1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 // A dbg.value for an alloca is always indirect. 954 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 955 SDDbgValue *SDV; 956 if (Val.getNode()) { 957 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 958 Val)) { 959 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 960 IsIndirect, Offset, dl, DbgSDNodeOrder); 961 DAG.AddDbgValue(SDV, Val.getNode(), false); 962 } 963 } else 964 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 965 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 966 } 967 } 968 969 /// getCopyFromRegs - If there was virtual register allocated for the value V 970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 972 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 973 SDValue Result; 974 975 if (It != FuncInfo.ValueMap.end()) { 976 unsigned InReg = It->second; 977 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 978 DAG.getDataLayout(), InReg, Ty); 979 SDValue Chain = DAG.getEntryNode(); 980 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 981 resolveDanglingDebugInfo(V, Result); 982 } 983 984 return Result; 985 } 986 987 /// getValue - Return an SDValue for the given Value. 988 SDValue SelectionDAGBuilder::getValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. It's important 990 // to do this first, so that we don't create a CopyFromReg if we already 991 // have a regular SDValue. 992 SDValue &N = NodeMap[V]; 993 if (N.getNode()) return N; 994 995 // If there's a virtual register allocated and initialized for this 996 // value, use it. 997 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 998 if (copyFromReg.getNode()) { 999 return copyFromReg; 1000 } 1001 1002 // Otherwise create a new SDValue and remember it. 1003 SDValue Val = getValueImpl(V); 1004 NodeMap[V] = Val; 1005 resolveDanglingDebugInfo(V, Val); 1006 return Val; 1007 } 1008 1009 // Return true if SDValue exists for the given Value 1010 bool SelectionDAGBuilder::findValue(const Value *V) const { 1011 return (NodeMap.find(V) != NodeMap.end()) || 1012 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1013 } 1014 1015 /// getNonRegisterValue - Return an SDValue for the given Value, but 1016 /// don't look in FuncInfo.ValueMap for a virtual register. 1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) { 1021 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1022 // Remove the debug location from the node as the node is about to be used 1023 // in a location which may differ from the original debug location. This 1024 // is relevant to Constant and ConstantFP nodes because they can appear 1025 // as constant expressions inside PHI nodes. 1026 N->setDebugLoc(DebugLoc()); 1027 } 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1039 /// Create an SDValue for the given value. 1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1042 1043 if (const Constant *C = dyn_cast<Constant>(V)) { 1044 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1045 1046 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1047 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1048 1049 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1050 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1051 1052 if (isa<ConstantPointerNull>(C)) { 1053 unsigned AS = V->getType()->getPointerAddressSpace(); 1054 return DAG.getConstant(0, getCurSDLoc(), 1055 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1056 } 1057 1058 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1059 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1060 1061 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1062 return DAG.getUNDEF(VT); 1063 1064 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1065 visit(CE->getOpcode(), *CE); 1066 SDValue N1 = NodeMap[V]; 1067 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1068 return N1; 1069 } 1070 1071 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1072 SmallVector<SDValue, 4> Constants; 1073 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1074 OI != OE; ++OI) { 1075 SDNode *Val = getValue(*OI).getNode(); 1076 // If the operand is an empty aggregate, there are no values. 1077 if (!Val) continue; 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Constants.push_back(SDValue(Val, i)); 1082 } 1083 1084 return DAG.getMergeValues(Constants, getCurSDLoc()); 1085 } 1086 1087 if (const ConstantDataSequential *CDS = 1088 dyn_cast<ConstantDataSequential>(C)) { 1089 SmallVector<SDValue, 4> Ops; 1090 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1091 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1092 // Add each leaf value from the operand to the Constants list 1093 // to form a flattened list of all the values. 1094 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1095 Ops.push_back(SDValue(Val, i)); 1096 } 1097 1098 if (isa<ArrayType>(CDS->getType())) 1099 return DAG.getMergeValues(Ops, getCurSDLoc()); 1100 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1101 VT, Ops); 1102 } 1103 1104 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1105 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1106 "Unknown struct or array constant!"); 1107 1108 SmallVector<EVT, 4> ValueVTs; 1109 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1110 unsigned NumElts = ValueVTs.size(); 1111 if (NumElts == 0) 1112 return SDValue(); // empty struct 1113 SmallVector<SDValue, 4> Constants(NumElts); 1114 for (unsigned i = 0; i != NumElts; ++i) { 1115 EVT EltVT = ValueVTs[i]; 1116 if (isa<UndefValue>(C)) 1117 Constants[i] = DAG.getUNDEF(EltVT); 1118 else if (EltVT.isFloatingPoint()) 1119 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1120 else 1121 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1122 } 1123 1124 return DAG.getMergeValues(Constants, getCurSDLoc()); 1125 } 1126 1127 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1128 return DAG.getBlockAddress(BA, VT); 1129 1130 VectorType *VecTy = cast<VectorType>(V->getType()); 1131 unsigned NumElements = VecTy->getNumElements(); 1132 1133 // Now that we know the number and type of the elements, get that number of 1134 // elements into the Ops array based on what kind of constant it is. 1135 SmallVector<SDValue, 16> Ops; 1136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1137 for (unsigned i = 0; i != NumElements; ++i) 1138 Ops.push_back(getValue(CV->getOperand(i))); 1139 } else { 1140 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1141 EVT EltVT = 1142 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1143 1144 SDValue Op; 1145 if (EltVT.isFloatingPoint()) 1146 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 Ops.assign(NumElements, Op); 1150 } 1151 1152 // Create a BUILD_VECTOR node. 1153 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1154 } 1155 1156 // If this is a static alloca, generate it as the frameindex instead of 1157 // computation. 1158 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1159 DenseMap<const AllocaInst*, int>::iterator SI = 1160 FuncInfo.StaticAllocaMap.find(AI); 1161 if (SI != FuncInfo.StaticAllocaMap.end()) 1162 return DAG.getFrameIndex(SI->second, 1163 TLI.getPointerTy(DAG.getDataLayout())); 1164 } 1165 1166 // If this is an instruction which fast-isel has deferred, select it now. 1167 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1168 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1169 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1170 Inst->getType()); 1171 SDValue Chain = DAG.getEntryNode(); 1172 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1173 } 1174 1175 llvm_unreachable("Can't get register for value!"); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1179 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1180 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1181 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1182 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1183 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1184 if (IsMSVCCXX || IsCoreCLR) 1185 CatchPadMBB->setIsEHFuncletEntry(); 1186 1187 MachineBasicBlock *NormalDestMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1188 1189 // Update machine-CFG edge. 1190 FuncInfo.MBB->addSuccessor(NormalDestMBB); 1191 1192 SDValue Chain = 1193 DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()); 1194 1195 // If this is not a fall-through branch or optimizations are switched off, 1196 // emit the branch. 1197 if (NormalDestMBB != NextBlock(CatchPadMBB) || 1198 TM.getOptLevel() == CodeGenOpt::None) 1199 Chain = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 1200 DAG.getBasicBlock(NormalDestMBB)); 1201 DAG.setRoot(Chain); 1202 } 1203 1204 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1205 // Update machine-CFG edge. 1206 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1207 FuncInfo.MBB->addSuccessor(TargetMBB); 1208 1209 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1210 bool IsSEH = isAsynchronousEHPersonality(Pers); 1211 if (IsSEH) { 1212 // If this is not a fall-through branch or optimizations are switched off, 1213 // emit the branch. 1214 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1215 TM.getOptLevel() == CodeGenOpt::None) 1216 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1217 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1218 return; 1219 } 1220 1221 // Figure out the funclet membership for the catchret's successor. 1222 // This will be used by the FuncletLayout pass to determine how to order the 1223 // BB's. 1224 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 1225 const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I]; 1226 assert(SuccessorColor && "No parent funclet for catchret!"); 1227 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1228 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1229 1230 // Create the terminator node. 1231 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1232 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1233 DAG.getBasicBlock(SuccessorColorMBB)); 1234 DAG.setRoot(Ret); 1235 } 1236 1237 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1238 llvm_unreachable("should never codegen catchendpads"); 1239 } 1240 1241 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1242 // Don't emit any special code for the cleanuppad instruction. It just marks 1243 // the start of a funclet. 1244 FuncInfo.MBB->setIsEHFuncletEntry(); 1245 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1246 } 1247 1248 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1249 /// many places it could ultimately go. In the IR, we have a single unwind 1250 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1251 /// This function skips over imaginary basic blocks that hold catchpad, 1252 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1253 /// basic block destinations. As those destinations may not be successors of 1254 /// EHPadBB, here we also calculate the edge weight to those destinations. The 1255 /// passed-in Weight is the edge weight to EHPadBB. 1256 static void findUnwindDestinations( 1257 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, uint32_t Weight, 1258 SmallVectorImpl<std::pair<MachineBasicBlock *, uint32_t>> &UnwindDests) { 1259 EHPersonality Personality = 1260 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1261 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1262 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1263 1264 while (EHPadBB) { 1265 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1266 BasicBlock *NewEHPadBB = nullptr; 1267 if (isa<LandingPadInst>(Pad)) { 1268 // Stop on landingpads. They are not funclets. 1269 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1270 break; 1271 } else if (isa<CleanupPadInst>(Pad)) { 1272 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1273 // personalities. 1274 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1275 UnwindDests.back().first->setIsEHFuncletEntry(); 1276 break; 1277 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1278 // Add the catchpad handler to the possible destinations. 1279 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1280 // In MSVC C++, catchblocks are funclets and need prologues. 1281 if (IsMSVCCXX || IsCoreCLR) 1282 UnwindDests.back().first->setIsEHFuncletEntry(); 1283 NewEHPadBB = CPI->getUnwindDest(); 1284 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) 1285 NewEHPadBB = CEPI->getUnwindDest(); 1286 else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) 1287 NewEHPadBB = CEPI->getUnwindDest(); 1288 else 1289 continue; 1290 1291 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1292 if (BPI && NewEHPadBB) { 1293 // When BPI is available, the calculated weight cannot be zero as zero 1294 // will be turned to a default weight in MachineBlockFrequencyInfo. 1295 Weight = std::max<uint32_t>( 1296 BPI->getEdgeProbability(EHPadBB, NewEHPadBB).scale(Weight), 1); 1297 } 1298 EHPadBB = NewEHPadBB; 1299 } 1300 } 1301 1302 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1303 // Update successor info. 1304 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 1305 auto UnwindDest = I.getUnwindDest(); 1306 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1307 uint32_t UnwindDestWeight = 1308 BPI ? BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), UnwindDest) : 0; 1309 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestWeight, UnwindDests); 1310 for (auto &UnwindDest : UnwindDests) { 1311 UnwindDest.first->setIsEHPad(); 1312 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1313 } 1314 1315 // Create the terminator node. 1316 SDValue Ret = 1317 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1318 DAG.setRoot(Ret); 1319 } 1320 1321 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1322 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1323 } 1324 1325 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1326 report_fatal_error("visitTerminatePad not yet implemented!"); 1327 } 1328 1329 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1331 auto &DL = DAG.getDataLayout(); 1332 SDValue Chain = getControlRoot(); 1333 SmallVector<ISD::OutputArg, 8> Outs; 1334 SmallVector<SDValue, 8> OutVals; 1335 1336 if (!FuncInfo.CanLowerReturn) { 1337 unsigned DemoteReg = FuncInfo.DemoteRegister; 1338 const Function *F = I.getParent()->getParent(); 1339 1340 // Emit a store of the return value through the virtual register. 1341 // Leave Outs empty so that LowerReturn won't try to load return 1342 // registers the usual way. 1343 SmallVector<EVT, 1> PtrValueVTs; 1344 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1345 PtrValueVTs); 1346 1347 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1348 DemoteReg, PtrValueVTs[0]); 1349 SDValue RetOp = getValue(I.getOperand(0)); 1350 1351 SmallVector<EVT, 4> ValueVTs; 1352 SmallVector<uint64_t, 4> Offsets; 1353 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1354 unsigned NumValues = ValueVTs.size(); 1355 1356 SmallVector<SDValue, 4> Chains(NumValues); 1357 for (unsigned i = 0; i != NumValues; ++i) { 1358 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1359 RetPtr.getValueType(), RetPtr, 1360 DAG.getIntPtrConstant(Offsets[i], 1361 getCurSDLoc())); 1362 Chains[i] = 1363 DAG.getStore(Chain, getCurSDLoc(), 1364 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1365 // FIXME: better loc info would be nice. 1366 Add, MachinePointerInfo(), false, false, 0); 1367 } 1368 1369 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1370 MVT::Other, Chains); 1371 } else if (I.getNumOperands() != 0) { 1372 SmallVector<EVT, 4> ValueVTs; 1373 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1374 unsigned NumValues = ValueVTs.size(); 1375 if (NumValues) { 1376 SDValue RetOp = getValue(I.getOperand(0)); 1377 1378 const Function *F = I.getParent()->getParent(); 1379 1380 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1381 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1382 Attribute::SExt)) 1383 ExtendKind = ISD::SIGN_EXTEND; 1384 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1385 Attribute::ZExt)) 1386 ExtendKind = ISD::ZERO_EXTEND; 1387 1388 LLVMContext &Context = F->getContext(); 1389 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1390 Attribute::InReg); 1391 1392 for (unsigned j = 0; j != NumValues; ++j) { 1393 EVT VT = ValueVTs[j]; 1394 1395 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1396 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1397 1398 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1399 MVT PartVT = TLI.getRegisterType(Context, VT); 1400 SmallVector<SDValue, 4> Parts(NumParts); 1401 getCopyToParts(DAG, getCurSDLoc(), 1402 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1403 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1404 1405 // 'inreg' on function refers to return value 1406 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1407 if (RetInReg) 1408 Flags.setInReg(); 1409 1410 // Propagate extension type if any 1411 if (ExtendKind == ISD::SIGN_EXTEND) 1412 Flags.setSExt(); 1413 else if (ExtendKind == ISD::ZERO_EXTEND) 1414 Flags.setZExt(); 1415 1416 for (unsigned i = 0; i < NumParts; ++i) { 1417 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1418 VT, /*isfixed=*/true, 0, 0)); 1419 OutVals.push_back(Parts[i]); 1420 } 1421 } 1422 } 1423 } 1424 1425 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1426 CallingConv::ID CallConv = 1427 DAG.getMachineFunction().getFunction()->getCallingConv(); 1428 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1429 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1430 1431 // Verify that the target's LowerReturn behaved as expected. 1432 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1433 "LowerReturn didn't return a valid chain!"); 1434 1435 // Update the DAG with the new chain value resulting from return lowering. 1436 DAG.setRoot(Chain); 1437 } 1438 1439 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1440 /// created for it, emit nodes to copy the value into the virtual 1441 /// registers. 1442 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1443 // Skip empty types 1444 if (V->getType()->isEmptyTy()) 1445 return; 1446 1447 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1448 if (VMI != FuncInfo.ValueMap.end()) { 1449 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1450 CopyValueToVirtualRegister(V, VMI->second); 1451 } 1452 } 1453 1454 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1455 /// the current basic block, add it to ValueMap now so that we'll get a 1456 /// CopyTo/FromReg. 1457 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1458 // No need to export constants. 1459 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1460 1461 // Already exported? 1462 if (FuncInfo.isExportedInst(V)) return; 1463 1464 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1465 CopyValueToVirtualRegister(V, Reg); 1466 } 1467 1468 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1469 const BasicBlock *FromBB) { 1470 // The operands of the setcc have to be in this block. We don't know 1471 // how to export them from some other block. 1472 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1473 // Can export from current BB. 1474 if (VI->getParent() == FromBB) 1475 return true; 1476 1477 // Is already exported, noop. 1478 return FuncInfo.isExportedInst(V); 1479 } 1480 1481 // If this is an argument, we can export it if the BB is the entry block or 1482 // if it is already exported. 1483 if (isa<Argument>(V)) { 1484 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1485 return true; 1486 1487 // Otherwise, can only export this if it is already exported. 1488 return FuncInfo.isExportedInst(V); 1489 } 1490 1491 // Otherwise, constants can always be exported. 1492 return true; 1493 } 1494 1495 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1496 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1497 const MachineBasicBlock *Dst) const { 1498 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1499 if (!BPI) 1500 return 0; 1501 const BasicBlock *SrcBB = Src->getBasicBlock(); 1502 const BasicBlock *DstBB = Dst->getBasicBlock(); 1503 return BPI->getEdgeWeight(SrcBB, DstBB); 1504 } 1505 1506 void SelectionDAGBuilder:: 1507 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1508 uint32_t Weight /* = 0 */) { 1509 if (!FuncInfo.BPI) 1510 Src->addSuccessorWithoutWeight(Dst); 1511 else { 1512 if (!Weight) 1513 Weight = getEdgeWeight(Src, Dst); 1514 Src->addSuccessor(Dst, Weight); 1515 } 1516 } 1517 1518 1519 static bool InBlock(const Value *V, const BasicBlock *BB) { 1520 if (const Instruction *I = dyn_cast<Instruction>(V)) 1521 return I->getParent() == BB; 1522 return true; 1523 } 1524 1525 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1526 /// This function emits a branch and is used at the leaves of an OR or an 1527 /// AND operator tree. 1528 /// 1529 void 1530 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1531 MachineBasicBlock *TBB, 1532 MachineBasicBlock *FBB, 1533 MachineBasicBlock *CurBB, 1534 MachineBasicBlock *SwitchBB, 1535 uint32_t TWeight, 1536 uint32_t FWeight) { 1537 const BasicBlock *BB = CurBB->getBasicBlock(); 1538 1539 // If the leaf of the tree is a comparison, merge the condition into 1540 // the caseblock. 1541 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1542 // The operands of the cmp have to be in this block. We don't know 1543 // how to export them from some other block. If this is the first block 1544 // of the sequence, no exporting is needed. 1545 if (CurBB == SwitchBB || 1546 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1547 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1548 ISD::CondCode Condition; 1549 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1550 Condition = getICmpCondCode(IC->getPredicate()); 1551 } else { 1552 const FCmpInst *FC = cast<FCmpInst>(Cond); 1553 Condition = getFCmpCondCode(FC->getPredicate()); 1554 if (TM.Options.NoNaNsFPMath) 1555 Condition = getFCmpCodeWithoutNaN(Condition); 1556 } 1557 1558 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1559 TBB, FBB, CurBB, TWeight, FWeight); 1560 SwitchCases.push_back(CB); 1561 return; 1562 } 1563 } 1564 1565 // Create a CaseBlock record representing this branch. 1566 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1567 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1568 SwitchCases.push_back(CB); 1569 } 1570 1571 /// Scale down both weights to fit into uint32_t. 1572 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1573 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1574 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1575 NewTrue = NewTrue / Scale; 1576 NewFalse = NewFalse / Scale; 1577 } 1578 1579 /// FindMergedConditions - If Cond is an expression like 1580 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1581 MachineBasicBlock *TBB, 1582 MachineBasicBlock *FBB, 1583 MachineBasicBlock *CurBB, 1584 MachineBasicBlock *SwitchBB, 1585 Instruction::BinaryOps Opc, 1586 uint32_t TWeight, 1587 uint32_t FWeight) { 1588 // If this node is not part of the or/and tree, emit it as a branch. 1589 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1590 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1591 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1592 BOp->getParent() != CurBB->getBasicBlock() || 1593 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1594 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1595 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1596 TWeight, FWeight); 1597 return; 1598 } 1599 1600 // Create TmpBB after CurBB. 1601 MachineFunction::iterator BBI(CurBB); 1602 MachineFunction &MF = DAG.getMachineFunction(); 1603 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1604 CurBB->getParent()->insert(++BBI, TmpBB); 1605 1606 if (Opc == Instruction::Or) { 1607 // Codegen X | Y as: 1608 // BB1: 1609 // jmp_if_X TBB 1610 // jmp TmpBB 1611 // TmpBB: 1612 // jmp_if_Y TBB 1613 // jmp FBB 1614 // 1615 1616 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1617 // The requirement is that 1618 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1619 // = TrueProb for original BB. 1620 // Assuming the original weights are A and B, one choice is to set BB1's 1621 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1622 // assumes that 1623 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1624 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1625 // TmpBB, but the math is more complicated. 1626 1627 uint64_t NewTrueWeight = TWeight; 1628 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1629 ScaleWeights(NewTrueWeight, NewFalseWeight); 1630 // Emit the LHS condition. 1631 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1632 NewTrueWeight, NewFalseWeight); 1633 1634 NewTrueWeight = TWeight; 1635 NewFalseWeight = 2 * (uint64_t)FWeight; 1636 ScaleWeights(NewTrueWeight, NewFalseWeight); 1637 // Emit the RHS condition into TmpBB. 1638 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1639 NewTrueWeight, NewFalseWeight); 1640 } else { 1641 assert(Opc == Instruction::And && "Unknown merge op!"); 1642 // Codegen X & Y as: 1643 // BB1: 1644 // jmp_if_X TmpBB 1645 // jmp FBB 1646 // TmpBB: 1647 // jmp_if_Y TBB 1648 // jmp FBB 1649 // 1650 // This requires creation of TmpBB after CurBB. 1651 1652 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1653 // The requirement is that 1654 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1655 // = FalseProb for original BB. 1656 // Assuming the original weights are A and B, one choice is to set BB1's 1657 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1658 // assumes that 1659 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1660 1661 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1662 uint64_t NewFalseWeight = FWeight; 1663 ScaleWeights(NewTrueWeight, NewFalseWeight); 1664 // Emit the LHS condition. 1665 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1666 NewTrueWeight, NewFalseWeight); 1667 1668 NewTrueWeight = 2 * (uint64_t)TWeight; 1669 NewFalseWeight = FWeight; 1670 ScaleWeights(NewTrueWeight, NewFalseWeight); 1671 // Emit the RHS condition into TmpBB. 1672 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1673 NewTrueWeight, NewFalseWeight); 1674 } 1675 } 1676 1677 /// If the set of cases should be emitted as a series of branches, return true. 1678 /// If we should emit this as a bunch of and/or'd together conditions, return 1679 /// false. 1680 bool 1681 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1682 if (Cases.size() != 2) return true; 1683 1684 // If this is two comparisons of the same values or'd or and'd together, they 1685 // will get folded into a single comparison, so don't emit two blocks. 1686 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1687 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1688 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1689 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1690 return false; 1691 } 1692 1693 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1694 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1695 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1696 Cases[0].CC == Cases[1].CC && 1697 isa<Constant>(Cases[0].CmpRHS) && 1698 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1699 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1700 return false; 1701 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1702 return false; 1703 } 1704 1705 return true; 1706 } 1707 1708 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1709 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1710 1711 // Update machine-CFG edges. 1712 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1713 1714 if (I.isUnconditional()) { 1715 // Update machine-CFG edges. 1716 BrMBB->addSuccessor(Succ0MBB); 1717 1718 // If this is not a fall-through branch or optimizations are switched off, 1719 // emit the branch. 1720 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1721 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1722 MVT::Other, getControlRoot(), 1723 DAG.getBasicBlock(Succ0MBB))); 1724 1725 return; 1726 } 1727 1728 // If this condition is one of the special cases we handle, do special stuff 1729 // now. 1730 const Value *CondVal = I.getCondition(); 1731 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1732 1733 // If this is a series of conditions that are or'd or and'd together, emit 1734 // this as a sequence of branches instead of setcc's with and/or operations. 1735 // As long as jumps are not expensive, this should improve performance. 1736 // For example, instead of something like: 1737 // cmp A, B 1738 // C = seteq 1739 // cmp D, E 1740 // F = setle 1741 // or C, F 1742 // jnz foo 1743 // Emit: 1744 // cmp A, B 1745 // je foo 1746 // cmp D, E 1747 // jle foo 1748 // 1749 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1750 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1751 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1752 !I.getMetadata(LLVMContext::MD_unpredictable) && 1753 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1754 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1755 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1756 getEdgeWeight(BrMBB, Succ1MBB)); 1757 // If the compares in later blocks need to use values not currently 1758 // exported from this block, export them now. This block should always 1759 // be the first entry. 1760 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1761 1762 // Allow some cases to be rejected. 1763 if (ShouldEmitAsBranches(SwitchCases)) { 1764 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1765 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1766 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1767 } 1768 1769 // Emit the branch for this block. 1770 visitSwitchCase(SwitchCases[0], BrMBB); 1771 SwitchCases.erase(SwitchCases.begin()); 1772 return; 1773 } 1774 1775 // Okay, we decided not to do this, remove any inserted MBB's and clear 1776 // SwitchCases. 1777 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1778 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1779 1780 SwitchCases.clear(); 1781 } 1782 } 1783 1784 // Create a CaseBlock record representing this branch. 1785 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1786 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1787 1788 // Use visitSwitchCase to actually insert the fast branch sequence for this 1789 // cond branch. 1790 visitSwitchCase(CB, BrMBB); 1791 } 1792 1793 /// visitSwitchCase - Emits the necessary code to represent a single node in 1794 /// the binary search tree resulting from lowering a switch instruction. 1795 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1796 MachineBasicBlock *SwitchBB) { 1797 SDValue Cond; 1798 SDValue CondLHS = getValue(CB.CmpLHS); 1799 SDLoc dl = getCurSDLoc(); 1800 1801 // Build the setcc now. 1802 if (!CB.CmpMHS) { 1803 // Fold "(X == true)" to X and "(X == false)" to !X to 1804 // handle common cases produced by branch lowering. 1805 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1806 CB.CC == ISD::SETEQ) 1807 Cond = CondLHS; 1808 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1809 CB.CC == ISD::SETEQ) { 1810 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1811 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1812 } else 1813 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1814 } else { 1815 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1816 1817 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1818 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1819 1820 SDValue CmpOp = getValue(CB.CmpMHS); 1821 EVT VT = CmpOp.getValueType(); 1822 1823 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1824 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1825 ISD::SETLE); 1826 } else { 1827 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1828 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1829 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1830 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1831 } 1832 } 1833 1834 // Update successor info 1835 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1836 // TrueBB and FalseBB are always different unless the incoming IR is 1837 // degenerate. This only happens when running llc on weird IR. 1838 if (CB.TrueBB != CB.FalseBB) 1839 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1840 1841 // If the lhs block is the next block, invert the condition so that we can 1842 // fall through to the lhs instead of the rhs block. 1843 if (CB.TrueBB == NextBlock(SwitchBB)) { 1844 std::swap(CB.TrueBB, CB.FalseBB); 1845 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1846 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1847 } 1848 1849 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1850 MVT::Other, getControlRoot(), Cond, 1851 DAG.getBasicBlock(CB.TrueBB)); 1852 1853 // Insert the false branch. Do this even if it's a fall through branch, 1854 // this makes it easier to do DAG optimizations which require inverting 1855 // the branch condition. 1856 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1857 DAG.getBasicBlock(CB.FalseBB)); 1858 1859 DAG.setRoot(BrCond); 1860 } 1861 1862 /// visitJumpTable - Emit JumpTable node in the current MBB 1863 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1864 // Emit the code for the jump table 1865 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1866 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1867 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1868 JT.Reg, PTy); 1869 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1870 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1871 MVT::Other, Index.getValue(1), 1872 Table, Index); 1873 DAG.setRoot(BrJumpTable); 1874 } 1875 1876 /// visitJumpTableHeader - This function emits necessary code to produce index 1877 /// in the JumpTable from switch case. 1878 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1879 JumpTableHeader &JTH, 1880 MachineBasicBlock *SwitchBB) { 1881 SDLoc dl = getCurSDLoc(); 1882 1883 // Subtract the lowest switch case value from the value being switched on and 1884 // conditional branch to default mbb if the result is greater than the 1885 // difference between smallest and largest cases. 1886 SDValue SwitchOp = getValue(JTH.SValue); 1887 EVT VT = SwitchOp.getValueType(); 1888 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1889 DAG.getConstant(JTH.First, dl, VT)); 1890 1891 // The SDNode we just created, which holds the value being switched on minus 1892 // the smallest case value, needs to be copied to a virtual register so it 1893 // can be used as an index into the jump table in a subsequent basic block. 1894 // This value may be smaller or larger than the target's pointer type, and 1895 // therefore require extension or truncating. 1896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1897 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1898 1899 unsigned JumpTableReg = 1900 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1901 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1902 JumpTableReg, SwitchOp); 1903 JT.Reg = JumpTableReg; 1904 1905 // Emit the range check for the jump table, and branch to the default block 1906 // for the switch statement if the value being switched on exceeds the largest 1907 // case in the switch. 1908 SDValue CMP = DAG.getSetCC( 1909 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1910 Sub.getValueType()), 1911 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1912 1913 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1914 MVT::Other, CopyTo, CMP, 1915 DAG.getBasicBlock(JT.Default)); 1916 1917 // Avoid emitting unnecessary branches to the next block. 1918 if (JT.MBB != NextBlock(SwitchBB)) 1919 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1920 DAG.getBasicBlock(JT.MBB)); 1921 1922 DAG.setRoot(BrCond); 1923 } 1924 1925 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1926 /// tail spliced into a stack protector check success bb. 1927 /// 1928 /// For a high level explanation of how this fits into the stack protector 1929 /// generation see the comment on the declaration of class 1930 /// StackProtectorDescriptor. 1931 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1932 MachineBasicBlock *ParentBB) { 1933 1934 // First create the loads to the guard/stack slot for the comparison. 1935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1936 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1937 1938 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1939 int FI = MFI->getStackProtectorIndex(); 1940 1941 const Value *IRGuard = SPD.getGuard(); 1942 SDValue GuardPtr = getValue(IRGuard); 1943 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1944 1945 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1946 1947 SDValue Guard; 1948 SDLoc dl = getCurSDLoc(); 1949 1950 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1951 // guard value from the virtual register holding the value. Otherwise, emit a 1952 // volatile load to retrieve the stack guard value. 1953 unsigned GuardReg = SPD.getGuardReg(); 1954 1955 if (GuardReg && TLI.useLoadStackGuardNode()) 1956 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1957 PtrTy); 1958 else 1959 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1960 GuardPtr, MachinePointerInfo(IRGuard, 0), 1961 true, false, false, Align); 1962 1963 SDValue StackSlot = DAG.getLoad( 1964 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1965 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1966 false, false, Align); 1967 1968 // Perform the comparison via a subtract/getsetcc. 1969 EVT VT = Guard.getValueType(); 1970 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1971 1972 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1973 *DAG.getContext(), 1974 Sub.getValueType()), 1975 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1976 1977 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1978 // branch to failure MBB. 1979 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1980 MVT::Other, StackSlot.getOperand(0), 1981 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1982 // Otherwise branch to success MBB. 1983 SDValue Br = DAG.getNode(ISD::BR, dl, 1984 MVT::Other, BrCond, 1985 DAG.getBasicBlock(SPD.getSuccessMBB())); 1986 1987 DAG.setRoot(Br); 1988 } 1989 1990 /// Codegen the failure basic block for a stack protector check. 1991 /// 1992 /// A failure stack protector machine basic block consists simply of a call to 1993 /// __stack_chk_fail(). 1994 /// 1995 /// For a high level explanation of how this fits into the stack protector 1996 /// generation see the comment on the declaration of class 1997 /// StackProtectorDescriptor. 1998 void 1999 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2000 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2001 SDValue Chain = 2002 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2003 None, false, getCurSDLoc(), false, false).second; 2004 DAG.setRoot(Chain); 2005 } 2006 2007 /// visitBitTestHeader - This function emits necessary code to produce value 2008 /// suitable for "bit tests" 2009 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2010 MachineBasicBlock *SwitchBB) { 2011 SDLoc dl = getCurSDLoc(); 2012 2013 // Subtract the minimum value 2014 SDValue SwitchOp = getValue(B.SValue); 2015 EVT VT = SwitchOp.getValueType(); 2016 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2017 DAG.getConstant(B.First, dl, VT)); 2018 2019 // Check range 2020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2021 SDValue RangeCmp = DAG.getSetCC( 2022 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2023 Sub.getValueType()), 2024 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2025 2026 // Determine the type of the test operands. 2027 bool UsePtrType = false; 2028 if (!TLI.isTypeLegal(VT)) 2029 UsePtrType = true; 2030 else { 2031 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2032 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2033 // Switch table case range are encoded into series of masks. 2034 // Just use pointer type, it's guaranteed to fit. 2035 UsePtrType = true; 2036 break; 2037 } 2038 } 2039 if (UsePtrType) { 2040 VT = TLI.getPointerTy(DAG.getDataLayout()); 2041 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2042 } 2043 2044 B.RegVT = VT.getSimpleVT(); 2045 B.Reg = FuncInfo.CreateReg(B.RegVT); 2046 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2047 2048 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2049 2050 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 2051 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 2052 2053 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2054 MVT::Other, CopyTo, RangeCmp, 2055 DAG.getBasicBlock(B.Default)); 2056 2057 // Avoid emitting unnecessary branches to the next block. 2058 if (MBB != NextBlock(SwitchBB)) 2059 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2060 DAG.getBasicBlock(MBB)); 2061 2062 DAG.setRoot(BrRange); 2063 } 2064 2065 /// visitBitTestCase - this function produces one "bit test" 2066 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2067 MachineBasicBlock* NextMBB, 2068 uint32_t BranchWeightToNext, 2069 unsigned Reg, 2070 BitTestCase &B, 2071 MachineBasicBlock *SwitchBB) { 2072 SDLoc dl = getCurSDLoc(); 2073 MVT VT = BB.RegVT; 2074 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2075 SDValue Cmp; 2076 unsigned PopCount = countPopulation(B.Mask); 2077 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2078 if (PopCount == 1) { 2079 // Testing for a single bit; just compare the shift count with what it 2080 // would need to be to shift a 1 bit in that position. 2081 Cmp = DAG.getSetCC( 2082 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2083 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2084 ISD::SETEQ); 2085 } else if (PopCount == BB.Range) { 2086 // There is only one zero bit in the range, test for it directly. 2087 Cmp = DAG.getSetCC( 2088 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2089 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2090 ISD::SETNE); 2091 } else { 2092 // Make desired shift 2093 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2094 DAG.getConstant(1, dl, VT), ShiftOp); 2095 2096 // Emit bit tests and jumps 2097 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2098 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2099 Cmp = DAG.getSetCC( 2100 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2101 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2102 } 2103 2104 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2105 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2106 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2107 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2108 2109 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2110 MVT::Other, getControlRoot(), 2111 Cmp, DAG.getBasicBlock(B.TargetBB)); 2112 2113 // Avoid emitting unnecessary branches to the next block. 2114 if (NextMBB != NextBlock(SwitchBB)) 2115 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2116 DAG.getBasicBlock(NextMBB)); 2117 2118 DAG.setRoot(BrAnd); 2119 } 2120 2121 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2122 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2123 2124 // Retrieve successors. Look through artificial IR level blocks like catchpads 2125 // and catchendpads for successors. 2126 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2127 const BasicBlock *EHPadBB = I.getSuccessor(1); 2128 2129 const Value *Callee(I.getCalledValue()); 2130 const Function *Fn = dyn_cast<Function>(Callee); 2131 if (isa<InlineAsm>(Callee)) 2132 visitInlineAsm(&I); 2133 else if (Fn && Fn->isIntrinsic()) { 2134 switch (Fn->getIntrinsicID()) { 2135 default: 2136 llvm_unreachable("Cannot invoke this intrinsic"); 2137 case Intrinsic::donothing: 2138 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2139 break; 2140 case Intrinsic::experimental_patchpoint_void: 2141 case Intrinsic::experimental_patchpoint_i64: 2142 visitPatchpoint(&I, EHPadBB); 2143 break; 2144 case Intrinsic::experimental_gc_statepoint: 2145 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2146 break; 2147 } 2148 } else 2149 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2150 2151 // If the value of the invoke is used outside of its defining block, make it 2152 // available as a virtual register. 2153 // We already took care of the exported value for the statepoint instruction 2154 // during call to the LowerStatepoint. 2155 if (!isStatepoint(I)) { 2156 CopyToExportRegsIfNeeded(&I); 2157 } 2158 2159 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 2160 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2161 uint32_t EHPadBBWeight = 2162 BPI ? BPI->getEdgeWeight(InvokeMBB->getBasicBlock(), EHPadBB) : 0; 2163 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBWeight, UnwindDests); 2164 2165 // Update successor info. 2166 addSuccessorWithWeight(InvokeMBB, Return); 2167 for (auto &UnwindDest : UnwindDests) { 2168 UnwindDest.first->setIsEHPad(); 2169 addSuccessorWithWeight(InvokeMBB, UnwindDest.first, UnwindDest.second); 2170 } 2171 2172 // Drop into normal successor. 2173 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2174 MVT::Other, getControlRoot(), 2175 DAG.getBasicBlock(Return))); 2176 } 2177 2178 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2179 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2180 } 2181 2182 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2183 assert(FuncInfo.MBB->isEHPad() && 2184 "Call to landingpad not in landing pad!"); 2185 2186 MachineBasicBlock *MBB = FuncInfo.MBB; 2187 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2188 AddLandingPadInfo(LP, MMI, MBB); 2189 2190 // If there aren't registers to copy the values into (e.g., during SjLj 2191 // exceptions), then don't bother to create these DAG nodes. 2192 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2193 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2194 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2195 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2196 return; 2197 2198 SmallVector<EVT, 2> ValueVTs; 2199 SDLoc dl = getCurSDLoc(); 2200 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2201 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2202 2203 // Get the two live-in registers as SDValues. The physregs have already been 2204 // copied into virtual registers. 2205 SDValue Ops[2]; 2206 if (FuncInfo.ExceptionPointerVirtReg) { 2207 Ops[0] = DAG.getZExtOrTrunc( 2208 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2209 FuncInfo.ExceptionPointerVirtReg, 2210 TLI.getPointerTy(DAG.getDataLayout())), 2211 dl, ValueVTs[0]); 2212 } else { 2213 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2214 } 2215 Ops[1] = DAG.getZExtOrTrunc( 2216 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2217 FuncInfo.ExceptionSelectorVirtReg, 2218 TLI.getPointerTy(DAG.getDataLayout())), 2219 dl, ValueVTs[1]); 2220 2221 // Merge into one. 2222 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2223 DAG.getVTList(ValueVTs), Ops); 2224 setValue(&LP, Res); 2225 } 2226 2227 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2228 #ifndef NDEBUG 2229 for (const CaseCluster &CC : Clusters) 2230 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2231 #endif 2232 2233 std::sort(Clusters.begin(), Clusters.end(), 2234 [](const CaseCluster &a, const CaseCluster &b) { 2235 return a.Low->getValue().slt(b.Low->getValue()); 2236 }); 2237 2238 // Merge adjacent clusters with the same destination. 2239 const unsigned N = Clusters.size(); 2240 unsigned DstIndex = 0; 2241 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2242 CaseCluster &CC = Clusters[SrcIndex]; 2243 const ConstantInt *CaseVal = CC.Low; 2244 MachineBasicBlock *Succ = CC.MBB; 2245 2246 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2247 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2248 // If this case has the same successor and is a neighbour, merge it into 2249 // the previous cluster. 2250 Clusters[DstIndex - 1].High = CaseVal; 2251 Clusters[DstIndex - 1].Weight += CC.Weight; 2252 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2253 } else { 2254 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2255 sizeof(Clusters[SrcIndex])); 2256 } 2257 } 2258 Clusters.resize(DstIndex); 2259 } 2260 2261 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2262 MachineBasicBlock *Last) { 2263 // Update JTCases. 2264 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2265 if (JTCases[i].first.HeaderBB == First) 2266 JTCases[i].first.HeaderBB = Last; 2267 2268 // Update BitTestCases. 2269 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2270 if (BitTestCases[i].Parent == First) 2271 BitTestCases[i].Parent = Last; 2272 } 2273 2274 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2275 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2276 2277 // Update machine-CFG edges with unique successors. 2278 SmallSet<BasicBlock*, 32> Done; 2279 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2280 BasicBlock *BB = I.getSuccessor(i); 2281 bool Inserted = Done.insert(BB).second; 2282 if (!Inserted) 2283 continue; 2284 2285 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2286 addSuccessorWithWeight(IndirectBrMBB, Succ); 2287 } 2288 2289 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2290 MVT::Other, getControlRoot(), 2291 getValue(I.getAddress()))); 2292 } 2293 2294 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2295 if (DAG.getTarget().Options.TrapUnreachable) 2296 DAG.setRoot( 2297 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2298 } 2299 2300 void SelectionDAGBuilder::visitFSub(const User &I) { 2301 // -0.0 - X --> fneg 2302 Type *Ty = I.getType(); 2303 if (isa<Constant>(I.getOperand(0)) && 2304 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2305 SDValue Op2 = getValue(I.getOperand(1)); 2306 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2307 Op2.getValueType(), Op2)); 2308 return; 2309 } 2310 2311 visitBinary(I, ISD::FSUB); 2312 } 2313 2314 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2315 SDValue Op1 = getValue(I.getOperand(0)); 2316 SDValue Op2 = getValue(I.getOperand(1)); 2317 2318 bool nuw = false; 2319 bool nsw = false; 2320 bool exact = false; 2321 FastMathFlags FMF; 2322 2323 if (const OverflowingBinaryOperator *OFBinOp = 2324 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2325 nuw = OFBinOp->hasNoUnsignedWrap(); 2326 nsw = OFBinOp->hasNoSignedWrap(); 2327 } 2328 if (const PossiblyExactOperator *ExactOp = 2329 dyn_cast<const PossiblyExactOperator>(&I)) 2330 exact = ExactOp->isExact(); 2331 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2332 FMF = FPOp->getFastMathFlags(); 2333 2334 SDNodeFlags Flags; 2335 Flags.setExact(exact); 2336 Flags.setNoSignedWrap(nsw); 2337 Flags.setNoUnsignedWrap(nuw); 2338 if (EnableFMFInDAG) { 2339 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2340 Flags.setNoInfs(FMF.noInfs()); 2341 Flags.setNoNaNs(FMF.noNaNs()); 2342 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2343 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2344 } 2345 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2346 Op1, Op2, &Flags); 2347 setValue(&I, BinNodeValue); 2348 } 2349 2350 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2351 SDValue Op1 = getValue(I.getOperand(0)); 2352 SDValue Op2 = getValue(I.getOperand(1)); 2353 2354 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2355 Op2.getValueType(), DAG.getDataLayout()); 2356 2357 // Coerce the shift amount to the right type if we can. 2358 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2359 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2360 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2361 SDLoc DL = getCurSDLoc(); 2362 2363 // If the operand is smaller than the shift count type, promote it. 2364 if (ShiftSize > Op2Size) 2365 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2366 2367 // If the operand is larger than the shift count type but the shift 2368 // count type has enough bits to represent any shift value, truncate 2369 // it now. This is a common case and it exposes the truncate to 2370 // optimization early. 2371 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2372 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2373 // Otherwise we'll need to temporarily settle for some other convenient 2374 // type. Type legalization will make adjustments once the shiftee is split. 2375 else 2376 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2377 } 2378 2379 bool nuw = false; 2380 bool nsw = false; 2381 bool exact = false; 2382 2383 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2384 2385 if (const OverflowingBinaryOperator *OFBinOp = 2386 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2387 nuw = OFBinOp->hasNoUnsignedWrap(); 2388 nsw = OFBinOp->hasNoSignedWrap(); 2389 } 2390 if (const PossiblyExactOperator *ExactOp = 2391 dyn_cast<const PossiblyExactOperator>(&I)) 2392 exact = ExactOp->isExact(); 2393 } 2394 SDNodeFlags Flags; 2395 Flags.setExact(exact); 2396 Flags.setNoSignedWrap(nsw); 2397 Flags.setNoUnsignedWrap(nuw); 2398 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2399 &Flags); 2400 setValue(&I, Res); 2401 } 2402 2403 void SelectionDAGBuilder::visitSDiv(const User &I) { 2404 SDValue Op1 = getValue(I.getOperand(0)); 2405 SDValue Op2 = getValue(I.getOperand(1)); 2406 2407 SDNodeFlags Flags; 2408 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2409 cast<PossiblyExactOperator>(&I)->isExact()); 2410 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2411 Op2, &Flags)); 2412 } 2413 2414 void SelectionDAGBuilder::visitICmp(const User &I) { 2415 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2416 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2417 predicate = IC->getPredicate(); 2418 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2419 predicate = ICmpInst::Predicate(IC->getPredicate()); 2420 SDValue Op1 = getValue(I.getOperand(0)); 2421 SDValue Op2 = getValue(I.getOperand(1)); 2422 ISD::CondCode Opcode = getICmpCondCode(predicate); 2423 2424 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2425 I.getType()); 2426 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2427 } 2428 2429 void SelectionDAGBuilder::visitFCmp(const User &I) { 2430 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2431 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2432 predicate = FC->getPredicate(); 2433 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2434 predicate = FCmpInst::Predicate(FC->getPredicate()); 2435 SDValue Op1 = getValue(I.getOperand(0)); 2436 SDValue Op2 = getValue(I.getOperand(1)); 2437 ISD::CondCode Condition = getFCmpCondCode(predicate); 2438 2439 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2440 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2441 // further optimization, but currently FMF is only applicable to binary nodes. 2442 if (TM.Options.NoNaNsFPMath) 2443 Condition = getFCmpCodeWithoutNaN(Condition); 2444 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2445 I.getType()); 2446 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2447 } 2448 2449 void SelectionDAGBuilder::visitSelect(const User &I) { 2450 SmallVector<EVT, 4> ValueVTs; 2451 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2452 ValueVTs); 2453 unsigned NumValues = ValueVTs.size(); 2454 if (NumValues == 0) return; 2455 2456 SmallVector<SDValue, 4> Values(NumValues); 2457 SDValue Cond = getValue(I.getOperand(0)); 2458 SDValue LHSVal = getValue(I.getOperand(1)); 2459 SDValue RHSVal = getValue(I.getOperand(2)); 2460 auto BaseOps = {Cond}; 2461 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2462 ISD::VSELECT : ISD::SELECT; 2463 2464 // Min/max matching is only viable if all output VTs are the same. 2465 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2466 EVT VT = ValueVTs[0]; 2467 LLVMContext &Ctx = *DAG.getContext(); 2468 auto &TLI = DAG.getTargetLoweringInfo(); 2469 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2470 VT = TLI.getTypeToTransformTo(Ctx, VT); 2471 2472 Value *LHS, *RHS; 2473 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2474 ISD::NodeType Opc = ISD::DELETED_NODE; 2475 switch (SPR.Flavor) { 2476 case SPF_UMAX: Opc = ISD::UMAX; break; 2477 case SPF_UMIN: Opc = ISD::UMIN; break; 2478 case SPF_SMAX: Opc = ISD::SMAX; break; 2479 case SPF_SMIN: Opc = ISD::SMIN; break; 2480 case SPF_FMINNUM: 2481 switch (SPR.NaNBehavior) { 2482 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2483 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2484 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2485 case SPNB_RETURNS_ANY: 2486 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2487 : ISD::FMINNAN; 2488 break; 2489 } 2490 break; 2491 case SPF_FMAXNUM: 2492 switch (SPR.NaNBehavior) { 2493 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2494 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2495 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2496 case SPNB_RETURNS_ANY: 2497 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2498 : ISD::FMAXNAN; 2499 break; 2500 } 2501 break; 2502 default: break; 2503 } 2504 2505 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2506 // If the underlying comparison instruction is used by any other instruction, 2507 // the consumed instructions won't be destroyed, so it is not profitable 2508 // to convert to a min/max. 2509 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2510 OpCode = Opc; 2511 LHSVal = getValue(LHS); 2512 RHSVal = getValue(RHS); 2513 BaseOps = {}; 2514 } 2515 } 2516 2517 for (unsigned i = 0; i != NumValues; ++i) { 2518 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2519 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2520 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2521 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2522 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2523 Ops); 2524 } 2525 2526 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2527 DAG.getVTList(ValueVTs), Values)); 2528 } 2529 2530 void SelectionDAGBuilder::visitTrunc(const User &I) { 2531 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2532 SDValue N = getValue(I.getOperand(0)); 2533 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2534 I.getType()); 2535 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2536 } 2537 2538 void SelectionDAGBuilder::visitZExt(const User &I) { 2539 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2540 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2541 SDValue N = getValue(I.getOperand(0)); 2542 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2543 I.getType()); 2544 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2545 } 2546 2547 void SelectionDAGBuilder::visitSExt(const User &I) { 2548 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2549 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2550 SDValue N = getValue(I.getOperand(0)); 2551 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2552 I.getType()); 2553 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2554 } 2555 2556 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2557 // FPTrunc is never a no-op cast, no need to check 2558 SDValue N = getValue(I.getOperand(0)); 2559 SDLoc dl = getCurSDLoc(); 2560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2561 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2562 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2563 DAG.getTargetConstant( 2564 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2565 } 2566 2567 void SelectionDAGBuilder::visitFPExt(const User &I) { 2568 // FPExt is never a no-op cast, no need to check 2569 SDValue N = getValue(I.getOperand(0)); 2570 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2571 I.getType()); 2572 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2573 } 2574 2575 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2576 // FPToUI is never a no-op cast, no need to check 2577 SDValue N = getValue(I.getOperand(0)); 2578 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2579 I.getType()); 2580 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2581 } 2582 2583 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2584 // FPToSI is never a no-op cast, no need to check 2585 SDValue N = getValue(I.getOperand(0)); 2586 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2587 I.getType()); 2588 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2589 } 2590 2591 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2592 // UIToFP is never a no-op cast, no need to check 2593 SDValue N = getValue(I.getOperand(0)); 2594 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2595 I.getType()); 2596 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2597 } 2598 2599 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2600 // SIToFP is never a no-op cast, no need to check 2601 SDValue N = getValue(I.getOperand(0)); 2602 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2603 I.getType()); 2604 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2605 } 2606 2607 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2608 // What to do depends on the size of the integer and the size of the pointer. 2609 // We can either truncate, zero extend, or no-op, accordingly. 2610 SDValue N = getValue(I.getOperand(0)); 2611 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2612 I.getType()); 2613 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2614 } 2615 2616 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2617 // What to do depends on the size of the integer and the size of the pointer. 2618 // We can either truncate, zero extend, or no-op, accordingly. 2619 SDValue N = getValue(I.getOperand(0)); 2620 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2621 I.getType()); 2622 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2623 } 2624 2625 void SelectionDAGBuilder::visitBitCast(const User &I) { 2626 SDValue N = getValue(I.getOperand(0)); 2627 SDLoc dl = getCurSDLoc(); 2628 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2629 I.getType()); 2630 2631 // BitCast assures us that source and destination are the same size so this is 2632 // either a BITCAST or a no-op. 2633 if (DestVT != N.getValueType()) 2634 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2635 DestVT, N)); // convert types. 2636 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2637 // might fold any kind of constant expression to an integer constant and that 2638 // is not what we are looking for. Only regcognize a bitcast of a genuine 2639 // constant integer as an opaque constant. 2640 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2641 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2642 /*isOpaque*/true)); 2643 else 2644 setValue(&I, N); // noop cast. 2645 } 2646 2647 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2649 const Value *SV = I.getOperand(0); 2650 SDValue N = getValue(SV); 2651 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2652 2653 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2654 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2655 2656 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2657 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2658 2659 setValue(&I, N); 2660 } 2661 2662 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2664 SDValue InVec = getValue(I.getOperand(0)); 2665 SDValue InVal = getValue(I.getOperand(1)); 2666 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2667 TLI.getVectorIdxTy(DAG.getDataLayout())); 2668 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2669 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2670 InVec, InVal, InIdx)); 2671 } 2672 2673 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2675 SDValue InVec = getValue(I.getOperand(0)); 2676 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2677 TLI.getVectorIdxTy(DAG.getDataLayout())); 2678 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2679 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2680 InVec, InIdx)); 2681 } 2682 2683 // Utility for visitShuffleVector - Return true if every element in Mask, 2684 // beginning from position Pos and ending in Pos+Size, falls within the 2685 // specified sequential range [L, L+Pos). or is undef. 2686 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2687 unsigned Pos, unsigned Size, int Low) { 2688 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2689 if (Mask[i] >= 0 && Mask[i] != Low) 2690 return false; 2691 return true; 2692 } 2693 2694 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2695 SDValue Src1 = getValue(I.getOperand(0)); 2696 SDValue Src2 = getValue(I.getOperand(1)); 2697 2698 SmallVector<int, 8> Mask; 2699 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2700 unsigned MaskNumElts = Mask.size(); 2701 2702 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2703 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2704 EVT SrcVT = Src1.getValueType(); 2705 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2706 2707 if (SrcNumElts == MaskNumElts) { 2708 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2709 &Mask[0])); 2710 return; 2711 } 2712 2713 // Normalize the shuffle vector since mask and vector length don't match. 2714 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2715 // Mask is longer than the source vectors and is a multiple of the source 2716 // vectors. We can use concatenate vector to make the mask and vectors 2717 // lengths match. 2718 if (SrcNumElts*2 == MaskNumElts) { 2719 // First check for Src1 in low and Src2 in high 2720 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2721 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2722 // The shuffle is concatenating two vectors together. 2723 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2724 VT, Src1, Src2)); 2725 return; 2726 } 2727 // Then check for Src2 in low and Src1 in high 2728 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2729 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2730 // The shuffle is concatenating two vectors together. 2731 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2732 VT, Src2, Src1)); 2733 return; 2734 } 2735 } 2736 2737 // Pad both vectors with undefs to make them the same length as the mask. 2738 unsigned NumConcat = MaskNumElts / SrcNumElts; 2739 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2740 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2741 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2742 2743 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2744 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2745 MOps1[0] = Src1; 2746 MOps2[0] = Src2; 2747 2748 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2749 getCurSDLoc(), VT, MOps1); 2750 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2751 getCurSDLoc(), VT, MOps2); 2752 2753 // Readjust mask for new input vector length. 2754 SmallVector<int, 8> MappedOps; 2755 for (unsigned i = 0; i != MaskNumElts; ++i) { 2756 int Idx = Mask[i]; 2757 if (Idx >= (int)SrcNumElts) 2758 Idx -= SrcNumElts - MaskNumElts; 2759 MappedOps.push_back(Idx); 2760 } 2761 2762 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2763 &MappedOps[0])); 2764 return; 2765 } 2766 2767 if (SrcNumElts > MaskNumElts) { 2768 // Analyze the access pattern of the vector to see if we can extract 2769 // two subvectors and do the shuffle. The analysis is done by calculating 2770 // the range of elements the mask access on both vectors. 2771 int MinRange[2] = { static_cast<int>(SrcNumElts), 2772 static_cast<int>(SrcNumElts)}; 2773 int MaxRange[2] = {-1, -1}; 2774 2775 for (unsigned i = 0; i != MaskNumElts; ++i) { 2776 int Idx = Mask[i]; 2777 unsigned Input = 0; 2778 if (Idx < 0) 2779 continue; 2780 2781 if (Idx >= (int)SrcNumElts) { 2782 Input = 1; 2783 Idx -= SrcNumElts; 2784 } 2785 if (Idx > MaxRange[Input]) 2786 MaxRange[Input] = Idx; 2787 if (Idx < MinRange[Input]) 2788 MinRange[Input] = Idx; 2789 } 2790 2791 // Check if the access is smaller than the vector size and can we find 2792 // a reasonable extract index. 2793 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2794 // Extract. 2795 int StartIdx[2]; // StartIdx to extract from 2796 for (unsigned Input = 0; Input < 2; ++Input) { 2797 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2798 RangeUse[Input] = 0; // Unused 2799 StartIdx[Input] = 0; 2800 continue; 2801 } 2802 2803 // Find a good start index that is a multiple of the mask length. Then 2804 // see if the rest of the elements are in range. 2805 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2806 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2807 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2808 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2809 } 2810 2811 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2812 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2813 return; 2814 } 2815 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2816 // Extract appropriate subvector and generate a vector shuffle 2817 for (unsigned Input = 0; Input < 2; ++Input) { 2818 SDValue &Src = Input == 0 ? Src1 : Src2; 2819 if (RangeUse[Input] == 0) 2820 Src = DAG.getUNDEF(VT); 2821 else { 2822 SDLoc dl = getCurSDLoc(); 2823 Src = DAG.getNode( 2824 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2825 DAG.getConstant(StartIdx[Input], dl, 2826 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2827 } 2828 } 2829 2830 // Calculate new mask. 2831 SmallVector<int, 8> MappedOps; 2832 for (unsigned i = 0; i != MaskNumElts; ++i) { 2833 int Idx = Mask[i]; 2834 if (Idx >= 0) { 2835 if (Idx < (int)SrcNumElts) 2836 Idx -= StartIdx[0]; 2837 else 2838 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2839 } 2840 MappedOps.push_back(Idx); 2841 } 2842 2843 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2844 &MappedOps[0])); 2845 return; 2846 } 2847 } 2848 2849 // We can't use either concat vectors or extract subvectors so fall back to 2850 // replacing the shuffle with extract and build vector. 2851 // to insert and build vector. 2852 EVT EltVT = VT.getVectorElementType(); 2853 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2854 SDLoc dl = getCurSDLoc(); 2855 SmallVector<SDValue,8> Ops; 2856 for (unsigned i = 0; i != MaskNumElts; ++i) { 2857 int Idx = Mask[i]; 2858 SDValue Res; 2859 2860 if (Idx < 0) { 2861 Res = DAG.getUNDEF(EltVT); 2862 } else { 2863 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2864 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2865 2866 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2867 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2868 } 2869 2870 Ops.push_back(Res); 2871 } 2872 2873 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2874 } 2875 2876 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2877 const Value *Op0 = I.getOperand(0); 2878 const Value *Op1 = I.getOperand(1); 2879 Type *AggTy = I.getType(); 2880 Type *ValTy = Op1->getType(); 2881 bool IntoUndef = isa<UndefValue>(Op0); 2882 bool FromUndef = isa<UndefValue>(Op1); 2883 2884 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2885 2886 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2887 SmallVector<EVT, 4> AggValueVTs; 2888 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2889 SmallVector<EVT, 4> ValValueVTs; 2890 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2891 2892 unsigned NumAggValues = AggValueVTs.size(); 2893 unsigned NumValValues = ValValueVTs.size(); 2894 SmallVector<SDValue, 4> Values(NumAggValues); 2895 2896 // Ignore an insertvalue that produces an empty object 2897 if (!NumAggValues) { 2898 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2899 return; 2900 } 2901 2902 SDValue Agg = getValue(Op0); 2903 unsigned i = 0; 2904 // Copy the beginning value(s) from the original aggregate. 2905 for (; i != LinearIndex; ++i) 2906 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2907 SDValue(Agg.getNode(), Agg.getResNo() + i); 2908 // Copy values from the inserted value(s). 2909 if (NumValValues) { 2910 SDValue Val = getValue(Op1); 2911 for (; i != LinearIndex + NumValValues; ++i) 2912 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2913 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2914 } 2915 // Copy remaining value(s) from the original aggregate. 2916 for (; i != NumAggValues; ++i) 2917 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2918 SDValue(Agg.getNode(), Agg.getResNo() + i); 2919 2920 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2921 DAG.getVTList(AggValueVTs), Values)); 2922 } 2923 2924 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2925 const Value *Op0 = I.getOperand(0); 2926 Type *AggTy = Op0->getType(); 2927 Type *ValTy = I.getType(); 2928 bool OutOfUndef = isa<UndefValue>(Op0); 2929 2930 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2931 2932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2933 SmallVector<EVT, 4> ValValueVTs; 2934 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2935 2936 unsigned NumValValues = ValValueVTs.size(); 2937 2938 // Ignore a extractvalue that produces an empty object 2939 if (!NumValValues) { 2940 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2941 return; 2942 } 2943 2944 SmallVector<SDValue, 4> Values(NumValValues); 2945 2946 SDValue Agg = getValue(Op0); 2947 // Copy out the selected value(s). 2948 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2949 Values[i - LinearIndex] = 2950 OutOfUndef ? 2951 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2952 SDValue(Agg.getNode(), Agg.getResNo() + i); 2953 2954 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2955 DAG.getVTList(ValValueVTs), Values)); 2956 } 2957 2958 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2959 Value *Op0 = I.getOperand(0); 2960 // Note that the pointer operand may be a vector of pointers. Take the scalar 2961 // element which holds a pointer. 2962 Type *Ty = Op0->getType()->getScalarType(); 2963 unsigned AS = Ty->getPointerAddressSpace(); 2964 SDValue N = getValue(Op0); 2965 SDLoc dl = getCurSDLoc(); 2966 2967 // Normalize Vector GEP - all scalar operands should be converted to the 2968 // splat vector. 2969 unsigned VectorWidth = I.getType()->isVectorTy() ? 2970 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2971 2972 if (VectorWidth && !N.getValueType().isVector()) { 2973 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2974 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2975 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2976 } 2977 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2978 OI != E; ++OI) { 2979 const Value *Idx = *OI; 2980 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2981 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2982 if (Field) { 2983 // N = N + Offset 2984 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2985 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2986 DAG.getConstant(Offset, dl, N.getValueType())); 2987 } 2988 2989 Ty = StTy->getElementType(Field); 2990 } else { 2991 Ty = cast<SequentialType>(Ty)->getElementType(); 2992 MVT PtrTy = 2993 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2994 unsigned PtrSize = PtrTy.getSizeInBits(); 2995 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2996 2997 // If this is a scalar constant or a splat vector of constants, 2998 // handle it quickly. 2999 const auto *CI = dyn_cast<ConstantInt>(Idx); 3000 if (!CI && isa<ConstantDataVector>(Idx) && 3001 cast<ConstantDataVector>(Idx)->getSplatValue()) 3002 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3003 3004 if (CI) { 3005 if (CI->isZero()) 3006 continue; 3007 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3008 SDValue OffsVal = VectorWidth ? 3009 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3010 DAG.getConstant(Offs, dl, PtrTy); 3011 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3012 continue; 3013 } 3014 3015 // N = N + Idx * ElementSize; 3016 SDValue IdxN = getValue(Idx); 3017 3018 if (!IdxN.getValueType().isVector() && VectorWidth) { 3019 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3020 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3021 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3022 } 3023 // If the index is smaller or larger than intptr_t, truncate or extend 3024 // it. 3025 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3026 3027 // If this is a multiply by a power of two, turn it into a shl 3028 // immediately. This is a very common case. 3029 if (ElementSize != 1) { 3030 if (ElementSize.isPowerOf2()) { 3031 unsigned Amt = ElementSize.logBase2(); 3032 IdxN = DAG.getNode(ISD::SHL, dl, 3033 N.getValueType(), IdxN, 3034 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3035 } else { 3036 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3037 IdxN = DAG.getNode(ISD::MUL, dl, 3038 N.getValueType(), IdxN, Scale); 3039 } 3040 } 3041 3042 N = DAG.getNode(ISD::ADD, dl, 3043 N.getValueType(), N, IdxN); 3044 } 3045 } 3046 3047 setValue(&I, N); 3048 } 3049 3050 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3051 // If this is a fixed sized alloca in the entry block of the function, 3052 // allocate it statically on the stack. 3053 if (FuncInfo.StaticAllocaMap.count(&I)) 3054 return; // getValue will auto-populate this. 3055 3056 SDLoc dl = getCurSDLoc(); 3057 Type *Ty = I.getAllocatedType(); 3058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3059 auto &DL = DAG.getDataLayout(); 3060 uint64_t TySize = DL.getTypeAllocSize(Ty); 3061 unsigned Align = 3062 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3063 3064 SDValue AllocSize = getValue(I.getArraySize()); 3065 3066 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3067 if (AllocSize.getValueType() != IntPtr) 3068 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3069 3070 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3071 AllocSize, 3072 DAG.getConstant(TySize, dl, IntPtr)); 3073 3074 // Handle alignment. If the requested alignment is less than or equal to 3075 // the stack alignment, ignore it. If the size is greater than or equal to 3076 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3077 unsigned StackAlign = 3078 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3079 if (Align <= StackAlign) 3080 Align = 0; 3081 3082 // Round the size of the allocation up to the stack alignment size 3083 // by add SA-1 to the size. 3084 AllocSize = DAG.getNode(ISD::ADD, dl, 3085 AllocSize.getValueType(), AllocSize, 3086 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3087 3088 // Mask out the low bits for alignment purposes. 3089 AllocSize = DAG.getNode(ISD::AND, dl, 3090 AllocSize.getValueType(), AllocSize, 3091 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3092 dl)); 3093 3094 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3095 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3096 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3097 setValue(&I, DSA); 3098 DAG.setRoot(DSA.getValue(1)); 3099 3100 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3101 } 3102 3103 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3104 if (I.isAtomic()) 3105 return visitAtomicLoad(I); 3106 3107 const Value *SV = I.getOperand(0); 3108 SDValue Ptr = getValue(SV); 3109 3110 Type *Ty = I.getType(); 3111 3112 bool isVolatile = I.isVolatile(); 3113 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3114 3115 // The IR notion of invariant_load only guarantees that all *non-faulting* 3116 // invariant loads result in the same value. The MI notion of invariant load 3117 // guarantees that the load can be legally moved to any location within its 3118 // containing function. The MI notion of invariant_load is stronger than the 3119 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3120 // with a guarantee that the location being loaded from is dereferenceable 3121 // throughout the function's lifetime. 3122 3123 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3124 isDereferenceablePointer(SV, DAG.getDataLayout()); 3125 unsigned Alignment = I.getAlignment(); 3126 3127 AAMDNodes AAInfo; 3128 I.getAAMetadata(AAInfo); 3129 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3130 3131 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3132 SmallVector<EVT, 4> ValueVTs; 3133 SmallVector<uint64_t, 4> Offsets; 3134 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3135 unsigned NumValues = ValueVTs.size(); 3136 if (NumValues == 0) 3137 return; 3138 3139 SDValue Root; 3140 bool ConstantMemory = false; 3141 if (isVolatile || NumValues > MaxParallelChains) 3142 // Serialize volatile loads with other side effects. 3143 Root = getRoot(); 3144 else if (AA->pointsToConstantMemory(MemoryLocation( 3145 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3146 // Do not serialize (non-volatile) loads of constant memory with anything. 3147 Root = DAG.getEntryNode(); 3148 ConstantMemory = true; 3149 } else { 3150 // Do not serialize non-volatile loads against each other. 3151 Root = DAG.getRoot(); 3152 } 3153 3154 SDLoc dl = getCurSDLoc(); 3155 3156 if (isVolatile) 3157 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3158 3159 SmallVector<SDValue, 4> Values(NumValues); 3160 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3161 EVT PtrVT = Ptr.getValueType(); 3162 unsigned ChainI = 0; 3163 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3164 // Serializing loads here may result in excessive register pressure, and 3165 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3166 // could recover a bit by hoisting nodes upward in the chain by recognizing 3167 // they are side-effect free or do not alias. The optimizer should really 3168 // avoid this case by converting large object/array copies to llvm.memcpy 3169 // (MaxParallelChains should always remain as failsafe). 3170 if (ChainI == MaxParallelChains) { 3171 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3172 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3173 makeArrayRef(Chains.data(), ChainI)); 3174 Root = Chain; 3175 ChainI = 0; 3176 } 3177 SDValue A = DAG.getNode(ISD::ADD, dl, 3178 PtrVT, Ptr, 3179 DAG.getConstant(Offsets[i], dl, PtrVT)); 3180 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3181 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3182 isNonTemporal, isInvariant, Alignment, AAInfo, 3183 Ranges); 3184 3185 Values[i] = L; 3186 Chains[ChainI] = L.getValue(1); 3187 } 3188 3189 if (!ConstantMemory) { 3190 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3191 makeArrayRef(Chains.data(), ChainI)); 3192 if (isVolatile) 3193 DAG.setRoot(Chain); 3194 else 3195 PendingLoads.push_back(Chain); 3196 } 3197 3198 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3199 DAG.getVTList(ValueVTs), Values)); 3200 } 3201 3202 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3203 if (I.isAtomic()) 3204 return visitAtomicStore(I); 3205 3206 const Value *SrcV = I.getOperand(0); 3207 const Value *PtrV = I.getOperand(1); 3208 3209 SmallVector<EVT, 4> ValueVTs; 3210 SmallVector<uint64_t, 4> Offsets; 3211 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3212 SrcV->getType(), ValueVTs, &Offsets); 3213 unsigned NumValues = ValueVTs.size(); 3214 if (NumValues == 0) 3215 return; 3216 3217 // Get the lowered operands. Note that we do this after 3218 // checking if NumResults is zero, because with zero results 3219 // the operands won't have values in the map. 3220 SDValue Src = getValue(SrcV); 3221 SDValue Ptr = getValue(PtrV); 3222 3223 SDValue Root = getRoot(); 3224 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3225 EVT PtrVT = Ptr.getValueType(); 3226 bool isVolatile = I.isVolatile(); 3227 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3228 unsigned Alignment = I.getAlignment(); 3229 SDLoc dl = getCurSDLoc(); 3230 3231 AAMDNodes AAInfo; 3232 I.getAAMetadata(AAInfo); 3233 3234 unsigned ChainI = 0; 3235 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3236 // See visitLoad comments. 3237 if (ChainI == MaxParallelChains) { 3238 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3239 makeArrayRef(Chains.data(), ChainI)); 3240 Root = Chain; 3241 ChainI = 0; 3242 } 3243 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3244 DAG.getConstant(Offsets[i], dl, PtrVT)); 3245 SDValue St = DAG.getStore(Root, dl, 3246 SDValue(Src.getNode(), Src.getResNo() + i), 3247 Add, MachinePointerInfo(PtrV, Offsets[i]), 3248 isVolatile, isNonTemporal, Alignment, AAInfo); 3249 Chains[ChainI] = St; 3250 } 3251 3252 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3253 makeArrayRef(Chains.data(), ChainI)); 3254 DAG.setRoot(StoreNode); 3255 } 3256 3257 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3258 SDLoc sdl = getCurSDLoc(); 3259 3260 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3261 Value *PtrOperand = I.getArgOperand(1); 3262 SDValue Ptr = getValue(PtrOperand); 3263 SDValue Src0 = getValue(I.getArgOperand(0)); 3264 SDValue Mask = getValue(I.getArgOperand(3)); 3265 EVT VT = Src0.getValueType(); 3266 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3267 if (!Alignment) 3268 Alignment = DAG.getEVTAlignment(VT); 3269 3270 AAMDNodes AAInfo; 3271 I.getAAMetadata(AAInfo); 3272 3273 MachineMemOperand *MMO = 3274 DAG.getMachineFunction(). 3275 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3276 MachineMemOperand::MOStore, VT.getStoreSize(), 3277 Alignment, AAInfo); 3278 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3279 MMO, false); 3280 DAG.setRoot(StoreNode); 3281 setValue(&I, StoreNode); 3282 } 3283 3284 // Get a uniform base for the Gather/Scatter intrinsic. 3285 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3286 // We try to represent it as a base pointer + vector of indices. 3287 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3288 // The first operand of the GEP may be a single pointer or a vector of pointers 3289 // Example: 3290 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3291 // or 3292 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3293 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3294 // 3295 // When the first GEP operand is a single pointer - it is the uniform base we 3296 // are looking for. If first operand of the GEP is a splat vector - we 3297 // extract the spalt value and use it as a uniform base. 3298 // In all other cases the function returns 'false'. 3299 // 3300 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3301 SelectionDAGBuilder* SDB) { 3302 3303 SelectionDAG& DAG = SDB->DAG; 3304 LLVMContext &Context = *DAG.getContext(); 3305 3306 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3307 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3308 if (!GEP || GEP->getNumOperands() > 2) 3309 return false; 3310 3311 Value *GEPPtr = GEP->getPointerOperand(); 3312 if (!GEPPtr->getType()->isVectorTy()) 3313 Ptr = GEPPtr; 3314 else if (!(Ptr = getSplatValue(GEPPtr))) 3315 return false; 3316 3317 Value *IndexVal = GEP->getOperand(1); 3318 3319 // The operands of the GEP may be defined in another basic block. 3320 // In this case we'll not find nodes for the operands. 3321 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3322 return false; 3323 3324 Base = SDB->getValue(Ptr); 3325 Index = SDB->getValue(IndexVal); 3326 3327 // Suppress sign extension. 3328 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3329 if (SDB->findValue(Sext->getOperand(0))) { 3330 IndexVal = Sext->getOperand(0); 3331 Index = SDB->getValue(IndexVal); 3332 } 3333 } 3334 if (!Index.getValueType().isVector()) { 3335 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3336 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3337 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3338 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3339 } 3340 return true; 3341 } 3342 3343 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3344 SDLoc sdl = getCurSDLoc(); 3345 3346 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3347 Value *Ptr = I.getArgOperand(1); 3348 SDValue Src0 = getValue(I.getArgOperand(0)); 3349 SDValue Mask = getValue(I.getArgOperand(3)); 3350 EVT VT = Src0.getValueType(); 3351 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3352 if (!Alignment) 3353 Alignment = DAG.getEVTAlignment(VT); 3354 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3355 3356 AAMDNodes AAInfo; 3357 I.getAAMetadata(AAInfo); 3358 3359 SDValue Base; 3360 SDValue Index; 3361 Value *BasePtr = Ptr; 3362 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3363 3364 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3365 MachineMemOperand *MMO = DAG.getMachineFunction(). 3366 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3367 MachineMemOperand::MOStore, VT.getStoreSize(), 3368 Alignment, AAInfo); 3369 if (!UniformBase) { 3370 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3371 Index = getValue(Ptr); 3372 } 3373 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3374 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3375 Ops, MMO); 3376 DAG.setRoot(Scatter); 3377 setValue(&I, Scatter); 3378 } 3379 3380 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3381 SDLoc sdl = getCurSDLoc(); 3382 3383 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3384 Value *PtrOperand = I.getArgOperand(0); 3385 SDValue Ptr = getValue(PtrOperand); 3386 SDValue Src0 = getValue(I.getArgOperand(3)); 3387 SDValue Mask = getValue(I.getArgOperand(2)); 3388 3389 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3390 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3391 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3392 if (!Alignment) 3393 Alignment = DAG.getEVTAlignment(VT); 3394 3395 AAMDNodes AAInfo; 3396 I.getAAMetadata(AAInfo); 3397 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3398 3399 SDValue InChain = DAG.getRoot(); 3400 if (AA->pointsToConstantMemory(MemoryLocation( 3401 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3402 AAInfo))) { 3403 // Do not serialize (non-volatile) loads of constant memory with anything. 3404 InChain = DAG.getEntryNode(); 3405 } 3406 3407 MachineMemOperand *MMO = 3408 DAG.getMachineFunction(). 3409 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3410 MachineMemOperand::MOLoad, VT.getStoreSize(), 3411 Alignment, AAInfo, Ranges); 3412 3413 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3414 ISD::NON_EXTLOAD); 3415 SDValue OutChain = Load.getValue(1); 3416 DAG.setRoot(OutChain); 3417 setValue(&I, Load); 3418 } 3419 3420 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3421 SDLoc sdl = getCurSDLoc(); 3422 3423 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3424 Value *Ptr = I.getArgOperand(0); 3425 SDValue Src0 = getValue(I.getArgOperand(3)); 3426 SDValue Mask = getValue(I.getArgOperand(2)); 3427 3428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3429 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3430 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3431 if (!Alignment) 3432 Alignment = DAG.getEVTAlignment(VT); 3433 3434 AAMDNodes AAInfo; 3435 I.getAAMetadata(AAInfo); 3436 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3437 3438 SDValue Root = DAG.getRoot(); 3439 SDValue Base; 3440 SDValue Index; 3441 Value *BasePtr = Ptr; 3442 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3443 bool ConstantMemory = false; 3444 if (UniformBase && 3445 AA->pointsToConstantMemory(MemoryLocation( 3446 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3447 AAInfo))) { 3448 // Do not serialize (non-volatile) loads of constant memory with anything. 3449 Root = DAG.getEntryNode(); 3450 ConstantMemory = true; 3451 } 3452 3453 MachineMemOperand *MMO = 3454 DAG.getMachineFunction(). 3455 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3456 MachineMemOperand::MOLoad, VT.getStoreSize(), 3457 Alignment, AAInfo, Ranges); 3458 3459 if (!UniformBase) { 3460 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3461 Index = getValue(Ptr); 3462 } 3463 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3464 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3465 Ops, MMO); 3466 3467 SDValue OutChain = Gather.getValue(1); 3468 if (!ConstantMemory) 3469 PendingLoads.push_back(OutChain); 3470 setValue(&I, Gather); 3471 } 3472 3473 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3474 SDLoc dl = getCurSDLoc(); 3475 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3476 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3477 SynchronizationScope Scope = I.getSynchScope(); 3478 3479 SDValue InChain = getRoot(); 3480 3481 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3482 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3483 SDValue L = DAG.getAtomicCmpSwap( 3484 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3485 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3486 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3487 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3488 3489 SDValue OutChain = L.getValue(2); 3490 3491 setValue(&I, L); 3492 DAG.setRoot(OutChain); 3493 } 3494 3495 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3496 SDLoc dl = getCurSDLoc(); 3497 ISD::NodeType NT; 3498 switch (I.getOperation()) { 3499 default: llvm_unreachable("Unknown atomicrmw operation"); 3500 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3501 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3502 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3503 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3504 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3505 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3506 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3507 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3508 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3509 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3510 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3511 } 3512 AtomicOrdering Order = I.getOrdering(); 3513 SynchronizationScope Scope = I.getSynchScope(); 3514 3515 SDValue InChain = getRoot(); 3516 3517 SDValue L = 3518 DAG.getAtomic(NT, dl, 3519 getValue(I.getValOperand()).getSimpleValueType(), 3520 InChain, 3521 getValue(I.getPointerOperand()), 3522 getValue(I.getValOperand()), 3523 I.getPointerOperand(), 3524 /* Alignment=*/ 0, Order, Scope); 3525 3526 SDValue OutChain = L.getValue(1); 3527 3528 setValue(&I, L); 3529 DAG.setRoot(OutChain); 3530 } 3531 3532 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3533 SDLoc dl = getCurSDLoc(); 3534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3535 SDValue Ops[3]; 3536 Ops[0] = getRoot(); 3537 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3538 TLI.getPointerTy(DAG.getDataLayout())); 3539 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3540 TLI.getPointerTy(DAG.getDataLayout())); 3541 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3542 } 3543 3544 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3545 SDLoc dl = getCurSDLoc(); 3546 AtomicOrdering Order = I.getOrdering(); 3547 SynchronizationScope Scope = I.getSynchScope(); 3548 3549 SDValue InChain = getRoot(); 3550 3551 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3552 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3553 3554 if (I.getAlignment() < VT.getSizeInBits() / 8) 3555 report_fatal_error("Cannot generate unaligned atomic load"); 3556 3557 MachineMemOperand *MMO = 3558 DAG.getMachineFunction(). 3559 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3560 MachineMemOperand::MOVolatile | 3561 MachineMemOperand::MOLoad, 3562 VT.getStoreSize(), 3563 I.getAlignment() ? I.getAlignment() : 3564 DAG.getEVTAlignment(VT)); 3565 3566 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3567 SDValue L = 3568 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3569 getValue(I.getPointerOperand()), MMO, 3570 Order, Scope); 3571 3572 SDValue OutChain = L.getValue(1); 3573 3574 setValue(&I, L); 3575 DAG.setRoot(OutChain); 3576 } 3577 3578 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3579 SDLoc dl = getCurSDLoc(); 3580 3581 AtomicOrdering Order = I.getOrdering(); 3582 SynchronizationScope Scope = I.getSynchScope(); 3583 3584 SDValue InChain = getRoot(); 3585 3586 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3587 EVT VT = 3588 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3589 3590 if (I.getAlignment() < VT.getSizeInBits() / 8) 3591 report_fatal_error("Cannot generate unaligned atomic store"); 3592 3593 SDValue OutChain = 3594 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3595 InChain, 3596 getValue(I.getPointerOperand()), 3597 getValue(I.getValueOperand()), 3598 I.getPointerOperand(), I.getAlignment(), 3599 Order, Scope); 3600 3601 DAG.setRoot(OutChain); 3602 } 3603 3604 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3605 /// node. 3606 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3607 unsigned Intrinsic) { 3608 bool HasChain = !I.doesNotAccessMemory(); 3609 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3610 3611 // Build the operand list. 3612 SmallVector<SDValue, 8> Ops; 3613 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3614 if (OnlyLoad) { 3615 // We don't need to serialize loads against other loads. 3616 Ops.push_back(DAG.getRoot()); 3617 } else { 3618 Ops.push_back(getRoot()); 3619 } 3620 } 3621 3622 // Info is set by getTgtMemInstrinsic 3623 TargetLowering::IntrinsicInfo Info; 3624 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3625 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3626 3627 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3628 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3629 Info.opc == ISD::INTRINSIC_W_CHAIN) 3630 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3631 TLI.getPointerTy(DAG.getDataLayout()))); 3632 3633 // Add all operands of the call to the operand list. 3634 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3635 SDValue Op = getValue(I.getArgOperand(i)); 3636 Ops.push_back(Op); 3637 } 3638 3639 SmallVector<EVT, 4> ValueVTs; 3640 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3641 3642 if (HasChain) 3643 ValueVTs.push_back(MVT::Other); 3644 3645 SDVTList VTs = DAG.getVTList(ValueVTs); 3646 3647 // Create the node. 3648 SDValue Result; 3649 if (IsTgtIntrinsic) { 3650 // This is target intrinsic that touches memory 3651 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3652 VTs, Ops, Info.memVT, 3653 MachinePointerInfo(Info.ptrVal, Info.offset), 3654 Info.align, Info.vol, 3655 Info.readMem, Info.writeMem, Info.size); 3656 } else if (!HasChain) { 3657 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3658 } else if (!I.getType()->isVoidTy()) { 3659 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3660 } else { 3661 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3662 } 3663 3664 if (HasChain) { 3665 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3666 if (OnlyLoad) 3667 PendingLoads.push_back(Chain); 3668 else 3669 DAG.setRoot(Chain); 3670 } 3671 3672 if (!I.getType()->isVoidTy()) { 3673 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3674 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3675 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3676 } 3677 3678 setValue(&I, Result); 3679 } 3680 } 3681 3682 /// GetSignificand - Get the significand and build it into a floating-point 3683 /// number with exponent of 1: 3684 /// 3685 /// Op = (Op & 0x007fffff) | 0x3f800000; 3686 /// 3687 /// where Op is the hexadecimal representation of floating point value. 3688 static SDValue 3689 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3690 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3691 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3692 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3693 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3694 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3695 } 3696 3697 /// GetExponent - Get the exponent: 3698 /// 3699 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3700 /// 3701 /// where Op is the hexadecimal representation of floating point value. 3702 static SDValue 3703 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3704 SDLoc dl) { 3705 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3706 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3707 SDValue t1 = DAG.getNode( 3708 ISD::SRL, dl, MVT::i32, t0, 3709 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3710 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3711 DAG.getConstant(127, dl, MVT::i32)); 3712 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3713 } 3714 3715 /// getF32Constant - Get 32-bit floating point constant. 3716 static SDValue 3717 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3718 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3719 MVT::f32); 3720 } 3721 3722 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3723 SelectionDAG &DAG) { 3724 // TODO: What fast-math-flags should be set on the floating-point nodes? 3725 3726 // IntegerPartOfX = ((int32_t)(t0); 3727 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3728 3729 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3730 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3731 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3732 3733 // IntegerPartOfX <<= 23; 3734 IntegerPartOfX = DAG.getNode( 3735 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3736 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3737 DAG.getDataLayout()))); 3738 3739 SDValue TwoToFractionalPartOfX; 3740 if (LimitFloatPrecision <= 6) { 3741 // For floating-point precision of 6: 3742 // 3743 // TwoToFractionalPartOfX = 3744 // 0.997535578f + 3745 // (0.735607626f + 0.252464424f * x) * x; 3746 // 3747 // error 0.0144103317, which is 6 bits 3748 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3749 getF32Constant(DAG, 0x3e814304, dl)); 3750 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3751 getF32Constant(DAG, 0x3f3c50c8, dl)); 3752 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3753 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3754 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3755 } else if (LimitFloatPrecision <= 12) { 3756 // For floating-point precision of 12: 3757 // 3758 // TwoToFractionalPartOfX = 3759 // 0.999892986f + 3760 // (0.696457318f + 3761 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3762 // 3763 // error 0.000107046256, which is 13 to 14 bits 3764 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3765 getF32Constant(DAG, 0x3da235e3, dl)); 3766 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3767 getF32Constant(DAG, 0x3e65b8f3, dl)); 3768 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3769 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3770 getF32Constant(DAG, 0x3f324b07, dl)); 3771 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3772 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3773 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3774 } else { // LimitFloatPrecision <= 18 3775 // For floating-point precision of 18: 3776 // 3777 // TwoToFractionalPartOfX = 3778 // 0.999999982f + 3779 // (0.693148872f + 3780 // (0.240227044f + 3781 // (0.554906021e-1f + 3782 // (0.961591928e-2f + 3783 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3784 // error 2.47208000*10^(-7), which is better than 18 bits 3785 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3786 getF32Constant(DAG, 0x3924b03e, dl)); 3787 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3788 getF32Constant(DAG, 0x3ab24b87, dl)); 3789 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3790 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3791 getF32Constant(DAG, 0x3c1d8c17, dl)); 3792 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3793 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3794 getF32Constant(DAG, 0x3d634a1d, dl)); 3795 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3796 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3797 getF32Constant(DAG, 0x3e75fe14, dl)); 3798 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3799 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3800 getF32Constant(DAG, 0x3f317234, dl)); 3801 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3802 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3803 getF32Constant(DAG, 0x3f800000, dl)); 3804 } 3805 3806 // Add the exponent into the result in integer domain. 3807 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3808 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3809 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3810 } 3811 3812 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3813 /// limited-precision mode. 3814 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3815 const TargetLowering &TLI) { 3816 if (Op.getValueType() == MVT::f32 && 3817 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3818 3819 // Put the exponent in the right bit position for later addition to the 3820 // final result: 3821 // 3822 // #define LOG2OFe 1.4426950f 3823 // t0 = Op * LOG2OFe 3824 3825 // TODO: What fast-math-flags should be set here? 3826 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3827 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3828 return getLimitedPrecisionExp2(t0, dl, DAG); 3829 } 3830 3831 // No special expansion. 3832 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3833 } 3834 3835 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3836 /// limited-precision mode. 3837 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3838 const TargetLowering &TLI) { 3839 3840 // TODO: What fast-math-flags should be set on the floating-point nodes? 3841 3842 if (Op.getValueType() == MVT::f32 && 3843 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3844 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3845 3846 // Scale the exponent by log(2) [0.69314718f]. 3847 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3848 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3849 getF32Constant(DAG, 0x3f317218, dl)); 3850 3851 // Get the significand and build it into a floating-point number with 3852 // exponent of 1. 3853 SDValue X = GetSignificand(DAG, Op1, dl); 3854 3855 SDValue LogOfMantissa; 3856 if (LimitFloatPrecision <= 6) { 3857 // For floating-point precision of 6: 3858 // 3859 // LogofMantissa = 3860 // -1.1609546f + 3861 // (1.4034025f - 0.23903021f * x) * x; 3862 // 3863 // error 0.0034276066, which is better than 8 bits 3864 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3865 getF32Constant(DAG, 0xbe74c456, dl)); 3866 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3867 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3868 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3869 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3870 getF32Constant(DAG, 0x3f949a29, dl)); 3871 } else if (LimitFloatPrecision <= 12) { 3872 // For floating-point precision of 12: 3873 // 3874 // LogOfMantissa = 3875 // -1.7417939f + 3876 // (2.8212026f + 3877 // (-1.4699568f + 3878 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3879 // 3880 // error 0.000061011436, which is 14 bits 3881 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3882 getF32Constant(DAG, 0xbd67b6d6, dl)); 3883 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3884 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3885 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3886 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3887 getF32Constant(DAG, 0x3fbc278b, dl)); 3888 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3889 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3890 getF32Constant(DAG, 0x40348e95, dl)); 3891 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3892 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3893 getF32Constant(DAG, 0x3fdef31a, dl)); 3894 } else { // LimitFloatPrecision <= 18 3895 // For floating-point precision of 18: 3896 // 3897 // LogOfMantissa = 3898 // -2.1072184f + 3899 // (4.2372794f + 3900 // (-3.7029485f + 3901 // (2.2781945f + 3902 // (-0.87823314f + 3903 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3904 // 3905 // error 0.0000023660568, which is better than 18 bits 3906 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3907 getF32Constant(DAG, 0xbc91e5ac, dl)); 3908 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3909 getF32Constant(DAG, 0x3e4350aa, dl)); 3910 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3911 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3912 getF32Constant(DAG, 0x3f60d3e3, dl)); 3913 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3914 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3915 getF32Constant(DAG, 0x4011cdf0, dl)); 3916 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3917 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3918 getF32Constant(DAG, 0x406cfd1c, dl)); 3919 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3920 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3921 getF32Constant(DAG, 0x408797cb, dl)); 3922 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3923 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3924 getF32Constant(DAG, 0x4006dcab, dl)); 3925 } 3926 3927 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3928 } 3929 3930 // No special expansion. 3931 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3932 } 3933 3934 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3935 /// limited-precision mode. 3936 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3937 const TargetLowering &TLI) { 3938 3939 // TODO: What fast-math-flags should be set on the floating-point nodes? 3940 3941 if (Op.getValueType() == MVT::f32 && 3942 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3943 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3944 3945 // Get the exponent. 3946 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3947 3948 // Get the significand and build it into a floating-point number with 3949 // exponent of 1. 3950 SDValue X = GetSignificand(DAG, Op1, dl); 3951 3952 // Different possible minimax approximations of significand in 3953 // floating-point for various degrees of accuracy over [1,2]. 3954 SDValue Log2ofMantissa; 3955 if (LimitFloatPrecision <= 6) { 3956 // For floating-point precision of 6: 3957 // 3958 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3959 // 3960 // error 0.0049451742, which is more than 7 bits 3961 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3962 getF32Constant(DAG, 0xbeb08fe0, dl)); 3963 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3964 getF32Constant(DAG, 0x40019463, dl)); 3965 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3966 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3967 getF32Constant(DAG, 0x3fd6633d, dl)); 3968 } else if (LimitFloatPrecision <= 12) { 3969 // For floating-point precision of 12: 3970 // 3971 // Log2ofMantissa = 3972 // -2.51285454f + 3973 // (4.07009056f + 3974 // (-2.12067489f + 3975 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3976 // 3977 // error 0.0000876136000, which is better than 13 bits 3978 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3979 getF32Constant(DAG, 0xbda7262e, dl)); 3980 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3981 getF32Constant(DAG, 0x3f25280b, dl)); 3982 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3983 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3984 getF32Constant(DAG, 0x4007b923, dl)); 3985 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3986 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3987 getF32Constant(DAG, 0x40823e2f, dl)); 3988 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3989 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3990 getF32Constant(DAG, 0x4020d29c, dl)); 3991 } else { // LimitFloatPrecision <= 18 3992 // For floating-point precision of 18: 3993 // 3994 // Log2ofMantissa = 3995 // -3.0400495f + 3996 // (6.1129976f + 3997 // (-5.3420409f + 3998 // (3.2865683f + 3999 // (-1.2669343f + 4000 // (0.27515199f - 4001 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4002 // 4003 // error 0.0000018516, which is better than 18 bits 4004 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4005 getF32Constant(DAG, 0xbcd2769e, dl)); 4006 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4007 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4008 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4009 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4010 getF32Constant(DAG, 0x3fa22ae7, dl)); 4011 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4012 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4013 getF32Constant(DAG, 0x40525723, dl)); 4014 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4015 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4016 getF32Constant(DAG, 0x40aaf200, dl)); 4017 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4018 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4019 getF32Constant(DAG, 0x40c39dad, dl)); 4020 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4021 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4022 getF32Constant(DAG, 0x4042902c, dl)); 4023 } 4024 4025 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4026 } 4027 4028 // No special expansion. 4029 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4030 } 4031 4032 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4033 /// limited-precision mode. 4034 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4035 const TargetLowering &TLI) { 4036 4037 // TODO: What fast-math-flags should be set on the floating-point nodes? 4038 4039 if (Op.getValueType() == MVT::f32 && 4040 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4041 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4042 4043 // Scale the exponent by log10(2) [0.30102999f]. 4044 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4045 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4046 getF32Constant(DAG, 0x3e9a209a, dl)); 4047 4048 // Get the significand and build it into a floating-point number with 4049 // exponent of 1. 4050 SDValue X = GetSignificand(DAG, Op1, dl); 4051 4052 SDValue Log10ofMantissa; 4053 if (LimitFloatPrecision <= 6) { 4054 // For floating-point precision of 6: 4055 // 4056 // Log10ofMantissa = 4057 // -0.50419619f + 4058 // (0.60948995f - 0.10380950f * x) * x; 4059 // 4060 // error 0.0014886165, which is 6 bits 4061 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4062 getF32Constant(DAG, 0xbdd49a13, dl)); 4063 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4064 getF32Constant(DAG, 0x3f1c0789, dl)); 4065 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4066 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4067 getF32Constant(DAG, 0x3f011300, dl)); 4068 } else if (LimitFloatPrecision <= 12) { 4069 // For floating-point precision of 12: 4070 // 4071 // Log10ofMantissa = 4072 // -0.64831180f + 4073 // (0.91751397f + 4074 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4075 // 4076 // error 0.00019228036, which is better than 12 bits 4077 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4078 getF32Constant(DAG, 0x3d431f31, dl)); 4079 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4080 getF32Constant(DAG, 0x3ea21fb2, dl)); 4081 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4082 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4083 getF32Constant(DAG, 0x3f6ae232, dl)); 4084 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4085 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4086 getF32Constant(DAG, 0x3f25f7c3, dl)); 4087 } else { // LimitFloatPrecision <= 18 4088 // For floating-point precision of 18: 4089 // 4090 // Log10ofMantissa = 4091 // -0.84299375f + 4092 // (1.5327582f + 4093 // (-1.0688956f + 4094 // (0.49102474f + 4095 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4096 // 4097 // error 0.0000037995730, which is better than 18 bits 4098 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4099 getF32Constant(DAG, 0x3c5d51ce, dl)); 4100 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4101 getF32Constant(DAG, 0x3e00685a, dl)); 4102 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4103 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4104 getF32Constant(DAG, 0x3efb6798, dl)); 4105 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4106 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4107 getF32Constant(DAG, 0x3f88d192, dl)); 4108 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4109 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4110 getF32Constant(DAG, 0x3fc4316c, dl)); 4111 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4112 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4113 getF32Constant(DAG, 0x3f57ce70, dl)); 4114 } 4115 4116 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4117 } 4118 4119 // No special expansion. 4120 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4121 } 4122 4123 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4124 /// limited-precision mode. 4125 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4126 const TargetLowering &TLI) { 4127 if (Op.getValueType() == MVT::f32 && 4128 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4129 return getLimitedPrecisionExp2(Op, dl, DAG); 4130 4131 // No special expansion. 4132 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4133 } 4134 4135 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4136 /// limited-precision mode with x == 10.0f. 4137 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4138 SelectionDAG &DAG, const TargetLowering &TLI) { 4139 bool IsExp10 = false; 4140 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4141 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4142 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4143 APFloat Ten(10.0f); 4144 IsExp10 = LHSC->isExactlyValue(Ten); 4145 } 4146 } 4147 4148 // TODO: What fast-math-flags should be set on the FMUL node? 4149 if (IsExp10) { 4150 // Put the exponent in the right bit position for later addition to the 4151 // final result: 4152 // 4153 // #define LOG2OF10 3.3219281f 4154 // t0 = Op * LOG2OF10; 4155 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4156 getF32Constant(DAG, 0x40549a78, dl)); 4157 return getLimitedPrecisionExp2(t0, dl, DAG); 4158 } 4159 4160 // No special expansion. 4161 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4162 } 4163 4164 4165 /// ExpandPowI - Expand a llvm.powi intrinsic. 4166 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4167 SelectionDAG &DAG) { 4168 // If RHS is a constant, we can expand this out to a multiplication tree, 4169 // otherwise we end up lowering to a call to __powidf2 (for example). When 4170 // optimizing for size, we only want to do this if the expansion would produce 4171 // a small number of multiplies, otherwise we do the full expansion. 4172 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4173 // Get the exponent as a positive value. 4174 unsigned Val = RHSC->getSExtValue(); 4175 if ((int)Val < 0) Val = -Val; 4176 4177 // powi(x, 0) -> 1.0 4178 if (Val == 0) 4179 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4180 4181 const Function *F = DAG.getMachineFunction().getFunction(); 4182 if (!F->optForSize() || 4183 // If optimizing for size, don't insert too many multiplies. 4184 // This inserts up to 5 multiplies. 4185 countPopulation(Val) + Log2_32(Val) < 7) { 4186 // We use the simple binary decomposition method to generate the multiply 4187 // sequence. There are more optimal ways to do this (for example, 4188 // powi(x,15) generates one more multiply than it should), but this has 4189 // the benefit of being both really simple and much better than a libcall. 4190 SDValue Res; // Logically starts equal to 1.0 4191 SDValue CurSquare = LHS; 4192 // TODO: Intrinsics should have fast-math-flags that propagate to these 4193 // nodes. 4194 while (Val) { 4195 if (Val & 1) { 4196 if (Res.getNode()) 4197 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4198 else 4199 Res = CurSquare; // 1.0*CurSquare. 4200 } 4201 4202 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4203 CurSquare, CurSquare); 4204 Val >>= 1; 4205 } 4206 4207 // If the original was negative, invert the result, producing 1/(x*x*x). 4208 if (RHSC->getSExtValue() < 0) 4209 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4210 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4211 return Res; 4212 } 4213 } 4214 4215 // Otherwise, expand to a libcall. 4216 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4217 } 4218 4219 // getUnderlyingArgReg - Find underlying register used for a truncated or 4220 // bitcasted argument. 4221 static unsigned getUnderlyingArgReg(const SDValue &N) { 4222 switch (N.getOpcode()) { 4223 case ISD::CopyFromReg: 4224 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4225 case ISD::BITCAST: 4226 case ISD::AssertZext: 4227 case ISD::AssertSext: 4228 case ISD::TRUNCATE: 4229 return getUnderlyingArgReg(N.getOperand(0)); 4230 default: 4231 return 0; 4232 } 4233 } 4234 4235 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4236 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4237 /// At the end of instruction selection, they will be inserted to the entry BB. 4238 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4239 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4240 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4241 const Argument *Arg = dyn_cast<Argument>(V); 4242 if (!Arg) 4243 return false; 4244 4245 MachineFunction &MF = DAG.getMachineFunction(); 4246 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4247 4248 // Ignore inlined function arguments here. 4249 // 4250 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4251 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4252 return false; 4253 4254 Optional<MachineOperand> Op; 4255 // Some arguments' frame index is recorded during argument lowering. 4256 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4257 Op = MachineOperand::CreateFI(FI); 4258 4259 if (!Op && N.getNode()) { 4260 unsigned Reg = getUnderlyingArgReg(N); 4261 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4262 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4263 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4264 if (PR) 4265 Reg = PR; 4266 } 4267 if (Reg) 4268 Op = MachineOperand::CreateReg(Reg, false); 4269 } 4270 4271 if (!Op) { 4272 // Check if ValueMap has reg number. 4273 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4274 if (VMI != FuncInfo.ValueMap.end()) 4275 Op = MachineOperand::CreateReg(VMI->second, false); 4276 } 4277 4278 if (!Op && N.getNode()) 4279 // Check if frame index is available. 4280 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4281 if (FrameIndexSDNode *FINode = 4282 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4283 Op = MachineOperand::CreateFI(FINode->getIndex()); 4284 4285 if (!Op) 4286 return false; 4287 4288 assert(Variable->isValidLocationForIntrinsic(DL) && 4289 "Expected inlined-at fields to agree"); 4290 if (Op->isReg()) 4291 FuncInfo.ArgDbgValues.push_back( 4292 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4293 Op->getReg(), Offset, Variable, Expr)); 4294 else 4295 FuncInfo.ArgDbgValues.push_back( 4296 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4297 .addOperand(*Op) 4298 .addImm(Offset) 4299 .addMetadata(Variable) 4300 .addMetadata(Expr)); 4301 4302 return true; 4303 } 4304 4305 // VisualStudio defines setjmp as _setjmp 4306 #if defined(_MSC_VER) && defined(setjmp) && \ 4307 !defined(setjmp_undefined_for_msvc) 4308 # pragma push_macro("setjmp") 4309 # undef setjmp 4310 # define setjmp_undefined_for_msvc 4311 #endif 4312 4313 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4314 /// we want to emit this as a call to a named external function, return the name 4315 /// otherwise lower it and return null. 4316 const char * 4317 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4318 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4319 SDLoc sdl = getCurSDLoc(); 4320 DebugLoc dl = getCurDebugLoc(); 4321 SDValue Res; 4322 4323 switch (Intrinsic) { 4324 default: 4325 // By default, turn this into a target intrinsic node. 4326 visitTargetIntrinsic(I, Intrinsic); 4327 return nullptr; 4328 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4329 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4330 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4331 case Intrinsic::returnaddress: 4332 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4333 TLI.getPointerTy(DAG.getDataLayout()), 4334 getValue(I.getArgOperand(0)))); 4335 return nullptr; 4336 case Intrinsic::frameaddress: 4337 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4338 TLI.getPointerTy(DAG.getDataLayout()), 4339 getValue(I.getArgOperand(0)))); 4340 return nullptr; 4341 case Intrinsic::read_register: { 4342 Value *Reg = I.getArgOperand(0); 4343 SDValue Chain = getRoot(); 4344 SDValue RegName = 4345 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4346 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4347 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4348 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4349 setValue(&I, Res); 4350 DAG.setRoot(Res.getValue(1)); 4351 return nullptr; 4352 } 4353 case Intrinsic::write_register: { 4354 Value *Reg = I.getArgOperand(0); 4355 Value *RegValue = I.getArgOperand(1); 4356 SDValue Chain = getRoot(); 4357 SDValue RegName = 4358 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4359 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4360 RegName, getValue(RegValue))); 4361 return nullptr; 4362 } 4363 case Intrinsic::setjmp: 4364 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4365 case Intrinsic::longjmp: 4366 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4367 case Intrinsic::memcpy: { 4368 // FIXME: this definition of "user defined address space" is x86-specific 4369 // Assert for address < 256 since we support only user defined address 4370 // spaces. 4371 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4372 < 256 && 4373 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4374 < 256 && 4375 "Unknown address space"); 4376 SDValue Op1 = getValue(I.getArgOperand(0)); 4377 SDValue Op2 = getValue(I.getArgOperand(1)); 4378 SDValue Op3 = getValue(I.getArgOperand(2)); 4379 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4380 if (!Align) 4381 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4382 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4383 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4384 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4385 false, isTC, 4386 MachinePointerInfo(I.getArgOperand(0)), 4387 MachinePointerInfo(I.getArgOperand(1))); 4388 updateDAGForMaybeTailCall(MC); 4389 return nullptr; 4390 } 4391 case Intrinsic::memset: { 4392 // FIXME: this definition of "user defined address space" is x86-specific 4393 // Assert for address < 256 since we support only user defined address 4394 // spaces. 4395 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4396 < 256 && 4397 "Unknown address space"); 4398 SDValue Op1 = getValue(I.getArgOperand(0)); 4399 SDValue Op2 = getValue(I.getArgOperand(1)); 4400 SDValue Op3 = getValue(I.getArgOperand(2)); 4401 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4402 if (!Align) 4403 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4404 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4405 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4406 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4407 isTC, MachinePointerInfo(I.getArgOperand(0))); 4408 updateDAGForMaybeTailCall(MS); 4409 return nullptr; 4410 } 4411 case Intrinsic::memmove: { 4412 // FIXME: this definition of "user defined address space" is x86-specific 4413 // Assert for address < 256 since we support only user defined address 4414 // spaces. 4415 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4416 < 256 && 4417 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4418 < 256 && 4419 "Unknown address space"); 4420 SDValue Op1 = getValue(I.getArgOperand(0)); 4421 SDValue Op2 = getValue(I.getArgOperand(1)); 4422 SDValue Op3 = getValue(I.getArgOperand(2)); 4423 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4424 if (!Align) 4425 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4426 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4427 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4428 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4429 isTC, MachinePointerInfo(I.getArgOperand(0)), 4430 MachinePointerInfo(I.getArgOperand(1))); 4431 updateDAGForMaybeTailCall(MM); 4432 return nullptr; 4433 } 4434 case Intrinsic::dbg_declare: { 4435 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4436 DILocalVariable *Variable = DI.getVariable(); 4437 DIExpression *Expression = DI.getExpression(); 4438 const Value *Address = DI.getAddress(); 4439 assert(Variable && "Missing variable"); 4440 if (!Address) { 4441 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4442 return nullptr; 4443 } 4444 4445 // Check if address has undef value. 4446 if (isa<UndefValue>(Address) || 4447 (Address->use_empty() && !isa<Argument>(Address))) { 4448 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4449 return nullptr; 4450 } 4451 4452 SDValue &N = NodeMap[Address]; 4453 if (!N.getNode() && isa<Argument>(Address)) 4454 // Check unused arguments map. 4455 N = UnusedArgNodeMap[Address]; 4456 SDDbgValue *SDV; 4457 if (N.getNode()) { 4458 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4459 Address = BCI->getOperand(0); 4460 // Parameters are handled specially. 4461 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4462 4463 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4464 4465 if (isParameter && !AI) { 4466 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4467 if (FINode) 4468 // Byval parameter. We have a frame index at this point. 4469 SDV = DAG.getFrameIndexDbgValue( 4470 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4471 else { 4472 // Address is an argument, so try to emit its dbg value using 4473 // virtual register info from the FuncInfo.ValueMap. 4474 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4475 N); 4476 return nullptr; 4477 } 4478 } else { 4479 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4480 true, 0, dl, SDNodeOrder); 4481 } 4482 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4483 } else { 4484 // If Address is an argument then try to emit its dbg value using 4485 // virtual register info from the FuncInfo.ValueMap. 4486 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4487 N)) { 4488 // If variable is pinned by a alloca in dominating bb then 4489 // use StaticAllocaMap. 4490 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4491 if (AI->getParent() != DI.getParent()) { 4492 DenseMap<const AllocaInst*, int>::iterator SI = 4493 FuncInfo.StaticAllocaMap.find(AI); 4494 if (SI != FuncInfo.StaticAllocaMap.end()) { 4495 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4496 0, dl, SDNodeOrder); 4497 DAG.AddDbgValue(SDV, nullptr, false); 4498 return nullptr; 4499 } 4500 } 4501 } 4502 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4503 } 4504 } 4505 return nullptr; 4506 } 4507 case Intrinsic::dbg_value: { 4508 const DbgValueInst &DI = cast<DbgValueInst>(I); 4509 assert(DI.getVariable() && "Missing variable"); 4510 4511 DILocalVariable *Variable = DI.getVariable(); 4512 DIExpression *Expression = DI.getExpression(); 4513 uint64_t Offset = DI.getOffset(); 4514 const Value *V = DI.getValue(); 4515 if (!V) 4516 return nullptr; 4517 4518 SDDbgValue *SDV; 4519 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4520 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4521 SDNodeOrder); 4522 DAG.AddDbgValue(SDV, nullptr, false); 4523 } else { 4524 // Do not use getValue() in here; we don't want to generate code at 4525 // this point if it hasn't been done yet. 4526 SDValue N = NodeMap[V]; 4527 if (!N.getNode() && isa<Argument>(V)) 4528 // Check unused arguments map. 4529 N = UnusedArgNodeMap[V]; 4530 if (N.getNode()) { 4531 // A dbg.value for an alloca is always indirect. 4532 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4533 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4534 IsIndirect, N)) { 4535 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4536 IsIndirect, Offset, dl, SDNodeOrder); 4537 DAG.AddDbgValue(SDV, N.getNode(), false); 4538 } 4539 } else if (!V->use_empty() ) { 4540 // Do not call getValue(V) yet, as we don't want to generate code. 4541 // Remember it for later. 4542 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4543 DanglingDebugInfoMap[V] = DDI; 4544 } else { 4545 // We may expand this to cover more cases. One case where we have no 4546 // data available is an unreferenced parameter. 4547 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4548 } 4549 } 4550 4551 // Build a debug info table entry. 4552 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4553 V = BCI->getOperand(0); 4554 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4555 // Don't handle byval struct arguments or VLAs, for example. 4556 if (!AI) { 4557 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4558 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4559 return nullptr; 4560 } 4561 DenseMap<const AllocaInst*, int>::iterator SI = 4562 FuncInfo.StaticAllocaMap.find(AI); 4563 if (SI == FuncInfo.StaticAllocaMap.end()) 4564 return nullptr; // VLAs. 4565 return nullptr; 4566 } 4567 4568 case Intrinsic::eh_typeid_for: { 4569 // Find the type id for the given typeinfo. 4570 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4571 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4572 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4573 setValue(&I, Res); 4574 return nullptr; 4575 } 4576 4577 case Intrinsic::eh_return_i32: 4578 case Intrinsic::eh_return_i64: 4579 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4580 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4581 MVT::Other, 4582 getControlRoot(), 4583 getValue(I.getArgOperand(0)), 4584 getValue(I.getArgOperand(1)))); 4585 return nullptr; 4586 case Intrinsic::eh_unwind_init: 4587 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4588 return nullptr; 4589 case Intrinsic::eh_dwarf_cfa: { 4590 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4591 TLI.getPointerTy(DAG.getDataLayout())); 4592 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4593 CfaArg.getValueType(), 4594 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4595 CfaArg.getValueType()), 4596 CfaArg); 4597 SDValue FA = DAG.getNode( 4598 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4599 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4600 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4601 FA, Offset)); 4602 return nullptr; 4603 } 4604 case Intrinsic::eh_sjlj_callsite: { 4605 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4606 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4607 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4608 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4609 4610 MMI.setCurrentCallSite(CI->getZExtValue()); 4611 return nullptr; 4612 } 4613 case Intrinsic::eh_sjlj_functioncontext: { 4614 // Get and store the index of the function context. 4615 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4616 AllocaInst *FnCtx = 4617 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4618 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4619 MFI->setFunctionContextIndex(FI); 4620 return nullptr; 4621 } 4622 case Intrinsic::eh_sjlj_setjmp: { 4623 SDValue Ops[2]; 4624 Ops[0] = getRoot(); 4625 Ops[1] = getValue(I.getArgOperand(0)); 4626 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4627 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4628 setValue(&I, Op.getValue(0)); 4629 DAG.setRoot(Op.getValue(1)); 4630 return nullptr; 4631 } 4632 case Intrinsic::eh_sjlj_longjmp: { 4633 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4634 getRoot(), getValue(I.getArgOperand(0)))); 4635 return nullptr; 4636 } 4637 case Intrinsic::eh_sjlj_setup_dispatch: { 4638 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4639 getRoot())); 4640 return nullptr; 4641 } 4642 4643 case Intrinsic::masked_gather: 4644 visitMaskedGather(I); 4645 return nullptr; 4646 case Intrinsic::masked_load: 4647 visitMaskedLoad(I); 4648 return nullptr; 4649 case Intrinsic::masked_scatter: 4650 visitMaskedScatter(I); 4651 return nullptr; 4652 case Intrinsic::masked_store: 4653 visitMaskedStore(I); 4654 return nullptr; 4655 case Intrinsic::x86_mmx_pslli_w: 4656 case Intrinsic::x86_mmx_pslli_d: 4657 case Intrinsic::x86_mmx_pslli_q: 4658 case Intrinsic::x86_mmx_psrli_w: 4659 case Intrinsic::x86_mmx_psrli_d: 4660 case Intrinsic::x86_mmx_psrli_q: 4661 case Intrinsic::x86_mmx_psrai_w: 4662 case Intrinsic::x86_mmx_psrai_d: { 4663 SDValue ShAmt = getValue(I.getArgOperand(1)); 4664 if (isa<ConstantSDNode>(ShAmt)) { 4665 visitTargetIntrinsic(I, Intrinsic); 4666 return nullptr; 4667 } 4668 unsigned NewIntrinsic = 0; 4669 EVT ShAmtVT = MVT::v2i32; 4670 switch (Intrinsic) { 4671 case Intrinsic::x86_mmx_pslli_w: 4672 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4673 break; 4674 case Intrinsic::x86_mmx_pslli_d: 4675 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4676 break; 4677 case Intrinsic::x86_mmx_pslli_q: 4678 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4679 break; 4680 case Intrinsic::x86_mmx_psrli_w: 4681 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4682 break; 4683 case Intrinsic::x86_mmx_psrli_d: 4684 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4685 break; 4686 case Intrinsic::x86_mmx_psrli_q: 4687 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4688 break; 4689 case Intrinsic::x86_mmx_psrai_w: 4690 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4691 break; 4692 case Intrinsic::x86_mmx_psrai_d: 4693 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4694 break; 4695 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4696 } 4697 4698 // The vector shift intrinsics with scalars uses 32b shift amounts but 4699 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4700 // to be zero. 4701 // We must do this early because v2i32 is not a legal type. 4702 SDValue ShOps[2]; 4703 ShOps[0] = ShAmt; 4704 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4705 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4706 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4707 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4708 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4709 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4710 getValue(I.getArgOperand(0)), ShAmt); 4711 setValue(&I, Res); 4712 return nullptr; 4713 } 4714 case Intrinsic::convertff: 4715 case Intrinsic::convertfsi: 4716 case Intrinsic::convertfui: 4717 case Intrinsic::convertsif: 4718 case Intrinsic::convertuif: 4719 case Intrinsic::convertss: 4720 case Intrinsic::convertsu: 4721 case Intrinsic::convertus: 4722 case Intrinsic::convertuu: { 4723 ISD::CvtCode Code = ISD::CVT_INVALID; 4724 switch (Intrinsic) { 4725 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4726 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4727 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4728 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4729 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4730 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4731 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4732 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4733 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4734 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4735 } 4736 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4737 const Value *Op1 = I.getArgOperand(0); 4738 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4739 DAG.getValueType(DestVT), 4740 DAG.getValueType(getValue(Op1).getValueType()), 4741 getValue(I.getArgOperand(1)), 4742 getValue(I.getArgOperand(2)), 4743 Code); 4744 setValue(&I, Res); 4745 return nullptr; 4746 } 4747 case Intrinsic::powi: 4748 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4749 getValue(I.getArgOperand(1)), DAG)); 4750 return nullptr; 4751 case Intrinsic::log: 4752 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4753 return nullptr; 4754 case Intrinsic::log2: 4755 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4756 return nullptr; 4757 case Intrinsic::log10: 4758 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4759 return nullptr; 4760 case Intrinsic::exp: 4761 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4762 return nullptr; 4763 case Intrinsic::exp2: 4764 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4765 return nullptr; 4766 case Intrinsic::pow: 4767 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4768 getValue(I.getArgOperand(1)), DAG, TLI)); 4769 return nullptr; 4770 case Intrinsic::sqrt: 4771 case Intrinsic::fabs: 4772 case Intrinsic::sin: 4773 case Intrinsic::cos: 4774 case Intrinsic::floor: 4775 case Intrinsic::ceil: 4776 case Intrinsic::trunc: 4777 case Intrinsic::rint: 4778 case Intrinsic::nearbyint: 4779 case Intrinsic::round: { 4780 unsigned Opcode; 4781 switch (Intrinsic) { 4782 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4783 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4784 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4785 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4786 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4787 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4788 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4789 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4790 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4791 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4792 case Intrinsic::round: Opcode = ISD::FROUND; break; 4793 } 4794 4795 setValue(&I, DAG.getNode(Opcode, sdl, 4796 getValue(I.getArgOperand(0)).getValueType(), 4797 getValue(I.getArgOperand(0)))); 4798 return nullptr; 4799 } 4800 case Intrinsic::minnum: 4801 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4802 getValue(I.getArgOperand(0)).getValueType(), 4803 getValue(I.getArgOperand(0)), 4804 getValue(I.getArgOperand(1)))); 4805 return nullptr; 4806 case Intrinsic::maxnum: 4807 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4808 getValue(I.getArgOperand(0)).getValueType(), 4809 getValue(I.getArgOperand(0)), 4810 getValue(I.getArgOperand(1)))); 4811 return nullptr; 4812 case Intrinsic::copysign: 4813 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4814 getValue(I.getArgOperand(0)).getValueType(), 4815 getValue(I.getArgOperand(0)), 4816 getValue(I.getArgOperand(1)))); 4817 return nullptr; 4818 case Intrinsic::fma: 4819 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4820 getValue(I.getArgOperand(0)).getValueType(), 4821 getValue(I.getArgOperand(0)), 4822 getValue(I.getArgOperand(1)), 4823 getValue(I.getArgOperand(2)))); 4824 return nullptr; 4825 case Intrinsic::fmuladd: { 4826 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4827 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4828 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4829 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4830 getValue(I.getArgOperand(0)).getValueType(), 4831 getValue(I.getArgOperand(0)), 4832 getValue(I.getArgOperand(1)), 4833 getValue(I.getArgOperand(2)))); 4834 } else { 4835 // TODO: Intrinsic calls should have fast-math-flags. 4836 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4837 getValue(I.getArgOperand(0)).getValueType(), 4838 getValue(I.getArgOperand(0)), 4839 getValue(I.getArgOperand(1))); 4840 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4841 getValue(I.getArgOperand(0)).getValueType(), 4842 Mul, 4843 getValue(I.getArgOperand(2))); 4844 setValue(&I, Add); 4845 } 4846 return nullptr; 4847 } 4848 case Intrinsic::convert_to_fp16: 4849 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4850 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4851 getValue(I.getArgOperand(0)), 4852 DAG.getTargetConstant(0, sdl, 4853 MVT::i32)))); 4854 return nullptr; 4855 case Intrinsic::convert_from_fp16: 4856 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4857 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4858 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4859 getValue(I.getArgOperand(0))))); 4860 return nullptr; 4861 case Intrinsic::pcmarker: { 4862 SDValue Tmp = getValue(I.getArgOperand(0)); 4863 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4864 return nullptr; 4865 } 4866 case Intrinsic::readcyclecounter: { 4867 SDValue Op = getRoot(); 4868 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4869 DAG.getVTList(MVT::i64, MVT::Other), Op); 4870 setValue(&I, Res); 4871 DAG.setRoot(Res.getValue(1)); 4872 return nullptr; 4873 } 4874 case Intrinsic::bitreverse: 4875 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4876 getValue(I.getArgOperand(0)).getValueType(), 4877 getValue(I.getArgOperand(0)))); 4878 return nullptr; 4879 case Intrinsic::bswap: 4880 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4881 getValue(I.getArgOperand(0)).getValueType(), 4882 getValue(I.getArgOperand(0)))); 4883 return nullptr; 4884 case Intrinsic::uabsdiff: 4885 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4886 getValue(I.getArgOperand(0)).getValueType(), 4887 getValue(I.getArgOperand(0)), 4888 getValue(I.getArgOperand(1)))); 4889 return nullptr; 4890 case Intrinsic::sabsdiff: 4891 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4892 getValue(I.getArgOperand(0)).getValueType(), 4893 getValue(I.getArgOperand(0)), 4894 getValue(I.getArgOperand(1)))); 4895 return nullptr; 4896 case Intrinsic::cttz: { 4897 SDValue Arg = getValue(I.getArgOperand(0)); 4898 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4899 EVT Ty = Arg.getValueType(); 4900 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4901 sdl, Ty, Arg)); 4902 return nullptr; 4903 } 4904 case Intrinsic::ctlz: { 4905 SDValue Arg = getValue(I.getArgOperand(0)); 4906 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4907 EVT Ty = Arg.getValueType(); 4908 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4909 sdl, Ty, Arg)); 4910 return nullptr; 4911 } 4912 case Intrinsic::ctpop: { 4913 SDValue Arg = getValue(I.getArgOperand(0)); 4914 EVT Ty = Arg.getValueType(); 4915 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4916 return nullptr; 4917 } 4918 case Intrinsic::stacksave: { 4919 SDValue Op = getRoot(); 4920 Res = DAG.getNode( 4921 ISD::STACKSAVE, sdl, 4922 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4923 setValue(&I, Res); 4924 DAG.setRoot(Res.getValue(1)); 4925 return nullptr; 4926 } 4927 case Intrinsic::stackrestore: { 4928 Res = getValue(I.getArgOperand(0)); 4929 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4930 return nullptr; 4931 } 4932 case Intrinsic::stackprotector: { 4933 // Emit code into the DAG to store the stack guard onto the stack. 4934 MachineFunction &MF = DAG.getMachineFunction(); 4935 MachineFrameInfo *MFI = MF.getFrameInfo(); 4936 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4937 SDValue Src, Chain = getRoot(); 4938 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4939 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4940 4941 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4942 // global variable __stack_chk_guard. 4943 if (!GV) 4944 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4945 if (BC->getOpcode() == Instruction::BitCast) 4946 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4947 4948 if (GV && TLI.useLoadStackGuardNode()) { 4949 // Emit a LOAD_STACK_GUARD node. 4950 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4951 sdl, PtrTy, Chain); 4952 MachinePointerInfo MPInfo(GV); 4953 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4954 unsigned Flags = MachineMemOperand::MOLoad | 4955 MachineMemOperand::MOInvariant; 4956 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4957 PtrTy.getSizeInBits() / 8, 4958 DAG.getEVTAlignment(PtrTy)); 4959 Node->setMemRefs(MemRefs, MemRefs + 1); 4960 4961 // Copy the guard value to a virtual register so that it can be 4962 // retrieved in the epilogue. 4963 Src = SDValue(Node, 0); 4964 const TargetRegisterClass *RC = 4965 TLI.getRegClassFor(Src.getSimpleValueType()); 4966 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4967 4968 SPDescriptor.setGuardReg(Reg); 4969 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4970 } else { 4971 Src = getValue(I.getArgOperand(0)); // The guard's value. 4972 } 4973 4974 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4975 4976 int FI = FuncInfo.StaticAllocaMap[Slot]; 4977 MFI->setStackProtectorIndex(FI); 4978 4979 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4980 4981 // Store the stack protector onto the stack. 4982 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4983 DAG.getMachineFunction(), FI), 4984 true, false, 0); 4985 setValue(&I, Res); 4986 DAG.setRoot(Res); 4987 return nullptr; 4988 } 4989 case Intrinsic::objectsize: { 4990 // If we don't know by now, we're never going to know. 4991 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4992 4993 assert(CI && "Non-constant type in __builtin_object_size?"); 4994 4995 SDValue Arg = getValue(I.getCalledValue()); 4996 EVT Ty = Arg.getValueType(); 4997 4998 if (CI->isZero()) 4999 Res = DAG.getConstant(-1ULL, sdl, Ty); 5000 else 5001 Res = DAG.getConstant(0, sdl, Ty); 5002 5003 setValue(&I, Res); 5004 return nullptr; 5005 } 5006 case Intrinsic::annotation: 5007 case Intrinsic::ptr_annotation: 5008 // Drop the intrinsic, but forward the value 5009 setValue(&I, getValue(I.getOperand(0))); 5010 return nullptr; 5011 case Intrinsic::assume: 5012 case Intrinsic::var_annotation: 5013 // Discard annotate attributes and assumptions 5014 return nullptr; 5015 5016 case Intrinsic::init_trampoline: { 5017 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5018 5019 SDValue Ops[6]; 5020 Ops[0] = getRoot(); 5021 Ops[1] = getValue(I.getArgOperand(0)); 5022 Ops[2] = getValue(I.getArgOperand(1)); 5023 Ops[3] = getValue(I.getArgOperand(2)); 5024 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5025 Ops[5] = DAG.getSrcValue(F); 5026 5027 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5028 5029 DAG.setRoot(Res); 5030 return nullptr; 5031 } 5032 case Intrinsic::adjust_trampoline: { 5033 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5034 TLI.getPointerTy(DAG.getDataLayout()), 5035 getValue(I.getArgOperand(0)))); 5036 return nullptr; 5037 } 5038 case Intrinsic::gcroot: 5039 if (GFI) { 5040 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5041 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5042 5043 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5044 GFI->addStackRoot(FI->getIndex(), TypeMap); 5045 } 5046 return nullptr; 5047 case Intrinsic::gcread: 5048 case Intrinsic::gcwrite: 5049 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5050 case Intrinsic::flt_rounds: 5051 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5052 return nullptr; 5053 5054 case Intrinsic::expect: { 5055 // Just replace __builtin_expect(exp, c) with EXP. 5056 setValue(&I, getValue(I.getArgOperand(0))); 5057 return nullptr; 5058 } 5059 5060 case Intrinsic::debugtrap: 5061 case Intrinsic::trap: { 5062 StringRef TrapFuncName = 5063 I.getAttributes() 5064 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5065 .getValueAsString(); 5066 if (TrapFuncName.empty()) { 5067 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5068 ISD::TRAP : ISD::DEBUGTRAP; 5069 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5070 return nullptr; 5071 } 5072 TargetLowering::ArgListTy Args; 5073 5074 TargetLowering::CallLoweringInfo CLI(DAG); 5075 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5076 CallingConv::C, I.getType(), 5077 DAG.getExternalSymbol(TrapFuncName.data(), 5078 TLI.getPointerTy(DAG.getDataLayout())), 5079 std::move(Args), 0); 5080 5081 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5082 DAG.setRoot(Result.second); 5083 return nullptr; 5084 } 5085 5086 case Intrinsic::uadd_with_overflow: 5087 case Intrinsic::sadd_with_overflow: 5088 case Intrinsic::usub_with_overflow: 5089 case Intrinsic::ssub_with_overflow: 5090 case Intrinsic::umul_with_overflow: 5091 case Intrinsic::smul_with_overflow: { 5092 ISD::NodeType Op; 5093 switch (Intrinsic) { 5094 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5095 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5096 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5097 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5098 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5099 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5100 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5101 } 5102 SDValue Op1 = getValue(I.getArgOperand(0)); 5103 SDValue Op2 = getValue(I.getArgOperand(1)); 5104 5105 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5106 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5107 return nullptr; 5108 } 5109 case Intrinsic::prefetch: { 5110 SDValue Ops[5]; 5111 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5112 Ops[0] = getRoot(); 5113 Ops[1] = getValue(I.getArgOperand(0)); 5114 Ops[2] = getValue(I.getArgOperand(1)); 5115 Ops[3] = getValue(I.getArgOperand(2)); 5116 Ops[4] = getValue(I.getArgOperand(3)); 5117 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5118 DAG.getVTList(MVT::Other), Ops, 5119 EVT::getIntegerVT(*Context, 8), 5120 MachinePointerInfo(I.getArgOperand(0)), 5121 0, /* align */ 5122 false, /* volatile */ 5123 rw==0, /* read */ 5124 rw==1)); /* write */ 5125 return nullptr; 5126 } 5127 case Intrinsic::lifetime_start: 5128 case Intrinsic::lifetime_end: { 5129 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5130 // Stack coloring is not enabled in O0, discard region information. 5131 if (TM.getOptLevel() == CodeGenOpt::None) 5132 return nullptr; 5133 5134 SmallVector<Value *, 4> Allocas; 5135 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5136 5137 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5138 E = Allocas.end(); Object != E; ++Object) { 5139 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5140 5141 // Could not find an Alloca. 5142 if (!LifetimeObject) 5143 continue; 5144 5145 // First check that the Alloca is static, otherwise it won't have a 5146 // valid frame index. 5147 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5148 if (SI == FuncInfo.StaticAllocaMap.end()) 5149 return nullptr; 5150 5151 int FI = SI->second; 5152 5153 SDValue Ops[2]; 5154 Ops[0] = getRoot(); 5155 Ops[1] = 5156 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5157 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5158 5159 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5160 DAG.setRoot(Res); 5161 } 5162 return nullptr; 5163 } 5164 case Intrinsic::invariant_start: 5165 // Discard region information. 5166 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5167 return nullptr; 5168 case Intrinsic::invariant_end: 5169 // Discard region information. 5170 return nullptr; 5171 case Intrinsic::stackprotectorcheck: { 5172 // Do not actually emit anything for this basic block. Instead we initialize 5173 // the stack protector descriptor and export the guard variable so we can 5174 // access it in FinishBasicBlock. 5175 const BasicBlock *BB = I.getParent(); 5176 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5177 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5178 5179 // Flush our exports since we are going to process a terminator. 5180 (void)getControlRoot(); 5181 return nullptr; 5182 } 5183 case Intrinsic::clear_cache: 5184 return TLI.getClearCacheBuiltinName(); 5185 case Intrinsic::donothing: 5186 // ignore 5187 return nullptr; 5188 case Intrinsic::experimental_stackmap: { 5189 visitStackmap(I); 5190 return nullptr; 5191 } 5192 case Intrinsic::experimental_patchpoint_void: 5193 case Intrinsic::experimental_patchpoint_i64: { 5194 visitPatchpoint(&I); 5195 return nullptr; 5196 } 5197 case Intrinsic::experimental_gc_statepoint: { 5198 visitStatepoint(I); 5199 return nullptr; 5200 } 5201 case Intrinsic::experimental_gc_result_int: 5202 case Intrinsic::experimental_gc_result_float: 5203 case Intrinsic::experimental_gc_result_ptr: 5204 case Intrinsic::experimental_gc_result: { 5205 visitGCResult(I); 5206 return nullptr; 5207 } 5208 case Intrinsic::experimental_gc_relocate: { 5209 visitGCRelocate(I); 5210 return nullptr; 5211 } 5212 case Intrinsic::instrprof_increment: 5213 llvm_unreachable("instrprof failed to lower an increment"); 5214 5215 case Intrinsic::localescape: { 5216 MachineFunction &MF = DAG.getMachineFunction(); 5217 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5218 5219 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5220 // is the same on all targets. 5221 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5222 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5223 if (isa<ConstantPointerNull>(Arg)) 5224 continue; // Skip null pointers. They represent a hole in index space. 5225 AllocaInst *Slot = cast<AllocaInst>(Arg); 5226 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5227 "can only escape static allocas"); 5228 int FI = FuncInfo.StaticAllocaMap[Slot]; 5229 MCSymbol *FrameAllocSym = 5230 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5231 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5232 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5233 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5234 .addSym(FrameAllocSym) 5235 .addFrameIndex(FI); 5236 } 5237 5238 return nullptr; 5239 } 5240 5241 case Intrinsic::localrecover: { 5242 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5243 MachineFunction &MF = DAG.getMachineFunction(); 5244 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5245 5246 // Get the symbol that defines the frame offset. 5247 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5248 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5249 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5250 MCSymbol *FrameAllocSym = 5251 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5252 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5253 5254 // Create a MCSymbol for the label to avoid any target lowering 5255 // that would make this PC relative. 5256 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5257 SDValue OffsetVal = 5258 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5259 5260 // Add the offset to the FP. 5261 Value *FP = I.getArgOperand(1); 5262 SDValue FPVal = getValue(FP); 5263 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5264 setValue(&I, Add); 5265 5266 return nullptr; 5267 } 5268 5269 case Intrinsic::eh_exceptionpointer: 5270 case Intrinsic::eh_exceptioncode: { 5271 // Get the exception pointer vreg, copy from it, and resize it to fit. 5272 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5273 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5274 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5275 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5276 SDValue N = 5277 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5278 if (Intrinsic == Intrinsic::eh_exceptioncode) 5279 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5280 setValue(&I, N); 5281 return nullptr; 5282 } 5283 } 5284 } 5285 5286 std::pair<SDValue, SDValue> 5287 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5288 const BasicBlock *EHPadBB) { 5289 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5290 MCSymbol *BeginLabel = nullptr; 5291 5292 if (EHPadBB) { 5293 // Insert a label before the invoke call to mark the try range. This can be 5294 // used to detect deletion of the invoke via the MachineModuleInfo. 5295 BeginLabel = MMI.getContext().createTempSymbol(); 5296 5297 // For SjLj, keep track of which landing pads go with which invokes 5298 // so as to maintain the ordering of pads in the LSDA. 5299 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5300 if (CallSiteIndex) { 5301 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5302 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5303 5304 // Now that the call site is handled, stop tracking it. 5305 MMI.setCurrentCallSite(0); 5306 } 5307 5308 // Both PendingLoads and PendingExports must be flushed here; 5309 // this call might not return. 5310 (void)getRoot(); 5311 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5312 5313 CLI.setChain(getRoot()); 5314 } 5315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5316 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5317 5318 assert((CLI.IsTailCall || Result.second.getNode()) && 5319 "Non-null chain expected with non-tail call!"); 5320 assert((Result.second.getNode() || !Result.first.getNode()) && 5321 "Null value expected with tail call!"); 5322 5323 if (!Result.second.getNode()) { 5324 // As a special case, a null chain means that a tail call has been emitted 5325 // and the DAG root is already updated. 5326 HasTailCall = true; 5327 5328 // Since there's no actual continuation from this block, nothing can be 5329 // relying on us setting vregs for them. 5330 PendingExports.clear(); 5331 } else { 5332 DAG.setRoot(Result.second); 5333 } 5334 5335 if (EHPadBB) { 5336 // Insert a label at the end of the invoke call to mark the try range. This 5337 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5338 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5339 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5340 5341 // Inform MachineModuleInfo of range. 5342 if (MMI.hasEHFunclets()) { 5343 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5344 EHInfo->addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5345 } else { 5346 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5347 } 5348 } 5349 5350 return Result; 5351 } 5352 5353 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5354 bool isTailCall, 5355 const BasicBlock *EHPadBB) { 5356 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5357 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5358 Type *RetTy = FTy->getReturnType(); 5359 5360 TargetLowering::ArgListTy Args; 5361 TargetLowering::ArgListEntry Entry; 5362 Args.reserve(CS.arg_size()); 5363 5364 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5365 i != e; ++i) { 5366 const Value *V = *i; 5367 5368 // Skip empty types 5369 if (V->getType()->isEmptyTy()) 5370 continue; 5371 5372 SDValue ArgNode = getValue(V); 5373 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5374 5375 // Skip the first return-type Attribute to get to params. 5376 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5377 Args.push_back(Entry); 5378 5379 // If we have an explicit sret argument that is an Instruction, (i.e., it 5380 // might point to function-local memory), we can't meaningfully tail-call. 5381 if (Entry.isSRet && isa<Instruction>(V)) 5382 isTailCall = false; 5383 } 5384 5385 // Check if target-independent constraints permit a tail call here. 5386 // Target-dependent constraints are checked within TLI->LowerCallTo. 5387 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5388 isTailCall = false; 5389 5390 TargetLowering::CallLoweringInfo CLI(DAG); 5391 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5392 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5393 .setTailCall(isTailCall); 5394 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5395 5396 if (Result.first.getNode()) 5397 setValue(CS.getInstruction(), Result.first); 5398 } 5399 5400 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5401 /// value is equal or not-equal to zero. 5402 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5403 for (const User *U : V->users()) { 5404 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5405 if (IC->isEquality()) 5406 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5407 if (C->isNullValue()) 5408 continue; 5409 // Unknown instruction. 5410 return false; 5411 } 5412 return true; 5413 } 5414 5415 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5416 Type *LoadTy, 5417 SelectionDAGBuilder &Builder) { 5418 5419 // Check to see if this load can be trivially constant folded, e.g. if the 5420 // input is from a string literal. 5421 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5422 // Cast pointer to the type we really want to load. 5423 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5424 PointerType::getUnqual(LoadTy)); 5425 5426 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5427 const_cast<Constant *>(LoadInput), *Builder.DL)) 5428 return Builder.getValue(LoadCst); 5429 } 5430 5431 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5432 // still constant memory, the input chain can be the entry node. 5433 SDValue Root; 5434 bool ConstantMemory = false; 5435 5436 // Do not serialize (non-volatile) loads of constant memory with anything. 5437 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5438 Root = Builder.DAG.getEntryNode(); 5439 ConstantMemory = true; 5440 } else { 5441 // Do not serialize non-volatile loads against each other. 5442 Root = Builder.DAG.getRoot(); 5443 } 5444 5445 SDValue Ptr = Builder.getValue(PtrVal); 5446 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5447 Ptr, MachinePointerInfo(PtrVal), 5448 false /*volatile*/, 5449 false /*nontemporal*/, 5450 false /*isinvariant*/, 1 /* align=1 */); 5451 5452 if (!ConstantMemory) 5453 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5454 return LoadVal; 5455 } 5456 5457 /// processIntegerCallValue - Record the value for an instruction that 5458 /// produces an integer result, converting the type where necessary. 5459 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5460 SDValue Value, 5461 bool IsSigned) { 5462 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5463 I.getType(), true); 5464 if (IsSigned) 5465 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5466 else 5467 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5468 setValue(&I, Value); 5469 } 5470 5471 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5472 /// If so, return true and lower it, otherwise return false and it will be 5473 /// lowered like a normal call. 5474 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5475 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5476 if (I.getNumArgOperands() != 3) 5477 return false; 5478 5479 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5480 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5481 !I.getArgOperand(2)->getType()->isIntegerTy() || 5482 !I.getType()->isIntegerTy()) 5483 return false; 5484 5485 const Value *Size = I.getArgOperand(2); 5486 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5487 if (CSize && CSize->getZExtValue() == 0) { 5488 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5489 I.getType(), true); 5490 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5491 return true; 5492 } 5493 5494 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5495 std::pair<SDValue, SDValue> Res = 5496 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5497 getValue(LHS), getValue(RHS), getValue(Size), 5498 MachinePointerInfo(LHS), 5499 MachinePointerInfo(RHS)); 5500 if (Res.first.getNode()) { 5501 processIntegerCallValue(I, Res.first, true); 5502 PendingLoads.push_back(Res.second); 5503 return true; 5504 } 5505 5506 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5507 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5508 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5509 bool ActuallyDoIt = true; 5510 MVT LoadVT; 5511 Type *LoadTy; 5512 switch (CSize->getZExtValue()) { 5513 default: 5514 LoadVT = MVT::Other; 5515 LoadTy = nullptr; 5516 ActuallyDoIt = false; 5517 break; 5518 case 2: 5519 LoadVT = MVT::i16; 5520 LoadTy = Type::getInt16Ty(CSize->getContext()); 5521 break; 5522 case 4: 5523 LoadVT = MVT::i32; 5524 LoadTy = Type::getInt32Ty(CSize->getContext()); 5525 break; 5526 case 8: 5527 LoadVT = MVT::i64; 5528 LoadTy = Type::getInt64Ty(CSize->getContext()); 5529 break; 5530 /* 5531 case 16: 5532 LoadVT = MVT::v4i32; 5533 LoadTy = Type::getInt32Ty(CSize->getContext()); 5534 LoadTy = VectorType::get(LoadTy, 4); 5535 break; 5536 */ 5537 } 5538 5539 // This turns into unaligned loads. We only do this if the target natively 5540 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5541 // we'll only produce a small number of byte loads. 5542 5543 // Require that we can find a legal MVT, and only do this if the target 5544 // supports unaligned loads of that type. Expanding into byte loads would 5545 // bloat the code. 5546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5547 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5548 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5549 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5550 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5551 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5552 // TODO: Check alignment of src and dest ptrs. 5553 if (!TLI.isTypeLegal(LoadVT) || 5554 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5555 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5556 ActuallyDoIt = false; 5557 } 5558 5559 if (ActuallyDoIt) { 5560 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5561 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5562 5563 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5564 ISD::SETNE); 5565 processIntegerCallValue(I, Res, false); 5566 return true; 5567 } 5568 } 5569 5570 5571 return false; 5572 } 5573 5574 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5575 /// form. If so, return true and lower it, otherwise return false and it 5576 /// will be lowered like a normal call. 5577 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5578 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5579 if (I.getNumArgOperands() != 3) 5580 return false; 5581 5582 const Value *Src = I.getArgOperand(0); 5583 const Value *Char = I.getArgOperand(1); 5584 const Value *Length = I.getArgOperand(2); 5585 if (!Src->getType()->isPointerTy() || 5586 !Char->getType()->isIntegerTy() || 5587 !Length->getType()->isIntegerTy() || 5588 !I.getType()->isPointerTy()) 5589 return false; 5590 5591 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5592 std::pair<SDValue, SDValue> Res = 5593 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5594 getValue(Src), getValue(Char), getValue(Length), 5595 MachinePointerInfo(Src)); 5596 if (Res.first.getNode()) { 5597 setValue(&I, Res.first); 5598 PendingLoads.push_back(Res.second); 5599 return true; 5600 } 5601 5602 return false; 5603 } 5604 5605 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5606 /// optimized form. If so, return true and lower it, otherwise return false 5607 /// and it will be lowered like a normal call. 5608 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5609 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5610 if (I.getNumArgOperands() != 2) 5611 return false; 5612 5613 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5614 if (!Arg0->getType()->isPointerTy() || 5615 !Arg1->getType()->isPointerTy() || 5616 !I.getType()->isPointerTy()) 5617 return false; 5618 5619 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5620 std::pair<SDValue, SDValue> Res = 5621 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5622 getValue(Arg0), getValue(Arg1), 5623 MachinePointerInfo(Arg0), 5624 MachinePointerInfo(Arg1), isStpcpy); 5625 if (Res.first.getNode()) { 5626 setValue(&I, Res.first); 5627 DAG.setRoot(Res.second); 5628 return true; 5629 } 5630 5631 return false; 5632 } 5633 5634 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5635 /// If so, return true and lower it, otherwise return false and it will be 5636 /// lowered like a normal call. 5637 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5638 // Verify that the prototype makes sense. int strcmp(void*,void*) 5639 if (I.getNumArgOperands() != 2) 5640 return false; 5641 5642 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5643 if (!Arg0->getType()->isPointerTy() || 5644 !Arg1->getType()->isPointerTy() || 5645 !I.getType()->isIntegerTy()) 5646 return false; 5647 5648 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5649 std::pair<SDValue, SDValue> Res = 5650 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5651 getValue(Arg0), getValue(Arg1), 5652 MachinePointerInfo(Arg0), 5653 MachinePointerInfo(Arg1)); 5654 if (Res.first.getNode()) { 5655 processIntegerCallValue(I, Res.first, true); 5656 PendingLoads.push_back(Res.second); 5657 return true; 5658 } 5659 5660 return false; 5661 } 5662 5663 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5664 /// form. If so, return true and lower it, otherwise return false and it 5665 /// will be lowered like a normal call. 5666 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5667 // Verify that the prototype makes sense. size_t strlen(char *) 5668 if (I.getNumArgOperands() != 1) 5669 return false; 5670 5671 const Value *Arg0 = I.getArgOperand(0); 5672 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5673 return false; 5674 5675 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5676 std::pair<SDValue, SDValue> Res = 5677 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5678 getValue(Arg0), MachinePointerInfo(Arg0)); 5679 if (Res.first.getNode()) { 5680 processIntegerCallValue(I, Res.first, false); 5681 PendingLoads.push_back(Res.second); 5682 return true; 5683 } 5684 5685 return false; 5686 } 5687 5688 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5689 /// form. If so, return true and lower it, otherwise return false and it 5690 /// will be lowered like a normal call. 5691 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5692 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5693 if (I.getNumArgOperands() != 2) 5694 return false; 5695 5696 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5697 if (!Arg0->getType()->isPointerTy() || 5698 !Arg1->getType()->isIntegerTy() || 5699 !I.getType()->isIntegerTy()) 5700 return false; 5701 5702 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5703 std::pair<SDValue, SDValue> Res = 5704 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5705 getValue(Arg0), getValue(Arg1), 5706 MachinePointerInfo(Arg0)); 5707 if (Res.first.getNode()) { 5708 processIntegerCallValue(I, Res.first, false); 5709 PendingLoads.push_back(Res.second); 5710 return true; 5711 } 5712 5713 return false; 5714 } 5715 5716 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5717 /// operation (as expected), translate it to an SDNode with the specified opcode 5718 /// and return true. 5719 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5720 unsigned Opcode) { 5721 // Sanity check that it really is a unary floating-point call. 5722 if (I.getNumArgOperands() != 1 || 5723 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5724 I.getType() != I.getArgOperand(0)->getType() || 5725 !I.onlyReadsMemory()) 5726 return false; 5727 5728 SDValue Tmp = getValue(I.getArgOperand(0)); 5729 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5730 return true; 5731 } 5732 5733 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5734 /// operation (as expected), translate it to an SDNode with the specified opcode 5735 /// and return true. 5736 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5737 unsigned Opcode) { 5738 // Sanity check that it really is a binary floating-point call. 5739 if (I.getNumArgOperands() != 2 || 5740 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5741 I.getType() != I.getArgOperand(0)->getType() || 5742 I.getType() != I.getArgOperand(1)->getType() || 5743 !I.onlyReadsMemory()) 5744 return false; 5745 5746 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5747 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5748 EVT VT = Tmp0.getValueType(); 5749 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5750 return true; 5751 } 5752 5753 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5754 // Handle inline assembly differently. 5755 if (isa<InlineAsm>(I.getCalledValue())) { 5756 visitInlineAsm(&I); 5757 return; 5758 } 5759 5760 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5761 ComputeUsesVAFloatArgument(I, &MMI); 5762 5763 const char *RenameFn = nullptr; 5764 if (Function *F = I.getCalledFunction()) { 5765 if (F->isDeclaration()) { 5766 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5767 if (unsigned IID = II->getIntrinsicID(F)) { 5768 RenameFn = visitIntrinsicCall(I, IID); 5769 if (!RenameFn) 5770 return; 5771 } 5772 } 5773 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5774 RenameFn = visitIntrinsicCall(I, IID); 5775 if (!RenameFn) 5776 return; 5777 } 5778 } 5779 5780 // Check for well-known libc/libm calls. If the function is internal, it 5781 // can't be a library call. 5782 LibFunc::Func Func; 5783 if (!F->hasLocalLinkage() && F->hasName() && 5784 LibInfo->getLibFunc(F->getName(), Func) && 5785 LibInfo->hasOptimizedCodeGen(Func)) { 5786 switch (Func) { 5787 default: break; 5788 case LibFunc::copysign: 5789 case LibFunc::copysignf: 5790 case LibFunc::copysignl: 5791 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5792 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5793 I.getType() == I.getArgOperand(0)->getType() && 5794 I.getType() == I.getArgOperand(1)->getType() && 5795 I.onlyReadsMemory()) { 5796 SDValue LHS = getValue(I.getArgOperand(0)); 5797 SDValue RHS = getValue(I.getArgOperand(1)); 5798 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5799 LHS.getValueType(), LHS, RHS)); 5800 return; 5801 } 5802 break; 5803 case LibFunc::fabs: 5804 case LibFunc::fabsf: 5805 case LibFunc::fabsl: 5806 if (visitUnaryFloatCall(I, ISD::FABS)) 5807 return; 5808 break; 5809 case LibFunc::fmin: 5810 case LibFunc::fminf: 5811 case LibFunc::fminl: 5812 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5813 return; 5814 break; 5815 case LibFunc::fmax: 5816 case LibFunc::fmaxf: 5817 case LibFunc::fmaxl: 5818 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5819 return; 5820 break; 5821 case LibFunc::sin: 5822 case LibFunc::sinf: 5823 case LibFunc::sinl: 5824 if (visitUnaryFloatCall(I, ISD::FSIN)) 5825 return; 5826 break; 5827 case LibFunc::cos: 5828 case LibFunc::cosf: 5829 case LibFunc::cosl: 5830 if (visitUnaryFloatCall(I, ISD::FCOS)) 5831 return; 5832 break; 5833 case LibFunc::sqrt: 5834 case LibFunc::sqrtf: 5835 case LibFunc::sqrtl: 5836 case LibFunc::sqrt_finite: 5837 case LibFunc::sqrtf_finite: 5838 case LibFunc::sqrtl_finite: 5839 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5840 return; 5841 break; 5842 case LibFunc::floor: 5843 case LibFunc::floorf: 5844 case LibFunc::floorl: 5845 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5846 return; 5847 break; 5848 case LibFunc::nearbyint: 5849 case LibFunc::nearbyintf: 5850 case LibFunc::nearbyintl: 5851 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5852 return; 5853 break; 5854 case LibFunc::ceil: 5855 case LibFunc::ceilf: 5856 case LibFunc::ceill: 5857 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5858 return; 5859 break; 5860 case LibFunc::rint: 5861 case LibFunc::rintf: 5862 case LibFunc::rintl: 5863 if (visitUnaryFloatCall(I, ISD::FRINT)) 5864 return; 5865 break; 5866 case LibFunc::round: 5867 case LibFunc::roundf: 5868 case LibFunc::roundl: 5869 if (visitUnaryFloatCall(I, ISD::FROUND)) 5870 return; 5871 break; 5872 case LibFunc::trunc: 5873 case LibFunc::truncf: 5874 case LibFunc::truncl: 5875 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5876 return; 5877 break; 5878 case LibFunc::log2: 5879 case LibFunc::log2f: 5880 case LibFunc::log2l: 5881 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5882 return; 5883 break; 5884 case LibFunc::exp2: 5885 case LibFunc::exp2f: 5886 case LibFunc::exp2l: 5887 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5888 return; 5889 break; 5890 case LibFunc::memcmp: 5891 if (visitMemCmpCall(I)) 5892 return; 5893 break; 5894 case LibFunc::memchr: 5895 if (visitMemChrCall(I)) 5896 return; 5897 break; 5898 case LibFunc::strcpy: 5899 if (visitStrCpyCall(I, false)) 5900 return; 5901 break; 5902 case LibFunc::stpcpy: 5903 if (visitStrCpyCall(I, true)) 5904 return; 5905 break; 5906 case LibFunc::strcmp: 5907 if (visitStrCmpCall(I)) 5908 return; 5909 break; 5910 case LibFunc::strlen: 5911 if (visitStrLenCall(I)) 5912 return; 5913 break; 5914 case LibFunc::strnlen: 5915 if (visitStrNLenCall(I)) 5916 return; 5917 break; 5918 } 5919 } 5920 } 5921 5922 SDValue Callee; 5923 if (!RenameFn) 5924 Callee = getValue(I.getCalledValue()); 5925 else 5926 Callee = DAG.getExternalSymbol( 5927 RenameFn, 5928 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5929 5930 // Check if we can potentially perform a tail call. More detailed checking is 5931 // be done within LowerCallTo, after more information about the call is known. 5932 LowerCallTo(&I, Callee, I.isTailCall()); 5933 } 5934 5935 namespace { 5936 5937 /// AsmOperandInfo - This contains information for each constraint that we are 5938 /// lowering. 5939 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5940 public: 5941 /// CallOperand - If this is the result output operand or a clobber 5942 /// this is null, otherwise it is the incoming operand to the CallInst. 5943 /// This gets modified as the asm is processed. 5944 SDValue CallOperand; 5945 5946 /// AssignedRegs - If this is a register or register class operand, this 5947 /// contains the set of register corresponding to the operand. 5948 RegsForValue AssignedRegs; 5949 5950 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5951 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5952 } 5953 5954 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5955 /// corresponds to. If there is no Value* for this operand, it returns 5956 /// MVT::Other. 5957 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5958 const DataLayout &DL) const { 5959 if (!CallOperandVal) return MVT::Other; 5960 5961 if (isa<BasicBlock>(CallOperandVal)) 5962 return TLI.getPointerTy(DL); 5963 5964 llvm::Type *OpTy = CallOperandVal->getType(); 5965 5966 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5967 // If this is an indirect operand, the operand is a pointer to the 5968 // accessed type. 5969 if (isIndirect) { 5970 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5971 if (!PtrTy) 5972 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5973 OpTy = PtrTy->getElementType(); 5974 } 5975 5976 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5977 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5978 if (STy->getNumElements() == 1) 5979 OpTy = STy->getElementType(0); 5980 5981 // If OpTy is not a single value, it may be a struct/union that we 5982 // can tile with integers. 5983 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5984 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5985 switch (BitSize) { 5986 default: break; 5987 case 1: 5988 case 8: 5989 case 16: 5990 case 32: 5991 case 64: 5992 case 128: 5993 OpTy = IntegerType::get(Context, BitSize); 5994 break; 5995 } 5996 } 5997 5998 return TLI.getValueType(DL, OpTy, true); 5999 } 6000 }; 6001 6002 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6003 6004 } // end anonymous namespace 6005 6006 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6007 /// specified operand. We prefer to assign virtual registers, to allow the 6008 /// register allocator to handle the assignment process. However, if the asm 6009 /// uses features that we can't model on machineinstrs, we have SDISel do the 6010 /// allocation. This produces generally horrible, but correct, code. 6011 /// 6012 /// OpInfo describes the operand. 6013 /// 6014 static void GetRegistersForValue(SelectionDAG &DAG, 6015 const TargetLowering &TLI, 6016 SDLoc DL, 6017 SDISelAsmOperandInfo &OpInfo) { 6018 LLVMContext &Context = *DAG.getContext(); 6019 6020 MachineFunction &MF = DAG.getMachineFunction(); 6021 SmallVector<unsigned, 4> Regs; 6022 6023 // If this is a constraint for a single physreg, or a constraint for a 6024 // register class, find it. 6025 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6026 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6027 OpInfo.ConstraintCode, 6028 OpInfo.ConstraintVT); 6029 6030 unsigned NumRegs = 1; 6031 if (OpInfo.ConstraintVT != MVT::Other) { 6032 // If this is a FP input in an integer register (or visa versa) insert a bit 6033 // cast of the input value. More generally, handle any case where the input 6034 // value disagrees with the register class we plan to stick this in. 6035 if (OpInfo.Type == InlineAsm::isInput && 6036 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6037 // Try to convert to the first EVT that the reg class contains. If the 6038 // types are identical size, use a bitcast to convert (e.g. two differing 6039 // vector types). 6040 MVT RegVT = *PhysReg.second->vt_begin(); 6041 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6042 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6043 RegVT, OpInfo.CallOperand); 6044 OpInfo.ConstraintVT = RegVT; 6045 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6046 // If the input is a FP value and we want it in FP registers, do a 6047 // bitcast to the corresponding integer type. This turns an f64 value 6048 // into i64, which can be passed with two i32 values on a 32-bit 6049 // machine. 6050 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6051 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6052 RegVT, OpInfo.CallOperand); 6053 OpInfo.ConstraintVT = RegVT; 6054 } 6055 } 6056 6057 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6058 } 6059 6060 MVT RegVT; 6061 EVT ValueVT = OpInfo.ConstraintVT; 6062 6063 // If this is a constraint for a specific physical register, like {r17}, 6064 // assign it now. 6065 if (unsigned AssignedReg = PhysReg.first) { 6066 const TargetRegisterClass *RC = PhysReg.second; 6067 if (OpInfo.ConstraintVT == MVT::Other) 6068 ValueVT = *RC->vt_begin(); 6069 6070 // Get the actual register value type. This is important, because the user 6071 // may have asked for (e.g.) the AX register in i32 type. We need to 6072 // remember that AX is actually i16 to get the right extension. 6073 RegVT = *RC->vt_begin(); 6074 6075 // This is a explicit reference to a physical register. 6076 Regs.push_back(AssignedReg); 6077 6078 // If this is an expanded reference, add the rest of the regs to Regs. 6079 if (NumRegs != 1) { 6080 TargetRegisterClass::iterator I = RC->begin(); 6081 for (; *I != AssignedReg; ++I) 6082 assert(I != RC->end() && "Didn't find reg!"); 6083 6084 // Already added the first reg. 6085 --NumRegs; ++I; 6086 for (; NumRegs; --NumRegs, ++I) { 6087 assert(I != RC->end() && "Ran out of registers to allocate!"); 6088 Regs.push_back(*I); 6089 } 6090 } 6091 6092 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6093 return; 6094 } 6095 6096 // Otherwise, if this was a reference to an LLVM register class, create vregs 6097 // for this reference. 6098 if (const TargetRegisterClass *RC = PhysReg.second) { 6099 RegVT = *RC->vt_begin(); 6100 if (OpInfo.ConstraintVT == MVT::Other) 6101 ValueVT = RegVT; 6102 6103 // Create the appropriate number of virtual registers. 6104 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6105 for (; NumRegs; --NumRegs) 6106 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6107 6108 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6109 return; 6110 } 6111 6112 // Otherwise, we couldn't allocate enough registers for this. 6113 } 6114 6115 /// visitInlineAsm - Handle a call to an InlineAsm object. 6116 /// 6117 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6118 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6119 6120 /// ConstraintOperands - Information about all of the constraints. 6121 SDISelAsmOperandInfoVector ConstraintOperands; 6122 6123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6124 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6125 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6126 6127 bool hasMemory = false; 6128 6129 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6130 unsigned ResNo = 0; // ResNo - The result number of the next output. 6131 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6132 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6133 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6134 6135 MVT OpVT = MVT::Other; 6136 6137 // Compute the value type for each operand. 6138 switch (OpInfo.Type) { 6139 case InlineAsm::isOutput: 6140 // Indirect outputs just consume an argument. 6141 if (OpInfo.isIndirect) { 6142 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6143 break; 6144 } 6145 6146 // The return value of the call is this value. As such, there is no 6147 // corresponding argument. 6148 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6149 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6150 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6151 STy->getElementType(ResNo)); 6152 } else { 6153 assert(ResNo == 0 && "Asm only has one result!"); 6154 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6155 } 6156 ++ResNo; 6157 break; 6158 case InlineAsm::isInput: 6159 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6160 break; 6161 case InlineAsm::isClobber: 6162 // Nothing to do. 6163 break; 6164 } 6165 6166 // If this is an input or an indirect output, process the call argument. 6167 // BasicBlocks are labels, currently appearing only in asm's. 6168 if (OpInfo.CallOperandVal) { 6169 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6170 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6171 } else { 6172 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6173 } 6174 6175 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6176 DAG.getDataLayout()).getSimpleVT(); 6177 } 6178 6179 OpInfo.ConstraintVT = OpVT; 6180 6181 // Indirect operand accesses access memory. 6182 if (OpInfo.isIndirect) 6183 hasMemory = true; 6184 else { 6185 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6186 TargetLowering::ConstraintType 6187 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6188 if (CType == TargetLowering::C_Memory) { 6189 hasMemory = true; 6190 break; 6191 } 6192 } 6193 } 6194 } 6195 6196 SDValue Chain, Flag; 6197 6198 // We won't need to flush pending loads if this asm doesn't touch 6199 // memory and is nonvolatile. 6200 if (hasMemory || IA->hasSideEffects()) 6201 Chain = getRoot(); 6202 else 6203 Chain = DAG.getRoot(); 6204 6205 // Second pass over the constraints: compute which constraint option to use 6206 // and assign registers to constraints that want a specific physreg. 6207 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6208 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6209 6210 // If this is an output operand with a matching input operand, look up the 6211 // matching input. If their types mismatch, e.g. one is an integer, the 6212 // other is floating point, or their sizes are different, flag it as an 6213 // error. 6214 if (OpInfo.hasMatchingInput()) { 6215 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6216 6217 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6218 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6219 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6220 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6221 OpInfo.ConstraintVT); 6222 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6223 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6224 Input.ConstraintVT); 6225 if ((OpInfo.ConstraintVT.isInteger() != 6226 Input.ConstraintVT.isInteger()) || 6227 (MatchRC.second != InputRC.second)) { 6228 report_fatal_error("Unsupported asm: input constraint" 6229 " with a matching output constraint of" 6230 " incompatible type!"); 6231 } 6232 Input.ConstraintVT = OpInfo.ConstraintVT; 6233 } 6234 } 6235 6236 // Compute the constraint code and ConstraintType to use. 6237 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6238 6239 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6240 OpInfo.Type == InlineAsm::isClobber) 6241 continue; 6242 6243 // If this is a memory input, and if the operand is not indirect, do what we 6244 // need to to provide an address for the memory input. 6245 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6246 !OpInfo.isIndirect) { 6247 assert((OpInfo.isMultipleAlternative || 6248 (OpInfo.Type == InlineAsm::isInput)) && 6249 "Can only indirectify direct input operands!"); 6250 6251 // Memory operands really want the address of the value. If we don't have 6252 // an indirect input, put it in the constpool if we can, otherwise spill 6253 // it to a stack slot. 6254 // TODO: This isn't quite right. We need to handle these according to 6255 // the addressing mode that the constraint wants. Also, this may take 6256 // an additional register for the computation and we don't want that 6257 // either. 6258 6259 // If the operand is a float, integer, or vector constant, spill to a 6260 // constant pool entry to get its address. 6261 const Value *OpVal = OpInfo.CallOperandVal; 6262 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6263 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6264 OpInfo.CallOperand = DAG.getConstantPool( 6265 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6266 } else { 6267 // Otherwise, create a stack slot and emit a store to it before the 6268 // asm. 6269 Type *Ty = OpVal->getType(); 6270 auto &DL = DAG.getDataLayout(); 6271 uint64_t TySize = DL.getTypeAllocSize(Ty); 6272 unsigned Align = DL.getPrefTypeAlignment(Ty); 6273 MachineFunction &MF = DAG.getMachineFunction(); 6274 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6275 SDValue StackSlot = 6276 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6277 Chain = DAG.getStore( 6278 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6279 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6280 false, false, 0); 6281 OpInfo.CallOperand = StackSlot; 6282 } 6283 6284 // There is no longer a Value* corresponding to this operand. 6285 OpInfo.CallOperandVal = nullptr; 6286 6287 // It is now an indirect operand. 6288 OpInfo.isIndirect = true; 6289 } 6290 6291 // If this constraint is for a specific register, allocate it before 6292 // anything else. 6293 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6294 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6295 } 6296 6297 // Second pass - Loop over all of the operands, assigning virtual or physregs 6298 // to register class operands. 6299 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6300 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6301 6302 // C_Register operands have already been allocated, Other/Memory don't need 6303 // to be. 6304 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6305 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6306 } 6307 6308 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6309 std::vector<SDValue> AsmNodeOperands; 6310 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6311 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6312 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6313 6314 // If we have a !srcloc metadata node associated with it, we want to attach 6315 // this to the ultimately generated inline asm machineinstr. To do this, we 6316 // pass in the third operand as this (potentially null) inline asm MDNode. 6317 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6318 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6319 6320 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6321 // bits as operand 3. 6322 unsigned ExtraInfo = 0; 6323 if (IA->hasSideEffects()) 6324 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6325 if (IA->isAlignStack()) 6326 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6327 // Set the asm dialect. 6328 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6329 6330 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6331 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6332 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6333 6334 // Compute the constraint code and ConstraintType to use. 6335 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6336 6337 // Ideally, we would only check against memory constraints. However, the 6338 // meaning of an other constraint can be target-specific and we can't easily 6339 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6340 // for other constriants as well. 6341 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6342 OpInfo.ConstraintType == TargetLowering::C_Other) { 6343 if (OpInfo.Type == InlineAsm::isInput) 6344 ExtraInfo |= InlineAsm::Extra_MayLoad; 6345 else if (OpInfo.Type == InlineAsm::isOutput) 6346 ExtraInfo |= InlineAsm::Extra_MayStore; 6347 else if (OpInfo.Type == InlineAsm::isClobber) 6348 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6349 } 6350 } 6351 6352 AsmNodeOperands.push_back(DAG.getTargetConstant( 6353 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6354 6355 // Loop over all of the inputs, copying the operand values into the 6356 // appropriate registers and processing the output regs. 6357 RegsForValue RetValRegs; 6358 6359 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6360 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6361 6362 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6363 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6364 6365 switch (OpInfo.Type) { 6366 case InlineAsm::isOutput: { 6367 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6368 OpInfo.ConstraintType != TargetLowering::C_Register) { 6369 // Memory output, or 'other' output (e.g. 'X' constraint). 6370 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6371 6372 unsigned ConstraintID = 6373 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6374 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6375 "Failed to convert memory constraint code to constraint id."); 6376 6377 // Add information to the INLINEASM node to know about this output. 6378 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6379 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6380 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6381 MVT::i32)); 6382 AsmNodeOperands.push_back(OpInfo.CallOperand); 6383 break; 6384 } 6385 6386 // Otherwise, this is a register or register class output. 6387 6388 // Copy the output from the appropriate register. Find a register that 6389 // we can use. 6390 if (OpInfo.AssignedRegs.Regs.empty()) { 6391 LLVMContext &Ctx = *DAG.getContext(); 6392 Ctx.emitError(CS.getInstruction(), 6393 "couldn't allocate output register for constraint '" + 6394 Twine(OpInfo.ConstraintCode) + "'"); 6395 return; 6396 } 6397 6398 // If this is an indirect operand, store through the pointer after the 6399 // asm. 6400 if (OpInfo.isIndirect) { 6401 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6402 OpInfo.CallOperandVal)); 6403 } else { 6404 // This is the result value of the call. 6405 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6406 // Concatenate this output onto the outputs list. 6407 RetValRegs.append(OpInfo.AssignedRegs); 6408 } 6409 6410 // Add information to the INLINEASM node to know that this register is 6411 // set. 6412 OpInfo.AssignedRegs 6413 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6414 ? InlineAsm::Kind_RegDefEarlyClobber 6415 : InlineAsm::Kind_RegDef, 6416 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6417 break; 6418 } 6419 case InlineAsm::isInput: { 6420 SDValue InOperandVal = OpInfo.CallOperand; 6421 6422 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6423 // If this is required to match an output register we have already set, 6424 // just use its register. 6425 unsigned OperandNo = OpInfo.getMatchedOperand(); 6426 6427 // Scan until we find the definition we already emitted of this operand. 6428 // When we find it, create a RegsForValue operand. 6429 unsigned CurOp = InlineAsm::Op_FirstOperand; 6430 for (; OperandNo; --OperandNo) { 6431 // Advance to the next operand. 6432 unsigned OpFlag = 6433 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6434 assert((InlineAsm::isRegDefKind(OpFlag) || 6435 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6436 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6437 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6438 } 6439 6440 unsigned OpFlag = 6441 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6442 if (InlineAsm::isRegDefKind(OpFlag) || 6443 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6444 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6445 if (OpInfo.isIndirect) { 6446 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6447 LLVMContext &Ctx = *DAG.getContext(); 6448 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6449 " don't know how to handle tied " 6450 "indirect register inputs"); 6451 return; 6452 } 6453 6454 RegsForValue MatchedRegs; 6455 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6456 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6457 MatchedRegs.RegVTs.push_back(RegVT); 6458 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6459 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6460 i != e; ++i) { 6461 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6462 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6463 else { 6464 LLVMContext &Ctx = *DAG.getContext(); 6465 Ctx.emitError(CS.getInstruction(), 6466 "inline asm error: This value" 6467 " type register class is not natively supported!"); 6468 return; 6469 } 6470 } 6471 SDLoc dl = getCurSDLoc(); 6472 // Use the produced MatchedRegs object to 6473 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6474 Chain, &Flag, CS.getInstruction()); 6475 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6476 true, OpInfo.getMatchedOperand(), dl, 6477 DAG, AsmNodeOperands); 6478 break; 6479 } 6480 6481 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6482 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6483 "Unexpected number of operands"); 6484 // Add information to the INLINEASM node to know about this input. 6485 // See InlineAsm.h isUseOperandTiedToDef. 6486 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6487 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6488 OpInfo.getMatchedOperand()); 6489 AsmNodeOperands.push_back(DAG.getTargetConstant( 6490 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6491 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6492 break; 6493 } 6494 6495 // Treat indirect 'X' constraint as memory. 6496 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6497 OpInfo.isIndirect) 6498 OpInfo.ConstraintType = TargetLowering::C_Memory; 6499 6500 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6501 std::vector<SDValue> Ops; 6502 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6503 Ops, DAG); 6504 if (Ops.empty()) { 6505 LLVMContext &Ctx = *DAG.getContext(); 6506 Ctx.emitError(CS.getInstruction(), 6507 "invalid operand for inline asm constraint '" + 6508 Twine(OpInfo.ConstraintCode) + "'"); 6509 return; 6510 } 6511 6512 // Add information to the INLINEASM node to know about this input. 6513 unsigned ResOpType = 6514 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6515 AsmNodeOperands.push_back(DAG.getTargetConstant( 6516 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6517 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6518 break; 6519 } 6520 6521 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6522 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6523 assert(InOperandVal.getValueType() == 6524 TLI.getPointerTy(DAG.getDataLayout()) && 6525 "Memory operands expect pointer values"); 6526 6527 unsigned ConstraintID = 6528 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6529 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6530 "Failed to convert memory constraint code to constraint id."); 6531 6532 // Add information to the INLINEASM node to know about this input. 6533 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6534 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6535 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6536 getCurSDLoc(), 6537 MVT::i32)); 6538 AsmNodeOperands.push_back(InOperandVal); 6539 break; 6540 } 6541 6542 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6543 OpInfo.ConstraintType == TargetLowering::C_Register) && 6544 "Unknown constraint type!"); 6545 6546 // TODO: Support this. 6547 if (OpInfo.isIndirect) { 6548 LLVMContext &Ctx = *DAG.getContext(); 6549 Ctx.emitError(CS.getInstruction(), 6550 "Don't know how to handle indirect register inputs yet " 6551 "for constraint '" + 6552 Twine(OpInfo.ConstraintCode) + "'"); 6553 return; 6554 } 6555 6556 // Copy the input into the appropriate registers. 6557 if (OpInfo.AssignedRegs.Regs.empty()) { 6558 LLVMContext &Ctx = *DAG.getContext(); 6559 Ctx.emitError(CS.getInstruction(), 6560 "couldn't allocate input reg for constraint '" + 6561 Twine(OpInfo.ConstraintCode) + "'"); 6562 return; 6563 } 6564 6565 SDLoc dl = getCurSDLoc(); 6566 6567 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6568 Chain, &Flag, CS.getInstruction()); 6569 6570 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6571 dl, DAG, AsmNodeOperands); 6572 break; 6573 } 6574 case InlineAsm::isClobber: { 6575 // Add the clobbered value to the operand list, so that the register 6576 // allocator is aware that the physreg got clobbered. 6577 if (!OpInfo.AssignedRegs.Regs.empty()) 6578 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6579 false, 0, getCurSDLoc(), DAG, 6580 AsmNodeOperands); 6581 break; 6582 } 6583 } 6584 } 6585 6586 // Finish up input operands. Set the input chain and add the flag last. 6587 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6588 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6589 6590 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6591 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6592 Flag = Chain.getValue(1); 6593 6594 // If this asm returns a register value, copy the result from that register 6595 // and set it as the value of the call. 6596 if (!RetValRegs.Regs.empty()) { 6597 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6598 Chain, &Flag, CS.getInstruction()); 6599 6600 // FIXME: Why don't we do this for inline asms with MRVs? 6601 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6602 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6603 6604 // If any of the results of the inline asm is a vector, it may have the 6605 // wrong width/num elts. This can happen for register classes that can 6606 // contain multiple different value types. The preg or vreg allocated may 6607 // not have the same VT as was expected. Convert it to the right type 6608 // with bit_convert. 6609 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6610 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6611 ResultType, Val); 6612 6613 } else if (ResultType != Val.getValueType() && 6614 ResultType.isInteger() && Val.getValueType().isInteger()) { 6615 // If a result value was tied to an input value, the computed result may 6616 // have a wider width than the expected result. Extract the relevant 6617 // portion. 6618 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6619 } 6620 6621 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6622 } 6623 6624 setValue(CS.getInstruction(), Val); 6625 // Don't need to use this as a chain in this case. 6626 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6627 return; 6628 } 6629 6630 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6631 6632 // Process indirect outputs, first output all of the flagged copies out of 6633 // physregs. 6634 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6635 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6636 const Value *Ptr = IndirectStoresToEmit[i].second; 6637 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6638 Chain, &Flag, IA); 6639 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6640 } 6641 6642 // Emit the non-flagged stores from the physregs. 6643 SmallVector<SDValue, 8> OutChains; 6644 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6645 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6646 StoresToEmit[i].first, 6647 getValue(StoresToEmit[i].second), 6648 MachinePointerInfo(StoresToEmit[i].second), 6649 false, false, 0); 6650 OutChains.push_back(Val); 6651 } 6652 6653 if (!OutChains.empty()) 6654 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6655 6656 DAG.setRoot(Chain); 6657 } 6658 6659 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6660 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6661 MVT::Other, getRoot(), 6662 getValue(I.getArgOperand(0)), 6663 DAG.getSrcValue(I.getArgOperand(0)))); 6664 } 6665 6666 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6667 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6668 const DataLayout &DL = DAG.getDataLayout(); 6669 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6670 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6671 DAG.getSrcValue(I.getOperand(0)), 6672 DL.getABITypeAlignment(I.getType())); 6673 setValue(&I, V); 6674 DAG.setRoot(V.getValue(1)); 6675 } 6676 6677 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6678 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6679 MVT::Other, getRoot(), 6680 getValue(I.getArgOperand(0)), 6681 DAG.getSrcValue(I.getArgOperand(0)))); 6682 } 6683 6684 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6685 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6686 MVT::Other, getRoot(), 6687 getValue(I.getArgOperand(0)), 6688 getValue(I.getArgOperand(1)), 6689 DAG.getSrcValue(I.getArgOperand(0)), 6690 DAG.getSrcValue(I.getArgOperand(1)))); 6691 } 6692 6693 /// \brief Lower an argument list according to the target calling convention. 6694 /// 6695 /// \return A tuple of <return-value, token-chain> 6696 /// 6697 /// This is a helper for lowering intrinsics that follow a target calling 6698 /// convention or require stack pointer adjustment. Only a subset of the 6699 /// intrinsic's operands need to participate in the calling convention. 6700 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6701 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6702 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6703 TargetLowering::ArgListTy Args; 6704 Args.reserve(NumArgs); 6705 6706 // Populate the argument list. 6707 // Attributes for args start at offset 1, after the return attribute. 6708 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6709 ArgI != ArgE; ++ArgI) { 6710 const Value *V = CS->getOperand(ArgI); 6711 6712 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6713 6714 TargetLowering::ArgListEntry Entry; 6715 Entry.Node = getValue(V); 6716 Entry.Ty = V->getType(); 6717 Entry.setAttributes(&CS, AttrI); 6718 Args.push_back(Entry); 6719 } 6720 6721 TargetLowering::CallLoweringInfo CLI(DAG); 6722 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6723 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6724 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6725 6726 return lowerInvokable(CLI, EHPadBB); 6727 } 6728 6729 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6730 /// or patchpoint target node's operand list. 6731 /// 6732 /// Constants are converted to TargetConstants purely as an optimization to 6733 /// avoid constant materialization and register allocation. 6734 /// 6735 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6736 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6737 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6738 /// address materialization and register allocation, but may also be required 6739 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6740 /// alloca in the entry block, then the runtime may assume that the alloca's 6741 /// StackMap location can be read immediately after compilation and that the 6742 /// location is valid at any point during execution (this is similar to the 6743 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6744 /// only available in a register, then the runtime would need to trap when 6745 /// execution reaches the StackMap in order to read the alloca's location. 6746 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6747 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6748 SelectionDAGBuilder &Builder) { 6749 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6750 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6751 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6752 Ops.push_back( 6753 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6754 Ops.push_back( 6755 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6756 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6757 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6758 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6759 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6760 } else 6761 Ops.push_back(OpVal); 6762 } 6763 } 6764 6765 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6766 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6767 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6768 // [live variables...]) 6769 6770 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6771 6772 SDValue Chain, InFlag, Callee, NullPtr; 6773 SmallVector<SDValue, 32> Ops; 6774 6775 SDLoc DL = getCurSDLoc(); 6776 Callee = getValue(CI.getCalledValue()); 6777 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6778 6779 // The stackmap intrinsic only records the live variables (the arguemnts 6780 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6781 // intrinsic, this won't be lowered to a function call. This means we don't 6782 // have to worry about calling conventions and target specific lowering code. 6783 // Instead we perform the call lowering right here. 6784 // 6785 // chain, flag = CALLSEQ_START(chain, 0) 6786 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6787 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6788 // 6789 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6790 InFlag = Chain.getValue(1); 6791 6792 // Add the <id> and <numBytes> constants. 6793 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6794 Ops.push_back(DAG.getTargetConstant( 6795 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6796 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6797 Ops.push_back(DAG.getTargetConstant( 6798 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6799 MVT::i32)); 6800 6801 // Push live variables for the stack map. 6802 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6803 6804 // We are not pushing any register mask info here on the operands list, 6805 // because the stackmap doesn't clobber anything. 6806 6807 // Push the chain and the glue flag. 6808 Ops.push_back(Chain); 6809 Ops.push_back(InFlag); 6810 6811 // Create the STACKMAP node. 6812 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6813 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6814 Chain = SDValue(SM, 0); 6815 InFlag = Chain.getValue(1); 6816 6817 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6818 6819 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6820 6821 // Set the root to the target-lowered call chain. 6822 DAG.setRoot(Chain); 6823 6824 // Inform the Frame Information that we have a stackmap in this function. 6825 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6826 } 6827 6828 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6829 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6830 const BasicBlock *EHPadBB) { 6831 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6832 // i32 <numBytes>, 6833 // i8* <target>, 6834 // i32 <numArgs>, 6835 // [Args...], 6836 // [live variables...]) 6837 6838 CallingConv::ID CC = CS.getCallingConv(); 6839 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6840 bool HasDef = !CS->getType()->isVoidTy(); 6841 SDLoc dl = getCurSDLoc(); 6842 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6843 6844 // Handle immediate and symbolic callees. 6845 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6846 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6847 /*isTarget=*/true); 6848 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6849 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6850 SDLoc(SymbolicCallee), 6851 SymbolicCallee->getValueType(0)); 6852 6853 // Get the real number of arguments participating in the call <numArgs> 6854 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6855 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6856 6857 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6858 // Intrinsics include all meta-operands up to but not including CC. 6859 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6860 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6861 "Not enough arguments provided to the patchpoint intrinsic"); 6862 6863 // For AnyRegCC the arguments are lowered later on manually. 6864 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6865 Type *ReturnTy = 6866 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6867 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6868 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6869 6870 SDNode *CallEnd = Result.second.getNode(); 6871 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6872 CallEnd = CallEnd->getOperand(0).getNode(); 6873 6874 /// Get a call instruction from the call sequence chain. 6875 /// Tail calls are not allowed. 6876 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6877 "Expected a callseq node."); 6878 SDNode *Call = CallEnd->getOperand(0).getNode(); 6879 bool HasGlue = Call->getGluedNode(); 6880 6881 // Replace the target specific call node with the patchable intrinsic. 6882 SmallVector<SDValue, 8> Ops; 6883 6884 // Add the <id> and <numBytes> constants. 6885 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6886 Ops.push_back(DAG.getTargetConstant( 6887 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6888 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6889 Ops.push_back(DAG.getTargetConstant( 6890 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6891 MVT::i32)); 6892 6893 // Add the callee. 6894 Ops.push_back(Callee); 6895 6896 // Adjust <numArgs> to account for any arguments that have been passed on the 6897 // stack instead. 6898 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6899 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6900 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6901 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6902 6903 // Add the calling convention 6904 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6905 6906 // Add the arguments we omitted previously. The register allocator should 6907 // place these in any free register. 6908 if (IsAnyRegCC) 6909 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6910 Ops.push_back(getValue(CS.getArgument(i))); 6911 6912 // Push the arguments from the call instruction up to the register mask. 6913 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6914 Ops.append(Call->op_begin() + 2, e); 6915 6916 // Push live variables for the stack map. 6917 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6918 6919 // Push the register mask info. 6920 if (HasGlue) 6921 Ops.push_back(*(Call->op_end()-2)); 6922 else 6923 Ops.push_back(*(Call->op_end()-1)); 6924 6925 // Push the chain (this is originally the first operand of the call, but 6926 // becomes now the last or second to last operand). 6927 Ops.push_back(*(Call->op_begin())); 6928 6929 // Push the glue flag (last operand). 6930 if (HasGlue) 6931 Ops.push_back(*(Call->op_end()-1)); 6932 6933 SDVTList NodeTys; 6934 if (IsAnyRegCC && HasDef) { 6935 // Create the return types based on the intrinsic definition 6936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6937 SmallVector<EVT, 3> ValueVTs; 6938 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6939 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6940 6941 // There is always a chain and a glue type at the end 6942 ValueVTs.push_back(MVT::Other); 6943 ValueVTs.push_back(MVT::Glue); 6944 NodeTys = DAG.getVTList(ValueVTs); 6945 } else 6946 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6947 6948 // Replace the target specific call node with a PATCHPOINT node. 6949 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6950 dl, NodeTys, Ops); 6951 6952 // Update the NodeMap. 6953 if (HasDef) { 6954 if (IsAnyRegCC) 6955 setValue(CS.getInstruction(), SDValue(MN, 0)); 6956 else 6957 setValue(CS.getInstruction(), Result.first); 6958 } 6959 6960 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6961 // call sequence. Furthermore the location of the chain and glue can change 6962 // when the AnyReg calling convention is used and the intrinsic returns a 6963 // value. 6964 if (IsAnyRegCC && HasDef) { 6965 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6966 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6967 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6968 } else 6969 DAG.ReplaceAllUsesWith(Call, MN); 6970 DAG.DeleteNode(Call); 6971 6972 // Inform the Frame Information that we have a patchpoint in this function. 6973 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6974 } 6975 6976 /// Returns an AttributeSet representing the attributes applied to the return 6977 /// value of the given call. 6978 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6979 SmallVector<Attribute::AttrKind, 2> Attrs; 6980 if (CLI.RetSExt) 6981 Attrs.push_back(Attribute::SExt); 6982 if (CLI.RetZExt) 6983 Attrs.push_back(Attribute::ZExt); 6984 if (CLI.IsInReg) 6985 Attrs.push_back(Attribute::InReg); 6986 6987 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6988 Attrs); 6989 } 6990 6991 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6992 /// implementation, which just calls LowerCall. 6993 /// FIXME: When all targets are 6994 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6995 std::pair<SDValue, SDValue> 6996 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6997 // Handle the incoming return values from the call. 6998 CLI.Ins.clear(); 6999 Type *OrigRetTy = CLI.RetTy; 7000 SmallVector<EVT, 4> RetTys; 7001 SmallVector<uint64_t, 4> Offsets; 7002 auto &DL = CLI.DAG.getDataLayout(); 7003 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7004 7005 SmallVector<ISD::OutputArg, 4> Outs; 7006 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7007 7008 bool CanLowerReturn = 7009 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7010 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7011 7012 SDValue DemoteStackSlot; 7013 int DemoteStackIdx = -100; 7014 if (!CanLowerReturn) { 7015 // FIXME: equivalent assert? 7016 // assert(!CS.hasInAllocaArgument() && 7017 // "sret demotion is incompatible with inalloca"); 7018 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7019 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7020 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7021 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7022 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7023 7024 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7025 ArgListEntry Entry; 7026 Entry.Node = DemoteStackSlot; 7027 Entry.Ty = StackSlotPtrType; 7028 Entry.isSExt = false; 7029 Entry.isZExt = false; 7030 Entry.isInReg = false; 7031 Entry.isSRet = true; 7032 Entry.isNest = false; 7033 Entry.isByVal = false; 7034 Entry.isReturned = false; 7035 Entry.Alignment = Align; 7036 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7037 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7038 7039 // sret demotion isn't compatible with tail-calls, since the sret argument 7040 // points into the callers stack frame. 7041 CLI.IsTailCall = false; 7042 } else { 7043 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7044 EVT VT = RetTys[I]; 7045 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7046 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7047 for (unsigned i = 0; i != NumRegs; ++i) { 7048 ISD::InputArg MyFlags; 7049 MyFlags.VT = RegisterVT; 7050 MyFlags.ArgVT = VT; 7051 MyFlags.Used = CLI.IsReturnValueUsed; 7052 if (CLI.RetSExt) 7053 MyFlags.Flags.setSExt(); 7054 if (CLI.RetZExt) 7055 MyFlags.Flags.setZExt(); 7056 if (CLI.IsInReg) 7057 MyFlags.Flags.setInReg(); 7058 CLI.Ins.push_back(MyFlags); 7059 } 7060 } 7061 } 7062 7063 // Handle all of the outgoing arguments. 7064 CLI.Outs.clear(); 7065 CLI.OutVals.clear(); 7066 ArgListTy &Args = CLI.getArgs(); 7067 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7068 SmallVector<EVT, 4> ValueVTs; 7069 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7070 Type *FinalType = Args[i].Ty; 7071 if (Args[i].isByVal) 7072 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7073 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7074 FinalType, CLI.CallConv, CLI.IsVarArg); 7075 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7076 ++Value) { 7077 EVT VT = ValueVTs[Value]; 7078 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7079 SDValue Op = SDValue(Args[i].Node.getNode(), 7080 Args[i].Node.getResNo() + Value); 7081 ISD::ArgFlagsTy Flags; 7082 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7083 7084 if (Args[i].isZExt) 7085 Flags.setZExt(); 7086 if (Args[i].isSExt) 7087 Flags.setSExt(); 7088 if (Args[i].isInReg) 7089 Flags.setInReg(); 7090 if (Args[i].isSRet) 7091 Flags.setSRet(); 7092 if (Args[i].isByVal) 7093 Flags.setByVal(); 7094 if (Args[i].isInAlloca) { 7095 Flags.setInAlloca(); 7096 // Set the byval flag for CCAssignFn callbacks that don't know about 7097 // inalloca. This way we can know how many bytes we should've allocated 7098 // and how many bytes a callee cleanup function will pop. If we port 7099 // inalloca to more targets, we'll have to add custom inalloca handling 7100 // in the various CC lowering callbacks. 7101 Flags.setByVal(); 7102 } 7103 if (Args[i].isByVal || Args[i].isInAlloca) { 7104 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7105 Type *ElementTy = Ty->getElementType(); 7106 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7107 // For ByVal, alignment should come from FE. BE will guess if this 7108 // info is not there but there are cases it cannot get right. 7109 unsigned FrameAlign; 7110 if (Args[i].Alignment) 7111 FrameAlign = Args[i].Alignment; 7112 else 7113 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7114 Flags.setByValAlign(FrameAlign); 7115 } 7116 if (Args[i].isNest) 7117 Flags.setNest(); 7118 if (NeedsRegBlock) 7119 Flags.setInConsecutiveRegs(); 7120 Flags.setOrigAlign(OriginalAlignment); 7121 7122 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7123 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7124 SmallVector<SDValue, 4> Parts(NumParts); 7125 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7126 7127 if (Args[i].isSExt) 7128 ExtendKind = ISD::SIGN_EXTEND; 7129 else if (Args[i].isZExt) 7130 ExtendKind = ISD::ZERO_EXTEND; 7131 7132 // Conservatively only handle 'returned' on non-vectors for now 7133 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7134 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7135 "unexpected use of 'returned'"); 7136 // Before passing 'returned' to the target lowering code, ensure that 7137 // either the register MVT and the actual EVT are the same size or that 7138 // the return value and argument are extended in the same way; in these 7139 // cases it's safe to pass the argument register value unchanged as the 7140 // return register value (although it's at the target's option whether 7141 // to do so) 7142 // TODO: allow code generation to take advantage of partially preserved 7143 // registers rather than clobbering the entire register when the 7144 // parameter extension method is not compatible with the return 7145 // extension method 7146 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7147 (ExtendKind != ISD::ANY_EXTEND && 7148 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7149 Flags.setReturned(); 7150 } 7151 7152 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7153 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7154 7155 for (unsigned j = 0; j != NumParts; ++j) { 7156 // if it isn't first piece, alignment must be 1 7157 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7158 i < CLI.NumFixedArgs, 7159 i, j*Parts[j].getValueType().getStoreSize()); 7160 if (NumParts > 1 && j == 0) 7161 MyFlags.Flags.setSplit(); 7162 else if (j != 0) 7163 MyFlags.Flags.setOrigAlign(1); 7164 7165 CLI.Outs.push_back(MyFlags); 7166 CLI.OutVals.push_back(Parts[j]); 7167 } 7168 7169 if (NeedsRegBlock && Value == NumValues - 1) 7170 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7171 } 7172 } 7173 7174 SmallVector<SDValue, 4> InVals; 7175 CLI.Chain = LowerCall(CLI, InVals); 7176 7177 // Verify that the target's LowerCall behaved as expected. 7178 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7179 "LowerCall didn't return a valid chain!"); 7180 assert((!CLI.IsTailCall || InVals.empty()) && 7181 "LowerCall emitted a return value for a tail call!"); 7182 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7183 "LowerCall didn't emit the correct number of values!"); 7184 7185 // For a tail call, the return value is merely live-out and there aren't 7186 // any nodes in the DAG representing it. Return a special value to 7187 // indicate that a tail call has been emitted and no more Instructions 7188 // should be processed in the current block. 7189 if (CLI.IsTailCall) { 7190 CLI.DAG.setRoot(CLI.Chain); 7191 return std::make_pair(SDValue(), SDValue()); 7192 } 7193 7194 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7195 assert(InVals[i].getNode() && 7196 "LowerCall emitted a null value!"); 7197 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7198 "LowerCall emitted a value with the wrong type!"); 7199 }); 7200 7201 SmallVector<SDValue, 4> ReturnValues; 7202 if (!CanLowerReturn) { 7203 // The instruction result is the result of loading from the 7204 // hidden sret parameter. 7205 SmallVector<EVT, 1> PVTs; 7206 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7207 7208 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7209 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7210 EVT PtrVT = PVTs[0]; 7211 7212 unsigned NumValues = RetTys.size(); 7213 ReturnValues.resize(NumValues); 7214 SmallVector<SDValue, 4> Chains(NumValues); 7215 7216 for (unsigned i = 0; i < NumValues; ++i) { 7217 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7218 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7219 PtrVT)); 7220 SDValue L = CLI.DAG.getLoad( 7221 RetTys[i], CLI.DL, CLI.Chain, Add, 7222 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7223 DemoteStackIdx, Offsets[i]), 7224 false, false, false, 1); 7225 ReturnValues[i] = L; 7226 Chains[i] = L.getValue(1); 7227 } 7228 7229 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7230 } else { 7231 // Collect the legal value parts into potentially illegal values 7232 // that correspond to the original function's return values. 7233 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7234 if (CLI.RetSExt) 7235 AssertOp = ISD::AssertSext; 7236 else if (CLI.RetZExt) 7237 AssertOp = ISD::AssertZext; 7238 unsigned CurReg = 0; 7239 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7240 EVT VT = RetTys[I]; 7241 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7242 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7243 7244 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7245 NumRegs, RegisterVT, VT, nullptr, 7246 AssertOp)); 7247 CurReg += NumRegs; 7248 } 7249 7250 // For a function returning void, there is no return value. We can't create 7251 // such a node, so we just return a null return value in that case. In 7252 // that case, nothing will actually look at the value. 7253 if (ReturnValues.empty()) 7254 return std::make_pair(SDValue(), CLI.Chain); 7255 } 7256 7257 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7258 CLI.DAG.getVTList(RetTys), ReturnValues); 7259 return std::make_pair(Res, CLI.Chain); 7260 } 7261 7262 void TargetLowering::LowerOperationWrapper(SDNode *N, 7263 SmallVectorImpl<SDValue> &Results, 7264 SelectionDAG &DAG) const { 7265 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7266 if (Res.getNode()) 7267 Results.push_back(Res); 7268 } 7269 7270 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7271 llvm_unreachable("LowerOperation not implemented for this target!"); 7272 } 7273 7274 void 7275 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7276 SDValue Op = getNonRegisterValue(V); 7277 assert((Op.getOpcode() != ISD::CopyFromReg || 7278 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7279 "Copy from a reg to the same reg!"); 7280 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7281 7282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7283 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7284 V->getType()); 7285 SDValue Chain = DAG.getEntryNode(); 7286 7287 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7288 FuncInfo.PreferredExtendType.end()) 7289 ? ISD::ANY_EXTEND 7290 : FuncInfo.PreferredExtendType[V]; 7291 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7292 PendingExports.push_back(Chain); 7293 } 7294 7295 #include "llvm/CodeGen/SelectionDAGISel.h" 7296 7297 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7298 /// entry block, return true. This includes arguments used by switches, since 7299 /// the switch may expand into multiple basic blocks. 7300 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7301 // With FastISel active, we may be splitting blocks, so force creation 7302 // of virtual registers for all non-dead arguments. 7303 if (FastISel) 7304 return A->use_empty(); 7305 7306 const BasicBlock &Entry = A->getParent()->front(); 7307 for (const User *U : A->users()) 7308 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7309 return false; // Use not in entry block. 7310 7311 return true; 7312 } 7313 7314 void SelectionDAGISel::LowerArguments(const Function &F) { 7315 SelectionDAG &DAG = SDB->DAG; 7316 SDLoc dl = SDB->getCurSDLoc(); 7317 const DataLayout &DL = DAG.getDataLayout(); 7318 SmallVector<ISD::InputArg, 16> Ins; 7319 7320 if (!FuncInfo->CanLowerReturn) { 7321 // Put in an sret pointer parameter before all the other parameters. 7322 SmallVector<EVT, 1> ValueVTs; 7323 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7324 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7325 7326 // NOTE: Assuming that a pointer will never break down to more than one VT 7327 // or one register. 7328 ISD::ArgFlagsTy Flags; 7329 Flags.setSRet(); 7330 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7331 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7332 ISD::InputArg::NoArgIndex, 0); 7333 Ins.push_back(RetArg); 7334 } 7335 7336 // Set up the incoming argument description vector. 7337 unsigned Idx = 1; 7338 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7339 I != E; ++I, ++Idx) { 7340 SmallVector<EVT, 4> ValueVTs; 7341 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7342 bool isArgValueUsed = !I->use_empty(); 7343 unsigned PartBase = 0; 7344 Type *FinalType = I->getType(); 7345 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7346 FinalType = cast<PointerType>(FinalType)->getElementType(); 7347 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7348 FinalType, F.getCallingConv(), F.isVarArg()); 7349 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7350 Value != NumValues; ++Value) { 7351 EVT VT = ValueVTs[Value]; 7352 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7353 ISD::ArgFlagsTy Flags; 7354 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7355 7356 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7357 Flags.setZExt(); 7358 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7359 Flags.setSExt(); 7360 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7361 Flags.setInReg(); 7362 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7363 Flags.setSRet(); 7364 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7365 Flags.setByVal(); 7366 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7367 Flags.setInAlloca(); 7368 // Set the byval flag for CCAssignFn callbacks that don't know about 7369 // inalloca. This way we can know how many bytes we should've allocated 7370 // and how many bytes a callee cleanup function will pop. If we port 7371 // inalloca to more targets, we'll have to add custom inalloca handling 7372 // in the various CC lowering callbacks. 7373 Flags.setByVal(); 7374 } 7375 if (Flags.isByVal() || Flags.isInAlloca()) { 7376 PointerType *Ty = cast<PointerType>(I->getType()); 7377 Type *ElementTy = Ty->getElementType(); 7378 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7379 // For ByVal, alignment should be passed from FE. BE will guess if 7380 // this info is not there but there are cases it cannot get right. 7381 unsigned FrameAlign; 7382 if (F.getParamAlignment(Idx)) 7383 FrameAlign = F.getParamAlignment(Idx); 7384 else 7385 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7386 Flags.setByValAlign(FrameAlign); 7387 } 7388 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7389 Flags.setNest(); 7390 if (NeedsRegBlock) 7391 Flags.setInConsecutiveRegs(); 7392 Flags.setOrigAlign(OriginalAlignment); 7393 7394 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7395 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7396 for (unsigned i = 0; i != NumRegs; ++i) { 7397 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7398 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7399 if (NumRegs > 1 && i == 0) 7400 MyFlags.Flags.setSplit(); 7401 // if it isn't first piece, alignment must be 1 7402 else if (i > 0) 7403 MyFlags.Flags.setOrigAlign(1); 7404 Ins.push_back(MyFlags); 7405 } 7406 if (NeedsRegBlock && Value == NumValues - 1) 7407 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7408 PartBase += VT.getStoreSize(); 7409 } 7410 } 7411 7412 // Call the target to set up the argument values. 7413 SmallVector<SDValue, 8> InVals; 7414 SDValue NewRoot = TLI->LowerFormalArguments( 7415 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7416 7417 // Verify that the target's LowerFormalArguments behaved as expected. 7418 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7419 "LowerFormalArguments didn't return a valid chain!"); 7420 assert(InVals.size() == Ins.size() && 7421 "LowerFormalArguments didn't emit the correct number of values!"); 7422 DEBUG({ 7423 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7424 assert(InVals[i].getNode() && 7425 "LowerFormalArguments emitted a null value!"); 7426 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7427 "LowerFormalArguments emitted a value with the wrong type!"); 7428 } 7429 }); 7430 7431 // Update the DAG with the new chain value resulting from argument lowering. 7432 DAG.setRoot(NewRoot); 7433 7434 // Set up the argument values. 7435 unsigned i = 0; 7436 Idx = 1; 7437 if (!FuncInfo->CanLowerReturn) { 7438 // Create a virtual register for the sret pointer, and put in a copy 7439 // from the sret argument into it. 7440 SmallVector<EVT, 1> ValueVTs; 7441 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7442 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7443 MVT VT = ValueVTs[0].getSimpleVT(); 7444 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7445 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7446 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7447 RegVT, VT, nullptr, AssertOp); 7448 7449 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7450 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7451 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7452 FuncInfo->DemoteRegister = SRetReg; 7453 NewRoot = 7454 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7455 DAG.setRoot(NewRoot); 7456 7457 // i indexes lowered arguments. Bump it past the hidden sret argument. 7458 // Idx indexes LLVM arguments. Don't touch it. 7459 ++i; 7460 } 7461 7462 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7463 ++I, ++Idx) { 7464 SmallVector<SDValue, 4> ArgValues; 7465 SmallVector<EVT, 4> ValueVTs; 7466 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7467 unsigned NumValues = ValueVTs.size(); 7468 7469 // If this argument is unused then remember its value. It is used to generate 7470 // debugging information. 7471 if (I->use_empty() && NumValues) { 7472 SDB->setUnusedArgValue(&*I, InVals[i]); 7473 7474 // Also remember any frame index for use in FastISel. 7475 if (FrameIndexSDNode *FI = 7476 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7477 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7478 } 7479 7480 for (unsigned Val = 0; Val != NumValues; ++Val) { 7481 EVT VT = ValueVTs[Val]; 7482 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7483 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7484 7485 if (!I->use_empty()) { 7486 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7487 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7488 AssertOp = ISD::AssertSext; 7489 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7490 AssertOp = ISD::AssertZext; 7491 7492 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7493 NumParts, PartVT, VT, 7494 nullptr, AssertOp)); 7495 } 7496 7497 i += NumParts; 7498 } 7499 7500 // We don't need to do anything else for unused arguments. 7501 if (ArgValues.empty()) 7502 continue; 7503 7504 // Note down frame index. 7505 if (FrameIndexSDNode *FI = 7506 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7507 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7508 7509 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7510 SDB->getCurSDLoc()); 7511 7512 SDB->setValue(&*I, Res); 7513 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7514 if (LoadSDNode *LNode = 7515 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7516 if (FrameIndexSDNode *FI = 7517 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7518 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7519 } 7520 7521 // If this argument is live outside of the entry block, insert a copy from 7522 // wherever we got it to the vreg that other BB's will reference it as. 7523 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7524 // If we can, though, try to skip creating an unnecessary vreg. 7525 // FIXME: This isn't very clean... it would be nice to make this more 7526 // general. It's also subtly incompatible with the hacks FastISel 7527 // uses with vregs. 7528 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7529 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7530 FuncInfo->ValueMap[&*I] = Reg; 7531 continue; 7532 } 7533 } 7534 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7535 FuncInfo->InitializeRegForValue(&*I); 7536 SDB->CopyToExportRegsIfNeeded(&*I); 7537 } 7538 } 7539 7540 assert(i == InVals.size() && "Argument register count mismatch!"); 7541 7542 // Finally, if the target has anything special to do, allow it to do so. 7543 EmitFunctionEntryCode(); 7544 } 7545 7546 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7547 /// ensure constants are generated when needed. Remember the virtual registers 7548 /// that need to be added to the Machine PHI nodes as input. We cannot just 7549 /// directly add them, because expansion might result in multiple MBB's for one 7550 /// BB. As such, the start of the BB might correspond to a different MBB than 7551 /// the end. 7552 /// 7553 void 7554 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7555 const TerminatorInst *TI = LLVMBB->getTerminator(); 7556 7557 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7558 7559 // Check PHI nodes in successors that expect a value to be available from this 7560 // block. 7561 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7562 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7563 if (!isa<PHINode>(SuccBB->begin())) continue; 7564 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7565 7566 // If this terminator has multiple identical successors (common for 7567 // switches), only handle each succ once. 7568 if (!SuccsHandled.insert(SuccMBB).second) 7569 continue; 7570 7571 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7572 7573 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7574 // nodes and Machine PHI nodes, but the incoming operands have not been 7575 // emitted yet. 7576 for (BasicBlock::const_iterator I = SuccBB->begin(); 7577 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7578 // Ignore dead phi's. 7579 if (PN->use_empty()) continue; 7580 7581 // Skip empty types 7582 if (PN->getType()->isEmptyTy()) 7583 continue; 7584 7585 unsigned Reg; 7586 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7587 7588 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7589 unsigned &RegOut = ConstantsOut[C]; 7590 if (RegOut == 0) { 7591 RegOut = FuncInfo.CreateRegs(C->getType()); 7592 CopyValueToVirtualRegister(C, RegOut); 7593 } 7594 Reg = RegOut; 7595 } else { 7596 DenseMap<const Value *, unsigned>::iterator I = 7597 FuncInfo.ValueMap.find(PHIOp); 7598 if (I != FuncInfo.ValueMap.end()) 7599 Reg = I->second; 7600 else { 7601 assert(isa<AllocaInst>(PHIOp) && 7602 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7603 "Didn't codegen value into a register!??"); 7604 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7605 CopyValueToVirtualRegister(PHIOp, Reg); 7606 } 7607 } 7608 7609 // Remember that this register needs to added to the machine PHI node as 7610 // the input for this MBB. 7611 SmallVector<EVT, 4> ValueVTs; 7612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7613 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7614 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7615 EVT VT = ValueVTs[vti]; 7616 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7617 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7618 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7619 Reg += NumRegisters; 7620 } 7621 } 7622 } 7623 7624 ConstantsOut.clear(); 7625 } 7626 7627 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7628 /// is 0. 7629 MachineBasicBlock * 7630 SelectionDAGBuilder::StackProtectorDescriptor:: 7631 AddSuccessorMBB(const BasicBlock *BB, 7632 MachineBasicBlock *ParentMBB, 7633 bool IsLikely, 7634 MachineBasicBlock *SuccMBB) { 7635 // If SuccBB has not been created yet, create it. 7636 if (!SuccMBB) { 7637 MachineFunction *MF = ParentMBB->getParent(); 7638 MachineFunction::iterator BBI(ParentMBB); 7639 SuccMBB = MF->CreateMachineBasicBlock(BB); 7640 MF->insert(++BBI, SuccMBB); 7641 } 7642 // Add it as a successor of ParentMBB. 7643 ParentMBB->addSuccessor( 7644 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7645 return SuccMBB; 7646 } 7647 7648 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7649 MachineFunction::iterator I(MBB); 7650 if (++I == FuncInfo.MF->end()) 7651 return nullptr; 7652 return &*I; 7653 } 7654 7655 /// During lowering new call nodes can be created (such as memset, etc.). 7656 /// Those will become new roots of the current DAG, but complications arise 7657 /// when they are tail calls. In such cases, the call lowering will update 7658 /// the root, but the builder still needs to know that a tail call has been 7659 /// lowered in order to avoid generating an additional return. 7660 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7661 // If the node is null, we do have a tail call. 7662 if (MaybeTC.getNode() != nullptr) 7663 DAG.setRoot(MaybeTC); 7664 else 7665 HasTailCall = true; 7666 } 7667 7668 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7669 unsigned *TotalCases, unsigned First, 7670 unsigned Last) { 7671 assert(Last >= First); 7672 assert(TotalCases[Last] >= TotalCases[First]); 7673 7674 APInt LowCase = Clusters[First].Low->getValue(); 7675 APInt HighCase = Clusters[Last].High->getValue(); 7676 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7677 7678 // FIXME: A range of consecutive cases has 100% density, but only requires one 7679 // comparison to lower. We should discriminate against such consecutive ranges 7680 // in jump tables. 7681 7682 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7683 uint64_t Range = Diff + 1; 7684 7685 uint64_t NumCases = 7686 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7687 7688 assert(NumCases < UINT64_MAX / 100); 7689 assert(Range >= NumCases); 7690 7691 return NumCases * 100 >= Range * MinJumpTableDensity; 7692 } 7693 7694 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7695 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7696 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7697 } 7698 7699 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7700 unsigned First, unsigned Last, 7701 const SwitchInst *SI, 7702 MachineBasicBlock *DefaultMBB, 7703 CaseCluster &JTCluster) { 7704 assert(First <= Last); 7705 7706 uint32_t Weight = 0; 7707 unsigned NumCmps = 0; 7708 std::vector<MachineBasicBlock*> Table; 7709 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7710 for (unsigned I = First; I <= Last; ++I) { 7711 assert(Clusters[I].Kind == CC_Range); 7712 Weight += Clusters[I].Weight; 7713 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7714 APInt Low = Clusters[I].Low->getValue(); 7715 APInt High = Clusters[I].High->getValue(); 7716 NumCmps += (Low == High) ? 1 : 2; 7717 if (I != First) { 7718 // Fill the gap between this and the previous cluster. 7719 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7720 assert(PreviousHigh.slt(Low)); 7721 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7722 for (uint64_t J = 0; J < Gap; J++) 7723 Table.push_back(DefaultMBB); 7724 } 7725 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7726 for (uint64_t J = 0; J < ClusterSize; ++J) 7727 Table.push_back(Clusters[I].MBB); 7728 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7729 } 7730 7731 unsigned NumDests = JTWeights.size(); 7732 if (isSuitableForBitTests(NumDests, NumCmps, 7733 Clusters[First].Low->getValue(), 7734 Clusters[Last].High->getValue())) { 7735 // Clusters[First..Last] should be lowered as bit tests instead. 7736 return false; 7737 } 7738 7739 // Create the MBB that will load from and jump through the table. 7740 // Note: We create it here, but it's not inserted into the function yet. 7741 MachineFunction *CurMF = FuncInfo.MF; 7742 MachineBasicBlock *JumpTableMBB = 7743 CurMF->CreateMachineBasicBlock(SI->getParent()); 7744 7745 // Add successors. Note: use table order for determinism. 7746 SmallPtrSet<MachineBasicBlock *, 8> Done; 7747 for (MachineBasicBlock *Succ : Table) { 7748 if (Done.count(Succ)) 7749 continue; 7750 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7751 Done.insert(Succ); 7752 } 7753 7754 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7755 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7756 ->createJumpTableIndex(Table); 7757 7758 // Set up the jump table info. 7759 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7760 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7761 Clusters[Last].High->getValue(), SI->getCondition(), 7762 nullptr, false); 7763 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7764 7765 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7766 JTCases.size() - 1, Weight); 7767 return true; 7768 } 7769 7770 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7771 const SwitchInst *SI, 7772 MachineBasicBlock *DefaultMBB) { 7773 #ifndef NDEBUG 7774 // Clusters must be non-empty, sorted, and only contain Range clusters. 7775 assert(!Clusters.empty()); 7776 for (CaseCluster &C : Clusters) 7777 assert(C.Kind == CC_Range); 7778 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7779 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7780 #endif 7781 7782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7783 if (!areJTsAllowed(TLI)) 7784 return; 7785 7786 const int64_t N = Clusters.size(); 7787 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7788 7789 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7790 SmallVector<unsigned, 8> TotalCases(N); 7791 7792 for (unsigned i = 0; i < N; ++i) { 7793 APInt Hi = Clusters[i].High->getValue(); 7794 APInt Lo = Clusters[i].Low->getValue(); 7795 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7796 if (i != 0) 7797 TotalCases[i] += TotalCases[i - 1]; 7798 } 7799 7800 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7801 // Cheap case: the whole range might be suitable for jump table. 7802 CaseCluster JTCluster; 7803 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7804 Clusters[0] = JTCluster; 7805 Clusters.resize(1); 7806 return; 7807 } 7808 } 7809 7810 // The algorithm below is not suitable for -O0. 7811 if (TM.getOptLevel() == CodeGenOpt::None) 7812 return; 7813 7814 // Split Clusters into minimum number of dense partitions. The algorithm uses 7815 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7816 // for the Case Statement'" (1994), but builds the MinPartitions array in 7817 // reverse order to make it easier to reconstruct the partitions in ascending 7818 // order. In the choice between two optimal partitionings, it picks the one 7819 // which yields more jump tables. 7820 7821 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7822 SmallVector<unsigned, 8> MinPartitions(N); 7823 // LastElement[i] is the last element of the partition starting at i. 7824 SmallVector<unsigned, 8> LastElement(N); 7825 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7826 SmallVector<unsigned, 8> NumTables(N); 7827 7828 // Base case: There is only one way to partition Clusters[N-1]. 7829 MinPartitions[N - 1] = 1; 7830 LastElement[N - 1] = N - 1; 7831 assert(MinJumpTableSize > 1); 7832 NumTables[N - 1] = 0; 7833 7834 // Note: loop indexes are signed to avoid underflow. 7835 for (int64_t i = N - 2; i >= 0; i--) { 7836 // Find optimal partitioning of Clusters[i..N-1]. 7837 // Baseline: Put Clusters[i] into a partition on its own. 7838 MinPartitions[i] = MinPartitions[i + 1] + 1; 7839 LastElement[i] = i; 7840 NumTables[i] = NumTables[i + 1]; 7841 7842 // Search for a solution that results in fewer partitions. 7843 for (int64_t j = N - 1; j > i; j--) { 7844 // Try building a partition from Clusters[i..j]. 7845 if (isDense(Clusters, &TotalCases[0], i, j)) { 7846 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7847 bool IsTable = j - i + 1 >= MinJumpTableSize; 7848 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7849 7850 // If this j leads to fewer partitions, or same number of partitions 7851 // with more lookup tables, it is a better partitioning. 7852 if (NumPartitions < MinPartitions[i] || 7853 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7854 MinPartitions[i] = NumPartitions; 7855 LastElement[i] = j; 7856 NumTables[i] = Tables; 7857 } 7858 } 7859 } 7860 } 7861 7862 // Iterate over the partitions, replacing some with jump tables in-place. 7863 unsigned DstIndex = 0; 7864 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7865 Last = LastElement[First]; 7866 assert(Last >= First); 7867 assert(DstIndex <= First); 7868 unsigned NumClusters = Last - First + 1; 7869 7870 CaseCluster JTCluster; 7871 if (NumClusters >= MinJumpTableSize && 7872 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7873 Clusters[DstIndex++] = JTCluster; 7874 } else { 7875 for (unsigned I = First; I <= Last; ++I) 7876 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7877 } 7878 } 7879 Clusters.resize(DstIndex); 7880 } 7881 7882 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7883 // FIXME: Using the pointer type doesn't seem ideal. 7884 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7885 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7886 return Range <= BW; 7887 } 7888 7889 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7890 unsigned NumCmps, 7891 const APInt &Low, 7892 const APInt &High) { 7893 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7894 // range of cases both require only one branch to lower. Just looking at the 7895 // number of clusters and destinations should be enough to decide whether to 7896 // build bit tests. 7897 7898 // To lower a range with bit tests, the range must fit the bitwidth of a 7899 // machine word. 7900 if (!rangeFitsInWord(Low, High)) 7901 return false; 7902 7903 // Decide whether it's profitable to lower this range with bit tests. Each 7904 // destination requires a bit test and branch, and there is an overall range 7905 // check branch. For a small number of clusters, separate comparisons might be 7906 // cheaper, and for many destinations, splitting the range might be better. 7907 return (NumDests == 1 && NumCmps >= 3) || 7908 (NumDests == 2 && NumCmps >= 5) || 7909 (NumDests == 3 && NumCmps >= 6); 7910 } 7911 7912 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7913 unsigned First, unsigned Last, 7914 const SwitchInst *SI, 7915 CaseCluster &BTCluster) { 7916 assert(First <= Last); 7917 if (First == Last) 7918 return false; 7919 7920 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7921 unsigned NumCmps = 0; 7922 for (int64_t I = First; I <= Last; ++I) { 7923 assert(Clusters[I].Kind == CC_Range); 7924 Dests.set(Clusters[I].MBB->getNumber()); 7925 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7926 } 7927 unsigned NumDests = Dests.count(); 7928 7929 APInt Low = Clusters[First].Low->getValue(); 7930 APInt High = Clusters[Last].High->getValue(); 7931 assert(Low.slt(High)); 7932 7933 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7934 return false; 7935 7936 APInt LowBound; 7937 APInt CmpRange; 7938 7939 const int BitWidth = DAG.getTargetLoweringInfo() 7940 .getPointerTy(DAG.getDataLayout()) 7941 .getSizeInBits(); 7942 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7943 7944 // Check if the clusters cover a contiguous range such that no value in the 7945 // range will jump to the default statement. 7946 bool ContiguousRange = true; 7947 for (int64_t I = First + 1; I <= Last; ++I) { 7948 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7949 ContiguousRange = false; 7950 break; 7951 } 7952 } 7953 7954 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7955 // Optimize the case where all the case values fit in a word without having 7956 // to subtract minValue. In this case, we can optimize away the subtraction. 7957 LowBound = APInt::getNullValue(Low.getBitWidth()); 7958 CmpRange = High; 7959 ContiguousRange = false; 7960 } else { 7961 LowBound = Low; 7962 CmpRange = High - Low; 7963 } 7964 7965 CaseBitsVector CBV; 7966 uint32_t TotalWeight = 0; 7967 for (unsigned i = First; i <= Last; ++i) { 7968 // Find the CaseBits for this destination. 7969 unsigned j; 7970 for (j = 0; j < CBV.size(); ++j) 7971 if (CBV[j].BB == Clusters[i].MBB) 7972 break; 7973 if (j == CBV.size()) 7974 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7975 CaseBits *CB = &CBV[j]; 7976 7977 // Update Mask, Bits and ExtraWeight. 7978 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7979 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7980 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7981 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7982 CB->Bits += Hi - Lo + 1; 7983 CB->ExtraWeight += Clusters[i].Weight; 7984 TotalWeight += Clusters[i].Weight; 7985 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7986 } 7987 7988 BitTestInfo BTI; 7989 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7990 // Sort by weight first, number of bits second. 7991 if (a.ExtraWeight != b.ExtraWeight) 7992 return a.ExtraWeight > b.ExtraWeight; 7993 return a.Bits > b.Bits; 7994 }); 7995 7996 for (auto &CB : CBV) { 7997 MachineBasicBlock *BitTestBB = 7998 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7999 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 8000 } 8001 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8002 SI->getCondition(), -1U, MVT::Other, false, 8003 ContiguousRange, nullptr, nullptr, std::move(BTI), 8004 TotalWeight); 8005 8006 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8007 BitTestCases.size() - 1, TotalWeight); 8008 return true; 8009 } 8010 8011 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8012 const SwitchInst *SI) { 8013 // Partition Clusters into as few subsets as possible, where each subset has a 8014 // range that fits in a machine word and has <= 3 unique destinations. 8015 8016 #ifndef NDEBUG 8017 // Clusters must be sorted and contain Range or JumpTable clusters. 8018 assert(!Clusters.empty()); 8019 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8020 for (const CaseCluster &C : Clusters) 8021 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8022 for (unsigned i = 1; i < Clusters.size(); ++i) 8023 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8024 #endif 8025 8026 // The algorithm below is not suitable for -O0. 8027 if (TM.getOptLevel() == CodeGenOpt::None) 8028 return; 8029 8030 // If target does not have legal shift left, do not emit bit tests at all. 8031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8032 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8033 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8034 return; 8035 8036 int BitWidth = PTy.getSizeInBits(); 8037 const int64_t N = Clusters.size(); 8038 8039 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8040 SmallVector<unsigned, 8> MinPartitions(N); 8041 // LastElement[i] is the last element of the partition starting at i. 8042 SmallVector<unsigned, 8> LastElement(N); 8043 8044 // FIXME: This might not be the best algorithm for finding bit test clusters. 8045 8046 // Base case: There is only one way to partition Clusters[N-1]. 8047 MinPartitions[N - 1] = 1; 8048 LastElement[N - 1] = N - 1; 8049 8050 // Note: loop indexes are signed to avoid underflow. 8051 for (int64_t i = N - 2; i >= 0; --i) { 8052 // Find optimal partitioning of Clusters[i..N-1]. 8053 // Baseline: Put Clusters[i] into a partition on its own. 8054 MinPartitions[i] = MinPartitions[i + 1] + 1; 8055 LastElement[i] = i; 8056 8057 // Search for a solution that results in fewer partitions. 8058 // Note: the search is limited by BitWidth, reducing time complexity. 8059 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8060 // Try building a partition from Clusters[i..j]. 8061 8062 // Check the range. 8063 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8064 Clusters[j].High->getValue())) 8065 continue; 8066 8067 // Check nbr of destinations and cluster types. 8068 // FIXME: This works, but doesn't seem very efficient. 8069 bool RangesOnly = true; 8070 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8071 for (int64_t k = i; k <= j; k++) { 8072 if (Clusters[k].Kind != CC_Range) { 8073 RangesOnly = false; 8074 break; 8075 } 8076 Dests.set(Clusters[k].MBB->getNumber()); 8077 } 8078 if (!RangesOnly || Dests.count() > 3) 8079 break; 8080 8081 // Check if it's a better partition. 8082 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8083 if (NumPartitions < MinPartitions[i]) { 8084 // Found a better partition. 8085 MinPartitions[i] = NumPartitions; 8086 LastElement[i] = j; 8087 } 8088 } 8089 } 8090 8091 // Iterate over the partitions, replacing with bit-test clusters in-place. 8092 unsigned DstIndex = 0; 8093 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8094 Last = LastElement[First]; 8095 assert(First <= Last); 8096 assert(DstIndex <= First); 8097 8098 CaseCluster BitTestCluster; 8099 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8100 Clusters[DstIndex++] = BitTestCluster; 8101 } else { 8102 size_t NumClusters = Last - First + 1; 8103 std::memmove(&Clusters[DstIndex], &Clusters[First], 8104 sizeof(Clusters[0]) * NumClusters); 8105 DstIndex += NumClusters; 8106 } 8107 } 8108 Clusters.resize(DstIndex); 8109 } 8110 8111 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8112 MachineBasicBlock *SwitchMBB, 8113 MachineBasicBlock *DefaultMBB) { 8114 MachineFunction *CurMF = FuncInfo.MF; 8115 MachineBasicBlock *NextMBB = nullptr; 8116 MachineFunction::iterator BBI(W.MBB); 8117 if (++BBI != FuncInfo.MF->end()) 8118 NextMBB = &*BBI; 8119 8120 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8121 8122 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8123 8124 if (Size == 2 && W.MBB == SwitchMBB) { 8125 // If any two of the cases has the same destination, and if one value 8126 // is the same as the other, but has one bit unset that the other has set, 8127 // use bit manipulation to do two compares at once. For example: 8128 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8129 // TODO: This could be extended to merge any 2 cases in switches with 3 8130 // cases. 8131 // TODO: Handle cases where W.CaseBB != SwitchBB. 8132 CaseCluster &Small = *W.FirstCluster; 8133 CaseCluster &Big = *W.LastCluster; 8134 8135 if (Small.Low == Small.High && Big.Low == Big.High && 8136 Small.MBB == Big.MBB) { 8137 const APInt &SmallValue = Small.Low->getValue(); 8138 const APInt &BigValue = Big.Low->getValue(); 8139 8140 // Check that there is only one bit different. 8141 APInt CommonBit = BigValue ^ SmallValue; 8142 if (CommonBit.isPowerOf2()) { 8143 SDValue CondLHS = getValue(Cond); 8144 EVT VT = CondLHS.getValueType(); 8145 SDLoc DL = getCurSDLoc(); 8146 8147 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8148 DAG.getConstant(CommonBit, DL, VT)); 8149 SDValue Cond = DAG.getSetCC( 8150 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8151 ISD::SETEQ); 8152 8153 // Update successor info. 8154 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8155 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8156 addSuccessorWithWeight( 8157 SwitchMBB, DefaultMBB, 8158 // The default destination is the first successor in IR. 8159 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8160 : 0); 8161 8162 // Insert the true branch. 8163 SDValue BrCond = 8164 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8165 DAG.getBasicBlock(Small.MBB)); 8166 // Insert the false branch. 8167 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8168 DAG.getBasicBlock(DefaultMBB)); 8169 8170 DAG.setRoot(BrCond); 8171 return; 8172 } 8173 } 8174 } 8175 8176 if (TM.getOptLevel() != CodeGenOpt::None) { 8177 // Order cases by weight so the most likely case will be checked first. 8178 std::sort(W.FirstCluster, W.LastCluster + 1, 8179 [](const CaseCluster &a, const CaseCluster &b) { 8180 return a.Weight > b.Weight; 8181 }); 8182 8183 // Rearrange the case blocks so that the last one falls through if possible 8184 // without without changing the order of weights. 8185 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8186 --I; 8187 if (I->Weight > W.LastCluster->Weight) 8188 break; 8189 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8190 std::swap(*I, *W.LastCluster); 8191 break; 8192 } 8193 } 8194 } 8195 8196 // Compute total weight. 8197 uint32_t DefaultWeight = W.DefaultWeight; 8198 uint32_t UnhandledWeights = DefaultWeight; 8199 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8200 UnhandledWeights += I->Weight; 8201 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8202 } 8203 8204 MachineBasicBlock *CurMBB = W.MBB; 8205 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8206 MachineBasicBlock *Fallthrough; 8207 if (I == W.LastCluster) { 8208 // For the last cluster, fall through to the default destination. 8209 Fallthrough = DefaultMBB; 8210 } else { 8211 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8212 CurMF->insert(BBI, Fallthrough); 8213 // Put Cond in a virtual register to make it available from the new blocks. 8214 ExportFromCurrentBlock(Cond); 8215 } 8216 UnhandledWeights -= I->Weight; 8217 8218 switch (I->Kind) { 8219 case CC_JumpTable: { 8220 // FIXME: Optimize away range check based on pivot comparisons. 8221 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8222 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8223 8224 // The jump block hasn't been inserted yet; insert it here. 8225 MachineBasicBlock *JumpMBB = JT->MBB; 8226 CurMF->insert(BBI, JumpMBB); 8227 8228 uint32_t JumpWeight = I->Weight; 8229 uint32_t FallthroughWeight = UnhandledWeights; 8230 8231 // If the default statement is a target of the jump table, we evenly 8232 // distribute the default weight to successors of CurMBB. Also update 8233 // the weight on the edge from JumpMBB to Fallthrough. 8234 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8235 SE = JumpMBB->succ_end(); 8236 SI != SE; ++SI) { 8237 if (*SI == DefaultMBB) { 8238 JumpWeight += DefaultWeight / 2; 8239 FallthroughWeight -= DefaultWeight / 2; 8240 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8241 break; 8242 } 8243 } 8244 8245 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8246 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8247 8248 // The jump table header will be inserted in our current block, do the 8249 // range check, and fall through to our fallthrough block. 8250 JTH->HeaderBB = CurMBB; 8251 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8252 8253 // If we're in the right place, emit the jump table header right now. 8254 if (CurMBB == SwitchMBB) { 8255 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8256 JTH->Emitted = true; 8257 } 8258 break; 8259 } 8260 case CC_BitTests: { 8261 // FIXME: Optimize away range check based on pivot comparisons. 8262 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8263 8264 // The bit test blocks haven't been inserted yet; insert them here. 8265 for (BitTestCase &BTC : BTB->Cases) 8266 CurMF->insert(BBI, BTC.ThisBB); 8267 8268 // Fill in fields of the BitTestBlock. 8269 BTB->Parent = CurMBB; 8270 BTB->Default = Fallthrough; 8271 8272 BTB->DefaultWeight = UnhandledWeights; 8273 // If the cases in bit test don't form a contiguous range, we evenly 8274 // distribute the weight on the edge to Fallthrough to two successors 8275 // of CurMBB. 8276 if (!BTB->ContiguousRange) { 8277 BTB->Weight += DefaultWeight / 2; 8278 BTB->DefaultWeight -= DefaultWeight / 2; 8279 } 8280 8281 // If we're in the right place, emit the bit test header right now. 8282 if (CurMBB == SwitchMBB) { 8283 visitBitTestHeader(*BTB, SwitchMBB); 8284 BTB->Emitted = true; 8285 } 8286 break; 8287 } 8288 case CC_Range: { 8289 const Value *RHS, *LHS, *MHS; 8290 ISD::CondCode CC; 8291 if (I->Low == I->High) { 8292 // Check Cond == I->Low. 8293 CC = ISD::SETEQ; 8294 LHS = Cond; 8295 RHS=I->Low; 8296 MHS = nullptr; 8297 } else { 8298 // Check I->Low <= Cond <= I->High. 8299 CC = ISD::SETLE; 8300 LHS = I->Low; 8301 MHS = Cond; 8302 RHS = I->High; 8303 } 8304 8305 // The false weight is the sum of all unhandled cases. 8306 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8307 UnhandledWeights); 8308 8309 if (CurMBB == SwitchMBB) 8310 visitSwitchCase(CB, SwitchMBB); 8311 else 8312 SwitchCases.push_back(CB); 8313 8314 break; 8315 } 8316 } 8317 CurMBB = Fallthrough; 8318 } 8319 } 8320 8321 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8322 CaseClusterIt First, 8323 CaseClusterIt Last) { 8324 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8325 if (X.Weight != CC.Weight) 8326 return X.Weight > CC.Weight; 8327 8328 // Ties are broken by comparing the case value. 8329 return X.Low->getValue().slt(CC.Low->getValue()); 8330 }); 8331 } 8332 8333 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8334 const SwitchWorkListItem &W, 8335 Value *Cond, 8336 MachineBasicBlock *SwitchMBB) { 8337 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8338 "Clusters not sorted?"); 8339 8340 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8341 8342 // Balance the tree based on branch weights to create a near-optimal (in terms 8343 // of search time given key frequency) binary search tree. See e.g. Kurt 8344 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8345 CaseClusterIt LastLeft = W.FirstCluster; 8346 CaseClusterIt FirstRight = W.LastCluster; 8347 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8348 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8349 8350 // Move LastLeft and FirstRight towards each other from opposite directions to 8351 // find a partitioning of the clusters which balances the weight on both 8352 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8353 // taken to ensure 0-weight nodes are distributed evenly. 8354 unsigned I = 0; 8355 while (LastLeft + 1 < FirstRight) { 8356 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8357 LeftWeight += (++LastLeft)->Weight; 8358 else 8359 RightWeight += (--FirstRight)->Weight; 8360 I++; 8361 } 8362 8363 for (;;) { 8364 // Our binary search tree differs from a typical BST in that ours can have up 8365 // to three values in each leaf. The pivot selection above doesn't take that 8366 // into account, which means the tree might require more nodes and be less 8367 // efficient. We compensate for this here. 8368 8369 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8370 unsigned NumRight = W.LastCluster - FirstRight + 1; 8371 8372 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8373 // If one side has less than 3 clusters, and the other has more than 3, 8374 // consider taking a cluster from the other side. 8375 8376 if (NumLeft < NumRight) { 8377 // Consider moving the first cluster on the right to the left side. 8378 CaseCluster &CC = *FirstRight; 8379 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8380 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8381 if (LeftSideRank <= RightSideRank) { 8382 // Moving the cluster to the left does not demote it. 8383 ++LastLeft; 8384 ++FirstRight; 8385 continue; 8386 } 8387 } else { 8388 assert(NumRight < NumLeft); 8389 // Consider moving the last element on the left to the right side. 8390 CaseCluster &CC = *LastLeft; 8391 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8392 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8393 if (RightSideRank <= LeftSideRank) { 8394 // Moving the cluster to the right does not demot it. 8395 --LastLeft; 8396 --FirstRight; 8397 continue; 8398 } 8399 } 8400 } 8401 break; 8402 } 8403 8404 assert(LastLeft + 1 == FirstRight); 8405 assert(LastLeft >= W.FirstCluster); 8406 assert(FirstRight <= W.LastCluster); 8407 8408 // Use the first element on the right as pivot since we will make less-than 8409 // comparisons against it. 8410 CaseClusterIt PivotCluster = FirstRight; 8411 assert(PivotCluster > W.FirstCluster); 8412 assert(PivotCluster <= W.LastCluster); 8413 8414 CaseClusterIt FirstLeft = W.FirstCluster; 8415 CaseClusterIt LastRight = W.LastCluster; 8416 8417 const ConstantInt *Pivot = PivotCluster->Low; 8418 8419 // New blocks will be inserted immediately after the current one. 8420 MachineFunction::iterator BBI(W.MBB); 8421 ++BBI; 8422 8423 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8424 // we can branch to its destination directly if it's squeezed exactly in 8425 // between the known lower bound and Pivot - 1. 8426 MachineBasicBlock *LeftMBB; 8427 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8428 FirstLeft->Low == W.GE && 8429 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8430 LeftMBB = FirstLeft->MBB; 8431 } else { 8432 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8433 FuncInfo.MF->insert(BBI, LeftMBB); 8434 WorkList.push_back( 8435 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8436 // Put Cond in a virtual register to make it available from the new blocks. 8437 ExportFromCurrentBlock(Cond); 8438 } 8439 8440 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8441 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8442 // directly if RHS.High equals the current upper bound. 8443 MachineBasicBlock *RightMBB; 8444 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8445 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8446 RightMBB = FirstRight->MBB; 8447 } else { 8448 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8449 FuncInfo.MF->insert(BBI, RightMBB); 8450 WorkList.push_back( 8451 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8452 // Put Cond in a virtual register to make it available from the new blocks. 8453 ExportFromCurrentBlock(Cond); 8454 } 8455 8456 // Create the CaseBlock record that will be used to lower the branch. 8457 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8458 LeftWeight, RightWeight); 8459 8460 if (W.MBB == SwitchMBB) 8461 visitSwitchCase(CB, SwitchMBB); 8462 else 8463 SwitchCases.push_back(CB); 8464 } 8465 8466 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8467 // Extract cases from the switch. 8468 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8469 CaseClusterVector Clusters; 8470 Clusters.reserve(SI.getNumCases()); 8471 for (auto I : SI.cases()) { 8472 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8473 const ConstantInt *CaseVal = I.getCaseValue(); 8474 uint32_t Weight = 8475 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8476 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8477 } 8478 8479 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8480 8481 // Cluster adjacent cases with the same destination. We do this at all 8482 // optimization levels because it's cheap to do and will make codegen faster 8483 // if there are many clusters. 8484 sortAndRangeify(Clusters); 8485 8486 if (TM.getOptLevel() != CodeGenOpt::None) { 8487 // Replace an unreachable default with the most popular destination. 8488 // FIXME: Exploit unreachable default more aggressively. 8489 bool UnreachableDefault = 8490 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8491 if (UnreachableDefault && !Clusters.empty()) { 8492 DenseMap<const BasicBlock *, unsigned> Popularity; 8493 unsigned MaxPop = 0; 8494 const BasicBlock *MaxBB = nullptr; 8495 for (auto I : SI.cases()) { 8496 const BasicBlock *BB = I.getCaseSuccessor(); 8497 if (++Popularity[BB] > MaxPop) { 8498 MaxPop = Popularity[BB]; 8499 MaxBB = BB; 8500 } 8501 } 8502 // Set new default. 8503 assert(MaxPop > 0 && MaxBB); 8504 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8505 8506 // Remove cases that were pointing to the destination that is now the 8507 // default. 8508 CaseClusterVector New; 8509 New.reserve(Clusters.size()); 8510 for (CaseCluster &CC : Clusters) { 8511 if (CC.MBB != DefaultMBB) 8512 New.push_back(CC); 8513 } 8514 Clusters = std::move(New); 8515 } 8516 } 8517 8518 // If there is only the default destination, jump there directly. 8519 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8520 if (Clusters.empty()) { 8521 SwitchMBB->addSuccessor(DefaultMBB); 8522 if (DefaultMBB != NextBlock(SwitchMBB)) { 8523 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8524 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8525 } 8526 return; 8527 } 8528 8529 findJumpTables(Clusters, &SI, DefaultMBB); 8530 findBitTestClusters(Clusters, &SI); 8531 8532 DEBUG({ 8533 dbgs() << "Case clusters: "; 8534 for (const CaseCluster &C : Clusters) { 8535 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8536 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8537 8538 C.Low->getValue().print(dbgs(), true); 8539 if (C.Low != C.High) { 8540 dbgs() << '-'; 8541 C.High->getValue().print(dbgs(), true); 8542 } 8543 dbgs() << ' '; 8544 } 8545 dbgs() << '\n'; 8546 }); 8547 8548 assert(!Clusters.empty()); 8549 SwitchWorkList WorkList; 8550 CaseClusterIt First = Clusters.begin(); 8551 CaseClusterIt Last = Clusters.end() - 1; 8552 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8553 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8554 8555 while (!WorkList.empty()) { 8556 SwitchWorkListItem W = WorkList.back(); 8557 WorkList.pop_back(); 8558 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8559 8560 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8561 // For optimized builds, lower large range as a balanced binary tree. 8562 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8563 continue; 8564 } 8565 8566 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8567 } 8568 } 8569