src = CLI.InVals.back(); 6924 unsigned VReg; bool CreatedVReg; 6925 std::tie(VReg, CreatedVReg) = 6926 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6927 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6928 // We update the virtual register for the actual swifterror argument. 6929 if (CreatedVReg) 6930 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6931 DAG.setRoot(CopyNode); 6932 } 6933 } 6934 6935 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6936 SelectionDAGBuilder &Builder) { 6937 // Check to see if this load can be trivially constant folded, e.g. if the 6938 // input is from a string literal. 6939 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6940 // Cast pointer to the type we really want to load. 6941 Type *LoadTy = 6942 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6943 if (LoadVT.isVector()) 6944 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6945 6946 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6947 PointerType::getUnqual(LoadTy)); 6948 6949 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6950 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6951 return Builder.getValue(LoadCst); 6952 } 6953 6954 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6955 // still constant memory, the input chain can be the entry node. 6956 SDValue Root; 6957 bool ConstantMemory = false; 6958 6959 // Do not serialize (non-volatile) loads of constant memory with anything. 6960 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6961 Root = Builder.DAG.getEntryNode(); 6962 ConstantMemory = true; 6963 } else { 6964 // Do not serialize non-volatile loads against each other. 6965 Root = Builder.DAG.getRoot(); 6966 } 6967 6968 SDValue Ptr = Builder.getValue(PtrVal); 6969 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6970 Ptr, MachinePointerInfo(PtrVal), 6971 /* Alignment = */ 1); 6972 6973 if (!ConstantMemory) 6974 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6975 return LoadVal; 6976 } 6977 6978 /// Record the value for an instruction that produces an integer result, 6979 /// converting the type where necessary. 6980 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6981 SDValue Value, 6982 bool IsSigned) { 6983 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6984 I.getType(), true); 6985 if (IsSigned) 6986 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6987 else 6988 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6989 setValue(&I, Value); 6990 } 6991 6992 /// See if we can lower a memcmp call into an optimized form. If so, return 6993 /// true and lower it. Otherwise return false, and it will be lowered like a 6994 /// normal call. 6995 /// The caller already checked that \p I calls the appropriate LibFunc with a 6996 /// correct prototype. 6997 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6998 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6999 const Value *Size = I.getArgOperand(2); 7000 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7001 if (CSize && CSize->getZExtValue() == 0) { 7002 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7003 I.getType(), true); 7004 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7005 return true; 7006 } 7007 7008 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7009 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7010 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7011 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7012 if (Res.first.getNode()) { 7013 processIntegerCallValue(I, Res.first, true); 7014 PendingLoads.push_back(Res.second); 7015 return true; 7016 } 7017 7018 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7019 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7020 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7021 return false; 7022 7023 // If the target has a fast compare for the given size, it will return a 7024 // preferred load type for that size. Require that the load VT is legal and 7025 // that the target supports unaligned loads of that type. Otherwise, return 7026 // INVALID. 7027 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7028 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7029 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7030 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7031 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7032 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7033 // TODO: Check alignment of src and dest ptrs. 7034 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7035 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7036 if (!TLI.isTypeLegal(LVT) || 7037 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7038 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7039 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7040 } 7041 7042 return LVT; 7043 }; 7044 7045 // This turns into unaligned loads. We only do this if the target natively 7046 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7047 // we'll only produce a small number of byte loads. 7048 MVT LoadVT; 7049 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7050 switch (NumBitsToCompare) { 7051 default: 7052 return false; 7053 case 16: 7054 LoadVT = MVT::i16; 7055 break; 7056 case 32: 7057 LoadVT = MVT::i32; 7058 break; 7059 case 64: 7060 case 128: 7061 case 256: 7062 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7063 break; 7064 } 7065 7066 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7067 return false; 7068 7069 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7070 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7071 7072 // Bitcast to a wide integer type if the loads are vectors. 7073 if (LoadVT.isVector()) { 7074 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7075 LoadL = DAG.getBitcast(CmpVT, LoadL); 7076 LoadR = DAG.getBitcast(CmpVT, LoadR); 7077 } 7078 7079 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7080 processIntegerCallValue(I, Cmp, false); 7081 return true; 7082 } 7083 7084 /// See if we can lower a memchr call into an optimized form. If so, return 7085 /// true and lower it. Otherwise return false, and it will be lowered like a 7086 /// normal call. 7087 /// The caller already checked that \p I calls the appropriate LibFunc with a 7088 /// correct prototype. 7089 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7090 const Value *Src = I.getArgOperand(0); 7091 const Value *Char = I.getArgOperand(1); 7092 const Value *Length = I.getArgOperand(2); 7093 7094 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7095 std::pair<SDValue, SDValue> Res = 7096 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7097 getValue(Src), getValue(Char), getValue(Length), 7098 MachinePointerInfo(Src)); 7099 if (Res.first.getNode()) { 7100 setValue(&I, Res.first); 7101 PendingLoads.push_back(Res.second); 7102 return true; 7103 } 7104 7105 return false; 7106 } 7107 7108 /// See if we can lower a mempcpy call into an optimized form. If so, return 7109 /// true and lower it. Otherwise return false, and it will be lowered like a 7110 /// normal call. 7111 /// The caller already checked that \p I calls the appropriate LibFunc with a 7112 /// correct prototype. 7113 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7114 SDValue Dst = getValue(I.getArgOperand(0)); 7115 SDValue Src = getValue(I.getArgOperand(1)); 7116 SDValue Size = getValue(I.getArgOperand(2)); 7117 7118 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7119 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7120 unsigned Align = std::min(DstAlign, SrcAlign); 7121 if (Align == 0) // Alignment of one or both could not be inferred. 7122 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7123 7124 bool isVol = false; 7125 SDLoc sdl = getCurSDLoc(); 7126 7127 // In the mempcpy context we need to pass in a false value for isTailCall 7128 // because the return pointer needs to be adjusted by the size of 7129 // the copied memory. 7130 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7131 false, /*isTailCall=*/false, 7132 MachinePointerInfo(I.getArgOperand(0)), 7133 MachinePointerInfo(I.getArgOperand(1))); 7134 assert(MC.getNode() != nullptr && 7135 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7136 DAG.setRoot(MC); 7137 7138 // Check if Size needs to be truncated or extended. 7139 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7140 7141 // Adjust return pointer to point just past the last dst byte. 7142 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7143 Dst, Size); 7144 setValue(&I, DstPlusSize); 7145 return true; 7146 } 7147 7148 /// See if we can lower a strcpy call into an optimized form. If so, return 7149 /// true and lower it, otherwise return false and it will be lowered like a 7150 /// normal call. 7151 /// The caller already checked that \p I calls the appropriate LibFunc with a 7152 /// correct prototype. 7153 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7154 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7155 7156 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7157 std::pair<SDValue, SDValue> Res = 7158 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7159 getValue(Arg0), getValue(Arg1), 7160 MachinePointerInfo(Arg0), 7161 MachinePointerInfo(Arg1), isStpcpy); 7162 if (Res.first.getNode()) { 7163 setValue(&I, Res.first); 7164 DAG.setRoot(Res.second); 7165 return true; 7166 } 7167 7168 return false; 7169 } 7170 7171 /// See if we can lower a strcmp call into an optimized form. If so, return 7172 /// true and lower it, otherwise return false and it will be lowered like a 7173 /// normal call. 7174 /// The caller already checked that \p I calls the appropriate LibFunc with a 7175 /// correct prototype. 7176 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7177 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7178 7179 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7180 std::pair<SDValue, SDValue> Res = 7181 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7182 getValue(Arg0), getValue(Arg1), 7183 MachinePointerInfo(Arg0), 7184 MachinePointerInfo(Arg1)); 7185 if (Res.first.getNode()) { 7186 processIntegerCallValue(I, Res.first, true); 7187 PendingLoads.push_back(Res.second); 7188 return true; 7189 } 7190 7191 return false; 7192 } 7193 7194 /// See if we can lower a strlen call into an optimized form. If so, return 7195 /// true and lower it, otherwise return false and it will be lowered like a 7196 /// normal call. 7197 /// The caller already checked that \p I calls the appropriate LibFunc with a 7198 /// correct prototype. 7199 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7200 const Value *Arg0 = I.getArgOperand(0); 7201 7202 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7203 std::pair<SDValue, SDValue> Res = 7204 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7205 getValue(Arg0), MachinePointerInfo(Arg0)); 7206 if (Res.first.getNode()) { 7207 processIntegerCallValue(I, Res.first, false); 7208 PendingLoads.push_back(Res.second); 7209 return true; 7210 } 7211 7212 return false; 7213 } 7214 7215 /// See if we can lower a strnlen call into an optimized form. If so, return 7216 /// true and lower it, otherwise return false and it will be lowered like a 7217 /// normal call. 7218 /// The caller already checked that \p I calls the appropriate LibFunc with a 7219 /// correct prototype. 7220 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7221 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7222 7223 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7224 std::pair<SDValue, SDValue> Res = 7225 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7226 getValue(Arg0), getValue(Arg1), 7227 MachinePointerInfo(Arg0)); 7228 if (Res.first.getNode()) { 7229 processIntegerCallValue(I, Res.first, false); 7230 PendingLoads.push_back(Res.second); 7231 return true; 7232 } 7233 7234 return false; 7235 } 7236 7237 /// See if we can lower a unary floating-point operation into an SDNode with 7238 /// the specified Opcode. If so, return true and lower it, otherwise return 7239 /// false and it will be lowered like a normal call. 7240 /// The caller already checked that \p I calls the appropriate LibFunc with a 7241 /// correct prototype. 7242 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7243 unsigned Opcode) { 7244 // We already checked this call's prototype; verify it doesn't modify errno. 7245 if (!I.onlyReadsMemory()) 7246 return false; 7247 7248 SDValue Tmp = getValue(I.getArgOperand(0)); 7249 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7250 return true; 7251 } 7252 7253 /// See if we can lower a binary floating-point operation into an SDNode with 7254 /// the specified Opcode. If so, return true and lower it. Otherwise return 7255 /// false, and it will be lowered like a normal call. 7256 /// The caller already checked that \p I calls the appropriate LibFunc with a 7257 /// correct prototype. 7258 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7259 unsigned Opcode) { 7260 // We already checked this call's prototype; verify it doesn't modify errno. 7261 if (!I.onlyReadsMemory()) 7262 return false; 7263 7264 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7265 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7266 EVT VT = Tmp0.getValueType(); 7267 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7268 return true; 7269 } 7270 7271 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7272 // Handle inline assembly differently. 7273 if (isa<InlineAsm>(I.getCalledValue())) { 7274 visitInlineAsm(&I); 7275 return; 7276 } 7277 7278 const char *RenameFn = nullptr; 7279 if (Function *F = I.getCalledFunction()) { 7280 if (F->isDeclaration()) { 7281 // Is this an LLVM intrinsic or a target-specific intrinsic? 7282 unsigned IID = F->getIntrinsicID(); 7283 if (!IID) 7284 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7285 IID = II->getIntrinsicID(F); 7286 7287 if (IID) { 7288 RenameFn = visitIntrinsicCall(I, IID); 7289 if (!RenameFn) 7290 return; 7291 } 7292 } 7293 7294 // Check for well-known libc/libm calls. If the function is internal, it 7295 // can't be a library call. Don't do the check if marked as nobuiltin for 7296 // some reason or the call site requires strict floating point semantics. 7297 LibFunc Func; 7298 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7299 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7300 LibInfo->hasOptimizedCodeGen(Func)) { 7301 switch (Func) { 7302 default: break; 7303 case LibFunc_copysign: 7304 case LibFunc_copysignf: 7305 case LibFunc_copysignl: 7306 // We already checked this call's prototype; verify it doesn't modify 7307 // errno. 7308 if (I.onlyReadsMemory()) { 7309 SDValue LHS = getValue(I.getArgOperand(0)); 7310 SDValue RHS = getValue(I.getArgOperand(1)); 7311 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7312 LHS.getValueType(), LHS, RHS)); 7313 return; 7314 } 7315 break; 7316 case LibFunc_fabs: 7317 case LibFunc_fabsf: 7318 case LibFunc_fabsl: 7319 if (visitUnaryFloatCall(I, ISD::FABS)) 7320 return; 7321 break; 7322 case LibFunc_fmin: 7323 case LibFunc_fminf: 7324 case LibFunc_fminl: 7325 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7326 return; 7327 break; 7328 case LibFunc_fmax: 7329 case LibFunc_fmaxf: 7330 case LibFunc_fmaxl: 7331 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7332 return; 7333 break; 7334 case LibFunc_sin: 7335 case LibFunc_sinf: 7336 case LibFunc_sinl: 7337 if (visitUnaryFloatCall(I, ISD::FSIN)) 7338 return; 7339 break; 7340 case LibFunc_cos: 7341 case LibFunc_cosf: 7342 case LibFunc_cosl: 7343 if (visitUnaryFloatCall(I, ISD::FCOS)) 7344 return; 7345 break; 7346 case LibFunc_sqrt: 7347 case LibFunc_sqrtf: 7348 case LibFunc_sqrtl: 7349 case LibFunc_sqrt_finite: 7350 case LibFunc_sqrtf_finite: 7351 case LibFunc_sqrtl_finite: 7352 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7353 return; 7354 break; 7355 case LibFunc_floor: 7356 case LibFunc_floorf: 7357 case LibFunc_floorl: 7358 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7359 return; 7360 break; 7361 case LibFunc_nearbyint: 7362 case LibFunc_nearbyintf: 7363 case LibFunc_nearbyintl: 7364 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7365 return; 7366 break; 7367 case LibFunc_ceil: 7368 case LibFunc_ceilf: 7369 case LibFunc_ceill: 7370 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7371 return; 7372 break; 7373 case LibFunc_rint: 7374 case LibFunc_rintf: 7375 case LibFunc_rintl: 7376 if (visitUnaryFloatCall(I, ISD::FRINT)) 7377 return; 7378 break; 7379 case LibFunc_round: 7380 case LibFunc_roundf: 7381 case LibFunc_roundl: 7382 if (visitUnaryFloatCall(I, ISD::FROUND)) 7383 return; 7384 break; 7385 case LibFunc_trunc: 7386 case LibFunc_truncf: 7387 case LibFunc_truncl: 7388 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7389 return; 7390 break; 7391 case LibFunc_log2: 7392 case LibFunc_log2f: 7393 case LibFunc_log2l: 7394 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7395 return; 7396 break; 7397 case LibFunc_exp2: 7398 case LibFunc_exp2f: 7399 case LibFunc_exp2l: 7400 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7401 return; 7402 break; 7403 case LibFunc_memcmp: 7404 if (visitMemCmpCall(I)) 7405 return; 7406 break; 7407 case LibFunc_mempcpy: 7408 if (visitMemPCpyCall(I)) 7409 return; 7410 break; 7411 case LibFunc_memchr: 7412 if (visitMemChrCall(I)) 7413 return; 7414 break; 7415 case LibFunc_strcpy: 7416 if (visitStrCpyCall(I, false)) 7417 return; 7418 break; 7419 case LibFunc_stpcpy: 7420 if (visitStrCpyCall(I, true)) 7421 return; 7422 break; 7423 case LibFunc_strcmp: 7424 if (visitStrCmpCall(I)) 7425 return; 7426 break; 7427 case LibFunc_strlen: 7428 if (visitStrLenCall(I)) 7429 return; 7430 break; 7431 case LibFunc_strnlen: 7432 if (visitStrNLenCall(I)) 7433 return; 7434 break; 7435 } 7436 } 7437 } 7438 7439 SDValue Callee; 7440 if (!RenameFn) 7441 Callee = getValue(I.getCalledValue()); 7442 else 7443 Callee = DAG.getExternalSymbol( 7444 RenameFn, 7445 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7446 7447 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7448 // have to do anything here to lower funclet bundles. 7449 assert(!I.hasOperandBundlesOtherThan( 7450 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7451 "Cannot lower calls with arbitrary operand bundles!"); 7452 7453 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7454 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7455 else 7456 // Check if we can potentially perform a tail call. More detailed checking 7457 // is be done within LowerCallTo, after more information about the call is 7458 // known. 7459 LowerCallTo(&I, Callee, I.isTailCall()); 7460 } 7461 7462 namespace { 7463 7464 /// AsmOperandInfo - This contains information for each constraint that we are 7465 /// lowering. 7466 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7467 public: 7468 /// CallOperand - If this is the result output operand or a clobber 7469 /// this is null, otherwise it is the incoming operand to the CallInst. 7470 /// This gets modified as the asm is processed. 7471 SDValue CallOperand; 7472 7473 /// AssignedRegs - If this is a register or register class operand, this 7474 /// contains the set of register corresponding to the operand. 7475 RegsForValue AssignedRegs; 7476 7477 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7478 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7479 } 7480 7481 /// Whether or not this operand accesses memory 7482 bool hasMemory(const TargetLowering &TLI) const { 7483 // Indirect operand accesses access memory. 7484 if (isIndirect) 7485 return true; 7486 7487 for (const auto &Code : Codes) 7488 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7489 return true; 7490 7491 return false; 7492 } 7493 7494 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7495 /// corresponds to. If there is no Value* for this operand, it returns 7496 /// MVT::Other. 7497 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7498 const DataLayout &DL) const { 7499 if (!CallOperandVal) return MVT::Other; 7500 7501 if (isa<BasicBlock>(CallOperandVal)) 7502 return TLI.getPointerTy(DL); 7503 7504 llvm::Type *OpTy = CallOperandVal->getType(); 7505 7506 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7507 // If this is an indirect operand, the operand is a pointer to the 7508 // accessed type. 7509 if (isIndirect) { 7510 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7511 if (!PtrTy) 7512 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7513 OpTy = PtrTy->getElementType(); 7514 } 7515 7516 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7517 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7518 if (STy->getNumElements() == 1) 7519 OpTy = STy->getElementType(0); 7520 7521 // If OpTy is not a single value, it may be a struct/union that we 7522 // can tile with integers. 7523 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7524 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7525 switch (BitSize) { 7526 default: break; 7527 case 1: 7528 case 8: 7529 case 16: 7530 case 32: 7531 case 64: 7532 case 128: 7533 OpTy = IntegerType::get(Context, BitSize); 7534 break; 7535 } 7536 } 7537 7538 return TLI.getValueType(DL, OpTy, true); 7539 } 7540 }; 7541 7542 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7543 7544 } // end anonymous namespace 7545 7546 /// Make sure that the output operand \p OpInfo and its corresponding input 7547 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7548 /// out). 7549 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7550 SDISelAsmOperandInfo &MatchingOpInfo, 7551 SelectionDAG &DAG) { 7552 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7553 return; 7554 7555 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7556 const auto &TLI = DAG.getTargetLoweringInfo(); 7557 7558 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7559 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7560 OpInfo.ConstraintVT); 7561 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7562 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7563 MatchingOpInfo.ConstraintVT); 7564 if ((OpInfo.ConstraintVT.isInteger() != 7565 MatchingOpInfo.ConstraintVT.isInteger()) || 7566 (MatchRC.second != InputRC.second)) { 7567 // FIXME: error out in a more elegant fashion 7568 report_fatal_error("Unsupported asm: input constraint" 7569 " with a matching output constraint of" 7570 " incompatible type!"); 7571 } 7572 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7573 } 7574 7575 /// Get a direct memory input to behave well as an indirect operand. 7576 /// This may introduce stores, hence the need for a \p Chain. 7577 /// \return The (possibly updated) chain. 7578 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7579 SDISelAsmOperandInfo &OpInfo, 7580 SelectionDAG &DAG) { 7581 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7582 7583 // If we don't have an indirect input, put it in the constpool if we can, 7584 // otherwise spill it to a stack slot. 7585 // TODO: This isn't quite right. We need to handle these according to 7586 // the addressing mode that the constraint wants. Also, this may take 7587 // an additional register for the computation and we don't want that 7588 // either. 7589 7590 // If the operand is a float, integer, or vector constant, spill to a 7591 // constant pool entry to get its address. 7592 const Value *OpVal = OpInfo.CallOperandVal; 7593 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7594 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7595 OpInfo.CallOperand = DAG.getConstantPool( 7596 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7597 return Chain; 7598 } 7599 7600 // Otherwise, create a stack slot and emit a store to it before the asm. 7601 Type *Ty = OpVal->getType(); 7602 auto &DL = DAG.getDataLayout(); 7603 uint64_t TySize = DL.getTypeAllocSize(Ty); 7604 unsigned Align = DL.getPrefTypeAlignment(Ty); 7605 MachineFunction &MF = DAG.getMachineFunction(); 7606 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7607 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7608 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7609 MachinePointerInfo::getFixedStack(MF, SSFI)); 7610 OpInfo.CallOperand = StackSlot; 7611 7612 return Chain; 7613 } 7614 7615 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7616 /// specified operand. We prefer to assign virtual registers, to allow the 7617 /// register allocator to handle the assignment process. However, if the asm 7618 /// uses features that we can't model on machineinstrs, we have SDISel do the 7619 /// allocation. This produces generally horrible, but correct, code. 7620 /// 7621 /// OpInfo describes the operand 7622 /// RefOpInfo describes the matching operand if any, the operand otherwise 7623 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7624 SDISelAsmOperandInfo &OpInfo, 7625 SDISelAsmOperandInfo &RefOpInfo) { 7626 LLVMContext &Context = *DAG.getContext(); 7627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7628 7629 MachineFunction &MF = DAG.getMachineFunction(); 7630 SmallVector<unsigned, 4> Regs; 7631 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7632 7633 // No work to do for memory operations. 7634 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7635 return; 7636 7637 // If this is a constraint for a single physreg, or a constraint for a 7638 // register class, find it. 7639 unsigned AssignedReg; 7640 const TargetRegisterClass *RC; 7641 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7642 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7643 // RC is unset only on failure. Return immediately. 7644 if (!RC) 7645 return; 7646 7647 // Get the actual register value type. This is important, because the user 7648 // may have asked for (e.g.) the AX register in i32 type. We need to 7649 // remember that AX is actually i16 to get the right extension. 7650 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7651 7652 if (OpInfo.ConstraintVT != MVT::Other) { 7653 // If this is an FP operand in an integer register (or visa versa), or more 7654 // generally if the operand value disagrees with the register class we plan 7655 // to stick it in, fix the operand type. 7656 // 7657 // If this is an input value, the bitcast to the new type is done now. 7658 // Bitcast for output value is done at the end of visitInlineAsm(). 7659 if ((OpInfo.Type == InlineAsm::isOutput || 7660 OpInfo.Type == InlineAsm::isInput) && 7661 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7662 // Try to convert to the first EVT that the reg class contains. If the 7663 // types are identical size, use a bitcast to convert (e.g. two differing 7664 // vector types). Note: output bitcast is done at the end of 7665 // visitInlineAsm(). 7666 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7667 // Exclude indirect inputs while they are unsupported because the code 7668 // to perform the load is missing and thus OpInfo.CallOperand still 7669 // refers to the input address rather than the pointed-to value. 7670 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7671 OpInfo.CallOperand = 7672 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7673 OpInfo.ConstraintVT = RegVT; 7674 // If the operand is an FP value and we want it in integer registers, 7675 // use the corresponding integer type. This turns an f64 value into 7676 // i64, which can be passed with two i32 values on a 32-bit machine. 7677 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7678 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7679 if (OpInfo.Type == InlineAsm::isInput) 7680 OpInfo.CallOperand = 7681 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7682 OpInfo.ConstraintVT = VT; 7683 } 7684 } 7685 } 7686 7687 // No need to allocate a matching input constraint since the constraint it's 7688 // matching to has already been allocated. 7689 if (OpInfo.isMatchingInputConstraint()) 7690 return; 7691 7692 EVT ValueVT = OpInfo.ConstraintVT; 7693 if (OpInfo.ConstraintVT == MVT::Other) 7694 ValueVT = RegVT; 7695 7696 // Initialize NumRegs. 7697 unsigned NumRegs = 1; 7698 if (OpInfo.ConstraintVT != MVT::Other) 7699 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7700 7701 // If this is a constraint for a specific physical register, like {r17}, 7702 // assign it now. 7703 7704 // If this associated to a specific register, initialize iterator to correct 7705 // place. If virtual, make sure we have enough registers 7706 7707 // Initialize iterator if necessary 7708 TargetRegisterClass::iterator I = RC->begin(); 7709 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7710 7711 // Do not check for single registers. 7712 if (AssignedReg) { 7713 for (; *I != AssignedReg; ++I) 7714 assert(I != RC->end() && "AssignedReg should be member of RC"); 7715 } 7716 7717 for (; NumRegs; --NumRegs, ++I) { 7718 assert(I != RC->end() && "Ran out of registers to allocate!"); 7719 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC); 7720 Regs.push_back(R); 7721 } 7722 7723 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7724 } 7725 7726 static unsigned 7727 findMatchingInlineAsmOperand(unsigned OperandNo, 7728 const std::vector<SDValue> &AsmNodeOperands) { 7729 // Scan until we find the definition we already emitted of this operand. 7730 unsigned CurOp = InlineAsm::Op_FirstOperand; 7731 for (; OperandNo; --OperandNo) { 7732 // Advance to the next operand. 7733 unsigned OpFlag = 7734 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7735 assert((InlineAsm::isRegDefKind(OpFlag) || 7736 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7737 InlineAsm::isMemKind(OpFlag)) && 7738 "Skipped past definitions?"); 7739 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7740 } 7741 return CurOp; 7742 } 7743 7744 namespace { 7745 7746 class ExtraFlags { 7747 unsigned Flags = 0; 7748 7749 public: 7750 explicit ExtraFlags(ImmutableCallSite CS) { 7751 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7752 if (IA->hasSideEffects()) 7753 Flags |= InlineAsm::Extra_HasSideEffects; 7754 if (IA->isAlignStack()) 7755 Flags |= InlineAsm::Extra_IsAlignStack; 7756 if (CS.isConvergent()) 7757 Flags |= InlineAsm::Extra_IsConvergent; 7758 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7759 } 7760 7761 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7762 // Ideally, we would only check against memory constraints. However, the 7763 // meaning of an Other constraint can be target-specific and we can't easily 7764 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7765 // for Other constraints as well. 7766 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7767 OpInfo.ConstraintType == TargetLowering::C_Other) { 7768 if (OpInfo.Type == InlineAsm::isInput) 7769 Flags |= InlineAsm::Extra_MayLoad; 7770 else if (OpInfo.Type == InlineAsm::isOutput) 7771 Flags |= InlineAsm::Extra_MayStore; 7772 else if (OpInfo.Type == InlineAsm::isClobber) 7773 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7774 } 7775 } 7776 7777 unsigned get() const { return Flags; } 7778 }; 7779 7780 } // end anonymous namespace 7781 7782 /// visitInlineAsm - Handle a call to an InlineAsm object. 7783 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7784 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7785 7786 /// ConstraintOperands - Information about all of the constraints. 7787 SDISelAsmOperandInfoVector ConstraintOperands; 7788 7789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7790 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7791 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7792 7793 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7794 // AsmDialect, MayLoad, MayStore). 7795 bool HasSideEffect = IA->hasSideEffects(); 7796 ExtraFlags ExtraInfo(CS); 7797 7798 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7799 unsigned ResNo = 0; // ResNo - The result number of the next output. 7800 for (auto &T : TargetConstraints) { 7801 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7802 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7803 7804 // Compute the value type for each operand. 7805 if (OpInfo.Type == InlineAsm::isInput || 7806 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7807 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7808 7809 // Process the call argument. BasicBlocks are labels, currently appearing 7810 // only in asm's. 7811 const Instruction *I = CS.getInstruction(); 7812 if (isa<CallBrInst>(I) && 7813 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 7814 cast<CallBrInst>(I)->getNumIndirectDests())) { 7815 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 7816 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 7817 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 7818 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7819 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7820 } else { 7821 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7822 } 7823 7824 OpInfo.ConstraintVT = 7825 OpInfo 7826 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7827 .getSimpleVT(); 7828 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7829 // The return value of the call is this value. As such, there is no 7830 // corresponding argument. 7831 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7832 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7833 OpInfo.ConstraintVT = TLI.getSimpleValueType( 7834 DAG.getDataLayout(), STy->getElementType(ResNo)); 7835 } else { 7836 assert(ResNo == 0 && "Asm only has one result!"); 7837 OpInfo.ConstraintVT = 7838 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7839 } 7840 ++ResNo; 7841 } else { 7842 OpInfo.ConstraintVT = MVT::Other; 7843 } 7844 7845 if (!HasSideEffect) 7846 HasSideEffect = OpInfo.hasMemory(TLI); 7847 7848 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7849 // FIXME: Could we compute this on OpInfo rather than T? 7850 7851 // Compute the constraint code and ConstraintType to use. 7852 TLI.ComputeConstraintToUse(T, SDValue()); 7853 7854 ExtraInfo.update(T); 7855 } 7856 7857 // We won't need to flush pending loads if this asm doesn't touch 7858 // memory and is nonvolatile. 7859 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 7860 7861 // Second pass over the constraints: compute which constraint option to use. 7862 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7863 // If this is an output operand with a matching input operand, look up the 7864 // matching input. If their types mismatch, e.g. one is an integer, the 7865 // other is floating point, or their sizes are different, flag it as an 7866 // error. 7867 if (OpInfo.hasMatchingInput()) { 7868 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7869 patchMatchingInput(OpInfo, Input, DAG); 7870 } 7871 7872 // Compute the constraint code and ConstraintType to use. 7873 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7874 7875 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7876 OpInfo.Type == InlineAsm::isClobber) 7877 continue; 7878 7879 // If this is a memory input, and if the operand is not indirect, do what we 7880 // need to provide an address for the memory input. 7881 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7882 !OpInfo.isIndirect) { 7883 assert((OpInfo.isMultipleAlternative || 7884 (OpInfo.Type == InlineAsm::isInput)) && 7885 "Can only indirectify direct input operands!"); 7886 7887 // Memory operands really want the address of the value. 7888 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7889 7890 // There is no longer a Value* corresponding to this operand. 7891 OpInfo.CallOperandVal = nullptr; 7892 7893 // It is now an indirect operand. 7894 OpInfo.isIndirect = true; 7895 } 7896 7897 } 7898 7899 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7900 std::vector<SDValue> AsmNodeOperands; 7901 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7902 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7903 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7904 7905 // If we have a !srcloc metadata node associated with it, we want to attach 7906 // this to the ultimately generated inline asm machineinstr. To do this, we 7907 // pass in the third operand as this (potentially null) inline asm MDNode. 7908 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7909 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7910 7911 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7912 // bits as operand 3. 7913 AsmNodeOperands.push_back(DAG.getTargetConstant( 7914 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7915 7916 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 7917 // this, assign virtual and physical registers for inputs and otput. 7918 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7919 // Assign Registers. 7920 SDISelAsmOperandInfo &RefOpInfo = 7921 OpInfo.isMatchingInputConstraint() 7922 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7923 : OpInfo; 7924 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 7925 7926 switch (OpInfo.Type) { 7927 case InlineAsm::isOutput: 7928 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7929 (OpInfo.ConstraintType == TargetLowering::C_Other && 7930 OpInfo.isIndirect)) { 7931 unsigned ConstraintID = 7932 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7933 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7934 "Failed to convert memory constraint code to constraint id."); 7935 7936 // Add information to the INLINEASM node to know about this output. 7937 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7938 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7939 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7940 MVT::i32)); 7941 AsmNodeOperands.push_back(OpInfo.CallOperand); 7942 break; 7943 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 7944 !OpInfo.isIndirect) || 7945 OpInfo.ConstraintType == TargetLowering::C_Register || 7946 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 7947 // Otherwise, this outputs to a register (directly for C_Register / 7948 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 7949 // register that we can use. 7950 if (OpInfo.AssignedRegs.Regs.empty()) { 7951 emitInlineAsmError( 7952 CS, "couldn't allocate output register for constraint '" + 7953 Twine(OpInfo.ConstraintCode) + "'"); 7954 return; 7955 } 7956 7957 // Add information to the INLINEASM node to know that this register is 7958 // set. 7959 OpInfo.AssignedRegs.AddInlineAsmOperands( 7960 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 7961 : InlineAsm::Kind_RegDef, 7962 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7963 } 7964 break; 7965 7966 case InlineAsm::isInput: { 7967 SDValue InOperandVal = OpInfo.CallOperand; 7968 7969 if (OpInfo.isMatchingInputConstraint()) { 7970 // If this is required to match an output register we have already set, 7971 // just use its register. 7972 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7973 AsmNodeOperands); 7974 unsigned OpFlag = 7975 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7976 if (InlineAsm::isRegDefKind(OpFlag) || 7977 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7978 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7979 if (OpInfo.isIndirect) { 7980 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7981 emitInlineAsmError(CS, "inline asm not supported yet:" 7982 " don't know how to handle tied " 7983 "indirect register inputs"); 7984 return; 7985 } 7986 7987 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7988 SmallVector<unsigned, 4> Regs; 7989 7990 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 7991 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 7992 MachineRegisterInfo &RegInfo = 7993 DAG.getMachineFunction().getRegInfo(); 7994 for (unsigned i = 0; i != NumRegs; ++i) 7995 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7996 } else { 7997 emitInlineAsmError(CS, "inline asm error: This value type register " 7998 "class is not natively supported!"); 7999 return; 8000 } 8001 8002 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8003 8004 SDLoc dl = getCurSDLoc(); 8005 // Use the produced MatchedRegs object to 8006 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8007 CS.getInstruction()); 8008 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8009 true, OpInfo.getMatchedOperand(), dl, 8010 DAG, AsmNodeOperands); 8011 break; 8012 } 8013 8014 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8015 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8016 "Unexpected number of operands"); 8017 // Add information to the INLINEASM node to know about this input. 8018 // See InlineAsm.h isUseOperandTiedToDef. 8019 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8020 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8021 OpInfo.getMatchedOperand()); 8022 AsmNodeOperands.push_back(DAG.getTargetConstant( 8023 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8024 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8025 break; 8026 } 8027 8028 // Treat indirect 'X' constraint as memory. 8029 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8030 OpInfo.isIndirect) 8031 OpInfo.ConstraintType = TargetLowering::C_Memory; 8032 8033 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 8034 std::vector<SDValue> Ops; 8035 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8036 Ops, DAG); 8037 if (Ops.empty()) { 8038 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8039 Twine(OpInfo.ConstraintCode) + "'"); 8040 return; 8041 } 8042 8043 // Add information to the INLINEASM node to know about this input. 8044 unsigned ResOpType = 8045 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8046 AsmNodeOperands.push_back(DAG.getTargetConstant( 8047 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8048 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8049 break; 8050 } 8051 8052 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8053 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8054 assert(InOperandVal.getValueType() == 8055 TLI.getPointerTy(DAG.getDataLayout()) && 8056 "Memory operands expect pointer values"); 8057 8058 unsigned ConstraintID = 8059 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8060 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8061 "Failed to convert memory constraint code to constraint id."); 8062 8063 // Add information to the INLINEASM node to know about this input. 8064 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8065 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8066 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8067 getCurSDLoc(), 8068 MVT::i32)); 8069 AsmNodeOperands.push_back(InOperandVal); 8070 break; 8071 } 8072 8073 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8074 OpInfo.ConstraintType == TargetLowering::C_Register) && 8075 "Unknown constraint type!"); 8076 8077 // TODO: Support this. 8078 if (OpInfo.isIndirect) { 8079 emitInlineAsmError( 8080 CS, "Don't know how to handle indirect register inputs yet " 8081 "for constraint '" + 8082 Twine(OpInfo.ConstraintCode) + "'"); 8083 return; 8084 } 8085 8086 // Copy the input into the appropriate registers. 8087 if (OpInfo.AssignedRegs.Regs.empty()) { 8088 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8089 Twine(OpInfo.ConstraintCode) + "'"); 8090 return; 8091 } 8092 8093 SDLoc dl = getCurSDLoc(); 8094 8095 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8096 Chain, &Flag, CS.getInstruction()); 8097 8098 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8099 dl, DAG, AsmNodeOperands); 8100 break; 8101 } 8102 case InlineAsm::isClobber: 8103 // Add the clobbered value to the operand list, so that the register 8104 // allocator is aware that the physreg got clobbered. 8105 if (!OpInfo.AssignedRegs.Regs.empty()) 8106 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8107 false, 0, getCurSDLoc(), DAG, 8108 AsmNodeOperands); 8109 break; 8110 } 8111 } 8112 8113 // Finish up input operands. Set the input chain and add the flag last. 8114 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8115 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8116 8117 unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM; 8118 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8119 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8120 Flag = Chain.getValue(1); 8121 8122 // Do additional work to generate outputs. 8123 8124 SmallVector<EVT, 1> ResultVTs; 8125 SmallVector<SDValue, 1> ResultValues; 8126 SmallVector<SDValue, 8> OutChains; 8127 8128 llvm::Type *CSResultType = CS.getType(); 8129 ArrayRef<Type *> ResultTypes; 8130 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8131 ResultTypes = StructResult->elements(); 8132 else if (!CSResultType->isVoidTy()) 8133 ResultTypes = makeArrayRef(CSResultType); 8134 8135 auto CurResultType = ResultTypes.begin(); 8136 auto handleRegAssign = [&](SDValue V) { 8137 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8138 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8139 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8140 ++CurResultType; 8141 // If the type of the inline asm call site return value is different but has 8142 // same size as the type of the asm output bitcast it. One example of this 8143 // is for vectors with different width / number of elements. This can 8144 // happen for register classes that can contain multiple different value 8145 // types. The preg or vreg allocated may not have the same VT as was 8146 // expected. 8147 // 8148 // This can also happen for a return value that disagrees with the register 8149 // class it is put in, eg. a double in a general-purpose register on a 8150 // 32-bit machine. 8151 if (ResultVT != V.getValueType() && 8152 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8153 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8154 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8155 V.getValueType().isInteger()) { 8156 // If a result value was tied to an input value, the computed result 8157 // may have a wider width than the expected result. Extract the 8158 // relevant portion. 8159 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8160 } 8161 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8162 ResultVTs.push_back(ResultVT); 8163 ResultValues.push_back(V); 8164 }; 8165 8166 // Deal with output operands. 8167 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8168 if (OpInfo.Type == InlineAsm::isOutput) { 8169 SDValue Val; 8170 // Skip trivial output operands. 8171 if (OpInfo.AssignedRegs.Regs.empty()) 8172 continue; 8173 8174 switch (OpInfo.ConstraintType) { 8175 case TargetLowering::C_Register: 8176 case TargetLowering::C_RegisterClass: 8177 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8178 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8179 break; 8180 case TargetLowering::C_Other: 8181 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8182 OpInfo, DAG); 8183 break; 8184 case TargetLowering::C_Memory: 8185 break; // Already handled. 8186 case TargetLowering::C_Unknown: 8187 assert(false && "Unexpected unknown constraint"); 8188 } 8189 8190 // Indirect output manifest as stores. Record output chains. 8191 if (OpInfo.isIndirect) { 8192 const Value *Ptr = OpInfo.CallOperandVal; 8193 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8194 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8195 MachinePointerInfo(Ptr)); 8196 OutChains.push_back(Store); 8197 } else { 8198 // generate CopyFromRegs to associated registers. 8199 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8200 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8201 for (const SDValue &V : Val->op_values()) 8202 handleRegAssign(V); 8203 } else 8204 handleRegAssign(Val); 8205 } 8206 } 8207 } 8208 8209 // Set results. 8210 if (!ResultValues.empty()) { 8211 assert(CurResultType == ResultTypes.end() && 8212 "Mismatch in number of ResultTypes"); 8213 assert(ResultValues.size() == ResultTypes.size() && 8214 "Mismatch in number of output operands in asm result"); 8215 8216 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8217 DAG.getVTList(ResultVTs), ResultValues); 8218 setValue(CS.getInstruction(), V); 8219 } 8220 8221 // Collect store chains. 8222 if (!OutChains.empty()) 8223 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8224 8225 // Only Update Root if inline assembly has a memory effect. 8226 if (ResultValues.empty() || HasSideEffect || !OutChains.empty()) 8227 DAG.setRoot(Chain); 8228 } 8229 8230 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8231 const Twine &Message) { 8232 LLVMContext &Ctx = *DAG.getContext(); 8233 Ctx.emitError(CS.getInstruction(), Message); 8234 8235 // Make sure we leave the DAG in a valid state 8236 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8237 SmallVector<EVT, 1> ValueVTs; 8238 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8239 8240 if (ValueVTs.empty()) 8241 return; 8242 8243 SmallVector<SDValue, 1> Ops; 8244 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8245 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8246 8247 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8248 } 8249 8250 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8251 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8252 MVT::Other, getRoot(), 8253 getValue(I.getArgOperand(0)), 8254 DAG.getSrcValue(I.getArgOperand(0)))); 8255 } 8256 8257 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8258 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8259 const DataLayout &DL = DAG.getDataLayout(); 8260 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 8261 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 8262 DAG.getSrcValue(I.getOperand(0)), 8263 DL.getABITypeAlignment(I.getType())); 8264 setValue(&I, V); 8265 DAG.setRoot(V.getValue(1)); 8266 } 8267 8268 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8269 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8270 MVT::Other, getRoot(), 8271 getValue(I.getArgOperand(0)), 8272 DAG.getSrcValue(I.getArgOperand(0)))); 8273 } 8274 8275 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8276 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8277 MVT::Other, getRoot(), 8278 getValue(I.getArgOperand(0)), 8279 getValue(I.getArgOperand(1)), 8280 DAG.getSrcValue(I.getArgOperand(0)), 8281 DAG.getSrcValue(I.getArgOperand(1)))); 8282 } 8283 8284 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8285 const Instruction &I, 8286 SDValue Op) { 8287 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8288 if (!Range) 8289 return Op; 8290 8291 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8292 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 8293 return Op; 8294 8295 APInt Lo = CR.getUnsignedMin(); 8296 if (!Lo.isMinValue()) 8297 return Op; 8298 8299 APInt Hi = CR.getUnsignedMax(); 8300 unsigned Bits = std::max(Hi.getActiveBits(), 8301 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8302 8303 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8304 8305 SDLoc SL = getCurSDLoc(); 8306 8307 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8308 DAG.getValueType(SmallVT)); 8309 unsigned NumVals = Op.getNode()->getNumValues(); 8310 if (NumVals == 1) 8311 return ZExt; 8312 8313 SmallVector<SDValue, 4> Ops; 8314 8315 Ops.push_back(ZExt); 8316 for (unsigned I = 1; I != NumVals; ++I) 8317 Ops.push_back(Op.getValue(I)); 8318 8319 return DAG.getMergeValues(Ops, SL); 8320 } 8321 8322 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8323 /// the call being lowered. 8324 /// 8325 /// This is a helper for lowering intrinsics that follow a target calling 8326 /// convention or require stack pointer adjustment. Only a subset of the 8327 /// intrinsic's operands need to participate in the calling convention. 8328 void SelectionDAGBuilder::populateCallLoweringInfo( 8329 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8330 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8331 bool IsPatchPoint) { 8332 TargetLowering::ArgListTy Args; 8333 Args.reserve(NumArgs); 8334 8335 // Populate the argument list. 8336 // Attributes for args start at offset 1, after the return attribute. 8337 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8338 ArgI != ArgE; ++ArgI) { 8339 const Value *V = Call->getOperand(ArgI); 8340 8341 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8342 8343 TargetLowering::ArgListEntry Entry; 8344 Entry.Node = getValue(V); 8345 Entry.Ty = V->getType(); 8346 Entry.setAttributes(Call, ArgI); 8347 Args.push_back(Entry); 8348 } 8349 8350 CLI.setDebugLoc(getCurSDLoc()) 8351 .setChain(getRoot()) 8352 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8353 .setDiscardResult(Call->use_empty()) 8354 .setIsPatchPoint(IsPatchPoint); 8355 } 8356 8357 /// Add a stack map intrinsic call's live variable operands to a stackmap 8358 /// or patchpoint target node's operand list. 8359 /// 8360 /// Constants are converted to TargetConstants purely as an optimization to 8361 /// avoid constant materialization and register allocation. 8362 /// 8363 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8364 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8365 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8366 /// address materialization and register allocation, but may also be required 8367 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8368 /// alloca in the entry block, then the runtime may assume that the alloca's 8369 /// StackMap location can be read immediately after compilation and that the 8370 /// location is valid at any point during execution (this is similar to the 8371 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8372 /// only available in a register, then the runtime would need to trap when 8373 /// execution reaches the StackMap in order to read the alloca's location. 8374 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8375 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8376 SelectionDAGBuilder &Builder) { 8377 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8378 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8379 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8380 Ops.push_back( 8381 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8382 Ops.push_back( 8383 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8384 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8385 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8386 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8387 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8388 } else 8389 Ops.push_back(OpVal); 8390 } 8391 } 8392 8393 /// Lower llvm.experimental.stackmap directly to its target opcode. 8394 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8395 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8396 // [live variables...]) 8397 8398 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8399 8400 SDValue Chain, InFlag, Callee, NullPtr; 8401 SmallVector<SDValue, 32> Ops; 8402 8403 SDLoc DL = getCurSDLoc(); 8404 Callee = getValue(CI.getCalledValue()); 8405 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8406 8407 // The stackmap intrinsic only records the live variables (the arguemnts 8408 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8409 // intrinsic, this won't be lowered to a function call. This means we don't 8410 // have to worry about calling conventions and target specific lowering code. 8411 // Instead we perform the call lowering right here. 8412 // 8413 // chain, flag = CALLSEQ_START(chain, 0, 0) 8414 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8415 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8416 // 8417 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8418 InFlag = Chain.getValue(1); 8419 8420 // Add the <id> and <numBytes> constants. 8421 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8422 Ops.push_back(DAG.getTargetConstant( 8423 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8424 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8425 Ops.push_back(DAG.getTargetConstant( 8426 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8427 MVT::i32)); 8428 8429 // Push live variables for the stack map. 8430 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8431 8432 // We are not pushing any register mask info here on the operands list, 8433 // because the stackmap doesn't clobber anything. 8434 8435 // Push the chain and the glue flag. 8436 Ops.push_back(Chain); 8437 Ops.push_back(InFlag); 8438 8439 // Create the STACKMAP node. 8440 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8441 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8442 Chain = SDValue(SM, 0); 8443 InFlag = Chain.getValue(1); 8444 8445 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8446 8447 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8448 8449 // Set the root to the target-lowered call chain. 8450 DAG.setRoot(Chain); 8451 8452 // Inform the Frame Information that we have a stackmap in this function. 8453 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8454 } 8455 8456 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8457 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8458 const BasicBlock *EHPadBB) { 8459 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8460 // i32 <numBytes>, 8461 // i8* <target>, 8462 // i32 <numArgs>, 8463 // [Args...], 8464 // [live variables...]) 8465 8466 CallingConv::ID CC = CS.getCallingConv(); 8467 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8468 bool HasDef = !CS->getType()->isVoidTy(); 8469 SDLoc dl = getCurSDLoc(); 8470 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8471 8472 // Handle immediate and symbolic callees. 8473 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8474 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8475 /*isTarget=*/true); 8476 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8477 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8478 SDLoc(SymbolicCallee), 8479 SymbolicCallee->getValueType(0)); 8480 8481 // Get the real number of arguments participating in the call <numArgs> 8482 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8483 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8484 8485 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8486 // Intrinsics include all meta-operands up to but not including CC. 8487 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8488 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8489 "Not enough arguments provided to the patchpoint intrinsic"); 8490 8491 // For AnyRegCC the arguments are lowered later on manually. 8492 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8493 Type *ReturnTy = 8494 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8495 8496 TargetLowering::CallLoweringInfo CLI(DAG); 8497 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8498 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8499 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8500 8501 SDNode *CallEnd = Result.second.getNode(); 8502 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8503 CallEnd = CallEnd->getOperand(0).getNode(); 8504 8505 /// Get a call instruction from the call sequence chain. 8506 /// Tail calls are not allowed. 8507 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8508 "Expected a callseq node."); 8509 SDNode *Call = CallEnd->getOperand(0).getNode(); 8510 bool HasGlue = Call->getGluedNode(); 8511 8512 // Replace the target specific call node with the patchable intrinsic. 8513 SmallVector<SDValue, 8> Ops; 8514 8515 // Add the <id> and <numBytes> constants. 8516 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8517 Ops.push_back(DAG.getTargetConstant( 8518 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8519 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8520 Ops.push_back(DAG.getTargetConstant( 8521 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8522 MVT::i32)); 8523 8524 // Add the callee. 8525 Ops.push_back(Callee); 8526 8527 // Adjust <numArgs> to account for any arguments that have been passed on the 8528 // stack instead. 8529 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8530 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8531 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8532 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8533 8534 // Add the calling convention 8535 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8536 8537 // Add the arguments we omitted previously. The register allocator should 8538 // place these in any free register. 8539 if (IsAnyRegCC) 8540 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8541 Ops.push_back(getValue(CS.getArgument(i))); 8542 8543 // Push the arguments from the call instruction up to the register mask. 8544 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8545 Ops.append(Call->op_begin() + 2, e); 8546 8547 // Push live variables for the stack map. 8548 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8549 8550 // Push the register mask info. 8551 if (HasGlue) 8552 Ops.push_back(*(Call->op_end()-2)); 8553 else 8554 Ops.push_back(*(Call->op_end()-1)); 8555 8556 // Push the chain (this is originally the first operand of the call, but 8557 // becomes now the last or second to last operand). 8558 Ops.push_back(*(Call->op_begin())); 8559 8560 // Push the glue flag (last operand). 8561 if (HasGlue) 8562 Ops.push_back(*(Call->op_end()-1)); 8563 8564 SDVTList NodeTys; 8565 if (IsAnyRegCC && HasDef) { 8566 // Create the return types based on the intrinsic definition 8567 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8568 SmallVector<EVT, 3> ValueVTs; 8569 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8570 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8571 8572 // There is always a chain and a glue type at the end 8573 ValueVTs.push_back(MVT::Other); 8574 ValueVTs.push_back(MVT::Glue); 8575 NodeTys = DAG.getVTList(ValueVTs); 8576 } else 8577 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8578 8579 // Replace the target specific call node with a PATCHPOINT node. 8580 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8581 dl, NodeTys, Ops); 8582 8583 // Update the NodeMap. 8584 if (HasDef) { 8585 if (IsAnyRegCC) 8586 setValue(CS.getInstruction(), SDValue(MN, 0)); 8587 else 8588 setValue(CS.getInstruction(), Result.first); 8589 } 8590 8591 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8592 // call sequence. Furthermore the location of the chain and glue can change 8593 // when the AnyReg calling convention is used and the intrinsic returns a 8594 // value. 8595 if (IsAnyRegCC && HasDef) { 8596 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8597 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8598 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8599 } else 8600 DAG.ReplaceAllUsesWith(Call, MN); 8601 DAG.DeleteNode(Call); 8602 8603 // Inform the Frame Information that we have a patchpoint in this function. 8604 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8605 } 8606 8607 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8608 unsigned Intrinsic) { 8609 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8610 SDValue Op1 = getValue(I.getArgOperand(0)); 8611 SDValue Op2; 8612 if (I.getNumArgOperands() > 1) 8613 Op2 = getValue(I.getArgOperand(1)); 8614 SDLoc dl = getCurSDLoc(); 8615 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8616 SDValue Res; 8617 FastMathFlags FMF; 8618 if (isa<FPMathOperator>(I)) 8619 FMF = I.getFastMathFlags(); 8620 8621 switch (Intrinsic) { 8622 case Intrinsic::experimental_vector_reduce_fadd: 8623 if (FMF.isFast()) 8624 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8625 else 8626 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8627 break; 8628 case Intrinsic::experimental_vector_reduce_fmul: 8629 if (FMF.isFast()) 8630 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8631 else 8632 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8633 break; 8634 case Intrinsic::experimental_vector_reduce_add: 8635 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8636 break; 8637 case Intrinsic::experimental_vector_reduce_mul: 8638 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8639 break; 8640 case Intrinsic::experimental_vector_reduce_and: 8641 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8642 break; 8643 case Intrinsic::experimental_vector_reduce_or: 8644 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8645 break; 8646 case Intrinsic::experimental_vector_reduce_xor: 8647 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8648 break; 8649 case Intrinsic::experimental_vector_reduce_smax: 8650 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8651 break; 8652 case Intrinsic::experimental_vector_reduce_smin: 8653 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8654 break; 8655 case Intrinsic::experimental_vector_reduce_umax: 8656 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8657 break; 8658 case Intrinsic::experimental_vector_reduce_umin: 8659 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8660 break; 8661 case Intrinsic::experimental_vector_reduce_fmax: 8662 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8663 break; 8664 case Intrinsic::experimental_vector_reduce_fmin: 8665 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8666 break; 8667 default: 8668 llvm_unreachable("Unhandled vector reduce intrinsic"); 8669 } 8670 setValue(&I, Res); 8671 } 8672 8673 /// Returns an AttributeList representing the attributes applied to the return 8674 /// value of the given call. 8675 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8676 SmallVector<Attribute::AttrKind, 2> Attrs; 8677 if (CLI.RetSExt) 8678 Attrs.push_back(Attribute::SExt); 8679 if (CLI.RetZExt) 8680 Attrs.push_back(Attribute::ZExt); 8681 if (CLI.IsInReg) 8682 Attrs.push_back(Attribute::InReg); 8683 8684 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8685 Attrs); 8686 } 8687 8688 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8689 /// implementation, which just calls LowerCall. 8690 /// FIXME: When all targets are 8691 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8692 std::pair<SDValue, SDValue> 8693 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8694 // Handle the incoming return values from the call. 8695 CLI.Ins.clear(); 8696 Type *OrigRetTy = CLI.RetTy; 8697 SmallVector<EVT, 4> RetTys; 8698 SmallVector<uint64_t, 4> Offsets; 8699 auto &DL = CLI.DAG.getDataLayout(); 8700 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8701 8702 if (CLI.IsPostTypeLegalization) { 8703 // If we are lowering a libcall after legalization, split the return type. 8704 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8705 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8706 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8707 EVT RetVT = OldRetTys[i]; 8708 uint64_t Offset = OldOffsets[i]; 8709 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8710 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8711 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8712 RetTys.append(NumRegs, RegisterVT); 8713 for (unsigned j = 0; j != NumRegs; ++j) 8714 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8715 } 8716 } 8717 8718 SmallVector<ISD::OutputArg, 4> Outs; 8719 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8720 8721 bool CanLowerReturn = 8722 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8723 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8724 8725 SDValue DemoteStackSlot; 8726 int DemoteStackIdx = -100; 8727 if (!CanLowerReturn) { 8728 // FIXME: equivalent assert? 8729 // assert(!CS.hasInAllocaArgument() && 8730 // "sret demotion is incompatible with inalloca"); 8731 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8732 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8733 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8734 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8735 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8736 DL.getAllocaAddrSpace()); 8737 8738 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8739 ArgListEntry Entry; 8740 Entry.Node = DemoteStackSlot; 8741 Entry.Ty = StackSlotPtrType; 8742 Entry.IsSExt = false; 8743 Entry.IsZExt = false; 8744 Entry.IsInReg = false; 8745 Entry.IsSRet = true; 8746 Entry.IsNest = false; 8747 Entry.IsByVal = false; 8748 Entry.IsReturned = false; 8749 Entry.IsSwiftSelf = false; 8750 Entry.IsSwiftError = false; 8751 Entry.Alignment = Align; 8752 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8753 CLI.NumFixedArgs += 1; 8754 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8755 8756 // sret demotion isn't compatible with tail-calls, since the sret argument 8757 // points into the callers stack frame. 8758 CLI.IsTailCall = false; 8759 } else { 8760 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8761 EVT VT = RetTys[I]; 8762 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8763 CLI.CallConv, VT); 8764 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8765 CLI.CallConv, VT); 8766 for (unsigned i = 0; i != NumRegs; ++i) { 8767 ISD::InputArg MyFlags; 8768 MyFlags.VT = RegisterVT; 8769 MyFlags.ArgVT = VT; 8770 MyFlags.Used = CLI.IsReturnValueUsed; 8771 if (CLI.RetSExt) 8772 MyFlags.Flags.setSExt(); 8773 if (CLI.RetZExt) 8774 MyFlags.Flags.setZExt(); 8775 if (CLI.IsInReg) 8776 MyFlags.Flags.setInReg(); 8777 CLI.Ins.push_back(MyFlags); 8778 } 8779 } 8780 } 8781 8782 // We push in swifterror return as the last element of CLI.Ins. 8783 ArgListTy &Args = CLI.getArgs(); 8784 if (supportSwiftError()) { 8785 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8786 if (Args[i].IsSwiftError) { 8787 ISD::InputArg MyFlags; 8788 MyFlags.VT = getPointerTy(DL); 8789 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8790 MyFlags.Flags.setSwiftError(); 8791 CLI.Ins.push_back(MyFlags); 8792 } 8793 } 8794 } 8795 8796 // Handle all of the outgoing arguments. 8797 CLI.Outs.clear(); 8798 CLI.OutVals.clear(); 8799 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8800 SmallVector<EVT, 4> ValueVTs; 8801 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8802 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8803 Type *FinalType = Args[i].Ty; 8804 if (Args[i].IsByVal) 8805 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8806 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8807 FinalType, CLI.CallConv, CLI.IsVarArg); 8808 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8809 ++Value) { 8810 EVT VT = ValueVTs[Value]; 8811 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8812 SDValue Op = SDValue(Args[i].Node.getNode(), 8813 Args[i].Node.getResNo() + Value); 8814 ISD::ArgFlagsTy Flags; 8815 8816 // Certain targets (such as MIPS), may have a different ABI alignment 8817 // for a type depending on the context. Give the target a chance to 8818 // specify the alignment it wants. 8819 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8820 8821 if (Args[i].IsZExt) 8822 Flags.setZExt(); 8823 if (Args[i].IsSExt) 8824 Flags.setSExt(); 8825 if (Args[i].IsInReg) { 8826 // If we are using vectorcall calling convention, a structure that is 8827 // passed InReg - is surely an HVA 8828 if (CLI.CallConv == CallingConv::X86_VectorCall && 8829 isa<StructType>(FinalType)) { 8830 // The first value of a structure is marked 8831 if (0 == Value) 8832 Flags.setHvaStart(); 8833 Flags.setHva(); 8834 } 8835 // Set InReg Flag 8836 Flags.setInReg(); 8837 } 8838 if (Args[i].IsSRet) 8839 Flags.setSRet(); 8840 if (Args[i].IsSwiftSelf) 8841 Flags.setSwiftSelf(); 8842 if (Args[i].IsSwiftError) 8843 Flags.setSwiftError(); 8844 if (Args[i].IsByVal) 8845 Flags.setByVal(); 8846 if (Args[i].IsInAlloca) { 8847 Flags.setInAlloca(); 8848 // Set the byval flag for CCAssignFn callbacks that don't know about 8849 // inalloca. This way we can know how many bytes we should've allocated 8850 // and how many bytes a callee cleanup function will pop. If we port 8851 // inalloca to more targets, we'll have to add custom inalloca handling 8852 // in the various CC lowering callbacks. 8853 Flags.setByVal(); 8854 } 8855 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8856 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8857 Type *ElementTy = Ty->getElementType(); 8858 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8859 // For ByVal, alignment should come from FE. BE will guess if this 8860 // info is not there but there are cases it cannot get right. 8861 unsigned FrameAlign; 8862 if (Args[i].Alignment) 8863 FrameAlign = Args[i].Alignment; 8864 else 8865 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8866 Flags.setByValAlign(FrameAlign); 8867 } 8868 if (Args[i].IsNest) 8869 Flags.setNest(); 8870 if (NeedsRegBlock) 8871 Flags.setInConsecutiveRegs(); 8872 Flags.setOrigAlign(OriginalAlignment); 8873 8874 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8875 CLI.CallConv, VT); 8876 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8877 CLI.CallConv, VT); 8878 SmallVector<SDValue, 4> Parts(NumParts); 8879 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8880 8881 if (Args[i].IsSExt) 8882 ExtendKind = ISD::SIGN_EXTEND; 8883 else if (Args[i].IsZExt) 8884 ExtendKind = ISD::ZERO_EXTEND; 8885 8886 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8887 // for now. 8888 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8889 CanLowerReturn) { 8890 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8891 "unexpected use of 'returned'"); 8892 // Before passing 'returned' to the target lowering code, ensure that 8893 // either the register MVT and the actual EVT are the same size or that 8894 // the return value and argument are extended in the same way; in these 8895 // cases it's safe to pass the argument register value unchanged as the 8896 // return register value (although it's at the target's option whether 8897 // to do so) 8898 // TODO: allow code generation to take advantage of partially preserved 8899 // registers rather than clobbering the entire register when the 8900 // parameter extension method is not compatible with the return 8901 // extension method 8902 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8903 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8904 CLI.RetZExt == Args[i].IsZExt)) 8905 Flags.setReturned(); 8906 } 8907 8908 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8909 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8910 8911 for (unsigned j = 0; j != NumParts; ++j) { 8912 // if it isn't first piece, alignment must be 1 8913 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8914 i < CLI.NumFixedArgs, 8915 i, j*Parts[j].getValueType().getStoreSize()); 8916 if (NumParts > 1 && j == 0) 8917 MyFlags.Flags.setSplit(); 8918 else if (j != 0) { 8919 MyFlags.Flags.setOrigAlign(1); 8920 if (j == NumParts - 1) 8921 MyFlags.Flags.setSplitEnd(); 8922 } 8923 8924 CLI.Outs.push_back(MyFlags); 8925 CLI.OutVals.push_back(Parts[j]); 8926 } 8927 8928 if (NeedsRegBlock && Value == NumValues - 1) 8929 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8930 } 8931 } 8932 8933 SmallVector<SDValue, 4> InVals; 8934 CLI.Chain = LowerCall(CLI, InVals); 8935 8936 // Update CLI.InVals to use outside of this function. 8937 CLI.InVals = InVals; 8938 8939 // Verify that the target's LowerCall behaved as expected. 8940 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8941 "LowerCall didn't return a valid chain!"); 8942 assert((!CLI.IsTailCall || InVals.empty()) && 8943 "LowerCall emitted a return value for a tail call!"); 8944 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8945 "LowerCall didn't emit the correct number of values!"); 8946 8947 // For a tail call, the return value is merely live-out and there aren't 8948 // any nodes in the DAG representing it. Return a special value to 8949 // indicate that a tail call has been emitted and no more Instructions 8950 // should be processed in the current block. 8951 if (CLI.IsTailCall) { 8952 CLI.DAG.setRoot(CLI.Chain); 8953 return std::make_pair(SDValue(), SDValue()); 8954 } 8955 8956 #ifndef NDEBUG 8957 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8958 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8959 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8960 "LowerCall emitted a value with the wrong type!"); 8961 } 8962 #endif 8963 8964 SmallVector<SDValue, 4> ReturnValues; 8965 if (!CanLowerReturn) { 8966 // The instruction result is the result of loading from the 8967 // hidden sret parameter. 8968 SmallVector<EVT, 1> PVTs; 8969 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8970 8971 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8972 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8973 EVT PtrVT = PVTs[0]; 8974 8975 unsigned NumValues = RetTys.size(); 8976 ReturnValues.resize(NumValues); 8977 SmallVector<SDValue, 4> Chains(NumValues); 8978 8979 // An aggregate return value cannot wrap around the address space, so 8980 // offsets to its parts don't wrap either. 8981 SDNodeFlags Flags; 8982 Flags.setNoUnsignedWrap(true); 8983 8984 for (unsigned i = 0; i < NumValues; ++i) { 8985 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8986 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8987 PtrVT), Flags); 8988 SDValue L = CLI.DAG.getLoad( 8989 RetTys[i], CLI.DL, CLI.Chain, Add, 8990 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8991 DemoteStackIdx, Offsets[i]), 8992 /* Alignment = */ 1); 8993 ReturnValues[i] = L; 8994 Chains[i] = L.getValue(1); 8995 } 8996 8997 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8998 } else { 8999 // Collect the legal value parts into potentially illegal values 9000 // that correspond to the original function's return values. 9001 Optional<ISD::NodeType> AssertOp; 9002 if (CLI.RetSExt) 9003 AssertOp = ISD::AssertSext; 9004 else if (CLI.RetZExt) 9005 AssertOp = ISD::AssertZext; 9006 unsigned CurReg = 0; 9007 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9008 EVT VT = RetTys[I]; 9009 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9010 CLI.CallConv, VT); 9011 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9012 CLI.CallConv, VT); 9013 9014 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9015 NumRegs, RegisterVT, VT, nullptr, 9016 CLI.CallConv, AssertOp)); 9017 CurReg += NumRegs; 9018 } 9019 9020 // For a function returning void, there is no return value. We can't create 9021 // such a node, so we just return a null return value in that case. In 9022 // that case, nothing will actually look at the value. 9023 if (ReturnValues.empty()) 9024 return std::make_pair(SDValue(), CLI.Chain); 9025 } 9026 9027 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9028 CLI.DAG.getVTList(RetTys), ReturnValues); 9029 return std::make_pair(Res, CLI.Chain); 9030 } 9031 9032 void TargetLowering::LowerOperationWrapper(SDNode *N, 9033 SmallVectorImpl<SDValue> &Results, 9034 SelectionDAG &DAG) const { 9035 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9036 Results.push_back(Res); 9037 } 9038 9039 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9040 llvm_unreachable("LowerOperation not implemented for this target!"); 9041 } 9042 9043 void 9044 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9045 SDValue Op = getNonRegisterValue(V); 9046 assert((Op.getOpcode() != ISD::CopyFromReg || 9047 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9048 "Copy from a reg to the same reg!"); 9049 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9050 9051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9052 // If this is an InlineAsm we have to match the registers required, not the 9053 // notional registers required by the type. 9054 9055 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9056 None); // This is not an ABI copy. 9057 SDValue Chain = DAG.getEntryNode(); 9058 9059 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9060 FuncInfo.PreferredExtendType.end()) 9061 ? ISD::ANY_EXTEND 9062 : FuncInfo.PreferredExtendType[V]; 9063 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9064 PendingExports.push_back(Chain); 9065 } 9066 9067 #include "llvm/CodeGen/SelectionDAGISel.h" 9068 9069 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9070 /// entry block, return true. This includes arguments used by switches, since 9071 /// the switch may expand into multiple basic blocks. 9072 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9073 // With FastISel active, we may be splitting blocks, so force creation 9074 // of virtual registers for all non-dead arguments. 9075 if (FastISel) 9076 return A->use_empty(); 9077 9078 const BasicBlock &Entry = A->getParent()->front(); 9079 for (const User *U : A->users()) 9080 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9081 return false; // Use not in entry block. 9082 9083 return true; 9084 } 9085 9086 using ArgCopyElisionMapTy = 9087 DenseMap<const Argument *, 9088 std::pair<const AllocaInst *, const StoreInst *>>; 9089 9090 /// Scan the entry block of the function in FuncInfo for arguments that look 9091 /// like copies into a local alloca. Record any copied arguments in 9092 /// ArgCopyElisionCandidates. 9093 static void 9094 findArgumentCopyElisionCandidates(const DataLayout &DL, 9095 FunctionLoweringInfo *FuncInfo, 9096 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9097 // Record the state of every static alloca used in the entry block. Argument 9098 // allocas are all used in the entry block, so we need approximately as many 9099 // entries as we have arguments. 9100 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9101 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9102 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9103 StaticAllocas.reserve(NumArgs * 2); 9104 9105 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9106 if (!V) 9107 return nullptr; 9108 V = V->stripPointerCasts(); 9109 const auto *AI = dyn_cast<AllocaInst>(V); 9110 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9111 return nullptr; 9112 auto Iter = StaticAllocas.insert({AI, Unknown}); 9113 return &Iter.first->second; 9114 }; 9115 9116 // Look for stores of arguments to static allocas. Look through bitcasts and 9117 // GEPs to handle type coercions, as long as the alloca is fully initialized 9118 // by the store. Any non-store use of an alloca escapes it and any subsequent 9119 // unanalyzed store might write it. 9120 // FIXME: Handle structs initialized with multiple stores. 9121 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9122 // Look for stores, and handle non-store uses conservatively. 9123 const auto *SI = dyn_cast<StoreInst>(&I); 9124 if (!SI) { 9125 // We will look through cast uses, so ignore them completely. 9126 if (I.isCast()) 9127 continue; 9128 // Ignore debug info intrinsics, they don't escape or store to allocas. 9129 if (isa<DbgInfoIntrinsic>(I)) 9130 continue; 9131 // This is an unknown instruction. Assume it escapes or writes to all 9132 // static alloca operands. 9133 for (const Use &U : I.operands()) { 9134 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9135 *Info = StaticAllocaInfo::Clobbered; 9136 } 9137 continue; 9138 } 9139 9140 // If the stored value is a static alloca, mark it as escaped. 9141 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9142 *Info = StaticAllocaInfo::Clobbered; 9143 9144 // Check if the destination is a static alloca. 9145 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9146 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9147 if (!Info) 9148 continue; 9149 const AllocaInst *AI = cast<AllocaInst>(Dst); 9150 9151 // Skip allocas that have been initialized or clobbered. 9152 if (*Info != StaticAllocaInfo::Unknown) 9153 continue; 9154 9155 // Check if the stored value is an argument, and that this store fully 9156 // initializes the alloca. Don't elide copies from the same argument twice. 9157 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9158 const auto *Arg = dyn_cast<Argument>(Val); 9159 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9160 Arg->getType()->isEmptyTy() || 9161 DL.getTypeStoreSize(Arg->getType()) != 9162 DL.getTypeAllocSize(AI->getAllocatedType()) || 9163 ArgCopyElisionCandidates.count(Arg)) { 9164 *Info = StaticAllocaInfo::Clobbered; 9165 continue; 9166 } 9167 9168 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9169 << '\n'); 9170 9171 // Mark this alloca and store for argument copy elision. 9172 *Info = StaticAllocaInfo::Elidable; 9173 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9174 9175 // Stop scanning if we've seen all arguments. This will happen early in -O0 9176 // builds, which is useful, because -O0 builds have large entry blocks and 9177 // many allocas. 9178 if (ArgCopyElisionCandidates.size() == NumArgs) 9179 break; 9180 } 9181 } 9182 9183 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9184 /// ArgVal is a load from a suitable fixed stack object. 9185 static void tryToElideArgumentCopy( 9186 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9187 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9188 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9189 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9190 SDValue ArgVal, bool &ArgHasUses) { 9191 // Check if this is a load from a fixed stack object. 9192 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9193 if (!LNode) 9194 return; 9195 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9196 if (!FINode) 9197 return; 9198 9199 // Check that the fixed stack object is the right size and alignment. 9200 // Look at the alignment that the user wrote on the alloca instead of looking 9201 // at the stack object. 9202 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9203 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9204 const AllocaInst *AI = ArgCopyIter->second.first; 9205 int FixedIndex = FINode->getIndex(); 9206 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9207 int OldIndex = AllocaIndex; 9208 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9209 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9210 LLVM_DEBUG( 9211 dbgs() << " argument copy elision failed due to bad fixed stack " 9212 "object size\n"); 9213 return; 9214 } 9215 unsigned RequiredAlignment = AI->getAlignment(); 9216 if (!RequiredAlignment) { 9217 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9218 AI->getAllocatedType()); 9219 } 9220 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9221 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9222 "greater than stack argument alignment (" 9223 << RequiredAlignment << " vs " 9224 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9225 return; 9226 } 9227 9228 // Perform the elision. Delete the old stack object and replace its only use 9229 // in the variable info map. Mark the stack object as mutable. 9230 LLVM_DEBUG({ 9231 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9232 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9233 << '\n'; 9234 }); 9235 MFI.RemoveStackObject(OldIndex); 9236 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9237 AllocaIndex = FixedIndex; 9238 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9239 Chains.push_back(ArgVal.getValue(1)); 9240 9241 // Avoid emitting code for the store implementing the copy. 9242 const StoreInst *SI = ArgCopyIter->second.second; 9243 ElidedArgCopyInstrs.insert(SI); 9244 9245 // Check for uses of the argument again so that we can avoid exporting ArgVal 9246 // if it is't used by anything other than the store. 9247 for (const Value *U : Arg.users()) { 9248 if (U != SI) { 9249 ArgHasUses = true; 9250 break; 9251 } 9252 } 9253 } 9254 9255 void SelectionDAGISel::LowerArguments(const Function &F) { 9256 SelectionDAG &DAG = SDB->DAG; 9257 SDLoc dl = SDB->getCurSDLoc(); 9258 const DataLayout &DL = DAG.getDataLayout(); 9259 SmallVector<ISD::InputArg, 16> Ins; 9260 9261 if (!FuncInfo->CanLowerReturn) { 9262 // Put in an sret pointer parameter before all the other parameters. 9263 SmallVector<EVT, 1> ValueVTs; 9264 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9265 F.getReturnType()->getPointerTo( 9266 DAG.getDataLayout().getAllocaAddrSpace()), 9267 ValueVTs); 9268 9269 // NOTE: Assuming that a pointer will never break down to more than one VT 9270 // or one register. 9271 ISD::ArgFlagsTy Flags; 9272 Flags.setSRet(); 9273 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9274 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9275 ISD::InputArg::NoArgIndex, 0); 9276 Ins.push_back(RetArg); 9277 } 9278 9279 // Look for stores of arguments to static allocas. Mark such arguments with a 9280 // flag to ask the target to give us the memory location of that argument if 9281 // available. 9282 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9283 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9284 9285 // Set up the incoming argument description vector. 9286 for (const Argument &Arg : F.args()) { 9287 unsigned ArgNo = Arg.getArgNo(); 9288 SmallVector<EVT, 4> ValueVTs; 9289 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9290 bool isArgValueUsed = !Arg.use_empty(); 9291 unsigned PartBase = 0; 9292 Type *FinalType = Arg.getType(); 9293 if (Arg.hasAttribute(Attribute::ByVal)) 9294 FinalType = cast<PointerType>(FinalType)->getElementType(); 9295 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9296 FinalType, F.getCallingConv(), F.isVarArg()); 9297 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9298 Value != NumValues; ++Value) { 9299 EVT VT = ValueVTs[Value]; 9300 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9301 ISD::ArgFlagsTy Flags; 9302 9303 // Certain targets (such as MIPS), may have a different ABI alignment 9304 // for a type depending on the context. Give the target a chance to 9305 // specify the alignment it wants. 9306 unsigned OriginalAlignment = 9307 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9308 9309 if (Arg.hasAttribute(Attribute::ZExt)) 9310 Flags.setZExt(); 9311 if (Arg.hasAttribute(Attribute::SExt)) 9312 Flags.setSExt(); 9313 if (Arg.hasAttribute(Attribute::InReg)) { 9314 // If we are using vectorcall calling convention, a structure that is 9315 // passed InReg - is surely an HVA 9316 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9317 isa<StructType>(Arg.getType())) { 9318 // The first value of a structure is marked 9319 if (0 == Value) 9320 Flags.setHvaStart(); 9321 Flags.setHva(); 9322 } 9323 // Set InReg Flag 9324 Flags.setInReg(); 9325 } 9326 if (Arg.hasAttribute(Attribute::StructRet)) 9327 Flags.setSRet(); 9328 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9329 Flags.setSwiftSelf(); 9330 if (Arg.hasAttribute(Attribute::SwiftError)) 9331 Flags.setSwiftError(); 9332 if (Arg.hasAttribute(Attribute::ByVal)) 9333 Flags.setByVal(); 9334 if (Arg.hasAttribute(Attribute::InAlloca)) { 9335 Flags.setInAlloca(); 9336 // Set the byval flag for CCAssignFn callbacks that don't know about 9337 // inalloca. This way we can know how many bytes we should've allocated 9338 // and how many bytes a callee cleanup function will pop. If we port 9339 // inalloca to more targets, we'll have to add custom inalloca handling 9340 // in the various CC lowering callbacks. 9341 Flags.setByVal(); 9342 } 9343 if (F.getCallingConv() == CallingConv::X86_INTR) { 9344 // IA Interrupt passes frame (1st parameter) by value in the stack. 9345 if (ArgNo == 0) 9346 Flags.setByVal(); 9347 } 9348 if (Flags.isByVal() || Flags.isInAlloca()) { 9349 PointerType *Ty = cast<PointerType>(Arg.getType()); 9350 Type *ElementTy = Ty->getElementType(); 9351 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9352 // For ByVal, alignment should be passed from FE. BE will guess if 9353 // this info is not there but there are cases it cannot get right. 9354 unsigned FrameAlign; 9355 if (Arg.getParamAlignment()) 9356 FrameAlign = Arg.getParamAlignment(); 9357 else 9358 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9359 Flags.setByValAlign(FrameAlign); 9360 } 9361 if (Arg.hasAttribute(Attribute::Nest)) 9362 Flags.setNest(); 9363 if (NeedsRegBlock) 9364 Flags.setInConsecutiveRegs(); 9365 Flags.setOrigAlign(OriginalAlignment); 9366 if (ArgCopyElisionCandidates.count(&Arg)) 9367 Flags.setCopyElisionCandidate(); 9368 9369 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9370 *CurDAG->getContext(), F.getCallingConv(), VT); 9371 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9372 *CurDAG->getContext(), F.getCallingConv(), VT); 9373 for (unsigned i = 0; i != NumRegs; ++i) { 9374 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9375 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9376 if (NumRegs > 1 && i == 0) 9377 MyFlags.Flags.setSplit(); 9378 // if it isn't first piece, alignment must be 1 9379 else if (i > 0) { 9380 MyFlags.Flags.setOrigAlign(1); 9381 if (i == NumRegs - 1) 9382 MyFlags.Flags.setSplitEnd(); 9383 } 9384 Ins.push_back(MyFlags); 9385 } 9386 if (NeedsRegBlock && Value == NumValues - 1) 9387 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9388 PartBase += VT.getStoreSize(); 9389 } 9390 } 9391 9392 // Call the target to set up the argument values. 9393 SmallVector<SDValue, 8> InVals; 9394 SDValue NewRoot = TLI->LowerFormalArguments( 9395 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9396 9397 // Verify that the target's LowerFormalArguments behaved as expected. 9398 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9399 "LowerFormalArguments didn't return a valid chain!"); 9400 assert(InVals.size() == Ins.size() && 9401 "LowerFormalArguments didn't emit the correct number of values!"); 9402 LLVM_DEBUG({ 9403 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9404 assert(InVals[i].getNode() && 9405 "LowerFormalArguments emitted a null value!"); 9406 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9407 "LowerFormalArguments emitted a value with the wrong type!"); 9408 } 9409 }); 9410 9411 // Update the DAG with the new chain value resulting from argument lowering. 9412 DAG.setRoot(NewRoot); 9413 9414 // Set up the argument values. 9415 unsigned i = 0; 9416 if (!FuncInfo->CanLowerReturn) { 9417 // Create a virtual register for the sret pointer, and put in a copy 9418 // from the sret argument into it. 9419 SmallVector<EVT, 1> ValueVTs; 9420 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9421 F.getReturnType()->getPointerTo( 9422 DAG.getDataLayout().getAllocaAddrSpace()), 9423 ValueVTs); 9424 MVT VT = ValueVTs[0].getSimpleVT(); 9425 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9426 Optional<ISD::NodeType> AssertOp = None; 9427 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9428 nullptr, F.getCallingConv(), AssertOp); 9429 9430 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9431 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9432 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9433 FuncInfo->DemoteRegister = SRetReg; 9434 NewRoot = 9435 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9436 DAG.setRoot(NewRoot); 9437 9438 // i indexes lowered arguments. Bump it past the hidden sret argument. 9439 ++i; 9440 } 9441 9442 SmallVector<SDValue, 4> Chains; 9443 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9444 for (const Argument &Arg : F.args()) { 9445 SmallVector<SDValue, 4> ArgValues; 9446 SmallVector<EVT, 4> ValueVTs; 9447 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9448 unsigned NumValues = ValueVTs.size(); 9449 if (NumValues == 0) 9450 continue; 9451 9452 bool ArgHasUses = !Arg.use_empty(); 9453 9454 // Elide the copying store if the target loaded this argument from a 9455 // suitable fixed stack object. 9456 if (Ins[i].Flags.isCopyElisionCandidate()) { 9457 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9458 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9459 InVals[i], ArgHasUses); 9460 } 9461 9462 // If this argument is unused then remember its value. It is used to generate 9463 // debugging information. 9464 bool isSwiftErrorArg = 9465 TLI->supportSwiftError() && 9466 Arg.hasAttribute(Attribute::SwiftError); 9467 if (!ArgHasUses && !isSwiftErrorArg) { 9468 SDB->setUnusedArgValue(&Arg, InVals[i]); 9469 9470 // Also remember any frame index for use in FastISel. 9471 if (FrameIndexSDNode *FI = 9472 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9473 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9474 } 9475 9476 for (unsigned Val = 0; Val != NumValues; ++Val) { 9477 EVT VT = ValueVTs[Val]; 9478 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9479 F.getCallingConv(), VT); 9480 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9481 *CurDAG->getContext(), F.getCallingConv(), VT); 9482 9483 // Even an apparant 'unused' swifterror argument needs to be returned. So 9484 // we do generate a copy for it that can be used on return from the 9485 // function. 9486 if (ArgHasUses || isSwiftErrorArg) { 9487 Optional<ISD::NodeType> AssertOp; 9488 if (Arg.hasAttribute(Attribute::SExt)) 9489 AssertOp = ISD::AssertSext; 9490 else if (Arg.hasAttribute(Attribute::ZExt)) 9491 AssertOp = ISD::AssertZext; 9492 9493 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9494 PartVT, VT, nullptr, 9495 F.getCallingConv(), AssertOp)); 9496 } 9497 9498 i += NumParts; 9499 } 9500 9501 // We don't need to do anything else for unused arguments. 9502 if (ArgValues.empty()) 9503 continue; 9504 9505 // Note down frame index. 9506 if (FrameIndexSDNode *FI = 9507 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9508 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9509 9510 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9511 SDB->getCurSDLoc()); 9512 9513 SDB->setValue(&Arg, Res); 9514 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9515 // We want to associate the argument with the frame index, among 9516 // involved operands, that correspond to the lowest address. The 9517 // getCopyFromParts function, called earlier, is swapping the order of 9518 // the operands to BUILD_PAIR depending on endianness. The result of 9519 // that swapping is that the least significant bits of the argument will 9520 // be in the first operand of the BUILD_PAIR node, and the most 9521 // significant bits will be in the second operand. 9522 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9523 if (LoadSDNode *LNode = 9524 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9525 if (FrameIndexSDNode *FI = 9526 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9527 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9528 } 9529 9530 // Update the SwiftErrorVRegDefMap. 9531 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9532 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9533 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9534 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9535 FuncInfo->SwiftErrorArg, Reg); 9536 } 9537 9538 // If this argument is live outside of the entry block, insert a copy from 9539 // wherever we got it to the vreg that other BB's will reference it as. 9540 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9541 // If we can, though, try to skip creating an unnecessary vreg. 9542 // FIXME: This isn't very clean... it would be nice to make this more 9543 // general. It's also subtly incompatible with the hacks FastISel 9544 // uses with vregs. 9545 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9546 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9547 FuncInfo->ValueMap[&Arg] = Reg; 9548 continue; 9549 } 9550 } 9551 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9552 FuncInfo->InitializeRegForValue(&Arg); 9553 SDB->CopyToExportRegsIfNeeded(&Arg); 9554 } 9555 } 9556 9557 if (!Chains.empty()) { 9558 Chains.push_back(NewRoot); 9559 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9560 } 9561 9562 DAG.setRoot(NewRoot); 9563 9564 assert(i == InVals.size() && "Argument register count mismatch!"); 9565 9566 // If any argument copy elisions occurred and we have debug info, update the 9567 // stale frame indices used in the dbg.declare variable info table. 9568 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9569 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9570 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9571 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9572 if (I != ArgCopyElisionFrameIndexMap.end()) 9573 VI.Slot = I->second; 9574 } 9575 } 9576 9577 // Finally, if the target has anything special to do, allow it to do so. 9578 EmitFunctionEntryCode(); 9579 } 9580 9581 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9582 /// ensure constants are generated when needed. Remember the virtual registers 9583 /// that need to be added to the Machine PHI nodes as input. We cannot just 9584 /// directly add them, because expansion might result in multiple MBB's for one 9585 /// BB. As such, the start of the BB might correspond to a different MBB than 9586 /// the end. 9587 void 9588 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9589 const Instruction *TI = LLVMBB->getTerminator(); 9590 9591 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9592 9593 // Check PHI nodes in successors that expect a value to be available from this 9594 // block. 9595 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9596 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9597 if (!isa<PHINode>(SuccBB->begin())) continue; 9598 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9599 9600 // If this terminator has multiple identical successors (common for 9601 // switches), only handle each succ once. 9602 if (!SuccsHandled.insert(SuccMBB).second) 9603 continue; 9604 9605 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9606 9607 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9608 // nodes and Machine PHI nodes, but the incoming operands have not been 9609 // emitted yet. 9610 for (const PHINode &PN : SuccBB->phis()) { 9611 // Ignore dead phi's. 9612 if (PN.use_empty()) 9613 continue; 9614 9615 // Skip empty types 9616 if (PN.getType()->isEmptyTy()) 9617 continue; 9618 9619 unsigned Reg; 9620 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9621 9622 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9623 unsigned &RegOut = ConstantsOut[C]; 9624 if (RegOut == 0) { 9625 RegOut = FuncInfo.CreateRegs(C->getType()); 9626 CopyValueToVirtualRegister(C, RegOut); 9627 } 9628 Reg = RegOut; 9629 } else { 9630 DenseMap<const Value *, unsigned>::iterator I = 9631 FuncInfo.ValueMap.find(PHIOp); 9632 if (I != FuncInfo.ValueMap.end()) 9633 Reg = I->second; 9634 else { 9635 assert(isa<AllocaInst>(PHIOp) && 9636 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9637 "Didn't codegen value into a register!??"); 9638 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9639 CopyValueToVirtualRegister(PHIOp, Reg); 9640 } 9641 } 9642 9643 // Remember that this register needs to added to the machine PHI node as 9644 // the input for this MBB. 9645 SmallVector<EVT, 4> ValueVTs; 9646 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9647 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9648 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9649 EVT VT = ValueVTs[vti]; 9650 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9651 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9652 FuncInfo.PHINodesToUpdate.push_back( 9653 std::make_pair(&*MBBI++, Reg + i)); 9654 Reg += NumRegisters; 9655 } 9656 } 9657 } 9658 9659 ConstantsOut.clear(); 9660 } 9661 9662 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9663 /// is 0. 9664 MachineBasicBlock * 9665 SelectionDAGBuilder::StackProtectorDescriptor:: 9666 AddSuccessorMBB(const BasicBlock *BB, 9667 MachineBasicBlock *ParentMBB, 9668 bool IsLikely, 9669 MachineBasicBlock *SuccMBB) { 9670 // If SuccBB has not been created yet, create it. 9671 if (!SuccMBB) { 9672 MachineFunction *MF = ParentMBB->getParent(); 9673 MachineFunction::iterator BBI(ParentMBB); 9674 SuccMBB = MF->CreateMachineBasicBlock(BB); 9675 MF->insert(++BBI, SuccMBB); 9676 } 9677 // Add it as a successor of ParentMBB. 9678 ParentMBB->addSuccessor( 9679 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9680 return SuccMBB; 9681 } 9682 9683 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9684 MachineFunction::iterator I(MBB); 9685 if (++I == FuncInfo.MF->end()) 9686 return nullptr; 9687 return &*I; 9688 } 9689 9690 /// During lowering new call nodes can be created (such as memset, etc.). 9691 /// Those will become new roots of the current DAG, but complications arise 9692 /// when they are tail calls. In such cases, the call lowering will update 9693 /// the root, but the builder still needs to know that a tail call has been 9694 /// lowered in order to avoid generating an additional return. 9695 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9696 // If the node is null, we do have a tail call. 9697 if (MaybeTC.getNode() != nullptr) 9698 DAG.setRoot(MaybeTC); 9699 else 9700 HasTailCall = true; 9701 } 9702 9703 uint64_t 9704 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9705 unsigned First, unsigned Last) const { 9706 assert(Last >= First); 9707 const APInt &LowCase = Clusters[First].Low->getValue(); 9708 const APInt &HighCase = Clusters[Last].High->getValue(); 9709 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9710 9711 // FIXME: A range of consecutive cases has 100% density, but only requires one 9712 // comparison to lower. We should discriminate against such consecutive ranges 9713 // in jump tables. 9714 9715 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9716 } 9717 9718 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9719 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9720 unsigned Last) const { 9721 assert(Last >= First); 9722 assert(TotalCases[Last] >= TotalCases[First]); 9723 uint64_t NumCases = 9724 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9725 return NumCases; 9726 } 9727 9728 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9729 unsigned First, unsigned Last, 9730 const SwitchInst *SI, 9731 MachineBasicBlock *DefaultMBB, 9732 CaseCluster &JTCluster) { 9733 assert(First <= Last); 9734 9735 auto Prob = BranchProbability::getZero(); 9736 unsigned NumCmps = 0; 9737 std::vector<MachineBasicBlock*> Table; 9738 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9739 9740 // Initialize probabilities in JTProbs. 9741 for (unsigned I = First; I <= Last; ++I) 9742 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9743 9744 for (unsigned I = First; I <= Last; ++I) { 9745 assert(Clusters[I].Kind == CC_Range); 9746 Prob += Clusters[I].Prob; 9747 const APInt &Low = Clusters[I].Low->getValue(); 9748 const APInt &High = Clusters[I].High->getValue(); 9749 NumCmps += (Low == High) ? 1 : 2; 9750 if (I != First) { 9751 // Fill the gap between this and the previous cluster. 9752 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9753 assert(PreviousHigh.slt(Low)); 9754 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9755 for (uint64_t J = 0; J < Gap; J++) 9756 Table.push_back(DefaultMBB); 9757 } 9758 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9759 for (uint64_t J = 0; J < ClusterSize; ++J) 9760 Table.push_back(Clusters[I].MBB); 9761 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9762 } 9763 9764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9765 unsigned NumDests = JTProbs.size(); 9766 if (TLI.isSuitableForBitTests( 9767 NumDests, NumCmps, Clusters[First].Low->getValue(), 9768 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9769 // Clusters[First..Last] should be lowered as bit tests instead. 9770 return false; 9771 } 9772 9773 // Create the MBB that will load from and jump through the table. 9774 // Note: We create it here, but it's not inserted into the function yet. 9775 MachineFunction *CurMF = FuncInfo.MF; 9776 MachineBasicBlock *JumpTableMBB = 9777 CurMF->CreateMachineBasicBlock(SI->getParent()); 9778 9779 // Add successors. Note: use table order for determinism. 9780 SmallPtrSet<MachineBasicBlock *, 8> Done; 9781 for (MachineBasicBlock *Succ : Table) { 9782 if (Done.count(Succ)) 9783 continue; 9784 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9785 Done.insert(Succ); 9786 } 9787 JumpTableMBB->normalizeSuccProbs(); 9788 9789 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9790 ->createJumpTableIndex(Table); 9791 9792 // Set up the jump table info. 9793 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9794 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9795 Clusters[Last].High->getValue(), SI->getCondition(), 9796 nullptr, false); 9797 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9798 9799 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9800 JTCases.size() - 1, Prob); 9801 return true; 9802 } 9803 9804 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9805 const SwitchInst *SI, 9806 MachineBasicBlock *DefaultMBB) { 9807 #ifndef NDEBUG 9808 // Clusters must be non-empty, sorted, and only contain Range clusters. 9809 assert(!Clusters.empty()); 9810 for (CaseCluster &C : Clusters) 9811 assert(C.Kind == CC_Range); 9812 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9813 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9814 #endif 9815 9816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9817 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9818 return; 9819 9820 const int64_t N = Clusters.size(); 9821 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9822 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9823 9824 if (N < 2 || N < MinJumpTableEntries) 9825 return; 9826 9827 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9828 SmallVector<unsigned, 8> TotalCases(N); 9829 for (unsigned i = 0; i < N; ++i) { 9830 const APInt &Hi = Clusters[i].High->getValue(); 9831 const APInt &Lo = Clusters[i].Low->getValue(); 9832 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9833 if (i != 0) 9834 TotalCases[i] += TotalCases[i - 1]; 9835 } 9836 9837 // Cheap case: the whole range may be suitable for jump table. 9838 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9839 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9840 assert(NumCases < UINT64_MAX / 100); 9841 assert(Range >= NumCases); 9842 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9843 CaseCluster JTCluster; 9844 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9845 Clusters[0] = JTCluster; 9846 Clusters.resize(1); 9847 return; 9848 } 9849 } 9850 9851 // The algorithm below is not suitable for -O0. 9852 if (TM.getOptLevel() == CodeGenOpt::None) 9853 return; 9854 9855 // Split Clusters into minimum number of dense partitions. The algorithm uses 9856 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9857 // for the Case Statement'" (1994), but builds the MinPartitions array in 9858 // reverse order to make it easier to reconstruct the partitions in ascending 9859 // order. In the choice between two optimal partitionings, it picks the one 9860 // which yields more jump tables. 9861 9862 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9863 SmallVector<unsigned, 8> MinPartitions(N); 9864 // LastElement[i] is the last element of the partition starting at i. 9865 SmallVector<unsigned, 8> LastElement(N); 9866 // PartitionsScore[i] is used to break ties when choosing between two 9867 // partitionings resulting in the same number of partitions. 9868 SmallVector<unsigned, 8> PartitionsScore(N); 9869 // For PartitionsScore, a small number of comparisons is considered as good as 9870 // a jump table and a single comparison is considered better than a jump 9871 // table. 9872 enum PartitionScores : unsigned { 9873 NoTable = 0, 9874 Table = 1, 9875 FewCases = 1, 9876 SingleCase = 2 9877 }; 9878 9879 // Base case: There is only one way to partition Clusters[N-1]. 9880 MinPartitions[N - 1] = 1; 9881 LastElement[N - 1] = N - 1; 9882 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9883 9884 // Note: loop indexes are signed to avoid underflow. 9885 for (int64_t i = N - 2; i >= 0; i--) { 9886 // Find optimal partitioning of Clusters[i..N-1]. 9887 // Baseline: Put Clusters[i] into a partition on its own. 9888 MinPartitions[i] = MinPartitions[i + 1] + 1; 9889 LastElement[i] = i; 9890 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9891 9892 // Search for a solution that results in fewer partitions. 9893 for (int64_t j = N - 1; j > i; j--) { 9894 // Try building a partition from Clusters[i..j]. 9895 uint64_t Range = getJumpTableRange(Clusters, i, j); 9896 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9897 assert(NumCases < UINT64_MAX / 100); 9898 assert(Range >= NumCases); 9899 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9900 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9901 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9902 int64_t NumEntries = j - i + 1; 9903 9904 if (NumEntries == 1) 9905 Score += PartitionScores::SingleCase; 9906 else if (NumEntries <= SmallNumberOfEntries) 9907 Score += PartitionScores::FewCases; 9908 else if (NumEntries >= MinJumpTableEntries) 9909 Score += PartitionScores::Table; 9910 9911 // If this leads to fewer partitions, or to the same number of 9912 // partitions with better score, it is a better partitioning. 9913 if (NumPartitions < MinPartitions[i] || 9914 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9915 MinPartitions[i] = NumPartitions; 9916 LastElement[i] = j; 9917 PartitionsScore[i] = Score; 9918 } 9919 } 9920 } 9921 } 9922 9923 // Iterate over the partitions, replacing some with jump tables in-place. 9924 unsigned DstIndex = 0; 9925 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9926 Last = LastElement[First]; 9927 assert(Last >= First); 9928 assert(DstIndex <= First); 9929 unsigned NumClusters = Last - First + 1; 9930 9931 CaseCluster JTCluster; 9932 if (NumClusters >= MinJumpTableEntries && 9933 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9934 Clusters[DstIndex++] = JTCluster; 9935 } else { 9936 for (unsigned I = First; I <= Last; ++I) 9937 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9938 } 9939 } 9940 Clusters.resize(DstIndex); 9941 } 9942 9943 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9944 unsigned First, unsigned Last, 9945 const SwitchInst *SI, 9946 CaseCluster &BTCluster) { 9947 assert(First <= Last); 9948 if (First == Last) 9949 return false; 9950 9951 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9952 unsigned NumCmps = 0; 9953 for (int64_t I = First; I <= Last; ++I) { 9954 assert(Clusters[I].Kind == CC_Range); 9955 Dests.set(Clusters[I].MBB->getNumber()); 9956 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9957 } 9958 unsigned NumDests = Dests.count(); 9959 9960 APInt Low = Clusters[First].Low->getValue(); 9961 APInt High = Clusters[Last].High->getValue(); 9962 assert(Low.slt(High)); 9963 9964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9965 const DataLayout &DL = DAG.getDataLayout(); 9966 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9967 return false; 9968 9969 APInt LowBound; 9970 APInt CmpRange; 9971 9972 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9973 assert(TLI.rangeFitsInWord(Low, High, DL) && 9974 "Case range must fit in bit mask!"); 9975 9976 // Check if the clusters cover a contiguous range such that no value in the 9977 // range will jump to the default statement. 9978 bool ContiguousRange = true; 9979 for (int64_t I = First + 1; I <= Last; ++I) { 9980 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9981 ContiguousRange = false; 9982 break; 9983 } 9984 } 9985 9986 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9987 // Optimize the case where all the case values fit in a word without having 9988 // to subtract minValue. In this case, we can optimize away the subtraction. 9989 LowBound = APInt::getNullValue(Low.getBitWidth()); 9990 CmpRange = High; 9991 ContiguousRange = false; 9992 } else { 9993 LowBound = Low; 9994 CmpRange = High - Low; 9995 } 9996 9997 CaseBitsVector CBV; 9998 auto TotalProb = BranchProbability::getZero(); 9999 for (unsigned i = First; i <= Last; ++i) { 10000 // Find the CaseBits for this destination. 10001 unsigned j; 10002 for (j = 0; j < CBV.size(); ++j) 10003 if (CBV[j].BB == Clusters[i].MBB) 10004 break; 10005 if (j == CBV.size()) 10006 CBV.push_back( 10007 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 10008 CaseBits *CB = &CBV[j]; 10009 10010 // Update Mask, Bits and ExtraProb. 10011 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 10012 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 10013 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 10014 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 10015 CB->Bits += Hi - Lo + 1; 10016 CB->ExtraProb += Clusters[i].Prob; 10017 TotalProb += Clusters[i].Prob; 10018 } 10019 10020 BitTestInfo BTI; 10021 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 10022 // Sort by probability first, number of bits second, bit mask third. 10023 if (a.ExtraProb != b.ExtraProb) 10024 return a.ExtraProb > b.ExtraProb; 10025 if (a.Bits != b.Bits) 10026 return a.Bits > b.Bits; 10027 return a.Mask < b.Mask; 10028 }); 10029 10030 for (auto &CB : CBV) { 10031 MachineBasicBlock *BitTestBB = 10032 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 10033 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 10034 } 10035 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 10036 SI->getCondition(), -1U, MVT::Other, false, 10037 ContiguousRange, nullptr, nullptr, std::move(BTI), 10038 TotalProb); 10039 10040 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 10041 BitTestCases.size() - 1, TotalProb); 10042 return true; 10043 } 10044 10045 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 10046 const SwitchInst *SI) { 10047 // Partition Clusters into as few subsets as possible, where each subset has a 10048 // range that fits in a machine word and has <= 3 unique destinations. 10049 10050 #ifndef NDEBUG 10051 // Clusters must be sorted and contain Range or JumpTable clusters. 10052 assert(!Clusters.empty()); 10053 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 10054 for (const CaseCluster &C : Clusters) 10055 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 10056 for (unsigned i = 1; i < Clusters.size(); ++i) 10057 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 10058 #endif 10059 10060 // The algorithm below is not suitable for -O0. 10061 if (TM.getOptLevel() == CodeGenOpt::None) 10062 return; 10063 10064 // If target does not have legal shift left, do not emit bit tests at all. 10065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10066 const DataLayout &DL = DAG.getDataLayout(); 10067 10068 EVT PTy = TLI.getPointerTy(DL); 10069 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 10070 return; 10071 10072 int BitWidth = PTy.getSizeInBits(); 10073 const int64_t N = Clusters.size(); 10074 10075 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10076 SmallVector<unsigned, 8> MinPartitions(N); 10077 // LastElement[i] is the last element of the partition starting at i. 10078 SmallVector<unsigned, 8> LastElement(N); 10079 10080 // FIXME: This might not be the best algorithm for finding bit test clusters. 10081 10082 // Base case: There is only one way to partition Clusters[N-1]. 10083 MinPartitions[N - 1] = 1; 10084 LastElement[N - 1] = N - 1; 10085 10086 // Note: loop indexes are signed to avoid underflow. 10087 for (int64_t i = N - 2; i >= 0; --i) { 10088 // Find optimal partitioning of Clusters[i..N-1]. 10089 // Baseline: Put Clusters[i] into a partition on its own. 10090 MinPartitions[i] = MinPartitions[i + 1] + 1; 10091 LastElement[i] = i; 10092 10093 // Search for a solution that results in fewer partitions. 10094 // Note: the search is limited by BitWidth, reducing time complexity. 10095 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 10096 // Try building a partition from Clusters[i..j]. 10097 10098 // Check the range. 10099 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 10100 Clusters[j].High->getValue(), DL)) 10101 continue; 10102 10103 // Check nbr of destinations and cluster types. 10104 // FIXME: This works, but doesn't seem very efficient. 10105 bool RangesOnly = true; 10106 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10107 for (int64_t k = i; k <= j; k++) { 10108 if (Clusters[k].Kind != CC_Range) { 10109 RangesOnly = false; 10110 break; 10111 } 10112 Dests.set(Clusters[k].MBB->getNumber()); 10113 } 10114 if (!RangesOnly || Dests.count() > 3) 10115 break; 10116 10117 // Check if it's a better partition. 10118 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10119 if (NumPartitions < MinPartitions[i]) { 10120 // Found a better partition. 10121 MinPartitions[i] = NumPartitions; 10122 LastElement[i] = j; 10123 } 10124 } 10125 } 10126 10127 // Iterate over the partitions, replacing with bit-test clusters in-place. 10128 unsigned DstIndex = 0; 10129 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10130 Last = LastElement[First]; 10131 assert(First <= Last); 10132 assert(DstIndex <= First); 10133 10134 CaseCluster BitTestCluster; 10135 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 10136 Clusters[DstIndex++] = BitTestCluster; 10137 } else { 10138 size_t NumClusters = Last - First + 1; 10139 std::memmove(&Clusters[DstIndex], &Clusters[First], 10140 sizeof(Clusters[0]) * NumClusters); 10141 DstIndex += NumClusters; 10142 } 10143 } 10144 Clusters.resize(DstIndex); 10145 } 10146 10147 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10148 MachineBasicBlock *SwitchMBB, 10149 MachineBasicBlock *DefaultMBB) { 10150 MachineFunction *CurMF = FuncInfo.MF; 10151 MachineBasicBlock *NextMBB = nullptr; 10152 MachineFunction::iterator BBI(W.MBB); 10153 if (++BBI != FuncInfo.MF->end()) 10154 NextMBB = &*BBI; 10155 10156 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10157 10158 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10159 10160 if (Size == 2 && W.MBB == SwitchMBB) { 10161 // If any two of the cases has the same destination, and if one value 10162 // is the same as the other, but has one bit unset that the other has set, 10163 // use bit manipulation to do two compares at once. For example: 10164 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10165 // TODO: This could be extended to merge any 2 cases in switches with 3 10166 // cases. 10167 // TODO: Handle cases where W.CaseBB != SwitchBB. 10168 CaseCluster &Small = *W.FirstCluster; 10169 CaseCluster &Big = *W.LastCluster; 10170 10171 if (Small.Low == Small.High && Big.Low == Big.High && 10172 Small.MBB == Big.MBB) { 10173 const APInt &SmallValue = Small.Low->getValue(); 10174 const APInt &BigValue = Big.Low->getValue(); 10175 10176 // Check that there is only one bit different. 10177 APInt CommonBit = BigValue ^ SmallValue; 10178 if (CommonBit.isPowerOf2()) { 10179 SDValue CondLHS = getValue(Cond); 10180 EVT VT = CondLHS.getValueType(); 10181 SDLoc DL = getCurSDLoc(); 10182 10183 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10184 DAG.getConstant(CommonBit, DL, VT)); 10185 SDValue Cond = DAG.getSetCC( 10186 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10187 ISD::SETEQ); 10188 10189 // Update successor info. 10190 // Both Small and Big will jump to Small.BB, so we sum up the 10191 // probabilities. 10192 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10193 if (BPI) 10194 addSuccessorWithProb( 10195 SwitchMBB, DefaultMBB, 10196 // The default destination is the first successor in IR. 10197 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10198 else 10199 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10200 10201 // Insert the true branch. 10202 SDValue BrCond = 10203 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10204 DAG.getBasicBlock(Small.MBB)); 10205 // Insert the false branch. 10206 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10207 DAG.getBasicBlock(DefaultMBB)); 10208 10209 DAG.setRoot(BrCond); 10210 return; 10211 } 10212 } 10213 } 10214 10215 if (TM.getOptLevel() != CodeGenOpt::None) { 10216 // Here, we order cases by probability so the most likely case will be 10217 // checked first. However, two clusters can have the same probability in 10218 // which case their relative ordering is non-deterministic. So we use Low 10219 // as a tie-breaker as clusters are guaranteed to never overlap. 10220 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10221 [](const CaseCluster &a, const CaseCluster &b) { 10222 return a.Prob != b.Prob ? 10223 a.Prob > b.Prob : 10224 a.Low->getValue().slt(b.Low->getValue()); 10225 }); 10226 10227 // Rearrange the case blocks so that the last one falls through if possible 10228 // without changing the order of probabilities. 10229 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10230 --I; 10231 if (I->Prob > W.LastCluster->Prob) 10232 break; 10233 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10234 std::swap(*I, *W.LastCluster); 10235 break; 10236 } 10237 } 10238 } 10239 10240 // Compute total probability. 10241 BranchProbability DefaultProb = W.DefaultProb; 10242 BranchProbability UnhandledProbs = DefaultProb; 10243 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10244 UnhandledProbs += I->Prob; 10245 10246 MachineBasicBlock *CurMBB = W.MBB; 10247 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10248 MachineBasicBlock *Fallthrough; 10249 if (I == W.LastCluster) { 10250 // For the last cluster, fall through to the default destination. 10251 Fallthrough = DefaultMBB; 10252 } else { 10253 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10254 CurMF->insert(BBI, Fallthrough); 10255 // Put Cond in a virtual register to make it available from the new blocks. 10256 ExportFromCurrentBlock(Cond); 10257 } 10258 UnhandledProbs -= I->Prob; 10259 10260 switch (I->Kind) { 10261 case CC_JumpTable: { 10262 // FIXME: Optimize away range check based on pivot comparisons. 10263 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10264 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10265 10266 // The jump block hasn't been inserted yet; insert it here. 10267 MachineBasicBlock *JumpMBB = JT->MBB; 10268 CurMF->insert(BBI, JumpMBB); 10269 10270 auto JumpProb = I->Prob; 10271 auto FallthroughProb = UnhandledProbs; 10272 10273 // If the default statement is a target of the jump table, we evenly 10274 // distribute the default probability to successors of CurMBB. Also 10275 // update the probability on the edge from JumpMBB to Fallthrough. 10276 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10277 SE = JumpMBB->succ_end(); 10278 SI != SE; ++SI) { 10279 if (*SI == DefaultMBB) { 10280 JumpProb += DefaultProb / 2; 10281 FallthroughProb -= DefaultProb / 2; 10282 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10283 JumpMBB->normalizeSuccProbs(); 10284 break; 10285 } 10286 } 10287 10288 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10289 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10290 CurMBB->normalizeSuccProbs(); 10291 10292 // The jump table header will be inserted in our current block, do the 10293 // range check, and fall through to our fallthrough block. 10294 JTH->HeaderBB = CurMBB; 10295 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10296 10297 // If we're in the right place, emit the jump table header right now. 10298 if (CurMBB == SwitchMBB) { 10299 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10300 JTH->Emitted = true; 10301 } 10302 break; 10303 } 10304 case CC_BitTests: { 10305 // FIXME: Optimize away range check based on pivot comparisons. 10306 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10307 10308 // The bit test blocks haven't been inserted yet; insert them here. 10309 for (BitTestCase &BTC : BTB->Cases) 10310 CurMF->insert(BBI, BTC.ThisBB); 10311 10312 // Fill in fields of the BitTestBlock. 10313 BTB->Parent = CurMBB; 10314 BTB->Default = Fallthrough; 10315 10316 BTB->DefaultProb = UnhandledProbs; 10317 // If the cases in bit test don't form a contiguous range, we evenly 10318 // distribute the probability on the edge to Fallthrough to two 10319 // successors of CurMBB. 10320 if (!BTB->ContiguousRange) { 10321 BTB->Prob += DefaultProb / 2; 10322 BTB->DefaultProb -= DefaultProb / 2; 10323 } 10324 10325 // If we're in the right place, emit the bit test header right now. 10326 if (CurMBB == SwitchMBB) { 10327 visitBitTestHeader(*BTB, SwitchMBB); 10328 BTB->Emitted = true; 10329 } 10330 break; 10331 } 10332 case CC_Range: { 10333 const Value *RHS, *LHS, *MHS; 10334 ISD::CondCode CC; 10335 if (I->Low == I->High) { 10336 // Check Cond == I->Low. 10337 CC = ISD::SETEQ; 10338 LHS = Cond; 10339 RHS=I->Low; 10340 MHS = nullptr; 10341 } else { 10342 // Check I->Low <= Cond <= I->High. 10343 CC = ISD::SETLE; 10344 LHS = I->Low; 10345 MHS = Cond; 10346 RHS = I->High; 10347 } 10348 10349 // The false probability is the sum of all unhandled cases. 10350 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10351 getCurSDLoc(), I->Prob, UnhandledProbs); 10352 10353 if (CurMBB == SwitchMBB) 10354 visitSwitchCase(CB, SwitchMBB); 10355 else 10356 SwitchCases.push_back(CB); 10357 10358 break; 10359 } 10360 } 10361 CurMBB = Fallthrough; 10362 } 10363 } 10364 10365 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10366 CaseClusterIt First, 10367 CaseClusterIt Last) { 10368 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10369 if (X.Prob != CC.Prob) 10370 return X.Prob > CC.Prob; 10371 10372 // Ties are broken by comparing the case value. 10373 return X.Low->getValue().slt(CC.Low->getValue()); 10374 }); 10375 } 10376 10377 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10378 const SwitchWorkListItem &W, 10379 Value *Cond, 10380 MachineBasicBlock *SwitchMBB) { 10381 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10382 "Clusters not sorted?"); 10383 10384 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10385 10386 // Balance the tree based on branch probabilities to create a near-optimal (in 10387 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10388 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10389 CaseClusterIt LastLeft = W.FirstCluster; 10390 CaseClusterIt FirstRight = W.LastCluster; 10391 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10392 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10393 10394 // Move LastLeft and FirstRight towards each other from opposite directions to 10395 // find a partitioning of the clusters which balances the probability on both 10396 // sides. If LeftProb and RightProb are equal, alternate which side is 10397 // taken to ensure 0-probability nodes are distributed evenly. 10398 unsigned I = 0; 10399 while (LastLeft + 1 < FirstRight) { 10400 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10401 LeftProb += (++LastLeft)->Prob; 10402 else 10403 RightProb += (--FirstRight)->Prob; 10404 I++; 10405 } 10406 10407 while (true) { 10408 // Our binary search tree differs from a typical BST in that ours can have up 10409 // to three values in each leaf. The pivot selection above doesn't take that 10410 // into account, which means the tree might require more nodes and be less 10411 // efficient. We compensate for this here. 10412 10413 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10414 unsigned NumRight = W.LastCluster - FirstRight + 1; 10415 10416 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10417 // If one side has less than 3 clusters, and the other has more than 3, 10418 // consider taking a cluster from the other side. 10419 10420 if (NumLeft < NumRight) { 10421 // Consider moving the first cluster on the right to the left side. 10422 CaseCluster &CC = *FirstRight; 10423 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10424 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10425 if (LeftSideRank <= RightSideRank) { 10426 // Moving the cluster to the left does not demote it. 10427 ++LastLeft; 10428 ++FirstRight; 10429 continue; 10430 } 10431 } else { 10432 assert(NumRight < NumLeft); 10433 // Consider moving the last element on the left to the right side. 10434 CaseCluster &CC = *LastLeft; 10435 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10436 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10437 if (RightSideRank <= LeftSideRank) { 10438 // Moving the cluster to the right does not demot it. 10439 --LastLeft; 10440 --FirstRight; 10441 continue; 10442 } 10443 } 10444 } 10445 break; 10446 } 10447 10448 assert(LastLeft + 1 == FirstRight); 10449 assert(LastLeft >= W.FirstCluster); 10450 assert(FirstRight <= W.LastCluster); 10451 10452 // Use the first element on the right as pivot since we will make less-than 10453 // comparisons against it. 10454 CaseClusterIt PivotCluster = FirstRight; 10455 assert(PivotCluster > W.FirstCluster); 10456 assert(PivotCluster <= W.LastCluster); 10457 10458 CaseClusterIt FirstLeft = W.FirstCluster; 10459 CaseClusterIt LastRight = W.LastCluster; 10460 10461 const ConstantInt *Pivot = PivotCluster->Low; 10462 10463 // New blocks will be inserted immediately after the current one. 10464 MachineFunction::iterator BBI(W.MBB); 10465 ++BBI; 10466 10467 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10468 // we can branch to its destination directly if it's squeezed exactly in 10469 // between the known lower bound and Pivot - 1. 10470 MachineBasicBlock *LeftMBB; 10471 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10472 FirstLeft->Low == W.GE && 10473 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10474 LeftMBB = FirstLeft->MBB; 10475 } else { 10476 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10477 FuncInfo.MF->insert(BBI, LeftMBB); 10478 WorkList.push_back( 10479 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10480 // Put Cond in a virtual register to make it available from the new blocks. 10481 ExportFromCurrentBlock(Cond); 10482 } 10483 10484 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10485 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10486 // directly if RHS.High equals the current upper bound. 10487 MachineBasicBlock *RightMBB; 10488 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10489 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10490 RightMBB = FirstRight->MBB; 10491 } else { 10492 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10493 FuncInfo.MF->insert(BBI, RightMBB); 10494 WorkList.push_back( 10495 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10496 // Put Cond in a virtual register to make it available from the new blocks. 10497 ExportFromCurrentBlock(Cond); 10498 } 10499 10500 // Create the CaseBlock record that will be used to lower the branch. 10501 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10502 getCurSDLoc(), LeftProb, RightProb); 10503 10504 if (W.MBB == SwitchMBB) 10505 visitSwitchCase(CB, SwitchMBB); 10506 else 10507 SwitchCases.push_back(CB); 10508 } 10509 10510 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10511 // from the swith statement. 10512 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10513 BranchProbability PeeledCaseProb) { 10514 if (PeeledCaseProb == BranchProbability::getOne()) 10515 return BranchProbability::getZero(); 10516 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10517 10518 uint32_t Numerator = CaseProb.getNumerator(); 10519 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10520 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10521 } 10522 10523 // Try to peel the top probability case if it exceeds the threshold. 10524 // Return current MachineBasicBlock for the switch statement if the peeling 10525 // does not occur. 10526 // If the peeling is performed, return the newly created MachineBasicBlock 10527 // for the peeled switch statement. Also update Clusters to remove the peeled 10528 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10529 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10530 const SwitchInst &SI, CaseClusterVector &Clusters, 10531 BranchProbability &PeeledCaseProb) { 10532 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10533 // Don't perform if there is only one cluster or optimizing for size. 10534 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10535 TM.getOptLevel() == CodeGenOpt::None || 10536 SwitchMBB->getParent()->getFunction().optForMinSize()) 10537 return SwitchMBB; 10538 10539 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10540 unsigned PeeledCaseIndex = 0; 10541 bool SwitchPeeled = false; 10542 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10543 CaseCluster &CC = Clusters[Index]; 10544 if (CC.Prob < TopCaseProb) 10545 continue; 10546 TopCaseProb = CC.Prob; 10547 PeeledCaseIndex = Index; 10548 SwitchPeeled = true; 10549 } 10550 if (!SwitchPeeled) 10551 return SwitchMBB; 10552 10553 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10554 << TopCaseProb << "\n"); 10555 10556 // Record the MBB for the peeled switch statement. 10557 MachineFunction::iterator BBI(SwitchMBB); 10558 ++BBI; 10559 MachineBasicBlock *PeeledSwitchMBB = 10560 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10561 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10562 10563 ExportFromCurrentBlock(SI.getCondition()); 10564 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10565 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10566 nullptr, nullptr, TopCaseProb.getCompl()}; 10567 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10568 10569 Clusters.erase(PeeledCaseIt); 10570 for (CaseCluster &CC : Clusters) { 10571 LLVM_DEBUG( 10572 dbgs() << "Scale the probablity for one cluster, before scaling: " 10573 << CC.Prob << "\n"); 10574 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10575 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10576 } 10577 PeeledCaseProb = TopCaseProb; 10578 return PeeledSwitchMBB; 10579 } 10580 10581 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10582 // Extract cases from the switch. 10583 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10584 CaseClusterVector Clusters; 10585 Clusters.reserve(SI.getNumCases()); 10586 for (auto I : SI.cases()) { 10587 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10588 const ConstantInt *CaseVal = I.getCaseValue(); 10589 BranchProbability Prob = 10590 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10591 : BranchProbability(1, SI.getNumCases() + 1); 10592 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10593 } 10594 10595 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10596 10597 // Cluster adjacent cases with the same destination. We do this at all 10598 // optimization levels because it's cheap to do and will make codegen faster 10599 // if there are many clusters. 10600 sortAndRangeify(Clusters); 10601 10602 if (TM.getOptLevel() != CodeGenOpt::None) { 10603 // Replace an unreachable default with the most popular destination. 10604 // FIXME: Exploit unreachable default more aggressively. 10605 bool UnreachableDefault = 10606 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10607 if (UnreachableDefault && !Clusters.empty()) { 10608 DenseMap<const BasicBlock *, unsigned> Popularity; 10609 unsigned MaxPop = 0; 10610 const BasicBlock *MaxBB = nullptr; 10611 for (auto I : SI.cases()) { 10612 const BasicBlock *BB = I.getCaseSuccessor(); 10613 if (++Popularity[BB] > MaxPop) { 10614 MaxPop = Popularity[BB]; 10615 MaxBB = BB; 10616 } 10617 } 10618 // Set new default. 10619 assert(MaxPop > 0 && MaxBB); 10620 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10621 10622 // Remove cases that were pointing to the destination that is now the 10623 // default. 10624 CaseClusterVector New; 10625 New.reserve(Clusters.size()); 10626 for (CaseCluster &CC : Clusters) { 10627 if (CC.MBB != DefaultMBB) 10628 New.push_back(CC); 10629 } 10630 Clusters = std::move(New); 10631 } 10632 } 10633 10634 // The branch probablity of the peeled case. 10635 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10636 MachineBasicBlock *PeeledSwitchMBB = 10637 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10638 10639 // If there is only the default destination, jump there directly. 10640 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10641 if (Clusters.empty()) { 10642 assert(PeeledSwitchMBB == SwitchMBB); 10643 SwitchMBB->addSuccessor(DefaultMBB); 10644 if (DefaultMBB != NextBlock(SwitchMBB)) { 10645 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10646 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10647 } 10648 return; 10649 } 10650 10651 findJumpTables(Clusters, &SI, DefaultMBB); 10652 findBitTestClusters(Clusters, &SI); 10653 10654 LLVM_DEBUG({ 10655 dbgs() << "Case clusters: "; 10656 for (const CaseCluster &C : Clusters) { 10657 if (C.Kind == CC_JumpTable) 10658 dbgs() << "JT:"; 10659 if (C.Kind == CC_BitTests) 10660 dbgs() << "BT:"; 10661 10662 C.Low->getValue().print(dbgs(), true); 10663 if (C.Low != C.High) { 10664 dbgs() << '-'; 10665 C.High->getValue().print(dbgs(), true); 10666 } 10667 dbgs() << ' '; 10668 } 10669 dbgs() << '\n'; 10670 }); 10671 10672 assert(!Clusters.empty()); 10673 SwitchWorkList WorkList; 10674 CaseClusterIt First = Clusters.begin(); 10675 CaseClusterIt Last = Clusters.end() - 1; 10676 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10677 // Scale the branchprobability for DefaultMBB if the peel occurs and 10678 // DefaultMBB is not replaced. 10679 if (PeeledCaseProb != BranchProbability::getZero() && 10680 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10681 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10682 WorkList.push_back( 10683 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10684 10685 while (!WorkList.empty()) { 10686 SwitchWorkListItem W = WorkList.back(); 10687 WorkList.pop_back(); 10688 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10689 10690 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10691 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10692 // For optimized builds, lower large range as a balanced binary tree. 10693 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10694 continue; 10695 } 10696 10697 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10698 } 10699 } 10700