1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/MachineValueType.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include "llvm/Target/TargetIntrinsicInfo.h" 108 #include "llvm/Target/TargetMachine.h" 109 #include "llvm/Target/TargetOptions.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <cstring> 115 #include <iterator> 116 #include <limits> 117 #include <numeric> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "isel" 125 126 /// LimitFloatPrecision - Generate low-precision inline sequences for 127 /// some float libcalls (6, 8 or 12 bits). 128 static unsigned LimitFloatPrecision; 129 130 static cl::opt<unsigned, true> 131 LimitFPPrecision("limit-float-precision", 132 cl::desc("Generate low-precision inline sequences " 133 "for some float libcalls"), 134 cl::location(LimitFloatPrecision), cl::Hidden, 135 cl::init(0)); 136 137 static cl::opt<unsigned> SwitchPeelThreshold( 138 "switch-peel-threshold", cl::Hidden, cl::init(66), 139 cl::desc("Set the case probability threshold for peeling the case from a " 140 "switch statement. A value greater than 100 will void this " 141 "optimization")); 142 143 // Limit the width of DAG chains. This is important in general to prevent 144 // DAG-based analysis from blowing up. For example, alias analysis and 145 // load clustering may not complete in reasonable time. It is difficult to 146 // recognize and avoid this situation within each individual analysis, and 147 // future analyses are likely to have the same behavior. Limiting DAG width is 148 // the safe approach and will be especially important with global DAGs. 149 // 150 // MaxParallelChains default is arbitrarily high to avoid affecting 151 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 152 // sequence over this should have been converted to llvm.memcpy by the 153 // frontend. It is easy to induce this behavior with .ll code such as: 154 // %buffer = alloca [4096 x i8] 155 // %data = load [4096 x i8]* %argPtr 156 // store [4096 x i8] %data, [4096 x i8]* %buffer 157 static const unsigned MaxParallelChains = 64; 158 159 // True if the Value passed requires ABI mangling as it is a parameter to a 160 // function or a return value from a function which is not an intrinsic. 161 static bool isABIRegCopy(const Value *V) { 162 const bool IsRetInst = V && isa<ReturnInst>(V); 163 const bool IsCallInst = V && isa<CallInst>(V); 164 const bool IsInLineAsm = 165 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 166 const bool IsIndirectFunctionCall = 167 IsCallInst && !IsInLineAsm && 168 !static_cast<const CallInst *>(V)->getCalledFunction(); 169 // It is possible that the call instruction is an inline asm statement or an 170 // indirect function call in which case the return value of 171 // getCalledFunction() would be nullptr. 172 const bool IsInstrinsicCall = 173 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 174 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 175 Intrinsic::not_intrinsic; 176 177 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 178 } 179 180 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 181 const SDValue *Parts, unsigned NumParts, 182 MVT PartVT, EVT ValueVT, const Value *V, 183 bool IsABIRegCopy); 184 185 /// getCopyFromParts - Create a value that contains the specified legal parts 186 /// combined into the value they represent. If the parts combine to a type 187 /// larger than ValueVT then AssertOp can be used to specify whether the extra 188 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 189 /// (ISD::AssertSext). 190 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 191 const SDValue *Parts, unsigned NumParts, 192 MVT PartVT, EVT ValueVT, const Value *V, 193 Optional<ISD::NodeType> AssertOp = None, 194 bool IsABIRegCopy = false) { 195 if (ValueVT.isVector()) 196 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 197 PartVT, ValueVT, V, IsABIRegCopy); 198 199 assert(NumParts > 0 && "No parts to assemble!"); 200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 201 SDValue Val = Parts[0]; 202 203 if (NumParts > 1) { 204 // Assemble the value from multiple parts. 205 if (ValueVT.isInteger()) { 206 unsigned PartBits = PartVT.getSizeInBits(); 207 unsigned ValueBits = ValueVT.getSizeInBits(); 208 209 // Assemble the power of 2 part. 210 unsigned RoundParts = NumParts & (NumParts - 1) ? 211 1 << Log2_32(NumParts) : NumParts; 212 unsigned RoundBits = PartBits * RoundParts; 213 EVT RoundVT = RoundBits == ValueBits ? 214 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 215 SDValue Lo, Hi; 216 217 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 218 219 if (RoundParts > 2) { 220 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 221 PartVT, HalfVT, V); 222 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 223 RoundParts / 2, PartVT, HalfVT, V); 224 } else { 225 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 226 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 227 } 228 229 if (DAG.getDataLayout().isBigEndian()) 230 std::swap(Lo, Hi); 231 232 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 233 234 if (RoundParts < NumParts) { 235 // Assemble the trailing non-power-of-2 part. 236 unsigned OddParts = NumParts - RoundParts; 237 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 238 Hi = getCopyFromParts(DAG, DL, 239 Parts + RoundParts, OddParts, PartVT, OddVT, V); 240 241 // Combine the round and odd parts. 242 Lo = Val; 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 246 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 247 Hi = 248 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 249 DAG.getConstant(Lo.getValueSizeInBits(), DL, 250 TLI.getPointerTy(DAG.getDataLayout()))); 251 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 252 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 253 } 254 } else if (PartVT.isFloatingPoint()) { 255 // FP split into multiple FP parts (for ppcf128) 256 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 257 "Unexpected split"); 258 SDValue Lo, Hi; 259 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 260 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 261 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 262 std::swap(Lo, Hi); 263 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 264 } else { 265 // FP split into integer parts (soft fp) 266 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 267 !PartVT.isVector() && "Unexpected split"); 268 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 269 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 270 } 271 } 272 273 // There is now one part, held in Val. Correct it to match ValueVT. 274 // PartEVT is the type of the register class that holds the value. 275 // ValueVT is the type of the inline asm operation. 276 EVT PartEVT = Val.getValueType(); 277 278 if (PartEVT == ValueVT) 279 return Val; 280 281 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 282 ValueVT.bitsLT(PartEVT)) { 283 // For an FP value in an integer part, we need to truncate to the right 284 // width first. 285 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 286 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 287 } 288 289 // Handle types that have the same size. 290 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 291 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 292 293 // Handle types with different sizes. 294 if (PartEVT.isInteger() && ValueVT.isInteger()) { 295 if (ValueVT.bitsLT(PartEVT)) { 296 // For a truncate, see if we have any information to 297 // indicate whether the truncated bits will always be 298 // zero or sign-extension. 299 if (AssertOp.hasValue()) 300 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 301 DAG.getValueType(ValueVT)); 302 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 303 } 304 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 305 } 306 307 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 308 // FP_ROUND's are always exact here. 309 if (ValueVT.bitsLT(Val.getValueType())) 310 return DAG.getNode( 311 ISD::FP_ROUND, DL, ValueVT, Val, 312 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 313 314 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 315 } 316 317 llvm_unreachable("Unknown mismatch!"); 318 } 319 320 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 321 const Twine &ErrMsg) { 322 const Instruction *I = dyn_cast_or_null<Instruction>(V); 323 if (!V) 324 return Ctx.emitError(ErrMsg); 325 326 const char *AsmError = ", possible invalid constraint for vector type"; 327 if (const CallInst *CI = dyn_cast<CallInst>(I)) 328 if (isa<InlineAsm>(CI->getCalledValue())) 329 return Ctx.emitError(I, ErrMsg + AsmError); 330 331 return Ctx.emitError(I, ErrMsg); 332 } 333 334 /// getCopyFromPartsVector - Create a value that contains the specified legal 335 /// parts combined into the value they represent. If the parts combine to a 336 /// type larger than ValueVT then AssertOp can be used to specify whether the 337 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 338 /// ValueVT (ISD::AssertSext). 339 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 340 const SDValue *Parts, unsigned NumParts, 341 MVT PartVT, EVT ValueVT, const Value *V, 342 bool IsABIRegCopy) { 343 assert(ValueVT.isVector() && "Not a vector value"); 344 assert(NumParts > 0 && "No parts to assemble!"); 345 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 346 SDValue Val = Parts[0]; 347 348 // Handle a multi-element vector. 349 if (NumParts > 1) { 350 EVT IntermediateVT; 351 MVT RegisterVT; 352 unsigned NumIntermediates; 353 unsigned NumRegs; 354 355 if (IsABIRegCopy) { 356 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 357 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 358 RegisterVT); 359 } else { 360 NumRegs = 361 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 362 NumIntermediates, RegisterVT); 363 } 364 365 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 366 NumParts = NumRegs; // Silence a compiler warning. 367 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 368 assert(RegisterVT.getSizeInBits() == 369 Parts[0].getSimpleValueType().getSizeInBits() && 370 "Part type sizes don't match!"); 371 372 // Assemble the parts into intermediate operands. 373 SmallVector<SDValue, 8> Ops(NumIntermediates); 374 if (NumIntermediates == NumParts) { 375 // If the register was not expanded, truncate or copy the value, 376 // as appropriate. 377 for (unsigned i = 0; i != NumParts; ++i) 378 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 379 PartVT, IntermediateVT, V); 380 } else if (NumParts > 0) { 381 // If the intermediate type was expanded, build the intermediate 382 // operands from the parts. 383 assert(NumParts % NumIntermediates == 0 && 384 "Must expand into a divisible number of parts!"); 385 unsigned Factor = NumParts / NumIntermediates; 386 for (unsigned i = 0; i != NumIntermediates; ++i) 387 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 388 PartVT, IntermediateVT, V); 389 } 390 391 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 392 // intermediate operands. 393 EVT BuiltVectorTy = 394 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 395 (IntermediateVT.isVector() 396 ? IntermediateVT.getVectorNumElements() * NumParts 397 : NumIntermediates)); 398 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 399 : ISD::BUILD_VECTOR, 400 DL, BuiltVectorTy, Ops); 401 } 402 403 // There is now one part, held in Val. Correct it to match ValueVT. 404 EVT PartEVT = Val.getValueType(); 405 406 if (PartEVT == ValueVT) 407 return Val; 408 409 if (PartEVT.isVector()) { 410 // If the element type of the source/dest vectors are the same, but the 411 // parts vector has more elements than the value vector, then we have a 412 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 413 // elements we want. 414 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 415 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 416 "Cannot narrow, it would be a lossy transformation"); 417 return DAG.getNode( 418 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 419 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 420 } 421 422 // Vector/Vector bitcast. 423 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 424 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 425 426 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 427 "Cannot handle this kind of promotion"); 428 // Promoted vector extract 429 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 430 431 } 432 433 // Trivial bitcast if the types are the same size and the destination 434 // vector type is legal. 435 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 436 TLI.isTypeLegal(ValueVT)) 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 439 if (ValueVT.getVectorNumElements() != 1) { 440 // Certain ABIs require that vectors are passed as integers. For vectors 441 // are the same size, this is an obvious bitcast. 442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 444 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 445 // Bitcast Val back the original type and extract the corresponding 446 // vector we want. 447 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 448 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 449 ValueVT.getVectorElementType(), Elts); 450 Val = DAG.getBitcast(WiderVecType, Val); 451 return DAG.getNode( 452 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 453 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 454 } 455 456 diagnosePossiblyInvalidConstraint( 457 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 458 return DAG.getUNDEF(ValueVT); 459 } 460 461 // Handle cases such as i8 -> <1 x i1> 462 EVT ValueSVT = ValueVT.getVectorElementType(); 463 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 464 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 465 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 466 467 return DAG.getBuildVector(ValueVT, DL, Val); 468 } 469 470 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V, bool IsABIRegCopy); 473 474 /// getCopyToParts - Create a series of nodes that contain the specified value 475 /// split into legal parts. If the parts contain more bits than Val, then, for 476 /// integers, ExtendKind can be used to specify how to generate the extra bits. 477 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 478 SDValue *Parts, unsigned NumParts, MVT PartVT, 479 const Value *V, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 481 bool IsABIRegCopy = false) { 482 EVT ValueVT = Val.getValueType(); 483 484 // Handle the vector case separately. 485 if (ValueVT.isVector()) 486 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 487 IsABIRegCopy); 488 489 unsigned PartBits = PartVT.getSizeInBits(); 490 unsigned OrigNumParts = NumParts; 491 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 492 "Copying to an illegal type!"); 493 494 if (NumParts == 0) 495 return; 496 497 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 498 EVT PartEVT = PartVT; 499 if (PartEVT == ValueVT) { 500 assert(NumParts == 1 && "No-op copy with multiple parts!"); 501 Parts[0] = Val; 502 return; 503 } 504 505 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 506 // If the parts cover more bits than the value has, promote the value. 507 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 508 assert(NumParts == 1 && "Do not know what to promote to!"); 509 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 510 } else { 511 if (ValueVT.isFloatingPoint()) { 512 // FP values need to be bitcast, then extended if they are being put 513 // into a larger container. 514 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 515 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 516 } 517 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 518 ValueVT.isInteger() && 519 "Unknown mismatch!"); 520 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 521 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 522 if (PartVT == MVT::x86mmx) 523 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 524 } 525 } else if (PartBits == ValueVT.getSizeInBits()) { 526 // Different types of the same size. 527 assert(NumParts == 1 && PartEVT != ValueVT); 528 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 529 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 530 // If the parts cover less bits than value has, truncate the value. 531 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 532 ValueVT.isInteger() && 533 "Unknown mismatch!"); 534 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 535 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 536 if (PartVT == MVT::x86mmx) 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } 539 540 // The value may have changed - recompute ValueVT. 541 ValueVT = Val.getValueType(); 542 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 543 "Failed to tile the value with PartVT!"); 544 545 if (NumParts == 1) { 546 if (PartEVT != ValueVT) { 547 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 548 "scalar-to-vector conversion failed"); 549 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 550 } 551 552 Parts[0] = Val; 553 return; 554 } 555 556 // Expand the value into multiple parts. 557 if (NumParts & (NumParts - 1)) { 558 // The number of parts is not a power of 2. Split off and copy the tail. 559 assert(PartVT.isInteger() && ValueVT.isInteger() && 560 "Do not know what to expand to!"); 561 unsigned RoundParts = 1 << Log2_32(NumParts); 562 unsigned RoundBits = RoundParts * PartBits; 563 unsigned OddParts = NumParts - RoundParts; 564 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 565 DAG.getIntPtrConstant(RoundBits, DL)); 566 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 567 568 if (DAG.getDataLayout().isBigEndian()) 569 // The odd parts were reversed by getCopyToParts - unreverse them. 570 std::reverse(Parts + RoundParts, Parts + NumParts); 571 572 NumParts = RoundParts; 573 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 574 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 575 } 576 577 // The number of parts is a power of 2. Repeatedly bisect the value using 578 // EXTRACT_ELEMENT. 579 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 580 EVT::getIntegerVT(*DAG.getContext(), 581 ValueVT.getSizeInBits()), 582 Val); 583 584 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 585 for (unsigned i = 0; i < NumParts; i += StepSize) { 586 unsigned ThisBits = StepSize * PartBits / 2; 587 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 588 SDValue &Part0 = Parts[i]; 589 SDValue &Part1 = Parts[i+StepSize/2]; 590 591 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 592 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 593 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 594 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 595 596 if (ThisBits == PartBits && ThisVT != PartVT) { 597 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 598 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 599 } 600 } 601 } 602 603 if (DAG.getDataLayout().isBigEndian()) 604 std::reverse(Parts, Parts + OrigNumParts); 605 } 606 607 608 /// getCopyToPartsVector - Create a series of nodes that contain the specified 609 /// value split into legal parts. 610 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 611 SDValue Val, SDValue *Parts, unsigned NumParts, 612 MVT PartVT, const Value *V, 613 bool IsABIRegCopy) { 614 EVT ValueVT = Val.getValueType(); 615 assert(ValueVT.isVector() && "Not a vector"); 616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 617 618 if (NumParts == 1) { 619 EVT PartEVT = PartVT; 620 if (PartEVT == ValueVT) { 621 // Nothing to do. 622 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 623 // Bitconvert vector->vector case. 624 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 625 } else if (PartVT.isVector() && 626 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 627 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 628 EVT ElementVT = PartVT.getVectorElementType(); 629 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 630 // undef elements. 631 SmallVector<SDValue, 16> Ops; 632 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 633 Ops.push_back(DAG.getNode( 634 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 635 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 636 637 for (unsigned i = ValueVT.getVectorNumElements(), 638 e = PartVT.getVectorNumElements(); i != e; ++i) 639 Ops.push_back(DAG.getUNDEF(ElementVT)); 640 641 Val = DAG.getBuildVector(PartVT, DL, Ops); 642 643 // FIXME: Use CONCAT for 2x -> 4x. 644 645 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 646 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 647 } else if (PartVT.isVector() && 648 PartEVT.getVectorElementType().bitsGE( 649 ValueVT.getVectorElementType()) && 650 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 651 652 // Promoted vector extract 653 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 654 } else { 655 if (ValueVT.getVectorNumElements() == 1) { 656 Val = DAG.getNode( 657 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 658 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 659 } else { 660 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 661 "lossy conversion of vector to scalar type"); 662 EVT IntermediateType = 663 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 664 Val = DAG.getBitcast(IntermediateType, Val); 665 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 666 } 667 } 668 669 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 670 Parts[0] = Val; 671 return; 672 } 673 674 // Handle a multi-element vector. 675 EVT IntermediateVT; 676 MVT RegisterVT; 677 unsigned NumIntermediates; 678 unsigned NumRegs; 679 if (IsABIRegCopy) { 680 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 681 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 682 RegisterVT); 683 } else { 684 NumRegs = 685 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 686 NumIntermediates, RegisterVT); 687 } 688 unsigned NumElements = ValueVT.getVectorNumElements(); 689 690 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 691 NumParts = NumRegs; // Silence a compiler warning. 692 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 693 694 // Convert the vector to the appropiate type if necessary. 695 unsigned DestVectorNoElts = 696 NumIntermediates * 697 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 698 EVT BuiltVectorTy = EVT::getVectorVT( 699 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 700 if (Val.getValueType() != BuiltVectorTy) 701 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 702 703 // Split the vector into intermediate operands. 704 SmallVector<SDValue, 8> Ops(NumIntermediates); 705 for (unsigned i = 0; i != NumIntermediates; ++i) { 706 if (IntermediateVT.isVector()) 707 Ops[i] = 708 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 709 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 710 TLI.getVectorIdxTy(DAG.getDataLayout()))); 711 else 712 Ops[i] = DAG.getNode( 713 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 714 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 715 } 716 717 // Split the intermediate operands into legal parts. 718 if (NumParts == NumIntermediates) { 719 // If the register was not expanded, promote or copy the value, 720 // as appropriate. 721 for (unsigned i = 0; i != NumParts; ++i) 722 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 723 } else if (NumParts > 0) { 724 // If the intermediate type was expanded, split each the value into 725 // legal parts. 726 assert(NumIntermediates != 0 && "division by zero"); 727 assert(NumParts % NumIntermediates == 0 && 728 "Must expand into a divisible number of parts!"); 729 unsigned Factor = NumParts / NumIntermediates; 730 for (unsigned i = 0; i != NumIntermediates; ++i) 731 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 732 } 733 } 734 735 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 736 EVT valuevt, bool IsABIMangledValue) 737 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 738 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 739 740 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 741 const DataLayout &DL, unsigned Reg, Type *Ty, 742 bool IsABIMangledValue) { 743 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 744 745 IsABIMangled = IsABIMangledValue; 746 747 for (EVT ValueVT : ValueVTs) { 748 unsigned NumRegs = IsABIMangledValue 749 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 750 : TLI.getNumRegisters(Context, ValueVT); 751 MVT RegisterVT = IsABIMangledValue 752 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 753 : TLI.getRegisterType(Context, ValueVT); 754 for (unsigned i = 0; i != NumRegs; ++i) 755 Regs.push_back(Reg + i); 756 RegVTs.push_back(RegisterVT); 757 RegCount.push_back(NumRegs); 758 Reg += NumRegs; 759 } 760 } 761 762 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 763 FunctionLoweringInfo &FuncInfo, 764 const SDLoc &dl, SDValue &Chain, 765 SDValue *Flag, const Value *V) const { 766 // A Value with type {} or [0 x %t] needs no registers. 767 if (ValueVTs.empty()) 768 return SDValue(); 769 770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 771 772 // Assemble the legal parts into the final values. 773 SmallVector<SDValue, 4> Values(ValueVTs.size()); 774 SmallVector<SDValue, 8> Parts; 775 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 776 // Copy the legal parts from the registers. 777 EVT ValueVT = ValueVTs[Value]; 778 unsigned NumRegs = RegCount[Value]; 779 MVT RegisterVT = IsABIMangled 780 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 781 : RegVTs[Value]; 782 783 Parts.resize(NumRegs); 784 for (unsigned i = 0; i != NumRegs; ++i) { 785 SDValue P; 786 if (!Flag) { 787 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 788 } else { 789 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 790 *Flag = P.getValue(2); 791 } 792 793 Chain = P.getValue(1); 794 Parts[i] = P; 795 796 // If the source register was virtual and if we know something about it, 797 // add an assert node. 798 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 799 !RegisterVT.isInteger() || RegisterVT.isVector()) 800 continue; 801 802 const FunctionLoweringInfo::LiveOutInfo *LOI = 803 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 804 if (!LOI) 805 continue; 806 807 unsigned RegSize = RegisterVT.getSizeInBits(); 808 unsigned NumSignBits = LOI->NumSignBits; 809 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 810 811 if (NumZeroBits == RegSize) { 812 // The current value is a zero. 813 // Explicitly express that as it would be easier for 814 // optimizations to kick in. 815 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 816 continue; 817 } 818 819 // FIXME: We capture more information than the dag can represent. For 820 // now, just use the tightest assertzext/assertsext possible. 821 bool isSExt = true; 822 EVT FromVT(MVT::Other); 823 if (NumSignBits == RegSize) { 824 isSExt = true; // ASSERT SEXT 1 825 FromVT = MVT::i1; 826 } else if (NumZeroBits >= RegSize - 1) { 827 isSExt = false; // ASSERT ZEXT 1 828 FromVT = MVT::i1; 829 } else if (NumSignBits > RegSize - 8) { 830 isSExt = true; // ASSERT SEXT 8 831 FromVT = MVT::i8; 832 } else if (NumZeroBits >= RegSize - 8) { 833 isSExt = false; // ASSERT ZEXT 8 834 FromVT = MVT::i8; 835 } else if (NumSignBits > RegSize - 16) { 836 isSExt = true; // ASSERT SEXT 16 837 FromVT = MVT::i16; 838 } else if (NumZeroBits >= RegSize - 16) { 839 isSExt = false; // ASSERT ZEXT 16 840 FromVT = MVT::i16; 841 } else if (NumSignBits > RegSize - 32) { 842 isSExt = true; // ASSERT SEXT 32 843 FromVT = MVT::i32; 844 } else if (NumZeroBits >= RegSize - 32) { 845 isSExt = false; // ASSERT ZEXT 32 846 FromVT = MVT::i32; 847 } else { 848 continue; 849 } 850 // Add an assertion node. 851 assert(FromVT != MVT::Other); 852 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 853 RegisterVT, P, DAG.getValueType(FromVT)); 854 } 855 856 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 857 NumRegs, RegisterVT, ValueVT, V); 858 Part += NumRegs; 859 Parts.clear(); 860 } 861 862 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 863 } 864 865 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 866 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 867 const Value *V, 868 ISD::NodeType PreferredExtendType) const { 869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 870 ISD::NodeType ExtendKind = PreferredExtendType; 871 872 // Get the list of the values's legal parts. 873 unsigned NumRegs = Regs.size(); 874 SmallVector<SDValue, 8> Parts(NumRegs); 875 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 876 unsigned NumParts = RegCount[Value]; 877 878 MVT RegisterVT = IsABIMangled 879 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 880 : RegVTs[Value]; 881 882 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 883 ExtendKind = ISD::ZERO_EXTEND; 884 885 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 886 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 887 Part += NumParts; 888 } 889 890 // Copy the parts into the registers. 891 SmallVector<SDValue, 8> Chains(NumRegs); 892 for (unsigned i = 0; i != NumRegs; ++i) { 893 SDValue Part; 894 if (!Flag) { 895 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 896 } else { 897 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 898 *Flag = Part.getValue(1); 899 } 900 901 Chains[i] = Part.getValue(0); 902 } 903 904 if (NumRegs == 1 || Flag) 905 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 906 // flagged to it. That is the CopyToReg nodes and the user are considered 907 // a single scheduling unit. If we create a TokenFactor and return it as 908 // chain, then the TokenFactor is both a predecessor (operand) of the 909 // user as well as a successor (the TF operands are flagged to the user). 910 // c1, f1 = CopyToReg 911 // c2, f2 = CopyToReg 912 // c3 = TokenFactor c1, c2 913 // ... 914 // = op c3, ..., f2 915 Chain = Chains[NumRegs-1]; 916 else 917 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 918 } 919 920 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 921 unsigned MatchingIdx, const SDLoc &dl, 922 SelectionDAG &DAG, 923 std::vector<SDValue> &Ops) const { 924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 925 926 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 927 if (HasMatching) 928 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 929 else if (!Regs.empty() && 930 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 931 // Put the register class of the virtual registers in the flag word. That 932 // way, later passes can recompute register class constraints for inline 933 // assembly as well as normal instructions. 934 // Don't do this for tied operands that can use the regclass information 935 // from the def. 936 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 937 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 938 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 939 } 940 941 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 942 Ops.push_back(Res); 943 944 if (Code == InlineAsm::Kind_Clobber) { 945 // Clobbers should always have a 1:1 mapping with registers, and may 946 // reference registers that have illegal (e.g. vector) types. Hence, we 947 // shouldn't try to apply any sort of splitting logic to them. 948 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 949 "No 1:1 mapping from clobbers to regs?"); 950 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 951 (void)SP; 952 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 953 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 954 assert( 955 (Regs[I] != SP || 956 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 957 "If we clobbered the stack pointer, MFI should know about it."); 958 } 959 return; 960 } 961 962 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 963 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 964 MVT RegisterVT = RegVTs[Value]; 965 for (unsigned i = 0; i != NumRegs; ++i) { 966 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 967 unsigned TheReg = Regs[Reg++]; 968 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 969 } 970 } 971 } 972 973 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 974 const TargetLibraryInfo *li) { 975 AA = aa; 976 GFI = gfi; 977 LibInfo = li; 978 DL = &DAG.getDataLayout(); 979 Context = DAG.getContext(); 980 LPadToCallSiteMap.clear(); 981 } 982 983 void SelectionDAGBuilder::clear() { 984 NodeMap.clear(); 985 UnusedArgNodeMap.clear(); 986 PendingLoads.clear(); 987 PendingExports.clear(); 988 CurInst = nullptr; 989 HasTailCall = false; 990 SDNodeOrder = LowestSDNodeOrder; 991 StatepointLowering.clear(); 992 } 993 994 void SelectionDAGBuilder::clearDanglingDebugInfo() { 995 DanglingDebugInfoMap.clear(); 996 } 997 998 SDValue SelectionDAGBuilder::getRoot() { 999 if (PendingLoads.empty()) 1000 return DAG.getRoot(); 1001 1002 if (PendingLoads.size() == 1) { 1003 SDValue Root = PendingLoads[0]; 1004 DAG.setRoot(Root); 1005 PendingLoads.clear(); 1006 return Root; 1007 } 1008 1009 // Otherwise, we have to make a token factor node. 1010 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1011 PendingLoads); 1012 PendingLoads.clear(); 1013 DAG.setRoot(Root); 1014 return Root; 1015 } 1016 1017 SDValue SelectionDAGBuilder::getControlRoot() { 1018 SDValue Root = DAG.getRoot(); 1019 1020 if (PendingExports.empty()) 1021 return Root; 1022 1023 // Turn all of the CopyToReg chains into one factored node. 1024 if (Root.getOpcode() != ISD::EntryToken) { 1025 unsigned i = 0, e = PendingExports.size(); 1026 for (; i != e; ++i) { 1027 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1028 if (PendingExports[i].getNode()->getOperand(0) == Root) 1029 break; // Don't add the root if we already indirectly depend on it. 1030 } 1031 1032 if (i == e) 1033 PendingExports.push_back(Root); 1034 } 1035 1036 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1037 PendingExports); 1038 PendingExports.clear(); 1039 DAG.setRoot(Root); 1040 return Root; 1041 } 1042 1043 void SelectionDAGBuilder::visit(const Instruction &I) { 1044 // Set up outgoing PHI node register values before emitting the terminator. 1045 if (isa<TerminatorInst>(&I)) { 1046 HandlePHINodesInSuccessorBlocks(I.getParent()); 1047 } 1048 1049 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1050 if (!isa<DbgInfoIntrinsic>(I)) 1051 ++SDNodeOrder; 1052 1053 CurInst = &I; 1054 1055 visit(I.getOpcode(), I); 1056 1057 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1058 !isStatepoint(&I)) // statepoints handle their exports internally 1059 CopyToExportRegsIfNeeded(&I); 1060 1061 CurInst = nullptr; 1062 } 1063 1064 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1065 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1066 } 1067 1068 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1069 // Note: this doesn't use InstVisitor, because it has to work with 1070 // ConstantExpr's in addition to instructions. 1071 switch (Opcode) { 1072 default: llvm_unreachable("Unknown instruction type encountered!"); 1073 // Build the switch statement using the Instruction.def file. 1074 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1075 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1076 #include "llvm/IR/Instruction.def" 1077 } 1078 } 1079 1080 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1081 // generate the debug data structures now that we've seen its definition. 1082 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1083 SDValue Val) { 1084 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1085 if (DDI.getDI()) { 1086 const DbgValueInst *DI = DDI.getDI(); 1087 DebugLoc dl = DDI.getdl(); 1088 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1089 DILocalVariable *Variable = DI->getVariable(); 1090 DIExpression *Expr = DI->getExpression(); 1091 assert(Variable->isValidLocationForIntrinsic(dl) && 1092 "Expected inlined-at fields to agree"); 1093 SDDbgValue *SDV; 1094 if (Val.getNode()) { 1095 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1096 SDV = getDbgValue(Val, Variable, Expr, dl, DbgSDNodeOrder); 1097 DAG.AddDbgValue(SDV, Val.getNode(), false); 1098 } 1099 } else 1100 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1101 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1102 } 1103 } 1104 1105 /// getCopyFromRegs - If there was virtual register allocated for the value V 1106 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1107 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1108 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1109 SDValue Result; 1110 1111 if (It != FuncInfo.ValueMap.end()) { 1112 unsigned InReg = It->second; 1113 1114 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1115 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1116 SDValue Chain = DAG.getEntryNode(); 1117 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1118 V); 1119 resolveDanglingDebugInfo(V, Result); 1120 } 1121 1122 return Result; 1123 } 1124 1125 /// getValue - Return an SDValue for the given Value. 1126 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1127 // If we already have an SDValue for this value, use it. It's important 1128 // to do this first, so that we don't create a CopyFromReg if we already 1129 // have a regular SDValue. 1130 SDValue &N = NodeMap[V]; 1131 if (N.getNode()) return N; 1132 1133 // If there's a virtual register allocated and initialized for this 1134 // value, use it. 1135 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1136 return copyFromReg; 1137 1138 // Otherwise create a new SDValue and remember it. 1139 SDValue Val = getValueImpl(V); 1140 NodeMap[V] = Val; 1141 resolveDanglingDebugInfo(V, Val); 1142 return Val; 1143 } 1144 1145 // Return true if SDValue exists for the given Value 1146 bool SelectionDAGBuilder::findValue(const Value *V) const { 1147 return (NodeMap.find(V) != NodeMap.end()) || 1148 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1149 } 1150 1151 /// getNonRegisterValue - Return an SDValue for the given Value, but 1152 /// don't look in FuncInfo.ValueMap for a virtual register. 1153 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1154 // If we already have an SDValue for this value, use it. 1155 SDValue &N = NodeMap[V]; 1156 if (N.getNode()) { 1157 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1158 // Remove the debug location from the node as the node is about to be used 1159 // in a location which may differ from the original debug location. This 1160 // is relevant to Constant and ConstantFP nodes because they can appear 1161 // as constant expressions inside PHI nodes. 1162 N->setDebugLoc(DebugLoc()); 1163 } 1164 return N; 1165 } 1166 1167 // Otherwise create a new SDValue and remember it. 1168 SDValue Val = getValueImpl(V); 1169 NodeMap[V] = Val; 1170 resolveDanglingDebugInfo(V, Val); 1171 return Val; 1172 } 1173 1174 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1175 /// Create an SDValue for the given value. 1176 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1177 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1178 1179 if (const Constant *C = dyn_cast<Constant>(V)) { 1180 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1181 1182 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1183 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1184 1185 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1186 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1187 1188 if (isa<ConstantPointerNull>(C)) { 1189 unsigned AS = V->getType()->getPointerAddressSpace(); 1190 return DAG.getConstant(0, getCurSDLoc(), 1191 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1192 } 1193 1194 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1195 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1196 1197 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1198 return DAG.getUNDEF(VT); 1199 1200 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1201 visit(CE->getOpcode(), *CE); 1202 SDValue N1 = NodeMap[V]; 1203 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1204 return N1; 1205 } 1206 1207 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1208 SmallVector<SDValue, 4> Constants; 1209 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1210 OI != OE; ++OI) { 1211 SDNode *Val = getValue(*OI).getNode(); 1212 // If the operand is an empty aggregate, there are no values. 1213 if (!Val) continue; 1214 // Add each leaf value from the operand to the Constants list 1215 // to form a flattened list of all the values. 1216 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1217 Constants.push_back(SDValue(Val, i)); 1218 } 1219 1220 return DAG.getMergeValues(Constants, getCurSDLoc()); 1221 } 1222 1223 if (const ConstantDataSequential *CDS = 1224 dyn_cast<ConstantDataSequential>(C)) { 1225 SmallVector<SDValue, 4> Ops; 1226 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1227 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1228 // Add each leaf value from the operand to the Constants list 1229 // to form a flattened list of all the values. 1230 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1231 Ops.push_back(SDValue(Val, i)); 1232 } 1233 1234 if (isa<ArrayType>(CDS->getType())) 1235 return DAG.getMergeValues(Ops, getCurSDLoc()); 1236 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1237 } 1238 1239 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1240 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1241 "Unknown struct or array constant!"); 1242 1243 SmallVector<EVT, 4> ValueVTs; 1244 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1245 unsigned NumElts = ValueVTs.size(); 1246 if (NumElts == 0) 1247 return SDValue(); // empty struct 1248 SmallVector<SDValue, 4> Constants(NumElts); 1249 for (unsigned i = 0; i != NumElts; ++i) { 1250 EVT EltVT = ValueVTs[i]; 1251 if (isa<UndefValue>(C)) 1252 Constants[i] = DAG.getUNDEF(EltVT); 1253 else if (EltVT.isFloatingPoint()) 1254 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1255 else 1256 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1257 } 1258 1259 return DAG.getMergeValues(Constants, getCurSDLoc()); 1260 } 1261 1262 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1263 return DAG.getBlockAddress(BA, VT); 1264 1265 VectorType *VecTy = cast<VectorType>(V->getType()); 1266 unsigned NumElements = VecTy->getNumElements(); 1267 1268 // Now that we know the number and type of the elements, get that number of 1269 // elements into the Ops array based on what kind of constant it is. 1270 SmallVector<SDValue, 16> Ops; 1271 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1272 for (unsigned i = 0; i != NumElements; ++i) 1273 Ops.push_back(getValue(CV->getOperand(i))); 1274 } else { 1275 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1276 EVT EltVT = 1277 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1278 1279 SDValue Op; 1280 if (EltVT.isFloatingPoint()) 1281 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1282 else 1283 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1284 Ops.assign(NumElements, Op); 1285 } 1286 1287 // Create a BUILD_VECTOR node. 1288 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1289 } 1290 1291 // If this is a static alloca, generate it as the frameindex instead of 1292 // computation. 1293 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1294 DenseMap<const AllocaInst*, int>::iterator SI = 1295 FuncInfo.StaticAllocaMap.find(AI); 1296 if (SI != FuncInfo.StaticAllocaMap.end()) 1297 return DAG.getFrameIndex(SI->second, 1298 TLI.getFrameIndexTy(DAG.getDataLayout())); 1299 } 1300 1301 // If this is an instruction which fast-isel has deferred, select it now. 1302 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1303 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1304 1305 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1306 Inst->getType(), isABIRegCopy(V)); 1307 SDValue Chain = DAG.getEntryNode(); 1308 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1309 } 1310 1311 llvm_unreachable("Can't get register for value!"); 1312 } 1313 1314 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1315 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1316 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1317 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1318 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1319 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1320 if (IsMSVCCXX || IsCoreCLR) 1321 CatchPadMBB->setIsEHFuncletEntry(); 1322 1323 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1324 } 1325 1326 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1327 // Update machine-CFG edge. 1328 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1329 FuncInfo.MBB->addSuccessor(TargetMBB); 1330 1331 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1332 bool IsSEH = isAsynchronousEHPersonality(Pers); 1333 if (IsSEH) { 1334 // If this is not a fall-through branch or optimizations are switched off, 1335 // emit the branch. 1336 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1337 TM.getOptLevel() == CodeGenOpt::None) 1338 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1339 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1340 return; 1341 } 1342 1343 // Figure out the funclet membership for the catchret's successor. 1344 // This will be used by the FuncletLayout pass to determine how to order the 1345 // BB's. 1346 // A 'catchret' returns to the outer scope's color. 1347 Value *ParentPad = I.getCatchSwitchParentPad(); 1348 const BasicBlock *SuccessorColor; 1349 if (isa<ConstantTokenNone>(ParentPad)) 1350 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1351 else 1352 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1353 assert(SuccessorColor && "No parent funclet for catchret!"); 1354 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1355 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1356 1357 // Create the terminator node. 1358 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1359 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1360 DAG.getBasicBlock(SuccessorColorMBB)); 1361 DAG.setRoot(Ret); 1362 } 1363 1364 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1365 // Don't emit any special code for the cleanuppad instruction. It just marks 1366 // the start of a funclet. 1367 FuncInfo.MBB->setIsEHFuncletEntry(); 1368 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1369 } 1370 1371 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1372 /// many places it could ultimately go. In the IR, we have a single unwind 1373 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1374 /// This function skips over imaginary basic blocks that hold catchswitch 1375 /// instructions, and finds all the "real" machine 1376 /// basic block destinations. As those destinations may not be successors of 1377 /// EHPadBB, here we also calculate the edge probability to those destinations. 1378 /// The passed-in Prob is the edge probability to EHPadBB. 1379 static void findUnwindDestinations( 1380 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1381 BranchProbability Prob, 1382 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1383 &UnwindDests) { 1384 EHPersonality Personality = 1385 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1386 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1387 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1388 1389 while (EHPadBB) { 1390 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1391 BasicBlock *NewEHPadBB = nullptr; 1392 if (isa<LandingPadInst>(Pad)) { 1393 // Stop on landingpads. They are not funclets. 1394 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1395 break; 1396 } else if (isa<CleanupPadInst>(Pad)) { 1397 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1398 // personalities. 1399 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1400 UnwindDests.back().first->setIsEHFuncletEntry(); 1401 break; 1402 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1403 // Add the catchpad handlers to the possible destinations. 1404 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1405 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1406 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1407 if (IsMSVCCXX || IsCoreCLR) 1408 UnwindDests.back().first->setIsEHFuncletEntry(); 1409 } 1410 NewEHPadBB = CatchSwitch->getUnwindDest(); 1411 } else { 1412 continue; 1413 } 1414 1415 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1416 if (BPI && NewEHPadBB) 1417 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1418 EHPadBB = NewEHPadBB; 1419 } 1420 } 1421 1422 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1423 // Update successor info. 1424 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1425 auto UnwindDest = I.getUnwindDest(); 1426 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1427 BranchProbability UnwindDestProb = 1428 (BPI && UnwindDest) 1429 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1430 : BranchProbability::getZero(); 1431 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1432 for (auto &UnwindDest : UnwindDests) { 1433 UnwindDest.first->setIsEHPad(); 1434 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1435 } 1436 FuncInfo.MBB->normalizeSuccProbs(); 1437 1438 // Create the terminator node. 1439 SDValue Ret = 1440 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1441 DAG.setRoot(Ret); 1442 } 1443 1444 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1445 report_fatal_error("visitCatchSwitch not yet implemented!"); 1446 } 1447 1448 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1450 auto &DL = DAG.getDataLayout(); 1451 SDValue Chain = getControlRoot(); 1452 SmallVector<ISD::OutputArg, 8> Outs; 1453 SmallVector<SDValue, 8> OutVals; 1454 1455 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1456 // lower 1457 // 1458 // %val = call <ty> @llvm.experimental.deoptimize() 1459 // ret <ty> %val 1460 // 1461 // differently. 1462 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1463 LowerDeoptimizingReturn(); 1464 return; 1465 } 1466 1467 if (!FuncInfo.CanLowerReturn) { 1468 unsigned DemoteReg = FuncInfo.DemoteRegister; 1469 const Function *F = I.getParent()->getParent(); 1470 1471 // Emit a store of the return value through the virtual register. 1472 // Leave Outs empty so that LowerReturn won't try to load return 1473 // registers the usual way. 1474 SmallVector<EVT, 1> PtrValueVTs; 1475 ComputeValueVTs(TLI, DL, 1476 F->getReturnType()->getPointerTo( 1477 DAG.getDataLayout().getAllocaAddrSpace()), 1478 PtrValueVTs); 1479 1480 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1481 DemoteReg, PtrValueVTs[0]); 1482 SDValue RetOp = getValue(I.getOperand(0)); 1483 1484 SmallVector<EVT, 4> ValueVTs; 1485 SmallVector<uint64_t, 4> Offsets; 1486 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1487 unsigned NumValues = ValueVTs.size(); 1488 1489 SmallVector<SDValue, 4> Chains(NumValues); 1490 for (unsigned i = 0; i != NumValues; ++i) { 1491 // An aggregate return value cannot wrap around the address space, so 1492 // offsets to its parts don't wrap either. 1493 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1494 Chains[i] = DAG.getStore( 1495 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1496 // FIXME: better loc info would be nice. 1497 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1498 } 1499 1500 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1501 MVT::Other, Chains); 1502 } else if (I.getNumOperands() != 0) { 1503 SmallVector<EVT, 4> ValueVTs; 1504 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1505 unsigned NumValues = ValueVTs.size(); 1506 if (NumValues) { 1507 SDValue RetOp = getValue(I.getOperand(0)); 1508 1509 const Function *F = I.getParent()->getParent(); 1510 1511 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1512 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1513 Attribute::SExt)) 1514 ExtendKind = ISD::SIGN_EXTEND; 1515 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1516 Attribute::ZExt)) 1517 ExtendKind = ISD::ZERO_EXTEND; 1518 1519 LLVMContext &Context = F->getContext(); 1520 bool RetInReg = F->getAttributes().hasAttribute( 1521 AttributeList::ReturnIndex, Attribute::InReg); 1522 1523 for (unsigned j = 0; j != NumValues; ++j) { 1524 EVT VT = ValueVTs[j]; 1525 1526 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1527 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1528 1529 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1530 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1531 SmallVector<SDValue, 4> Parts(NumParts); 1532 getCopyToParts(DAG, getCurSDLoc(), 1533 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1534 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1535 1536 // 'inreg' on function refers to return value 1537 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1538 if (RetInReg) 1539 Flags.setInReg(); 1540 1541 // Propagate extension type if any 1542 if (ExtendKind == ISD::SIGN_EXTEND) 1543 Flags.setSExt(); 1544 else if (ExtendKind == ISD::ZERO_EXTEND) 1545 Flags.setZExt(); 1546 1547 for (unsigned i = 0; i < NumParts; ++i) { 1548 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1549 VT, /*isfixed=*/true, 0, 0)); 1550 OutVals.push_back(Parts[i]); 1551 } 1552 } 1553 } 1554 } 1555 1556 // Push in swifterror virtual register as the last element of Outs. This makes 1557 // sure swifterror virtual register will be returned in the swifterror 1558 // physical register. 1559 const Function *F = I.getParent()->getParent(); 1560 if (TLI.supportSwiftError() && 1561 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1562 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1563 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1564 Flags.setSwiftError(); 1565 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1566 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1567 true /*isfixed*/, 1 /*origidx*/, 1568 0 /*partOffs*/)); 1569 // Create SDNode for the swifterror virtual register. 1570 OutVals.push_back( 1571 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1572 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1573 EVT(TLI.getPointerTy(DL)))); 1574 } 1575 1576 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1577 CallingConv::ID CallConv = 1578 DAG.getMachineFunction().getFunction().getCallingConv(); 1579 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1580 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1581 1582 // Verify that the target's LowerReturn behaved as expected. 1583 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1584 "LowerReturn didn't return a valid chain!"); 1585 1586 // Update the DAG with the new chain value resulting from return lowering. 1587 DAG.setRoot(Chain); 1588 } 1589 1590 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1591 /// created for it, emit nodes to copy the value into the virtual 1592 /// registers. 1593 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1594 // Skip empty types 1595 if (V->getType()->isEmptyTy()) 1596 return; 1597 1598 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1599 if (VMI != FuncInfo.ValueMap.end()) { 1600 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1601 CopyValueToVirtualRegister(V, VMI->second); 1602 } 1603 } 1604 1605 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1606 /// the current basic block, add it to ValueMap now so that we'll get a 1607 /// CopyTo/FromReg. 1608 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1609 // No need to export constants. 1610 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1611 1612 // Already exported? 1613 if (FuncInfo.isExportedInst(V)) return; 1614 1615 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1616 CopyValueToVirtualRegister(V, Reg); 1617 } 1618 1619 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1620 const BasicBlock *FromBB) { 1621 // The operands of the setcc have to be in this block. We don't know 1622 // how to export them from some other block. 1623 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1624 // Can export from current BB. 1625 if (VI->getParent() == FromBB) 1626 return true; 1627 1628 // Is already exported, noop. 1629 return FuncInfo.isExportedInst(V); 1630 } 1631 1632 // If this is an argument, we can export it if the BB is the entry block or 1633 // if it is already exported. 1634 if (isa<Argument>(V)) { 1635 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1636 return true; 1637 1638 // Otherwise, can only export this if it is already exported. 1639 return FuncInfo.isExportedInst(V); 1640 } 1641 1642 // Otherwise, constants can always be exported. 1643 return true; 1644 } 1645 1646 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1647 BranchProbability 1648 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1649 const MachineBasicBlock *Dst) const { 1650 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1651 const BasicBlock *SrcBB = Src->getBasicBlock(); 1652 const BasicBlock *DstBB = Dst->getBasicBlock(); 1653 if (!BPI) { 1654 // If BPI is not available, set the default probability as 1 / N, where N is 1655 // the number of successors. 1656 auto SuccSize = std::max<uint32_t>( 1657 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1658 return BranchProbability(1, SuccSize); 1659 } 1660 return BPI->getEdgeProbability(SrcBB, DstBB); 1661 } 1662 1663 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1664 MachineBasicBlock *Dst, 1665 BranchProbability Prob) { 1666 if (!FuncInfo.BPI) 1667 Src->addSuccessorWithoutProb(Dst); 1668 else { 1669 if (Prob.isUnknown()) 1670 Prob = getEdgeProbability(Src, Dst); 1671 Src->addSuccessor(Dst, Prob); 1672 } 1673 } 1674 1675 static bool InBlock(const Value *V, const BasicBlock *BB) { 1676 if (const Instruction *I = dyn_cast<Instruction>(V)) 1677 return I->getParent() == BB; 1678 return true; 1679 } 1680 1681 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1682 /// This function emits a branch and is used at the leaves of an OR or an 1683 /// AND operator tree. 1684 void 1685 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1686 MachineBasicBlock *TBB, 1687 MachineBasicBlock *FBB, 1688 MachineBasicBlock *CurBB, 1689 MachineBasicBlock *SwitchBB, 1690 BranchProbability TProb, 1691 BranchProbability FProb, 1692 bool InvertCond) { 1693 const BasicBlock *BB = CurBB->getBasicBlock(); 1694 1695 // If the leaf of the tree is a comparison, merge the condition into 1696 // the caseblock. 1697 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1698 // The operands of the cmp have to be in this block. We don't know 1699 // how to export them from some other block. If this is the first block 1700 // of the sequence, no exporting is needed. 1701 if (CurBB == SwitchBB || 1702 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1703 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1704 ISD::CondCode Condition; 1705 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1706 ICmpInst::Predicate Pred = 1707 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1708 Condition = getICmpCondCode(Pred); 1709 } else { 1710 const FCmpInst *FC = cast<FCmpInst>(Cond); 1711 FCmpInst::Predicate Pred = 1712 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1713 Condition = getFCmpCondCode(Pred); 1714 if (TM.Options.NoNaNsFPMath) 1715 Condition = getFCmpCodeWithoutNaN(Condition); 1716 } 1717 1718 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1719 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1720 SwitchCases.push_back(CB); 1721 return; 1722 } 1723 } 1724 1725 // Create a CaseBlock record representing this branch. 1726 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1727 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1728 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1729 SwitchCases.push_back(CB); 1730 } 1731 1732 /// FindMergedConditions - If Cond is an expression like 1733 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1734 MachineBasicBlock *TBB, 1735 MachineBasicBlock *FBB, 1736 MachineBasicBlock *CurBB, 1737 MachineBasicBlock *SwitchBB, 1738 Instruction::BinaryOps Opc, 1739 BranchProbability TProb, 1740 BranchProbability FProb, 1741 bool InvertCond) { 1742 // Skip over not part of the tree and remember to invert op and operands at 1743 // next level. 1744 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1745 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1746 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1747 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1748 !InvertCond); 1749 return; 1750 } 1751 } 1752 1753 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1754 // Compute the effective opcode for Cond, taking into account whether it needs 1755 // to be inverted, e.g. 1756 // and (not (or A, B)), C 1757 // gets lowered as 1758 // and (and (not A, not B), C) 1759 unsigned BOpc = 0; 1760 if (BOp) { 1761 BOpc = BOp->getOpcode(); 1762 if (InvertCond) { 1763 if (BOpc == Instruction::And) 1764 BOpc = Instruction::Or; 1765 else if (BOpc == Instruction::Or) 1766 BOpc = Instruction::And; 1767 } 1768 } 1769 1770 // If this node is not part of the or/and tree, emit it as a branch. 1771 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1772 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1773 BOp->getParent() != CurBB->getBasicBlock() || 1774 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1775 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1776 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1777 TProb, FProb, InvertCond); 1778 return; 1779 } 1780 1781 // Create TmpBB after CurBB. 1782 MachineFunction::iterator BBI(CurBB); 1783 MachineFunction &MF = DAG.getMachineFunction(); 1784 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1785 CurBB->getParent()->insert(++BBI, TmpBB); 1786 1787 if (Opc == Instruction::Or) { 1788 // Codegen X | Y as: 1789 // BB1: 1790 // jmp_if_X TBB 1791 // jmp TmpBB 1792 // TmpBB: 1793 // jmp_if_Y TBB 1794 // jmp FBB 1795 // 1796 1797 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1798 // The requirement is that 1799 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1800 // = TrueProb for original BB. 1801 // Assuming the original probabilities are A and B, one choice is to set 1802 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1803 // A/(1+B) and 2B/(1+B). This choice assumes that 1804 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1805 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1806 // TmpBB, but the math is more complicated. 1807 1808 auto NewTrueProb = TProb / 2; 1809 auto NewFalseProb = TProb / 2 + FProb; 1810 // Emit the LHS condition. 1811 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1812 NewTrueProb, NewFalseProb, InvertCond); 1813 1814 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1815 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1816 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1817 // Emit the RHS condition into TmpBB. 1818 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1819 Probs[0], Probs[1], InvertCond); 1820 } else { 1821 assert(Opc == Instruction::And && "Unknown merge op!"); 1822 // Codegen X & Y as: 1823 // BB1: 1824 // jmp_if_X TmpBB 1825 // jmp FBB 1826 // TmpBB: 1827 // jmp_if_Y TBB 1828 // jmp FBB 1829 // 1830 // This requires creation of TmpBB after CurBB. 1831 1832 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1833 // The requirement is that 1834 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1835 // = FalseProb for original BB. 1836 // Assuming the original probabilities are A and B, one choice is to set 1837 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1838 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1839 // TrueProb for BB1 * FalseProb for TmpBB. 1840 1841 auto NewTrueProb = TProb + FProb / 2; 1842 auto NewFalseProb = FProb / 2; 1843 // Emit the LHS condition. 1844 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1845 NewTrueProb, NewFalseProb, InvertCond); 1846 1847 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1848 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1849 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1850 // Emit the RHS condition into TmpBB. 1851 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1852 Probs[0], Probs[1], InvertCond); 1853 } 1854 } 1855 1856 /// If the set of cases should be emitted as a series of branches, return true. 1857 /// If we should emit this as a bunch of and/or'd together conditions, return 1858 /// false. 1859 bool 1860 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1861 if (Cases.size() != 2) return true; 1862 1863 // If this is two comparisons of the same values or'd or and'd together, they 1864 // will get folded into a single comparison, so don't emit two blocks. 1865 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1866 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1867 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1868 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1869 return false; 1870 } 1871 1872 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1873 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1874 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1875 Cases[0].CC == Cases[1].CC && 1876 isa<Constant>(Cases[0].CmpRHS) && 1877 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1878 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1879 return false; 1880 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1881 return false; 1882 } 1883 1884 return true; 1885 } 1886 1887 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1888 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1889 1890 // Update machine-CFG edges. 1891 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1892 1893 if (I.isUnconditional()) { 1894 // Update machine-CFG edges. 1895 BrMBB->addSuccessor(Succ0MBB); 1896 1897 // If this is not a fall-through branch or optimizations are switched off, 1898 // emit the branch. 1899 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1900 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1901 MVT::Other, getControlRoot(), 1902 DAG.getBasicBlock(Succ0MBB))); 1903 1904 return; 1905 } 1906 1907 // If this condition is one of the special cases we handle, do special stuff 1908 // now. 1909 const Value *CondVal = I.getCondition(); 1910 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1911 1912 // If this is a series of conditions that are or'd or and'd together, emit 1913 // this as a sequence of branches instead of setcc's with and/or operations. 1914 // As long as jumps are not expensive, this should improve performance. 1915 // For example, instead of something like: 1916 // cmp A, B 1917 // C = seteq 1918 // cmp D, E 1919 // F = setle 1920 // or C, F 1921 // jnz foo 1922 // Emit: 1923 // cmp A, B 1924 // je foo 1925 // cmp D, E 1926 // jle foo 1927 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1928 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1929 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1930 !I.getMetadata(LLVMContext::MD_unpredictable) && 1931 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1932 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1933 Opcode, 1934 getEdgeProbability(BrMBB, Succ0MBB), 1935 getEdgeProbability(BrMBB, Succ1MBB), 1936 /*InvertCond=*/false); 1937 // If the compares in later blocks need to use values not currently 1938 // exported from this block, export them now. This block should always 1939 // be the first entry. 1940 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1941 1942 // Allow some cases to be rejected. 1943 if (ShouldEmitAsBranches(SwitchCases)) { 1944 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1945 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1946 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1947 } 1948 1949 // Emit the branch for this block. 1950 visitSwitchCase(SwitchCases[0], BrMBB); 1951 SwitchCases.erase(SwitchCases.begin()); 1952 return; 1953 } 1954 1955 // Okay, we decided not to do this, remove any inserted MBB's and clear 1956 // SwitchCases. 1957 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1958 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1959 1960 SwitchCases.clear(); 1961 } 1962 } 1963 1964 // Create a CaseBlock record representing this branch. 1965 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1966 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 1967 1968 // Use visitSwitchCase to actually insert the fast branch sequence for this 1969 // cond branch. 1970 visitSwitchCase(CB, BrMBB); 1971 } 1972 1973 /// visitSwitchCase - Emits the necessary code to represent a single node in 1974 /// the binary search tree resulting from lowering a switch instruction. 1975 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1976 MachineBasicBlock *SwitchBB) { 1977 SDValue Cond; 1978 SDValue CondLHS = getValue(CB.CmpLHS); 1979 SDLoc dl = CB.DL; 1980 1981 // Build the setcc now. 1982 if (!CB.CmpMHS) { 1983 // Fold "(X == true)" to X and "(X == false)" to !X to 1984 // handle common cases produced by branch lowering. 1985 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1986 CB.CC == ISD::SETEQ) 1987 Cond = CondLHS; 1988 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1989 CB.CC == ISD::SETEQ) { 1990 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1991 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1992 } else 1993 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1994 } else { 1995 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1996 1997 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1998 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1999 2000 SDValue CmpOp = getValue(CB.CmpMHS); 2001 EVT VT = CmpOp.getValueType(); 2002 2003 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2004 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2005 ISD::SETLE); 2006 } else { 2007 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2008 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2009 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2010 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2011 } 2012 } 2013 2014 // Update successor info 2015 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2016 // TrueBB and FalseBB are always different unless the incoming IR is 2017 // degenerate. This only happens when running llc on weird IR. 2018 if (CB.TrueBB != CB.FalseBB) 2019 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2020 SwitchBB->normalizeSuccProbs(); 2021 2022 // If the lhs block is the next block, invert the condition so that we can 2023 // fall through to the lhs instead of the rhs block. 2024 if (CB.TrueBB == NextBlock(SwitchBB)) { 2025 std::swap(CB.TrueBB, CB.FalseBB); 2026 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2027 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2028 } 2029 2030 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2031 MVT::Other, getControlRoot(), Cond, 2032 DAG.getBasicBlock(CB.TrueBB)); 2033 2034 // Insert the false branch. Do this even if it's a fall through branch, 2035 // this makes it easier to do DAG optimizations which require inverting 2036 // the branch condition. 2037 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2038 DAG.getBasicBlock(CB.FalseBB)); 2039 2040 DAG.setRoot(BrCond); 2041 } 2042 2043 /// visitJumpTable - Emit JumpTable node in the current MBB 2044 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2045 // Emit the code for the jump table 2046 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2047 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2048 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2049 JT.Reg, PTy); 2050 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2051 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2052 MVT::Other, Index.getValue(1), 2053 Table, Index); 2054 DAG.setRoot(BrJumpTable); 2055 } 2056 2057 /// visitJumpTableHeader - This function emits necessary code to produce index 2058 /// in the JumpTable from switch case. 2059 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2060 JumpTableHeader &JTH, 2061 MachineBasicBlock *SwitchBB) { 2062 SDLoc dl = getCurSDLoc(); 2063 2064 // Subtract the lowest switch case value from the value being switched on and 2065 // conditional branch to default mbb if the result is greater than the 2066 // difference between smallest and largest cases. 2067 SDValue SwitchOp = getValue(JTH.SValue); 2068 EVT VT = SwitchOp.getValueType(); 2069 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2070 DAG.getConstant(JTH.First, dl, VT)); 2071 2072 // The SDNode we just created, which holds the value being switched on minus 2073 // the smallest case value, needs to be copied to a virtual register so it 2074 // can be used as an index into the jump table in a subsequent basic block. 2075 // This value may be smaller or larger than the target's pointer type, and 2076 // therefore require extension or truncating. 2077 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2078 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2079 2080 unsigned JumpTableReg = 2081 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2082 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2083 JumpTableReg, SwitchOp); 2084 JT.Reg = JumpTableReg; 2085 2086 // Emit the range check for the jump table, and branch to the default block 2087 // for the switch statement if the value being switched on exceeds the largest 2088 // case in the switch. 2089 SDValue CMP = DAG.getSetCC( 2090 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2091 Sub.getValueType()), 2092 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2093 2094 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2095 MVT::Other, CopyTo, CMP, 2096 DAG.getBasicBlock(JT.Default)); 2097 2098 // Avoid emitting unnecessary branches to the next block. 2099 if (JT.MBB != NextBlock(SwitchBB)) 2100 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2101 DAG.getBasicBlock(JT.MBB)); 2102 2103 DAG.setRoot(BrCond); 2104 } 2105 2106 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2107 /// variable if there exists one. 2108 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2109 SDValue &Chain) { 2110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2111 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2112 MachineFunction &MF = DAG.getMachineFunction(); 2113 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2114 MachineSDNode *Node = 2115 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2116 if (Global) { 2117 MachinePointerInfo MPInfo(Global); 2118 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2119 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2120 MachineMemOperand::MODereferenceable; 2121 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2122 DAG.getEVTAlignment(PtrTy)); 2123 Node->setMemRefs(MemRefs, MemRefs + 1); 2124 } 2125 return SDValue(Node, 0); 2126 } 2127 2128 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2129 /// tail spliced into a stack protector check success bb. 2130 /// 2131 /// For a high level explanation of how this fits into the stack protector 2132 /// generation see the comment on the declaration of class 2133 /// StackProtectorDescriptor. 2134 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2135 MachineBasicBlock *ParentBB) { 2136 2137 // First create the loads to the guard/stack slot for the comparison. 2138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2139 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2140 2141 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2142 int FI = MFI.getStackProtectorIndex(); 2143 2144 SDValue Guard; 2145 SDLoc dl = getCurSDLoc(); 2146 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2147 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2148 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2149 2150 // Generate code to load the content of the guard slot. 2151 SDValue GuardVal = DAG.getLoad( 2152 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2153 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2154 MachineMemOperand::MOVolatile); 2155 2156 if (TLI.useStackGuardXorFP()) 2157 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2158 2159 // Retrieve guard check function, nullptr if instrumentation is inlined. 2160 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2161 // The target provides a guard check function to validate the guard value. 2162 // Generate a call to that function with the content of the guard slot as 2163 // argument. 2164 auto *Fn = cast<Function>(GuardCheck); 2165 FunctionType *FnTy = Fn->getFunctionType(); 2166 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2167 2168 TargetLowering::ArgListTy Args; 2169 TargetLowering::ArgListEntry Entry; 2170 Entry.Node = GuardVal; 2171 Entry.Ty = FnTy->getParamType(0); 2172 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2173 Entry.IsInReg = true; 2174 Args.push_back(Entry); 2175 2176 TargetLowering::CallLoweringInfo CLI(DAG); 2177 CLI.setDebugLoc(getCurSDLoc()) 2178 .setChain(DAG.getEntryNode()) 2179 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2180 getValue(GuardCheck), std::move(Args)); 2181 2182 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2183 DAG.setRoot(Result.second); 2184 return; 2185 } 2186 2187 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2188 // Otherwise, emit a volatile load to retrieve the stack guard value. 2189 SDValue Chain = DAG.getEntryNode(); 2190 if (TLI.useLoadStackGuardNode()) { 2191 Guard = getLoadStackGuard(DAG, dl, Chain); 2192 } else { 2193 const Value *IRGuard = TLI.getSDagStackGuard(M); 2194 SDValue GuardPtr = getValue(IRGuard); 2195 2196 Guard = 2197 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2198 Align, MachineMemOperand::MOVolatile); 2199 } 2200 2201 // Perform the comparison via a subtract/getsetcc. 2202 EVT VT = Guard.getValueType(); 2203 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2204 2205 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2206 *DAG.getContext(), 2207 Sub.getValueType()), 2208 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2209 2210 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2211 // branch to failure MBB. 2212 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2213 MVT::Other, GuardVal.getOperand(0), 2214 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2215 // Otherwise branch to success MBB. 2216 SDValue Br = DAG.getNode(ISD::BR, dl, 2217 MVT::Other, BrCond, 2218 DAG.getBasicBlock(SPD.getSuccessMBB())); 2219 2220 DAG.setRoot(Br); 2221 } 2222 2223 /// Codegen the failure basic block for a stack protector check. 2224 /// 2225 /// A failure stack protector machine basic block consists simply of a call to 2226 /// __stack_chk_fail(). 2227 /// 2228 /// For a high level explanation of how this fits into the stack protector 2229 /// generation see the comment on the declaration of class 2230 /// StackProtectorDescriptor. 2231 void 2232 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2234 SDValue Chain = 2235 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2236 None, false, getCurSDLoc(), false, false).second; 2237 DAG.setRoot(Chain); 2238 } 2239 2240 /// visitBitTestHeader - This function emits necessary code to produce value 2241 /// suitable for "bit tests" 2242 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2243 MachineBasicBlock *SwitchBB) { 2244 SDLoc dl = getCurSDLoc(); 2245 2246 // Subtract the minimum value 2247 SDValue SwitchOp = getValue(B.SValue); 2248 EVT VT = SwitchOp.getValueType(); 2249 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2250 DAG.getConstant(B.First, dl, VT)); 2251 2252 // Check range 2253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2254 SDValue RangeCmp = DAG.getSetCC( 2255 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2256 Sub.getValueType()), 2257 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2258 2259 // Determine the type of the test operands. 2260 bool UsePtrType = false; 2261 if (!TLI.isTypeLegal(VT)) 2262 UsePtrType = true; 2263 else { 2264 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2265 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2266 // Switch table case range are encoded into series of masks. 2267 // Just use pointer type, it's guaranteed to fit. 2268 UsePtrType = true; 2269 break; 2270 } 2271 } 2272 if (UsePtrType) { 2273 VT = TLI.getPointerTy(DAG.getDataLayout()); 2274 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2275 } 2276 2277 B.RegVT = VT.getSimpleVT(); 2278 B.Reg = FuncInfo.CreateReg(B.RegVT); 2279 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2280 2281 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2282 2283 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2284 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2285 SwitchBB->normalizeSuccProbs(); 2286 2287 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2288 MVT::Other, CopyTo, RangeCmp, 2289 DAG.getBasicBlock(B.Default)); 2290 2291 // Avoid emitting unnecessary branches to the next block. 2292 if (MBB != NextBlock(SwitchBB)) 2293 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2294 DAG.getBasicBlock(MBB)); 2295 2296 DAG.setRoot(BrRange); 2297 } 2298 2299 /// visitBitTestCase - this function produces one "bit test" 2300 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2301 MachineBasicBlock* NextMBB, 2302 BranchProbability BranchProbToNext, 2303 unsigned Reg, 2304 BitTestCase &B, 2305 MachineBasicBlock *SwitchBB) { 2306 SDLoc dl = getCurSDLoc(); 2307 MVT VT = BB.RegVT; 2308 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2309 SDValue Cmp; 2310 unsigned PopCount = countPopulation(B.Mask); 2311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2312 if (PopCount == 1) { 2313 // Testing for a single bit; just compare the shift count with what it 2314 // would need to be to shift a 1 bit in that position. 2315 Cmp = DAG.getSetCC( 2316 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2317 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2318 ISD::SETEQ); 2319 } else if (PopCount == BB.Range) { 2320 // There is only one zero bit in the range, test for it directly. 2321 Cmp = DAG.getSetCC( 2322 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2323 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2324 ISD::SETNE); 2325 } else { 2326 // Make desired shift 2327 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2328 DAG.getConstant(1, dl, VT), ShiftOp); 2329 2330 // Emit bit tests and jumps 2331 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2332 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2333 Cmp = DAG.getSetCC( 2334 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2335 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2336 } 2337 2338 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2339 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2340 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2341 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2342 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2343 // one as they are relative probabilities (and thus work more like weights), 2344 // and hence we need to normalize them to let the sum of them become one. 2345 SwitchBB->normalizeSuccProbs(); 2346 2347 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2348 MVT::Other, getControlRoot(), 2349 Cmp, DAG.getBasicBlock(B.TargetBB)); 2350 2351 // Avoid emitting unnecessary branches to the next block. 2352 if (NextMBB != NextBlock(SwitchBB)) 2353 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2354 DAG.getBasicBlock(NextMBB)); 2355 2356 DAG.setRoot(BrAnd); 2357 } 2358 2359 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2360 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2361 2362 // Retrieve successors. Look through artificial IR level blocks like 2363 // catchswitch for successors. 2364 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2365 const BasicBlock *EHPadBB = I.getSuccessor(1); 2366 2367 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2368 // have to do anything here to lower funclet bundles. 2369 assert(!I.hasOperandBundlesOtherThan( 2370 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2371 "Cannot lower invokes with arbitrary operand bundles yet!"); 2372 2373 const Value *Callee(I.getCalledValue()); 2374 const Function *Fn = dyn_cast<Function>(Callee); 2375 if (isa<InlineAsm>(Callee)) 2376 visitInlineAsm(&I); 2377 else if (Fn && Fn->isIntrinsic()) { 2378 switch (Fn->getIntrinsicID()) { 2379 default: 2380 llvm_unreachable("Cannot invoke this intrinsic"); 2381 case Intrinsic::donothing: 2382 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2383 break; 2384 case Intrinsic::experimental_patchpoint_void: 2385 case Intrinsic::experimental_patchpoint_i64: 2386 visitPatchpoint(&I, EHPadBB); 2387 break; 2388 case Intrinsic::experimental_gc_statepoint: 2389 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2390 break; 2391 } 2392 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2393 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2394 // Eventually we will support lowering the @llvm.experimental.deoptimize 2395 // intrinsic, and right now there are no plans to support other intrinsics 2396 // with deopt state. 2397 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2398 } else { 2399 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2400 } 2401 2402 // If the value of the invoke is used outside of its defining block, make it 2403 // available as a virtual register. 2404 // We already took care of the exported value for the statepoint instruction 2405 // during call to the LowerStatepoint. 2406 if (!isStatepoint(I)) { 2407 CopyToExportRegsIfNeeded(&I); 2408 } 2409 2410 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2411 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2412 BranchProbability EHPadBBProb = 2413 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2414 : BranchProbability::getZero(); 2415 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2416 2417 // Update successor info. 2418 addSuccessorWithProb(InvokeMBB, Return); 2419 for (auto &UnwindDest : UnwindDests) { 2420 UnwindDest.first->setIsEHPad(); 2421 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2422 } 2423 InvokeMBB->normalizeSuccProbs(); 2424 2425 // Drop into normal successor. 2426 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2427 MVT::Other, getControlRoot(), 2428 DAG.getBasicBlock(Return))); 2429 } 2430 2431 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2432 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2433 } 2434 2435 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2436 assert(FuncInfo.MBB->isEHPad() && 2437 "Call to landingpad not in landing pad!"); 2438 2439 MachineBasicBlock *MBB = FuncInfo.MBB; 2440 addLandingPadInfo(LP, *MBB); 2441 2442 // If there aren't registers to copy the values into (e.g., during SjLj 2443 // exceptions), then don't bother to create these DAG nodes. 2444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2445 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2446 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2447 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2448 return; 2449 2450 // If landingpad's return type is token type, we don't create DAG nodes 2451 // for its exception pointer and selector value. The extraction of exception 2452 // pointer or selector value from token type landingpads is not currently 2453 // supported. 2454 if (LP.getType()->isTokenTy()) 2455 return; 2456 2457 SmallVector<EVT, 2> ValueVTs; 2458 SDLoc dl = getCurSDLoc(); 2459 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2460 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2461 2462 // Get the two live-in registers as SDValues. The physregs have already been 2463 // copied into virtual registers. 2464 SDValue Ops[2]; 2465 if (FuncInfo.ExceptionPointerVirtReg) { 2466 Ops[0] = DAG.getZExtOrTrunc( 2467 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2468 FuncInfo.ExceptionPointerVirtReg, 2469 TLI.getPointerTy(DAG.getDataLayout())), 2470 dl, ValueVTs[0]); 2471 } else { 2472 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2473 } 2474 Ops[1] = DAG.getZExtOrTrunc( 2475 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2476 FuncInfo.ExceptionSelectorVirtReg, 2477 TLI.getPointerTy(DAG.getDataLayout())), 2478 dl, ValueVTs[1]); 2479 2480 // Merge into one. 2481 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2482 DAG.getVTList(ValueVTs), Ops); 2483 setValue(&LP, Res); 2484 } 2485 2486 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2487 #ifndef NDEBUG 2488 for (const CaseCluster &CC : Clusters) 2489 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2490 #endif 2491 2492 std::sort(Clusters.begin(), Clusters.end(), 2493 [](const CaseCluster &a, const CaseCluster &b) { 2494 return a.Low->getValue().slt(b.Low->getValue()); 2495 }); 2496 2497 // Merge adjacent clusters with the same destination. 2498 const unsigned N = Clusters.size(); 2499 unsigned DstIndex = 0; 2500 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2501 CaseCluster &CC = Clusters[SrcIndex]; 2502 const ConstantInt *CaseVal = CC.Low; 2503 MachineBasicBlock *Succ = CC.MBB; 2504 2505 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2506 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2507 // If this case has the same successor and is a neighbour, merge it into 2508 // the previous cluster. 2509 Clusters[DstIndex - 1].High = CaseVal; 2510 Clusters[DstIndex - 1].Prob += CC.Prob; 2511 } else { 2512 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2513 sizeof(Clusters[SrcIndex])); 2514 } 2515 } 2516 Clusters.resize(DstIndex); 2517 } 2518 2519 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2520 MachineBasicBlock *Last) { 2521 // Update JTCases. 2522 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2523 if (JTCases[i].first.HeaderBB == First) 2524 JTCases[i].first.HeaderBB = Last; 2525 2526 // Update BitTestCases. 2527 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2528 if (BitTestCases[i].Parent == First) 2529 BitTestCases[i].Parent = Last; 2530 } 2531 2532 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2533 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2534 2535 // Update machine-CFG edges with unique successors. 2536 SmallSet<BasicBlock*, 32> Done; 2537 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2538 BasicBlock *BB = I.getSuccessor(i); 2539 bool Inserted = Done.insert(BB).second; 2540 if (!Inserted) 2541 continue; 2542 2543 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2544 addSuccessorWithProb(IndirectBrMBB, Succ); 2545 } 2546 IndirectBrMBB->normalizeSuccProbs(); 2547 2548 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2549 MVT::Other, getControlRoot(), 2550 getValue(I.getAddress()))); 2551 } 2552 2553 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2554 if (DAG.getTarget().Options.TrapUnreachable) 2555 DAG.setRoot( 2556 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2557 } 2558 2559 void SelectionDAGBuilder::visitFSub(const User &I) { 2560 // -0.0 - X --> fneg 2561 Type *Ty = I.getType(); 2562 if (isa<Constant>(I.getOperand(0)) && 2563 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2564 SDValue Op2 = getValue(I.getOperand(1)); 2565 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2566 Op2.getValueType(), Op2)); 2567 return; 2568 } 2569 2570 visitBinary(I, ISD::FSUB); 2571 } 2572 2573 /// Checks if the given instruction performs a vector reduction, in which case 2574 /// we have the freedom to alter the elements in the result as long as the 2575 /// reduction of them stays unchanged. 2576 static bool isVectorReductionOp(const User *I) { 2577 const Instruction *Inst = dyn_cast<Instruction>(I); 2578 if (!Inst || !Inst->getType()->isVectorTy()) 2579 return false; 2580 2581 auto OpCode = Inst->getOpcode(); 2582 switch (OpCode) { 2583 case Instruction::Add: 2584 case Instruction::Mul: 2585 case Instruction::And: 2586 case Instruction::Or: 2587 case Instruction::Xor: 2588 break; 2589 case Instruction::FAdd: 2590 case Instruction::FMul: 2591 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2592 if (FPOp->getFastMathFlags().isFast()) 2593 break; 2594 LLVM_FALLTHROUGH; 2595 default: 2596 return false; 2597 } 2598 2599 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2600 unsigned ElemNumToReduce = ElemNum; 2601 2602 // Do DFS search on the def-use chain from the given instruction. We only 2603 // allow four kinds of operations during the search until we reach the 2604 // instruction that extracts the first element from the vector: 2605 // 2606 // 1. The reduction operation of the same opcode as the given instruction. 2607 // 2608 // 2. PHI node. 2609 // 2610 // 3. ShuffleVector instruction together with a reduction operation that 2611 // does a partial reduction. 2612 // 2613 // 4. ExtractElement that extracts the first element from the vector, and we 2614 // stop searching the def-use chain here. 2615 // 2616 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2617 // from 1-3 to the stack to continue the DFS. The given instruction is not 2618 // a reduction operation if we meet any other instructions other than those 2619 // listed above. 2620 2621 SmallVector<const User *, 16> UsersToVisit{Inst}; 2622 SmallPtrSet<const User *, 16> Visited; 2623 bool ReduxExtracted = false; 2624 2625 while (!UsersToVisit.empty()) { 2626 auto User = UsersToVisit.back(); 2627 UsersToVisit.pop_back(); 2628 if (!Visited.insert(User).second) 2629 continue; 2630 2631 for (const auto &U : User->users()) { 2632 auto Inst = dyn_cast<Instruction>(U); 2633 if (!Inst) 2634 return false; 2635 2636 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2637 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2638 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2639 return false; 2640 UsersToVisit.push_back(U); 2641 } else if (const ShuffleVectorInst *ShufInst = 2642 dyn_cast<ShuffleVectorInst>(U)) { 2643 // Detect the following pattern: A ShuffleVector instruction together 2644 // with a reduction that do partial reduction on the first and second 2645 // ElemNumToReduce / 2 elements, and store the result in 2646 // ElemNumToReduce / 2 elements in another vector. 2647 2648 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2649 if (ResultElements < ElemNum) 2650 return false; 2651 2652 if (ElemNumToReduce == 1) 2653 return false; 2654 if (!isa<UndefValue>(U->getOperand(1))) 2655 return false; 2656 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2657 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2658 return false; 2659 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2660 if (ShufInst->getMaskValue(i) != -1) 2661 return false; 2662 2663 // There is only one user of this ShuffleVector instruction, which 2664 // must be a reduction operation. 2665 if (!U->hasOneUse()) 2666 return false; 2667 2668 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2669 if (!U2 || U2->getOpcode() != OpCode) 2670 return false; 2671 2672 // Check operands of the reduction operation. 2673 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2674 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2675 UsersToVisit.push_back(U2); 2676 ElemNumToReduce /= 2; 2677 } else 2678 return false; 2679 } else if (isa<ExtractElementInst>(U)) { 2680 // At this moment we should have reduced all elements in the vector. 2681 if (ElemNumToReduce != 1) 2682 return false; 2683 2684 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2685 if (!Val || Val->getZExtValue() != 0) 2686 return false; 2687 2688 ReduxExtracted = true; 2689 } else 2690 return false; 2691 } 2692 } 2693 return ReduxExtracted; 2694 } 2695 2696 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2697 SDValue Op1 = getValue(I.getOperand(0)); 2698 SDValue Op2 = getValue(I.getOperand(1)); 2699 2700 bool nuw = false; 2701 bool nsw = false; 2702 bool exact = false; 2703 bool vec_redux = false; 2704 FastMathFlags FMF; 2705 2706 if (const OverflowingBinaryOperator *OFBinOp = 2707 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2708 nuw = OFBinOp->hasNoUnsignedWrap(); 2709 nsw = OFBinOp->hasNoSignedWrap(); 2710 } 2711 if (const PossiblyExactOperator *ExactOp = 2712 dyn_cast<const PossiblyExactOperator>(&I)) 2713 exact = ExactOp->isExact(); 2714 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2715 FMF = FPOp->getFastMathFlags(); 2716 2717 if (isVectorReductionOp(&I)) { 2718 vec_redux = true; 2719 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2720 } 2721 2722 SDNodeFlags Flags; 2723 Flags.setExact(exact); 2724 Flags.setNoSignedWrap(nsw); 2725 Flags.setNoUnsignedWrap(nuw); 2726 Flags.setVectorReduction(vec_redux); 2727 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2728 Flags.setAllowContract(FMF.allowContract()); 2729 Flags.setNoInfs(FMF.noInfs()); 2730 Flags.setNoNaNs(FMF.noNaNs()); 2731 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2732 Flags.setUnsafeAlgebra(FMF.isFast()); 2733 2734 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2735 Op1, Op2, Flags); 2736 setValue(&I, BinNodeValue); 2737 } 2738 2739 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2740 SDValue Op1 = getValue(I.getOperand(0)); 2741 SDValue Op2 = getValue(I.getOperand(1)); 2742 2743 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2744 Op2.getValueType(), DAG.getDataLayout()); 2745 2746 // Coerce the shift amount to the right type if we can. 2747 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2748 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2749 unsigned Op2Size = Op2.getValueSizeInBits(); 2750 SDLoc DL = getCurSDLoc(); 2751 2752 // If the operand is smaller than the shift count type, promote it. 2753 if (ShiftSize > Op2Size) 2754 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2755 2756 // If the operand is larger than the shift count type but the shift 2757 // count type has enough bits to represent any shift value, truncate 2758 // it now. This is a common case and it exposes the truncate to 2759 // optimization early. 2760 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2761 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2762 // Otherwise we'll need to temporarily settle for some other convenient 2763 // type. Type legalization will make adjustments once the shiftee is split. 2764 else 2765 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2766 } 2767 2768 bool nuw = false; 2769 bool nsw = false; 2770 bool exact = false; 2771 2772 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2773 2774 if (const OverflowingBinaryOperator *OFBinOp = 2775 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2776 nuw = OFBinOp->hasNoUnsignedWrap(); 2777 nsw = OFBinOp->hasNoSignedWrap(); 2778 } 2779 if (const PossiblyExactOperator *ExactOp = 2780 dyn_cast<const PossiblyExactOperator>(&I)) 2781 exact = ExactOp->isExact(); 2782 } 2783 SDNodeFlags Flags; 2784 Flags.setExact(exact); 2785 Flags.setNoSignedWrap(nsw); 2786 Flags.setNoUnsignedWrap(nuw); 2787 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2788 Flags); 2789 setValue(&I, Res); 2790 } 2791 2792 void SelectionDAGBuilder::visitSDiv(const User &I) { 2793 SDValue Op1 = getValue(I.getOperand(0)); 2794 SDValue Op2 = getValue(I.getOperand(1)); 2795 2796 SDNodeFlags Flags; 2797 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2798 cast<PossiblyExactOperator>(&I)->isExact()); 2799 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2800 Op2, Flags)); 2801 } 2802 2803 void SelectionDAGBuilder::visitICmp(const User &I) { 2804 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2805 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2806 predicate = IC->getPredicate(); 2807 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2808 predicate = ICmpInst::Predicate(IC->getPredicate()); 2809 SDValue Op1 = getValue(I.getOperand(0)); 2810 SDValue Op2 = getValue(I.getOperand(1)); 2811 ISD::CondCode Opcode = getICmpCondCode(predicate); 2812 2813 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2814 I.getType()); 2815 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2816 } 2817 2818 void SelectionDAGBuilder::visitFCmp(const User &I) { 2819 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2820 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2821 predicate = FC->getPredicate(); 2822 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2823 predicate = FCmpInst::Predicate(FC->getPredicate()); 2824 SDValue Op1 = getValue(I.getOperand(0)); 2825 SDValue Op2 = getValue(I.getOperand(1)); 2826 ISD::CondCode Condition = getFCmpCondCode(predicate); 2827 2828 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2829 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2830 // further optimization, but currently FMF is only applicable to binary nodes. 2831 if (TM.Options.NoNaNsFPMath) 2832 Condition = getFCmpCodeWithoutNaN(Condition); 2833 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2834 I.getType()); 2835 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2836 } 2837 2838 // Check if the condition of the select has one use or two users that are both 2839 // selects with the same condition. 2840 static bool hasOnlySelectUsers(const Value *Cond) { 2841 return llvm::all_of(Cond->users(), [](const Value *V) { 2842 return isa<SelectInst>(V); 2843 }); 2844 } 2845 2846 void SelectionDAGBuilder::visitSelect(const User &I) { 2847 SmallVector<EVT, 4> ValueVTs; 2848 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2849 ValueVTs); 2850 unsigned NumValues = ValueVTs.size(); 2851 if (NumValues == 0) return; 2852 2853 SmallVector<SDValue, 4> Values(NumValues); 2854 SDValue Cond = getValue(I.getOperand(0)); 2855 SDValue LHSVal = getValue(I.getOperand(1)); 2856 SDValue RHSVal = getValue(I.getOperand(2)); 2857 auto BaseOps = {Cond}; 2858 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2859 ISD::VSELECT : ISD::SELECT; 2860 2861 // Min/max matching is only viable if all output VTs are the same. 2862 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2863 EVT VT = ValueVTs[0]; 2864 LLVMContext &Ctx = *DAG.getContext(); 2865 auto &TLI = DAG.getTargetLoweringInfo(); 2866 2867 // We care about the legality of the operation after it has been type 2868 // legalized. 2869 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2870 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2871 VT = TLI.getTypeToTransformTo(Ctx, VT); 2872 2873 // If the vselect is legal, assume we want to leave this as a vector setcc + 2874 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2875 // min/max is legal on the scalar type. 2876 bool UseScalarMinMax = VT.isVector() && 2877 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2878 2879 Value *LHS, *RHS; 2880 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2881 ISD::NodeType Opc = ISD::DELETED_NODE; 2882 switch (SPR.Flavor) { 2883 case SPF_UMAX: Opc = ISD::UMAX; break; 2884 case SPF_UMIN: Opc = ISD::UMIN; break; 2885 case SPF_SMAX: Opc = ISD::SMAX; break; 2886 case SPF_SMIN: Opc = ISD::SMIN; break; 2887 case SPF_FMINNUM: 2888 switch (SPR.NaNBehavior) { 2889 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2890 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2891 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2892 case SPNB_RETURNS_ANY: { 2893 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2894 Opc = ISD::FMINNUM; 2895 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2896 Opc = ISD::FMINNAN; 2897 else if (UseScalarMinMax) 2898 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2899 ISD::FMINNUM : ISD::FMINNAN; 2900 break; 2901 } 2902 } 2903 break; 2904 case SPF_FMAXNUM: 2905 switch (SPR.NaNBehavior) { 2906 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2907 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2908 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2909 case SPNB_RETURNS_ANY: 2910 2911 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2912 Opc = ISD::FMAXNUM; 2913 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2914 Opc = ISD::FMAXNAN; 2915 else if (UseScalarMinMax) 2916 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2917 ISD::FMAXNUM : ISD::FMAXNAN; 2918 break; 2919 } 2920 break; 2921 default: break; 2922 } 2923 2924 if (Opc != ISD::DELETED_NODE && 2925 (TLI.isOperationLegalOrCustom(Opc, VT) || 2926 (UseScalarMinMax && 2927 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2928 // If the underlying comparison instruction is used by any other 2929 // instruction, the consumed instructions won't be destroyed, so it is 2930 // not profitable to convert to a min/max. 2931 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2932 OpCode = Opc; 2933 LHSVal = getValue(LHS); 2934 RHSVal = getValue(RHS); 2935 BaseOps = {}; 2936 } 2937 } 2938 2939 for (unsigned i = 0; i != NumValues; ++i) { 2940 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2941 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2942 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2943 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2944 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2945 Ops); 2946 } 2947 2948 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2949 DAG.getVTList(ValueVTs), Values)); 2950 } 2951 2952 void SelectionDAGBuilder::visitTrunc(const User &I) { 2953 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2954 SDValue N = getValue(I.getOperand(0)); 2955 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2956 I.getType()); 2957 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2958 } 2959 2960 void SelectionDAGBuilder::visitZExt(const User &I) { 2961 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2962 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2963 SDValue N = getValue(I.getOperand(0)); 2964 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2965 I.getType()); 2966 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2967 } 2968 2969 void SelectionDAGBuilder::visitSExt(const User &I) { 2970 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2971 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2972 SDValue N = getValue(I.getOperand(0)); 2973 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2974 I.getType()); 2975 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2976 } 2977 2978 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2979 // FPTrunc is never a no-op cast, no need to check 2980 SDValue N = getValue(I.getOperand(0)); 2981 SDLoc dl = getCurSDLoc(); 2982 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2983 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2984 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2985 DAG.getTargetConstant( 2986 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2987 } 2988 2989 void SelectionDAGBuilder::visitFPExt(const User &I) { 2990 // FPExt is never a no-op cast, no need to check 2991 SDValue N = getValue(I.getOperand(0)); 2992 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2993 I.getType()); 2994 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2995 } 2996 2997 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2998 // FPToUI is never a no-op cast, no need to check 2999 SDValue N = getValue(I.getOperand(0)); 3000 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3001 I.getType()); 3002 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3003 } 3004 3005 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3006 // FPToSI is never a no-op cast, no need to check 3007 SDValue N = getValue(I.getOperand(0)); 3008 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3009 I.getType()); 3010 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3011 } 3012 3013 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3014 // UIToFP is never a no-op cast, no need to check 3015 SDValue N = getValue(I.getOperand(0)); 3016 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3017 I.getType()); 3018 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3019 } 3020 3021 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3022 // SIToFP is never a no-op cast, no need to check 3023 SDValue N = getValue(I.getOperand(0)); 3024 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3025 I.getType()); 3026 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3027 } 3028 3029 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3030 // What to do depends on the size of the integer and the size of the pointer. 3031 // We can either truncate, zero extend, or no-op, accordingly. 3032 SDValue N = getValue(I.getOperand(0)); 3033 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3034 I.getType()); 3035 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3036 } 3037 3038 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3039 // What to do depends on the size of the integer and the size of the pointer. 3040 // We can either truncate, zero extend, or no-op, accordingly. 3041 SDValue N = getValue(I.getOperand(0)); 3042 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3043 I.getType()); 3044 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3045 } 3046 3047 void SelectionDAGBuilder::visitBitCast(const User &I) { 3048 SDValue N = getValue(I.getOperand(0)); 3049 SDLoc dl = getCurSDLoc(); 3050 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3051 I.getType()); 3052 3053 // BitCast assures us that source and destination are the same size so this is 3054 // either a BITCAST or a no-op. 3055 if (DestVT != N.getValueType()) 3056 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3057 DestVT, N)); // convert types. 3058 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3059 // might fold any kind of constant expression to an integer constant and that 3060 // is not what we are looking for. Only recognize a bitcast of a genuine 3061 // constant integer as an opaque constant. 3062 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3063 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3064 /*isOpaque*/true)); 3065 else 3066 setValue(&I, N); // noop cast. 3067 } 3068 3069 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3071 const Value *SV = I.getOperand(0); 3072 SDValue N = getValue(SV); 3073 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3074 3075 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3076 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3077 3078 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3079 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3080 3081 setValue(&I, N); 3082 } 3083 3084 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3086 SDValue InVec = getValue(I.getOperand(0)); 3087 SDValue InVal = getValue(I.getOperand(1)); 3088 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3089 TLI.getVectorIdxTy(DAG.getDataLayout())); 3090 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3091 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3092 InVec, InVal, InIdx)); 3093 } 3094 3095 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3096 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3097 SDValue InVec = getValue(I.getOperand(0)); 3098 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3099 TLI.getVectorIdxTy(DAG.getDataLayout())); 3100 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3101 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3102 InVec, InIdx)); 3103 } 3104 3105 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3106 SDValue Src1 = getValue(I.getOperand(0)); 3107 SDValue Src2 = getValue(I.getOperand(1)); 3108 SDLoc DL = getCurSDLoc(); 3109 3110 SmallVector<int, 8> Mask; 3111 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3112 unsigned MaskNumElts = Mask.size(); 3113 3114 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3115 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3116 EVT SrcVT = Src1.getValueType(); 3117 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3118 3119 if (SrcNumElts == MaskNumElts) { 3120 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3121 return; 3122 } 3123 3124 // Normalize the shuffle vector since mask and vector length don't match. 3125 if (SrcNumElts < MaskNumElts) { 3126 // Mask is longer than the source vectors. We can use concatenate vector to 3127 // make the mask and vectors lengths match. 3128 3129 if (MaskNumElts % SrcNumElts == 0) { 3130 // Mask length is a multiple of the source vector length. 3131 // Check if the shuffle is some kind of concatenation of the input 3132 // vectors. 3133 unsigned NumConcat = MaskNumElts / SrcNumElts; 3134 bool IsConcat = true; 3135 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3136 for (unsigned i = 0; i != MaskNumElts; ++i) { 3137 int Idx = Mask[i]; 3138 if (Idx < 0) 3139 continue; 3140 // Ensure the indices in each SrcVT sized piece are sequential and that 3141 // the same source is used for the whole piece. 3142 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3143 (ConcatSrcs[i / SrcNumElts] >= 0 && 3144 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3145 IsConcat = false; 3146 break; 3147 } 3148 // Remember which source this index came from. 3149 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3150 } 3151 3152 // The shuffle is concatenating multiple vectors together. Just emit 3153 // a CONCAT_VECTORS operation. 3154 if (IsConcat) { 3155 SmallVector<SDValue, 8> ConcatOps; 3156 for (auto Src : ConcatSrcs) { 3157 if (Src < 0) 3158 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3159 else if (Src == 0) 3160 ConcatOps.push_back(Src1); 3161 else 3162 ConcatOps.push_back(Src2); 3163 } 3164 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3165 return; 3166 } 3167 } 3168 3169 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3170 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3171 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3172 PaddedMaskNumElts); 3173 3174 // Pad both vectors with undefs to make them the same length as the mask. 3175 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3176 3177 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3178 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3179 MOps1[0] = Src1; 3180 MOps2[0] = Src2; 3181 3182 Src1 = Src1.isUndef() 3183 ? DAG.getUNDEF(PaddedVT) 3184 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3185 Src2 = Src2.isUndef() 3186 ? DAG.getUNDEF(PaddedVT) 3187 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3188 3189 // Readjust mask for new input vector length. 3190 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3191 for (unsigned i = 0; i != MaskNumElts; ++i) { 3192 int Idx = Mask[i]; 3193 if (Idx >= (int)SrcNumElts) 3194 Idx -= SrcNumElts - PaddedMaskNumElts; 3195 MappedOps[i] = Idx; 3196 } 3197 3198 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3199 3200 // If the concatenated vector was padded, extract a subvector with the 3201 // correct number of elements. 3202 if (MaskNumElts != PaddedMaskNumElts) 3203 Result = DAG.getNode( 3204 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3205 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3206 3207 setValue(&I, Result); 3208 return; 3209 } 3210 3211 if (SrcNumElts > MaskNumElts) { 3212 // Analyze the access pattern of the vector to see if we can extract 3213 // two subvectors and do the shuffle. 3214 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3215 bool CanExtract = true; 3216 for (int Idx : Mask) { 3217 unsigned Input = 0; 3218 if (Idx < 0) 3219 continue; 3220 3221 if (Idx >= (int)SrcNumElts) { 3222 Input = 1; 3223 Idx -= SrcNumElts; 3224 } 3225 3226 // If all the indices come from the same MaskNumElts sized portion of 3227 // the sources we can use extract. Also make sure the extract wouldn't 3228 // extract past the end of the source. 3229 int NewStartIdx = alignDown(Idx, MaskNumElts); 3230 if (NewStartIdx + MaskNumElts > SrcNumElts || 3231 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3232 CanExtract = false; 3233 // Make sure we always update StartIdx as we use it to track if all 3234 // elements are undef. 3235 StartIdx[Input] = NewStartIdx; 3236 } 3237 3238 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3239 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3240 return; 3241 } 3242 if (CanExtract) { 3243 // Extract appropriate subvector and generate a vector shuffle 3244 for (unsigned Input = 0; Input < 2; ++Input) { 3245 SDValue &Src = Input == 0 ? Src1 : Src2; 3246 if (StartIdx[Input] < 0) 3247 Src = DAG.getUNDEF(VT); 3248 else { 3249 Src = DAG.getNode( 3250 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3251 DAG.getConstant(StartIdx[Input], DL, 3252 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3253 } 3254 } 3255 3256 // Calculate new mask. 3257 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3258 for (int &Idx : MappedOps) { 3259 if (Idx >= (int)SrcNumElts) 3260 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3261 else if (Idx >= 0) 3262 Idx -= StartIdx[0]; 3263 } 3264 3265 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3266 return; 3267 } 3268 } 3269 3270 // We can't use either concat vectors or extract subvectors so fall back to 3271 // replacing the shuffle with extract and build vector. 3272 // to insert and build vector. 3273 EVT EltVT = VT.getVectorElementType(); 3274 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3275 SmallVector<SDValue,8> Ops; 3276 for (int Idx : Mask) { 3277 SDValue Res; 3278 3279 if (Idx < 0) { 3280 Res = DAG.getUNDEF(EltVT); 3281 } else { 3282 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3283 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3284 3285 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3286 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3287 } 3288 3289 Ops.push_back(Res); 3290 } 3291 3292 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3293 } 3294 3295 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3296 ArrayRef<unsigned> Indices; 3297 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3298 Indices = IV->getIndices(); 3299 else 3300 Indices = cast<ConstantExpr>(&I)->getIndices(); 3301 3302 const Value *Op0 = I.getOperand(0); 3303 const Value *Op1 = I.getOperand(1); 3304 Type *AggTy = I.getType(); 3305 Type *ValTy = Op1->getType(); 3306 bool IntoUndef = isa<UndefValue>(Op0); 3307 bool FromUndef = isa<UndefValue>(Op1); 3308 3309 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3310 3311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3312 SmallVector<EVT, 4> AggValueVTs; 3313 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3314 SmallVector<EVT, 4> ValValueVTs; 3315 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3316 3317 unsigned NumAggValues = AggValueVTs.size(); 3318 unsigned NumValValues = ValValueVTs.size(); 3319 SmallVector<SDValue, 4> Values(NumAggValues); 3320 3321 // Ignore an insertvalue that produces an empty object 3322 if (!NumAggValues) { 3323 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3324 return; 3325 } 3326 3327 SDValue Agg = getValue(Op0); 3328 unsigned i = 0; 3329 // Copy the beginning value(s) from the original aggregate. 3330 for (; i != LinearIndex; ++i) 3331 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3332 SDValue(Agg.getNode(), Agg.getResNo() + i); 3333 // Copy values from the inserted value(s). 3334 if (NumValValues) { 3335 SDValue Val = getValue(Op1); 3336 for (; i != LinearIndex + NumValValues; ++i) 3337 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3338 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3339 } 3340 // Copy remaining value(s) from the original aggregate. 3341 for (; i != NumAggValues; ++i) 3342 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3343 SDValue(Agg.getNode(), Agg.getResNo() + i); 3344 3345 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3346 DAG.getVTList(AggValueVTs), Values)); 3347 } 3348 3349 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3350 ArrayRef<unsigned> Indices; 3351 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3352 Indices = EV->getIndices(); 3353 else 3354 Indices = cast<ConstantExpr>(&I)->getIndices(); 3355 3356 const Value *Op0 = I.getOperand(0); 3357 Type *AggTy = Op0->getType(); 3358 Type *ValTy = I.getType(); 3359 bool OutOfUndef = isa<UndefValue>(Op0); 3360 3361 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3362 3363 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3364 SmallVector<EVT, 4> ValValueVTs; 3365 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3366 3367 unsigned NumValValues = ValValueVTs.size(); 3368 3369 // Ignore a extractvalue that produces an empty object 3370 if (!NumValValues) { 3371 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3372 return; 3373 } 3374 3375 SmallVector<SDValue, 4> Values(NumValValues); 3376 3377 SDValue Agg = getValue(Op0); 3378 // Copy out the selected value(s). 3379 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3380 Values[i - LinearIndex] = 3381 OutOfUndef ? 3382 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3383 SDValue(Agg.getNode(), Agg.getResNo() + i); 3384 3385 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3386 DAG.getVTList(ValValueVTs), Values)); 3387 } 3388 3389 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3390 Value *Op0 = I.getOperand(0); 3391 // Note that the pointer operand may be a vector of pointers. Take the scalar 3392 // element which holds a pointer. 3393 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3394 SDValue N = getValue(Op0); 3395 SDLoc dl = getCurSDLoc(); 3396 3397 // Normalize Vector GEP - all scalar operands should be converted to the 3398 // splat vector. 3399 unsigned VectorWidth = I.getType()->isVectorTy() ? 3400 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3401 3402 if (VectorWidth && !N.getValueType().isVector()) { 3403 LLVMContext &Context = *DAG.getContext(); 3404 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3405 N = DAG.getSplatBuildVector(VT, dl, N); 3406 } 3407 3408 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3409 GTI != E; ++GTI) { 3410 const Value *Idx = GTI.getOperand(); 3411 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3412 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3413 if (Field) { 3414 // N = N + Offset 3415 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3416 3417 // In an inbounds GEP with an offset that is nonnegative even when 3418 // interpreted as signed, assume there is no unsigned overflow. 3419 SDNodeFlags Flags; 3420 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3421 Flags.setNoUnsignedWrap(true); 3422 3423 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3424 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3425 } 3426 } else { 3427 MVT PtrTy = 3428 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3429 unsigned PtrSize = PtrTy.getSizeInBits(); 3430 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3431 3432 // If this is a scalar constant or a splat vector of constants, 3433 // handle it quickly. 3434 const auto *CI = dyn_cast<ConstantInt>(Idx); 3435 if (!CI && isa<ConstantDataVector>(Idx) && 3436 cast<ConstantDataVector>(Idx)->getSplatValue()) 3437 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3438 3439 if (CI) { 3440 if (CI->isZero()) 3441 continue; 3442 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3443 LLVMContext &Context = *DAG.getContext(); 3444 SDValue OffsVal = VectorWidth ? 3445 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3446 DAG.getConstant(Offs, dl, PtrTy); 3447 3448 // In an inbouds GEP with an offset that is nonnegative even when 3449 // interpreted as signed, assume there is no unsigned overflow. 3450 SDNodeFlags Flags; 3451 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3452 Flags.setNoUnsignedWrap(true); 3453 3454 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3455 continue; 3456 } 3457 3458 // N = N + Idx * ElementSize; 3459 SDValue IdxN = getValue(Idx); 3460 3461 if (!IdxN.getValueType().isVector() && VectorWidth) { 3462 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3463 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3464 } 3465 3466 // If the index is smaller or larger than intptr_t, truncate or extend 3467 // it. 3468 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3469 3470 // If this is a multiply by a power of two, turn it into a shl 3471 // immediately. This is a very common case. 3472 if (ElementSize != 1) { 3473 if (ElementSize.isPowerOf2()) { 3474 unsigned Amt = ElementSize.logBase2(); 3475 IdxN = DAG.getNode(ISD::SHL, dl, 3476 N.getValueType(), IdxN, 3477 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3478 } else { 3479 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3480 IdxN = DAG.getNode(ISD::MUL, dl, 3481 N.getValueType(), IdxN, Scale); 3482 } 3483 } 3484 3485 N = DAG.getNode(ISD::ADD, dl, 3486 N.getValueType(), N, IdxN); 3487 } 3488 } 3489 3490 setValue(&I, N); 3491 } 3492 3493 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3494 // If this is a fixed sized alloca in the entry block of the function, 3495 // allocate it statically on the stack. 3496 if (FuncInfo.StaticAllocaMap.count(&I)) 3497 return; // getValue will auto-populate this. 3498 3499 SDLoc dl = getCurSDLoc(); 3500 Type *Ty = I.getAllocatedType(); 3501 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3502 auto &DL = DAG.getDataLayout(); 3503 uint64_t TySize = DL.getTypeAllocSize(Ty); 3504 unsigned Align = 3505 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3506 3507 SDValue AllocSize = getValue(I.getArraySize()); 3508 3509 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3510 if (AllocSize.getValueType() != IntPtr) 3511 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3512 3513 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3514 AllocSize, 3515 DAG.getConstant(TySize, dl, IntPtr)); 3516 3517 // Handle alignment. If the requested alignment is less than or equal to 3518 // the stack alignment, ignore it. If the size is greater than or equal to 3519 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3520 unsigned StackAlign = 3521 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3522 if (Align <= StackAlign) 3523 Align = 0; 3524 3525 // Round the size of the allocation up to the stack alignment size 3526 // by add SA-1 to the size. This doesn't overflow because we're computing 3527 // an address inside an alloca. 3528 SDNodeFlags Flags; 3529 Flags.setNoUnsignedWrap(true); 3530 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3531 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3532 3533 // Mask out the low bits for alignment purposes. 3534 AllocSize = 3535 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3536 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3537 3538 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3539 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3540 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3541 setValue(&I, DSA); 3542 DAG.setRoot(DSA.getValue(1)); 3543 3544 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3545 } 3546 3547 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3548 if (I.isAtomic()) 3549 return visitAtomicLoad(I); 3550 3551 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3552 const Value *SV = I.getOperand(0); 3553 if (TLI.supportSwiftError()) { 3554 // Swifterror values can come from either a function parameter with 3555 // swifterror attribute or an alloca with swifterror attribute. 3556 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3557 if (Arg->hasSwiftErrorAttr()) 3558 return visitLoadFromSwiftError(I); 3559 } 3560 3561 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3562 if (Alloca->isSwiftError()) 3563 return visitLoadFromSwiftError(I); 3564 } 3565 } 3566 3567 SDValue Ptr = getValue(SV); 3568 3569 Type *Ty = I.getType(); 3570 3571 bool isVolatile = I.isVolatile(); 3572 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3573 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3574 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3575 unsigned Alignment = I.getAlignment(); 3576 3577 AAMDNodes AAInfo; 3578 I.getAAMetadata(AAInfo); 3579 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3580 3581 SmallVector<EVT, 4> ValueVTs; 3582 SmallVector<uint64_t, 4> Offsets; 3583 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3584 unsigned NumValues = ValueVTs.size(); 3585 if (NumValues == 0) 3586 return; 3587 3588 SDValue Root; 3589 bool ConstantMemory = false; 3590 if (isVolatile || NumValues > MaxParallelChains) 3591 // Serialize volatile loads with other side effects. 3592 Root = getRoot(); 3593 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3594 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3595 // Do not serialize (non-volatile) loads of constant memory with anything. 3596 Root = DAG.getEntryNode(); 3597 ConstantMemory = true; 3598 } else { 3599 // Do not serialize non-volatile loads against each other. 3600 Root = DAG.getRoot(); 3601 } 3602 3603 SDLoc dl = getCurSDLoc(); 3604 3605 if (isVolatile) 3606 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3607 3608 // An aggregate load cannot wrap around the address space, so offsets to its 3609 // parts don't wrap either. 3610 SDNodeFlags Flags; 3611 Flags.setNoUnsignedWrap(true); 3612 3613 SmallVector<SDValue, 4> Values(NumValues); 3614 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3615 EVT PtrVT = Ptr.getValueType(); 3616 unsigned ChainI = 0; 3617 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3618 // Serializing loads here may result in excessive register pressure, and 3619 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3620 // could recover a bit by hoisting nodes upward in the chain by recognizing 3621 // they are side-effect free or do not alias. The optimizer should really 3622 // avoid this case by converting large object/array copies to llvm.memcpy 3623 // (MaxParallelChains should always remain as failsafe). 3624 if (ChainI == MaxParallelChains) { 3625 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3626 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3627 makeArrayRef(Chains.data(), ChainI)); 3628 Root = Chain; 3629 ChainI = 0; 3630 } 3631 SDValue A = DAG.getNode(ISD::ADD, dl, 3632 PtrVT, Ptr, 3633 DAG.getConstant(Offsets[i], dl, PtrVT), 3634 Flags); 3635 auto MMOFlags = MachineMemOperand::MONone; 3636 if (isVolatile) 3637 MMOFlags |= MachineMemOperand::MOVolatile; 3638 if (isNonTemporal) 3639 MMOFlags |= MachineMemOperand::MONonTemporal; 3640 if (isInvariant) 3641 MMOFlags |= MachineMemOperand::MOInvariant; 3642 if (isDereferenceable) 3643 MMOFlags |= MachineMemOperand::MODereferenceable; 3644 MMOFlags |= TLI.getMMOFlags(I); 3645 3646 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3647 MachinePointerInfo(SV, Offsets[i]), Alignment, 3648 MMOFlags, AAInfo, Ranges); 3649 3650 Values[i] = L; 3651 Chains[ChainI] = L.getValue(1); 3652 } 3653 3654 if (!ConstantMemory) { 3655 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3656 makeArrayRef(Chains.data(), ChainI)); 3657 if (isVolatile) 3658 DAG.setRoot(Chain); 3659 else 3660 PendingLoads.push_back(Chain); 3661 } 3662 3663 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3664 DAG.getVTList(ValueVTs), Values)); 3665 } 3666 3667 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3668 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3669 "call visitStoreToSwiftError when backend supports swifterror"); 3670 3671 SmallVector<EVT, 4> ValueVTs; 3672 SmallVector<uint64_t, 4> Offsets; 3673 const Value *SrcV = I.getOperand(0); 3674 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3675 SrcV->getType(), ValueVTs, &Offsets); 3676 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3677 "expect a single EVT for swifterror"); 3678 3679 SDValue Src = getValue(SrcV); 3680 // Create a virtual register, then update the virtual register. 3681 unsigned VReg; bool CreatedVReg; 3682 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3683 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3684 // Chain can be getRoot or getControlRoot. 3685 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3686 SDValue(Src.getNode(), Src.getResNo())); 3687 DAG.setRoot(CopyNode); 3688 if (CreatedVReg) 3689 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3690 } 3691 3692 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3693 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3694 "call visitLoadFromSwiftError when backend supports swifterror"); 3695 3696 assert(!I.isVolatile() && 3697 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3698 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3699 "Support volatile, non temporal, invariant for load_from_swift_error"); 3700 3701 const Value *SV = I.getOperand(0); 3702 Type *Ty = I.getType(); 3703 AAMDNodes AAInfo; 3704 I.getAAMetadata(AAInfo); 3705 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3706 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3707 "load_from_swift_error should not be constant memory"); 3708 3709 SmallVector<EVT, 4> ValueVTs; 3710 SmallVector<uint64_t, 4> Offsets; 3711 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3712 ValueVTs, &Offsets); 3713 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3714 "expect a single EVT for swifterror"); 3715 3716 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3717 SDValue L = DAG.getCopyFromReg( 3718 getRoot(), getCurSDLoc(), 3719 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3720 ValueVTs[0]); 3721 3722 setValue(&I, L); 3723 } 3724 3725 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3726 if (I.isAtomic()) 3727 return visitAtomicStore(I); 3728 3729 const Value *SrcV = I.getOperand(0); 3730 const Value *PtrV = I.getOperand(1); 3731 3732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3733 if (TLI.supportSwiftError()) { 3734 // Swifterror values can come from either a function parameter with 3735 // swifterror attribute or an alloca with swifterror attribute. 3736 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3737 if (Arg->hasSwiftErrorAttr()) 3738 return visitStoreToSwiftError(I); 3739 } 3740 3741 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3742 if (Alloca->isSwiftError()) 3743 return visitStoreToSwiftError(I); 3744 } 3745 } 3746 3747 SmallVector<EVT, 4> ValueVTs; 3748 SmallVector<uint64_t, 4> Offsets; 3749 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3750 SrcV->getType(), ValueVTs, &Offsets); 3751 unsigned NumValues = ValueVTs.size(); 3752 if (NumValues == 0) 3753 return; 3754 3755 // Get the lowered operands. Note that we do this after 3756 // checking if NumResults is zero, because with zero results 3757 // the operands won't have values in the map. 3758 SDValue Src = getValue(SrcV); 3759 SDValue Ptr = getValue(PtrV); 3760 3761 SDValue Root = getRoot(); 3762 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3763 SDLoc dl = getCurSDLoc(); 3764 EVT PtrVT = Ptr.getValueType(); 3765 unsigned Alignment = I.getAlignment(); 3766 AAMDNodes AAInfo; 3767 I.getAAMetadata(AAInfo); 3768 3769 auto MMOFlags = MachineMemOperand::MONone; 3770 if (I.isVolatile()) 3771 MMOFlags |= MachineMemOperand::MOVolatile; 3772 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3773 MMOFlags |= MachineMemOperand::MONonTemporal; 3774 MMOFlags |= TLI.getMMOFlags(I); 3775 3776 // An aggregate load cannot wrap around the address space, so offsets to its 3777 // parts don't wrap either. 3778 SDNodeFlags Flags; 3779 Flags.setNoUnsignedWrap(true); 3780 3781 unsigned ChainI = 0; 3782 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3783 // See visitLoad comments. 3784 if (ChainI == MaxParallelChains) { 3785 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3786 makeArrayRef(Chains.data(), ChainI)); 3787 Root = Chain; 3788 ChainI = 0; 3789 } 3790 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3791 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3792 SDValue St = DAG.getStore( 3793 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3794 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3795 Chains[ChainI] = St; 3796 } 3797 3798 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3799 makeArrayRef(Chains.data(), ChainI)); 3800 DAG.setRoot(StoreNode); 3801 } 3802 3803 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3804 bool IsCompressing) { 3805 SDLoc sdl = getCurSDLoc(); 3806 3807 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3808 unsigned& Alignment) { 3809 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3810 Src0 = I.getArgOperand(0); 3811 Ptr = I.getArgOperand(1); 3812 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3813 Mask = I.getArgOperand(3); 3814 }; 3815 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3816 unsigned& Alignment) { 3817 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3818 Src0 = I.getArgOperand(0); 3819 Ptr = I.getArgOperand(1); 3820 Mask = I.getArgOperand(2); 3821 Alignment = 0; 3822 }; 3823 3824 Value *PtrOperand, *MaskOperand, *Src0Operand; 3825 unsigned Alignment; 3826 if (IsCompressing) 3827 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3828 else 3829 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3830 3831 SDValue Ptr = getValue(PtrOperand); 3832 SDValue Src0 = getValue(Src0Operand); 3833 SDValue Mask = getValue(MaskOperand); 3834 3835 EVT VT = Src0.getValueType(); 3836 if (!Alignment) 3837 Alignment = DAG.getEVTAlignment(VT); 3838 3839 AAMDNodes AAInfo; 3840 I.getAAMetadata(AAInfo); 3841 3842 MachineMemOperand *MMO = 3843 DAG.getMachineFunction(). 3844 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3845 MachineMemOperand::MOStore, VT.getStoreSize(), 3846 Alignment, AAInfo); 3847 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3848 MMO, false /* Truncating */, 3849 IsCompressing); 3850 DAG.setRoot(StoreNode); 3851 setValue(&I, StoreNode); 3852 } 3853 3854 // Get a uniform base for the Gather/Scatter intrinsic. 3855 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3856 // We try to represent it as a base pointer + vector of indices. 3857 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3858 // The first operand of the GEP may be a single pointer or a vector of pointers 3859 // Example: 3860 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3861 // or 3862 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3863 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3864 // 3865 // When the first GEP operand is a single pointer - it is the uniform base we 3866 // are looking for. If first operand of the GEP is a splat vector - we 3867 // extract the splat value and use it as a uniform base. 3868 // In all other cases the function returns 'false'. 3869 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3870 SDValue &Scale, SelectionDAGBuilder* SDB) { 3871 SelectionDAG& DAG = SDB->DAG; 3872 LLVMContext &Context = *DAG.getContext(); 3873 3874 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3875 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3876 if (!GEP) 3877 return false; 3878 3879 const Value *GEPPtr = GEP->getPointerOperand(); 3880 if (!GEPPtr->getType()->isVectorTy()) 3881 Ptr = GEPPtr; 3882 else if (!(Ptr = getSplatValue(GEPPtr))) 3883 return false; 3884 3885 unsigned FinalIndex = GEP->getNumOperands() - 1; 3886 Value *IndexVal = GEP->getOperand(FinalIndex); 3887 3888 // Ensure all the other indices are 0. 3889 for (unsigned i = 1; i < FinalIndex; ++i) { 3890 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3891 if (!C || !C->isZero()) 3892 return false; 3893 } 3894 3895 // The operands of the GEP may be defined in another basic block. 3896 // In this case we'll not find nodes for the operands. 3897 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3898 return false; 3899 3900 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3901 const DataLayout &DL = DAG.getDataLayout(); 3902 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3903 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3904 Base = SDB->getValue(Ptr); 3905 Index = SDB->getValue(IndexVal); 3906 3907 if (!Index.getValueType().isVector()) { 3908 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3909 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3910 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3911 } 3912 return true; 3913 } 3914 3915 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3916 SDLoc sdl = getCurSDLoc(); 3917 3918 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3919 const Value *Ptr = I.getArgOperand(1); 3920 SDValue Src0 = getValue(I.getArgOperand(0)); 3921 SDValue Mask = getValue(I.getArgOperand(3)); 3922 EVT VT = Src0.getValueType(); 3923 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3924 if (!Alignment) 3925 Alignment = DAG.getEVTAlignment(VT); 3926 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3927 3928 AAMDNodes AAInfo; 3929 I.getAAMetadata(AAInfo); 3930 3931 SDValue Base; 3932 SDValue Index; 3933 SDValue Scale; 3934 const Value *BasePtr = Ptr; 3935 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 3936 3937 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3938 MachineMemOperand *MMO = DAG.getMachineFunction(). 3939 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3940 MachineMemOperand::MOStore, VT.getStoreSize(), 3941 Alignment, AAInfo); 3942 if (!UniformBase) { 3943 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3944 Index = getValue(Ptr); 3945 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3946 } 3947 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 3948 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3949 Ops, MMO); 3950 DAG.setRoot(Scatter); 3951 setValue(&I, Scatter); 3952 } 3953 3954 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3955 SDLoc sdl = getCurSDLoc(); 3956 3957 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3958 unsigned& Alignment) { 3959 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3960 Ptr = I.getArgOperand(0); 3961 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3962 Mask = I.getArgOperand(2); 3963 Src0 = I.getArgOperand(3); 3964 }; 3965 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3966 unsigned& Alignment) { 3967 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3968 Ptr = I.getArgOperand(0); 3969 Alignment = 0; 3970 Mask = I.getArgOperand(1); 3971 Src0 = I.getArgOperand(2); 3972 }; 3973 3974 Value *PtrOperand, *MaskOperand, *Src0Operand; 3975 unsigned Alignment; 3976 if (IsExpanding) 3977 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3978 else 3979 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3980 3981 SDValue Ptr = getValue(PtrOperand); 3982 SDValue Src0 = getValue(Src0Operand); 3983 SDValue Mask = getValue(MaskOperand); 3984 3985 EVT VT = Src0.getValueType(); 3986 if (!Alignment) 3987 Alignment = DAG.getEVTAlignment(VT); 3988 3989 AAMDNodes AAInfo; 3990 I.getAAMetadata(AAInfo); 3991 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3992 3993 // Do not serialize masked loads of constant memory with anything. 3994 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 3995 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3996 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3997 3998 MachineMemOperand *MMO = 3999 DAG.getMachineFunction(). 4000 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4001 MachineMemOperand::MOLoad, VT.getStoreSize(), 4002 Alignment, AAInfo, Ranges); 4003 4004 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4005 ISD::NON_EXTLOAD, IsExpanding); 4006 if (AddToChain) { 4007 SDValue OutChain = Load.getValue(1); 4008 DAG.setRoot(OutChain); 4009 } 4010 setValue(&I, Load); 4011 } 4012 4013 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4014 SDLoc sdl = getCurSDLoc(); 4015 4016 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4017 const Value *Ptr = I.getArgOperand(0); 4018 SDValue Src0 = getValue(I.getArgOperand(3)); 4019 SDValue Mask = getValue(I.getArgOperand(2)); 4020 4021 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4022 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4023 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4024 if (!Alignment) 4025 Alignment = DAG.getEVTAlignment(VT); 4026 4027 AAMDNodes AAInfo; 4028 I.getAAMetadata(AAInfo); 4029 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4030 4031 SDValue Root = DAG.getRoot(); 4032 SDValue Base; 4033 SDValue Index; 4034 SDValue Scale; 4035 const Value *BasePtr = Ptr; 4036 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4037 bool ConstantMemory = false; 4038 if (UniformBase && 4039 AA && AA->pointsToConstantMemory(MemoryLocation( 4040 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4041 AAInfo))) { 4042 // Do not serialize (non-volatile) loads of constant memory with anything. 4043 Root = DAG.getEntryNode(); 4044 ConstantMemory = true; 4045 } 4046 4047 MachineMemOperand *MMO = 4048 DAG.getMachineFunction(). 4049 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4050 MachineMemOperand::MOLoad, VT.getStoreSize(), 4051 Alignment, AAInfo, Ranges); 4052 4053 if (!UniformBase) { 4054 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4055 Index = getValue(Ptr); 4056 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4057 } 4058 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4059 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4060 Ops, MMO); 4061 4062 SDValue OutChain = Gather.getValue(1); 4063 if (!ConstantMemory) 4064 PendingLoads.push_back(OutChain); 4065 setValue(&I, Gather); 4066 } 4067 4068 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4069 SDLoc dl = getCurSDLoc(); 4070 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4071 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4072 SyncScope::ID SSID = I.getSyncScopeID(); 4073 4074 SDValue InChain = getRoot(); 4075 4076 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4077 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4078 SDValue L = DAG.getAtomicCmpSwap( 4079 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4080 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4081 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4082 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4083 4084 SDValue OutChain = L.getValue(2); 4085 4086 setValue(&I, L); 4087 DAG.setRoot(OutChain); 4088 } 4089 4090 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4091 SDLoc dl = getCurSDLoc(); 4092 ISD::NodeType NT; 4093 switch (I.getOperation()) { 4094 default: llvm_unreachable("Unknown atomicrmw operation"); 4095 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4096 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4097 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4098 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4099 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4100 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4101 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4102 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4103 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4104 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4105 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4106 } 4107 AtomicOrdering Order = I.getOrdering(); 4108 SyncScope::ID SSID = I.getSyncScopeID(); 4109 4110 SDValue InChain = getRoot(); 4111 4112 SDValue L = 4113 DAG.getAtomic(NT, dl, 4114 getValue(I.getValOperand()).getSimpleValueType(), 4115 InChain, 4116 getValue(I.getPointerOperand()), 4117 getValue(I.getValOperand()), 4118 I.getPointerOperand(), 4119 /* Alignment=*/ 0, Order, SSID); 4120 4121 SDValue OutChain = L.getValue(1); 4122 4123 setValue(&I, L); 4124 DAG.setRoot(OutChain); 4125 } 4126 4127 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4128 SDLoc dl = getCurSDLoc(); 4129 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4130 SDValue Ops[3]; 4131 Ops[0] = getRoot(); 4132 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4133 TLI.getFenceOperandTy(DAG.getDataLayout())); 4134 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4135 TLI.getFenceOperandTy(DAG.getDataLayout())); 4136 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4137 } 4138 4139 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4140 SDLoc dl = getCurSDLoc(); 4141 AtomicOrdering Order = I.getOrdering(); 4142 SyncScope::ID SSID = I.getSyncScopeID(); 4143 4144 SDValue InChain = getRoot(); 4145 4146 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4147 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4148 4149 if (!TLI.supportsUnalignedAtomics() && 4150 I.getAlignment() < VT.getStoreSize()) 4151 report_fatal_error("Cannot generate unaligned atomic load"); 4152 4153 MachineMemOperand *MMO = 4154 DAG.getMachineFunction(). 4155 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4156 MachineMemOperand::MOVolatile | 4157 MachineMemOperand::MOLoad, 4158 VT.getStoreSize(), 4159 I.getAlignment() ? I.getAlignment() : 4160 DAG.getEVTAlignment(VT), 4161 AAMDNodes(), nullptr, SSID, Order); 4162 4163 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4164 SDValue L = 4165 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4166 getValue(I.getPointerOperand()), MMO); 4167 4168 SDValue OutChain = L.getValue(1); 4169 4170 setValue(&I, L); 4171 DAG.setRoot(OutChain); 4172 } 4173 4174 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4175 SDLoc dl = getCurSDLoc(); 4176 4177 AtomicOrdering Order = I.getOrdering(); 4178 SyncScope::ID SSID = I.getSyncScopeID(); 4179 4180 SDValue InChain = getRoot(); 4181 4182 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4183 EVT VT = 4184 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4185 4186 if (I.getAlignment() < VT.getStoreSize()) 4187 report_fatal_error("Cannot generate unaligned atomic store"); 4188 4189 SDValue OutChain = 4190 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4191 InChain, 4192 getValue(I.getPointerOperand()), 4193 getValue(I.getValueOperand()), 4194 I.getPointerOperand(), I.getAlignment(), 4195 Order, SSID); 4196 4197 DAG.setRoot(OutChain); 4198 } 4199 4200 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4201 /// node. 4202 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4203 unsigned Intrinsic) { 4204 // Ignore the callsite's attributes. A specific call site may be marked with 4205 // readnone, but the lowering code will expect the chain based on the 4206 // definition. 4207 const Function *F = I.getCalledFunction(); 4208 bool HasChain = !F->doesNotAccessMemory(); 4209 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4210 4211 // Build the operand list. 4212 SmallVector<SDValue, 8> Ops; 4213 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4214 if (OnlyLoad) { 4215 // We don't need to serialize loads against other loads. 4216 Ops.push_back(DAG.getRoot()); 4217 } else { 4218 Ops.push_back(getRoot()); 4219 } 4220 } 4221 4222 // Info is set by getTgtMemInstrinsic 4223 TargetLowering::IntrinsicInfo Info; 4224 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4225 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4226 DAG.getMachineFunction(), 4227 Intrinsic); 4228 4229 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4230 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4231 Info.opc == ISD::INTRINSIC_W_CHAIN) 4232 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4233 TLI.getPointerTy(DAG.getDataLayout()))); 4234 4235 // Add all operands of the call to the operand list. 4236 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4237 SDValue Op = getValue(I.getArgOperand(i)); 4238 Ops.push_back(Op); 4239 } 4240 4241 SmallVector<EVT, 4> ValueVTs; 4242 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4243 4244 if (HasChain) 4245 ValueVTs.push_back(MVT::Other); 4246 4247 SDVTList VTs = DAG.getVTList(ValueVTs); 4248 4249 // Create the node. 4250 SDValue Result; 4251 if (IsTgtIntrinsic) { 4252 // This is target intrinsic that touches memory 4253 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4254 Ops, Info.memVT, 4255 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4256 Info.flags, Info.size); 4257 } else if (!HasChain) { 4258 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4259 } else if (!I.getType()->isVoidTy()) { 4260 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4261 } else { 4262 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4263 } 4264 4265 if (HasChain) { 4266 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4267 if (OnlyLoad) 4268 PendingLoads.push_back(Chain); 4269 else 4270 DAG.setRoot(Chain); 4271 } 4272 4273 if (!I.getType()->isVoidTy()) { 4274 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4275 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4276 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4277 } else 4278 Result = lowerRangeToAssertZExt(DAG, I, Result); 4279 4280 setValue(&I, Result); 4281 } 4282 } 4283 4284 /// GetSignificand - Get the significand and build it into a floating-point 4285 /// number with exponent of 1: 4286 /// 4287 /// Op = (Op & 0x007fffff) | 0x3f800000; 4288 /// 4289 /// where Op is the hexadecimal representation of floating point value. 4290 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4291 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4292 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4293 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4294 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4295 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4296 } 4297 4298 /// GetExponent - Get the exponent: 4299 /// 4300 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4301 /// 4302 /// where Op is the hexadecimal representation of floating point value. 4303 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4304 const TargetLowering &TLI, const SDLoc &dl) { 4305 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4306 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4307 SDValue t1 = DAG.getNode( 4308 ISD::SRL, dl, MVT::i32, t0, 4309 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4310 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4311 DAG.getConstant(127, dl, MVT::i32)); 4312 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4313 } 4314 4315 /// getF32Constant - Get 32-bit floating point constant. 4316 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4317 const SDLoc &dl) { 4318 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4319 MVT::f32); 4320 } 4321 4322 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4323 SelectionDAG &DAG) { 4324 // TODO: What fast-math-flags should be set on the floating-point nodes? 4325 4326 // IntegerPartOfX = ((int32_t)(t0); 4327 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4328 4329 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4330 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4331 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4332 4333 // IntegerPartOfX <<= 23; 4334 IntegerPartOfX = DAG.getNode( 4335 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4336 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4337 DAG.getDataLayout()))); 4338 4339 SDValue TwoToFractionalPartOfX; 4340 if (LimitFloatPrecision <= 6) { 4341 // For floating-point precision of 6: 4342 // 4343 // TwoToFractionalPartOfX = 4344 // 0.997535578f + 4345 // (0.735607626f + 0.252464424f * x) * x; 4346 // 4347 // error 0.0144103317, which is 6 bits 4348 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4349 getF32Constant(DAG, 0x3e814304, dl)); 4350 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4351 getF32Constant(DAG, 0x3f3c50c8, dl)); 4352 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4353 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4354 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4355 } else if (LimitFloatPrecision <= 12) { 4356 // For floating-point precision of 12: 4357 // 4358 // TwoToFractionalPartOfX = 4359 // 0.999892986f + 4360 // (0.696457318f + 4361 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4362 // 4363 // error 0.000107046256, which is 13 to 14 bits 4364 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4365 getF32Constant(DAG, 0x3da235e3, dl)); 4366 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4367 getF32Constant(DAG, 0x3e65b8f3, dl)); 4368 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4369 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4370 getF32Constant(DAG, 0x3f324b07, dl)); 4371 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4372 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4373 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4374 } else { // LimitFloatPrecision <= 18 4375 // For floating-point precision of 18: 4376 // 4377 // TwoToFractionalPartOfX = 4378 // 0.999999982f + 4379 // (0.693148872f + 4380 // (0.240227044f + 4381 // (0.554906021e-1f + 4382 // (0.961591928e-2f + 4383 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4384 // error 2.47208000*10^(-7), which is better than 18 bits 4385 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4386 getF32Constant(DAG, 0x3924b03e, dl)); 4387 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4388 getF32Constant(DAG, 0x3ab24b87, dl)); 4389 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4390 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4391 getF32Constant(DAG, 0x3c1d8c17, dl)); 4392 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4393 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4394 getF32Constant(DAG, 0x3d634a1d, dl)); 4395 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4396 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4397 getF32Constant(DAG, 0x3e75fe14, dl)); 4398 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4399 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4400 getF32Constant(DAG, 0x3f317234, dl)); 4401 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4402 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4403 getF32Constant(DAG, 0x3f800000, dl)); 4404 } 4405 4406 // Add the exponent into the result in integer domain. 4407 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4408 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4409 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4410 } 4411 4412 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4413 /// limited-precision mode. 4414 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4415 const TargetLowering &TLI) { 4416 if (Op.getValueType() == MVT::f32 && 4417 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4418 4419 // Put the exponent in the right bit position for later addition to the 4420 // final result: 4421 // 4422 // #define LOG2OFe 1.4426950f 4423 // t0 = Op * LOG2OFe 4424 4425 // TODO: What fast-math-flags should be set here? 4426 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4427 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4428 return getLimitedPrecisionExp2(t0, dl, DAG); 4429 } 4430 4431 // No special expansion. 4432 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4433 } 4434 4435 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4436 /// limited-precision mode. 4437 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4438 const TargetLowering &TLI) { 4439 // TODO: What fast-math-flags should be set on the floating-point nodes? 4440 4441 if (Op.getValueType() == MVT::f32 && 4442 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4443 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4444 4445 // Scale the exponent by log(2) [0.69314718f]. 4446 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4447 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4448 getF32Constant(DAG, 0x3f317218, dl)); 4449 4450 // Get the significand and build it into a floating-point number with 4451 // exponent of 1. 4452 SDValue X = GetSignificand(DAG, Op1, dl); 4453 4454 SDValue LogOfMantissa; 4455 if (LimitFloatPrecision <= 6) { 4456 // For floating-point precision of 6: 4457 // 4458 // LogofMantissa = 4459 // -1.1609546f + 4460 // (1.4034025f - 0.23903021f * x) * x; 4461 // 4462 // error 0.0034276066, which is better than 8 bits 4463 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4464 getF32Constant(DAG, 0xbe74c456, dl)); 4465 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4466 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4467 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4468 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4469 getF32Constant(DAG, 0x3f949a29, dl)); 4470 } else if (LimitFloatPrecision <= 12) { 4471 // For floating-point precision of 12: 4472 // 4473 // LogOfMantissa = 4474 // -1.7417939f + 4475 // (2.8212026f + 4476 // (-1.4699568f + 4477 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4478 // 4479 // error 0.000061011436, which is 14 bits 4480 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4481 getF32Constant(DAG, 0xbd67b6d6, dl)); 4482 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4483 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4484 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4485 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4486 getF32Constant(DAG, 0x3fbc278b, dl)); 4487 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4488 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4489 getF32Constant(DAG, 0x40348e95, dl)); 4490 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4491 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4492 getF32Constant(DAG, 0x3fdef31a, dl)); 4493 } else { // LimitFloatPrecision <= 18 4494 // For floating-point precision of 18: 4495 // 4496 // LogOfMantissa = 4497 // -2.1072184f + 4498 // (4.2372794f + 4499 // (-3.7029485f + 4500 // (2.2781945f + 4501 // (-0.87823314f + 4502 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4503 // 4504 // error 0.0000023660568, which is better than 18 bits 4505 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4506 getF32Constant(DAG, 0xbc91e5ac, dl)); 4507 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4508 getF32Constant(DAG, 0x3e4350aa, dl)); 4509 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4510 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4511 getF32Constant(DAG, 0x3f60d3e3, dl)); 4512 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4513 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4514 getF32Constant(DAG, 0x4011cdf0, dl)); 4515 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4516 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4517 getF32Constant(DAG, 0x406cfd1c, dl)); 4518 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4519 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4520 getF32Constant(DAG, 0x408797cb, dl)); 4521 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4522 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4523 getF32Constant(DAG, 0x4006dcab, dl)); 4524 } 4525 4526 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4527 } 4528 4529 // No special expansion. 4530 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4531 } 4532 4533 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4534 /// limited-precision mode. 4535 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4536 const TargetLowering &TLI) { 4537 // TODO: What fast-math-flags should be set on the floating-point nodes? 4538 4539 if (Op.getValueType() == MVT::f32 && 4540 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4541 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4542 4543 // Get the exponent. 4544 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4545 4546 // Get the significand and build it into a floating-point number with 4547 // exponent of 1. 4548 SDValue X = GetSignificand(DAG, Op1, dl); 4549 4550 // Different possible minimax approximations of significand in 4551 // floating-point for various degrees of accuracy over [1,2]. 4552 SDValue Log2ofMantissa; 4553 if (LimitFloatPrecision <= 6) { 4554 // For floating-point precision of 6: 4555 // 4556 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4557 // 4558 // error 0.0049451742, which is more than 7 bits 4559 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4560 getF32Constant(DAG, 0xbeb08fe0, dl)); 4561 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4562 getF32Constant(DAG, 0x40019463, dl)); 4563 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4564 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4565 getF32Constant(DAG, 0x3fd6633d, dl)); 4566 } else if (LimitFloatPrecision <= 12) { 4567 // For floating-point precision of 12: 4568 // 4569 // Log2ofMantissa = 4570 // -2.51285454f + 4571 // (4.07009056f + 4572 // (-2.12067489f + 4573 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4574 // 4575 // error 0.0000876136000, which is better than 13 bits 4576 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4577 getF32Constant(DAG, 0xbda7262e, dl)); 4578 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4579 getF32Constant(DAG, 0x3f25280b, dl)); 4580 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4581 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4582 getF32Constant(DAG, 0x4007b923, dl)); 4583 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4584 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4585 getF32Constant(DAG, 0x40823e2f, dl)); 4586 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4587 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4588 getF32Constant(DAG, 0x4020d29c, dl)); 4589 } else { // LimitFloatPrecision <= 18 4590 // For floating-point precision of 18: 4591 // 4592 // Log2ofMantissa = 4593 // -3.0400495f + 4594 // (6.1129976f + 4595 // (-5.3420409f + 4596 // (3.2865683f + 4597 // (-1.2669343f + 4598 // (0.27515199f - 4599 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4600 // 4601 // error 0.0000018516, which is better than 18 bits 4602 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4603 getF32Constant(DAG, 0xbcd2769e, dl)); 4604 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4605 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4606 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4607 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4608 getF32Constant(DAG, 0x3fa22ae7, dl)); 4609 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4610 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4611 getF32Constant(DAG, 0x40525723, dl)); 4612 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4613 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4614 getF32Constant(DAG, 0x40aaf200, dl)); 4615 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4616 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4617 getF32Constant(DAG, 0x40c39dad, dl)); 4618 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4619 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4620 getF32Constant(DAG, 0x4042902c, dl)); 4621 } 4622 4623 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4624 } 4625 4626 // No special expansion. 4627 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4628 } 4629 4630 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4631 /// limited-precision mode. 4632 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4633 const TargetLowering &TLI) { 4634 // TODO: What fast-math-flags should be set on the floating-point nodes? 4635 4636 if (Op.getValueType() == MVT::f32 && 4637 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4638 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4639 4640 // Scale the exponent by log10(2) [0.30102999f]. 4641 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4642 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4643 getF32Constant(DAG, 0x3e9a209a, dl)); 4644 4645 // Get the significand and build it into a floating-point number with 4646 // exponent of 1. 4647 SDValue X = GetSignificand(DAG, Op1, dl); 4648 4649 SDValue Log10ofMantissa; 4650 if (LimitFloatPrecision <= 6) { 4651 // For floating-point precision of 6: 4652 // 4653 // Log10ofMantissa = 4654 // -0.50419619f + 4655 // (0.60948995f - 0.10380950f * x) * x; 4656 // 4657 // error 0.0014886165, which is 6 bits 4658 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4659 getF32Constant(DAG, 0xbdd49a13, dl)); 4660 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4661 getF32Constant(DAG, 0x3f1c0789, dl)); 4662 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4663 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4664 getF32Constant(DAG, 0x3f011300, dl)); 4665 } else if (LimitFloatPrecision <= 12) { 4666 // For floating-point precision of 12: 4667 // 4668 // Log10ofMantissa = 4669 // -0.64831180f + 4670 // (0.91751397f + 4671 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4672 // 4673 // error 0.00019228036, which is better than 12 bits 4674 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4675 getF32Constant(DAG, 0x3d431f31, dl)); 4676 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4677 getF32Constant(DAG, 0x3ea21fb2, dl)); 4678 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4679 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4680 getF32Constant(DAG, 0x3f6ae232, dl)); 4681 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4682 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4683 getF32Constant(DAG, 0x3f25f7c3, dl)); 4684 } else { // LimitFloatPrecision <= 18 4685 // For floating-point precision of 18: 4686 // 4687 // Log10ofMantissa = 4688 // -0.84299375f + 4689 // (1.5327582f + 4690 // (-1.0688956f + 4691 // (0.49102474f + 4692 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4693 // 4694 // error 0.0000037995730, which is better than 18 bits 4695 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4696 getF32Constant(DAG, 0x3c5d51ce, dl)); 4697 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4698 getF32Constant(DAG, 0x3e00685a, dl)); 4699 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4700 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4701 getF32Constant(DAG, 0x3efb6798, dl)); 4702 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4703 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4704 getF32Constant(DAG, 0x3f88d192, dl)); 4705 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4706 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4707 getF32Constant(DAG, 0x3fc4316c, dl)); 4708 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4709 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4710 getF32Constant(DAG, 0x3f57ce70, dl)); 4711 } 4712 4713 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4714 } 4715 4716 // No special expansion. 4717 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4718 } 4719 4720 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4721 /// limited-precision mode. 4722 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4723 const TargetLowering &TLI) { 4724 if (Op.getValueType() == MVT::f32 && 4725 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4726 return getLimitedPrecisionExp2(Op, dl, DAG); 4727 4728 // No special expansion. 4729 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4730 } 4731 4732 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4733 /// limited-precision mode with x == 10.0f. 4734 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4735 SelectionDAG &DAG, const TargetLowering &TLI) { 4736 bool IsExp10 = false; 4737 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4738 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4739 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4740 APFloat Ten(10.0f); 4741 IsExp10 = LHSC->isExactlyValue(Ten); 4742 } 4743 } 4744 4745 // TODO: What fast-math-flags should be set on the FMUL node? 4746 if (IsExp10) { 4747 // Put the exponent in the right bit position for later addition to the 4748 // final result: 4749 // 4750 // #define LOG2OF10 3.3219281f 4751 // t0 = Op * LOG2OF10; 4752 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4753 getF32Constant(DAG, 0x40549a78, dl)); 4754 return getLimitedPrecisionExp2(t0, dl, DAG); 4755 } 4756 4757 // No special expansion. 4758 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4759 } 4760 4761 /// ExpandPowI - Expand a llvm.powi intrinsic. 4762 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4763 SelectionDAG &DAG) { 4764 // If RHS is a constant, we can expand this out to a multiplication tree, 4765 // otherwise we end up lowering to a call to __powidf2 (for example). When 4766 // optimizing for size, we only want to do this if the expansion would produce 4767 // a small number of multiplies, otherwise we do the full expansion. 4768 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4769 // Get the exponent as a positive value. 4770 unsigned Val = RHSC->getSExtValue(); 4771 if ((int)Val < 0) Val = -Val; 4772 4773 // powi(x, 0) -> 1.0 4774 if (Val == 0) 4775 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4776 4777 const Function &F = DAG.getMachineFunction().getFunction(); 4778 if (!F.optForSize() || 4779 // If optimizing for size, don't insert too many multiplies. 4780 // This inserts up to 5 multiplies. 4781 countPopulation(Val) + Log2_32(Val) < 7) { 4782 // We use the simple binary decomposition method to generate the multiply 4783 // sequence. There are more optimal ways to do this (for example, 4784 // powi(x,15) generates one more multiply than it should), but this has 4785 // the benefit of being both really simple and much better than a libcall. 4786 SDValue Res; // Logically starts equal to 1.0 4787 SDValue CurSquare = LHS; 4788 // TODO: Intrinsics should have fast-math-flags that propagate to these 4789 // nodes. 4790 while (Val) { 4791 if (Val & 1) { 4792 if (Res.getNode()) 4793 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4794 else 4795 Res = CurSquare; // 1.0*CurSquare. 4796 } 4797 4798 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4799 CurSquare, CurSquare); 4800 Val >>= 1; 4801 } 4802 4803 // If the original was negative, invert the result, producing 1/(x*x*x). 4804 if (RHSC->getSExtValue() < 0) 4805 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4806 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4807 return Res; 4808 } 4809 } 4810 4811 // Otherwise, expand to a libcall. 4812 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4813 } 4814 4815 // getUnderlyingArgReg - Find underlying register used for a truncated or 4816 // bitcasted argument. 4817 static unsigned getUnderlyingArgReg(const SDValue &N) { 4818 switch (N.getOpcode()) { 4819 case ISD::CopyFromReg: 4820 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4821 case ISD::BITCAST: 4822 case ISD::AssertZext: 4823 case ISD::AssertSext: 4824 case ISD::TRUNCATE: 4825 return getUnderlyingArgReg(N.getOperand(0)); 4826 default: 4827 return 0; 4828 } 4829 } 4830 4831 /// If the DbgValueInst is a dbg_value of a function argument, create the 4832 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4833 /// instruction selection, they will be inserted to the entry BB. 4834 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4835 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4836 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4837 const Argument *Arg = dyn_cast<Argument>(V); 4838 if (!Arg) 4839 return false; 4840 4841 MachineFunction &MF = DAG.getMachineFunction(); 4842 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4843 4844 bool IsIndirect = false; 4845 Optional<MachineOperand> Op; 4846 // Some arguments' frame index is recorded during argument lowering. 4847 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4848 if (FI != std::numeric_limits<int>::max()) 4849 Op = MachineOperand::CreateFI(FI); 4850 4851 if (!Op && N.getNode()) { 4852 unsigned Reg = getUnderlyingArgReg(N); 4853 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4854 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4855 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4856 if (PR) 4857 Reg = PR; 4858 } 4859 if (Reg) { 4860 Op = MachineOperand::CreateReg(Reg, false); 4861 IsIndirect = IsDbgDeclare; 4862 } 4863 } 4864 4865 if (!Op && N.getNode()) 4866 // Check if frame index is available. 4867 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4868 if (FrameIndexSDNode *FINode = 4869 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4870 Op = MachineOperand::CreateFI(FINode->getIndex()); 4871 4872 if (!Op) { 4873 // Check if ValueMap has reg number. 4874 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4875 if (VMI != FuncInfo.ValueMap.end()) { 4876 const auto &TLI = DAG.getTargetLoweringInfo(); 4877 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4878 V->getType(), isABIRegCopy(V)); 4879 unsigned NumRegs = 4880 std::accumulate(RFV.RegCount.begin(), RFV.RegCount.end(), 0); 4881 if (NumRegs > 1) { 4882 unsigned I = 0; 4883 unsigned Offset = 0; 4884 auto RegisterVT = RFV.RegVTs.begin(); 4885 for (auto RegCount : RFV.RegCount) { 4886 unsigned RegisterSize = (RegisterVT++)->getSizeInBits(); 4887 for (unsigned E = I + RegCount; I != E; ++I) { 4888 // The vregs are guaranteed to be allocated in sequence. 4889 Op = MachineOperand::CreateReg(VMI->second + I, false); 4890 auto FragmentExpr = DIExpression::createFragmentExpression( 4891 Expr, Offset, RegisterSize); 4892 if (!FragmentExpr) 4893 continue; 4894 FuncInfo.ArgDbgValues.push_back( 4895 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4896 Op->getReg(), Variable, *FragmentExpr)); 4897 Offset += RegisterSize; 4898 } 4899 } 4900 return true; 4901 } 4902 Op = MachineOperand::CreateReg(VMI->second, false); 4903 IsIndirect = IsDbgDeclare; 4904 } 4905 } 4906 4907 if (!Op) 4908 return false; 4909 4910 assert(Variable->isValidLocationForIntrinsic(DL) && 4911 "Expected inlined-at fields to agree"); 4912 if (Op->isReg()) 4913 FuncInfo.ArgDbgValues.push_back( 4914 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4915 Op->getReg(), Variable, Expr)); 4916 else 4917 FuncInfo.ArgDbgValues.push_back( 4918 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4919 .add(*Op) 4920 .addImm(0) 4921 .addMetadata(Variable) 4922 .addMetadata(Expr)); 4923 4924 return true; 4925 } 4926 4927 /// Return the appropriate SDDbgValue based on N. 4928 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4929 DILocalVariable *Variable, 4930 DIExpression *Expr, 4931 const DebugLoc &dl, 4932 unsigned DbgSDNodeOrder) { 4933 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4934 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4935 // stack slot locations as such instead of as indirectly addressed 4936 // locations. 4937 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4938 DbgSDNodeOrder); 4939 } 4940 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4941 DbgSDNodeOrder); 4942 } 4943 4944 // VisualStudio defines setjmp as _setjmp 4945 #if defined(_MSC_VER) && defined(setjmp) && \ 4946 !defined(setjmp_undefined_for_msvc) 4947 # pragma push_macro("setjmp") 4948 # undef setjmp 4949 # define setjmp_undefined_for_msvc 4950 #endif 4951 4952 /// Lower the call to the specified intrinsic function. If we want to emit this 4953 /// as a call to a named external function, return the name. Otherwise, lower it 4954 /// and return null. 4955 const char * 4956 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4957 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4958 SDLoc sdl = getCurSDLoc(); 4959 DebugLoc dl = getCurDebugLoc(); 4960 SDValue Res; 4961 4962 switch (Intrinsic) { 4963 default: 4964 // By default, turn this into a target intrinsic node. 4965 visitTargetIntrinsic(I, Intrinsic); 4966 return nullptr; 4967 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4968 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4969 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4970 case Intrinsic::returnaddress: 4971 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4972 TLI.getPointerTy(DAG.getDataLayout()), 4973 getValue(I.getArgOperand(0)))); 4974 return nullptr; 4975 case Intrinsic::addressofreturnaddress: 4976 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4977 TLI.getPointerTy(DAG.getDataLayout()))); 4978 return nullptr; 4979 case Intrinsic::frameaddress: 4980 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4981 TLI.getPointerTy(DAG.getDataLayout()), 4982 getValue(I.getArgOperand(0)))); 4983 return nullptr; 4984 case Intrinsic::read_register: { 4985 Value *Reg = I.getArgOperand(0); 4986 SDValue Chain = getRoot(); 4987 SDValue RegName = 4988 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4989 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4990 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4991 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4992 setValue(&I, Res); 4993 DAG.setRoot(Res.getValue(1)); 4994 return nullptr; 4995 } 4996 case Intrinsic::write_register: { 4997 Value *Reg = I.getArgOperand(0); 4998 Value *RegValue = I.getArgOperand(1); 4999 SDValue Chain = getRoot(); 5000 SDValue RegName = 5001 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5002 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5003 RegName, getValue(RegValue))); 5004 return nullptr; 5005 } 5006 case Intrinsic::setjmp: 5007 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5008 case Intrinsic::longjmp: 5009 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5010 case Intrinsic::memcpy: { 5011 SDValue Op1 = getValue(I.getArgOperand(0)); 5012 SDValue Op2 = getValue(I.getArgOperand(1)); 5013 SDValue Op3 = getValue(I.getArgOperand(2)); 5014 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5015 if (!Align) 5016 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5017 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5018 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5019 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5020 false, isTC, 5021 MachinePointerInfo(I.getArgOperand(0)), 5022 MachinePointerInfo(I.getArgOperand(1))); 5023 updateDAGForMaybeTailCall(MC); 5024 return nullptr; 5025 } 5026 case Intrinsic::memset: { 5027 SDValue Op1 = getValue(I.getArgOperand(0)); 5028 SDValue Op2 = getValue(I.getArgOperand(1)); 5029 SDValue Op3 = getValue(I.getArgOperand(2)); 5030 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5031 if (!Align) 5032 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 5033 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5034 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5035 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5036 isTC, MachinePointerInfo(I.getArgOperand(0))); 5037 updateDAGForMaybeTailCall(MS); 5038 return nullptr; 5039 } 5040 case Intrinsic::memmove: { 5041 SDValue Op1 = getValue(I.getArgOperand(0)); 5042 SDValue Op2 = getValue(I.getArgOperand(1)); 5043 SDValue Op3 = getValue(I.getArgOperand(2)); 5044 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5045 if (!Align) 5046 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 5047 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5048 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5049 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5050 isTC, MachinePointerInfo(I.getArgOperand(0)), 5051 MachinePointerInfo(I.getArgOperand(1))); 5052 updateDAGForMaybeTailCall(MM); 5053 return nullptr; 5054 } 5055 case Intrinsic::memcpy_element_unordered_atomic: { 5056 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5057 SDValue Dst = getValue(MI.getRawDest()); 5058 SDValue Src = getValue(MI.getRawSource()); 5059 SDValue Length = getValue(MI.getLength()); 5060 5061 // Emit a library call. 5062 TargetLowering::ArgListTy Args; 5063 TargetLowering::ArgListEntry Entry; 5064 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5065 Entry.Node = Dst; 5066 Args.push_back(Entry); 5067 5068 Entry.Node = Src; 5069 Args.push_back(Entry); 5070 5071 Entry.Ty = MI.getLength()->getType(); 5072 Entry.Node = Length; 5073 Args.push_back(Entry); 5074 5075 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5076 RTLIB::Libcall LibraryCall = 5077 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5078 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5079 report_fatal_error("Unsupported element size"); 5080 5081 TargetLowering::CallLoweringInfo CLI(DAG); 5082 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5083 TLI.getLibcallCallingConv(LibraryCall), 5084 Type::getVoidTy(*DAG.getContext()), 5085 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5086 TLI.getPointerTy(DAG.getDataLayout())), 5087 std::move(Args)); 5088 5089 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5090 DAG.setRoot(CallResult.second); 5091 return nullptr; 5092 } 5093 case Intrinsic::memmove_element_unordered_atomic: { 5094 auto &MI = cast<AtomicMemMoveInst>(I); 5095 SDValue Dst = getValue(MI.getRawDest()); 5096 SDValue Src = getValue(MI.getRawSource()); 5097 SDValue Length = getValue(MI.getLength()); 5098 5099 // Emit a library call. 5100 TargetLowering::ArgListTy Args; 5101 TargetLowering::ArgListEntry Entry; 5102 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5103 Entry.Node = Dst; 5104 Args.push_back(Entry); 5105 5106 Entry.Node = Src; 5107 Args.push_back(Entry); 5108 5109 Entry.Ty = MI.getLength()->getType(); 5110 Entry.Node = Length; 5111 Args.push_back(Entry); 5112 5113 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5114 RTLIB::Libcall LibraryCall = 5115 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5116 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5117 report_fatal_error("Unsupported element size"); 5118 5119 TargetLowering::CallLoweringInfo CLI(DAG); 5120 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5121 TLI.getLibcallCallingConv(LibraryCall), 5122 Type::getVoidTy(*DAG.getContext()), 5123 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5124 TLI.getPointerTy(DAG.getDataLayout())), 5125 std::move(Args)); 5126 5127 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5128 DAG.setRoot(CallResult.second); 5129 return nullptr; 5130 } 5131 case Intrinsic::memset_element_unordered_atomic: { 5132 auto &MI = cast<AtomicMemSetInst>(I); 5133 SDValue Dst = getValue(MI.getRawDest()); 5134 SDValue Val = getValue(MI.getValue()); 5135 SDValue Length = getValue(MI.getLength()); 5136 5137 // Emit a library call. 5138 TargetLowering::ArgListTy Args; 5139 TargetLowering::ArgListEntry Entry; 5140 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5141 Entry.Node = Dst; 5142 Args.push_back(Entry); 5143 5144 Entry.Ty = Type::getInt8Ty(*DAG.getContext()); 5145 Entry.Node = Val; 5146 Args.push_back(Entry); 5147 5148 Entry.Ty = MI.getLength()->getType(); 5149 Entry.Node = Length; 5150 Args.push_back(Entry); 5151 5152 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5153 RTLIB::Libcall LibraryCall = 5154 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5155 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5156 report_fatal_error("Unsupported element size"); 5157 5158 TargetLowering::CallLoweringInfo CLI(DAG); 5159 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5160 TLI.getLibcallCallingConv(LibraryCall), 5161 Type::getVoidTy(*DAG.getContext()), 5162 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5163 TLI.getPointerTy(DAG.getDataLayout())), 5164 std::move(Args)); 5165 5166 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5167 DAG.setRoot(CallResult.second); 5168 return nullptr; 5169 } 5170 case Intrinsic::dbg_addr: 5171 case Intrinsic::dbg_declare: { 5172 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5173 DILocalVariable *Variable = DI.getVariable(); 5174 DIExpression *Expression = DI.getExpression(); 5175 assert(Variable && "Missing variable"); 5176 5177 // Check if address has undef value. 5178 const Value *Address = DI.getVariableLocation(); 5179 if (!Address || isa<UndefValue>(Address) || 5180 (Address->use_empty() && !isa<Argument>(Address))) { 5181 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5182 return nullptr; 5183 } 5184 5185 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5186 5187 // Check if this variable can be described by a frame index, typically 5188 // either as a static alloca or a byval parameter. 5189 int FI = std::numeric_limits<int>::max(); 5190 if (const auto *AI = 5191 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5192 if (AI->isStaticAlloca()) { 5193 auto I = FuncInfo.StaticAllocaMap.find(AI); 5194 if (I != FuncInfo.StaticAllocaMap.end()) 5195 FI = I->second; 5196 } 5197 } else if (const auto *Arg = dyn_cast<Argument>( 5198 Address->stripInBoundsConstantOffsets())) { 5199 FI = FuncInfo.getArgumentFrameIndex(Arg); 5200 } 5201 5202 // llvm.dbg.addr is control dependent and always generates indirect 5203 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5204 // the MachineFunction variable table. 5205 if (FI != std::numeric_limits<int>::max()) { 5206 if (Intrinsic == Intrinsic::dbg_addr) 5207 DAG.AddDbgValue(DAG.getFrameIndexDbgValue(Variable, Expression, FI, dl, 5208 SDNodeOrder), 5209 getRoot().getNode(), isParameter); 5210 return nullptr; 5211 } 5212 5213 SDValue &N = NodeMap[Address]; 5214 if (!N.getNode() && isa<Argument>(Address)) 5215 // Check unused arguments map. 5216 N = UnusedArgNodeMap[Address]; 5217 SDDbgValue *SDV; 5218 if (N.getNode()) { 5219 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5220 Address = BCI->getOperand(0); 5221 // Parameters are handled specially. 5222 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5223 if (isParameter && FINode) { 5224 // Byval parameter. We have a frame index at this point. 5225 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5226 FINode->getIndex(), dl, SDNodeOrder); 5227 } else if (isa<Argument>(Address)) { 5228 // Address is an argument, so try to emit its dbg value using 5229 // virtual register info from the FuncInfo.ValueMap. 5230 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5231 return nullptr; 5232 } else { 5233 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5234 true, dl, SDNodeOrder); 5235 } 5236 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5237 } else { 5238 // If Address is an argument then try to emit its dbg value using 5239 // virtual register info from the FuncInfo.ValueMap. 5240 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5241 N)) { 5242 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5243 } 5244 } 5245 return nullptr; 5246 } 5247 case Intrinsic::dbg_value: { 5248 const DbgValueInst &DI = cast<DbgValueInst>(I); 5249 assert(DI.getVariable() && "Missing variable"); 5250 5251 DILocalVariable *Variable = DI.getVariable(); 5252 DIExpression *Expression = DI.getExpression(); 5253 const Value *V = DI.getValue(); 5254 if (!V) 5255 return nullptr; 5256 5257 SDDbgValue *SDV; 5258 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5259 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5260 DAG.AddDbgValue(SDV, nullptr, false); 5261 return nullptr; 5262 } 5263 5264 // Do not use getValue() in here; we don't want to generate code at 5265 // this point if it hasn't been done yet. 5266 SDValue N = NodeMap[V]; 5267 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5268 N = UnusedArgNodeMap[V]; 5269 if (N.getNode()) { 5270 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5271 return nullptr; 5272 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5273 DAG.AddDbgValue(SDV, N.getNode(), false); 5274 return nullptr; 5275 } 5276 5277 if (!V->use_empty() ) { 5278 // Do not call getValue(V) yet, as we don't want to generate code. 5279 // Remember it for later. 5280 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5281 DanglingDebugInfoMap[V] = DDI; 5282 return nullptr; 5283 } 5284 5285 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5286 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5287 return nullptr; 5288 } 5289 5290 case Intrinsic::eh_typeid_for: { 5291 // Find the type id for the given typeinfo. 5292 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5293 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5294 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5295 setValue(&I, Res); 5296 return nullptr; 5297 } 5298 5299 case Intrinsic::eh_return_i32: 5300 case Intrinsic::eh_return_i64: 5301 DAG.getMachineFunction().setCallsEHReturn(true); 5302 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5303 MVT::Other, 5304 getControlRoot(), 5305 getValue(I.getArgOperand(0)), 5306 getValue(I.getArgOperand(1)))); 5307 return nullptr; 5308 case Intrinsic::eh_unwind_init: 5309 DAG.getMachineFunction().setCallsUnwindInit(true); 5310 return nullptr; 5311 case Intrinsic::eh_dwarf_cfa: 5312 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5313 TLI.getPointerTy(DAG.getDataLayout()), 5314 getValue(I.getArgOperand(0)))); 5315 return nullptr; 5316 case Intrinsic::eh_sjlj_callsite: { 5317 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5318 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5319 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5320 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5321 5322 MMI.setCurrentCallSite(CI->getZExtValue()); 5323 return nullptr; 5324 } 5325 case Intrinsic::eh_sjlj_functioncontext: { 5326 // Get and store the index of the function context. 5327 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5328 AllocaInst *FnCtx = 5329 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5330 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5331 MFI.setFunctionContextIndex(FI); 5332 return nullptr; 5333 } 5334 case Intrinsic::eh_sjlj_setjmp: { 5335 SDValue Ops[2]; 5336 Ops[0] = getRoot(); 5337 Ops[1] = getValue(I.getArgOperand(0)); 5338 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5339 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5340 setValue(&I, Op.getValue(0)); 5341 DAG.setRoot(Op.getValue(1)); 5342 return nullptr; 5343 } 5344 case Intrinsic::eh_sjlj_longjmp: 5345 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5346 getRoot(), getValue(I.getArgOperand(0)))); 5347 return nullptr; 5348 case Intrinsic::eh_sjlj_setup_dispatch: 5349 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5350 getRoot())); 5351 return nullptr; 5352 case Intrinsic::masked_gather: 5353 visitMaskedGather(I); 5354 return nullptr; 5355 case Intrinsic::masked_load: 5356 visitMaskedLoad(I); 5357 return nullptr; 5358 case Intrinsic::masked_scatter: 5359 visitMaskedScatter(I); 5360 return nullptr; 5361 case Intrinsic::masked_store: 5362 visitMaskedStore(I); 5363 return nullptr; 5364 case Intrinsic::masked_expandload: 5365 visitMaskedLoad(I, true /* IsExpanding */); 5366 return nullptr; 5367 case Intrinsic::masked_compressstore: 5368 visitMaskedStore(I, true /* IsCompressing */); 5369 return nullptr; 5370 case Intrinsic::x86_mmx_pslli_w: 5371 case Intrinsic::x86_mmx_pslli_d: 5372 case Intrinsic::x86_mmx_pslli_q: 5373 case Intrinsic::x86_mmx_psrli_w: 5374 case Intrinsic::x86_mmx_psrli_d: 5375 case Intrinsic::x86_mmx_psrli_q: 5376 case Intrinsic::x86_mmx_psrai_w: 5377 case Intrinsic::x86_mmx_psrai_d: { 5378 SDValue ShAmt = getValue(I.getArgOperand(1)); 5379 if (isa<ConstantSDNode>(ShAmt)) { 5380 visitTargetIntrinsic(I, Intrinsic); 5381 return nullptr; 5382 } 5383 unsigned NewIntrinsic = 0; 5384 EVT ShAmtVT = MVT::v2i32; 5385 switch (Intrinsic) { 5386 case Intrinsic::x86_mmx_pslli_w: 5387 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5388 break; 5389 case Intrinsic::x86_mmx_pslli_d: 5390 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5391 break; 5392 case Intrinsic::x86_mmx_pslli_q: 5393 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5394 break; 5395 case Intrinsic::x86_mmx_psrli_w: 5396 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5397 break; 5398 case Intrinsic::x86_mmx_psrli_d: 5399 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5400 break; 5401 case Intrinsic::x86_mmx_psrli_q: 5402 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5403 break; 5404 case Intrinsic::x86_mmx_psrai_w: 5405 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5406 break; 5407 case Intrinsic::x86_mmx_psrai_d: 5408 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5409 break; 5410 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5411 } 5412 5413 // The vector shift intrinsics with scalars uses 32b shift amounts but 5414 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5415 // to be zero. 5416 // We must do this early because v2i32 is not a legal type. 5417 SDValue ShOps[2]; 5418 ShOps[0] = ShAmt; 5419 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5420 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5421 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5422 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5423 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5424 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5425 getValue(I.getArgOperand(0)), ShAmt); 5426 setValue(&I, Res); 5427 return nullptr; 5428 } 5429 case Intrinsic::powi: 5430 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5431 getValue(I.getArgOperand(1)), DAG)); 5432 return nullptr; 5433 case Intrinsic::log: 5434 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5435 return nullptr; 5436 case Intrinsic::log2: 5437 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5438 return nullptr; 5439 case Intrinsic::log10: 5440 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5441 return nullptr; 5442 case Intrinsic::exp: 5443 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5444 return nullptr; 5445 case Intrinsic::exp2: 5446 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5447 return nullptr; 5448 case Intrinsic::pow: 5449 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5450 getValue(I.getArgOperand(1)), DAG, TLI)); 5451 return nullptr; 5452 case Intrinsic::sqrt: 5453 case Intrinsic::fabs: 5454 case Intrinsic::sin: 5455 case Intrinsic::cos: 5456 case Intrinsic::floor: 5457 case Intrinsic::ceil: 5458 case Intrinsic::trunc: 5459 case Intrinsic::rint: 5460 case Intrinsic::nearbyint: 5461 case Intrinsic::round: 5462 case Intrinsic::canonicalize: { 5463 unsigned Opcode; 5464 switch (Intrinsic) { 5465 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5466 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5467 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5468 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5469 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5470 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5471 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5472 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5473 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5474 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5475 case Intrinsic::round: Opcode = ISD::FROUND; break; 5476 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5477 } 5478 5479 setValue(&I, DAG.getNode(Opcode, sdl, 5480 getValue(I.getArgOperand(0)).getValueType(), 5481 getValue(I.getArgOperand(0)))); 5482 return nullptr; 5483 } 5484 case Intrinsic::minnum: { 5485 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5486 unsigned Opc = 5487 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5488 ? ISD::FMINNAN 5489 : ISD::FMINNUM; 5490 setValue(&I, DAG.getNode(Opc, sdl, VT, 5491 getValue(I.getArgOperand(0)), 5492 getValue(I.getArgOperand(1)))); 5493 return nullptr; 5494 } 5495 case Intrinsic::maxnum: { 5496 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5497 unsigned Opc = 5498 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5499 ? ISD::FMAXNAN 5500 : ISD::FMAXNUM; 5501 setValue(&I, DAG.getNode(Opc, sdl, VT, 5502 getValue(I.getArgOperand(0)), 5503 getValue(I.getArgOperand(1)))); 5504 return nullptr; 5505 } 5506 case Intrinsic::copysign: 5507 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5508 getValue(I.getArgOperand(0)).getValueType(), 5509 getValue(I.getArgOperand(0)), 5510 getValue(I.getArgOperand(1)))); 5511 return nullptr; 5512 case Intrinsic::fma: 5513 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5514 getValue(I.getArgOperand(0)).getValueType(), 5515 getValue(I.getArgOperand(0)), 5516 getValue(I.getArgOperand(1)), 5517 getValue(I.getArgOperand(2)))); 5518 return nullptr; 5519 case Intrinsic::experimental_constrained_fadd: 5520 case Intrinsic::experimental_constrained_fsub: 5521 case Intrinsic::experimental_constrained_fmul: 5522 case Intrinsic::experimental_constrained_fdiv: 5523 case Intrinsic::experimental_constrained_frem: 5524 case Intrinsic::experimental_constrained_fma: 5525 case Intrinsic::experimental_constrained_sqrt: 5526 case Intrinsic::experimental_constrained_pow: 5527 case Intrinsic::experimental_constrained_powi: 5528 case Intrinsic::experimental_constrained_sin: 5529 case Intrinsic::experimental_constrained_cos: 5530 case Intrinsic::experimental_constrained_exp: 5531 case Intrinsic::experimental_constrained_exp2: 5532 case Intrinsic::experimental_constrained_log: 5533 case Intrinsic::experimental_constrained_log10: 5534 case Intrinsic::experimental_constrained_log2: 5535 case Intrinsic::experimental_constrained_rint: 5536 case Intrinsic::experimental_constrained_nearbyint: 5537 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5538 return nullptr; 5539 case Intrinsic::fmuladd: { 5540 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5541 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5542 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5543 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5544 getValue(I.getArgOperand(0)).getValueType(), 5545 getValue(I.getArgOperand(0)), 5546 getValue(I.getArgOperand(1)), 5547 getValue(I.getArgOperand(2)))); 5548 } else { 5549 // TODO: Intrinsic calls should have fast-math-flags. 5550 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5551 getValue(I.getArgOperand(0)).getValueType(), 5552 getValue(I.getArgOperand(0)), 5553 getValue(I.getArgOperand(1))); 5554 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5555 getValue(I.getArgOperand(0)).getValueType(), 5556 Mul, 5557 getValue(I.getArgOperand(2))); 5558 setValue(&I, Add); 5559 } 5560 return nullptr; 5561 } 5562 case Intrinsic::convert_to_fp16: 5563 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5564 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5565 getValue(I.getArgOperand(0)), 5566 DAG.getTargetConstant(0, sdl, 5567 MVT::i32)))); 5568 return nullptr; 5569 case Intrinsic::convert_from_fp16: 5570 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5571 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5572 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5573 getValue(I.getArgOperand(0))))); 5574 return nullptr; 5575 case Intrinsic::pcmarker: { 5576 SDValue Tmp = getValue(I.getArgOperand(0)); 5577 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5578 return nullptr; 5579 } 5580 case Intrinsic::readcyclecounter: { 5581 SDValue Op = getRoot(); 5582 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5583 DAG.getVTList(MVT::i64, MVT::Other), Op); 5584 setValue(&I, Res); 5585 DAG.setRoot(Res.getValue(1)); 5586 return nullptr; 5587 } 5588 case Intrinsic::bitreverse: 5589 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5590 getValue(I.getArgOperand(0)).getValueType(), 5591 getValue(I.getArgOperand(0)))); 5592 return nullptr; 5593 case Intrinsic::bswap: 5594 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5595 getValue(I.getArgOperand(0)).getValueType(), 5596 getValue(I.getArgOperand(0)))); 5597 return nullptr; 5598 case Intrinsic::cttz: { 5599 SDValue Arg = getValue(I.getArgOperand(0)); 5600 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5601 EVT Ty = Arg.getValueType(); 5602 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5603 sdl, Ty, Arg)); 5604 return nullptr; 5605 } 5606 case Intrinsic::ctlz: { 5607 SDValue Arg = getValue(I.getArgOperand(0)); 5608 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5609 EVT Ty = Arg.getValueType(); 5610 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5611 sdl, Ty, Arg)); 5612 return nullptr; 5613 } 5614 case Intrinsic::ctpop: { 5615 SDValue Arg = getValue(I.getArgOperand(0)); 5616 EVT Ty = Arg.getValueType(); 5617 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5618 return nullptr; 5619 } 5620 case Intrinsic::stacksave: { 5621 SDValue Op = getRoot(); 5622 Res = DAG.getNode( 5623 ISD::STACKSAVE, sdl, 5624 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5625 setValue(&I, Res); 5626 DAG.setRoot(Res.getValue(1)); 5627 return nullptr; 5628 } 5629 case Intrinsic::stackrestore: 5630 Res = getValue(I.getArgOperand(0)); 5631 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5632 return nullptr; 5633 case Intrinsic::get_dynamic_area_offset: { 5634 SDValue Op = getRoot(); 5635 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5636 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5637 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5638 // target. 5639 if (PtrTy != ResTy) 5640 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5641 " intrinsic!"); 5642 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5643 Op); 5644 DAG.setRoot(Op); 5645 setValue(&I, Res); 5646 return nullptr; 5647 } 5648 case Intrinsic::stackguard: { 5649 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5650 MachineFunction &MF = DAG.getMachineFunction(); 5651 const Module &M = *MF.getFunction().getParent(); 5652 SDValue Chain = getRoot(); 5653 if (TLI.useLoadStackGuardNode()) { 5654 Res = getLoadStackGuard(DAG, sdl, Chain); 5655 } else { 5656 const Value *Global = TLI.getSDagStackGuard(M); 5657 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5658 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5659 MachinePointerInfo(Global, 0), Align, 5660 MachineMemOperand::MOVolatile); 5661 } 5662 if (TLI.useStackGuardXorFP()) 5663 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5664 DAG.setRoot(Chain); 5665 setValue(&I, Res); 5666 return nullptr; 5667 } 5668 case Intrinsic::stackprotector: { 5669 // Emit code into the DAG to store the stack guard onto the stack. 5670 MachineFunction &MF = DAG.getMachineFunction(); 5671 MachineFrameInfo &MFI = MF.getFrameInfo(); 5672 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5673 SDValue Src, Chain = getRoot(); 5674 5675 if (TLI.useLoadStackGuardNode()) 5676 Src = getLoadStackGuard(DAG, sdl, Chain); 5677 else 5678 Src = getValue(I.getArgOperand(0)); // The guard's value. 5679 5680 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5681 5682 int FI = FuncInfo.StaticAllocaMap[Slot]; 5683 MFI.setStackProtectorIndex(FI); 5684 5685 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5686 5687 // Store the stack protector onto the stack. 5688 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5689 DAG.getMachineFunction(), FI), 5690 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5691 setValue(&I, Res); 5692 DAG.setRoot(Res); 5693 return nullptr; 5694 } 5695 case Intrinsic::objectsize: { 5696 // If we don't know by now, we're never going to know. 5697 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5698 5699 assert(CI && "Non-constant type in __builtin_object_size?"); 5700 5701 SDValue Arg = getValue(I.getCalledValue()); 5702 EVT Ty = Arg.getValueType(); 5703 5704 if (CI->isZero()) 5705 Res = DAG.getConstant(-1ULL, sdl, Ty); 5706 else 5707 Res = DAG.getConstant(0, sdl, Ty); 5708 5709 setValue(&I, Res); 5710 return nullptr; 5711 } 5712 case Intrinsic::annotation: 5713 case Intrinsic::ptr_annotation: 5714 case Intrinsic::invariant_group_barrier: 5715 // Drop the intrinsic, but forward the value 5716 setValue(&I, getValue(I.getOperand(0))); 5717 return nullptr; 5718 case Intrinsic::assume: 5719 case Intrinsic::var_annotation: 5720 case Intrinsic::sideeffect: 5721 // Discard annotate attributes, assumptions, and artificial side-effects. 5722 return nullptr; 5723 5724 case Intrinsic::codeview_annotation: { 5725 // Emit a label associated with this metadata. 5726 MachineFunction &MF = DAG.getMachineFunction(); 5727 MCSymbol *Label = 5728 MF.getMMI().getContext().createTempSymbol("annotation", true); 5729 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5730 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5731 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5732 DAG.setRoot(Res); 5733 return nullptr; 5734 } 5735 5736 case Intrinsic::init_trampoline: { 5737 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5738 5739 SDValue Ops[6]; 5740 Ops[0] = getRoot(); 5741 Ops[1] = getValue(I.getArgOperand(0)); 5742 Ops[2] = getValue(I.getArgOperand(1)); 5743 Ops[3] = getValue(I.getArgOperand(2)); 5744 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5745 Ops[5] = DAG.getSrcValue(F); 5746 5747 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5748 5749 DAG.setRoot(Res); 5750 return nullptr; 5751 } 5752 case Intrinsic::adjust_trampoline: 5753 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5754 TLI.getPointerTy(DAG.getDataLayout()), 5755 getValue(I.getArgOperand(0)))); 5756 return nullptr; 5757 case Intrinsic::gcroot: { 5758 assert(DAG.getMachineFunction().getFunction().hasGC() && 5759 "only valid in functions with gc specified, enforced by Verifier"); 5760 assert(GFI && "implied by previous"); 5761 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5762 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5763 5764 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5765 GFI->addStackRoot(FI->getIndex(), TypeMap); 5766 return nullptr; 5767 } 5768 case Intrinsic::gcread: 5769 case Intrinsic::gcwrite: 5770 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5771 case Intrinsic::flt_rounds: 5772 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5773 return nullptr; 5774 5775 case Intrinsic::expect: 5776 // Just replace __builtin_expect(exp, c) with EXP. 5777 setValue(&I, getValue(I.getArgOperand(0))); 5778 return nullptr; 5779 5780 case Intrinsic::debugtrap: 5781 case Intrinsic::trap: { 5782 StringRef TrapFuncName = 5783 I.getAttributes() 5784 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5785 .getValueAsString(); 5786 if (TrapFuncName.empty()) { 5787 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5788 ISD::TRAP : ISD::DEBUGTRAP; 5789 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5790 return nullptr; 5791 } 5792 TargetLowering::ArgListTy Args; 5793 5794 TargetLowering::CallLoweringInfo CLI(DAG); 5795 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5796 CallingConv::C, I.getType(), 5797 DAG.getExternalSymbol(TrapFuncName.data(), 5798 TLI.getPointerTy(DAG.getDataLayout())), 5799 std::move(Args)); 5800 5801 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5802 DAG.setRoot(Result.second); 5803 return nullptr; 5804 } 5805 5806 case Intrinsic::uadd_with_overflow: 5807 case Intrinsic::sadd_with_overflow: 5808 case Intrinsic::usub_with_overflow: 5809 case Intrinsic::ssub_with_overflow: 5810 case Intrinsic::umul_with_overflow: 5811 case Intrinsic::smul_with_overflow: { 5812 ISD::NodeType Op; 5813 switch (Intrinsic) { 5814 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5815 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5816 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5817 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5818 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5819 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5820 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5821 } 5822 SDValue Op1 = getValue(I.getArgOperand(0)); 5823 SDValue Op2 = getValue(I.getArgOperand(1)); 5824 5825 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5826 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5827 return nullptr; 5828 } 5829 case Intrinsic::prefetch: { 5830 SDValue Ops[5]; 5831 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5832 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5833 Ops[0] = DAG.getRoot(); 5834 Ops[1] = getValue(I.getArgOperand(0)); 5835 Ops[2] = getValue(I.getArgOperand(1)); 5836 Ops[3] = getValue(I.getArgOperand(2)); 5837 Ops[4] = getValue(I.getArgOperand(3)); 5838 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5839 DAG.getVTList(MVT::Other), Ops, 5840 EVT::getIntegerVT(*Context, 8), 5841 MachinePointerInfo(I.getArgOperand(0)), 5842 0, /* align */ 5843 Flags); 5844 5845 // Chain the prefetch in parallell with any pending loads, to stay out of 5846 // the way of later optimizations. 5847 PendingLoads.push_back(Result); 5848 Result = getRoot(); 5849 DAG.setRoot(Result); 5850 return nullptr; 5851 } 5852 case Intrinsic::lifetime_start: 5853 case Intrinsic::lifetime_end: { 5854 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5855 // Stack coloring is not enabled in O0, discard region information. 5856 if (TM.getOptLevel() == CodeGenOpt::None) 5857 return nullptr; 5858 5859 SmallVector<Value *, 4> Allocas; 5860 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5861 5862 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5863 E = Allocas.end(); Object != E; ++Object) { 5864 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5865 5866 // Could not find an Alloca. 5867 if (!LifetimeObject) 5868 continue; 5869 5870 // First check that the Alloca is static, otherwise it won't have a 5871 // valid frame index. 5872 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5873 if (SI == FuncInfo.StaticAllocaMap.end()) 5874 return nullptr; 5875 5876 int FI = SI->second; 5877 5878 SDValue Ops[2]; 5879 Ops[0] = getRoot(); 5880 Ops[1] = 5881 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5882 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5883 5884 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5885 DAG.setRoot(Res); 5886 } 5887 return nullptr; 5888 } 5889 case Intrinsic::invariant_start: 5890 // Discard region information. 5891 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5892 return nullptr; 5893 case Intrinsic::invariant_end: 5894 // Discard region information. 5895 return nullptr; 5896 case Intrinsic::clear_cache: 5897 return TLI.getClearCacheBuiltinName(); 5898 case Intrinsic::donothing: 5899 // ignore 5900 return nullptr; 5901 case Intrinsic::experimental_stackmap: 5902 visitStackmap(I); 5903 return nullptr; 5904 case Intrinsic::experimental_patchpoint_void: 5905 case Intrinsic::experimental_patchpoint_i64: 5906 visitPatchpoint(&I); 5907 return nullptr; 5908 case Intrinsic::experimental_gc_statepoint: 5909 LowerStatepoint(ImmutableStatepoint(&I)); 5910 return nullptr; 5911 case Intrinsic::experimental_gc_result: 5912 visitGCResult(cast<GCResultInst>(I)); 5913 return nullptr; 5914 case Intrinsic::experimental_gc_relocate: 5915 visitGCRelocate(cast<GCRelocateInst>(I)); 5916 return nullptr; 5917 case Intrinsic::instrprof_increment: 5918 llvm_unreachable("instrprof failed to lower an increment"); 5919 case Intrinsic::instrprof_value_profile: 5920 llvm_unreachable("instrprof failed to lower a value profiling call"); 5921 case Intrinsic::localescape: { 5922 MachineFunction &MF = DAG.getMachineFunction(); 5923 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5924 5925 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5926 // is the same on all targets. 5927 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5928 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5929 if (isa<ConstantPointerNull>(Arg)) 5930 continue; // Skip null pointers. They represent a hole in index space. 5931 AllocaInst *Slot = cast<AllocaInst>(Arg); 5932 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5933 "can only escape static allocas"); 5934 int FI = FuncInfo.StaticAllocaMap[Slot]; 5935 MCSymbol *FrameAllocSym = 5936 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5937 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5938 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5939 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5940 .addSym(FrameAllocSym) 5941 .addFrameIndex(FI); 5942 } 5943 5944 return nullptr; 5945 } 5946 5947 case Intrinsic::localrecover: { 5948 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5949 MachineFunction &MF = DAG.getMachineFunction(); 5950 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5951 5952 // Get the symbol that defines the frame offset. 5953 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5954 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5955 unsigned IdxVal = 5956 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 5957 MCSymbol *FrameAllocSym = 5958 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5959 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 5960 5961 // Create a MCSymbol for the label to avoid any target lowering 5962 // that would make this PC relative. 5963 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5964 SDValue OffsetVal = 5965 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5966 5967 // Add the offset to the FP. 5968 Value *FP = I.getArgOperand(1); 5969 SDValue FPVal = getValue(FP); 5970 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5971 setValue(&I, Add); 5972 5973 return nullptr; 5974 } 5975 5976 case Intrinsic::eh_exceptionpointer: 5977 case Intrinsic::eh_exceptioncode: { 5978 // Get the exception pointer vreg, copy from it, and resize it to fit. 5979 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5980 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5981 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5982 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5983 SDValue N = 5984 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5985 if (Intrinsic == Intrinsic::eh_exceptioncode) 5986 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5987 setValue(&I, N); 5988 return nullptr; 5989 } 5990 case Intrinsic::xray_customevent: { 5991 // Here we want to make sure that the intrinsic behaves as if it has a 5992 // specific calling convention, and only for x86_64. 5993 // FIXME: Support other platforms later. 5994 const auto &Triple = DAG.getTarget().getTargetTriple(); 5995 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 5996 return nullptr; 5997 5998 SDLoc DL = getCurSDLoc(); 5999 SmallVector<SDValue, 8> Ops; 6000 6001 // We want to say that we always want the arguments in registers. 6002 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6003 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6004 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6005 SDValue Chain = getRoot(); 6006 Ops.push_back(LogEntryVal); 6007 Ops.push_back(StrSizeVal); 6008 Ops.push_back(Chain); 6009 6010 // We need to enforce the calling convention for the callsite, so that 6011 // argument ordering is enforced correctly, and that register allocation can 6012 // see that some registers may be assumed clobbered and have to preserve 6013 // them across calls to the intrinsic. 6014 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6015 DL, NodeTys, Ops); 6016 SDValue patchableNode = SDValue(MN, 0); 6017 DAG.setRoot(patchableNode); 6018 setValue(&I, patchableNode); 6019 return nullptr; 6020 } 6021 case Intrinsic::experimental_deoptimize: 6022 LowerDeoptimizeCall(&I); 6023 return nullptr; 6024 6025 case Intrinsic::experimental_vector_reduce_fadd: 6026 case Intrinsic::experimental_vector_reduce_fmul: 6027 case Intrinsic::experimental_vector_reduce_add: 6028 case Intrinsic::experimental_vector_reduce_mul: 6029 case Intrinsic::experimental_vector_reduce_and: 6030 case Intrinsic::experimental_vector_reduce_or: 6031 case Intrinsic::experimental_vector_reduce_xor: 6032 case Intrinsic::experimental_vector_reduce_smax: 6033 case Intrinsic::experimental_vector_reduce_smin: 6034 case Intrinsic::experimental_vector_reduce_umax: 6035 case Intrinsic::experimental_vector_reduce_umin: 6036 case Intrinsic::experimental_vector_reduce_fmax: 6037 case Intrinsic::experimental_vector_reduce_fmin: 6038 visitVectorReduce(I, Intrinsic); 6039 return nullptr; 6040 } 6041 } 6042 6043 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6044 const ConstrainedFPIntrinsic &FPI) { 6045 SDLoc sdl = getCurSDLoc(); 6046 unsigned Opcode; 6047 switch (FPI.getIntrinsicID()) { 6048 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6049 case Intrinsic::experimental_constrained_fadd: 6050 Opcode = ISD::STRICT_FADD; 6051 break; 6052 case Intrinsic::experimental_constrained_fsub: 6053 Opcode = ISD::STRICT_FSUB; 6054 break; 6055 case Intrinsic::experimental_constrained_fmul: 6056 Opcode = ISD::STRICT_FMUL; 6057 break; 6058 case Intrinsic::experimental_constrained_fdiv: 6059 Opcode = ISD::STRICT_FDIV; 6060 break; 6061 case Intrinsic::experimental_constrained_frem: 6062 Opcode = ISD::STRICT_FREM; 6063 break; 6064 case Intrinsic::experimental_constrained_fma: 6065 Opcode = ISD::STRICT_FMA; 6066 break; 6067 case Intrinsic::experimental_constrained_sqrt: 6068 Opcode = ISD::STRICT_FSQRT; 6069 break; 6070 case Intrinsic::experimental_constrained_pow: 6071 Opcode = ISD::STRICT_FPOW; 6072 break; 6073 case Intrinsic::experimental_constrained_powi: 6074 Opcode = ISD::STRICT_FPOWI; 6075 break; 6076 case Intrinsic::experimental_constrained_sin: 6077 Opcode = ISD::STRICT_FSIN; 6078 break; 6079 case Intrinsic::experimental_constrained_cos: 6080 Opcode = ISD::STRICT_FCOS; 6081 break; 6082 case Intrinsic::experimental_constrained_exp: 6083 Opcode = ISD::STRICT_FEXP; 6084 break; 6085 case Intrinsic::experimental_constrained_exp2: 6086 Opcode = ISD::STRICT_FEXP2; 6087 break; 6088 case Intrinsic::experimental_constrained_log: 6089 Opcode = ISD::STRICT_FLOG; 6090 break; 6091 case Intrinsic::experimental_constrained_log10: 6092 Opcode = ISD::STRICT_FLOG10; 6093 break; 6094 case Intrinsic::experimental_constrained_log2: 6095 Opcode = ISD::STRICT_FLOG2; 6096 break; 6097 case Intrinsic::experimental_constrained_rint: 6098 Opcode = ISD::STRICT_FRINT; 6099 break; 6100 case Intrinsic::experimental_constrained_nearbyint: 6101 Opcode = ISD::STRICT_FNEARBYINT; 6102 break; 6103 } 6104 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6105 SDValue Chain = getRoot(); 6106 SmallVector<EVT, 4> ValueVTs; 6107 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6108 ValueVTs.push_back(MVT::Other); // Out chain 6109 6110 SDVTList VTs = DAG.getVTList(ValueVTs); 6111 SDValue Result; 6112 if (FPI.isUnaryOp()) 6113 Result = DAG.getNode(Opcode, sdl, VTs, 6114 { Chain, getValue(FPI.getArgOperand(0)) }); 6115 else if (FPI.isTernaryOp()) 6116 Result = DAG.getNode(Opcode, sdl, VTs, 6117 { Chain, getValue(FPI.getArgOperand(0)), 6118 getValue(FPI.getArgOperand(1)), 6119 getValue(FPI.getArgOperand(2)) }); 6120 else 6121 Result = DAG.getNode(Opcode, sdl, VTs, 6122 { Chain, getValue(FPI.getArgOperand(0)), 6123 getValue(FPI.getArgOperand(1)) }); 6124 6125 assert(Result.getNode()->getNumValues() == 2); 6126 SDValue OutChain = Result.getValue(1); 6127 DAG.setRoot(OutChain); 6128 SDValue FPResult = Result.getValue(0); 6129 setValue(&FPI, FPResult); 6130 } 6131 6132 std::pair<SDValue, SDValue> 6133 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6134 const BasicBlock *EHPadBB) { 6135 MachineFunction &MF = DAG.getMachineFunction(); 6136 MachineModuleInfo &MMI = MF.getMMI(); 6137 MCSymbol *BeginLabel = nullptr; 6138 6139 if (EHPadBB) { 6140 // Insert a label before the invoke call to mark the try range. This can be 6141 // used to detect deletion of the invoke via the MachineModuleInfo. 6142 BeginLabel = MMI.getContext().createTempSymbol(); 6143 6144 // For SjLj, keep track of which landing pads go with which invokes 6145 // so as to maintain the ordering of pads in the LSDA. 6146 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6147 if (CallSiteIndex) { 6148 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6149 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6150 6151 // Now that the call site is handled, stop tracking it. 6152 MMI.setCurrentCallSite(0); 6153 } 6154 6155 // Both PendingLoads and PendingExports must be flushed here; 6156 // this call might not return. 6157 (void)getRoot(); 6158 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6159 6160 CLI.setChain(getRoot()); 6161 } 6162 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6163 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6164 6165 assert((CLI.IsTailCall || Result.second.getNode()) && 6166 "Non-null chain expected with non-tail call!"); 6167 assert((Result.second.getNode() || !Result.first.getNode()) && 6168 "Null value expected with tail call!"); 6169 6170 if (!Result.second.getNode()) { 6171 // As a special case, a null chain means that a tail call has been emitted 6172 // and the DAG root is already updated. 6173 HasTailCall = true; 6174 6175 // Since there's no actual continuation from this block, nothing can be 6176 // relying on us setting vregs for them. 6177 PendingExports.clear(); 6178 } else { 6179 DAG.setRoot(Result.second); 6180 } 6181 6182 if (EHPadBB) { 6183 // Insert a label at the end of the invoke call to mark the try range. This 6184 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6185 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6186 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6187 6188 // Inform MachineModuleInfo of range. 6189 if (MF.hasEHFunclets()) { 6190 assert(CLI.CS); 6191 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6192 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6193 BeginLabel, EndLabel); 6194 } else { 6195 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6196 } 6197 } 6198 6199 return Result; 6200 } 6201 6202 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6203 bool isTailCall, 6204 const BasicBlock *EHPadBB) { 6205 auto &DL = DAG.getDataLayout(); 6206 FunctionType *FTy = CS.getFunctionType(); 6207 Type *RetTy = CS.getType(); 6208 6209 TargetLowering::ArgListTy Args; 6210 Args.reserve(CS.arg_size()); 6211 6212 const Value *SwiftErrorVal = nullptr; 6213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6214 6215 // We can't tail call inside a function with a swifterror argument. Lowering 6216 // does not support this yet. It would have to move into the swifterror 6217 // register before the call. 6218 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6219 if (TLI.supportSwiftError() && 6220 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6221 isTailCall = false; 6222 6223 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6224 i != e; ++i) { 6225 TargetLowering::ArgListEntry Entry; 6226 const Value *V = *i; 6227 6228 // Skip empty types 6229 if (V->getType()->isEmptyTy()) 6230 continue; 6231 6232 SDValue ArgNode = getValue(V); 6233 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6234 6235 Entry.setAttributes(&CS, i - CS.arg_begin()); 6236 6237 // Use swifterror virtual register as input to the call. 6238 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6239 SwiftErrorVal = V; 6240 // We find the virtual register for the actual swifterror argument. 6241 // Instead of using the Value, we use the virtual register instead. 6242 Entry.Node = DAG.getRegister(FuncInfo 6243 .getOrCreateSwiftErrorVRegUseAt( 6244 CS.getInstruction(), FuncInfo.MBB, V) 6245 .first, 6246 EVT(TLI.getPointerTy(DL))); 6247 } 6248 6249 Args.push_back(Entry); 6250 6251 // If we have an explicit sret argument that is an Instruction, (i.e., it 6252 // might point to function-local memory), we can't meaningfully tail-call. 6253 if (Entry.IsSRet && isa<Instruction>(V)) 6254 isTailCall = false; 6255 } 6256 6257 // Check if target-independent constraints permit a tail call here. 6258 // Target-dependent constraints are checked within TLI->LowerCallTo. 6259 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6260 isTailCall = false; 6261 6262 // Disable tail calls if there is an swifterror argument. Targets have not 6263 // been updated to support tail calls. 6264 if (TLI.supportSwiftError() && SwiftErrorVal) 6265 isTailCall = false; 6266 6267 TargetLowering::CallLoweringInfo CLI(DAG); 6268 CLI.setDebugLoc(getCurSDLoc()) 6269 .setChain(getRoot()) 6270 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6271 .setTailCall(isTailCall) 6272 .setConvergent(CS.isConvergent()); 6273 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6274 6275 if (Result.first.getNode()) { 6276 const Instruction *Inst = CS.getInstruction(); 6277 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6278 setValue(Inst, Result.first); 6279 } 6280 6281 // The last element of CLI.InVals has the SDValue for swifterror return. 6282 // Here we copy it to a virtual register and update SwiftErrorMap for 6283 // book-keeping. 6284 if (SwiftErrorVal && TLI.supportSwiftError()) { 6285 // Get the last element of InVals. 6286 SDValue Src = CLI.InVals.back(); 6287 unsigned VReg; bool CreatedVReg; 6288 std::tie(VReg, CreatedVReg) = 6289 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6290 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6291 // We update the virtual register for the actual swifterror argument. 6292 if (CreatedVReg) 6293 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6294 DAG.setRoot(CopyNode); 6295 } 6296 } 6297 6298 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6299 SelectionDAGBuilder &Builder) { 6300 // Check to see if this load can be trivially constant folded, e.g. if the 6301 // input is from a string literal. 6302 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6303 // Cast pointer to the type we really want to load. 6304 Type *LoadTy = 6305 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6306 if (LoadVT.isVector()) 6307 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6308 6309 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6310 PointerType::getUnqual(LoadTy)); 6311 6312 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6313 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6314 return Builder.getValue(LoadCst); 6315 } 6316 6317 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6318 // still constant memory, the input chain can be the entry node. 6319 SDValue Root; 6320 bool ConstantMemory = false; 6321 6322 // Do not serialize (non-volatile) loads of constant memory with anything. 6323 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6324 Root = Builder.DAG.getEntryNode(); 6325 ConstantMemory = true; 6326 } else { 6327 // Do not serialize non-volatile loads against each other. 6328 Root = Builder.DAG.getRoot(); 6329 } 6330 6331 SDValue Ptr = Builder.getValue(PtrVal); 6332 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6333 Ptr, MachinePointerInfo(PtrVal), 6334 /* Alignment = */ 1); 6335 6336 if (!ConstantMemory) 6337 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6338 return LoadVal; 6339 } 6340 6341 /// Record the value for an instruction that produces an integer result, 6342 /// converting the type where necessary. 6343 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6344 SDValue Value, 6345 bool IsSigned) { 6346 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6347 I.getType(), true); 6348 if (IsSigned) 6349 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6350 else 6351 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6352 setValue(&I, Value); 6353 } 6354 6355 /// See if we can lower a memcmp call into an optimized form. If so, return 6356 /// true and lower it. Otherwise return false, and it will be lowered like a 6357 /// normal call. 6358 /// The caller already checked that \p I calls the appropriate LibFunc with a 6359 /// correct prototype. 6360 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6361 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6362 const Value *Size = I.getArgOperand(2); 6363 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6364 if (CSize && CSize->getZExtValue() == 0) { 6365 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6366 I.getType(), true); 6367 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6368 return true; 6369 } 6370 6371 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6372 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6373 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6374 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6375 if (Res.first.getNode()) { 6376 processIntegerCallValue(I, Res.first, true); 6377 PendingLoads.push_back(Res.second); 6378 return true; 6379 } 6380 6381 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6382 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6383 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6384 return false; 6385 6386 // If the target has a fast compare for the given size, it will return a 6387 // preferred load type for that size. Require that the load VT is legal and 6388 // that the target supports unaligned loads of that type. Otherwise, return 6389 // INVALID. 6390 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6391 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6392 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6393 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6394 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6395 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6396 // TODO: Check alignment of src and dest ptrs. 6397 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6398 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6399 if (!TLI.isTypeLegal(LVT) || 6400 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6401 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6402 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6403 } 6404 6405 return LVT; 6406 }; 6407 6408 // This turns into unaligned loads. We only do this if the target natively 6409 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6410 // we'll only produce a small number of byte loads. 6411 MVT LoadVT; 6412 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6413 switch (NumBitsToCompare) { 6414 default: 6415 return false; 6416 case 16: 6417 LoadVT = MVT::i16; 6418 break; 6419 case 32: 6420 LoadVT = MVT::i32; 6421 break; 6422 case 64: 6423 case 128: 6424 case 256: 6425 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6426 break; 6427 } 6428 6429 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6430 return false; 6431 6432 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6433 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6434 6435 // Bitcast to a wide integer type if the loads are vectors. 6436 if (LoadVT.isVector()) { 6437 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6438 LoadL = DAG.getBitcast(CmpVT, LoadL); 6439 LoadR = DAG.getBitcast(CmpVT, LoadR); 6440 } 6441 6442 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6443 processIntegerCallValue(I, Cmp, false); 6444 return true; 6445 } 6446 6447 /// See if we can lower a memchr call into an optimized form. If so, return 6448 /// true and lower it. Otherwise return false, and it will be lowered like a 6449 /// normal call. 6450 /// The caller already checked that \p I calls the appropriate LibFunc with a 6451 /// correct prototype. 6452 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6453 const Value *Src = I.getArgOperand(0); 6454 const Value *Char = I.getArgOperand(1); 6455 const Value *Length = I.getArgOperand(2); 6456 6457 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6458 std::pair<SDValue, SDValue> Res = 6459 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6460 getValue(Src), getValue(Char), getValue(Length), 6461 MachinePointerInfo(Src)); 6462 if (Res.first.getNode()) { 6463 setValue(&I, Res.first); 6464 PendingLoads.push_back(Res.second); 6465 return true; 6466 } 6467 6468 return false; 6469 } 6470 6471 /// See if we can lower a mempcpy call into an optimized form. If so, return 6472 /// true and lower it. Otherwise return false, and it will be lowered like a 6473 /// normal call. 6474 /// The caller already checked that \p I calls the appropriate LibFunc with a 6475 /// correct prototype. 6476 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6477 SDValue Dst = getValue(I.getArgOperand(0)); 6478 SDValue Src = getValue(I.getArgOperand(1)); 6479 SDValue Size = getValue(I.getArgOperand(2)); 6480 6481 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6482 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6483 unsigned Align = std::min(DstAlign, SrcAlign); 6484 if (Align == 0) // Alignment of one or both could not be inferred. 6485 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6486 6487 bool isVol = false; 6488 SDLoc sdl = getCurSDLoc(); 6489 6490 // In the mempcpy context we need to pass in a false value for isTailCall 6491 // because the return pointer needs to be adjusted by the size of 6492 // the copied memory. 6493 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6494 false, /*isTailCall=*/false, 6495 MachinePointerInfo(I.getArgOperand(0)), 6496 MachinePointerInfo(I.getArgOperand(1))); 6497 assert(MC.getNode() != nullptr && 6498 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6499 DAG.setRoot(MC); 6500 6501 // Check if Size needs to be truncated or extended. 6502 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6503 6504 // Adjust return pointer to point just past the last dst byte. 6505 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6506 Dst, Size); 6507 setValue(&I, DstPlusSize); 6508 return true; 6509 } 6510 6511 /// See if we can lower a strcpy call into an optimized form. If so, return 6512 /// true and lower it, otherwise return false and it will be lowered like a 6513 /// normal call. 6514 /// The caller already checked that \p I calls the appropriate LibFunc with a 6515 /// correct prototype. 6516 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6517 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6518 6519 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6520 std::pair<SDValue, SDValue> Res = 6521 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6522 getValue(Arg0), getValue(Arg1), 6523 MachinePointerInfo(Arg0), 6524 MachinePointerInfo(Arg1), isStpcpy); 6525 if (Res.first.getNode()) { 6526 setValue(&I, Res.first); 6527 DAG.setRoot(Res.second); 6528 return true; 6529 } 6530 6531 return false; 6532 } 6533 6534 /// See if we can lower a strcmp call into an optimized form. If so, return 6535 /// true and lower it, otherwise return false and it will be lowered like a 6536 /// normal call. 6537 /// The caller already checked that \p I calls the appropriate LibFunc with a 6538 /// correct prototype. 6539 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6540 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6541 6542 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6543 std::pair<SDValue, SDValue> Res = 6544 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6545 getValue(Arg0), getValue(Arg1), 6546 MachinePointerInfo(Arg0), 6547 MachinePointerInfo(Arg1)); 6548 if (Res.first.getNode()) { 6549 processIntegerCallValue(I, Res.first, true); 6550 PendingLoads.push_back(Res.second); 6551 return true; 6552 } 6553 6554 return false; 6555 } 6556 6557 /// See if we can lower a strlen call into an optimized form. If so, return 6558 /// true and lower it, otherwise return false and it will be lowered like a 6559 /// normal call. 6560 /// The caller already checked that \p I calls the appropriate LibFunc with a 6561 /// correct prototype. 6562 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6563 const Value *Arg0 = I.getArgOperand(0); 6564 6565 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6566 std::pair<SDValue, SDValue> Res = 6567 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6568 getValue(Arg0), MachinePointerInfo(Arg0)); 6569 if (Res.first.getNode()) { 6570 processIntegerCallValue(I, Res.first, false); 6571 PendingLoads.push_back(Res.second); 6572 return true; 6573 } 6574 6575 return false; 6576 } 6577 6578 /// See if we can lower a strnlen call into an optimized form. If so, return 6579 /// true and lower it, otherwise return false and it will be lowered like a 6580 /// normal call. 6581 /// The caller already checked that \p I calls the appropriate LibFunc with a 6582 /// correct prototype. 6583 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6584 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6585 6586 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6587 std::pair<SDValue, SDValue> Res = 6588 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6589 getValue(Arg0), getValue(Arg1), 6590 MachinePointerInfo(Arg0)); 6591 if (Res.first.getNode()) { 6592 processIntegerCallValue(I, Res.first, false); 6593 PendingLoads.push_back(Res.second); 6594 return true; 6595 } 6596 6597 return false; 6598 } 6599 6600 /// See if we can lower a unary floating-point operation into an SDNode with 6601 /// the specified Opcode. If so, return true and lower it, otherwise return 6602 /// false and it will be lowered like a normal call. 6603 /// The caller already checked that \p I calls the appropriate LibFunc with a 6604 /// correct prototype. 6605 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6606 unsigned Opcode) { 6607 // We already checked this call's prototype; verify it doesn't modify errno. 6608 if (!I.onlyReadsMemory()) 6609 return false; 6610 6611 SDValue Tmp = getValue(I.getArgOperand(0)); 6612 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6613 return true; 6614 } 6615 6616 /// See if we can lower a binary floating-point operation into an SDNode with 6617 /// the specified Opcode. If so, return true and lower it. Otherwise return 6618 /// false, and it will be lowered like a normal call. 6619 /// The caller already checked that \p I calls the appropriate LibFunc with a 6620 /// correct prototype. 6621 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6622 unsigned Opcode) { 6623 // We already checked this call's prototype; verify it doesn't modify errno. 6624 if (!I.onlyReadsMemory()) 6625 return false; 6626 6627 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6628 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6629 EVT VT = Tmp0.getValueType(); 6630 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6631 return true; 6632 } 6633 6634 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6635 // Handle inline assembly differently. 6636 if (isa<InlineAsm>(I.getCalledValue())) { 6637 visitInlineAsm(&I); 6638 return; 6639 } 6640 6641 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6642 computeUsesVAFloatArgument(I, MMI); 6643 6644 const char *RenameFn = nullptr; 6645 if (Function *F = I.getCalledFunction()) { 6646 if (F->isDeclaration()) { 6647 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6648 if (unsigned IID = II->getIntrinsicID(F)) { 6649 RenameFn = visitIntrinsicCall(I, IID); 6650 if (!RenameFn) 6651 return; 6652 } 6653 } 6654 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6655 RenameFn = visitIntrinsicCall(I, IID); 6656 if (!RenameFn) 6657 return; 6658 } 6659 } 6660 6661 // Check for well-known libc/libm calls. If the function is internal, it 6662 // can't be a library call. Don't do the check if marked as nobuiltin for 6663 // some reason or the call site requires strict floating point semantics. 6664 LibFunc Func; 6665 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6666 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6667 LibInfo->hasOptimizedCodeGen(Func)) { 6668 switch (Func) { 6669 default: break; 6670 case LibFunc_copysign: 6671 case LibFunc_copysignf: 6672 case LibFunc_copysignl: 6673 // We already checked this call's prototype; verify it doesn't modify 6674 // errno. 6675 if (I.onlyReadsMemory()) { 6676 SDValue LHS = getValue(I.getArgOperand(0)); 6677 SDValue RHS = getValue(I.getArgOperand(1)); 6678 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6679 LHS.getValueType(), LHS, RHS)); 6680 return; 6681 } 6682 break; 6683 case LibFunc_fabs: 6684 case LibFunc_fabsf: 6685 case LibFunc_fabsl: 6686 if (visitUnaryFloatCall(I, ISD::FABS)) 6687 return; 6688 break; 6689 case LibFunc_fmin: 6690 case LibFunc_fminf: 6691 case LibFunc_fminl: 6692 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6693 return; 6694 break; 6695 case LibFunc_fmax: 6696 case LibFunc_fmaxf: 6697 case LibFunc_fmaxl: 6698 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6699 return; 6700 break; 6701 case LibFunc_sin: 6702 case LibFunc_sinf: 6703 case LibFunc_sinl: 6704 if (visitUnaryFloatCall(I, ISD::FSIN)) 6705 return; 6706 break; 6707 case LibFunc_cos: 6708 case LibFunc_cosf: 6709 case LibFunc_cosl: 6710 if (visitUnaryFloatCall(I, ISD::FCOS)) 6711 return; 6712 break; 6713 case LibFunc_sqrt: 6714 case LibFunc_sqrtf: 6715 case LibFunc_sqrtl: 6716 case LibFunc_sqrt_finite: 6717 case LibFunc_sqrtf_finite: 6718 case LibFunc_sqrtl_finite: 6719 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6720 return; 6721 break; 6722 case LibFunc_floor: 6723 case LibFunc_floorf: 6724 case LibFunc_floorl: 6725 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6726 return; 6727 break; 6728 case LibFunc_nearbyint: 6729 case LibFunc_nearbyintf: 6730 case LibFunc_nearbyintl: 6731 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6732 return; 6733 break; 6734 case LibFunc_ceil: 6735 case LibFunc_ceilf: 6736 case LibFunc_ceill: 6737 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6738 return; 6739 break; 6740 case LibFunc_rint: 6741 case LibFunc_rintf: 6742 case LibFunc_rintl: 6743 if (visitUnaryFloatCall(I, ISD::FRINT)) 6744 return; 6745 break; 6746 case LibFunc_round: 6747 case LibFunc_roundf: 6748 case LibFunc_roundl: 6749 if (visitUnaryFloatCall(I, ISD::FROUND)) 6750 return; 6751 break; 6752 case LibFunc_trunc: 6753 case LibFunc_truncf: 6754 case LibFunc_truncl: 6755 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6756 return; 6757 break; 6758 case LibFunc_log2: 6759 case LibFunc_log2f: 6760 case LibFunc_log2l: 6761 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6762 return; 6763 break; 6764 case LibFunc_exp2: 6765 case LibFunc_exp2f: 6766 case LibFunc_exp2l: 6767 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6768 return; 6769 break; 6770 case LibFunc_memcmp: 6771 if (visitMemCmpCall(I)) 6772 return; 6773 break; 6774 case LibFunc_mempcpy: 6775 if (visitMemPCpyCall(I)) 6776 return; 6777 break; 6778 case LibFunc_memchr: 6779 if (visitMemChrCall(I)) 6780 return; 6781 break; 6782 case LibFunc_strcpy: 6783 if (visitStrCpyCall(I, false)) 6784 return; 6785 break; 6786 case LibFunc_stpcpy: 6787 if (visitStrCpyCall(I, true)) 6788 return; 6789 break; 6790 case LibFunc_strcmp: 6791 if (visitStrCmpCall(I)) 6792 return; 6793 break; 6794 case LibFunc_strlen: 6795 if (visitStrLenCall(I)) 6796 return; 6797 break; 6798 case LibFunc_strnlen: 6799 if (visitStrNLenCall(I)) 6800 return; 6801 break; 6802 } 6803 } 6804 } 6805 6806 SDValue Callee; 6807 if (!RenameFn) 6808 Callee = getValue(I.getCalledValue()); 6809 else 6810 Callee = DAG.getExternalSymbol( 6811 RenameFn, 6812 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6813 6814 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6815 // have to do anything here to lower funclet bundles. 6816 assert(!I.hasOperandBundlesOtherThan( 6817 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6818 "Cannot lower calls with arbitrary operand bundles!"); 6819 6820 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6821 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6822 else 6823 // Check if we can potentially perform a tail call. More detailed checking 6824 // is be done within LowerCallTo, after more information about the call is 6825 // known. 6826 LowerCallTo(&I, Callee, I.isTailCall()); 6827 } 6828 6829 namespace { 6830 6831 /// AsmOperandInfo - This contains information for each constraint that we are 6832 /// lowering. 6833 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6834 public: 6835 /// CallOperand - If this is the result output operand or a clobber 6836 /// this is null, otherwise it is the incoming operand to the CallInst. 6837 /// This gets modified as the asm is processed. 6838 SDValue CallOperand; 6839 6840 /// AssignedRegs - If this is a register or register class operand, this 6841 /// contains the set of register corresponding to the operand. 6842 RegsForValue AssignedRegs; 6843 6844 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6845 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 6846 } 6847 6848 /// Whether or not this operand accesses memory 6849 bool hasMemory(const TargetLowering &TLI) const { 6850 // Indirect operand accesses access memory. 6851 if (isIndirect) 6852 return true; 6853 6854 for (const auto &Code : Codes) 6855 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6856 return true; 6857 6858 return false; 6859 } 6860 6861 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6862 /// corresponds to. If there is no Value* for this operand, it returns 6863 /// MVT::Other. 6864 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6865 const DataLayout &DL) const { 6866 if (!CallOperandVal) return MVT::Other; 6867 6868 if (isa<BasicBlock>(CallOperandVal)) 6869 return TLI.getPointerTy(DL); 6870 6871 llvm::Type *OpTy = CallOperandVal->getType(); 6872 6873 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6874 // If this is an indirect operand, the operand is a pointer to the 6875 // accessed type. 6876 if (isIndirect) { 6877 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6878 if (!PtrTy) 6879 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6880 OpTy = PtrTy->getElementType(); 6881 } 6882 6883 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6884 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6885 if (STy->getNumElements() == 1) 6886 OpTy = STy->getElementType(0); 6887 6888 // If OpTy is not a single value, it may be a struct/union that we 6889 // can tile with integers. 6890 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6891 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6892 switch (BitSize) { 6893 default: break; 6894 case 1: 6895 case 8: 6896 case 16: 6897 case 32: 6898 case 64: 6899 case 128: 6900 OpTy = IntegerType::get(Context, BitSize); 6901 break; 6902 } 6903 } 6904 6905 return TLI.getValueType(DL, OpTy, true); 6906 } 6907 }; 6908 6909 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 6910 6911 } // end anonymous namespace 6912 6913 /// Make sure that the output operand \p OpInfo and its corresponding input 6914 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6915 /// out). 6916 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6917 SDISelAsmOperandInfo &MatchingOpInfo, 6918 SelectionDAG &DAG) { 6919 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6920 return; 6921 6922 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6923 const auto &TLI = DAG.getTargetLoweringInfo(); 6924 6925 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6926 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6927 OpInfo.ConstraintVT); 6928 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6929 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6930 MatchingOpInfo.ConstraintVT); 6931 if ((OpInfo.ConstraintVT.isInteger() != 6932 MatchingOpInfo.ConstraintVT.isInteger()) || 6933 (MatchRC.second != InputRC.second)) { 6934 // FIXME: error out in a more elegant fashion 6935 report_fatal_error("Unsupported asm: input constraint" 6936 " with a matching output constraint of" 6937 " incompatible type!"); 6938 } 6939 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6940 } 6941 6942 /// Get a direct memory input to behave well as an indirect operand. 6943 /// This may introduce stores, hence the need for a \p Chain. 6944 /// \return The (possibly updated) chain. 6945 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6946 SDISelAsmOperandInfo &OpInfo, 6947 SelectionDAG &DAG) { 6948 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6949 6950 // If we don't have an indirect input, put it in the constpool if we can, 6951 // otherwise spill it to a stack slot. 6952 // TODO: This isn't quite right. We need to handle these according to 6953 // the addressing mode that the constraint wants. Also, this may take 6954 // an additional register for the computation and we don't want that 6955 // either. 6956 6957 // If the operand is a float, integer, or vector constant, spill to a 6958 // constant pool entry to get its address. 6959 const Value *OpVal = OpInfo.CallOperandVal; 6960 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6961 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6962 OpInfo.CallOperand = DAG.getConstantPool( 6963 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6964 return Chain; 6965 } 6966 6967 // Otherwise, create a stack slot and emit a store to it before the asm. 6968 Type *Ty = OpVal->getType(); 6969 auto &DL = DAG.getDataLayout(); 6970 uint64_t TySize = DL.getTypeAllocSize(Ty); 6971 unsigned Align = DL.getPrefTypeAlignment(Ty); 6972 MachineFunction &MF = DAG.getMachineFunction(); 6973 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6974 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 6975 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6976 MachinePointerInfo::getFixedStack(MF, SSFI)); 6977 OpInfo.CallOperand = StackSlot; 6978 6979 return Chain; 6980 } 6981 6982 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6983 /// specified operand. We prefer to assign virtual registers, to allow the 6984 /// register allocator to handle the assignment process. However, if the asm 6985 /// uses features that we can't model on machineinstrs, we have SDISel do the 6986 /// allocation. This produces generally horrible, but correct, code. 6987 /// 6988 /// OpInfo describes the operand. 6989 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6990 const SDLoc &DL, 6991 SDISelAsmOperandInfo &OpInfo) { 6992 LLVMContext &Context = *DAG.getContext(); 6993 6994 MachineFunction &MF = DAG.getMachineFunction(); 6995 SmallVector<unsigned, 4> Regs; 6996 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6997 6998 // If this is a constraint for a single physreg, or a constraint for a 6999 // register class, find it. 7000 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7001 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 7002 OpInfo.ConstraintVT); 7003 7004 unsigned NumRegs = 1; 7005 if (OpInfo.ConstraintVT != MVT::Other) { 7006 // If this is a FP input in an integer register (or visa versa) insert a bit 7007 // cast of the input value. More generally, handle any case where the input 7008 // value disagrees with the register class we plan to stick this in. 7009 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 7010 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7011 // Try to convert to the first EVT that the reg class contains. If the 7012 // types are identical size, use a bitcast to convert (e.g. two differing 7013 // vector types). 7014 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7015 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 7016 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7017 RegVT, OpInfo.CallOperand); 7018 OpInfo.ConstraintVT = RegVT; 7019 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7020 // If the input is a FP value and we want it in FP registers, do a 7021 // bitcast to the corresponding integer type. This turns an f64 value 7022 // into i64, which can be passed with two i32 values on a 32-bit 7023 // machine. 7024 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7025 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7026 RegVT, OpInfo.CallOperand); 7027 OpInfo.ConstraintVT = RegVT; 7028 } 7029 } 7030 7031 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7032 } 7033 7034 MVT RegVT; 7035 EVT ValueVT = OpInfo.ConstraintVT; 7036 7037 // If this is a constraint for a specific physical register, like {r17}, 7038 // assign it now. 7039 if (unsigned AssignedReg = PhysReg.first) { 7040 const TargetRegisterClass *RC = PhysReg.second; 7041 if (OpInfo.ConstraintVT == MVT::Other) 7042 ValueVT = *TRI.legalclasstypes_begin(*RC); 7043 7044 // Get the actual register value type. This is important, because the user 7045 // may have asked for (e.g.) the AX register in i32 type. We need to 7046 // remember that AX is actually i16 to get the right extension. 7047 RegVT = *TRI.legalclasstypes_begin(*RC); 7048 7049 // This is a explicit reference to a physical register. 7050 Regs.push_back(AssignedReg); 7051 7052 // If this is an expanded reference, add the rest of the regs to Regs. 7053 if (NumRegs != 1) { 7054 TargetRegisterClass::iterator I = RC->begin(); 7055 for (; *I != AssignedReg; ++I) 7056 assert(I != RC->end() && "Didn't find reg!"); 7057 7058 // Already added the first reg. 7059 --NumRegs; ++I; 7060 for (; NumRegs; --NumRegs, ++I) { 7061 assert(I != RC->end() && "Ran out of registers to allocate!"); 7062 Regs.push_back(*I); 7063 } 7064 } 7065 7066 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7067 return; 7068 } 7069 7070 // Otherwise, if this was a reference to an LLVM register class, create vregs 7071 // for this reference. 7072 if (const TargetRegisterClass *RC = PhysReg.second) { 7073 RegVT = *TRI.legalclasstypes_begin(*RC); 7074 if (OpInfo.ConstraintVT == MVT::Other) 7075 ValueVT = RegVT; 7076 7077 // Create the appropriate number of virtual registers. 7078 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7079 for (; NumRegs; --NumRegs) 7080 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7081 7082 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7083 return; 7084 } 7085 7086 // Otherwise, we couldn't allocate enough registers for this. 7087 } 7088 7089 static unsigned 7090 findMatchingInlineAsmOperand(unsigned OperandNo, 7091 const std::vector<SDValue> &AsmNodeOperands) { 7092 // Scan until we find the definition we already emitted of this operand. 7093 unsigned CurOp = InlineAsm::Op_FirstOperand; 7094 for (; OperandNo; --OperandNo) { 7095 // Advance to the next operand. 7096 unsigned OpFlag = 7097 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7098 assert((InlineAsm::isRegDefKind(OpFlag) || 7099 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7100 InlineAsm::isMemKind(OpFlag)) && 7101 "Skipped past definitions?"); 7102 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7103 } 7104 return CurOp; 7105 } 7106 7107 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7108 /// \return true if it has succeeded, false otherwise 7109 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7110 MVT RegVT, SelectionDAG &DAG) { 7111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7112 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7113 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7114 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7115 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7116 else 7117 return false; 7118 } 7119 return true; 7120 } 7121 7122 namespace { 7123 7124 class ExtraFlags { 7125 unsigned Flags = 0; 7126 7127 public: 7128 explicit ExtraFlags(ImmutableCallSite CS) { 7129 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7130 if (IA->hasSideEffects()) 7131 Flags |= InlineAsm::Extra_HasSideEffects; 7132 if (IA->isAlignStack()) 7133 Flags |= InlineAsm::Extra_IsAlignStack; 7134 if (CS.isConvergent()) 7135 Flags |= InlineAsm::Extra_IsConvergent; 7136 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7137 } 7138 7139 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7140 // Ideally, we would only check against memory constraints. However, the 7141 // meaning of an Other constraint can be target-specific and we can't easily 7142 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7143 // for Other constraints as well. 7144 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7145 OpInfo.ConstraintType == TargetLowering::C_Other) { 7146 if (OpInfo.Type == InlineAsm::isInput) 7147 Flags |= InlineAsm::Extra_MayLoad; 7148 else if (OpInfo.Type == InlineAsm::isOutput) 7149 Flags |= InlineAsm::Extra_MayStore; 7150 else if (OpInfo.Type == InlineAsm::isClobber) 7151 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7152 } 7153 } 7154 7155 unsigned get() const { return Flags; } 7156 }; 7157 7158 } // end anonymous namespace 7159 7160 /// visitInlineAsm - Handle a call to an InlineAsm object. 7161 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7162 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7163 7164 /// ConstraintOperands - Information about all of the constraints. 7165 SDISelAsmOperandInfoVector ConstraintOperands; 7166 7167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7168 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7169 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7170 7171 bool hasMemory = false; 7172 7173 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7174 ExtraFlags ExtraInfo(CS); 7175 7176 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7177 unsigned ResNo = 0; // ResNo - The result number of the next output. 7178 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7179 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7180 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7181 7182 MVT OpVT = MVT::Other; 7183 7184 // Compute the value type for each operand. 7185 if (OpInfo.Type == InlineAsm::isInput || 7186 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7187 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7188 7189 // Process the call argument. BasicBlocks are labels, currently appearing 7190 // only in asm's. 7191 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7192 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7193 } else { 7194 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7195 } 7196 7197 OpVT = 7198 OpInfo 7199 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7200 .getSimpleVT(); 7201 } 7202 7203 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7204 // The return value of the call is this value. As such, there is no 7205 // corresponding argument. 7206 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7207 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7208 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7209 STy->getElementType(ResNo)); 7210 } else { 7211 assert(ResNo == 0 && "Asm only has one result!"); 7212 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7213 } 7214 ++ResNo; 7215 } 7216 7217 OpInfo.ConstraintVT = OpVT; 7218 7219 if (!hasMemory) 7220 hasMemory = OpInfo.hasMemory(TLI); 7221 7222 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7223 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7224 auto TargetConstraint = TargetConstraints[i]; 7225 7226 // Compute the constraint code and ConstraintType to use. 7227 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7228 7229 ExtraInfo.update(TargetConstraint); 7230 } 7231 7232 SDValue Chain, Flag; 7233 7234 // We won't need to flush pending loads if this asm doesn't touch 7235 // memory and is nonvolatile. 7236 if (hasMemory || IA->hasSideEffects()) 7237 Chain = getRoot(); 7238 else 7239 Chain = DAG.getRoot(); 7240 7241 // Second pass over the constraints: compute which constraint option to use 7242 // and assign registers to constraints that want a specific physreg. 7243 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7244 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7245 7246 // If this is an output operand with a matching input operand, look up the 7247 // matching input. If their types mismatch, e.g. one is an integer, the 7248 // other is floating point, or their sizes are different, flag it as an 7249 // error. 7250 if (OpInfo.hasMatchingInput()) { 7251 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7252 patchMatchingInput(OpInfo, Input, DAG); 7253 } 7254 7255 // Compute the constraint code and ConstraintType to use. 7256 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7257 7258 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7259 OpInfo.Type == InlineAsm::isClobber) 7260 continue; 7261 7262 // If this is a memory input, and if the operand is not indirect, do what we 7263 // need to to provide an address for the memory input. 7264 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7265 !OpInfo.isIndirect) { 7266 assert((OpInfo.isMultipleAlternative || 7267 (OpInfo.Type == InlineAsm::isInput)) && 7268 "Can only indirectify direct input operands!"); 7269 7270 // Memory operands really want the address of the value. 7271 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7272 7273 // There is no longer a Value* corresponding to this operand. 7274 OpInfo.CallOperandVal = nullptr; 7275 7276 // It is now an indirect operand. 7277 OpInfo.isIndirect = true; 7278 } 7279 7280 // If this constraint is for a specific register, allocate it before 7281 // anything else. 7282 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7283 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7284 } 7285 7286 // Third pass - Loop over all of the operands, assigning virtual or physregs 7287 // to register class operands. 7288 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7289 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7290 7291 // C_Register operands have already been allocated, Other/Memory don't need 7292 // to be. 7293 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7294 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7295 } 7296 7297 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7298 std::vector<SDValue> AsmNodeOperands; 7299 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7300 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7301 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7302 7303 // If we have a !srcloc metadata node associated with it, we want to attach 7304 // this to the ultimately generated inline asm machineinstr. To do this, we 7305 // pass in the third operand as this (potentially null) inline asm MDNode. 7306 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7307 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7308 7309 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7310 // bits as operand 3. 7311 AsmNodeOperands.push_back(DAG.getTargetConstant( 7312 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7313 7314 // Loop over all of the inputs, copying the operand values into the 7315 // appropriate registers and processing the output regs. 7316 RegsForValue RetValRegs; 7317 7318 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7319 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7320 7321 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7322 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7323 7324 switch (OpInfo.Type) { 7325 case InlineAsm::isOutput: 7326 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7327 OpInfo.ConstraintType != TargetLowering::C_Register) { 7328 // Memory output, or 'other' output (e.g. 'X' constraint). 7329 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7330 7331 unsigned ConstraintID = 7332 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7333 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7334 "Failed to convert memory constraint code to constraint id."); 7335 7336 // Add information to the INLINEASM node to know about this output. 7337 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7338 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7339 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7340 MVT::i32)); 7341 AsmNodeOperands.push_back(OpInfo.CallOperand); 7342 break; 7343 } 7344 7345 // Otherwise, this is a register or register class output. 7346 7347 // Copy the output from the appropriate register. Find a register that 7348 // we can use. 7349 if (OpInfo.AssignedRegs.Regs.empty()) { 7350 emitInlineAsmError( 7351 CS, "couldn't allocate output register for constraint '" + 7352 Twine(OpInfo.ConstraintCode) + "'"); 7353 return; 7354 } 7355 7356 // If this is an indirect operand, store through the pointer after the 7357 // asm. 7358 if (OpInfo.isIndirect) { 7359 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7360 OpInfo.CallOperandVal)); 7361 } else { 7362 // This is the result value of the call. 7363 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7364 // Concatenate this output onto the outputs list. 7365 RetValRegs.append(OpInfo.AssignedRegs); 7366 } 7367 7368 // Add information to the INLINEASM node to know that this register is 7369 // set. 7370 OpInfo.AssignedRegs 7371 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7372 ? InlineAsm::Kind_RegDefEarlyClobber 7373 : InlineAsm::Kind_RegDef, 7374 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7375 break; 7376 7377 case InlineAsm::isInput: { 7378 SDValue InOperandVal = OpInfo.CallOperand; 7379 7380 if (OpInfo.isMatchingInputConstraint()) { 7381 // If this is required to match an output register we have already set, 7382 // just use its register. 7383 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7384 AsmNodeOperands); 7385 unsigned OpFlag = 7386 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7387 if (InlineAsm::isRegDefKind(OpFlag) || 7388 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7389 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7390 if (OpInfo.isIndirect) { 7391 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7392 emitInlineAsmError(CS, "inline asm not supported yet:" 7393 " don't know how to handle tied " 7394 "indirect register inputs"); 7395 return; 7396 } 7397 7398 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7399 SmallVector<unsigned, 4> Regs; 7400 7401 if (!createVirtualRegs(Regs, 7402 InlineAsm::getNumOperandRegisters(OpFlag), 7403 RegVT, DAG)) { 7404 emitInlineAsmError(CS, "inline asm error: This value type register " 7405 "class is not natively supported!"); 7406 return; 7407 } 7408 7409 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7410 7411 SDLoc dl = getCurSDLoc(); 7412 // Use the produced MatchedRegs object to 7413 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7414 CS.getInstruction()); 7415 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7416 true, OpInfo.getMatchedOperand(), dl, 7417 DAG, AsmNodeOperands); 7418 break; 7419 } 7420 7421 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7422 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7423 "Unexpected number of operands"); 7424 // Add information to the INLINEASM node to know about this input. 7425 // See InlineAsm.h isUseOperandTiedToDef. 7426 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7427 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7428 OpInfo.getMatchedOperand()); 7429 AsmNodeOperands.push_back(DAG.getTargetConstant( 7430 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7431 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7432 break; 7433 } 7434 7435 // Treat indirect 'X' constraint as memory. 7436 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7437 OpInfo.isIndirect) 7438 OpInfo.ConstraintType = TargetLowering::C_Memory; 7439 7440 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7441 std::vector<SDValue> Ops; 7442 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7443 Ops, DAG); 7444 if (Ops.empty()) { 7445 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7446 Twine(OpInfo.ConstraintCode) + "'"); 7447 return; 7448 } 7449 7450 // Add information to the INLINEASM node to know about this input. 7451 unsigned ResOpType = 7452 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7453 AsmNodeOperands.push_back(DAG.getTargetConstant( 7454 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7455 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7456 break; 7457 } 7458 7459 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7460 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7461 assert(InOperandVal.getValueType() == 7462 TLI.getPointerTy(DAG.getDataLayout()) && 7463 "Memory operands expect pointer values"); 7464 7465 unsigned ConstraintID = 7466 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7467 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7468 "Failed to convert memory constraint code to constraint id."); 7469 7470 // Add information to the INLINEASM node to know about this input. 7471 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7472 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7473 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7474 getCurSDLoc(), 7475 MVT::i32)); 7476 AsmNodeOperands.push_back(InOperandVal); 7477 break; 7478 } 7479 7480 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7481 OpInfo.ConstraintType == TargetLowering::C_Register) && 7482 "Unknown constraint type!"); 7483 7484 // TODO: Support this. 7485 if (OpInfo.isIndirect) { 7486 emitInlineAsmError( 7487 CS, "Don't know how to handle indirect register inputs yet " 7488 "for constraint '" + 7489 Twine(OpInfo.ConstraintCode) + "'"); 7490 return; 7491 } 7492 7493 // Copy the input into the appropriate registers. 7494 if (OpInfo.AssignedRegs.Regs.empty()) { 7495 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7496 Twine(OpInfo.ConstraintCode) + "'"); 7497 return; 7498 } 7499 7500 SDLoc dl = getCurSDLoc(); 7501 7502 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7503 Chain, &Flag, CS.getInstruction()); 7504 7505 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7506 dl, DAG, AsmNodeOperands); 7507 break; 7508 } 7509 case InlineAsm::isClobber: 7510 // Add the clobbered value to the operand list, so that the register 7511 // allocator is aware that the physreg got clobbered. 7512 if (!OpInfo.AssignedRegs.Regs.empty()) 7513 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7514 false, 0, getCurSDLoc(), DAG, 7515 AsmNodeOperands); 7516 break; 7517 } 7518 } 7519 7520 // Finish up input operands. Set the input chain and add the flag last. 7521 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7522 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7523 7524 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7525 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7526 Flag = Chain.getValue(1); 7527 7528 // If this asm returns a register value, copy the result from that register 7529 // and set it as the value of the call. 7530 if (!RetValRegs.Regs.empty()) { 7531 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7532 Chain, &Flag, CS.getInstruction()); 7533 7534 // FIXME: Why don't we do this for inline asms with MRVs? 7535 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7536 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7537 7538 // If any of the results of the inline asm is a vector, it may have the 7539 // wrong width/num elts. This can happen for register classes that can 7540 // contain multiple different value types. The preg or vreg allocated may 7541 // not have the same VT as was expected. Convert it to the right type 7542 // with bit_convert. 7543 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7544 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7545 ResultType, Val); 7546 7547 } else if (ResultType != Val.getValueType() && 7548 ResultType.isInteger() && Val.getValueType().isInteger()) { 7549 // If a result value was tied to an input value, the computed result may 7550 // have a wider width than the expected result. Extract the relevant 7551 // portion. 7552 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7553 } 7554 7555 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7556 } 7557 7558 setValue(CS.getInstruction(), Val); 7559 // Don't need to use this as a chain in this case. 7560 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7561 return; 7562 } 7563 7564 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7565 7566 // Process indirect outputs, first output all of the flagged copies out of 7567 // physregs. 7568 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7569 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7570 const Value *Ptr = IndirectStoresToEmit[i].second; 7571 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7572 Chain, &Flag, IA); 7573 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7574 } 7575 7576 // Emit the non-flagged stores from the physregs. 7577 SmallVector<SDValue, 8> OutChains; 7578 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7579 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7580 getValue(StoresToEmit[i].second), 7581 MachinePointerInfo(StoresToEmit[i].second)); 7582 OutChains.push_back(Val); 7583 } 7584 7585 if (!OutChains.empty()) 7586 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7587 7588 DAG.setRoot(Chain); 7589 } 7590 7591 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7592 const Twine &Message) { 7593 LLVMContext &Ctx = *DAG.getContext(); 7594 Ctx.emitError(CS.getInstruction(), Message); 7595 7596 // Make sure we leave the DAG in a valid state 7597 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7598 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7599 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7600 } 7601 7602 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7603 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7604 MVT::Other, getRoot(), 7605 getValue(I.getArgOperand(0)), 7606 DAG.getSrcValue(I.getArgOperand(0)))); 7607 } 7608 7609 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7610 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7611 const DataLayout &DL = DAG.getDataLayout(); 7612 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7613 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7614 DAG.getSrcValue(I.getOperand(0)), 7615 DL.getABITypeAlignment(I.getType())); 7616 setValue(&I, V); 7617 DAG.setRoot(V.getValue(1)); 7618 } 7619 7620 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7621 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7622 MVT::Other, getRoot(), 7623 getValue(I.getArgOperand(0)), 7624 DAG.getSrcValue(I.getArgOperand(0)))); 7625 } 7626 7627 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7628 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7629 MVT::Other, getRoot(), 7630 getValue(I.getArgOperand(0)), 7631 getValue(I.getArgOperand(1)), 7632 DAG.getSrcValue(I.getArgOperand(0)), 7633 DAG.getSrcValue(I.getArgOperand(1)))); 7634 } 7635 7636 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7637 const Instruction &I, 7638 SDValue Op) { 7639 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7640 if (!Range) 7641 return Op; 7642 7643 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7644 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7645 return Op; 7646 7647 APInt Lo = CR.getUnsignedMin(); 7648 if (!Lo.isMinValue()) 7649 return Op; 7650 7651 APInt Hi = CR.getUnsignedMax(); 7652 unsigned Bits = Hi.getActiveBits(); 7653 7654 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7655 7656 SDLoc SL = getCurSDLoc(); 7657 7658 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7659 DAG.getValueType(SmallVT)); 7660 unsigned NumVals = Op.getNode()->getNumValues(); 7661 if (NumVals == 1) 7662 return ZExt; 7663 7664 SmallVector<SDValue, 4> Ops; 7665 7666 Ops.push_back(ZExt); 7667 for (unsigned I = 1; I != NumVals; ++I) 7668 Ops.push_back(Op.getValue(I)); 7669 7670 return DAG.getMergeValues(Ops, SL); 7671 } 7672 7673 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7674 /// the call being lowered. 7675 /// 7676 /// This is a helper for lowering intrinsics that follow a target calling 7677 /// convention or require stack pointer adjustment. Only a subset of the 7678 /// intrinsic's operands need to participate in the calling convention. 7679 void SelectionDAGBuilder::populateCallLoweringInfo( 7680 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7681 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7682 bool IsPatchPoint) { 7683 TargetLowering::ArgListTy Args; 7684 Args.reserve(NumArgs); 7685 7686 // Populate the argument list. 7687 // Attributes for args start at offset 1, after the return attribute. 7688 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7689 ArgI != ArgE; ++ArgI) { 7690 const Value *V = CS->getOperand(ArgI); 7691 7692 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7693 7694 TargetLowering::ArgListEntry Entry; 7695 Entry.Node = getValue(V); 7696 Entry.Ty = V->getType(); 7697 Entry.setAttributes(&CS, ArgIdx); 7698 Args.push_back(Entry); 7699 } 7700 7701 CLI.setDebugLoc(getCurSDLoc()) 7702 .setChain(getRoot()) 7703 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7704 .setDiscardResult(CS->use_empty()) 7705 .setIsPatchPoint(IsPatchPoint); 7706 } 7707 7708 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7709 /// or patchpoint target node's operand list. 7710 /// 7711 /// Constants are converted to TargetConstants purely as an optimization to 7712 /// avoid constant materialization and register allocation. 7713 /// 7714 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7715 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7716 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7717 /// address materialization and register allocation, but may also be required 7718 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7719 /// alloca in the entry block, then the runtime may assume that the alloca's 7720 /// StackMap location can be read immediately after compilation and that the 7721 /// location is valid at any point during execution (this is similar to the 7722 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7723 /// only available in a register, then the runtime would need to trap when 7724 /// execution reaches the StackMap in order to read the alloca's location. 7725 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7726 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7727 SelectionDAGBuilder &Builder) { 7728 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7729 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7730 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7731 Ops.push_back( 7732 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7733 Ops.push_back( 7734 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7735 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7736 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7737 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7738 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7739 } else 7740 Ops.push_back(OpVal); 7741 } 7742 } 7743 7744 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7745 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7746 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7747 // [live variables...]) 7748 7749 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7750 7751 SDValue Chain, InFlag, Callee, NullPtr; 7752 SmallVector<SDValue, 32> Ops; 7753 7754 SDLoc DL = getCurSDLoc(); 7755 Callee = getValue(CI.getCalledValue()); 7756 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7757 7758 // The stackmap intrinsic only records the live variables (the arguemnts 7759 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7760 // intrinsic, this won't be lowered to a function call. This means we don't 7761 // have to worry about calling conventions and target specific lowering code. 7762 // Instead we perform the call lowering right here. 7763 // 7764 // chain, flag = CALLSEQ_START(chain, 0, 0) 7765 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7766 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7767 // 7768 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7769 InFlag = Chain.getValue(1); 7770 7771 // Add the <id> and <numBytes> constants. 7772 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7773 Ops.push_back(DAG.getTargetConstant( 7774 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7775 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7776 Ops.push_back(DAG.getTargetConstant( 7777 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7778 MVT::i32)); 7779 7780 // Push live variables for the stack map. 7781 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7782 7783 // We are not pushing any register mask info here on the operands list, 7784 // because the stackmap doesn't clobber anything. 7785 7786 // Push the chain and the glue flag. 7787 Ops.push_back(Chain); 7788 Ops.push_back(InFlag); 7789 7790 // Create the STACKMAP node. 7791 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7792 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7793 Chain = SDValue(SM, 0); 7794 InFlag = Chain.getValue(1); 7795 7796 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7797 7798 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7799 7800 // Set the root to the target-lowered call chain. 7801 DAG.setRoot(Chain); 7802 7803 // Inform the Frame Information that we have a stackmap in this function. 7804 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7805 } 7806 7807 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7808 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7809 const BasicBlock *EHPadBB) { 7810 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7811 // i32 <numBytes>, 7812 // i8* <target>, 7813 // i32 <numArgs>, 7814 // [Args...], 7815 // [live variables...]) 7816 7817 CallingConv::ID CC = CS.getCallingConv(); 7818 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7819 bool HasDef = !CS->getType()->isVoidTy(); 7820 SDLoc dl = getCurSDLoc(); 7821 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7822 7823 // Handle immediate and symbolic callees. 7824 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7825 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7826 /*isTarget=*/true); 7827 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7828 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7829 SDLoc(SymbolicCallee), 7830 SymbolicCallee->getValueType(0)); 7831 7832 // Get the real number of arguments participating in the call <numArgs> 7833 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7834 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7835 7836 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7837 // Intrinsics include all meta-operands up to but not including CC. 7838 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7839 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7840 "Not enough arguments provided to the patchpoint intrinsic"); 7841 7842 // For AnyRegCC the arguments are lowered later on manually. 7843 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7844 Type *ReturnTy = 7845 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7846 7847 TargetLowering::CallLoweringInfo CLI(DAG); 7848 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7849 true); 7850 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7851 7852 SDNode *CallEnd = Result.second.getNode(); 7853 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7854 CallEnd = CallEnd->getOperand(0).getNode(); 7855 7856 /// Get a call instruction from the call sequence chain. 7857 /// Tail calls are not allowed. 7858 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7859 "Expected a callseq node."); 7860 SDNode *Call = CallEnd->getOperand(0).getNode(); 7861 bool HasGlue = Call->getGluedNode(); 7862 7863 // Replace the target specific call node with the patchable intrinsic. 7864 SmallVector<SDValue, 8> Ops; 7865 7866 // Add the <id> and <numBytes> constants. 7867 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7868 Ops.push_back(DAG.getTargetConstant( 7869 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7870 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7871 Ops.push_back(DAG.getTargetConstant( 7872 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7873 MVT::i32)); 7874 7875 // Add the callee. 7876 Ops.push_back(Callee); 7877 7878 // Adjust <numArgs> to account for any arguments that have been passed on the 7879 // stack instead. 7880 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7881 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7882 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7883 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7884 7885 // Add the calling convention 7886 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7887 7888 // Add the arguments we omitted previously. The register allocator should 7889 // place these in any free register. 7890 if (IsAnyRegCC) 7891 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7892 Ops.push_back(getValue(CS.getArgument(i))); 7893 7894 // Push the arguments from the call instruction up to the register mask. 7895 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7896 Ops.append(Call->op_begin() + 2, e); 7897 7898 // Push live variables for the stack map. 7899 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7900 7901 // Push the register mask info. 7902 if (HasGlue) 7903 Ops.push_back(*(Call->op_end()-2)); 7904 else 7905 Ops.push_back(*(Call->op_end()-1)); 7906 7907 // Push the chain (this is originally the first operand of the call, but 7908 // becomes now the last or second to last operand). 7909 Ops.push_back(*(Call->op_begin())); 7910 7911 // Push the glue flag (last operand). 7912 if (HasGlue) 7913 Ops.push_back(*(Call->op_end()-1)); 7914 7915 SDVTList NodeTys; 7916 if (IsAnyRegCC && HasDef) { 7917 // Create the return types based on the intrinsic definition 7918 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7919 SmallVector<EVT, 3> ValueVTs; 7920 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7921 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7922 7923 // There is always a chain and a glue type at the end 7924 ValueVTs.push_back(MVT::Other); 7925 ValueVTs.push_back(MVT::Glue); 7926 NodeTys = DAG.getVTList(ValueVTs); 7927 } else 7928 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7929 7930 // Replace the target specific call node with a PATCHPOINT node. 7931 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7932 dl, NodeTys, Ops); 7933 7934 // Update the NodeMap. 7935 if (HasDef) { 7936 if (IsAnyRegCC) 7937 setValue(CS.getInstruction(), SDValue(MN, 0)); 7938 else 7939 setValue(CS.getInstruction(), Result.first); 7940 } 7941 7942 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7943 // call sequence. Furthermore the location of the chain and glue can change 7944 // when the AnyReg calling convention is used and the intrinsic returns a 7945 // value. 7946 if (IsAnyRegCC && HasDef) { 7947 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7948 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7949 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7950 } else 7951 DAG.ReplaceAllUsesWith(Call, MN); 7952 DAG.DeleteNode(Call); 7953 7954 // Inform the Frame Information that we have a patchpoint in this function. 7955 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7956 } 7957 7958 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 7959 unsigned Intrinsic) { 7960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7961 SDValue Op1 = getValue(I.getArgOperand(0)); 7962 SDValue Op2; 7963 if (I.getNumArgOperands() > 1) 7964 Op2 = getValue(I.getArgOperand(1)); 7965 SDLoc dl = getCurSDLoc(); 7966 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7967 SDValue Res; 7968 FastMathFlags FMF; 7969 if (isa<FPMathOperator>(I)) 7970 FMF = I.getFastMathFlags(); 7971 SDNodeFlags SDFlags; 7972 SDFlags.setNoNaNs(FMF.noNaNs()); 7973 7974 switch (Intrinsic) { 7975 case Intrinsic::experimental_vector_reduce_fadd: 7976 if (FMF.isFast()) 7977 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 7978 else 7979 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 7980 break; 7981 case Intrinsic::experimental_vector_reduce_fmul: 7982 if (FMF.isFast()) 7983 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 7984 else 7985 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 7986 break; 7987 case Intrinsic::experimental_vector_reduce_add: 7988 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 7989 break; 7990 case Intrinsic::experimental_vector_reduce_mul: 7991 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 7992 break; 7993 case Intrinsic::experimental_vector_reduce_and: 7994 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 7995 break; 7996 case Intrinsic::experimental_vector_reduce_or: 7997 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 7998 break; 7999 case Intrinsic::experimental_vector_reduce_xor: 8000 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8001 break; 8002 case Intrinsic::experimental_vector_reduce_smax: 8003 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8004 break; 8005 case Intrinsic::experimental_vector_reduce_smin: 8006 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8007 break; 8008 case Intrinsic::experimental_vector_reduce_umax: 8009 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8010 break; 8011 case Intrinsic::experimental_vector_reduce_umin: 8012 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8013 break; 8014 case Intrinsic::experimental_vector_reduce_fmax: 8015 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 8016 break; 8017 case Intrinsic::experimental_vector_reduce_fmin: 8018 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 8019 break; 8020 default: 8021 llvm_unreachable("Unhandled vector reduce intrinsic"); 8022 } 8023 setValue(&I, Res); 8024 } 8025 8026 /// Returns an AttributeList representing the attributes applied to the return 8027 /// value of the given call. 8028 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8029 SmallVector<Attribute::AttrKind, 2> Attrs; 8030 if (CLI.RetSExt) 8031 Attrs.push_back(Attribute::SExt); 8032 if (CLI.RetZExt) 8033 Attrs.push_back(Attribute::ZExt); 8034 if (CLI.IsInReg) 8035 Attrs.push_back(Attribute::InReg); 8036 8037 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8038 Attrs); 8039 } 8040 8041 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8042 /// implementation, which just calls LowerCall. 8043 /// FIXME: When all targets are 8044 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8045 std::pair<SDValue, SDValue> 8046 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8047 // Handle the incoming return values from the call. 8048 CLI.Ins.clear(); 8049 Type *OrigRetTy = CLI.RetTy; 8050 SmallVector<EVT, 4> RetTys; 8051 SmallVector<uint64_t, 4> Offsets; 8052 auto &DL = CLI.DAG.getDataLayout(); 8053 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8054 8055 if (CLI.IsPostTypeLegalization) { 8056 // If we are lowering a libcall after legalization, split the return type. 8057 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8058 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8059 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8060 EVT RetVT = OldRetTys[i]; 8061 uint64_t Offset = OldOffsets[i]; 8062 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8063 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8064 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8065 RetTys.append(NumRegs, RegisterVT); 8066 for (unsigned j = 0; j != NumRegs; ++j) 8067 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8068 } 8069 } 8070 8071 SmallVector<ISD::OutputArg, 4> Outs; 8072 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8073 8074 bool CanLowerReturn = 8075 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8076 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8077 8078 SDValue DemoteStackSlot; 8079 int DemoteStackIdx = -100; 8080 if (!CanLowerReturn) { 8081 // FIXME: equivalent assert? 8082 // assert(!CS.hasInAllocaArgument() && 8083 // "sret demotion is incompatible with inalloca"); 8084 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8085 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8086 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8087 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8088 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8089 8090 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8091 ArgListEntry Entry; 8092 Entry.Node = DemoteStackSlot; 8093 Entry.Ty = StackSlotPtrType; 8094 Entry.IsSExt = false; 8095 Entry.IsZExt = false; 8096 Entry.IsInReg = false; 8097 Entry.IsSRet = true; 8098 Entry.IsNest = false; 8099 Entry.IsByVal = false; 8100 Entry.IsReturned = false; 8101 Entry.IsSwiftSelf = false; 8102 Entry.IsSwiftError = false; 8103 Entry.Alignment = Align; 8104 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8105 CLI.NumFixedArgs += 1; 8106 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8107 8108 // sret demotion isn't compatible with tail-calls, since the sret argument 8109 // points into the callers stack frame. 8110 CLI.IsTailCall = false; 8111 } else { 8112 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8113 EVT VT = RetTys[I]; 8114 MVT RegisterVT = 8115 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8116 unsigned NumRegs = 8117 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8118 for (unsigned i = 0; i != NumRegs; ++i) { 8119 ISD::InputArg MyFlags; 8120 MyFlags.VT = RegisterVT; 8121 MyFlags.ArgVT = VT; 8122 MyFlags.Used = CLI.IsReturnValueUsed; 8123 if (CLI.RetSExt) 8124 MyFlags.Flags.setSExt(); 8125 if (CLI.RetZExt) 8126 MyFlags.Flags.setZExt(); 8127 if (CLI.IsInReg) 8128 MyFlags.Flags.setInReg(); 8129 CLI.Ins.push_back(MyFlags); 8130 } 8131 } 8132 } 8133 8134 // We push in swifterror return as the last element of CLI.Ins. 8135 ArgListTy &Args = CLI.getArgs(); 8136 if (supportSwiftError()) { 8137 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8138 if (Args[i].IsSwiftError) { 8139 ISD::InputArg MyFlags; 8140 MyFlags.VT = getPointerTy(DL); 8141 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8142 MyFlags.Flags.setSwiftError(); 8143 CLI.Ins.push_back(MyFlags); 8144 } 8145 } 8146 } 8147 8148 // Handle all of the outgoing arguments. 8149 CLI.Outs.clear(); 8150 CLI.OutVals.clear(); 8151 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8152 SmallVector<EVT, 4> ValueVTs; 8153 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8154 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8155 Type *FinalType = Args[i].Ty; 8156 if (Args[i].IsByVal) 8157 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8158 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8159 FinalType, CLI.CallConv, CLI.IsVarArg); 8160 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8161 ++Value) { 8162 EVT VT = ValueVTs[Value]; 8163 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8164 SDValue Op = SDValue(Args[i].Node.getNode(), 8165 Args[i].Node.getResNo() + Value); 8166 ISD::ArgFlagsTy Flags; 8167 8168 // Certain targets (such as MIPS), may have a different ABI alignment 8169 // for a type depending on the context. Give the target a chance to 8170 // specify the alignment it wants. 8171 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8172 8173 if (Args[i].IsZExt) 8174 Flags.setZExt(); 8175 if (Args[i].IsSExt) 8176 Flags.setSExt(); 8177 if (Args[i].IsInReg) { 8178 // If we are using vectorcall calling convention, a structure that is 8179 // passed InReg - is surely an HVA 8180 if (CLI.CallConv == CallingConv::X86_VectorCall && 8181 isa<StructType>(FinalType)) { 8182 // The first value of a structure is marked 8183 if (0 == Value) 8184 Flags.setHvaStart(); 8185 Flags.setHva(); 8186 } 8187 // Set InReg Flag 8188 Flags.setInReg(); 8189 } 8190 if (Args[i].IsSRet) 8191 Flags.setSRet(); 8192 if (Args[i].IsSwiftSelf) 8193 Flags.setSwiftSelf(); 8194 if (Args[i].IsSwiftError) 8195 Flags.setSwiftError(); 8196 if (Args[i].IsByVal) 8197 Flags.setByVal(); 8198 if (Args[i].IsInAlloca) { 8199 Flags.setInAlloca(); 8200 // Set the byval flag for CCAssignFn callbacks that don't know about 8201 // inalloca. This way we can know how many bytes we should've allocated 8202 // and how many bytes a callee cleanup function will pop. If we port 8203 // inalloca to more targets, we'll have to add custom inalloca handling 8204 // in the various CC lowering callbacks. 8205 Flags.setByVal(); 8206 } 8207 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8208 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8209 Type *ElementTy = Ty->getElementType(); 8210 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8211 // For ByVal, alignment should come from FE. BE will guess if this 8212 // info is not there but there are cases it cannot get right. 8213 unsigned FrameAlign; 8214 if (Args[i].Alignment) 8215 FrameAlign = Args[i].Alignment; 8216 else 8217 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8218 Flags.setByValAlign(FrameAlign); 8219 } 8220 if (Args[i].IsNest) 8221 Flags.setNest(); 8222 if (NeedsRegBlock) 8223 Flags.setInConsecutiveRegs(); 8224 Flags.setOrigAlign(OriginalAlignment); 8225 8226 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8227 unsigned NumParts = 8228 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8229 SmallVector<SDValue, 4> Parts(NumParts); 8230 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8231 8232 if (Args[i].IsSExt) 8233 ExtendKind = ISD::SIGN_EXTEND; 8234 else if (Args[i].IsZExt) 8235 ExtendKind = ISD::ZERO_EXTEND; 8236 8237 // Conservatively only handle 'returned' on non-vectors for now 8238 if (Args[i].IsReturned && !Op.getValueType().isVector()) { 8239 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8240 "unexpected use of 'returned'"); 8241 // Before passing 'returned' to the target lowering code, ensure that 8242 // either the register MVT and the actual EVT are the same size or that 8243 // the return value and argument are extended in the same way; in these 8244 // cases it's safe to pass the argument register value unchanged as the 8245 // return register value (although it's at the target's option whether 8246 // to do so) 8247 // TODO: allow code generation to take advantage of partially preserved 8248 // registers rather than clobbering the entire register when the 8249 // parameter extension method is not compatible with the return 8250 // extension method 8251 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8252 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8253 CLI.RetZExt == Args[i].IsZExt)) 8254 Flags.setReturned(); 8255 } 8256 8257 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8258 CLI.CS.getInstruction(), ExtendKind, true); 8259 8260 for (unsigned j = 0; j != NumParts; ++j) { 8261 // if it isn't first piece, alignment must be 1 8262 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8263 i < CLI.NumFixedArgs, 8264 i, j*Parts[j].getValueType().getStoreSize()); 8265 if (NumParts > 1 && j == 0) 8266 MyFlags.Flags.setSplit(); 8267 else if (j != 0) { 8268 MyFlags.Flags.setOrigAlign(1); 8269 if (j == NumParts - 1) 8270 MyFlags.Flags.setSplitEnd(); 8271 } 8272 8273 CLI.Outs.push_back(MyFlags); 8274 CLI.OutVals.push_back(Parts[j]); 8275 } 8276 8277 if (NeedsRegBlock && Value == NumValues - 1) 8278 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8279 } 8280 } 8281 8282 SmallVector<SDValue, 4> InVals; 8283 CLI.Chain = LowerCall(CLI, InVals); 8284 8285 // Update CLI.InVals to use outside of this function. 8286 CLI.InVals = InVals; 8287 8288 // Verify that the target's LowerCall behaved as expected. 8289 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8290 "LowerCall didn't return a valid chain!"); 8291 assert((!CLI.IsTailCall || InVals.empty()) && 8292 "LowerCall emitted a return value for a tail call!"); 8293 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8294 "LowerCall didn't emit the correct number of values!"); 8295 8296 // For a tail call, the return value is merely live-out and there aren't 8297 // any nodes in the DAG representing it. Return a special value to 8298 // indicate that a tail call has been emitted and no more Instructions 8299 // should be processed in the current block. 8300 if (CLI.IsTailCall) { 8301 CLI.DAG.setRoot(CLI.Chain); 8302 return std::make_pair(SDValue(), SDValue()); 8303 } 8304 8305 #ifndef NDEBUG 8306 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8307 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8308 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8309 "LowerCall emitted a value with the wrong type!"); 8310 } 8311 #endif 8312 8313 SmallVector<SDValue, 4> ReturnValues; 8314 if (!CanLowerReturn) { 8315 // The instruction result is the result of loading from the 8316 // hidden sret parameter. 8317 SmallVector<EVT, 1> PVTs; 8318 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8319 8320 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8321 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8322 EVT PtrVT = PVTs[0]; 8323 8324 unsigned NumValues = RetTys.size(); 8325 ReturnValues.resize(NumValues); 8326 SmallVector<SDValue, 4> Chains(NumValues); 8327 8328 // An aggregate return value cannot wrap around the address space, so 8329 // offsets to its parts don't wrap either. 8330 SDNodeFlags Flags; 8331 Flags.setNoUnsignedWrap(true); 8332 8333 for (unsigned i = 0; i < NumValues; ++i) { 8334 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8335 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8336 PtrVT), Flags); 8337 SDValue L = CLI.DAG.getLoad( 8338 RetTys[i], CLI.DL, CLI.Chain, Add, 8339 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8340 DemoteStackIdx, Offsets[i]), 8341 /* Alignment = */ 1); 8342 ReturnValues[i] = L; 8343 Chains[i] = L.getValue(1); 8344 } 8345 8346 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8347 } else { 8348 // Collect the legal value parts into potentially illegal values 8349 // that correspond to the original function's return values. 8350 Optional<ISD::NodeType> AssertOp; 8351 if (CLI.RetSExt) 8352 AssertOp = ISD::AssertSext; 8353 else if (CLI.RetZExt) 8354 AssertOp = ISD::AssertZext; 8355 unsigned CurReg = 0; 8356 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8357 EVT VT = RetTys[I]; 8358 MVT RegisterVT = 8359 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8360 unsigned NumRegs = 8361 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8362 8363 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8364 NumRegs, RegisterVT, VT, nullptr, 8365 AssertOp, true)); 8366 CurReg += NumRegs; 8367 } 8368 8369 // For a function returning void, there is no return value. We can't create 8370 // such a node, so we just return a null return value in that case. In 8371 // that case, nothing will actually look at the value. 8372 if (ReturnValues.empty()) 8373 return std::make_pair(SDValue(), CLI.Chain); 8374 } 8375 8376 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8377 CLI.DAG.getVTList(RetTys), ReturnValues); 8378 return std::make_pair(Res, CLI.Chain); 8379 } 8380 8381 void TargetLowering::LowerOperationWrapper(SDNode *N, 8382 SmallVectorImpl<SDValue> &Results, 8383 SelectionDAG &DAG) const { 8384 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8385 Results.push_back(Res); 8386 } 8387 8388 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8389 llvm_unreachable("LowerOperation not implemented for this target!"); 8390 } 8391 8392 void 8393 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8394 SDValue Op = getNonRegisterValue(V); 8395 assert((Op.getOpcode() != ISD::CopyFromReg || 8396 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8397 "Copy from a reg to the same reg!"); 8398 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8399 8400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8401 // If this is an InlineAsm we have to match the registers required, not the 8402 // notional registers required by the type. 8403 8404 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8405 V->getType(), isABIRegCopy(V)); 8406 SDValue Chain = DAG.getEntryNode(); 8407 8408 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8409 FuncInfo.PreferredExtendType.end()) 8410 ? ISD::ANY_EXTEND 8411 : FuncInfo.PreferredExtendType[V]; 8412 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8413 PendingExports.push_back(Chain); 8414 } 8415 8416 #include "llvm/CodeGen/SelectionDAGISel.h" 8417 8418 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8419 /// entry block, return true. This includes arguments used by switches, since 8420 /// the switch may expand into multiple basic blocks. 8421 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8422 // With FastISel active, we may be splitting blocks, so force creation 8423 // of virtual registers for all non-dead arguments. 8424 if (FastISel) 8425 return A->use_empty(); 8426 8427 const BasicBlock &Entry = A->getParent()->front(); 8428 for (const User *U : A->users()) 8429 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8430 return false; // Use not in entry block. 8431 8432 return true; 8433 } 8434 8435 using ArgCopyElisionMapTy = 8436 DenseMap<const Argument *, 8437 std::pair<const AllocaInst *, const StoreInst *>>; 8438 8439 /// Scan the entry block of the function in FuncInfo for arguments that look 8440 /// like copies into a local alloca. Record any copied arguments in 8441 /// ArgCopyElisionCandidates. 8442 static void 8443 findArgumentCopyElisionCandidates(const DataLayout &DL, 8444 FunctionLoweringInfo *FuncInfo, 8445 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8446 // Record the state of every static alloca used in the entry block. Argument 8447 // allocas are all used in the entry block, so we need approximately as many 8448 // entries as we have arguments. 8449 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8450 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8451 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8452 StaticAllocas.reserve(NumArgs * 2); 8453 8454 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8455 if (!V) 8456 return nullptr; 8457 V = V->stripPointerCasts(); 8458 const auto *AI = dyn_cast<AllocaInst>(V); 8459 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8460 return nullptr; 8461 auto Iter = StaticAllocas.insert({AI, Unknown}); 8462 return &Iter.first->second; 8463 }; 8464 8465 // Look for stores of arguments to static allocas. Look through bitcasts and 8466 // GEPs to handle type coercions, as long as the alloca is fully initialized 8467 // by the store. Any non-store use of an alloca escapes it and any subsequent 8468 // unanalyzed store might write it. 8469 // FIXME: Handle structs initialized with multiple stores. 8470 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8471 // Look for stores, and handle non-store uses conservatively. 8472 const auto *SI = dyn_cast<StoreInst>(&I); 8473 if (!SI) { 8474 // We will look through cast uses, so ignore them completely. 8475 if (I.isCast()) 8476 continue; 8477 // Ignore debug info intrinsics, they don't escape or store to allocas. 8478 if (isa<DbgInfoIntrinsic>(I)) 8479 continue; 8480 // This is an unknown instruction. Assume it escapes or writes to all 8481 // static alloca operands. 8482 for (const Use &U : I.operands()) { 8483 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8484 *Info = StaticAllocaInfo::Clobbered; 8485 } 8486 continue; 8487 } 8488 8489 // If the stored value is a static alloca, mark it as escaped. 8490 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8491 *Info = StaticAllocaInfo::Clobbered; 8492 8493 // Check if the destination is a static alloca. 8494 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8495 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8496 if (!Info) 8497 continue; 8498 const AllocaInst *AI = cast<AllocaInst>(Dst); 8499 8500 // Skip allocas that have been initialized or clobbered. 8501 if (*Info != StaticAllocaInfo::Unknown) 8502 continue; 8503 8504 // Check if the stored value is an argument, and that this store fully 8505 // initializes the alloca. Don't elide copies from the same argument twice. 8506 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8507 const auto *Arg = dyn_cast<Argument>(Val); 8508 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8509 Arg->getType()->isEmptyTy() || 8510 DL.getTypeStoreSize(Arg->getType()) != 8511 DL.getTypeAllocSize(AI->getAllocatedType()) || 8512 ArgCopyElisionCandidates.count(Arg)) { 8513 *Info = StaticAllocaInfo::Clobbered; 8514 continue; 8515 } 8516 8517 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8518 8519 // Mark this alloca and store for argument copy elision. 8520 *Info = StaticAllocaInfo::Elidable; 8521 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8522 8523 // Stop scanning if we've seen all arguments. This will happen early in -O0 8524 // builds, which is useful, because -O0 builds have large entry blocks and 8525 // many allocas. 8526 if (ArgCopyElisionCandidates.size() == NumArgs) 8527 break; 8528 } 8529 } 8530 8531 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8532 /// ArgVal is a load from a suitable fixed stack object. 8533 static void tryToElideArgumentCopy( 8534 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8535 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8536 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8537 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8538 SDValue ArgVal, bool &ArgHasUses) { 8539 // Check if this is a load from a fixed stack object. 8540 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8541 if (!LNode) 8542 return; 8543 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8544 if (!FINode) 8545 return; 8546 8547 // Check that the fixed stack object is the right size and alignment. 8548 // Look at the alignment that the user wrote on the alloca instead of looking 8549 // at the stack object. 8550 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8551 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8552 const AllocaInst *AI = ArgCopyIter->second.first; 8553 int FixedIndex = FINode->getIndex(); 8554 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8555 int OldIndex = AllocaIndex; 8556 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8557 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8558 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8559 "object size\n"); 8560 return; 8561 } 8562 unsigned RequiredAlignment = AI->getAlignment(); 8563 if (!RequiredAlignment) { 8564 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8565 AI->getAllocatedType()); 8566 } 8567 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8568 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8569 "greater than stack argument alignment (" 8570 << RequiredAlignment << " vs " 8571 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8572 return; 8573 } 8574 8575 // Perform the elision. Delete the old stack object and replace its only use 8576 // in the variable info map. Mark the stack object as mutable. 8577 DEBUG({ 8578 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8579 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8580 << '\n'; 8581 }); 8582 MFI.RemoveStackObject(OldIndex); 8583 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8584 AllocaIndex = FixedIndex; 8585 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8586 Chains.push_back(ArgVal.getValue(1)); 8587 8588 // Avoid emitting code for the store implementing the copy. 8589 const StoreInst *SI = ArgCopyIter->second.second; 8590 ElidedArgCopyInstrs.insert(SI); 8591 8592 // Check for uses of the argument again so that we can avoid exporting ArgVal 8593 // if it is't used by anything other than the store. 8594 for (const Value *U : Arg.users()) { 8595 if (U != SI) { 8596 ArgHasUses = true; 8597 break; 8598 } 8599 } 8600 } 8601 8602 void SelectionDAGISel::LowerArguments(const Function &F) { 8603 SelectionDAG &DAG = SDB->DAG; 8604 SDLoc dl = SDB->getCurSDLoc(); 8605 const DataLayout &DL = DAG.getDataLayout(); 8606 SmallVector<ISD::InputArg, 16> Ins; 8607 8608 if (!FuncInfo->CanLowerReturn) { 8609 // Put in an sret pointer parameter before all the other parameters. 8610 SmallVector<EVT, 1> ValueVTs; 8611 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8612 F.getReturnType()->getPointerTo( 8613 DAG.getDataLayout().getAllocaAddrSpace()), 8614 ValueVTs); 8615 8616 // NOTE: Assuming that a pointer will never break down to more than one VT 8617 // or one register. 8618 ISD::ArgFlagsTy Flags; 8619 Flags.setSRet(); 8620 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8621 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8622 ISD::InputArg::NoArgIndex, 0); 8623 Ins.push_back(RetArg); 8624 } 8625 8626 // Look for stores of arguments to static allocas. Mark such arguments with a 8627 // flag to ask the target to give us the memory location of that argument if 8628 // available. 8629 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8630 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8631 8632 // Set up the incoming argument description vector. 8633 for (const Argument &Arg : F.args()) { 8634 unsigned ArgNo = Arg.getArgNo(); 8635 SmallVector<EVT, 4> ValueVTs; 8636 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8637 bool isArgValueUsed = !Arg.use_empty(); 8638 unsigned PartBase = 0; 8639 Type *FinalType = Arg.getType(); 8640 if (Arg.hasAttribute(Attribute::ByVal)) 8641 FinalType = cast<PointerType>(FinalType)->getElementType(); 8642 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8643 FinalType, F.getCallingConv(), F.isVarArg()); 8644 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8645 Value != NumValues; ++Value) { 8646 EVT VT = ValueVTs[Value]; 8647 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8648 ISD::ArgFlagsTy Flags; 8649 8650 // Certain targets (such as MIPS), may have a different ABI alignment 8651 // for a type depending on the context. Give the target a chance to 8652 // specify the alignment it wants. 8653 unsigned OriginalAlignment = 8654 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8655 8656 if (Arg.hasAttribute(Attribute::ZExt)) 8657 Flags.setZExt(); 8658 if (Arg.hasAttribute(Attribute::SExt)) 8659 Flags.setSExt(); 8660 if (Arg.hasAttribute(Attribute::InReg)) { 8661 // If we are using vectorcall calling convention, a structure that is 8662 // passed InReg - is surely an HVA 8663 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8664 isa<StructType>(Arg.getType())) { 8665 // The first value of a structure is marked 8666 if (0 == Value) 8667 Flags.setHvaStart(); 8668 Flags.setHva(); 8669 } 8670 // Set InReg Flag 8671 Flags.setInReg(); 8672 } 8673 if (Arg.hasAttribute(Attribute::StructRet)) 8674 Flags.setSRet(); 8675 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8676 Flags.setSwiftSelf(); 8677 if (Arg.hasAttribute(Attribute::SwiftError)) 8678 Flags.setSwiftError(); 8679 if (Arg.hasAttribute(Attribute::ByVal)) 8680 Flags.setByVal(); 8681 if (Arg.hasAttribute(Attribute::InAlloca)) { 8682 Flags.setInAlloca(); 8683 // Set the byval flag for CCAssignFn callbacks that don't know about 8684 // inalloca. This way we can know how many bytes we should've allocated 8685 // and how many bytes a callee cleanup function will pop. If we port 8686 // inalloca to more targets, we'll have to add custom inalloca handling 8687 // in the various CC lowering callbacks. 8688 Flags.setByVal(); 8689 } 8690 if (F.getCallingConv() == CallingConv::X86_INTR) { 8691 // IA Interrupt passes frame (1st parameter) by value in the stack. 8692 if (ArgNo == 0) 8693 Flags.setByVal(); 8694 } 8695 if (Flags.isByVal() || Flags.isInAlloca()) { 8696 PointerType *Ty = cast<PointerType>(Arg.getType()); 8697 Type *ElementTy = Ty->getElementType(); 8698 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8699 // For ByVal, alignment should be passed from FE. BE will guess if 8700 // this info is not there but there are cases it cannot get right. 8701 unsigned FrameAlign; 8702 if (Arg.getParamAlignment()) 8703 FrameAlign = Arg.getParamAlignment(); 8704 else 8705 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8706 Flags.setByValAlign(FrameAlign); 8707 } 8708 if (Arg.hasAttribute(Attribute::Nest)) 8709 Flags.setNest(); 8710 if (NeedsRegBlock) 8711 Flags.setInConsecutiveRegs(); 8712 Flags.setOrigAlign(OriginalAlignment); 8713 if (ArgCopyElisionCandidates.count(&Arg)) 8714 Flags.setCopyElisionCandidate(); 8715 8716 MVT RegisterVT = 8717 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8718 unsigned NumRegs = 8719 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8720 for (unsigned i = 0; i != NumRegs; ++i) { 8721 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8722 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8723 if (NumRegs > 1 && i == 0) 8724 MyFlags.Flags.setSplit(); 8725 // if it isn't first piece, alignment must be 1 8726 else if (i > 0) { 8727 MyFlags.Flags.setOrigAlign(1); 8728 if (i == NumRegs - 1) 8729 MyFlags.Flags.setSplitEnd(); 8730 } 8731 Ins.push_back(MyFlags); 8732 } 8733 if (NeedsRegBlock && Value == NumValues - 1) 8734 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8735 PartBase += VT.getStoreSize(); 8736 } 8737 } 8738 8739 // Call the target to set up the argument values. 8740 SmallVector<SDValue, 8> InVals; 8741 SDValue NewRoot = TLI->LowerFormalArguments( 8742 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8743 8744 // Verify that the target's LowerFormalArguments behaved as expected. 8745 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8746 "LowerFormalArguments didn't return a valid chain!"); 8747 assert(InVals.size() == Ins.size() && 8748 "LowerFormalArguments didn't emit the correct number of values!"); 8749 DEBUG({ 8750 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8751 assert(InVals[i].getNode() && 8752 "LowerFormalArguments emitted a null value!"); 8753 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8754 "LowerFormalArguments emitted a value with the wrong type!"); 8755 } 8756 }); 8757 8758 // Update the DAG with the new chain value resulting from argument lowering. 8759 DAG.setRoot(NewRoot); 8760 8761 // Set up the argument values. 8762 unsigned i = 0; 8763 if (!FuncInfo->CanLowerReturn) { 8764 // Create a virtual register for the sret pointer, and put in a copy 8765 // from the sret argument into it. 8766 SmallVector<EVT, 1> ValueVTs; 8767 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8768 F.getReturnType()->getPointerTo( 8769 DAG.getDataLayout().getAllocaAddrSpace()), 8770 ValueVTs); 8771 MVT VT = ValueVTs[0].getSimpleVT(); 8772 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8773 Optional<ISD::NodeType> AssertOp = None; 8774 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8775 RegVT, VT, nullptr, AssertOp); 8776 8777 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8778 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8779 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8780 FuncInfo->DemoteRegister = SRetReg; 8781 NewRoot = 8782 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8783 DAG.setRoot(NewRoot); 8784 8785 // i indexes lowered arguments. Bump it past the hidden sret argument. 8786 ++i; 8787 } 8788 8789 SmallVector<SDValue, 4> Chains; 8790 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8791 for (const Argument &Arg : F.args()) { 8792 SmallVector<SDValue, 4> ArgValues; 8793 SmallVector<EVT, 4> ValueVTs; 8794 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8795 unsigned NumValues = ValueVTs.size(); 8796 if (NumValues == 0) 8797 continue; 8798 8799 bool ArgHasUses = !Arg.use_empty(); 8800 8801 // Elide the copying store if the target loaded this argument from a 8802 // suitable fixed stack object. 8803 if (Ins[i].Flags.isCopyElisionCandidate()) { 8804 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8805 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8806 InVals[i], ArgHasUses); 8807 } 8808 8809 // If this argument is unused then remember its value. It is used to generate 8810 // debugging information. 8811 bool isSwiftErrorArg = 8812 TLI->supportSwiftError() && 8813 Arg.hasAttribute(Attribute::SwiftError); 8814 if (!ArgHasUses && !isSwiftErrorArg) { 8815 SDB->setUnusedArgValue(&Arg, InVals[i]); 8816 8817 // Also remember any frame index for use in FastISel. 8818 if (FrameIndexSDNode *FI = 8819 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8820 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8821 } 8822 8823 for (unsigned Val = 0; Val != NumValues; ++Val) { 8824 EVT VT = ValueVTs[Val]; 8825 MVT PartVT = 8826 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8827 unsigned NumParts = 8828 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8829 8830 // Even an apparant 'unused' swifterror argument needs to be returned. So 8831 // we do generate a copy for it that can be used on return from the 8832 // function. 8833 if (ArgHasUses || isSwiftErrorArg) { 8834 Optional<ISD::NodeType> AssertOp; 8835 if (Arg.hasAttribute(Attribute::SExt)) 8836 AssertOp = ISD::AssertSext; 8837 else if (Arg.hasAttribute(Attribute::ZExt)) 8838 AssertOp = ISD::AssertZext; 8839 8840 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8841 PartVT, VT, nullptr, AssertOp, 8842 true)); 8843 } 8844 8845 i += NumParts; 8846 } 8847 8848 // We don't need to do anything else for unused arguments. 8849 if (ArgValues.empty()) 8850 continue; 8851 8852 // Note down frame index. 8853 if (FrameIndexSDNode *FI = 8854 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8855 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8856 8857 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8858 SDB->getCurSDLoc()); 8859 8860 SDB->setValue(&Arg, Res); 8861 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8862 // We want to associate the argument with the frame index, among 8863 // involved operands, that correspond to the lowest address. The 8864 // getCopyFromParts function, called earlier, is swapping the order of 8865 // the operands to BUILD_PAIR depending on endianness. The result of 8866 // that swapping is that the least significant bits of the argument will 8867 // be in the first operand of the BUILD_PAIR node, and the most 8868 // significant bits will be in the second operand. 8869 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 8870 if (LoadSDNode *LNode = 8871 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 8872 if (FrameIndexSDNode *FI = 8873 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8874 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8875 } 8876 8877 // Update the SwiftErrorVRegDefMap. 8878 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8879 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8880 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8881 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8882 FuncInfo->SwiftErrorArg, Reg); 8883 } 8884 8885 // If this argument is live outside of the entry block, insert a copy from 8886 // wherever we got it to the vreg that other BB's will reference it as. 8887 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8888 // If we can, though, try to skip creating an unnecessary vreg. 8889 // FIXME: This isn't very clean... it would be nice to make this more 8890 // general. It's also subtly incompatible with the hacks FastISel 8891 // uses with vregs. 8892 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8893 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8894 FuncInfo->ValueMap[&Arg] = Reg; 8895 continue; 8896 } 8897 } 8898 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8899 FuncInfo->InitializeRegForValue(&Arg); 8900 SDB->CopyToExportRegsIfNeeded(&Arg); 8901 } 8902 } 8903 8904 if (!Chains.empty()) { 8905 Chains.push_back(NewRoot); 8906 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8907 } 8908 8909 DAG.setRoot(NewRoot); 8910 8911 assert(i == InVals.size() && "Argument register count mismatch!"); 8912 8913 // If any argument copy elisions occurred and we have debug info, update the 8914 // stale frame indices used in the dbg.declare variable info table. 8915 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8916 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8917 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8918 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8919 if (I != ArgCopyElisionFrameIndexMap.end()) 8920 VI.Slot = I->second; 8921 } 8922 } 8923 8924 // Finally, if the target has anything special to do, allow it to do so. 8925 EmitFunctionEntryCode(); 8926 } 8927 8928 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8929 /// ensure constants are generated when needed. Remember the virtual registers 8930 /// that need to be added to the Machine PHI nodes as input. We cannot just 8931 /// directly add them, because expansion might result in multiple MBB's for one 8932 /// BB. As such, the start of the BB might correspond to a different MBB than 8933 /// the end. 8934 void 8935 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8936 const TerminatorInst *TI = LLVMBB->getTerminator(); 8937 8938 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8939 8940 // Check PHI nodes in successors that expect a value to be available from this 8941 // block. 8942 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8943 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8944 if (!isa<PHINode>(SuccBB->begin())) continue; 8945 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8946 8947 // If this terminator has multiple identical successors (common for 8948 // switches), only handle each succ once. 8949 if (!SuccsHandled.insert(SuccMBB).second) 8950 continue; 8951 8952 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8953 8954 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8955 // nodes and Machine PHI nodes, but the incoming operands have not been 8956 // emitted yet. 8957 for (const PHINode &PN : SuccBB->phis()) { 8958 // Ignore dead phi's. 8959 if (PN.use_empty()) 8960 continue; 8961 8962 // Skip empty types 8963 if (PN.getType()->isEmptyTy()) 8964 continue; 8965 8966 unsigned Reg; 8967 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 8968 8969 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8970 unsigned &RegOut = ConstantsOut[C]; 8971 if (RegOut == 0) { 8972 RegOut = FuncInfo.CreateRegs(C->getType()); 8973 CopyValueToVirtualRegister(C, RegOut); 8974 } 8975 Reg = RegOut; 8976 } else { 8977 DenseMap<const Value *, unsigned>::iterator I = 8978 FuncInfo.ValueMap.find(PHIOp); 8979 if (I != FuncInfo.ValueMap.end()) 8980 Reg = I->second; 8981 else { 8982 assert(isa<AllocaInst>(PHIOp) && 8983 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8984 "Didn't codegen value into a register!??"); 8985 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8986 CopyValueToVirtualRegister(PHIOp, Reg); 8987 } 8988 } 8989 8990 // Remember that this register needs to added to the machine PHI node as 8991 // the input for this MBB. 8992 SmallVector<EVT, 4> ValueVTs; 8993 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8994 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 8995 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8996 EVT VT = ValueVTs[vti]; 8997 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8998 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8999 FuncInfo.PHINodesToUpdate.push_back( 9000 std::make_pair(&*MBBI++, Reg + i)); 9001 Reg += NumRegisters; 9002 } 9003 } 9004 } 9005 9006 ConstantsOut.clear(); 9007 } 9008 9009 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9010 /// is 0. 9011 MachineBasicBlock * 9012 SelectionDAGBuilder::StackProtectorDescriptor:: 9013 AddSuccessorMBB(const BasicBlock *BB, 9014 MachineBasicBlock *ParentMBB, 9015 bool IsLikely, 9016 MachineBasicBlock *SuccMBB) { 9017 // If SuccBB has not been created yet, create it. 9018 if (!SuccMBB) { 9019 MachineFunction *MF = ParentMBB->getParent(); 9020 MachineFunction::iterator BBI(ParentMBB); 9021 SuccMBB = MF->CreateMachineBasicBlock(BB); 9022 MF->insert(++BBI, SuccMBB); 9023 } 9024 // Add it as a successor of ParentMBB. 9025 ParentMBB->addSuccessor( 9026 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9027 return SuccMBB; 9028 } 9029 9030 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9031 MachineFunction::iterator I(MBB); 9032 if (++I == FuncInfo.MF->end()) 9033 return nullptr; 9034 return &*I; 9035 } 9036 9037 /// During lowering new call nodes can be created (such as memset, etc.). 9038 /// Those will become new roots of the current DAG, but complications arise 9039 /// when they are tail calls. In such cases, the call lowering will update 9040 /// the root, but the builder still needs to know that a tail call has been 9041 /// lowered in order to avoid generating an additional return. 9042 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9043 // If the node is null, we do have a tail call. 9044 if (MaybeTC.getNode() != nullptr) 9045 DAG.setRoot(MaybeTC); 9046 else 9047 HasTailCall = true; 9048 } 9049 9050 uint64_t 9051 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9052 unsigned First, unsigned Last) const { 9053 assert(Last >= First); 9054 const APInt &LowCase = Clusters[First].Low->getValue(); 9055 const APInt &HighCase = Clusters[Last].High->getValue(); 9056 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9057 9058 // FIXME: A range of consecutive cases has 100% density, but only requires one 9059 // comparison to lower. We should discriminate against such consecutive ranges 9060 // in jump tables. 9061 9062 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9063 } 9064 9065 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9066 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9067 unsigned Last) const { 9068 assert(Last >= First); 9069 assert(TotalCases[Last] >= TotalCases[First]); 9070 uint64_t NumCases = 9071 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9072 return NumCases; 9073 } 9074 9075 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9076 unsigned First, unsigned Last, 9077 const SwitchInst *SI, 9078 MachineBasicBlock *DefaultMBB, 9079 CaseCluster &JTCluster) { 9080 assert(First <= Last); 9081 9082 auto Prob = BranchProbability::getZero(); 9083 unsigned NumCmps = 0; 9084 std::vector<MachineBasicBlock*> Table; 9085 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9086 9087 // Initialize probabilities in JTProbs. 9088 for (unsigned I = First; I <= Last; ++I) 9089 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9090 9091 for (unsigned I = First; I <= Last; ++I) { 9092 assert(Clusters[I].Kind == CC_Range); 9093 Prob += Clusters[I].Prob; 9094 const APInt &Low = Clusters[I].Low->getValue(); 9095 const APInt &High = Clusters[I].High->getValue(); 9096 NumCmps += (Low == High) ? 1 : 2; 9097 if (I != First) { 9098 // Fill the gap between this and the previous cluster. 9099 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9100 assert(PreviousHigh.slt(Low)); 9101 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9102 for (uint64_t J = 0; J < Gap; J++) 9103 Table.push_back(DefaultMBB); 9104 } 9105 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9106 for (uint64_t J = 0; J < ClusterSize; ++J) 9107 Table.push_back(Clusters[I].MBB); 9108 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9109 } 9110 9111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9112 unsigned NumDests = JTProbs.size(); 9113 if (TLI.isSuitableForBitTests( 9114 NumDests, NumCmps, Clusters[First].Low->getValue(), 9115 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9116 // Clusters[First..Last] should be lowered as bit tests instead. 9117 return false; 9118 } 9119 9120 // Create the MBB that will load from and jump through the table. 9121 // Note: We create it here, but it's not inserted into the function yet. 9122 MachineFunction *CurMF = FuncInfo.MF; 9123 MachineBasicBlock *JumpTableMBB = 9124 CurMF->CreateMachineBasicBlock(SI->getParent()); 9125 9126 // Add successors. Note: use table order for determinism. 9127 SmallPtrSet<MachineBasicBlock *, 8> Done; 9128 for (MachineBasicBlock *Succ : Table) { 9129 if (Done.count(Succ)) 9130 continue; 9131 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9132 Done.insert(Succ); 9133 } 9134 JumpTableMBB->normalizeSuccProbs(); 9135 9136 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9137 ->createJumpTableIndex(Table); 9138 9139 // Set up the jump table info. 9140 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9141 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9142 Clusters[Last].High->getValue(), SI->getCondition(), 9143 nullptr, false); 9144 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9145 9146 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9147 JTCases.size() - 1, Prob); 9148 return true; 9149 } 9150 9151 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9152 const SwitchInst *SI, 9153 MachineBasicBlock *DefaultMBB) { 9154 #ifndef NDEBUG 9155 // Clusters must be non-empty, sorted, and only contain Range clusters. 9156 assert(!Clusters.empty()); 9157 for (CaseCluster &C : Clusters) 9158 assert(C.Kind == CC_Range); 9159 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9160 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9161 #endif 9162 9163 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9164 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9165 return; 9166 9167 const int64_t N = Clusters.size(); 9168 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9169 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9170 9171 if (N < 2 || N < MinJumpTableEntries) 9172 return; 9173 9174 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9175 SmallVector<unsigned, 8> TotalCases(N); 9176 for (unsigned i = 0; i < N; ++i) { 9177 const APInt &Hi = Clusters[i].High->getValue(); 9178 const APInt &Lo = Clusters[i].Low->getValue(); 9179 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9180 if (i != 0) 9181 TotalCases[i] += TotalCases[i - 1]; 9182 } 9183 9184 // Cheap case: the whole range may be suitable for jump table. 9185 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9186 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9187 assert(NumCases < UINT64_MAX / 100); 9188 assert(Range >= NumCases); 9189 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9190 CaseCluster JTCluster; 9191 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9192 Clusters[0] = JTCluster; 9193 Clusters.resize(1); 9194 return; 9195 } 9196 } 9197 9198 // The algorithm below is not suitable for -O0. 9199 if (TM.getOptLevel() == CodeGenOpt::None) 9200 return; 9201 9202 // Split Clusters into minimum number of dense partitions. The algorithm uses 9203 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9204 // for the Case Statement'" (1994), but builds the MinPartitions array in 9205 // reverse order to make it easier to reconstruct the partitions in ascending 9206 // order. In the choice between two optimal partitionings, it picks the one 9207 // which yields more jump tables. 9208 9209 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9210 SmallVector<unsigned, 8> MinPartitions(N); 9211 // LastElement[i] is the last element of the partition starting at i. 9212 SmallVector<unsigned, 8> LastElement(N); 9213 // PartitionsScore[i] is used to break ties when choosing between two 9214 // partitionings resulting in the same number of partitions. 9215 SmallVector<unsigned, 8> PartitionsScore(N); 9216 // For PartitionsScore, a small number of comparisons is considered as good as 9217 // a jump table and a single comparison is considered better than a jump 9218 // table. 9219 enum PartitionScores : unsigned { 9220 NoTable = 0, 9221 Table = 1, 9222 FewCases = 1, 9223 SingleCase = 2 9224 }; 9225 9226 // Base case: There is only one way to partition Clusters[N-1]. 9227 MinPartitions[N - 1] = 1; 9228 LastElement[N - 1] = N - 1; 9229 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9230 9231 // Note: loop indexes are signed to avoid underflow. 9232 for (int64_t i = N - 2; i >= 0; i--) { 9233 // Find optimal partitioning of Clusters[i..N-1]. 9234 // Baseline: Put Clusters[i] into a partition on its own. 9235 MinPartitions[i] = MinPartitions[i + 1] + 1; 9236 LastElement[i] = i; 9237 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9238 9239 // Search for a solution that results in fewer partitions. 9240 for (int64_t j = N - 1; j > i; j--) { 9241 // Try building a partition from Clusters[i..j]. 9242 uint64_t Range = getJumpTableRange(Clusters, i, j); 9243 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9244 assert(NumCases < UINT64_MAX / 100); 9245 assert(Range >= NumCases); 9246 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9247 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9248 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9249 int64_t NumEntries = j - i + 1; 9250 9251 if (NumEntries == 1) 9252 Score += PartitionScores::SingleCase; 9253 else if (NumEntries <= SmallNumberOfEntries) 9254 Score += PartitionScores::FewCases; 9255 else if (NumEntries >= MinJumpTableEntries) 9256 Score += PartitionScores::Table; 9257 9258 // If this leads to fewer partitions, or to the same number of 9259 // partitions with better score, it is a better partitioning. 9260 if (NumPartitions < MinPartitions[i] || 9261 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9262 MinPartitions[i] = NumPartitions; 9263 LastElement[i] = j; 9264 PartitionsScore[i] = Score; 9265 } 9266 } 9267 } 9268 } 9269 9270 // Iterate over the partitions, replacing some with jump tables in-place. 9271 unsigned DstIndex = 0; 9272 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9273 Last = LastElement[First]; 9274 assert(Last >= First); 9275 assert(DstIndex <= First); 9276 unsigned NumClusters = Last - First + 1; 9277 9278 CaseCluster JTCluster; 9279 if (NumClusters >= MinJumpTableEntries && 9280 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9281 Clusters[DstIndex++] = JTCluster; 9282 } else { 9283 for (unsigned I = First; I <= Last; ++I) 9284 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9285 } 9286 } 9287 Clusters.resize(DstIndex); 9288 } 9289 9290 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9291 unsigned First, unsigned Last, 9292 const SwitchInst *SI, 9293 CaseCluster &BTCluster) { 9294 assert(First <= Last); 9295 if (First == Last) 9296 return false; 9297 9298 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9299 unsigned NumCmps = 0; 9300 for (int64_t I = First; I <= Last; ++I) { 9301 assert(Clusters[I].Kind == CC_Range); 9302 Dests.set(Clusters[I].MBB->getNumber()); 9303 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9304 } 9305 unsigned NumDests = Dests.count(); 9306 9307 APInt Low = Clusters[First].Low->getValue(); 9308 APInt High = Clusters[Last].High->getValue(); 9309 assert(Low.slt(High)); 9310 9311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9312 const DataLayout &DL = DAG.getDataLayout(); 9313 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9314 return false; 9315 9316 APInt LowBound; 9317 APInt CmpRange; 9318 9319 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9320 assert(TLI.rangeFitsInWord(Low, High, DL) && 9321 "Case range must fit in bit mask!"); 9322 9323 // Check if the clusters cover a contiguous range such that no value in the 9324 // range will jump to the default statement. 9325 bool ContiguousRange = true; 9326 for (int64_t I = First + 1; I <= Last; ++I) { 9327 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9328 ContiguousRange = false; 9329 break; 9330 } 9331 } 9332 9333 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9334 // Optimize the case where all the case values fit in a word without having 9335 // to subtract minValue. In this case, we can optimize away the subtraction. 9336 LowBound = APInt::getNullValue(Low.getBitWidth()); 9337 CmpRange = High; 9338 ContiguousRange = false; 9339 } else { 9340 LowBound = Low; 9341 CmpRange = High - Low; 9342 } 9343 9344 CaseBitsVector CBV; 9345 auto TotalProb = BranchProbability::getZero(); 9346 for (unsigned i = First; i <= Last; ++i) { 9347 // Find the CaseBits for this destination. 9348 unsigned j; 9349 for (j = 0; j < CBV.size(); ++j) 9350 if (CBV[j].BB == Clusters[i].MBB) 9351 break; 9352 if (j == CBV.size()) 9353 CBV.push_back( 9354 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9355 CaseBits *CB = &CBV[j]; 9356 9357 // Update Mask, Bits and ExtraProb. 9358 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9359 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9360 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9361 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9362 CB->Bits += Hi - Lo + 1; 9363 CB->ExtraProb += Clusters[i].Prob; 9364 TotalProb += Clusters[i].Prob; 9365 } 9366 9367 BitTestInfo BTI; 9368 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9369 // Sort by probability first, number of bits second, bit mask third. 9370 if (a.ExtraProb != b.ExtraProb) 9371 return a.ExtraProb > b.ExtraProb; 9372 if (a.Bits != b.Bits) 9373 return a.Bits > b.Bits; 9374 return a.Mask < b.Mask; 9375 }); 9376 9377 for (auto &CB : CBV) { 9378 MachineBasicBlock *BitTestBB = 9379 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9380 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9381 } 9382 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9383 SI->getCondition(), -1U, MVT::Other, false, 9384 ContiguousRange, nullptr, nullptr, std::move(BTI), 9385 TotalProb); 9386 9387 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9388 BitTestCases.size() - 1, TotalProb); 9389 return true; 9390 } 9391 9392 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9393 const SwitchInst *SI) { 9394 // Partition Clusters into as few subsets as possible, where each subset has a 9395 // range that fits in a machine word and has <= 3 unique destinations. 9396 9397 #ifndef NDEBUG 9398 // Clusters must be sorted and contain Range or JumpTable clusters. 9399 assert(!Clusters.empty()); 9400 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9401 for (const CaseCluster &C : Clusters) 9402 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9403 for (unsigned i = 1; i < Clusters.size(); ++i) 9404 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9405 #endif 9406 9407 // The algorithm below is not suitable for -O0. 9408 if (TM.getOptLevel() == CodeGenOpt::None) 9409 return; 9410 9411 // If target does not have legal shift left, do not emit bit tests at all. 9412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9413 const DataLayout &DL = DAG.getDataLayout(); 9414 9415 EVT PTy = TLI.getPointerTy(DL); 9416 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9417 return; 9418 9419 int BitWidth = PTy.getSizeInBits(); 9420 const int64_t N = Clusters.size(); 9421 9422 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9423 SmallVector<unsigned, 8> MinPartitions(N); 9424 // LastElement[i] is the last element of the partition starting at i. 9425 SmallVector<unsigned, 8> LastElement(N); 9426 9427 // FIXME: This might not be the best algorithm for finding bit test clusters. 9428 9429 // Base case: There is only one way to partition Clusters[N-1]. 9430 MinPartitions[N - 1] = 1; 9431 LastElement[N - 1] = N - 1; 9432 9433 // Note: loop indexes are signed to avoid underflow. 9434 for (int64_t i = N - 2; i >= 0; --i) { 9435 // Find optimal partitioning of Clusters[i..N-1]. 9436 // Baseline: Put Clusters[i] into a partition on its own. 9437 MinPartitions[i] = MinPartitions[i + 1] + 1; 9438 LastElement[i] = i; 9439 9440 // Search for a solution that results in fewer partitions. 9441 // Note: the search is limited by BitWidth, reducing time complexity. 9442 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9443 // Try building a partition from Clusters[i..j]. 9444 9445 // Check the range. 9446 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9447 Clusters[j].High->getValue(), DL)) 9448 continue; 9449 9450 // Check nbr of destinations and cluster types. 9451 // FIXME: This works, but doesn't seem very efficient. 9452 bool RangesOnly = true; 9453 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9454 for (int64_t k = i; k <= j; k++) { 9455 if (Clusters[k].Kind != CC_Range) { 9456 RangesOnly = false; 9457 break; 9458 } 9459 Dests.set(Clusters[k].MBB->getNumber()); 9460 } 9461 if (!RangesOnly || Dests.count() > 3) 9462 break; 9463 9464 // Check if it's a better partition. 9465 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9466 if (NumPartitions < MinPartitions[i]) { 9467 // Found a better partition. 9468 MinPartitions[i] = NumPartitions; 9469 LastElement[i] = j; 9470 } 9471 } 9472 } 9473 9474 // Iterate over the partitions, replacing with bit-test clusters in-place. 9475 unsigned DstIndex = 0; 9476 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9477 Last = LastElement[First]; 9478 assert(First <= Last); 9479 assert(DstIndex <= First); 9480 9481 CaseCluster BitTestCluster; 9482 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9483 Clusters[DstIndex++] = BitTestCluster; 9484 } else { 9485 size_t NumClusters = Last - First + 1; 9486 std::memmove(&Clusters[DstIndex], &Clusters[First], 9487 sizeof(Clusters[0]) * NumClusters); 9488 DstIndex += NumClusters; 9489 } 9490 } 9491 Clusters.resize(DstIndex); 9492 } 9493 9494 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9495 MachineBasicBlock *SwitchMBB, 9496 MachineBasicBlock *DefaultMBB) { 9497 MachineFunction *CurMF = FuncInfo.MF; 9498 MachineBasicBlock *NextMBB = nullptr; 9499 MachineFunction::iterator BBI(W.MBB); 9500 if (++BBI != FuncInfo.MF->end()) 9501 NextMBB = &*BBI; 9502 9503 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9504 9505 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9506 9507 if (Size == 2 && W.MBB == SwitchMBB) { 9508 // If any two of the cases has the same destination, and if one value 9509 // is the same as the other, but has one bit unset that the other has set, 9510 // use bit manipulation to do two compares at once. For example: 9511 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9512 // TODO: This could be extended to merge any 2 cases in switches with 3 9513 // cases. 9514 // TODO: Handle cases where W.CaseBB != SwitchBB. 9515 CaseCluster &Small = *W.FirstCluster; 9516 CaseCluster &Big = *W.LastCluster; 9517 9518 if (Small.Low == Small.High && Big.Low == Big.High && 9519 Small.MBB == Big.MBB) { 9520 const APInt &SmallValue = Small.Low->getValue(); 9521 const APInt &BigValue = Big.Low->getValue(); 9522 9523 // Check that there is only one bit different. 9524 APInt CommonBit = BigValue ^ SmallValue; 9525 if (CommonBit.isPowerOf2()) { 9526 SDValue CondLHS = getValue(Cond); 9527 EVT VT = CondLHS.getValueType(); 9528 SDLoc DL = getCurSDLoc(); 9529 9530 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9531 DAG.getConstant(CommonBit, DL, VT)); 9532 SDValue Cond = DAG.getSetCC( 9533 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9534 ISD::SETEQ); 9535 9536 // Update successor info. 9537 // Both Small and Big will jump to Small.BB, so we sum up the 9538 // probabilities. 9539 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9540 if (BPI) 9541 addSuccessorWithProb( 9542 SwitchMBB, DefaultMBB, 9543 // The default destination is the first successor in IR. 9544 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9545 else 9546 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9547 9548 // Insert the true branch. 9549 SDValue BrCond = 9550 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9551 DAG.getBasicBlock(Small.MBB)); 9552 // Insert the false branch. 9553 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9554 DAG.getBasicBlock(DefaultMBB)); 9555 9556 DAG.setRoot(BrCond); 9557 return; 9558 } 9559 } 9560 } 9561 9562 if (TM.getOptLevel() != CodeGenOpt::None) { 9563 // Here, we order cases by probability so the most likely case will be 9564 // checked first. However, two clusters can have the same probability in 9565 // which case their relative ordering is non-deterministic. So we use Low 9566 // as a tie-breaker as clusters are guaranteed to never overlap. 9567 std::sort(W.FirstCluster, W.LastCluster + 1, 9568 [](const CaseCluster &a, const CaseCluster &b) { 9569 return a.Prob != b.Prob ? 9570 a.Prob > b.Prob : 9571 a.Low->getValue().slt(b.Low->getValue()); 9572 }); 9573 9574 // Rearrange the case blocks so that the last one falls through if possible 9575 // without without changing the order of probabilities. 9576 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9577 --I; 9578 if (I->Prob > W.LastCluster->Prob) 9579 break; 9580 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9581 std::swap(*I, *W.LastCluster); 9582 break; 9583 } 9584 } 9585 } 9586 9587 // Compute total probability. 9588 BranchProbability DefaultProb = W.DefaultProb; 9589 BranchProbability UnhandledProbs = DefaultProb; 9590 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9591 UnhandledProbs += I->Prob; 9592 9593 MachineBasicBlock *CurMBB = W.MBB; 9594 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9595 MachineBasicBlock *Fallthrough; 9596 if (I == W.LastCluster) { 9597 // For the last cluster, fall through to the default destination. 9598 Fallthrough = DefaultMBB; 9599 } else { 9600 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9601 CurMF->insert(BBI, Fallthrough); 9602 // Put Cond in a virtual register to make it available from the new blocks. 9603 ExportFromCurrentBlock(Cond); 9604 } 9605 UnhandledProbs -= I->Prob; 9606 9607 switch (I->Kind) { 9608 case CC_JumpTable: { 9609 // FIXME: Optimize away range check based on pivot comparisons. 9610 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9611 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9612 9613 // The jump block hasn't been inserted yet; insert it here. 9614 MachineBasicBlock *JumpMBB = JT->MBB; 9615 CurMF->insert(BBI, JumpMBB); 9616 9617 auto JumpProb = I->Prob; 9618 auto FallthroughProb = UnhandledProbs; 9619 9620 // If the default statement is a target of the jump table, we evenly 9621 // distribute the default probability to successors of CurMBB. Also 9622 // update the probability on the edge from JumpMBB to Fallthrough. 9623 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9624 SE = JumpMBB->succ_end(); 9625 SI != SE; ++SI) { 9626 if (*SI == DefaultMBB) { 9627 JumpProb += DefaultProb / 2; 9628 FallthroughProb -= DefaultProb / 2; 9629 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9630 JumpMBB->normalizeSuccProbs(); 9631 break; 9632 } 9633 } 9634 9635 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9636 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9637 CurMBB->normalizeSuccProbs(); 9638 9639 // The jump table header will be inserted in our current block, do the 9640 // range check, and fall through to our fallthrough block. 9641 JTH->HeaderBB = CurMBB; 9642 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9643 9644 // If we're in the right place, emit the jump table header right now. 9645 if (CurMBB == SwitchMBB) { 9646 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9647 JTH->Emitted = true; 9648 } 9649 break; 9650 } 9651 case CC_BitTests: { 9652 // FIXME: Optimize away range check based on pivot comparisons. 9653 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9654 9655 // The bit test blocks haven't been inserted yet; insert them here. 9656 for (BitTestCase &BTC : BTB->Cases) 9657 CurMF->insert(BBI, BTC.ThisBB); 9658 9659 // Fill in fields of the BitTestBlock. 9660 BTB->Parent = CurMBB; 9661 BTB->Default = Fallthrough; 9662 9663 BTB->DefaultProb = UnhandledProbs; 9664 // If the cases in bit test don't form a contiguous range, we evenly 9665 // distribute the probability on the edge to Fallthrough to two 9666 // successors of CurMBB. 9667 if (!BTB->ContiguousRange) { 9668 BTB->Prob += DefaultProb / 2; 9669 BTB->DefaultProb -= DefaultProb / 2; 9670 } 9671 9672 // If we're in the right place, emit the bit test header right now. 9673 if (CurMBB == SwitchMBB) { 9674 visitBitTestHeader(*BTB, SwitchMBB); 9675 BTB->Emitted = true; 9676 } 9677 break; 9678 } 9679 case CC_Range: { 9680 const Value *RHS, *LHS, *MHS; 9681 ISD::CondCode CC; 9682 if (I->Low == I->High) { 9683 // Check Cond == I->Low. 9684 CC = ISD::SETEQ; 9685 LHS = Cond; 9686 RHS=I->Low; 9687 MHS = nullptr; 9688 } else { 9689 // Check I->Low <= Cond <= I->High. 9690 CC = ISD::SETLE; 9691 LHS = I->Low; 9692 MHS = Cond; 9693 RHS = I->High; 9694 } 9695 9696 // The false probability is the sum of all unhandled cases. 9697 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9698 getCurSDLoc(), I->Prob, UnhandledProbs); 9699 9700 if (CurMBB == SwitchMBB) 9701 visitSwitchCase(CB, SwitchMBB); 9702 else 9703 SwitchCases.push_back(CB); 9704 9705 break; 9706 } 9707 } 9708 CurMBB = Fallthrough; 9709 } 9710 } 9711 9712 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9713 CaseClusterIt First, 9714 CaseClusterIt Last) { 9715 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9716 if (X.Prob != CC.Prob) 9717 return X.Prob > CC.Prob; 9718 9719 // Ties are broken by comparing the case value. 9720 return X.Low->getValue().slt(CC.Low->getValue()); 9721 }); 9722 } 9723 9724 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9725 const SwitchWorkListItem &W, 9726 Value *Cond, 9727 MachineBasicBlock *SwitchMBB) { 9728 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9729 "Clusters not sorted?"); 9730 9731 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9732 9733 // Balance the tree based on branch probabilities to create a near-optimal (in 9734 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9735 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9736 CaseClusterIt LastLeft = W.FirstCluster; 9737 CaseClusterIt FirstRight = W.LastCluster; 9738 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9739 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9740 9741 // Move LastLeft and FirstRight towards each other from opposite directions to 9742 // find a partitioning of the clusters which balances the probability on both 9743 // sides. If LeftProb and RightProb are equal, alternate which side is 9744 // taken to ensure 0-probability nodes are distributed evenly. 9745 unsigned I = 0; 9746 while (LastLeft + 1 < FirstRight) { 9747 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9748 LeftProb += (++LastLeft)->Prob; 9749 else 9750 RightProb += (--FirstRight)->Prob; 9751 I++; 9752 } 9753 9754 while (true) { 9755 // Our binary search tree differs from a typical BST in that ours can have up 9756 // to three values in each leaf. The pivot selection above doesn't take that 9757 // into account, which means the tree might require more nodes and be less 9758 // efficient. We compensate for this here. 9759 9760 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9761 unsigned NumRight = W.LastCluster - FirstRight + 1; 9762 9763 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9764 // If one side has less than 3 clusters, and the other has more than 3, 9765 // consider taking a cluster from the other side. 9766 9767 if (NumLeft < NumRight) { 9768 // Consider moving the first cluster on the right to the left side. 9769 CaseCluster &CC = *FirstRight; 9770 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9771 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9772 if (LeftSideRank <= RightSideRank) { 9773 // Moving the cluster to the left does not demote it. 9774 ++LastLeft; 9775 ++FirstRight; 9776 continue; 9777 } 9778 } else { 9779 assert(NumRight < NumLeft); 9780 // Consider moving the last element on the left to the right side. 9781 CaseCluster &CC = *LastLeft; 9782 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9783 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9784 if (RightSideRank <= LeftSideRank) { 9785 // Moving the cluster to the right does not demot it. 9786 --LastLeft; 9787 --FirstRight; 9788 continue; 9789 } 9790 } 9791 } 9792 break; 9793 } 9794 9795 assert(LastLeft + 1 == FirstRight); 9796 assert(LastLeft >= W.FirstCluster); 9797 assert(FirstRight <= W.LastCluster); 9798 9799 // Use the first element on the right as pivot since we will make less-than 9800 // comparisons against it. 9801 CaseClusterIt PivotCluster = FirstRight; 9802 assert(PivotCluster > W.FirstCluster); 9803 assert(PivotCluster <= W.LastCluster); 9804 9805 CaseClusterIt FirstLeft = W.FirstCluster; 9806 CaseClusterIt LastRight = W.LastCluster; 9807 9808 const ConstantInt *Pivot = PivotCluster->Low; 9809 9810 // New blocks will be inserted immediately after the current one. 9811 MachineFunction::iterator BBI(W.MBB); 9812 ++BBI; 9813 9814 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9815 // we can branch to its destination directly if it's squeezed exactly in 9816 // between the known lower bound and Pivot - 1. 9817 MachineBasicBlock *LeftMBB; 9818 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9819 FirstLeft->Low == W.GE && 9820 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9821 LeftMBB = FirstLeft->MBB; 9822 } else { 9823 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9824 FuncInfo.MF->insert(BBI, LeftMBB); 9825 WorkList.push_back( 9826 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9827 // Put Cond in a virtual register to make it available from the new blocks. 9828 ExportFromCurrentBlock(Cond); 9829 } 9830 9831 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9832 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9833 // directly if RHS.High equals the current upper bound. 9834 MachineBasicBlock *RightMBB; 9835 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9836 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9837 RightMBB = FirstRight->MBB; 9838 } else { 9839 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9840 FuncInfo.MF->insert(BBI, RightMBB); 9841 WorkList.push_back( 9842 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9843 // Put Cond in a virtual register to make it available from the new blocks. 9844 ExportFromCurrentBlock(Cond); 9845 } 9846 9847 // Create the CaseBlock record that will be used to lower the branch. 9848 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9849 getCurSDLoc(), LeftProb, RightProb); 9850 9851 if (W.MBB == SwitchMBB) 9852 visitSwitchCase(CB, SwitchMBB); 9853 else 9854 SwitchCases.push_back(CB); 9855 } 9856 9857 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 9858 // from the swith statement. 9859 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 9860 BranchProbability PeeledCaseProb) { 9861 if (PeeledCaseProb == BranchProbability::getOne()) 9862 return BranchProbability::getZero(); 9863 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 9864 9865 uint32_t Numerator = CaseProb.getNumerator(); 9866 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 9867 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 9868 } 9869 9870 // Try to peel the top probability case if it exceeds the threshold. 9871 // Return current MachineBasicBlock for the switch statement if the peeling 9872 // does not occur. 9873 // If the peeling is performed, return the newly created MachineBasicBlock 9874 // for the peeled switch statement. Also update Clusters to remove the peeled 9875 // case. PeeledCaseProb is the BranchProbability for the peeled case. 9876 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 9877 const SwitchInst &SI, CaseClusterVector &Clusters, 9878 BranchProbability &PeeledCaseProb) { 9879 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9880 // Don't perform if there is only one cluster or optimizing for size. 9881 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 9882 TM.getOptLevel() == CodeGenOpt::None || 9883 SwitchMBB->getParent()->getFunction().optForMinSize()) 9884 return SwitchMBB; 9885 9886 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 9887 unsigned PeeledCaseIndex = 0; 9888 bool SwitchPeeled = false; 9889 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 9890 CaseCluster &CC = Clusters[Index]; 9891 if (CC.Prob < TopCaseProb) 9892 continue; 9893 TopCaseProb = CC.Prob; 9894 PeeledCaseIndex = Index; 9895 SwitchPeeled = true; 9896 } 9897 if (!SwitchPeeled) 9898 return SwitchMBB; 9899 9900 DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " << TopCaseProb 9901 << "\n"); 9902 9903 // Record the MBB for the peeled switch statement. 9904 MachineFunction::iterator BBI(SwitchMBB); 9905 ++BBI; 9906 MachineBasicBlock *PeeledSwitchMBB = 9907 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 9908 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 9909 9910 ExportFromCurrentBlock(SI.getCondition()); 9911 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 9912 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 9913 nullptr, nullptr, TopCaseProb.getCompl()}; 9914 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 9915 9916 Clusters.erase(PeeledCaseIt); 9917 for (CaseCluster &CC : Clusters) { 9918 DEBUG(dbgs() << "Scale the probablity for one cluster, before scaling: " 9919 << CC.Prob << "\n"); 9920 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 9921 DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 9922 } 9923 PeeledCaseProb = TopCaseProb; 9924 return PeeledSwitchMBB; 9925 } 9926 9927 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9928 // Extract cases from the switch. 9929 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9930 CaseClusterVector Clusters; 9931 Clusters.reserve(SI.getNumCases()); 9932 for (auto I : SI.cases()) { 9933 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9934 const ConstantInt *CaseVal = I.getCaseValue(); 9935 BranchProbability Prob = 9936 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9937 : BranchProbability(1, SI.getNumCases() + 1); 9938 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9939 } 9940 9941 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9942 9943 // Cluster adjacent cases with the same destination. We do this at all 9944 // optimization levels because it's cheap to do and will make codegen faster 9945 // if there are many clusters. 9946 sortAndRangeify(Clusters); 9947 9948 if (TM.getOptLevel() != CodeGenOpt::None) { 9949 // Replace an unreachable default with the most popular destination. 9950 // FIXME: Exploit unreachable default more aggressively. 9951 bool UnreachableDefault = 9952 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9953 if (UnreachableDefault && !Clusters.empty()) { 9954 DenseMap<const BasicBlock *, unsigned> Popularity; 9955 unsigned MaxPop = 0; 9956 const BasicBlock *MaxBB = nullptr; 9957 for (auto I : SI.cases()) { 9958 const BasicBlock *BB = I.getCaseSuccessor(); 9959 if (++Popularity[BB] > MaxPop) { 9960 MaxPop = Popularity[BB]; 9961 MaxBB = BB; 9962 } 9963 } 9964 // Set new default. 9965 assert(MaxPop > 0 && MaxBB); 9966 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9967 9968 // Remove cases that were pointing to the destination that is now the 9969 // default. 9970 CaseClusterVector New; 9971 New.reserve(Clusters.size()); 9972 for (CaseCluster &CC : Clusters) { 9973 if (CC.MBB != DefaultMBB) 9974 New.push_back(CC); 9975 } 9976 Clusters = std::move(New); 9977 } 9978 } 9979 9980 // The branch probablity of the peeled case. 9981 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 9982 MachineBasicBlock *PeeledSwitchMBB = 9983 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 9984 9985 // If there is only the default destination, jump there directly. 9986 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9987 if (Clusters.empty()) { 9988 assert(PeeledSwitchMBB == SwitchMBB); 9989 SwitchMBB->addSuccessor(DefaultMBB); 9990 if (DefaultMBB != NextBlock(SwitchMBB)) { 9991 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9992 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9993 } 9994 return; 9995 } 9996 9997 findJumpTables(Clusters, &SI, DefaultMBB); 9998 findBitTestClusters(Clusters, &SI); 9999 10000 DEBUG({ 10001 dbgs() << "Case clusters: "; 10002 for (const CaseCluster &C : Clusters) { 10003 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 10004 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 10005 10006 C.Low->getValue().print(dbgs(), true); 10007 if (C.Low != C.High) { 10008 dbgs() << '-'; 10009 C.High->getValue().print(dbgs(), true); 10010 } 10011 dbgs() << ' '; 10012 } 10013 dbgs() << '\n'; 10014 }); 10015 10016 assert(!Clusters.empty()); 10017 SwitchWorkList WorkList; 10018 CaseClusterIt First = Clusters.begin(); 10019 CaseClusterIt Last = Clusters.end() - 1; 10020 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10021 // Scale the branchprobability for DefaultMBB if the peel occurs and 10022 // DefaultMBB is not replaced. 10023 if (PeeledCaseProb != BranchProbability::getZero() && 10024 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10025 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10026 WorkList.push_back( 10027 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10028 10029 while (!WorkList.empty()) { 10030 SwitchWorkListItem W = WorkList.back(); 10031 WorkList.pop_back(); 10032 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10033 10034 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10035 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10036 // For optimized builds, lower large range as a balanced binary tree. 10037 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10038 continue; 10039 } 10040 10041 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10042 } 10043 } 10044