1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 524 525 bool Smaller = ValueVT.bitsLE(PartVT); 526 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 527 DL, PartVT, Val); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 552 IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), 554 TLI.getVectorIdxTy())); 555 else 556 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 557 IntermediateVT, Val, 558 DAG.getConstant(i, TLI.getVectorIdxTy())); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 namespace { 580 /// RegsForValue - This struct represents the registers (physical or virtual) 581 /// that a particular set of values is assigned, and the type information 582 /// about the value. The most common situation is to represent one value at a 583 /// time, but struct or array values are handled element-wise as multiple 584 /// values. The splitting of aggregates is performed recursively, so that we 585 /// never have aggregate-typed registers. The values at this point do not 586 /// necessarily have legal types, so each value may require one or more 587 /// registers of some legal type. 588 /// 589 struct RegsForValue { 590 /// ValueVTs - The value types of the values, which may not be legal, and 591 /// may need be promoted or synthesized from one or more registers. 592 /// 593 SmallVector<EVT, 4> ValueVTs; 594 595 /// RegVTs - The value types of the registers. This is the same size as 596 /// ValueVTs and it records, for each value, what the type of the assigned 597 /// register or registers are. (Individual values are never synthesized 598 /// from more than one type of register.) 599 /// 600 /// With virtual registers, the contents of RegVTs is redundant with TLI's 601 /// getRegisterType member function, however when with physical registers 602 /// it is necessary to have a separate record of the types. 603 /// 604 SmallVector<MVT, 4> RegVTs; 605 606 /// Regs - This list holds the registers assigned to the values. 607 /// Each legal or promoted value requires one register, and each 608 /// expanded value requires multiple registers. 609 /// 610 SmallVector<unsigned, 4> Regs; 611 612 RegsForValue() {} 613 614 RegsForValue(const SmallVector<unsigned, 4> ®s, 615 MVT regvt, EVT valuevt) 616 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 617 618 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 619 unsigned Reg, Type *Ty) { 620 ComputeValueVTs(tli, Ty, ValueVTs); 621 622 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 623 EVT ValueVT = ValueVTs[Value]; 624 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 625 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 626 for (unsigned i = 0; i != NumRegs; ++i) 627 Regs.push_back(Reg + i); 628 RegVTs.push_back(RegisterVT); 629 Reg += NumRegs; 630 } 631 } 632 633 /// append - Add the specified values to this one. 634 void append(const RegsForValue &RHS) { 635 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 636 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 637 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 638 } 639 640 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 641 /// this value and returns the result as a ValueVTs value. This uses 642 /// Chain/Flag as the input and updates them for the output Chain/Flag. 643 /// If the Flag pointer is NULL, no flag is used. 644 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 645 SDLoc dl, 646 SDValue &Chain, SDValue *Flag, 647 const Value *V = nullptr) const; 648 649 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 650 /// specified value into the registers specified by this object. This uses 651 /// Chain/Flag as the input and updates them for the output Chain/Flag. 652 /// If the Flag pointer is NULL, no flag is used. 653 void 654 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 655 SDValue *Flag, const Value *V, 656 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 657 658 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 659 /// operand list. This adds the code marker, matching input operand index 660 /// (if applicable), and includes the number of values added into it. 661 void AddInlineAsmOperands(unsigned Kind, 662 bool HasMatching, unsigned MatchingIdx, 663 SelectionDAG &DAG, 664 std::vector<SDValue> &Ops) const; 665 }; 666 } 667 668 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 669 /// this value and returns the result as a ValueVT value. This uses 670 /// Chain/Flag as the input and updates them for the output Chain/Flag. 671 /// If the Flag pointer is NULL, no flag is used. 672 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 673 FunctionLoweringInfo &FuncInfo, 674 SDLoc dl, 675 SDValue &Chain, SDValue *Flag, 676 const Value *V) const { 677 // A Value with type {} or [0 x %t] needs no registers. 678 if (ValueVTs.empty()) 679 return SDValue(); 680 681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 682 683 // Assemble the legal parts into the final values. 684 SmallVector<SDValue, 4> Values(ValueVTs.size()); 685 SmallVector<SDValue, 8> Parts; 686 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 687 // Copy the legal parts from the registers. 688 EVT ValueVT = ValueVTs[Value]; 689 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 690 MVT RegisterVT = RegVTs[Value]; 691 692 Parts.resize(NumRegs); 693 for (unsigned i = 0; i != NumRegs; ++i) { 694 SDValue P; 695 if (!Flag) { 696 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 697 } else { 698 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 699 *Flag = P.getValue(2); 700 } 701 702 Chain = P.getValue(1); 703 Parts[i] = P; 704 705 // If the source register was virtual and if we know something about it, 706 // add an assert node. 707 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 708 !RegisterVT.isInteger() || RegisterVT.isVector()) 709 continue; 710 711 const FunctionLoweringInfo::LiveOutInfo *LOI = 712 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 713 if (!LOI) 714 continue; 715 716 unsigned RegSize = RegisterVT.getSizeInBits(); 717 unsigned NumSignBits = LOI->NumSignBits; 718 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 719 720 if (NumZeroBits == RegSize) { 721 // The current value is a zero. 722 // Explicitly express that as it would be easier for 723 // optimizations to kick in. 724 Parts[i] = DAG.getConstant(0, RegisterVT); 725 continue; 726 } 727 728 // FIXME: We capture more information than the dag can represent. For 729 // now, just use the tightest assertzext/assertsext possible. 730 bool isSExt = true; 731 EVT FromVT(MVT::Other); 732 if (NumSignBits == RegSize) 733 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 734 else if (NumZeroBits >= RegSize-1) 735 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 736 else if (NumSignBits > RegSize-8) 737 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 738 else if (NumZeroBits >= RegSize-8) 739 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 740 else if (NumSignBits > RegSize-16) 741 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 742 else if (NumZeroBits >= RegSize-16) 743 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 744 else if (NumSignBits > RegSize-32) 745 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 746 else if (NumZeroBits >= RegSize-32) 747 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 748 else 749 continue; 750 751 // Add an assertion node. 752 assert(FromVT != MVT::Other); 753 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 754 RegisterVT, P, DAG.getValueType(FromVT)); 755 } 756 757 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 758 NumRegs, RegisterVT, ValueVT, V); 759 Part += NumRegs; 760 Parts.clear(); 761 } 762 763 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 764 } 765 766 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 767 /// specified value into the registers specified by this object. This uses 768 /// Chain/Flag as the input and updates them for the output Chain/Flag. 769 /// If the Flag pointer is NULL, no flag is used. 770 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 771 SDValue &Chain, SDValue *Flag, const Value *V, 772 ISD::NodeType PreferredExtendType) const { 773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 774 ISD::NodeType ExtendKind = PreferredExtendType; 775 776 // Get the list of the values's legal parts. 777 unsigned NumRegs = Regs.size(); 778 SmallVector<SDValue, 8> Parts(NumRegs); 779 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 780 EVT ValueVT = ValueVTs[Value]; 781 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 782 MVT RegisterVT = RegVTs[Value]; 783 784 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 785 ExtendKind = ISD::ZERO_EXTEND; 786 787 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 788 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 789 Part += NumParts; 790 } 791 792 // Copy the parts into the registers. 793 SmallVector<SDValue, 8> Chains(NumRegs); 794 for (unsigned i = 0; i != NumRegs; ++i) { 795 SDValue Part; 796 if (!Flag) { 797 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 798 } else { 799 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 800 *Flag = Part.getValue(1); 801 } 802 803 Chains[i] = Part.getValue(0); 804 } 805 806 if (NumRegs == 1 || Flag) 807 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 808 // flagged to it. That is the CopyToReg nodes and the user are considered 809 // a single scheduling unit. If we create a TokenFactor and return it as 810 // chain, then the TokenFactor is both a predecessor (operand) of the 811 // user as well as a successor (the TF operands are flagged to the user). 812 // c1, f1 = CopyToReg 813 // c2, f2 = CopyToReg 814 // c3 = TokenFactor c1, c2 815 // ... 816 // = op c3, ..., f2 817 Chain = Chains[NumRegs-1]; 818 else 819 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 820 } 821 822 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 823 /// operand list. This adds the code marker and includes the number of 824 /// values added into it. 825 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 826 unsigned MatchingIdx, 827 SelectionDAG &DAG, 828 std::vector<SDValue> &Ops) const { 829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 830 831 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 832 if (HasMatching) 833 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 834 else if (!Regs.empty() && 835 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 836 // Put the register class of the virtual registers in the flag word. That 837 // way, later passes can recompute register class constraints for inline 838 // assembly as well as normal instructions. 839 // Don't do this for tied operands that can use the regclass information 840 // from the def. 841 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 842 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 843 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 844 } 845 846 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 847 Ops.push_back(Res); 848 849 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 850 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 851 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 852 MVT RegisterVT = RegVTs[Value]; 853 for (unsigned i = 0; i != NumRegs; ++i) { 854 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 855 unsigned TheReg = Regs[Reg++]; 856 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 857 858 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 859 // If we clobbered the stack pointer, MFI should know about it. 860 assert(DAG.getMachineFunction().getFrameInfo()-> 861 hasInlineAsmWithSPAdjust()); 862 } 863 } 864 } 865 } 866 867 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 868 const TargetLibraryInfo *li) { 869 AA = &aa; 870 GFI = gfi; 871 LibInfo = li; 872 DL = DAG.getTarget().getDataLayout(); 873 Context = DAG.getContext(); 874 LPadToCallSiteMap.clear(); 875 } 876 877 /// clear - Clear out the current SelectionDAG and the associated 878 /// state and prepare this SelectionDAGBuilder object to be used 879 /// for a new block. This doesn't clear out information about 880 /// additional blocks that are needed to complete switch lowering 881 /// or PHI node updating; that information is cleared out as it is 882 /// consumed. 883 void SelectionDAGBuilder::clear() { 884 NodeMap.clear(); 885 UnusedArgNodeMap.clear(); 886 PendingLoads.clear(); 887 PendingExports.clear(); 888 CurInst = nullptr; 889 HasTailCall = false; 890 SDNodeOrder = LowestSDNodeOrder; 891 StatepointLowering.clear(); 892 } 893 894 /// clearDanglingDebugInfo - Clear the dangling debug information 895 /// map. This function is separated from the clear so that debug 896 /// information that is dangling in a basic block can be properly 897 /// resolved in a different basic block. This allows the 898 /// SelectionDAG to resolve dangling debug information attached 899 /// to PHI nodes. 900 void SelectionDAGBuilder::clearDanglingDebugInfo() { 901 DanglingDebugInfoMap.clear(); 902 } 903 904 /// getRoot - Return the current virtual root of the Selection DAG, 905 /// flushing any PendingLoad items. This must be done before emitting 906 /// a store or any other node that may need to be ordered after any 907 /// prior load instructions. 908 /// 909 SDValue SelectionDAGBuilder::getRoot() { 910 if (PendingLoads.empty()) 911 return DAG.getRoot(); 912 913 if (PendingLoads.size() == 1) { 914 SDValue Root = PendingLoads[0]; 915 DAG.setRoot(Root); 916 PendingLoads.clear(); 917 return Root; 918 } 919 920 // Otherwise, we have to make a token factor node. 921 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 922 PendingLoads); 923 PendingLoads.clear(); 924 DAG.setRoot(Root); 925 return Root; 926 } 927 928 /// getControlRoot - Similar to getRoot, but instead of flushing all the 929 /// PendingLoad items, flush all the PendingExports items. It is necessary 930 /// to do this before emitting a terminator instruction. 931 /// 932 SDValue SelectionDAGBuilder::getControlRoot() { 933 SDValue Root = DAG.getRoot(); 934 935 if (PendingExports.empty()) 936 return Root; 937 938 // Turn all of the CopyToReg chains into one factored node. 939 if (Root.getOpcode() != ISD::EntryToken) { 940 unsigned i = 0, e = PendingExports.size(); 941 for (; i != e; ++i) { 942 assert(PendingExports[i].getNode()->getNumOperands() > 1); 943 if (PendingExports[i].getNode()->getOperand(0) == Root) 944 break; // Don't add the root if we already indirectly depend on it. 945 } 946 947 if (i == e) 948 PendingExports.push_back(Root); 949 } 950 951 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 952 PendingExports); 953 PendingExports.clear(); 954 DAG.setRoot(Root); 955 return Root; 956 } 957 958 void SelectionDAGBuilder::visit(const Instruction &I) { 959 // Set up outgoing PHI node register values before emitting the terminator. 960 if (isa<TerminatorInst>(&I)) 961 HandlePHINodesInSuccessorBlocks(I.getParent()); 962 963 ++SDNodeOrder; 964 965 CurInst = &I; 966 967 visit(I.getOpcode(), I); 968 969 if (!isa<TerminatorInst>(&I) && !HasTailCall) 970 CopyToExportRegsIfNeeded(&I); 971 972 CurInst = nullptr; 973 } 974 975 void SelectionDAGBuilder::visitPHI(const PHINode &) { 976 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 977 } 978 979 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 980 // Note: this doesn't use InstVisitor, because it has to work with 981 // ConstantExpr's in addition to instructions. 982 switch (Opcode) { 983 default: llvm_unreachable("Unknown instruction type encountered!"); 984 // Build the switch statement using the Instruction.def file. 985 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 986 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 987 #include "llvm/IR/Instruction.def" 988 } 989 } 990 991 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 992 // generate the debug data structures now that we've seen its definition. 993 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 994 SDValue Val) { 995 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 996 if (DDI.getDI()) { 997 const DbgValueInst *DI = DDI.getDI(); 998 DebugLoc dl = DDI.getdl(); 999 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1000 MDNode *Variable = DI->getVariable(); 1001 MDNode *Expr = DI->getExpression(); 1002 uint64_t Offset = DI->getOffset(); 1003 // A dbg.value for an alloca is always indirect. 1004 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1005 SDDbgValue *SDV; 1006 if (Val.getNode()) { 1007 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1008 Val)) { 1009 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1010 IsIndirect, Offset, dl, DbgSDNodeOrder); 1011 DAG.AddDbgValue(SDV, Val.getNode(), false); 1012 } 1013 } else 1014 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1015 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1016 } 1017 } 1018 1019 /// getCopyFromRegs - If there was virtual register allocated for the value V 1020 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1021 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1022 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1023 SDValue res; 1024 1025 if (It != FuncInfo.ValueMap.end()) { 1026 unsigned InReg = It->second; 1027 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1028 Ty); 1029 SDValue Chain = DAG.getEntryNode(); 1030 res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1031 resolveDanglingDebugInfo(V, res); 1032 } 1033 1034 return res; 1035 } 1036 1037 /// getValue - Return an SDValue for the given Value. 1038 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1039 // If we already have an SDValue for this value, use it. It's important 1040 // to do this first, so that we don't create a CopyFromReg if we already 1041 // have a regular SDValue. 1042 SDValue &N = NodeMap[V]; 1043 if (N.getNode()) return N; 1044 1045 // If there's a virtual register allocated and initialized for this 1046 // value, use it. 1047 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 1048 if (copyFromReg.getNode()) { 1049 return copyFromReg; 1050 } 1051 1052 // Otherwise create a new SDValue and remember it. 1053 SDValue Val = getValueImpl(V); 1054 NodeMap[V] = Val; 1055 resolveDanglingDebugInfo(V, Val); 1056 return Val; 1057 } 1058 1059 /// getNonRegisterValue - Return an SDValue for the given Value, but 1060 /// don't look in FuncInfo.ValueMap for a virtual register. 1061 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1062 // If we already have an SDValue for this value, use it. 1063 SDValue &N = NodeMap[V]; 1064 if (N.getNode()) return N; 1065 1066 // Otherwise create a new SDValue and remember it. 1067 SDValue Val = getValueImpl(V); 1068 NodeMap[V] = Val; 1069 resolveDanglingDebugInfo(V, Val); 1070 return Val; 1071 } 1072 1073 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1074 /// Create an SDValue for the given value. 1075 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1077 1078 if (const Constant *C = dyn_cast<Constant>(V)) { 1079 EVT VT = TLI.getValueType(V->getType(), true); 1080 1081 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1082 return DAG.getConstant(*CI, VT); 1083 1084 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1085 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1086 1087 if (isa<ConstantPointerNull>(C)) { 1088 unsigned AS = V->getType()->getPointerAddressSpace(); 1089 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1090 } 1091 1092 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1093 return DAG.getConstantFP(*CFP, VT); 1094 1095 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1096 return DAG.getUNDEF(VT); 1097 1098 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1099 visit(CE->getOpcode(), *CE); 1100 SDValue N1 = NodeMap[V]; 1101 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1102 return N1; 1103 } 1104 1105 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1106 SmallVector<SDValue, 4> Constants; 1107 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1108 OI != OE; ++OI) { 1109 SDNode *Val = getValue(*OI).getNode(); 1110 // If the operand is an empty aggregate, there are no values. 1111 if (!Val) continue; 1112 // Add each leaf value from the operand to the Constants list 1113 // to form a flattened list of all the values. 1114 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1115 Constants.push_back(SDValue(Val, i)); 1116 } 1117 1118 return DAG.getMergeValues(Constants, getCurSDLoc()); 1119 } 1120 1121 if (const ConstantDataSequential *CDS = 1122 dyn_cast<ConstantDataSequential>(C)) { 1123 SmallVector<SDValue, 4> Ops; 1124 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1125 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1126 // Add each leaf value from the operand to the Constants list 1127 // to form a flattened list of all the values. 1128 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1129 Ops.push_back(SDValue(Val, i)); 1130 } 1131 1132 if (isa<ArrayType>(CDS->getType())) 1133 return DAG.getMergeValues(Ops, getCurSDLoc()); 1134 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1135 VT, Ops); 1136 } 1137 1138 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1139 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1140 "Unknown struct or array constant!"); 1141 1142 SmallVector<EVT, 4> ValueVTs; 1143 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1144 unsigned NumElts = ValueVTs.size(); 1145 if (NumElts == 0) 1146 return SDValue(); // empty struct 1147 SmallVector<SDValue, 4> Constants(NumElts); 1148 for (unsigned i = 0; i != NumElts; ++i) { 1149 EVT EltVT = ValueVTs[i]; 1150 if (isa<UndefValue>(C)) 1151 Constants[i] = DAG.getUNDEF(EltVT); 1152 else if (EltVT.isFloatingPoint()) 1153 Constants[i] = DAG.getConstantFP(0, EltVT); 1154 else 1155 Constants[i] = DAG.getConstant(0, EltVT); 1156 } 1157 1158 return DAG.getMergeValues(Constants, getCurSDLoc()); 1159 } 1160 1161 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1162 return DAG.getBlockAddress(BA, VT); 1163 1164 VectorType *VecTy = cast<VectorType>(V->getType()); 1165 unsigned NumElements = VecTy->getNumElements(); 1166 1167 // Now that we know the number and type of the elements, get that number of 1168 // elements into the Ops array based on what kind of constant it is. 1169 SmallVector<SDValue, 16> Ops; 1170 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1171 for (unsigned i = 0; i != NumElements; ++i) 1172 Ops.push_back(getValue(CV->getOperand(i))); 1173 } else { 1174 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1175 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1176 1177 SDValue Op; 1178 if (EltVT.isFloatingPoint()) 1179 Op = DAG.getConstantFP(0, EltVT); 1180 else 1181 Op = DAG.getConstant(0, EltVT); 1182 Ops.assign(NumElements, Op); 1183 } 1184 1185 // Create a BUILD_VECTOR node. 1186 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1187 } 1188 1189 // If this is a static alloca, generate it as the frameindex instead of 1190 // computation. 1191 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1192 DenseMap<const AllocaInst*, int>::iterator SI = 1193 FuncInfo.StaticAllocaMap.find(AI); 1194 if (SI != FuncInfo.StaticAllocaMap.end()) 1195 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1196 } 1197 1198 // If this is an instruction which fast-isel has deferred, select it now. 1199 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1200 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1201 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1202 SDValue Chain = DAG.getEntryNode(); 1203 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1204 } 1205 1206 llvm_unreachable("Can't get register for value!"); 1207 } 1208 1209 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1211 SDValue Chain = getControlRoot(); 1212 SmallVector<ISD::OutputArg, 8> Outs; 1213 SmallVector<SDValue, 8> OutVals; 1214 1215 if (!FuncInfo.CanLowerReturn) { 1216 unsigned DemoteReg = FuncInfo.DemoteRegister; 1217 const Function *F = I.getParent()->getParent(); 1218 1219 // Emit a store of the return value through the virtual register. 1220 // Leave Outs empty so that LowerReturn won't try to load return 1221 // registers the usual way. 1222 SmallVector<EVT, 1> PtrValueVTs; 1223 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1224 PtrValueVTs); 1225 1226 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1227 SDValue RetOp = getValue(I.getOperand(0)); 1228 1229 SmallVector<EVT, 4> ValueVTs; 1230 SmallVector<uint64_t, 4> Offsets; 1231 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1232 unsigned NumValues = ValueVTs.size(); 1233 1234 SmallVector<SDValue, 4> Chains(NumValues); 1235 for (unsigned i = 0; i != NumValues; ++i) { 1236 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1237 RetPtr.getValueType(), RetPtr, 1238 DAG.getIntPtrConstant(Offsets[i])); 1239 Chains[i] = 1240 DAG.getStore(Chain, getCurSDLoc(), 1241 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1242 // FIXME: better loc info would be nice. 1243 Add, MachinePointerInfo(), false, false, 0); 1244 } 1245 1246 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1247 MVT::Other, Chains); 1248 } else if (I.getNumOperands() != 0) { 1249 SmallVector<EVT, 4> ValueVTs; 1250 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1251 unsigned NumValues = ValueVTs.size(); 1252 if (NumValues) { 1253 SDValue RetOp = getValue(I.getOperand(0)); 1254 1255 const Function *F = I.getParent()->getParent(); 1256 1257 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1258 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1259 Attribute::SExt)) 1260 ExtendKind = ISD::SIGN_EXTEND; 1261 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1262 Attribute::ZExt)) 1263 ExtendKind = ISD::ZERO_EXTEND; 1264 1265 LLVMContext &Context = F->getContext(); 1266 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1267 Attribute::InReg); 1268 1269 for (unsigned j = 0; j != NumValues; ++j) { 1270 EVT VT = ValueVTs[j]; 1271 1272 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1273 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1274 1275 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1276 MVT PartVT = TLI.getRegisterType(Context, VT); 1277 SmallVector<SDValue, 4> Parts(NumParts); 1278 getCopyToParts(DAG, getCurSDLoc(), 1279 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1280 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1281 1282 // 'inreg' on function refers to return value 1283 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1284 if (RetInReg) 1285 Flags.setInReg(); 1286 1287 // Propagate extension type if any 1288 if (ExtendKind == ISD::SIGN_EXTEND) 1289 Flags.setSExt(); 1290 else if (ExtendKind == ISD::ZERO_EXTEND) 1291 Flags.setZExt(); 1292 1293 for (unsigned i = 0; i < NumParts; ++i) { 1294 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1295 VT, /*isfixed=*/true, 0, 0)); 1296 OutVals.push_back(Parts[i]); 1297 } 1298 } 1299 } 1300 } 1301 1302 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1303 CallingConv::ID CallConv = 1304 DAG.getMachineFunction().getFunction()->getCallingConv(); 1305 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1306 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1307 1308 // Verify that the target's LowerReturn behaved as expected. 1309 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1310 "LowerReturn didn't return a valid chain!"); 1311 1312 // Update the DAG with the new chain value resulting from return lowering. 1313 DAG.setRoot(Chain); 1314 } 1315 1316 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1317 /// created for it, emit nodes to copy the value into the virtual 1318 /// registers. 1319 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1320 // Skip empty types 1321 if (V->getType()->isEmptyTy()) 1322 return; 1323 1324 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1325 if (VMI != FuncInfo.ValueMap.end()) { 1326 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1327 CopyValueToVirtualRegister(V, VMI->second); 1328 } 1329 } 1330 1331 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1332 /// the current basic block, add it to ValueMap now so that we'll get a 1333 /// CopyTo/FromReg. 1334 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1335 // No need to export constants. 1336 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1337 1338 // Already exported? 1339 if (FuncInfo.isExportedInst(V)) return; 1340 1341 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1342 CopyValueToVirtualRegister(V, Reg); 1343 } 1344 1345 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1346 const BasicBlock *FromBB) { 1347 // The operands of the setcc have to be in this block. We don't know 1348 // how to export them from some other block. 1349 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1350 // Can export from current BB. 1351 if (VI->getParent() == FromBB) 1352 return true; 1353 1354 // Is already exported, noop. 1355 return FuncInfo.isExportedInst(V); 1356 } 1357 1358 // If this is an argument, we can export it if the BB is the entry block or 1359 // if it is already exported. 1360 if (isa<Argument>(V)) { 1361 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1362 return true; 1363 1364 // Otherwise, can only export this if it is already exported. 1365 return FuncInfo.isExportedInst(V); 1366 } 1367 1368 // Otherwise, constants can always be exported. 1369 return true; 1370 } 1371 1372 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1373 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1374 const MachineBasicBlock *Dst) const { 1375 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1376 if (!BPI) 1377 return 0; 1378 const BasicBlock *SrcBB = Src->getBasicBlock(); 1379 const BasicBlock *DstBB = Dst->getBasicBlock(); 1380 return BPI->getEdgeWeight(SrcBB, DstBB); 1381 } 1382 1383 void SelectionDAGBuilder:: 1384 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1385 uint32_t Weight /* = 0 */) { 1386 if (!Weight) 1387 Weight = getEdgeWeight(Src, Dst); 1388 Src->addSuccessor(Dst, Weight); 1389 } 1390 1391 1392 static bool InBlock(const Value *V, const BasicBlock *BB) { 1393 if (const Instruction *I = dyn_cast<Instruction>(V)) 1394 return I->getParent() == BB; 1395 return true; 1396 } 1397 1398 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1399 /// This function emits a branch and is used at the leaves of an OR or an 1400 /// AND operator tree. 1401 /// 1402 void 1403 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1404 MachineBasicBlock *TBB, 1405 MachineBasicBlock *FBB, 1406 MachineBasicBlock *CurBB, 1407 MachineBasicBlock *SwitchBB, 1408 uint32_t TWeight, 1409 uint32_t FWeight) { 1410 const BasicBlock *BB = CurBB->getBasicBlock(); 1411 1412 // If the leaf of the tree is a comparison, merge the condition into 1413 // the caseblock. 1414 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1415 // The operands of the cmp have to be in this block. We don't know 1416 // how to export them from some other block. If this is the first block 1417 // of the sequence, no exporting is needed. 1418 if (CurBB == SwitchBB || 1419 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1420 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1421 ISD::CondCode Condition; 1422 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1423 Condition = getICmpCondCode(IC->getPredicate()); 1424 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1425 Condition = getFCmpCondCode(FC->getPredicate()); 1426 if (TM.Options.NoNaNsFPMath) 1427 Condition = getFCmpCodeWithoutNaN(Condition); 1428 } else { 1429 (void)Condition; // silence warning. 1430 llvm_unreachable("Unknown compare instruction"); 1431 } 1432 1433 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1434 TBB, FBB, CurBB, TWeight, FWeight); 1435 SwitchCases.push_back(CB); 1436 return; 1437 } 1438 } 1439 1440 // Create a CaseBlock record representing this branch. 1441 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1442 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1443 SwitchCases.push_back(CB); 1444 } 1445 1446 /// Scale down both weights to fit into uint32_t. 1447 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1448 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1449 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1450 NewTrue = NewTrue / Scale; 1451 NewFalse = NewFalse / Scale; 1452 } 1453 1454 /// FindMergedConditions - If Cond is an expression like 1455 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1456 MachineBasicBlock *TBB, 1457 MachineBasicBlock *FBB, 1458 MachineBasicBlock *CurBB, 1459 MachineBasicBlock *SwitchBB, 1460 unsigned Opc, uint32_t TWeight, 1461 uint32_t FWeight) { 1462 // If this node is not part of the or/and tree, emit it as a branch. 1463 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1464 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1465 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1466 BOp->getParent() != CurBB->getBasicBlock() || 1467 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1468 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1469 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1470 TWeight, FWeight); 1471 return; 1472 } 1473 1474 // Create TmpBB after CurBB. 1475 MachineFunction::iterator BBI = CurBB; 1476 MachineFunction &MF = DAG.getMachineFunction(); 1477 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1478 CurBB->getParent()->insert(++BBI, TmpBB); 1479 1480 if (Opc == Instruction::Or) { 1481 // Codegen X | Y as: 1482 // BB1: 1483 // jmp_if_X TBB 1484 // jmp TmpBB 1485 // TmpBB: 1486 // jmp_if_Y TBB 1487 // jmp FBB 1488 // 1489 1490 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1491 // The requirement is that 1492 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1493 // = TrueProb for orignal BB. 1494 // Assuming the orignal weights are A and B, one choice is to set BB1's 1495 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1496 // assumes that 1497 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1498 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1499 // TmpBB, but the math is more complicated. 1500 1501 uint64_t NewTrueWeight = TWeight; 1502 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1503 ScaleWeights(NewTrueWeight, NewFalseWeight); 1504 // Emit the LHS condition. 1505 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1506 NewTrueWeight, NewFalseWeight); 1507 1508 NewTrueWeight = TWeight; 1509 NewFalseWeight = 2 * (uint64_t)FWeight; 1510 ScaleWeights(NewTrueWeight, NewFalseWeight); 1511 // Emit the RHS condition into TmpBB. 1512 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1513 NewTrueWeight, NewFalseWeight); 1514 } else { 1515 assert(Opc == Instruction::And && "Unknown merge op!"); 1516 // Codegen X & Y as: 1517 // BB1: 1518 // jmp_if_X TmpBB 1519 // jmp FBB 1520 // TmpBB: 1521 // jmp_if_Y TBB 1522 // jmp FBB 1523 // 1524 // This requires creation of TmpBB after CurBB. 1525 1526 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1527 // The requirement is that 1528 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1529 // = FalseProb for orignal BB. 1530 // Assuming the orignal weights are A and B, one choice is to set BB1's 1531 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1532 // assumes that 1533 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1534 1535 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1536 uint64_t NewFalseWeight = FWeight; 1537 ScaleWeights(NewTrueWeight, NewFalseWeight); 1538 // Emit the LHS condition. 1539 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1540 NewTrueWeight, NewFalseWeight); 1541 1542 NewTrueWeight = 2 * (uint64_t)TWeight; 1543 NewFalseWeight = FWeight; 1544 ScaleWeights(NewTrueWeight, NewFalseWeight); 1545 // Emit the RHS condition into TmpBB. 1546 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1547 NewTrueWeight, NewFalseWeight); 1548 } 1549 } 1550 1551 /// If the set of cases should be emitted as a series of branches, return true. 1552 /// If we should emit this as a bunch of and/or'd together conditions, return 1553 /// false. 1554 bool 1555 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1556 if (Cases.size() != 2) return true; 1557 1558 // If this is two comparisons of the same values or'd or and'd together, they 1559 // will get folded into a single comparison, so don't emit two blocks. 1560 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1561 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1562 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1563 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1564 return false; 1565 } 1566 1567 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1568 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1569 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1570 Cases[0].CC == Cases[1].CC && 1571 isa<Constant>(Cases[0].CmpRHS) && 1572 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1573 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1574 return false; 1575 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1576 return false; 1577 } 1578 1579 return true; 1580 } 1581 1582 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1583 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1584 1585 // Update machine-CFG edges. 1586 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1587 1588 // Figure out which block is immediately after the current one. 1589 MachineBasicBlock *NextBlock = nullptr; 1590 MachineFunction::iterator BBI = BrMBB; 1591 if (++BBI != FuncInfo.MF->end()) 1592 NextBlock = BBI; 1593 1594 if (I.isUnconditional()) { 1595 // Update machine-CFG edges. 1596 BrMBB->addSuccessor(Succ0MBB); 1597 1598 // If this is not a fall-through branch or optimizations are switched off, 1599 // emit the branch. 1600 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1601 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1602 MVT::Other, getControlRoot(), 1603 DAG.getBasicBlock(Succ0MBB))); 1604 1605 return; 1606 } 1607 1608 // If this condition is one of the special cases we handle, do special stuff 1609 // now. 1610 const Value *CondVal = I.getCondition(); 1611 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1612 1613 // If this is a series of conditions that are or'd or and'd together, emit 1614 // this as a sequence of branches instead of setcc's with and/or operations. 1615 // As long as jumps are not expensive, this should improve performance. 1616 // For example, instead of something like: 1617 // cmp A, B 1618 // C = seteq 1619 // cmp D, E 1620 // F = setle 1621 // or C, F 1622 // jnz foo 1623 // Emit: 1624 // cmp A, B 1625 // je foo 1626 // cmp D, E 1627 // jle foo 1628 // 1629 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1630 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1631 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1632 BOp->getOpcode() == Instruction::Or)) { 1633 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1634 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1635 getEdgeWeight(BrMBB, Succ1MBB)); 1636 // If the compares in later blocks need to use values not currently 1637 // exported from this block, export them now. This block should always 1638 // be the first entry. 1639 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1640 1641 // Allow some cases to be rejected. 1642 if (ShouldEmitAsBranches(SwitchCases)) { 1643 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1644 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1645 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1646 } 1647 1648 // Emit the branch for this block. 1649 visitSwitchCase(SwitchCases[0], BrMBB); 1650 SwitchCases.erase(SwitchCases.begin()); 1651 return; 1652 } 1653 1654 // Okay, we decided not to do this, remove any inserted MBB's and clear 1655 // SwitchCases. 1656 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1657 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1658 1659 SwitchCases.clear(); 1660 } 1661 } 1662 1663 // Create a CaseBlock record representing this branch. 1664 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1665 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1666 1667 // Use visitSwitchCase to actually insert the fast branch sequence for this 1668 // cond branch. 1669 visitSwitchCase(CB, BrMBB); 1670 } 1671 1672 /// visitSwitchCase - Emits the necessary code to represent a single node in 1673 /// the binary search tree resulting from lowering a switch instruction. 1674 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1675 MachineBasicBlock *SwitchBB) { 1676 SDValue Cond; 1677 SDValue CondLHS = getValue(CB.CmpLHS); 1678 SDLoc dl = getCurSDLoc(); 1679 1680 // Build the setcc now. 1681 if (!CB.CmpMHS) { 1682 // Fold "(X == true)" to X and "(X == false)" to !X to 1683 // handle common cases produced by branch lowering. 1684 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1685 CB.CC == ISD::SETEQ) 1686 Cond = CondLHS; 1687 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1688 CB.CC == ISD::SETEQ) { 1689 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1690 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1691 } else 1692 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1693 } else { 1694 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1695 1696 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1697 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1698 1699 SDValue CmpOp = getValue(CB.CmpMHS); 1700 EVT VT = CmpOp.getValueType(); 1701 1702 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1703 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1704 ISD::SETLE); 1705 } else { 1706 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1707 VT, CmpOp, DAG.getConstant(Low, VT)); 1708 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1709 DAG.getConstant(High-Low, VT), ISD::SETULE); 1710 } 1711 } 1712 1713 // Update successor info 1714 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1715 // TrueBB and FalseBB are always different unless the incoming IR is 1716 // degenerate. This only happens when running llc on weird IR. 1717 if (CB.TrueBB != CB.FalseBB) 1718 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1719 1720 // Set NextBlock to be the MBB immediately after the current one, if any. 1721 // This is used to avoid emitting unnecessary branches to the next block. 1722 MachineBasicBlock *NextBlock = nullptr; 1723 MachineFunction::iterator BBI = SwitchBB; 1724 if (++BBI != FuncInfo.MF->end()) 1725 NextBlock = BBI; 1726 1727 // If the lhs block is the next block, invert the condition so that we can 1728 // fall through to the lhs instead of the rhs block. 1729 if (CB.TrueBB == NextBlock) { 1730 std::swap(CB.TrueBB, CB.FalseBB); 1731 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1732 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1733 } 1734 1735 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1736 MVT::Other, getControlRoot(), Cond, 1737 DAG.getBasicBlock(CB.TrueBB)); 1738 1739 // Insert the false branch. Do this even if it's a fall through branch, 1740 // this makes it easier to do DAG optimizations which require inverting 1741 // the branch condition. 1742 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1743 DAG.getBasicBlock(CB.FalseBB)); 1744 1745 DAG.setRoot(BrCond); 1746 } 1747 1748 /// visitJumpTable - Emit JumpTable node in the current MBB 1749 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1750 // Emit the code for the jump table 1751 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1752 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1753 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1754 JT.Reg, PTy); 1755 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1756 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1757 MVT::Other, Index.getValue(1), 1758 Table, Index); 1759 DAG.setRoot(BrJumpTable); 1760 } 1761 1762 /// visitJumpTableHeader - This function emits necessary code to produce index 1763 /// in the JumpTable from switch case. 1764 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1765 JumpTableHeader &JTH, 1766 MachineBasicBlock *SwitchBB) { 1767 // Subtract the lowest switch case value from the value being switched on and 1768 // conditional branch to default mbb if the result is greater than the 1769 // difference between smallest and largest cases. 1770 SDValue SwitchOp = getValue(JTH.SValue); 1771 EVT VT = SwitchOp.getValueType(); 1772 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1773 DAG.getConstant(JTH.First, VT)); 1774 1775 // The SDNode we just created, which holds the value being switched on minus 1776 // the smallest case value, needs to be copied to a virtual register so it 1777 // can be used as an index into the jump table in a subsequent basic block. 1778 // This value may be smaller or larger than the target's pointer type, and 1779 // therefore require extension or truncating. 1780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1781 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1782 1783 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1784 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1785 JumpTableReg, SwitchOp); 1786 JT.Reg = JumpTableReg; 1787 1788 // Emit the range check for the jump table, and branch to the default block 1789 // for the switch statement if the value being switched on exceeds the largest 1790 // case in the switch. 1791 SDValue CMP = 1792 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1793 Sub.getValueType()), 1794 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1795 1796 // Set NextBlock to be the MBB immediately after the current one, if any. 1797 // This is used to avoid emitting unnecessary branches to the next block. 1798 MachineBasicBlock *NextBlock = nullptr; 1799 MachineFunction::iterator BBI = SwitchBB; 1800 1801 if (++BBI != FuncInfo.MF->end()) 1802 NextBlock = BBI; 1803 1804 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1805 MVT::Other, CopyTo, CMP, 1806 DAG.getBasicBlock(JT.Default)); 1807 1808 if (JT.MBB != NextBlock) 1809 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1810 DAG.getBasicBlock(JT.MBB)); 1811 1812 DAG.setRoot(BrCond); 1813 } 1814 1815 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1816 /// tail spliced into a stack protector check success bb. 1817 /// 1818 /// For a high level explanation of how this fits into the stack protector 1819 /// generation see the comment on the declaration of class 1820 /// StackProtectorDescriptor. 1821 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1822 MachineBasicBlock *ParentBB) { 1823 1824 // First create the loads to the guard/stack slot for the comparison. 1825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1826 EVT PtrTy = TLI.getPointerTy(); 1827 1828 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1829 int FI = MFI->getStackProtectorIndex(); 1830 1831 const Value *IRGuard = SPD.getGuard(); 1832 SDValue GuardPtr = getValue(IRGuard); 1833 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1834 1835 unsigned Align = 1836 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1837 1838 SDValue Guard; 1839 1840 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1841 // guard value from the virtual register holding the value. Otherwise, emit a 1842 // volatile load to retrieve the stack guard value. 1843 unsigned GuardReg = SPD.getGuardReg(); 1844 1845 if (GuardReg && TLI.useLoadStackGuardNode()) 1846 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1847 PtrTy); 1848 else 1849 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1850 GuardPtr, MachinePointerInfo(IRGuard, 0), 1851 true, false, false, Align); 1852 1853 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1854 StackSlotPtr, 1855 MachinePointerInfo::getFixedStack(FI), 1856 true, false, false, Align); 1857 1858 // Perform the comparison via a subtract/getsetcc. 1859 EVT VT = Guard.getValueType(); 1860 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1861 1862 SDValue Cmp = 1863 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1864 Sub.getValueType()), 1865 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1866 1867 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1868 // branch to failure MBB. 1869 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1870 MVT::Other, StackSlot.getOperand(0), 1871 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1872 // Otherwise branch to success MBB. 1873 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1874 MVT::Other, BrCond, 1875 DAG.getBasicBlock(SPD.getSuccessMBB())); 1876 1877 DAG.setRoot(Br); 1878 } 1879 1880 /// Codegen the failure basic block for a stack protector check. 1881 /// 1882 /// A failure stack protector machine basic block consists simply of a call to 1883 /// __stack_chk_fail(). 1884 /// 1885 /// For a high level explanation of how this fits into the stack protector 1886 /// generation see the comment on the declaration of class 1887 /// StackProtectorDescriptor. 1888 void 1889 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1891 SDValue Chain = 1892 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1893 nullptr, 0, false, getCurSDLoc(), false, false).second; 1894 DAG.setRoot(Chain); 1895 } 1896 1897 /// visitBitTestHeader - This function emits necessary code to produce value 1898 /// suitable for "bit tests" 1899 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1900 MachineBasicBlock *SwitchBB) { 1901 // Subtract the minimum value 1902 SDValue SwitchOp = getValue(B.SValue); 1903 EVT VT = SwitchOp.getValueType(); 1904 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1905 DAG.getConstant(B.First, VT)); 1906 1907 // Check range 1908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1909 SDValue RangeCmp = 1910 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1911 Sub.getValueType()), 1912 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1913 1914 // Determine the type of the test operands. 1915 bool UsePtrType = false; 1916 if (!TLI.isTypeLegal(VT)) 1917 UsePtrType = true; 1918 else { 1919 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1920 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1921 // Switch table case range are encoded into series of masks. 1922 // Just use pointer type, it's guaranteed to fit. 1923 UsePtrType = true; 1924 break; 1925 } 1926 } 1927 if (UsePtrType) { 1928 VT = TLI.getPointerTy(); 1929 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1930 } 1931 1932 B.RegVT = VT.getSimpleVT(); 1933 B.Reg = FuncInfo.CreateReg(B.RegVT); 1934 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1935 B.Reg, Sub); 1936 1937 // Set NextBlock to be the MBB immediately after the current one, if any. 1938 // This is used to avoid emitting unnecessary branches to the next block. 1939 MachineBasicBlock *NextBlock = nullptr; 1940 MachineFunction::iterator BBI = SwitchBB; 1941 if (++BBI != FuncInfo.MF->end()) 1942 NextBlock = BBI; 1943 1944 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1945 1946 addSuccessorWithWeight(SwitchBB, B.Default); 1947 addSuccessorWithWeight(SwitchBB, MBB); 1948 1949 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1950 MVT::Other, CopyTo, RangeCmp, 1951 DAG.getBasicBlock(B.Default)); 1952 1953 if (MBB != NextBlock) 1954 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1955 DAG.getBasicBlock(MBB)); 1956 1957 DAG.setRoot(BrRange); 1958 } 1959 1960 /// visitBitTestCase - this function produces one "bit test" 1961 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1962 MachineBasicBlock* NextMBB, 1963 uint32_t BranchWeightToNext, 1964 unsigned Reg, 1965 BitTestCase &B, 1966 MachineBasicBlock *SwitchBB) { 1967 MVT VT = BB.RegVT; 1968 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1969 Reg, VT); 1970 SDValue Cmp; 1971 unsigned PopCount = countPopulation(B.Mask); 1972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1973 if (PopCount == 1) { 1974 // Testing for a single bit; just compare the shift count with what it 1975 // would need to be to shift a 1 bit in that position. 1976 Cmp = DAG.getSetCC( 1977 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1978 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1979 } else if (PopCount == BB.Range) { 1980 // There is only one zero bit in the range, test for it directly. 1981 Cmp = DAG.getSetCC( 1982 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1983 DAG.getConstant(countTrailingOnes(B.Mask), VT), ISD::SETNE); 1984 } else { 1985 // Make desired shift 1986 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1987 DAG.getConstant(1, VT), ShiftOp); 1988 1989 // Emit bit tests and jumps 1990 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1991 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1992 Cmp = DAG.getSetCC(getCurSDLoc(), 1993 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1994 DAG.getConstant(0, VT), ISD::SETNE); 1995 } 1996 1997 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1998 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1999 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2000 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2001 2002 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 2003 MVT::Other, getControlRoot(), 2004 Cmp, DAG.getBasicBlock(B.TargetBB)); 2005 2006 // Set NextBlock to be the MBB immediately after the current one, if any. 2007 // This is used to avoid emitting unnecessary branches to the next block. 2008 MachineBasicBlock *NextBlock = nullptr; 2009 MachineFunction::iterator BBI = SwitchBB; 2010 if (++BBI != FuncInfo.MF->end()) 2011 NextBlock = BBI; 2012 2013 if (NextMBB != NextBlock) 2014 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 2015 DAG.getBasicBlock(NextMBB)); 2016 2017 DAG.setRoot(BrAnd); 2018 } 2019 2020 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2021 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2022 2023 // Retrieve successors. 2024 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2025 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2026 2027 const Value *Callee(I.getCalledValue()); 2028 const Function *Fn = dyn_cast<Function>(Callee); 2029 if (isa<InlineAsm>(Callee)) 2030 visitInlineAsm(&I); 2031 else if (Fn && Fn->isIntrinsic()) { 2032 switch (Fn->getIntrinsicID()) { 2033 default: 2034 llvm_unreachable("Cannot invoke this intrinsic"); 2035 case Intrinsic::donothing: 2036 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2037 break; 2038 case Intrinsic::experimental_patchpoint_void: 2039 case Intrinsic::experimental_patchpoint_i64: 2040 visitPatchpoint(&I, LandingPad); 2041 break; 2042 case Intrinsic::experimental_gc_statepoint: 2043 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 2044 break; 2045 } 2046 } else 2047 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2048 2049 // If the value of the invoke is used outside of its defining block, make it 2050 // available as a virtual register. 2051 // We already took care of the exported value for the statepoint instruction 2052 // during call to the LowerStatepoint. 2053 if (!isStatepoint(I)) { 2054 CopyToExportRegsIfNeeded(&I); 2055 } 2056 2057 // Update successor info 2058 addSuccessorWithWeight(InvokeMBB, Return); 2059 addSuccessorWithWeight(InvokeMBB, LandingPad); 2060 2061 // Drop into normal successor. 2062 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2063 MVT::Other, getControlRoot(), 2064 DAG.getBasicBlock(Return))); 2065 } 2066 2067 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2068 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2069 } 2070 2071 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2072 assert(FuncInfo.MBB->isLandingPad() && 2073 "Call to landingpad not in landing pad!"); 2074 2075 MachineBasicBlock *MBB = FuncInfo.MBB; 2076 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2077 AddLandingPadInfo(LP, MMI, MBB); 2078 2079 // If there aren't registers to copy the values into (e.g., during SjLj 2080 // exceptions), then don't bother to create these DAG nodes. 2081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2082 if (TLI.getExceptionPointerRegister() == 0 && 2083 TLI.getExceptionSelectorRegister() == 0) 2084 return; 2085 2086 SmallVector<EVT, 2> ValueVTs; 2087 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2088 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2089 2090 // Get the two live-in registers as SDValues. The physregs have already been 2091 // copied into virtual registers. 2092 SDValue Ops[2]; 2093 if (FuncInfo.ExceptionPointerVirtReg) { 2094 Ops[0] = DAG.getZExtOrTrunc( 2095 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2096 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2097 getCurSDLoc(), ValueVTs[0]); 2098 } else { 2099 Ops[0] = DAG.getConstant(0, TLI.getPointerTy()); 2100 } 2101 Ops[1] = DAG.getZExtOrTrunc( 2102 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2103 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2104 getCurSDLoc(), ValueVTs[1]); 2105 2106 // Merge into one. 2107 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2108 DAG.getVTList(ValueVTs), Ops); 2109 setValue(&LP, Res); 2110 } 2111 2112 unsigned 2113 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2114 MachineBasicBlock *LPadBB) { 2115 SDValue Chain = getControlRoot(); 2116 2117 // Get the typeid that we will dispatch on later. 2118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2119 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2120 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2121 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2122 SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy()); 2123 Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel); 2124 2125 // Branch to the main landing pad block. 2126 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2127 ClauseMBB->addSuccessor(LPadBB); 2128 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 2129 DAG.getBasicBlock(LPadBB))); 2130 return VReg; 2131 } 2132 2133 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2134 /// small case ranges). 2135 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2136 CaseRecVector& WorkList, 2137 const Value* SV, 2138 MachineBasicBlock *Default, 2139 MachineBasicBlock *SwitchBB) { 2140 // Size is the number of Cases represented by this range. 2141 size_t Size = CR.Range.second - CR.Range.first; 2142 if (Size > 3) 2143 return false; 2144 2145 // Get the MachineFunction which holds the current MBB. This is used when 2146 // inserting any additional MBBs necessary to represent the switch. 2147 MachineFunction *CurMF = FuncInfo.MF; 2148 2149 // Figure out which block is immediately after the current one. 2150 MachineBasicBlock *NextBlock = nullptr; 2151 MachineFunction::iterator BBI = CR.CaseBB; 2152 2153 if (++BBI != FuncInfo.MF->end()) 2154 NextBlock = BBI; 2155 2156 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2157 // If any two of the cases has the same destination, and if one value 2158 // is the same as the other, but has one bit unset that the other has set, 2159 // use bit manipulation to do two compares at once. For example: 2160 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2161 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2162 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2163 if (Size == 2 && CR.CaseBB == SwitchBB) { 2164 Case &Small = *CR.Range.first; 2165 Case &Big = *(CR.Range.second-1); 2166 2167 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2168 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2169 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2170 2171 // Check that there is only one bit different. 2172 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2173 (SmallValue | BigValue) == BigValue) { 2174 // Isolate the common bit. 2175 APInt CommonBit = BigValue & ~SmallValue; 2176 assert((SmallValue | CommonBit) == BigValue && 2177 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2178 2179 SDValue CondLHS = getValue(SV); 2180 EVT VT = CondLHS.getValueType(); 2181 SDLoc DL = getCurSDLoc(); 2182 2183 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2184 DAG.getConstant(CommonBit, VT)); 2185 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2186 Or, DAG.getConstant(BigValue, VT), 2187 ISD::SETEQ); 2188 2189 // Update successor info. 2190 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2191 addSuccessorWithWeight(SwitchBB, Small.BB, 2192 Small.ExtraWeight + Big.ExtraWeight); 2193 addSuccessorWithWeight(SwitchBB, Default, 2194 // The default destination is the first successor in IR. 2195 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2196 2197 // Insert the true branch. 2198 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2199 getControlRoot(), Cond, 2200 DAG.getBasicBlock(Small.BB)); 2201 2202 // Insert the false branch. 2203 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2204 DAG.getBasicBlock(Default)); 2205 2206 DAG.setRoot(BrCond); 2207 return true; 2208 } 2209 } 2210 } 2211 2212 // Order cases by weight so the most likely case will be checked first. 2213 uint32_t UnhandledWeights = 0; 2214 if (BPI) { 2215 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2216 uint32_t IWeight = I->ExtraWeight; 2217 UnhandledWeights += IWeight; 2218 for (CaseItr J = CR.Range.first; J < I; ++J) { 2219 uint32_t JWeight = J->ExtraWeight; 2220 if (IWeight > JWeight) 2221 std::swap(*I, *J); 2222 } 2223 } 2224 } 2225 // Rearrange the case blocks so that the last one falls through if possible. 2226 Case &BackCase = *(CR.Range.second-1); 2227 if (Size > 1 && 2228 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2229 // The last case block won't fall through into 'NextBlock' if we emit the 2230 // branches in this order. See if rearranging a case value would help. 2231 // We start at the bottom as it's the case with the least weight. 2232 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2233 if (I->BB == NextBlock) { 2234 std::swap(*I, BackCase); 2235 break; 2236 } 2237 } 2238 2239 // Create a CaseBlock record representing a conditional branch to 2240 // the Case's target mbb if the value being switched on SV is equal 2241 // to C. 2242 MachineBasicBlock *CurBlock = CR.CaseBB; 2243 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2244 MachineBasicBlock *FallThrough; 2245 if (I != E-1) { 2246 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2247 CurMF->insert(BBI, FallThrough); 2248 2249 // Put SV in a virtual register to make it available from the new blocks. 2250 ExportFromCurrentBlock(SV); 2251 } else { 2252 // If the last case doesn't match, go to the default block. 2253 FallThrough = Default; 2254 } 2255 2256 const Value *RHS, *LHS, *MHS; 2257 ISD::CondCode CC; 2258 if (I->High == I->Low) { 2259 // This is just small small case range :) containing exactly 1 case 2260 CC = ISD::SETEQ; 2261 LHS = SV; RHS = I->High; MHS = nullptr; 2262 } else { 2263 CC = ISD::SETLE; 2264 LHS = I->Low; MHS = SV; RHS = I->High; 2265 } 2266 2267 // The false weight should be sum of all un-handled cases. 2268 UnhandledWeights -= I->ExtraWeight; 2269 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2270 /* me */ CurBlock, 2271 /* trueweight */ I->ExtraWeight, 2272 /* falseweight */ UnhandledWeights); 2273 2274 // If emitting the first comparison, just call visitSwitchCase to emit the 2275 // code into the current block. Otherwise, push the CaseBlock onto the 2276 // vector to be later processed by SDISel, and insert the node's MBB 2277 // before the next MBB. 2278 if (CurBlock == SwitchBB) 2279 visitSwitchCase(CB, SwitchBB); 2280 else 2281 SwitchCases.push_back(CB); 2282 2283 CurBlock = FallThrough; 2284 } 2285 2286 return true; 2287 } 2288 2289 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2290 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2291 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2292 } 2293 2294 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2295 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2296 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2297 return (LastExt - FirstExt + 1ULL); 2298 } 2299 2300 /// handleJTSwitchCase - Emit jumptable for current switch case range 2301 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2302 CaseRecVector &WorkList, 2303 const Value *SV, 2304 MachineBasicBlock *Default, 2305 MachineBasicBlock *SwitchBB) { 2306 Case& FrontCase = *CR.Range.first; 2307 Case& BackCase = *(CR.Range.second-1); 2308 2309 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2310 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2311 2312 APInt TSize(First.getBitWidth(), 0); 2313 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2314 TSize += I->size(); 2315 2316 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2317 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2318 return false; 2319 2320 APInt Range = ComputeRange(First, Last); 2321 // The density is TSize / Range. Require at least 40%. 2322 // It should not be possible for IntTSize to saturate for sane code, but make 2323 // sure we handle Range saturation correctly. 2324 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2325 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2326 if (IntTSize * 10 < IntRange * 4) 2327 return false; 2328 2329 DEBUG(dbgs() << "Lowering jump table\n" 2330 << "First entry: " << First << ". Last entry: " << Last << '\n' 2331 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2332 2333 // Get the MachineFunction which holds the current MBB. This is used when 2334 // inserting any additional MBBs necessary to represent the switch. 2335 MachineFunction *CurMF = FuncInfo.MF; 2336 2337 // Figure out which block is immediately after the current one. 2338 MachineFunction::iterator BBI = CR.CaseBB; 2339 ++BBI; 2340 2341 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2342 2343 // Create a new basic block to hold the code for loading the address 2344 // of the jump table, and jumping to it. Update successor information; 2345 // we will either branch to the default case for the switch, or the jump 2346 // table. 2347 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2348 CurMF->insert(BBI, JumpTableBB); 2349 2350 addSuccessorWithWeight(CR.CaseBB, Default); 2351 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2352 2353 // Build a vector of destination BBs, corresponding to each target 2354 // of the jump table. If the value of the jump table slot corresponds to 2355 // a case statement, push the case's BB onto the vector, otherwise, push 2356 // the default BB. 2357 std::vector<MachineBasicBlock*> DestBBs; 2358 APInt TEI = First; 2359 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2360 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2361 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2362 2363 if (Low.sle(TEI) && TEI.sle(High)) { 2364 DestBBs.push_back(I->BB); 2365 if (TEI==High) 2366 ++I; 2367 } else { 2368 DestBBs.push_back(Default); 2369 } 2370 } 2371 2372 // Calculate weight for each unique destination in CR. 2373 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2374 if (FuncInfo.BPI) 2375 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2376 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2377 DestWeights.find(I->BB); 2378 if (Itr != DestWeights.end()) 2379 Itr->second += I->ExtraWeight; 2380 else 2381 DestWeights[I->BB] = I->ExtraWeight; 2382 } 2383 2384 // Update successor info. Add one edge to each unique successor. 2385 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2386 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2387 E = DestBBs.end(); I != E; ++I) { 2388 if (!SuccsHandled[(*I)->getNumber()]) { 2389 SuccsHandled[(*I)->getNumber()] = true; 2390 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2391 DestWeights.find(*I); 2392 addSuccessorWithWeight(JumpTableBB, *I, 2393 Itr != DestWeights.end() ? Itr->second : 0); 2394 } 2395 } 2396 2397 // Create a jump table index for this jump table. 2398 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2399 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2400 ->createJumpTableIndex(DestBBs); 2401 2402 // Set the jump table information so that we can codegen it as a second 2403 // MachineBasicBlock 2404 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2405 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2406 if (CR.CaseBB == SwitchBB) 2407 visitJumpTableHeader(JT, JTH, SwitchBB); 2408 2409 JTCases.push_back(JumpTableBlock(JTH, JT)); 2410 return true; 2411 } 2412 2413 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2414 /// 2 subtrees. 2415 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2416 CaseRecVector& WorkList, 2417 const Value* SV, 2418 MachineBasicBlock* SwitchBB) { 2419 Case& FrontCase = *CR.Range.first; 2420 Case& BackCase = *(CR.Range.second-1); 2421 2422 // Size is the number of Cases represented by this range. 2423 unsigned Size = CR.Range.second - CR.Range.first; 2424 2425 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2426 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2427 double FMetric = 0; 2428 CaseItr Pivot = CR.Range.first + Size/2; 2429 2430 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2431 // (heuristically) allow us to emit JumpTable's later. 2432 APInt TSize(First.getBitWidth(), 0); 2433 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2434 I!=E; ++I) 2435 TSize += I->size(); 2436 2437 APInt LSize = FrontCase.size(); 2438 APInt RSize = TSize-LSize; 2439 DEBUG(dbgs() << "Selecting best pivot: \n" 2440 << "First: " << First << ", Last: " << Last <<'\n' 2441 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2443 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2444 J!=E; ++I, ++J) { 2445 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2446 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2447 APInt Range = ComputeRange(LEnd, RBegin); 2448 assert((Range - 2ULL).isNonNegative() && 2449 "Invalid case distance"); 2450 // Use volatile double here to avoid excess precision issues on some hosts, 2451 // e.g. that use 80-bit X87 registers. 2452 // Only consider the density of sub-ranges that actually have sufficient 2453 // entries to be lowered as a jump table. 2454 volatile double LDensity = 2455 LSize.ult(TLI.getMinimumJumpTableEntries()) 2456 ? 0.0 2457 : LSize.roundToDouble() / (LEnd - First + 1ULL).roundToDouble(); 2458 volatile double RDensity = 2459 RSize.ult(TLI.getMinimumJumpTableEntries()) 2460 ? 0.0 2461 : RSize.roundToDouble() / (Last - RBegin + 1ULL).roundToDouble(); 2462 volatile double Metric = Range.logBase2() * (LDensity + RDensity); 2463 // Should always split in some non-trivial place 2464 DEBUG(dbgs() <<"=>Step\n" 2465 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2466 << "LDensity: " << LDensity 2467 << ", RDensity: " << RDensity << '\n' 2468 << "Metric: " << Metric << '\n'); 2469 if (FMetric < Metric) { 2470 Pivot = J; 2471 FMetric = Metric; 2472 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2473 } 2474 2475 LSize += J->size(); 2476 RSize -= J->size(); 2477 } 2478 2479 if (FMetric == 0 || !areJTsAllowed(TLI)) 2480 Pivot = CR.Range.first + Size/2; 2481 splitSwitchCase(CR, Pivot, WorkList, SV, SwitchBB); 2482 return true; 2483 } 2484 2485 void SelectionDAGBuilder::splitSwitchCase(CaseRec &CR, CaseItr Pivot, 2486 CaseRecVector &WorkList, 2487 const Value *SV, 2488 MachineBasicBlock *SwitchBB) { 2489 // Get the MachineFunction which holds the current MBB. This is used when 2490 // inserting any additional MBBs necessary to represent the switch. 2491 MachineFunction *CurMF = FuncInfo.MF; 2492 2493 // Figure out which block is immediately after the current one. 2494 MachineFunction::iterator BBI = CR.CaseBB; 2495 ++BBI; 2496 2497 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2498 2499 CaseRange LHSR(CR.Range.first, Pivot); 2500 CaseRange RHSR(Pivot, CR.Range.second); 2501 const Constant *C = Pivot->Low; 2502 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2503 2504 // We know that we branch to the LHS if the Value being switched on is 2505 // less than the Pivot value, C. We use this to optimize our binary 2506 // tree a bit, by recognizing that if SV is greater than or equal to the 2507 // LHS's Case Value, and that Case Value is exactly one less than the 2508 // Pivot's Value, then we can branch directly to the LHS's Target, 2509 // rather than creating a leaf node for it. 2510 if ((LHSR.second - LHSR.first) == 1 && LHSR.first->High == CR.GE && 2511 cast<ConstantInt>(C)->getValue() == 2512 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2513 TrueBB = LHSR.first->BB; 2514 } else { 2515 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2516 CurMF->insert(BBI, TrueBB); 2517 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2518 2519 // Put SV in a virtual register to make it available from the new blocks. 2520 ExportFromCurrentBlock(SV); 2521 } 2522 2523 // Similar to the optimization above, if the Value being switched on is 2524 // known to be less than the Constant CR.LT, and the current Case Value 2525 // is CR.LT - 1, then we can branch directly to the target block for 2526 // the current Case Value, rather than emitting a RHS leaf node for it. 2527 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2528 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2529 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2530 FalseBB = RHSR.first->BB; 2531 } else { 2532 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2533 CurMF->insert(BBI, FalseBB); 2534 WorkList.push_back(CaseRec(FalseBB, CR.LT, C, RHSR)); 2535 2536 // Put SV in a virtual register to make it available from the new blocks. 2537 ExportFromCurrentBlock(SV); 2538 } 2539 2540 // Create a CaseBlock record representing a conditional branch to 2541 // the LHS node if the value being switched on SV is less than C. 2542 // Otherwise, branch to LHS. 2543 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2544 2545 if (CR.CaseBB == SwitchBB) 2546 visitSwitchCase(CB, SwitchBB); 2547 else 2548 SwitchCases.push_back(CB); 2549 } 2550 2551 /// handleBitTestsSwitchCase - if current case range has few destination and 2552 /// range span less, than machine word bitwidth, encode case range into series 2553 /// of masks and emit bit tests with these masks. 2554 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2555 CaseRecVector& WorkList, 2556 const Value* SV, 2557 MachineBasicBlock* Default, 2558 MachineBasicBlock* SwitchBB) { 2559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2560 EVT PTy = TLI.getPointerTy(); 2561 unsigned IntPtrBits = PTy.getSizeInBits(); 2562 2563 Case& FrontCase = *CR.Range.first; 2564 Case& BackCase = *(CR.Range.second-1); 2565 2566 // Get the MachineFunction which holds the current MBB. This is used when 2567 // inserting any additional MBBs necessary to represent the switch. 2568 MachineFunction *CurMF = FuncInfo.MF; 2569 2570 // If target does not have legal shift left, do not emit bit tests at all. 2571 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2572 return false; 2573 2574 size_t numCmps = 0; 2575 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2576 // Single case counts one, case range - two. 2577 numCmps += (I->Low == I->High ? 1 : 2); 2578 } 2579 2580 // Count unique destinations 2581 SmallSet<MachineBasicBlock*, 4> Dests; 2582 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2583 Dests.insert(I->BB); 2584 if (Dests.size() > 3) 2585 // Don't bother the code below, if there are too much unique destinations 2586 return false; 2587 } 2588 DEBUG(dbgs() << "Total number of unique destinations: " 2589 << Dests.size() << '\n' 2590 << "Total number of comparisons: " << numCmps << '\n'); 2591 2592 // Compute span of values. 2593 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2594 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2595 APInt cmpRange = maxValue - minValue; 2596 2597 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2598 << "Low bound: " << minValue << '\n' 2599 << "High bound: " << maxValue << '\n'); 2600 2601 if (cmpRange.uge(IntPtrBits) || 2602 (!(Dests.size() == 1 && numCmps >= 3) && 2603 !(Dests.size() == 2 && numCmps >= 5) && 2604 !(Dests.size() >= 3 && numCmps >= 6))) 2605 return false; 2606 2607 DEBUG(dbgs() << "Emitting bit tests\n"); 2608 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2609 2610 // Optimize the case where all the case values fit in a 2611 // word without having to subtract minValue. In this case, 2612 // we can optimize away the subtraction. 2613 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2614 cmpRange = maxValue; 2615 } else { 2616 lowBound = minValue; 2617 } 2618 2619 CaseBitsVector CasesBits; 2620 unsigned i, count = 0; 2621 2622 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2623 MachineBasicBlock* Dest = I->BB; 2624 for (i = 0; i < count; ++i) 2625 if (Dest == CasesBits[i].BB) 2626 break; 2627 2628 if (i == count) { 2629 assert((count < 3) && "Too much destinations to test!"); 2630 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2631 count++; 2632 } 2633 2634 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2635 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2636 2637 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2638 uint64_t hi = (highValue - lowBound).getZExtValue(); 2639 CasesBits[i].ExtraWeight += I->ExtraWeight; 2640 2641 for (uint64_t j = lo; j <= hi; j++) { 2642 CasesBits[i].Mask |= 1ULL << j; 2643 CasesBits[i].Bits++; 2644 } 2645 2646 } 2647 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2648 2649 BitTestInfo BTC; 2650 2651 // Figure out which block is immediately after the current one. 2652 MachineFunction::iterator BBI = CR.CaseBB; 2653 ++BBI; 2654 2655 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2656 2657 DEBUG(dbgs() << "Cases:\n"); 2658 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2659 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2660 << ", Bits: " << CasesBits[i].Bits 2661 << ", BB: " << CasesBits[i].BB << '\n'); 2662 2663 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2664 CurMF->insert(BBI, CaseBB); 2665 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2666 CaseBB, 2667 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2668 2669 // Put SV in a virtual register to make it available from the new blocks. 2670 ExportFromCurrentBlock(SV); 2671 } 2672 2673 BitTestBlock BTB(lowBound, cmpRange, SV, 2674 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2675 CR.CaseBB, Default, std::move(BTC)); 2676 2677 if (CR.CaseBB == SwitchBB) 2678 visitBitTestHeader(BTB, SwitchBB); 2679 2680 BitTestCases.push_back(std::move(BTB)); 2681 2682 return true; 2683 } 2684 2685 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2686 void SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2687 const SwitchInst& SI) { 2688 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2689 // Start with "simple" cases. 2690 for (SwitchInst::ConstCaseIt i : SI.cases()) { 2691 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2692 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2693 2694 uint32_t ExtraWeight = 2695 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2696 2697 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2698 SMBB, ExtraWeight)); 2699 } 2700 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2701 2702 // Merge case into clusters 2703 if (Cases.size() >= 2) 2704 // Must recompute end() each iteration because it may be 2705 // invalidated by erase if we hold on to it 2706 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2707 J != Cases.end(); ) { 2708 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2709 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2710 MachineBasicBlock* nextBB = J->BB; 2711 MachineBasicBlock* currentBB = I->BB; 2712 2713 // If the two neighboring cases go to the same destination, merge them 2714 // into a single case. 2715 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2716 I->High = J->High; 2717 I->ExtraWeight += J->ExtraWeight; 2718 J = Cases.erase(J); 2719 } else { 2720 I = J++; 2721 } 2722 } 2723 2724 DEBUG({ 2725 size_t numCmps = 0; 2726 for (auto &I : Cases) 2727 // A range counts double, since it requires two compares. 2728 numCmps += I.Low != I.High ? 2 : 1; 2729 2730 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2731 << ". Total compares: " << numCmps << '\n'; 2732 }); 2733 } 2734 2735 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2736 MachineBasicBlock *Last) { 2737 // Update JTCases. 2738 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2739 if (JTCases[i].first.HeaderBB == First) 2740 JTCases[i].first.HeaderBB = Last; 2741 2742 // Update BitTestCases. 2743 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2744 if (BitTestCases[i].Parent == First) 2745 BitTestCases[i].Parent = Last; 2746 } 2747 2748 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2749 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2750 2751 // Figure out which block is immediately after the current one. 2752 MachineBasicBlock *NextBlock = nullptr; 2753 if (SwitchMBB + 1 != FuncInfo.MF->end()) 2754 NextBlock = SwitchMBB + 1; 2755 2756 2757 // Create a vector of Cases, sorted so that we can efficiently create a binary 2758 // search tree from them. 2759 CaseVector Cases; 2760 Clusterify(Cases, SI); 2761 2762 // Get the default destination MBB. 2763 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2764 2765 if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) && 2766 !Cases.empty()) { 2767 // Replace an unreachable default destination with the most popular case 2768 // destination. 2769 DenseMap<const BasicBlock *, unsigned> Popularity; 2770 unsigned MaxPop = 0; 2771 const BasicBlock *MaxBB = nullptr; 2772 for (auto I : SI.cases()) { 2773 const BasicBlock *BB = I.getCaseSuccessor(); 2774 if (++Popularity[BB] > MaxPop) { 2775 MaxPop = Popularity[BB]; 2776 MaxBB = BB; 2777 } 2778 } 2779 2780 // Set new default. 2781 assert(MaxPop > 0); 2782 assert(MaxBB); 2783 Default = FuncInfo.MBBMap[MaxBB]; 2784 2785 // Remove cases that were pointing to the destination that is now the default. 2786 Cases.erase(std::remove_if(Cases.begin(), Cases.end(), 2787 [&](const Case &C) { return C.BB == Default; }), 2788 Cases.end()); 2789 } 2790 2791 // If there is only the default destination, go there directly. 2792 if (Cases.empty()) { 2793 // Update machine-CFG edges. 2794 SwitchMBB->addSuccessor(Default); 2795 2796 // If this is not a fall-through branch, emit the branch. 2797 if (Default != NextBlock) { 2798 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2799 getControlRoot(), DAG.getBasicBlock(Default))); 2800 } 2801 return; 2802 } 2803 2804 // Get the Value to be switched on. 2805 const Value *SV = SI.getCondition(); 2806 2807 // Push the initial CaseRec onto the worklist 2808 CaseRecVector WorkList; 2809 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2810 CaseRange(Cases.begin(),Cases.end()))); 2811 2812 while (!WorkList.empty()) { 2813 // Grab a record representing a case range to process off the worklist 2814 CaseRec CR = WorkList.back(); 2815 WorkList.pop_back(); 2816 2817 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2818 continue; 2819 2820 // If the range has few cases (two or less) emit a series of specific 2821 // tests. 2822 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2823 continue; 2824 2825 // If the switch has more than N blocks, and is at least 40% dense, and the 2826 // target supports indirect branches, then emit a jump table rather than 2827 // lowering the switch to a binary tree of conditional branches. 2828 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2829 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2830 continue; 2831 2832 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2833 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2834 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2835 } 2836 } 2837 2838 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2839 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2840 2841 // Update machine-CFG edges with unique successors. 2842 SmallSet<BasicBlock*, 32> Done; 2843 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2844 BasicBlock *BB = I.getSuccessor(i); 2845 bool Inserted = Done.insert(BB).second; 2846 if (!Inserted) 2847 continue; 2848 2849 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2850 addSuccessorWithWeight(IndirectBrMBB, Succ); 2851 } 2852 2853 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2854 MVT::Other, getControlRoot(), 2855 getValue(I.getAddress()))); 2856 } 2857 2858 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2859 if (DAG.getTarget().Options.TrapUnreachable) 2860 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2861 } 2862 2863 void SelectionDAGBuilder::visitFSub(const User &I) { 2864 // -0.0 - X --> fneg 2865 Type *Ty = I.getType(); 2866 if (isa<Constant>(I.getOperand(0)) && 2867 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2868 SDValue Op2 = getValue(I.getOperand(1)); 2869 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2870 Op2.getValueType(), Op2)); 2871 return; 2872 } 2873 2874 visitBinary(I, ISD::FSUB); 2875 } 2876 2877 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2878 SDValue Op1 = getValue(I.getOperand(0)); 2879 SDValue Op2 = getValue(I.getOperand(1)); 2880 2881 bool nuw = false; 2882 bool nsw = false; 2883 bool exact = false; 2884 if (const OverflowingBinaryOperator *OFBinOp = 2885 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2886 nuw = OFBinOp->hasNoUnsignedWrap(); 2887 nsw = OFBinOp->hasNoSignedWrap(); 2888 } 2889 if (const PossiblyExactOperator *ExactOp = 2890 dyn_cast<const PossiblyExactOperator>(&I)) 2891 exact = ExactOp->isExact(); 2892 2893 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2894 Op1, Op2, nuw, nsw, exact); 2895 setValue(&I, BinNodeValue); 2896 } 2897 2898 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2899 SDValue Op1 = getValue(I.getOperand(0)); 2900 SDValue Op2 = getValue(I.getOperand(1)); 2901 2902 EVT ShiftTy = 2903 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2904 2905 // Coerce the shift amount to the right type if we can. 2906 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2907 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2908 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2909 SDLoc DL = getCurSDLoc(); 2910 2911 // If the operand is smaller than the shift count type, promote it. 2912 if (ShiftSize > Op2Size) 2913 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2914 2915 // If the operand is larger than the shift count type but the shift 2916 // count type has enough bits to represent any shift value, truncate 2917 // it now. This is a common case and it exposes the truncate to 2918 // optimization early. 2919 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2920 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2921 // Otherwise we'll need to temporarily settle for some other convenient 2922 // type. Type legalization will make adjustments once the shiftee is split. 2923 else 2924 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2925 } 2926 2927 bool nuw = false; 2928 bool nsw = false; 2929 bool exact = false; 2930 2931 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2932 2933 if (const OverflowingBinaryOperator *OFBinOp = 2934 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2935 nuw = OFBinOp->hasNoUnsignedWrap(); 2936 nsw = OFBinOp->hasNoSignedWrap(); 2937 } 2938 if (const PossiblyExactOperator *ExactOp = 2939 dyn_cast<const PossiblyExactOperator>(&I)) 2940 exact = ExactOp->isExact(); 2941 } 2942 2943 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2944 nuw, nsw, exact); 2945 setValue(&I, Res); 2946 } 2947 2948 void SelectionDAGBuilder::visitSDiv(const User &I) { 2949 SDValue Op1 = getValue(I.getOperand(0)); 2950 SDValue Op2 = getValue(I.getOperand(1)); 2951 2952 // Turn exact SDivs into multiplications. 2953 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2954 // exact bit. 2955 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2956 !isa<ConstantSDNode>(Op1) && 2957 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2958 setValue(&I, DAG.getTargetLoweringInfo() 2959 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2960 else 2961 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2962 Op1, Op2)); 2963 } 2964 2965 void SelectionDAGBuilder::visitICmp(const User &I) { 2966 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2967 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2968 predicate = IC->getPredicate(); 2969 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2970 predicate = ICmpInst::Predicate(IC->getPredicate()); 2971 SDValue Op1 = getValue(I.getOperand(0)); 2972 SDValue Op2 = getValue(I.getOperand(1)); 2973 ISD::CondCode Opcode = getICmpCondCode(predicate); 2974 2975 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2976 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2977 } 2978 2979 void SelectionDAGBuilder::visitFCmp(const User &I) { 2980 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2981 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2982 predicate = FC->getPredicate(); 2983 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2984 predicate = FCmpInst::Predicate(FC->getPredicate()); 2985 SDValue Op1 = getValue(I.getOperand(0)); 2986 SDValue Op2 = getValue(I.getOperand(1)); 2987 ISD::CondCode Condition = getFCmpCondCode(predicate); 2988 if (TM.Options.NoNaNsFPMath) 2989 Condition = getFCmpCodeWithoutNaN(Condition); 2990 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2991 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2992 } 2993 2994 void SelectionDAGBuilder::visitSelect(const User &I) { 2995 SmallVector<EVT, 4> ValueVTs; 2996 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2997 unsigned NumValues = ValueVTs.size(); 2998 if (NumValues == 0) return; 2999 3000 SmallVector<SDValue, 4> Values(NumValues); 3001 SDValue Cond = getValue(I.getOperand(0)); 3002 SDValue TrueVal = getValue(I.getOperand(1)); 3003 SDValue FalseVal = getValue(I.getOperand(2)); 3004 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3005 ISD::VSELECT : ISD::SELECT; 3006 3007 for (unsigned i = 0; i != NumValues; ++i) 3008 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3009 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 3010 Cond, 3011 SDValue(TrueVal.getNode(), 3012 TrueVal.getResNo() + i), 3013 SDValue(FalseVal.getNode(), 3014 FalseVal.getResNo() + i)); 3015 3016 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3017 DAG.getVTList(ValueVTs), Values)); 3018 } 3019 3020 void SelectionDAGBuilder::visitTrunc(const User &I) { 3021 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3022 SDValue N = getValue(I.getOperand(0)); 3023 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3024 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3025 } 3026 3027 void SelectionDAGBuilder::visitZExt(const User &I) { 3028 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3029 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3030 SDValue N = getValue(I.getOperand(0)); 3031 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3032 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3033 } 3034 3035 void SelectionDAGBuilder::visitSExt(const User &I) { 3036 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3037 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3038 SDValue N = getValue(I.getOperand(0)); 3039 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3040 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3041 } 3042 3043 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3044 // FPTrunc is never a no-op cast, no need to check 3045 SDValue N = getValue(I.getOperand(0)); 3046 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3047 EVT DestVT = TLI.getValueType(I.getType()); 3048 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 3049 DAG.getTargetConstant(0, TLI.getPointerTy()))); 3050 } 3051 3052 void SelectionDAGBuilder::visitFPExt(const User &I) { 3053 // FPExt is never a no-op cast, no need to check 3054 SDValue N = getValue(I.getOperand(0)); 3055 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3056 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3057 } 3058 3059 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3060 // FPToUI is never a no-op cast, no need to check 3061 SDValue N = getValue(I.getOperand(0)); 3062 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3063 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3064 } 3065 3066 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3067 // FPToSI is never a no-op cast, no need to check 3068 SDValue N = getValue(I.getOperand(0)); 3069 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3070 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3071 } 3072 3073 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3074 // UIToFP is never a no-op cast, no need to check 3075 SDValue N = getValue(I.getOperand(0)); 3076 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3077 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3078 } 3079 3080 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3081 // SIToFP is never a no-op cast, no need to check 3082 SDValue N = getValue(I.getOperand(0)); 3083 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3084 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3085 } 3086 3087 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3088 // What to do depends on the size of the integer and the size of the pointer. 3089 // We can either truncate, zero extend, or no-op, accordingly. 3090 SDValue N = getValue(I.getOperand(0)); 3091 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3092 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3093 } 3094 3095 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3096 // What to do depends on the size of the integer and the size of the pointer. 3097 // We can either truncate, zero extend, or no-op, accordingly. 3098 SDValue N = getValue(I.getOperand(0)); 3099 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3100 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3101 } 3102 3103 void SelectionDAGBuilder::visitBitCast(const User &I) { 3104 SDValue N = getValue(I.getOperand(0)); 3105 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3106 3107 // BitCast assures us that source and destination are the same size so this is 3108 // either a BITCAST or a no-op. 3109 if (DestVT != N.getValueType()) 3110 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3111 DestVT, N)); // convert types. 3112 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3113 // might fold any kind of constant expression to an integer constant and that 3114 // is not what we are looking for. Only regcognize a bitcast of a genuine 3115 // constant integer as an opaque constant. 3116 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3117 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3118 /*isOpaque*/true)); 3119 else 3120 setValue(&I, N); // noop cast. 3121 } 3122 3123 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3125 const Value *SV = I.getOperand(0); 3126 SDValue N = getValue(SV); 3127 EVT DestVT = TLI.getValueType(I.getType()); 3128 3129 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3130 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3131 3132 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3133 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3134 3135 setValue(&I, N); 3136 } 3137 3138 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3139 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3140 SDValue InVec = getValue(I.getOperand(0)); 3141 SDValue InVal = getValue(I.getOperand(1)); 3142 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3143 getCurSDLoc(), TLI.getVectorIdxTy()); 3144 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3145 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3146 } 3147 3148 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3149 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3150 SDValue InVec = getValue(I.getOperand(0)); 3151 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3152 getCurSDLoc(), TLI.getVectorIdxTy()); 3153 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3154 TLI.getValueType(I.getType()), InVec, InIdx)); 3155 } 3156 3157 // Utility for visitShuffleVector - Return true if every element in Mask, 3158 // beginning from position Pos and ending in Pos+Size, falls within the 3159 // specified sequential range [L, L+Pos). or is undef. 3160 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3161 unsigned Pos, unsigned Size, int Low) { 3162 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3163 if (Mask[i] >= 0 && Mask[i] != Low) 3164 return false; 3165 return true; 3166 } 3167 3168 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3169 SDValue Src1 = getValue(I.getOperand(0)); 3170 SDValue Src2 = getValue(I.getOperand(1)); 3171 3172 SmallVector<int, 8> Mask; 3173 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3174 unsigned MaskNumElts = Mask.size(); 3175 3176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3177 EVT VT = TLI.getValueType(I.getType()); 3178 EVT SrcVT = Src1.getValueType(); 3179 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3180 3181 if (SrcNumElts == MaskNumElts) { 3182 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3183 &Mask[0])); 3184 return; 3185 } 3186 3187 // Normalize the shuffle vector since mask and vector length don't match. 3188 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3189 // Mask is longer than the source vectors and is a multiple of the source 3190 // vectors. We can use concatenate vector to make the mask and vectors 3191 // lengths match. 3192 if (SrcNumElts*2 == MaskNumElts) { 3193 // First check for Src1 in low and Src2 in high 3194 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3195 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3196 // The shuffle is concatenating two vectors together. 3197 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3198 VT, Src1, Src2)); 3199 return; 3200 } 3201 // Then check for Src2 in low and Src1 in high 3202 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3203 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3204 // The shuffle is concatenating two vectors together. 3205 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3206 VT, Src2, Src1)); 3207 return; 3208 } 3209 } 3210 3211 // Pad both vectors with undefs to make them the same length as the mask. 3212 unsigned NumConcat = MaskNumElts / SrcNumElts; 3213 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3214 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3215 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3216 3217 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3218 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3219 MOps1[0] = Src1; 3220 MOps2[0] = Src2; 3221 3222 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3223 getCurSDLoc(), VT, MOps1); 3224 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3225 getCurSDLoc(), VT, MOps2); 3226 3227 // Readjust mask for new input vector length. 3228 SmallVector<int, 8> MappedOps; 3229 for (unsigned i = 0; i != MaskNumElts; ++i) { 3230 int Idx = Mask[i]; 3231 if (Idx >= (int)SrcNumElts) 3232 Idx -= SrcNumElts - MaskNumElts; 3233 MappedOps.push_back(Idx); 3234 } 3235 3236 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3237 &MappedOps[0])); 3238 return; 3239 } 3240 3241 if (SrcNumElts > MaskNumElts) { 3242 // Analyze the access pattern of the vector to see if we can extract 3243 // two subvectors and do the shuffle. The analysis is done by calculating 3244 // the range of elements the mask access on both vectors. 3245 int MinRange[2] = { static_cast<int>(SrcNumElts), 3246 static_cast<int>(SrcNumElts)}; 3247 int MaxRange[2] = {-1, -1}; 3248 3249 for (unsigned i = 0; i != MaskNumElts; ++i) { 3250 int Idx = Mask[i]; 3251 unsigned Input = 0; 3252 if (Idx < 0) 3253 continue; 3254 3255 if (Idx >= (int)SrcNumElts) { 3256 Input = 1; 3257 Idx -= SrcNumElts; 3258 } 3259 if (Idx > MaxRange[Input]) 3260 MaxRange[Input] = Idx; 3261 if (Idx < MinRange[Input]) 3262 MinRange[Input] = Idx; 3263 } 3264 3265 // Check if the access is smaller than the vector size and can we find 3266 // a reasonable extract index. 3267 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3268 // Extract. 3269 int StartIdx[2]; // StartIdx to extract from 3270 for (unsigned Input = 0; Input < 2; ++Input) { 3271 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3272 RangeUse[Input] = 0; // Unused 3273 StartIdx[Input] = 0; 3274 continue; 3275 } 3276 3277 // Find a good start index that is a multiple of the mask length. Then 3278 // see if the rest of the elements are in range. 3279 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3280 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3281 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3282 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3283 } 3284 3285 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3286 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3287 return; 3288 } 3289 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3290 // Extract appropriate subvector and generate a vector shuffle 3291 for (unsigned Input = 0; Input < 2; ++Input) { 3292 SDValue &Src = Input == 0 ? Src1 : Src2; 3293 if (RangeUse[Input] == 0) 3294 Src = DAG.getUNDEF(VT); 3295 else 3296 Src = DAG.getNode( 3297 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3298 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3299 } 3300 3301 // Calculate new mask. 3302 SmallVector<int, 8> MappedOps; 3303 for (unsigned i = 0; i != MaskNumElts; ++i) { 3304 int Idx = Mask[i]; 3305 if (Idx >= 0) { 3306 if (Idx < (int)SrcNumElts) 3307 Idx -= StartIdx[0]; 3308 else 3309 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3310 } 3311 MappedOps.push_back(Idx); 3312 } 3313 3314 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3315 &MappedOps[0])); 3316 return; 3317 } 3318 } 3319 3320 // We can't use either concat vectors or extract subvectors so fall back to 3321 // replacing the shuffle with extract and build vector. 3322 // to insert and build vector. 3323 EVT EltVT = VT.getVectorElementType(); 3324 EVT IdxVT = TLI.getVectorIdxTy(); 3325 SmallVector<SDValue,8> Ops; 3326 for (unsigned i = 0; i != MaskNumElts; ++i) { 3327 int Idx = Mask[i]; 3328 SDValue Res; 3329 3330 if (Idx < 0) { 3331 Res = DAG.getUNDEF(EltVT); 3332 } else { 3333 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3334 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3335 3336 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3337 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3338 } 3339 3340 Ops.push_back(Res); 3341 } 3342 3343 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3344 } 3345 3346 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3347 const Value *Op0 = I.getOperand(0); 3348 const Value *Op1 = I.getOperand(1); 3349 Type *AggTy = I.getType(); 3350 Type *ValTy = Op1->getType(); 3351 bool IntoUndef = isa<UndefValue>(Op0); 3352 bool FromUndef = isa<UndefValue>(Op1); 3353 3354 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3355 3356 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3357 SmallVector<EVT, 4> AggValueVTs; 3358 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3359 SmallVector<EVT, 4> ValValueVTs; 3360 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3361 3362 unsigned NumAggValues = AggValueVTs.size(); 3363 unsigned NumValValues = ValValueVTs.size(); 3364 SmallVector<SDValue, 4> Values(NumAggValues); 3365 3366 // Ignore an insertvalue that produces an empty object 3367 if (!NumAggValues) { 3368 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3369 return; 3370 } 3371 3372 SDValue Agg = getValue(Op0); 3373 unsigned i = 0; 3374 // Copy the beginning value(s) from the original aggregate. 3375 for (; i != LinearIndex; ++i) 3376 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3377 SDValue(Agg.getNode(), Agg.getResNo() + i); 3378 // Copy values from the inserted value(s). 3379 if (NumValValues) { 3380 SDValue Val = getValue(Op1); 3381 for (; i != LinearIndex + NumValValues; ++i) 3382 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3383 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3384 } 3385 // Copy remaining value(s) from the original aggregate. 3386 for (; i != NumAggValues; ++i) 3387 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3388 SDValue(Agg.getNode(), Agg.getResNo() + i); 3389 3390 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3391 DAG.getVTList(AggValueVTs), Values)); 3392 } 3393 3394 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3395 const Value *Op0 = I.getOperand(0); 3396 Type *AggTy = Op0->getType(); 3397 Type *ValTy = I.getType(); 3398 bool OutOfUndef = isa<UndefValue>(Op0); 3399 3400 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3401 3402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3403 SmallVector<EVT, 4> ValValueVTs; 3404 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3405 3406 unsigned NumValValues = ValValueVTs.size(); 3407 3408 // Ignore a extractvalue that produces an empty object 3409 if (!NumValValues) { 3410 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3411 return; 3412 } 3413 3414 SmallVector<SDValue, 4> Values(NumValValues); 3415 3416 SDValue Agg = getValue(Op0); 3417 // Copy out the selected value(s). 3418 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3419 Values[i - LinearIndex] = 3420 OutOfUndef ? 3421 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3422 SDValue(Agg.getNode(), Agg.getResNo() + i); 3423 3424 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3425 DAG.getVTList(ValValueVTs), Values)); 3426 } 3427 3428 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3429 Value *Op0 = I.getOperand(0); 3430 // Note that the pointer operand may be a vector of pointers. Take the scalar 3431 // element which holds a pointer. 3432 Type *Ty = Op0->getType()->getScalarType(); 3433 unsigned AS = Ty->getPointerAddressSpace(); 3434 SDValue N = getValue(Op0); 3435 3436 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3437 OI != E; ++OI) { 3438 const Value *Idx = *OI; 3439 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3440 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3441 if (Field) { 3442 // N = N + Offset 3443 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3444 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3445 DAG.getConstant(Offset, N.getValueType())); 3446 } 3447 3448 Ty = StTy->getElementType(Field); 3449 } else { 3450 Ty = cast<SequentialType>(Ty)->getElementType(); 3451 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 3452 unsigned PtrSize = PtrTy.getSizeInBits(); 3453 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3454 3455 // If this is a constant subscript, handle it quickly. 3456 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 3457 if (CI->isZero()) 3458 continue; 3459 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3460 SDValue OffsVal = DAG.getConstant(Offs, PtrTy); 3461 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal); 3462 continue; 3463 } 3464 3465 // N = N + Idx * ElementSize; 3466 SDValue IdxN = getValue(Idx); 3467 3468 // If the index is smaller or larger than intptr_t, truncate or extend 3469 // it. 3470 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3471 3472 // If this is a multiply by a power of two, turn it into a shl 3473 // immediately. This is a very common case. 3474 if (ElementSize != 1) { 3475 if (ElementSize.isPowerOf2()) { 3476 unsigned Amt = ElementSize.logBase2(); 3477 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3478 N.getValueType(), IdxN, 3479 DAG.getConstant(Amt, IdxN.getValueType())); 3480 } else { 3481 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3482 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3483 N.getValueType(), IdxN, Scale); 3484 } 3485 } 3486 3487 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3488 N.getValueType(), N, IdxN); 3489 } 3490 } 3491 3492 setValue(&I, N); 3493 } 3494 3495 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3496 // If this is a fixed sized alloca in the entry block of the function, 3497 // allocate it statically on the stack. 3498 if (FuncInfo.StaticAllocaMap.count(&I)) 3499 return; // getValue will auto-populate this. 3500 3501 Type *Ty = I.getAllocatedType(); 3502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3503 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3504 unsigned Align = 3505 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3506 I.getAlignment()); 3507 3508 SDValue AllocSize = getValue(I.getArraySize()); 3509 3510 EVT IntPtr = TLI.getPointerTy(); 3511 if (AllocSize.getValueType() != IntPtr) 3512 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3513 3514 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3515 AllocSize, 3516 DAG.getConstant(TySize, IntPtr)); 3517 3518 // Handle alignment. If the requested alignment is less than or equal to 3519 // the stack alignment, ignore it. If the size is greater than or equal to 3520 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3521 unsigned StackAlign = 3522 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3523 if (Align <= StackAlign) 3524 Align = 0; 3525 3526 // Round the size of the allocation up to the stack alignment size 3527 // by add SA-1 to the size. 3528 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3529 AllocSize.getValueType(), AllocSize, 3530 DAG.getIntPtrConstant(StackAlign-1)); 3531 3532 // Mask out the low bits for alignment purposes. 3533 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3534 AllocSize.getValueType(), AllocSize, 3535 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3536 3537 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3538 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3539 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3540 setValue(&I, DSA); 3541 DAG.setRoot(DSA.getValue(1)); 3542 3543 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3544 } 3545 3546 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3547 if (I.isAtomic()) 3548 return visitAtomicLoad(I); 3549 3550 const Value *SV = I.getOperand(0); 3551 SDValue Ptr = getValue(SV); 3552 3553 Type *Ty = I.getType(); 3554 3555 bool isVolatile = I.isVolatile(); 3556 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3557 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3558 unsigned Alignment = I.getAlignment(); 3559 3560 AAMDNodes AAInfo; 3561 I.getAAMetadata(AAInfo); 3562 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3563 3564 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3565 SmallVector<EVT, 4> ValueVTs; 3566 SmallVector<uint64_t, 4> Offsets; 3567 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3568 unsigned NumValues = ValueVTs.size(); 3569 if (NumValues == 0) 3570 return; 3571 3572 SDValue Root; 3573 bool ConstantMemory = false; 3574 if (isVolatile || NumValues > MaxParallelChains) 3575 // Serialize volatile loads with other side effects. 3576 Root = getRoot(); 3577 else if (AA->pointsToConstantMemory( 3578 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3579 // Do not serialize (non-volatile) loads of constant memory with anything. 3580 Root = DAG.getEntryNode(); 3581 ConstantMemory = true; 3582 } else { 3583 // Do not serialize non-volatile loads against each other. 3584 Root = DAG.getRoot(); 3585 } 3586 3587 if (isVolatile) 3588 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3589 3590 SmallVector<SDValue, 4> Values(NumValues); 3591 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3592 NumValues)); 3593 EVT PtrVT = Ptr.getValueType(); 3594 unsigned ChainI = 0; 3595 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3596 // Serializing loads here may result in excessive register pressure, and 3597 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3598 // could recover a bit by hoisting nodes upward in the chain by recognizing 3599 // they are side-effect free or do not alias. The optimizer should really 3600 // avoid this case by converting large object/array copies to llvm.memcpy 3601 // (MaxParallelChains should always remain as failsafe). 3602 if (ChainI == MaxParallelChains) { 3603 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3604 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3605 makeArrayRef(Chains.data(), ChainI)); 3606 Root = Chain; 3607 ChainI = 0; 3608 } 3609 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3610 PtrVT, Ptr, 3611 DAG.getConstant(Offsets[i], PtrVT)); 3612 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3613 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3614 isNonTemporal, isInvariant, Alignment, AAInfo, 3615 Ranges); 3616 3617 Values[i] = L; 3618 Chains[ChainI] = L.getValue(1); 3619 } 3620 3621 if (!ConstantMemory) { 3622 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3623 makeArrayRef(Chains.data(), ChainI)); 3624 if (isVolatile) 3625 DAG.setRoot(Chain); 3626 else 3627 PendingLoads.push_back(Chain); 3628 } 3629 3630 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3631 DAG.getVTList(ValueVTs), Values)); 3632 } 3633 3634 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3635 if (I.isAtomic()) 3636 return visitAtomicStore(I); 3637 3638 const Value *SrcV = I.getOperand(0); 3639 const Value *PtrV = I.getOperand(1); 3640 3641 SmallVector<EVT, 4> ValueVTs; 3642 SmallVector<uint64_t, 4> Offsets; 3643 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3644 ValueVTs, &Offsets); 3645 unsigned NumValues = ValueVTs.size(); 3646 if (NumValues == 0) 3647 return; 3648 3649 // Get the lowered operands. Note that we do this after 3650 // checking if NumResults is zero, because with zero results 3651 // the operands won't have values in the map. 3652 SDValue Src = getValue(SrcV); 3653 SDValue Ptr = getValue(PtrV); 3654 3655 SDValue Root = getRoot(); 3656 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3657 NumValues)); 3658 EVT PtrVT = Ptr.getValueType(); 3659 bool isVolatile = I.isVolatile(); 3660 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3661 unsigned Alignment = I.getAlignment(); 3662 3663 AAMDNodes AAInfo; 3664 I.getAAMetadata(AAInfo); 3665 3666 unsigned ChainI = 0; 3667 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3668 // See visitLoad comments. 3669 if (ChainI == MaxParallelChains) { 3670 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3671 makeArrayRef(Chains.data(), ChainI)); 3672 Root = Chain; 3673 ChainI = 0; 3674 } 3675 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3676 DAG.getConstant(Offsets[i], PtrVT)); 3677 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3678 SDValue(Src.getNode(), Src.getResNo() + i), 3679 Add, MachinePointerInfo(PtrV, Offsets[i]), 3680 isVolatile, isNonTemporal, Alignment, AAInfo); 3681 Chains[ChainI] = St; 3682 } 3683 3684 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3685 makeArrayRef(Chains.data(), ChainI)); 3686 DAG.setRoot(StoreNode); 3687 } 3688 3689 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3690 SDLoc sdl = getCurSDLoc(); 3691 3692 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3693 Value *PtrOperand = I.getArgOperand(1); 3694 SDValue Ptr = getValue(PtrOperand); 3695 SDValue Src0 = getValue(I.getArgOperand(0)); 3696 SDValue Mask = getValue(I.getArgOperand(3)); 3697 EVT VT = Src0.getValueType(); 3698 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3699 if (!Alignment) 3700 Alignment = DAG.getEVTAlignment(VT); 3701 3702 AAMDNodes AAInfo; 3703 I.getAAMetadata(AAInfo); 3704 3705 MachineMemOperand *MMO = 3706 DAG.getMachineFunction(). 3707 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3708 MachineMemOperand::MOStore, VT.getStoreSize(), 3709 Alignment, AAInfo); 3710 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3711 MMO, false); 3712 DAG.setRoot(StoreNode); 3713 setValue(&I, StoreNode); 3714 } 3715 3716 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3717 SDLoc sdl = getCurSDLoc(); 3718 3719 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3720 Value *PtrOperand = I.getArgOperand(0); 3721 SDValue Ptr = getValue(PtrOperand); 3722 SDValue Src0 = getValue(I.getArgOperand(3)); 3723 SDValue Mask = getValue(I.getArgOperand(2)); 3724 3725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3726 EVT VT = TLI.getValueType(I.getType()); 3727 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3728 if (!Alignment) 3729 Alignment = DAG.getEVTAlignment(VT); 3730 3731 AAMDNodes AAInfo; 3732 I.getAAMetadata(AAInfo); 3733 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3734 3735 SDValue InChain = DAG.getRoot(); 3736 if (AA->pointsToConstantMemory( 3737 AliasAnalysis::Location(PtrOperand, 3738 AA->getTypeStoreSize(I.getType()), 3739 AAInfo))) { 3740 // Do not serialize (non-volatile) loads of constant memory with anything. 3741 InChain = DAG.getEntryNode(); 3742 } 3743 3744 MachineMemOperand *MMO = 3745 DAG.getMachineFunction(). 3746 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3747 MachineMemOperand::MOLoad, VT.getStoreSize(), 3748 Alignment, AAInfo, Ranges); 3749 3750 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3751 ISD::NON_EXTLOAD); 3752 SDValue OutChain = Load.getValue(1); 3753 DAG.setRoot(OutChain); 3754 setValue(&I, Load); 3755 } 3756 3757 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3758 SDLoc dl = getCurSDLoc(); 3759 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3760 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3761 SynchronizationScope Scope = I.getSynchScope(); 3762 3763 SDValue InChain = getRoot(); 3764 3765 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3766 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3767 SDValue L = DAG.getAtomicCmpSwap( 3768 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3769 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3770 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3771 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3772 3773 SDValue OutChain = L.getValue(2); 3774 3775 setValue(&I, L); 3776 DAG.setRoot(OutChain); 3777 } 3778 3779 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3780 SDLoc dl = getCurSDLoc(); 3781 ISD::NodeType NT; 3782 switch (I.getOperation()) { 3783 default: llvm_unreachable("Unknown atomicrmw operation"); 3784 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3785 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3786 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3787 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3788 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3789 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3790 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3791 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3792 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3793 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3794 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3795 } 3796 AtomicOrdering Order = I.getOrdering(); 3797 SynchronizationScope Scope = I.getSynchScope(); 3798 3799 SDValue InChain = getRoot(); 3800 3801 SDValue L = 3802 DAG.getAtomic(NT, dl, 3803 getValue(I.getValOperand()).getSimpleValueType(), 3804 InChain, 3805 getValue(I.getPointerOperand()), 3806 getValue(I.getValOperand()), 3807 I.getPointerOperand(), 3808 /* Alignment=*/ 0, Order, Scope); 3809 3810 SDValue OutChain = L.getValue(1); 3811 3812 setValue(&I, L); 3813 DAG.setRoot(OutChain); 3814 } 3815 3816 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3817 SDLoc dl = getCurSDLoc(); 3818 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3819 SDValue Ops[3]; 3820 Ops[0] = getRoot(); 3821 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3822 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3823 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3824 } 3825 3826 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3827 SDLoc dl = getCurSDLoc(); 3828 AtomicOrdering Order = I.getOrdering(); 3829 SynchronizationScope Scope = I.getSynchScope(); 3830 3831 SDValue InChain = getRoot(); 3832 3833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3834 EVT VT = TLI.getValueType(I.getType()); 3835 3836 if (I.getAlignment() < VT.getSizeInBits() / 8) 3837 report_fatal_error("Cannot generate unaligned atomic load"); 3838 3839 MachineMemOperand *MMO = 3840 DAG.getMachineFunction(). 3841 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3842 MachineMemOperand::MOVolatile | 3843 MachineMemOperand::MOLoad, 3844 VT.getStoreSize(), 3845 I.getAlignment() ? I.getAlignment() : 3846 DAG.getEVTAlignment(VT)); 3847 3848 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3849 SDValue L = 3850 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3851 getValue(I.getPointerOperand()), MMO, 3852 Order, Scope); 3853 3854 SDValue OutChain = L.getValue(1); 3855 3856 setValue(&I, L); 3857 DAG.setRoot(OutChain); 3858 } 3859 3860 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3861 SDLoc dl = getCurSDLoc(); 3862 3863 AtomicOrdering Order = I.getOrdering(); 3864 SynchronizationScope Scope = I.getSynchScope(); 3865 3866 SDValue InChain = getRoot(); 3867 3868 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3869 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3870 3871 if (I.getAlignment() < VT.getSizeInBits() / 8) 3872 report_fatal_error("Cannot generate unaligned atomic store"); 3873 3874 SDValue OutChain = 3875 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3876 InChain, 3877 getValue(I.getPointerOperand()), 3878 getValue(I.getValueOperand()), 3879 I.getPointerOperand(), I.getAlignment(), 3880 Order, Scope); 3881 3882 DAG.setRoot(OutChain); 3883 } 3884 3885 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3886 /// node. 3887 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3888 unsigned Intrinsic) { 3889 bool HasChain = !I.doesNotAccessMemory(); 3890 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3891 3892 // Build the operand list. 3893 SmallVector<SDValue, 8> Ops; 3894 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3895 if (OnlyLoad) { 3896 // We don't need to serialize loads against other loads. 3897 Ops.push_back(DAG.getRoot()); 3898 } else { 3899 Ops.push_back(getRoot()); 3900 } 3901 } 3902 3903 // Info is set by getTgtMemInstrinsic 3904 TargetLowering::IntrinsicInfo Info; 3905 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3906 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3907 3908 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3909 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3910 Info.opc == ISD::INTRINSIC_W_CHAIN) 3911 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3912 3913 // Add all operands of the call to the operand list. 3914 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3915 SDValue Op = getValue(I.getArgOperand(i)); 3916 Ops.push_back(Op); 3917 } 3918 3919 SmallVector<EVT, 4> ValueVTs; 3920 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3921 3922 if (HasChain) 3923 ValueVTs.push_back(MVT::Other); 3924 3925 SDVTList VTs = DAG.getVTList(ValueVTs); 3926 3927 // Create the node. 3928 SDValue Result; 3929 if (IsTgtIntrinsic) { 3930 // This is target intrinsic that touches memory 3931 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3932 VTs, Ops, Info.memVT, 3933 MachinePointerInfo(Info.ptrVal, Info.offset), 3934 Info.align, Info.vol, 3935 Info.readMem, Info.writeMem, Info.size); 3936 } else if (!HasChain) { 3937 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3938 } else if (!I.getType()->isVoidTy()) { 3939 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3940 } else { 3941 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3942 } 3943 3944 if (HasChain) { 3945 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3946 if (OnlyLoad) 3947 PendingLoads.push_back(Chain); 3948 else 3949 DAG.setRoot(Chain); 3950 } 3951 3952 if (!I.getType()->isVoidTy()) { 3953 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3954 EVT VT = TLI.getValueType(PTy); 3955 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3956 } 3957 3958 setValue(&I, Result); 3959 } 3960 } 3961 3962 /// GetSignificand - Get the significand and build it into a floating-point 3963 /// number with exponent of 1: 3964 /// 3965 /// Op = (Op & 0x007fffff) | 0x3f800000; 3966 /// 3967 /// where Op is the hexadecimal representation of floating point value. 3968 static SDValue 3969 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3970 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3971 DAG.getConstant(0x007fffff, MVT::i32)); 3972 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3973 DAG.getConstant(0x3f800000, MVT::i32)); 3974 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3975 } 3976 3977 /// GetExponent - Get the exponent: 3978 /// 3979 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3980 /// 3981 /// where Op is the hexadecimal representation of floating point value. 3982 static SDValue 3983 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3984 SDLoc dl) { 3985 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3986 DAG.getConstant(0x7f800000, MVT::i32)); 3987 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3988 DAG.getConstant(23, TLI.getPointerTy())); 3989 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3990 DAG.getConstant(127, MVT::i32)); 3991 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3992 } 3993 3994 /// getF32Constant - Get 32-bit floating point constant. 3995 static SDValue 3996 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3997 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3998 MVT::f32); 3999 } 4000 4001 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 4002 SelectionDAG &DAG) { 4003 // IntegerPartOfX = ((int32_t)(t0); 4004 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4005 4006 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4007 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4008 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4009 4010 // IntegerPartOfX <<= 23; 4011 IntegerPartOfX = DAG.getNode( 4012 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4013 DAG.getConstant(23, DAG.getTargetLoweringInfo().getPointerTy())); 4014 4015 SDValue TwoToFractionalPartOfX; 4016 if (LimitFloatPrecision <= 6) { 4017 // For floating-point precision of 6: 4018 // 4019 // TwoToFractionalPartOfX = 4020 // 0.997535578f + 4021 // (0.735607626f + 0.252464424f * x) * x; 4022 // 4023 // error 0.0144103317, which is 6 bits 4024 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4025 getF32Constant(DAG, 0x3e814304)); 4026 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4027 getF32Constant(DAG, 0x3f3c50c8)); 4028 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4029 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4030 getF32Constant(DAG, 0x3f7f5e7e)); 4031 } else if (LimitFloatPrecision <= 12) { 4032 // For floating-point precision of 12: 4033 // 4034 // TwoToFractionalPartOfX = 4035 // 0.999892986f + 4036 // (0.696457318f + 4037 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4038 // 4039 // error 0.000107046256, which is 13 to 14 bits 4040 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4041 getF32Constant(DAG, 0x3da235e3)); 4042 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4043 getF32Constant(DAG, 0x3e65b8f3)); 4044 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4045 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4046 getF32Constant(DAG, 0x3f324b07)); 4047 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4048 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4049 getF32Constant(DAG, 0x3f7ff8fd)); 4050 } else { // LimitFloatPrecision <= 18 4051 // For floating-point precision of 18: 4052 // 4053 // TwoToFractionalPartOfX = 4054 // 0.999999982f + 4055 // (0.693148872f + 4056 // (0.240227044f + 4057 // (0.554906021e-1f + 4058 // (0.961591928e-2f + 4059 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4060 // error 2.47208000*10^(-7), which is better than 18 bits 4061 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4062 getF32Constant(DAG, 0x3924b03e)); 4063 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4064 getF32Constant(DAG, 0x3ab24b87)); 4065 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4066 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4067 getF32Constant(DAG, 0x3c1d8c17)); 4068 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4069 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4070 getF32Constant(DAG, 0x3d634a1d)); 4071 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4072 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4073 getF32Constant(DAG, 0x3e75fe14)); 4074 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4075 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4076 getF32Constant(DAG, 0x3f317234)); 4077 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4078 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4079 getF32Constant(DAG, 0x3f800000)); 4080 } 4081 4082 // Add the exponent into the result in integer domain. 4083 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4084 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4085 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4086 } 4087 4088 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4089 /// limited-precision mode. 4090 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4091 const TargetLowering &TLI) { 4092 if (Op.getValueType() == MVT::f32 && 4093 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4094 4095 // Put the exponent in the right bit position for later addition to the 4096 // final result: 4097 // 4098 // #define LOG2OFe 1.4426950f 4099 // t0 = Op * LOG2OFe 4100 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4101 getF32Constant(DAG, 0x3fb8aa3b)); 4102 return getLimitedPrecisionExp2(t0, dl, DAG); 4103 } 4104 4105 // No special expansion. 4106 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4107 } 4108 4109 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4110 /// limited-precision mode. 4111 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4112 const TargetLowering &TLI) { 4113 if (Op.getValueType() == MVT::f32 && 4114 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4115 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4116 4117 // Scale the exponent by log(2) [0.69314718f]. 4118 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4119 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4120 getF32Constant(DAG, 0x3f317218)); 4121 4122 // Get the significand and build it into a floating-point number with 4123 // exponent of 1. 4124 SDValue X = GetSignificand(DAG, Op1, dl); 4125 4126 SDValue LogOfMantissa; 4127 if (LimitFloatPrecision <= 6) { 4128 // For floating-point precision of 6: 4129 // 4130 // LogofMantissa = 4131 // -1.1609546f + 4132 // (1.4034025f - 0.23903021f * x) * x; 4133 // 4134 // error 0.0034276066, which is better than 8 bits 4135 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4136 getF32Constant(DAG, 0xbe74c456)); 4137 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4138 getF32Constant(DAG, 0x3fb3a2b1)); 4139 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4140 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4141 getF32Constant(DAG, 0x3f949a29)); 4142 } else if (LimitFloatPrecision <= 12) { 4143 // For floating-point precision of 12: 4144 // 4145 // LogOfMantissa = 4146 // -1.7417939f + 4147 // (2.8212026f + 4148 // (-1.4699568f + 4149 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4150 // 4151 // error 0.000061011436, which is 14 bits 4152 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4153 getF32Constant(DAG, 0xbd67b6d6)); 4154 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4155 getF32Constant(DAG, 0x3ee4f4b8)); 4156 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4157 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4158 getF32Constant(DAG, 0x3fbc278b)); 4159 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4160 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4161 getF32Constant(DAG, 0x40348e95)); 4162 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4163 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4164 getF32Constant(DAG, 0x3fdef31a)); 4165 } else { // LimitFloatPrecision <= 18 4166 // For floating-point precision of 18: 4167 // 4168 // LogOfMantissa = 4169 // -2.1072184f + 4170 // (4.2372794f + 4171 // (-3.7029485f + 4172 // (2.2781945f + 4173 // (-0.87823314f + 4174 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4175 // 4176 // error 0.0000023660568, which is better than 18 bits 4177 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4178 getF32Constant(DAG, 0xbc91e5ac)); 4179 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4180 getF32Constant(DAG, 0x3e4350aa)); 4181 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4182 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4183 getF32Constant(DAG, 0x3f60d3e3)); 4184 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4185 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4186 getF32Constant(DAG, 0x4011cdf0)); 4187 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4188 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4189 getF32Constant(DAG, 0x406cfd1c)); 4190 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4191 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4192 getF32Constant(DAG, 0x408797cb)); 4193 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4194 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4195 getF32Constant(DAG, 0x4006dcab)); 4196 } 4197 4198 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4199 } 4200 4201 // No special expansion. 4202 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4203 } 4204 4205 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4206 /// limited-precision mode. 4207 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4208 const TargetLowering &TLI) { 4209 if (Op.getValueType() == MVT::f32 && 4210 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4211 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4212 4213 // Get the exponent. 4214 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4215 4216 // Get the significand and build it into a floating-point number with 4217 // exponent of 1. 4218 SDValue X = GetSignificand(DAG, Op1, dl); 4219 4220 // Different possible minimax approximations of significand in 4221 // floating-point for various degrees of accuracy over [1,2]. 4222 SDValue Log2ofMantissa; 4223 if (LimitFloatPrecision <= 6) { 4224 // For floating-point precision of 6: 4225 // 4226 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4227 // 4228 // error 0.0049451742, which is more than 7 bits 4229 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4230 getF32Constant(DAG, 0xbeb08fe0)); 4231 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4232 getF32Constant(DAG, 0x40019463)); 4233 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4234 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4235 getF32Constant(DAG, 0x3fd6633d)); 4236 } else if (LimitFloatPrecision <= 12) { 4237 // For floating-point precision of 12: 4238 // 4239 // Log2ofMantissa = 4240 // -2.51285454f + 4241 // (4.07009056f + 4242 // (-2.12067489f + 4243 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4244 // 4245 // error 0.0000876136000, which is better than 13 bits 4246 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4247 getF32Constant(DAG, 0xbda7262e)); 4248 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4249 getF32Constant(DAG, 0x3f25280b)); 4250 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4251 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4252 getF32Constant(DAG, 0x4007b923)); 4253 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4254 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4255 getF32Constant(DAG, 0x40823e2f)); 4256 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4257 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4258 getF32Constant(DAG, 0x4020d29c)); 4259 } else { // LimitFloatPrecision <= 18 4260 // For floating-point precision of 18: 4261 // 4262 // Log2ofMantissa = 4263 // -3.0400495f + 4264 // (6.1129976f + 4265 // (-5.3420409f + 4266 // (3.2865683f + 4267 // (-1.2669343f + 4268 // (0.27515199f - 4269 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4270 // 4271 // error 0.0000018516, which is better than 18 bits 4272 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4273 getF32Constant(DAG, 0xbcd2769e)); 4274 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4275 getF32Constant(DAG, 0x3e8ce0b9)); 4276 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4277 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4278 getF32Constant(DAG, 0x3fa22ae7)); 4279 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4280 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4281 getF32Constant(DAG, 0x40525723)); 4282 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4283 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4284 getF32Constant(DAG, 0x40aaf200)); 4285 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4286 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4287 getF32Constant(DAG, 0x40c39dad)); 4288 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4289 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4290 getF32Constant(DAG, 0x4042902c)); 4291 } 4292 4293 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4294 } 4295 4296 // No special expansion. 4297 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4298 } 4299 4300 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4301 /// limited-precision mode. 4302 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4303 const TargetLowering &TLI) { 4304 if (Op.getValueType() == MVT::f32 && 4305 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4306 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4307 4308 // Scale the exponent by log10(2) [0.30102999f]. 4309 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4310 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4311 getF32Constant(DAG, 0x3e9a209a)); 4312 4313 // Get the significand and build it into a floating-point number with 4314 // exponent of 1. 4315 SDValue X = GetSignificand(DAG, Op1, dl); 4316 4317 SDValue Log10ofMantissa; 4318 if (LimitFloatPrecision <= 6) { 4319 // For floating-point precision of 6: 4320 // 4321 // Log10ofMantissa = 4322 // -0.50419619f + 4323 // (0.60948995f - 0.10380950f * x) * x; 4324 // 4325 // error 0.0014886165, which is 6 bits 4326 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4327 getF32Constant(DAG, 0xbdd49a13)); 4328 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4329 getF32Constant(DAG, 0x3f1c0789)); 4330 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4331 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4332 getF32Constant(DAG, 0x3f011300)); 4333 } else if (LimitFloatPrecision <= 12) { 4334 // For floating-point precision of 12: 4335 // 4336 // Log10ofMantissa = 4337 // -0.64831180f + 4338 // (0.91751397f + 4339 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4340 // 4341 // error 0.00019228036, which is better than 12 bits 4342 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4343 getF32Constant(DAG, 0x3d431f31)); 4344 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4345 getF32Constant(DAG, 0x3ea21fb2)); 4346 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4347 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4348 getF32Constant(DAG, 0x3f6ae232)); 4349 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4350 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4351 getF32Constant(DAG, 0x3f25f7c3)); 4352 } else { // LimitFloatPrecision <= 18 4353 // For floating-point precision of 18: 4354 // 4355 // Log10ofMantissa = 4356 // -0.84299375f + 4357 // (1.5327582f + 4358 // (-1.0688956f + 4359 // (0.49102474f + 4360 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4361 // 4362 // error 0.0000037995730, which is better than 18 bits 4363 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4364 getF32Constant(DAG, 0x3c5d51ce)); 4365 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4366 getF32Constant(DAG, 0x3e00685a)); 4367 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4368 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4369 getF32Constant(DAG, 0x3efb6798)); 4370 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4371 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4372 getF32Constant(DAG, 0x3f88d192)); 4373 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4374 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4375 getF32Constant(DAG, 0x3fc4316c)); 4376 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4377 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4378 getF32Constant(DAG, 0x3f57ce70)); 4379 } 4380 4381 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4382 } 4383 4384 // No special expansion. 4385 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4386 } 4387 4388 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4389 /// limited-precision mode. 4390 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4391 const TargetLowering &TLI) { 4392 if (Op.getValueType() == MVT::f32 && 4393 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4394 return getLimitedPrecisionExp2(Op, dl, DAG); 4395 4396 // No special expansion. 4397 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4398 } 4399 4400 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4401 /// limited-precision mode with x == 10.0f. 4402 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4403 SelectionDAG &DAG, const TargetLowering &TLI) { 4404 bool IsExp10 = false; 4405 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4406 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4407 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4408 APFloat Ten(10.0f); 4409 IsExp10 = LHSC->isExactlyValue(Ten); 4410 } 4411 } 4412 4413 if (IsExp10) { 4414 // Put the exponent in the right bit position for later addition to the 4415 // final result: 4416 // 4417 // #define LOG2OF10 3.3219281f 4418 // t0 = Op * LOG2OF10; 4419 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4420 getF32Constant(DAG, 0x40549a78)); 4421 return getLimitedPrecisionExp2(t0, dl, DAG); 4422 } 4423 4424 // No special expansion. 4425 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4426 } 4427 4428 4429 /// ExpandPowI - Expand a llvm.powi intrinsic. 4430 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4431 SelectionDAG &DAG) { 4432 // If RHS is a constant, we can expand this out to a multiplication tree, 4433 // otherwise we end up lowering to a call to __powidf2 (for example). When 4434 // optimizing for size, we only want to do this if the expansion would produce 4435 // a small number of multiplies, otherwise we do the full expansion. 4436 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4437 // Get the exponent as a positive value. 4438 unsigned Val = RHSC->getSExtValue(); 4439 if ((int)Val < 0) Val = -Val; 4440 4441 // powi(x, 0) -> 1.0 4442 if (Val == 0) 4443 return DAG.getConstantFP(1.0, LHS.getValueType()); 4444 4445 const Function *F = DAG.getMachineFunction().getFunction(); 4446 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 4447 // If optimizing for size, don't insert too many multiplies. This 4448 // inserts up to 5 multiplies. 4449 countPopulation(Val) + Log2_32(Val) < 7) { 4450 // We use the simple binary decomposition method to generate the multiply 4451 // sequence. There are more optimal ways to do this (for example, 4452 // powi(x,15) generates one more multiply than it should), but this has 4453 // the benefit of being both really simple and much better than a libcall. 4454 SDValue Res; // Logically starts equal to 1.0 4455 SDValue CurSquare = LHS; 4456 while (Val) { 4457 if (Val & 1) { 4458 if (Res.getNode()) 4459 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4460 else 4461 Res = CurSquare; // 1.0*CurSquare. 4462 } 4463 4464 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4465 CurSquare, CurSquare); 4466 Val >>= 1; 4467 } 4468 4469 // If the original was negative, invert the result, producing 1/(x*x*x). 4470 if (RHSC->getSExtValue() < 0) 4471 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4472 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4473 return Res; 4474 } 4475 } 4476 4477 // Otherwise, expand to a libcall. 4478 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4479 } 4480 4481 // getTruncatedArgReg - Find underlying register used for an truncated 4482 // argument. 4483 static unsigned getTruncatedArgReg(const SDValue &N) { 4484 if (N.getOpcode() != ISD::TRUNCATE) 4485 return 0; 4486 4487 const SDValue &Ext = N.getOperand(0); 4488 if (Ext.getOpcode() == ISD::AssertZext || 4489 Ext.getOpcode() == ISD::AssertSext) { 4490 const SDValue &CFR = Ext.getOperand(0); 4491 if (CFR.getOpcode() == ISD::CopyFromReg) 4492 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4493 if (CFR.getOpcode() == ISD::TRUNCATE) 4494 return getTruncatedArgReg(CFR); 4495 } 4496 return 0; 4497 } 4498 4499 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4500 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4501 /// At the end of instruction selection, they will be inserted to the entry BB. 4502 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4503 MDNode *Variable, 4504 MDNode *Expr, int64_t Offset, 4505 bool IsIndirect, 4506 const SDValue &N) { 4507 const Argument *Arg = dyn_cast<Argument>(V); 4508 if (!Arg) 4509 return false; 4510 4511 MachineFunction &MF = DAG.getMachineFunction(); 4512 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4513 4514 // Ignore inlined function arguments here. 4515 DIVariable DV(Variable); 4516 if (DV.isInlinedFnArgument(MF.getFunction())) 4517 return false; 4518 4519 Optional<MachineOperand> Op; 4520 // Some arguments' frame index is recorded during argument lowering. 4521 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4522 Op = MachineOperand::CreateFI(FI); 4523 4524 if (!Op && N.getNode()) { 4525 unsigned Reg; 4526 if (N.getOpcode() == ISD::CopyFromReg) 4527 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4528 else 4529 Reg = getTruncatedArgReg(N); 4530 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4531 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4532 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4533 if (PR) 4534 Reg = PR; 4535 } 4536 if (Reg) 4537 Op = MachineOperand::CreateReg(Reg, false); 4538 } 4539 4540 if (!Op) { 4541 // Check if ValueMap has reg number. 4542 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4543 if (VMI != FuncInfo.ValueMap.end()) 4544 Op = MachineOperand::CreateReg(VMI->second, false); 4545 } 4546 4547 if (!Op && N.getNode()) 4548 // Check if frame index is available. 4549 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4550 if (FrameIndexSDNode *FINode = 4551 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4552 Op = MachineOperand::CreateFI(FINode->getIndex()); 4553 4554 if (!Op) 4555 return false; 4556 4557 if (Op->isReg()) 4558 FuncInfo.ArgDbgValues.push_back( 4559 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4560 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4561 else 4562 FuncInfo.ArgDbgValues.push_back( 4563 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4564 .addOperand(*Op) 4565 .addImm(Offset) 4566 .addMetadata(Variable) 4567 .addMetadata(Expr)); 4568 4569 return true; 4570 } 4571 4572 // VisualStudio defines setjmp as _setjmp 4573 #if defined(_MSC_VER) && defined(setjmp) && \ 4574 !defined(setjmp_undefined_for_msvc) 4575 # pragma push_macro("setjmp") 4576 # undef setjmp 4577 # define setjmp_undefined_for_msvc 4578 #endif 4579 4580 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4581 /// we want to emit this as a call to a named external function, return the name 4582 /// otherwise lower it and return null. 4583 const char * 4584 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4585 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4586 SDLoc sdl = getCurSDLoc(); 4587 DebugLoc dl = getCurDebugLoc(); 4588 SDValue Res; 4589 4590 switch (Intrinsic) { 4591 default: 4592 // By default, turn this into a target intrinsic node. 4593 visitTargetIntrinsic(I, Intrinsic); 4594 return nullptr; 4595 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4596 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4597 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4598 case Intrinsic::returnaddress: 4599 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4600 getValue(I.getArgOperand(0)))); 4601 return nullptr; 4602 case Intrinsic::frameaddress: 4603 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4604 getValue(I.getArgOperand(0)))); 4605 return nullptr; 4606 case Intrinsic::read_register: { 4607 Value *Reg = I.getArgOperand(0); 4608 SDValue RegName = 4609 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4610 EVT VT = TLI.getValueType(I.getType()); 4611 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4612 return nullptr; 4613 } 4614 case Intrinsic::write_register: { 4615 Value *Reg = I.getArgOperand(0); 4616 Value *RegValue = I.getArgOperand(1); 4617 SDValue Chain = getValue(RegValue).getOperand(0); 4618 SDValue RegName = 4619 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4620 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4621 RegName, getValue(RegValue))); 4622 return nullptr; 4623 } 4624 case Intrinsic::setjmp: 4625 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4626 case Intrinsic::longjmp: 4627 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4628 case Intrinsic::memcpy: { 4629 // FIXME: this definition of "user defined address space" is x86-specific 4630 // Assert for address < 256 since we support only user defined address 4631 // spaces. 4632 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4633 < 256 && 4634 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4635 < 256 && 4636 "Unknown address space"); 4637 SDValue Op1 = getValue(I.getArgOperand(0)); 4638 SDValue Op2 = getValue(I.getArgOperand(1)); 4639 SDValue Op3 = getValue(I.getArgOperand(2)); 4640 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4641 if (!Align) 4642 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4643 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4644 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4645 MachinePointerInfo(I.getArgOperand(0)), 4646 MachinePointerInfo(I.getArgOperand(1)))); 4647 return nullptr; 4648 } 4649 case Intrinsic::memset: { 4650 // FIXME: this definition of "user defined address space" is x86-specific 4651 // Assert for address < 256 since we support only user defined address 4652 // spaces. 4653 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4654 < 256 && 4655 "Unknown address space"); 4656 SDValue Op1 = getValue(I.getArgOperand(0)); 4657 SDValue Op2 = getValue(I.getArgOperand(1)); 4658 SDValue Op3 = getValue(I.getArgOperand(2)); 4659 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4660 if (!Align) 4661 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4662 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4663 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4664 MachinePointerInfo(I.getArgOperand(0)))); 4665 return nullptr; 4666 } 4667 case Intrinsic::memmove: { 4668 // FIXME: this definition of "user defined address space" is x86-specific 4669 // Assert for address < 256 since we support only user defined address 4670 // spaces. 4671 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4672 < 256 && 4673 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4674 < 256 && 4675 "Unknown address space"); 4676 SDValue Op1 = getValue(I.getArgOperand(0)); 4677 SDValue Op2 = getValue(I.getArgOperand(1)); 4678 SDValue Op3 = getValue(I.getArgOperand(2)); 4679 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4680 if (!Align) 4681 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4682 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4683 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4684 MachinePointerInfo(I.getArgOperand(0)), 4685 MachinePointerInfo(I.getArgOperand(1)))); 4686 return nullptr; 4687 } 4688 case Intrinsic::dbg_declare: { 4689 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4690 MDNode *Variable = DI.getVariable(); 4691 MDNode *Expression = DI.getExpression(); 4692 const Value *Address = DI.getAddress(); 4693 DIVariable DIVar(Variable); 4694 assert((!DIVar || DIVar.isVariable()) && 4695 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4696 if (!Address || !DIVar) { 4697 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4698 return nullptr; 4699 } 4700 4701 // Check if address has undef value. 4702 if (isa<UndefValue>(Address) || 4703 (Address->use_empty() && !isa<Argument>(Address))) { 4704 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4705 return nullptr; 4706 } 4707 4708 SDValue &N = NodeMap[Address]; 4709 if (!N.getNode() && isa<Argument>(Address)) 4710 // Check unused arguments map. 4711 N = UnusedArgNodeMap[Address]; 4712 SDDbgValue *SDV; 4713 if (N.getNode()) { 4714 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4715 Address = BCI->getOperand(0); 4716 // Parameters are handled specially. 4717 bool isParameter = 4718 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4719 isa<Argument>(Address)); 4720 4721 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4722 4723 if (isParameter && !AI) { 4724 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4725 if (FINode) 4726 // Byval parameter. We have a frame index at this point. 4727 SDV = DAG.getFrameIndexDbgValue( 4728 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4729 else { 4730 // Address is an argument, so try to emit its dbg value using 4731 // virtual register info from the FuncInfo.ValueMap. 4732 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4733 return nullptr; 4734 } 4735 } else if (AI) 4736 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4737 true, 0, dl, SDNodeOrder); 4738 else { 4739 // Can't do anything with other non-AI cases yet. 4740 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4741 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4742 DEBUG(Address->dump()); 4743 return nullptr; 4744 } 4745 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4746 } else { 4747 // If Address is an argument then try to emit its dbg value using 4748 // virtual register info from the FuncInfo.ValueMap. 4749 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4750 N)) { 4751 // If variable is pinned by a alloca in dominating bb then 4752 // use StaticAllocaMap. 4753 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4754 if (AI->getParent() != DI.getParent()) { 4755 DenseMap<const AllocaInst*, int>::iterator SI = 4756 FuncInfo.StaticAllocaMap.find(AI); 4757 if (SI != FuncInfo.StaticAllocaMap.end()) { 4758 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4759 0, dl, SDNodeOrder); 4760 DAG.AddDbgValue(SDV, nullptr, false); 4761 return nullptr; 4762 } 4763 } 4764 } 4765 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4766 } 4767 } 4768 return nullptr; 4769 } 4770 case Intrinsic::dbg_value: { 4771 const DbgValueInst &DI = cast<DbgValueInst>(I); 4772 DIVariable DIVar(DI.getVariable()); 4773 assert((!DIVar || DIVar.isVariable()) && 4774 "Variable in DbgValueInst should be either null or a DIVariable."); 4775 if (!DIVar) 4776 return nullptr; 4777 4778 MDNode *Variable = DI.getVariable(); 4779 MDNode *Expression = DI.getExpression(); 4780 uint64_t Offset = DI.getOffset(); 4781 const Value *V = DI.getValue(); 4782 if (!V) 4783 return nullptr; 4784 4785 SDDbgValue *SDV; 4786 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4787 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4788 SDNodeOrder); 4789 DAG.AddDbgValue(SDV, nullptr, false); 4790 } else { 4791 // Do not use getValue() in here; we don't want to generate code at 4792 // this point if it hasn't been done yet. 4793 SDValue N = NodeMap[V]; 4794 if (!N.getNode() && isa<Argument>(V)) 4795 // Check unused arguments map. 4796 N = UnusedArgNodeMap[V]; 4797 if (N.getNode()) { 4798 // A dbg.value for an alloca is always indirect. 4799 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4800 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4801 IsIndirect, N)) { 4802 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4803 IsIndirect, Offset, dl, SDNodeOrder); 4804 DAG.AddDbgValue(SDV, N.getNode(), false); 4805 } 4806 } else if (!V->use_empty() ) { 4807 // Do not call getValue(V) yet, as we don't want to generate code. 4808 // Remember it for later. 4809 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4810 DanglingDebugInfoMap[V] = DDI; 4811 } else { 4812 // We may expand this to cover more cases. One case where we have no 4813 // data available is an unreferenced parameter. 4814 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4815 } 4816 } 4817 4818 // Build a debug info table entry. 4819 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4820 V = BCI->getOperand(0); 4821 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4822 // Don't handle byval struct arguments or VLAs, for example. 4823 if (!AI) { 4824 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4825 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4826 return nullptr; 4827 } 4828 DenseMap<const AllocaInst*, int>::iterator SI = 4829 FuncInfo.StaticAllocaMap.find(AI); 4830 if (SI == FuncInfo.StaticAllocaMap.end()) 4831 return nullptr; // VLAs. 4832 return nullptr; 4833 } 4834 4835 case Intrinsic::eh_typeid_for: { 4836 // Find the type id for the given typeinfo. 4837 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4838 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4839 Res = DAG.getConstant(TypeID, MVT::i32); 4840 setValue(&I, Res); 4841 return nullptr; 4842 } 4843 4844 case Intrinsic::eh_return_i32: 4845 case Intrinsic::eh_return_i64: 4846 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4847 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4848 MVT::Other, 4849 getControlRoot(), 4850 getValue(I.getArgOperand(0)), 4851 getValue(I.getArgOperand(1)))); 4852 return nullptr; 4853 case Intrinsic::eh_unwind_init: 4854 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4855 return nullptr; 4856 case Intrinsic::eh_dwarf_cfa: { 4857 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4858 TLI.getPointerTy()); 4859 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4860 CfaArg.getValueType(), 4861 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4862 CfaArg.getValueType()), 4863 CfaArg); 4864 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4865 DAG.getConstant(0, TLI.getPointerTy())); 4866 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4867 FA, Offset)); 4868 return nullptr; 4869 } 4870 case Intrinsic::eh_sjlj_callsite: { 4871 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4872 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4873 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4874 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4875 4876 MMI.setCurrentCallSite(CI->getZExtValue()); 4877 return nullptr; 4878 } 4879 case Intrinsic::eh_sjlj_functioncontext: { 4880 // Get and store the index of the function context. 4881 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4882 AllocaInst *FnCtx = 4883 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4884 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4885 MFI->setFunctionContextIndex(FI); 4886 return nullptr; 4887 } 4888 case Intrinsic::eh_sjlj_setjmp: { 4889 SDValue Ops[2]; 4890 Ops[0] = getRoot(); 4891 Ops[1] = getValue(I.getArgOperand(0)); 4892 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4893 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4894 setValue(&I, Op.getValue(0)); 4895 DAG.setRoot(Op.getValue(1)); 4896 return nullptr; 4897 } 4898 case Intrinsic::eh_sjlj_longjmp: { 4899 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4900 getRoot(), getValue(I.getArgOperand(0)))); 4901 return nullptr; 4902 } 4903 4904 case Intrinsic::masked_load: 4905 visitMaskedLoad(I); 4906 return nullptr; 4907 case Intrinsic::masked_store: 4908 visitMaskedStore(I); 4909 return nullptr; 4910 case Intrinsic::x86_mmx_pslli_w: 4911 case Intrinsic::x86_mmx_pslli_d: 4912 case Intrinsic::x86_mmx_pslli_q: 4913 case Intrinsic::x86_mmx_psrli_w: 4914 case Intrinsic::x86_mmx_psrli_d: 4915 case Intrinsic::x86_mmx_psrli_q: 4916 case Intrinsic::x86_mmx_psrai_w: 4917 case Intrinsic::x86_mmx_psrai_d: { 4918 SDValue ShAmt = getValue(I.getArgOperand(1)); 4919 if (isa<ConstantSDNode>(ShAmt)) { 4920 visitTargetIntrinsic(I, Intrinsic); 4921 return nullptr; 4922 } 4923 unsigned NewIntrinsic = 0; 4924 EVT ShAmtVT = MVT::v2i32; 4925 switch (Intrinsic) { 4926 case Intrinsic::x86_mmx_pslli_w: 4927 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4928 break; 4929 case Intrinsic::x86_mmx_pslli_d: 4930 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4931 break; 4932 case Intrinsic::x86_mmx_pslli_q: 4933 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4934 break; 4935 case Intrinsic::x86_mmx_psrli_w: 4936 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4937 break; 4938 case Intrinsic::x86_mmx_psrli_d: 4939 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4940 break; 4941 case Intrinsic::x86_mmx_psrli_q: 4942 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4943 break; 4944 case Intrinsic::x86_mmx_psrai_w: 4945 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4946 break; 4947 case Intrinsic::x86_mmx_psrai_d: 4948 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4949 break; 4950 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4951 } 4952 4953 // The vector shift intrinsics with scalars uses 32b shift amounts but 4954 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4955 // to be zero. 4956 // We must do this early because v2i32 is not a legal type. 4957 SDValue ShOps[2]; 4958 ShOps[0] = ShAmt; 4959 ShOps[1] = DAG.getConstant(0, MVT::i32); 4960 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4961 EVT DestVT = TLI.getValueType(I.getType()); 4962 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4963 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4964 DAG.getConstant(NewIntrinsic, MVT::i32), 4965 getValue(I.getArgOperand(0)), ShAmt); 4966 setValue(&I, Res); 4967 return nullptr; 4968 } 4969 case Intrinsic::x86_avx2_vinserti128: { 4970 EVT DestVT = TLI.getValueType(I.getType()); 4971 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4972 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4973 ElVT.getVectorNumElements(); 4974 Res = 4975 DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4976 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 4977 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 4978 setValue(&I, Res); 4979 return nullptr; 4980 } 4981 case Intrinsic::x86_avx2_vextracti128: { 4982 EVT DestVT = TLI.getValueType(I.getType()); 4983 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4984 DestVT.getVectorNumElements(); 4985 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4986 getValue(I.getArgOperand(0)), 4987 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 4988 setValue(&I, Res); 4989 return nullptr; 4990 } 4991 case Intrinsic::convertff: 4992 case Intrinsic::convertfsi: 4993 case Intrinsic::convertfui: 4994 case Intrinsic::convertsif: 4995 case Intrinsic::convertuif: 4996 case Intrinsic::convertss: 4997 case Intrinsic::convertsu: 4998 case Intrinsic::convertus: 4999 case Intrinsic::convertuu: { 5000 ISD::CvtCode Code = ISD::CVT_INVALID; 5001 switch (Intrinsic) { 5002 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5003 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5004 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5005 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5006 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5007 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5008 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5009 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5010 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5011 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5012 } 5013 EVT DestVT = TLI.getValueType(I.getType()); 5014 const Value *Op1 = I.getArgOperand(0); 5015 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5016 DAG.getValueType(DestVT), 5017 DAG.getValueType(getValue(Op1).getValueType()), 5018 getValue(I.getArgOperand(1)), 5019 getValue(I.getArgOperand(2)), 5020 Code); 5021 setValue(&I, Res); 5022 return nullptr; 5023 } 5024 case Intrinsic::powi: 5025 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5026 getValue(I.getArgOperand(1)), DAG)); 5027 return nullptr; 5028 case Intrinsic::log: 5029 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5030 return nullptr; 5031 case Intrinsic::log2: 5032 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5033 return nullptr; 5034 case Intrinsic::log10: 5035 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5036 return nullptr; 5037 case Intrinsic::exp: 5038 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5039 return nullptr; 5040 case Intrinsic::exp2: 5041 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5042 return nullptr; 5043 case Intrinsic::pow: 5044 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5045 getValue(I.getArgOperand(1)), DAG, TLI)); 5046 return nullptr; 5047 case Intrinsic::sqrt: 5048 case Intrinsic::fabs: 5049 case Intrinsic::sin: 5050 case Intrinsic::cos: 5051 case Intrinsic::floor: 5052 case Intrinsic::ceil: 5053 case Intrinsic::trunc: 5054 case Intrinsic::rint: 5055 case Intrinsic::nearbyint: 5056 case Intrinsic::round: { 5057 unsigned Opcode; 5058 switch (Intrinsic) { 5059 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5060 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5061 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5062 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5063 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5064 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5065 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5066 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5067 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5068 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5069 case Intrinsic::round: Opcode = ISD::FROUND; break; 5070 } 5071 5072 setValue(&I, DAG.getNode(Opcode, sdl, 5073 getValue(I.getArgOperand(0)).getValueType(), 5074 getValue(I.getArgOperand(0)))); 5075 return nullptr; 5076 } 5077 case Intrinsic::minnum: 5078 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5079 getValue(I.getArgOperand(0)).getValueType(), 5080 getValue(I.getArgOperand(0)), 5081 getValue(I.getArgOperand(1)))); 5082 return nullptr; 5083 case Intrinsic::maxnum: 5084 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5085 getValue(I.getArgOperand(0)).getValueType(), 5086 getValue(I.getArgOperand(0)), 5087 getValue(I.getArgOperand(1)))); 5088 return nullptr; 5089 case Intrinsic::copysign: 5090 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5091 getValue(I.getArgOperand(0)).getValueType(), 5092 getValue(I.getArgOperand(0)), 5093 getValue(I.getArgOperand(1)))); 5094 return nullptr; 5095 case Intrinsic::fma: 5096 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5097 getValue(I.getArgOperand(0)).getValueType(), 5098 getValue(I.getArgOperand(0)), 5099 getValue(I.getArgOperand(1)), 5100 getValue(I.getArgOperand(2)))); 5101 return nullptr; 5102 case Intrinsic::fmuladd: { 5103 EVT VT = TLI.getValueType(I.getType()); 5104 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5105 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5106 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5107 getValue(I.getArgOperand(0)).getValueType(), 5108 getValue(I.getArgOperand(0)), 5109 getValue(I.getArgOperand(1)), 5110 getValue(I.getArgOperand(2)))); 5111 } else { 5112 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5113 getValue(I.getArgOperand(0)).getValueType(), 5114 getValue(I.getArgOperand(0)), 5115 getValue(I.getArgOperand(1))); 5116 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5117 getValue(I.getArgOperand(0)).getValueType(), 5118 Mul, 5119 getValue(I.getArgOperand(2))); 5120 setValue(&I, Add); 5121 } 5122 return nullptr; 5123 } 5124 case Intrinsic::convert_to_fp16: 5125 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5126 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5127 getValue(I.getArgOperand(0)), 5128 DAG.getTargetConstant(0, MVT::i32)))); 5129 return nullptr; 5130 case Intrinsic::convert_from_fp16: 5131 setValue(&I, 5132 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5133 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5134 getValue(I.getArgOperand(0))))); 5135 return nullptr; 5136 case Intrinsic::pcmarker: { 5137 SDValue Tmp = getValue(I.getArgOperand(0)); 5138 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5139 return nullptr; 5140 } 5141 case Intrinsic::readcyclecounter: { 5142 SDValue Op = getRoot(); 5143 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5144 DAG.getVTList(MVT::i64, MVT::Other), Op); 5145 setValue(&I, Res); 5146 DAG.setRoot(Res.getValue(1)); 5147 return nullptr; 5148 } 5149 case Intrinsic::bswap: 5150 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5151 getValue(I.getArgOperand(0)).getValueType(), 5152 getValue(I.getArgOperand(0)))); 5153 return nullptr; 5154 case Intrinsic::cttz: { 5155 SDValue Arg = getValue(I.getArgOperand(0)); 5156 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5157 EVT Ty = Arg.getValueType(); 5158 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5159 sdl, Ty, Arg)); 5160 return nullptr; 5161 } 5162 case Intrinsic::ctlz: { 5163 SDValue Arg = getValue(I.getArgOperand(0)); 5164 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5165 EVT Ty = Arg.getValueType(); 5166 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5167 sdl, Ty, Arg)); 5168 return nullptr; 5169 } 5170 case Intrinsic::ctpop: { 5171 SDValue Arg = getValue(I.getArgOperand(0)); 5172 EVT Ty = Arg.getValueType(); 5173 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5174 return nullptr; 5175 } 5176 case Intrinsic::stacksave: { 5177 SDValue Op = getRoot(); 5178 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5179 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5180 setValue(&I, Res); 5181 DAG.setRoot(Res.getValue(1)); 5182 return nullptr; 5183 } 5184 case Intrinsic::stackrestore: { 5185 Res = getValue(I.getArgOperand(0)); 5186 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5187 return nullptr; 5188 } 5189 case Intrinsic::stackprotector: { 5190 // Emit code into the DAG to store the stack guard onto the stack. 5191 MachineFunction &MF = DAG.getMachineFunction(); 5192 MachineFrameInfo *MFI = MF.getFrameInfo(); 5193 EVT PtrTy = TLI.getPointerTy(); 5194 SDValue Src, Chain = getRoot(); 5195 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5196 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5197 5198 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5199 // global variable __stack_chk_guard. 5200 if (!GV) 5201 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5202 if (BC->getOpcode() == Instruction::BitCast) 5203 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5204 5205 if (GV && TLI.useLoadStackGuardNode()) { 5206 // Emit a LOAD_STACK_GUARD node. 5207 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5208 sdl, PtrTy, Chain); 5209 MachinePointerInfo MPInfo(GV); 5210 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5211 unsigned Flags = MachineMemOperand::MOLoad | 5212 MachineMemOperand::MOInvariant; 5213 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5214 PtrTy.getSizeInBits() / 8, 5215 DAG.getEVTAlignment(PtrTy)); 5216 Node->setMemRefs(MemRefs, MemRefs + 1); 5217 5218 // Copy the guard value to a virtual register so that it can be 5219 // retrieved in the epilogue. 5220 Src = SDValue(Node, 0); 5221 const TargetRegisterClass *RC = 5222 TLI.getRegClassFor(Src.getSimpleValueType()); 5223 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5224 5225 SPDescriptor.setGuardReg(Reg); 5226 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5227 } else { 5228 Src = getValue(I.getArgOperand(0)); // The guard's value. 5229 } 5230 5231 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5232 5233 int FI = FuncInfo.StaticAllocaMap[Slot]; 5234 MFI->setStackProtectorIndex(FI); 5235 5236 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5237 5238 // Store the stack protector onto the stack. 5239 Res = DAG.getStore(Chain, sdl, Src, FIN, 5240 MachinePointerInfo::getFixedStack(FI), 5241 true, false, 0); 5242 setValue(&I, Res); 5243 DAG.setRoot(Res); 5244 return nullptr; 5245 } 5246 case Intrinsic::objectsize: { 5247 // If we don't know by now, we're never going to know. 5248 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5249 5250 assert(CI && "Non-constant type in __builtin_object_size?"); 5251 5252 SDValue Arg = getValue(I.getCalledValue()); 5253 EVT Ty = Arg.getValueType(); 5254 5255 if (CI->isZero()) 5256 Res = DAG.getConstant(-1ULL, Ty); 5257 else 5258 Res = DAG.getConstant(0, Ty); 5259 5260 setValue(&I, Res); 5261 return nullptr; 5262 } 5263 case Intrinsic::annotation: 5264 case Intrinsic::ptr_annotation: 5265 // Drop the intrinsic, but forward the value 5266 setValue(&I, getValue(I.getOperand(0))); 5267 return nullptr; 5268 case Intrinsic::assume: 5269 case Intrinsic::var_annotation: 5270 // Discard annotate attributes and assumptions 5271 return nullptr; 5272 5273 case Intrinsic::init_trampoline: { 5274 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5275 5276 SDValue Ops[6]; 5277 Ops[0] = getRoot(); 5278 Ops[1] = getValue(I.getArgOperand(0)); 5279 Ops[2] = getValue(I.getArgOperand(1)); 5280 Ops[3] = getValue(I.getArgOperand(2)); 5281 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5282 Ops[5] = DAG.getSrcValue(F); 5283 5284 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5285 5286 DAG.setRoot(Res); 5287 return nullptr; 5288 } 5289 case Intrinsic::adjust_trampoline: { 5290 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5291 TLI.getPointerTy(), 5292 getValue(I.getArgOperand(0)))); 5293 return nullptr; 5294 } 5295 case Intrinsic::gcroot: 5296 if (GFI) { 5297 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5298 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5299 5300 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5301 GFI->addStackRoot(FI->getIndex(), TypeMap); 5302 } 5303 return nullptr; 5304 case Intrinsic::gcread: 5305 case Intrinsic::gcwrite: 5306 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5307 case Intrinsic::flt_rounds: 5308 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5309 return nullptr; 5310 5311 case Intrinsic::expect: { 5312 // Just replace __builtin_expect(exp, c) with EXP. 5313 setValue(&I, getValue(I.getArgOperand(0))); 5314 return nullptr; 5315 } 5316 5317 case Intrinsic::debugtrap: 5318 case Intrinsic::trap: { 5319 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5320 if (TrapFuncName.empty()) { 5321 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5322 ISD::TRAP : ISD::DEBUGTRAP; 5323 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5324 return nullptr; 5325 } 5326 TargetLowering::ArgListTy Args; 5327 5328 TargetLowering::CallLoweringInfo CLI(DAG); 5329 CLI.setDebugLoc(sdl).setChain(getRoot()) 5330 .setCallee(CallingConv::C, I.getType(), 5331 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5332 std::move(Args), 0); 5333 5334 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5335 DAG.setRoot(Result.second); 5336 return nullptr; 5337 } 5338 5339 case Intrinsic::uadd_with_overflow: 5340 case Intrinsic::sadd_with_overflow: 5341 case Intrinsic::usub_with_overflow: 5342 case Intrinsic::ssub_with_overflow: 5343 case Intrinsic::umul_with_overflow: 5344 case Intrinsic::smul_with_overflow: { 5345 ISD::NodeType Op; 5346 switch (Intrinsic) { 5347 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5348 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5349 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5350 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5351 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5352 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5353 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5354 } 5355 SDValue Op1 = getValue(I.getArgOperand(0)); 5356 SDValue Op2 = getValue(I.getArgOperand(1)); 5357 5358 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5359 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5360 return nullptr; 5361 } 5362 case Intrinsic::prefetch: { 5363 SDValue Ops[5]; 5364 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5365 Ops[0] = getRoot(); 5366 Ops[1] = getValue(I.getArgOperand(0)); 5367 Ops[2] = getValue(I.getArgOperand(1)); 5368 Ops[3] = getValue(I.getArgOperand(2)); 5369 Ops[4] = getValue(I.getArgOperand(3)); 5370 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5371 DAG.getVTList(MVT::Other), Ops, 5372 EVT::getIntegerVT(*Context, 8), 5373 MachinePointerInfo(I.getArgOperand(0)), 5374 0, /* align */ 5375 false, /* volatile */ 5376 rw==0, /* read */ 5377 rw==1)); /* write */ 5378 return nullptr; 5379 } 5380 case Intrinsic::lifetime_start: 5381 case Intrinsic::lifetime_end: { 5382 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5383 // Stack coloring is not enabled in O0, discard region information. 5384 if (TM.getOptLevel() == CodeGenOpt::None) 5385 return nullptr; 5386 5387 SmallVector<Value *, 4> Allocas; 5388 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5389 5390 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5391 E = Allocas.end(); Object != E; ++Object) { 5392 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5393 5394 // Could not find an Alloca. 5395 if (!LifetimeObject) 5396 continue; 5397 5398 // First check that the Alloca is static, otherwise it won't have a 5399 // valid frame index. 5400 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5401 if (SI == FuncInfo.StaticAllocaMap.end()) 5402 return nullptr; 5403 5404 int FI = SI->second; 5405 5406 SDValue Ops[2]; 5407 Ops[0] = getRoot(); 5408 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5409 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5410 5411 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5412 DAG.setRoot(Res); 5413 } 5414 return nullptr; 5415 } 5416 case Intrinsic::invariant_start: 5417 // Discard region information. 5418 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5419 return nullptr; 5420 case Intrinsic::invariant_end: 5421 // Discard region information. 5422 return nullptr; 5423 case Intrinsic::stackprotectorcheck: { 5424 // Do not actually emit anything for this basic block. Instead we initialize 5425 // the stack protector descriptor and export the guard variable so we can 5426 // access it in FinishBasicBlock. 5427 const BasicBlock *BB = I.getParent(); 5428 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5429 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5430 5431 // Flush our exports since we are going to process a terminator. 5432 (void)getControlRoot(); 5433 return nullptr; 5434 } 5435 case Intrinsic::clear_cache: 5436 return TLI.getClearCacheBuiltinName(); 5437 case Intrinsic::donothing: 5438 // ignore 5439 return nullptr; 5440 case Intrinsic::experimental_stackmap: { 5441 visitStackmap(I); 5442 return nullptr; 5443 } 5444 case Intrinsic::experimental_patchpoint_void: 5445 case Intrinsic::experimental_patchpoint_i64: { 5446 visitPatchpoint(&I); 5447 return nullptr; 5448 } 5449 case Intrinsic::experimental_gc_statepoint: { 5450 visitStatepoint(I); 5451 return nullptr; 5452 } 5453 case Intrinsic::experimental_gc_result_int: 5454 case Intrinsic::experimental_gc_result_float: 5455 case Intrinsic::experimental_gc_result_ptr: 5456 case Intrinsic::experimental_gc_result: { 5457 visitGCResult(I); 5458 return nullptr; 5459 } 5460 case Intrinsic::experimental_gc_relocate: { 5461 visitGCRelocate(I); 5462 return nullptr; 5463 } 5464 case Intrinsic::instrprof_increment: 5465 llvm_unreachable("instrprof failed to lower an increment"); 5466 5467 case Intrinsic::frameescape: { 5468 MachineFunction &MF = DAG.getMachineFunction(); 5469 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5470 5471 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 5472 // is the same on all targets. 5473 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5474 AllocaInst *Slot = 5475 cast<AllocaInst>(I.getArgOperand(Idx)->stripPointerCasts()); 5476 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5477 "can only escape static allocas"); 5478 int FI = FuncInfo.StaticAllocaMap[Slot]; 5479 MCSymbol *FrameAllocSym = 5480 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(MF.getName(), 5481 Idx); 5482 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5483 TII->get(TargetOpcode::FRAME_ALLOC)) 5484 .addSym(FrameAllocSym) 5485 .addFrameIndex(FI); 5486 } 5487 5488 return nullptr; 5489 } 5490 5491 case Intrinsic::framerecover: { 5492 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 5493 MachineFunction &MF = DAG.getMachineFunction(); 5494 MVT PtrVT = TLI.getPointerTy(0); 5495 5496 // Get the symbol that defines the frame offset. 5497 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5498 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5499 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5500 MCSymbol *FrameAllocSym = 5501 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(Fn->getName(), 5502 IdxVal); 5503 5504 // Create a TargetExternalSymbol for the label to avoid any target lowering 5505 // that would make this PC relative. 5506 StringRef Name = FrameAllocSym->getName(); 5507 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 5508 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 5509 SDValue OffsetVal = 5510 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 5511 5512 // Add the offset to the FP. 5513 Value *FP = I.getArgOperand(1); 5514 SDValue FPVal = getValue(FP); 5515 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5516 setValue(&I, Add); 5517 5518 return nullptr; 5519 } 5520 case Intrinsic::eh_begincatch: 5521 case Intrinsic::eh_endcatch: 5522 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5523 } 5524 } 5525 5526 std::pair<SDValue, SDValue> 5527 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5528 MachineBasicBlock *LandingPad) { 5529 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5530 MCSymbol *BeginLabel = nullptr; 5531 5532 if (LandingPad) { 5533 // Insert a label before the invoke call to mark the try range. This can be 5534 // used to detect deletion of the invoke via the MachineModuleInfo. 5535 BeginLabel = MMI.getContext().CreateTempSymbol(); 5536 5537 // For SjLj, keep track of which landing pads go with which invokes 5538 // so as to maintain the ordering of pads in the LSDA. 5539 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5540 if (CallSiteIndex) { 5541 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5542 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5543 5544 // Now that the call site is handled, stop tracking it. 5545 MMI.setCurrentCallSite(0); 5546 } 5547 5548 // Both PendingLoads and PendingExports must be flushed here; 5549 // this call might not return. 5550 (void)getRoot(); 5551 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5552 5553 CLI.setChain(getRoot()); 5554 } 5555 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5556 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5557 5558 assert((CLI.IsTailCall || Result.second.getNode()) && 5559 "Non-null chain expected with non-tail call!"); 5560 assert((Result.second.getNode() || !Result.first.getNode()) && 5561 "Null value expected with tail call!"); 5562 5563 if (!Result.second.getNode()) { 5564 // As a special case, a null chain means that a tail call has been emitted 5565 // and the DAG root is already updated. 5566 HasTailCall = true; 5567 5568 // Since there's no actual continuation from this block, nothing can be 5569 // relying on us setting vregs for them. 5570 PendingExports.clear(); 5571 } else { 5572 DAG.setRoot(Result.second); 5573 } 5574 5575 if (LandingPad) { 5576 // Insert a label at the end of the invoke call to mark the try range. This 5577 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5578 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5579 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5580 5581 // Inform MachineModuleInfo of range. 5582 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5583 } 5584 5585 return Result; 5586 } 5587 5588 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5589 bool isTailCall, 5590 MachineBasicBlock *LandingPad) { 5591 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5592 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5593 Type *RetTy = FTy->getReturnType(); 5594 5595 TargetLowering::ArgListTy Args; 5596 TargetLowering::ArgListEntry Entry; 5597 Args.reserve(CS.arg_size()); 5598 5599 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5600 i != e; ++i) { 5601 const Value *V = *i; 5602 5603 // Skip empty types 5604 if (V->getType()->isEmptyTy()) 5605 continue; 5606 5607 SDValue ArgNode = getValue(V); 5608 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5609 5610 // Skip the first return-type Attribute to get to params. 5611 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5612 Args.push_back(Entry); 5613 } 5614 5615 // Check if target-independent constraints permit a tail call here. 5616 // Target-dependent constraints are checked within TLI->LowerCallTo. 5617 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5618 isTailCall = false; 5619 5620 TargetLowering::CallLoweringInfo CLI(DAG); 5621 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5622 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5623 .setTailCall(isTailCall); 5624 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5625 5626 if (Result.first.getNode()) 5627 setValue(CS.getInstruction(), Result.first); 5628 } 5629 5630 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5631 /// value is equal or not-equal to zero. 5632 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5633 for (const User *U : V->users()) { 5634 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5635 if (IC->isEquality()) 5636 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5637 if (C->isNullValue()) 5638 continue; 5639 // Unknown instruction. 5640 return false; 5641 } 5642 return true; 5643 } 5644 5645 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5646 Type *LoadTy, 5647 SelectionDAGBuilder &Builder) { 5648 5649 // Check to see if this load can be trivially constant folded, e.g. if the 5650 // input is from a string literal. 5651 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5652 // Cast pointer to the type we really want to load. 5653 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5654 PointerType::getUnqual(LoadTy)); 5655 5656 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5657 const_cast<Constant *>(LoadInput), *Builder.DL)) 5658 return Builder.getValue(LoadCst); 5659 } 5660 5661 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5662 // still constant memory, the input chain can be the entry node. 5663 SDValue Root; 5664 bool ConstantMemory = false; 5665 5666 // Do not serialize (non-volatile) loads of constant memory with anything. 5667 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5668 Root = Builder.DAG.getEntryNode(); 5669 ConstantMemory = true; 5670 } else { 5671 // Do not serialize non-volatile loads against each other. 5672 Root = Builder.DAG.getRoot(); 5673 } 5674 5675 SDValue Ptr = Builder.getValue(PtrVal); 5676 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5677 Ptr, MachinePointerInfo(PtrVal), 5678 false /*volatile*/, 5679 false /*nontemporal*/, 5680 false /*isinvariant*/, 1 /* align=1 */); 5681 5682 if (!ConstantMemory) 5683 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5684 return LoadVal; 5685 } 5686 5687 /// processIntegerCallValue - Record the value for an instruction that 5688 /// produces an integer result, converting the type where necessary. 5689 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5690 SDValue Value, 5691 bool IsSigned) { 5692 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5693 if (IsSigned) 5694 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5695 else 5696 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5697 setValue(&I, Value); 5698 } 5699 5700 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5701 /// If so, return true and lower it, otherwise return false and it will be 5702 /// lowered like a normal call. 5703 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5704 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5705 if (I.getNumArgOperands() != 3) 5706 return false; 5707 5708 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5709 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5710 !I.getArgOperand(2)->getType()->isIntegerTy() || 5711 !I.getType()->isIntegerTy()) 5712 return false; 5713 5714 const Value *Size = I.getArgOperand(2); 5715 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5716 if (CSize && CSize->getZExtValue() == 0) { 5717 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5718 setValue(&I, DAG.getConstant(0, CallVT)); 5719 return true; 5720 } 5721 5722 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5723 std::pair<SDValue, SDValue> Res = 5724 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5725 getValue(LHS), getValue(RHS), getValue(Size), 5726 MachinePointerInfo(LHS), 5727 MachinePointerInfo(RHS)); 5728 if (Res.first.getNode()) { 5729 processIntegerCallValue(I, Res.first, true); 5730 PendingLoads.push_back(Res.second); 5731 return true; 5732 } 5733 5734 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5735 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5736 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5737 bool ActuallyDoIt = true; 5738 MVT LoadVT; 5739 Type *LoadTy; 5740 switch (CSize->getZExtValue()) { 5741 default: 5742 LoadVT = MVT::Other; 5743 LoadTy = nullptr; 5744 ActuallyDoIt = false; 5745 break; 5746 case 2: 5747 LoadVT = MVT::i16; 5748 LoadTy = Type::getInt16Ty(CSize->getContext()); 5749 break; 5750 case 4: 5751 LoadVT = MVT::i32; 5752 LoadTy = Type::getInt32Ty(CSize->getContext()); 5753 break; 5754 case 8: 5755 LoadVT = MVT::i64; 5756 LoadTy = Type::getInt64Ty(CSize->getContext()); 5757 break; 5758 /* 5759 case 16: 5760 LoadVT = MVT::v4i32; 5761 LoadTy = Type::getInt32Ty(CSize->getContext()); 5762 LoadTy = VectorType::get(LoadTy, 4); 5763 break; 5764 */ 5765 } 5766 5767 // This turns into unaligned loads. We only do this if the target natively 5768 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5769 // we'll only produce a small number of byte loads. 5770 5771 // Require that we can find a legal MVT, and only do this if the target 5772 // supports unaligned loads of that type. Expanding into byte loads would 5773 // bloat the code. 5774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5775 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5776 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5777 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5778 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5779 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5780 // TODO: Check alignment of src and dest ptrs. 5781 if (!TLI.isTypeLegal(LoadVT) || 5782 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5783 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5784 ActuallyDoIt = false; 5785 } 5786 5787 if (ActuallyDoIt) { 5788 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5789 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5790 5791 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5792 ISD::SETNE); 5793 processIntegerCallValue(I, Res, false); 5794 return true; 5795 } 5796 } 5797 5798 5799 return false; 5800 } 5801 5802 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5803 /// form. If so, return true and lower it, otherwise return false and it 5804 /// will be lowered like a normal call. 5805 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5806 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5807 if (I.getNumArgOperands() != 3) 5808 return false; 5809 5810 const Value *Src = I.getArgOperand(0); 5811 const Value *Char = I.getArgOperand(1); 5812 const Value *Length = I.getArgOperand(2); 5813 if (!Src->getType()->isPointerTy() || 5814 !Char->getType()->isIntegerTy() || 5815 !Length->getType()->isIntegerTy() || 5816 !I.getType()->isPointerTy()) 5817 return false; 5818 5819 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5820 std::pair<SDValue, SDValue> Res = 5821 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5822 getValue(Src), getValue(Char), getValue(Length), 5823 MachinePointerInfo(Src)); 5824 if (Res.first.getNode()) { 5825 setValue(&I, Res.first); 5826 PendingLoads.push_back(Res.second); 5827 return true; 5828 } 5829 5830 return false; 5831 } 5832 5833 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5834 /// optimized form. If so, return true and lower it, otherwise return false 5835 /// and it will be lowered like a normal call. 5836 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5837 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5838 if (I.getNumArgOperands() != 2) 5839 return false; 5840 5841 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5842 if (!Arg0->getType()->isPointerTy() || 5843 !Arg1->getType()->isPointerTy() || 5844 !I.getType()->isPointerTy()) 5845 return false; 5846 5847 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5848 std::pair<SDValue, SDValue> Res = 5849 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5850 getValue(Arg0), getValue(Arg1), 5851 MachinePointerInfo(Arg0), 5852 MachinePointerInfo(Arg1), isStpcpy); 5853 if (Res.first.getNode()) { 5854 setValue(&I, Res.first); 5855 DAG.setRoot(Res.second); 5856 return true; 5857 } 5858 5859 return false; 5860 } 5861 5862 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5863 /// If so, return true and lower it, otherwise return false and it will be 5864 /// lowered like a normal call. 5865 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5866 // Verify that the prototype makes sense. int strcmp(void*,void*) 5867 if (I.getNumArgOperands() != 2) 5868 return false; 5869 5870 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5871 if (!Arg0->getType()->isPointerTy() || 5872 !Arg1->getType()->isPointerTy() || 5873 !I.getType()->isIntegerTy()) 5874 return false; 5875 5876 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5877 std::pair<SDValue, SDValue> Res = 5878 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5879 getValue(Arg0), getValue(Arg1), 5880 MachinePointerInfo(Arg0), 5881 MachinePointerInfo(Arg1)); 5882 if (Res.first.getNode()) { 5883 processIntegerCallValue(I, Res.first, true); 5884 PendingLoads.push_back(Res.second); 5885 return true; 5886 } 5887 5888 return false; 5889 } 5890 5891 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5892 /// form. If so, return true and lower it, otherwise return false and it 5893 /// will be lowered like a normal call. 5894 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5895 // Verify that the prototype makes sense. size_t strlen(char *) 5896 if (I.getNumArgOperands() != 1) 5897 return false; 5898 5899 const Value *Arg0 = I.getArgOperand(0); 5900 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5901 return false; 5902 5903 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5904 std::pair<SDValue, SDValue> Res = 5905 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5906 getValue(Arg0), MachinePointerInfo(Arg0)); 5907 if (Res.first.getNode()) { 5908 processIntegerCallValue(I, Res.first, false); 5909 PendingLoads.push_back(Res.second); 5910 return true; 5911 } 5912 5913 return false; 5914 } 5915 5916 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5917 /// form. If so, return true and lower it, otherwise return false and it 5918 /// will be lowered like a normal call. 5919 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5920 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5921 if (I.getNumArgOperands() != 2) 5922 return false; 5923 5924 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5925 if (!Arg0->getType()->isPointerTy() || 5926 !Arg1->getType()->isIntegerTy() || 5927 !I.getType()->isIntegerTy()) 5928 return false; 5929 5930 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5931 std::pair<SDValue, SDValue> Res = 5932 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5933 getValue(Arg0), getValue(Arg1), 5934 MachinePointerInfo(Arg0)); 5935 if (Res.first.getNode()) { 5936 processIntegerCallValue(I, Res.first, false); 5937 PendingLoads.push_back(Res.second); 5938 return true; 5939 } 5940 5941 return false; 5942 } 5943 5944 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5945 /// operation (as expected), translate it to an SDNode with the specified opcode 5946 /// and return true. 5947 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5948 unsigned Opcode) { 5949 // Sanity check that it really is a unary floating-point call. 5950 if (I.getNumArgOperands() != 1 || 5951 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5952 I.getType() != I.getArgOperand(0)->getType() || 5953 !I.onlyReadsMemory()) 5954 return false; 5955 5956 SDValue Tmp = getValue(I.getArgOperand(0)); 5957 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5958 return true; 5959 } 5960 5961 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5962 /// operation (as expected), translate it to an SDNode with the specified opcode 5963 /// and return true. 5964 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5965 unsigned Opcode) { 5966 // Sanity check that it really is a binary floating-point call. 5967 if (I.getNumArgOperands() != 2 || 5968 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5969 I.getType() != I.getArgOperand(0)->getType() || 5970 I.getType() != I.getArgOperand(1)->getType() || 5971 !I.onlyReadsMemory()) 5972 return false; 5973 5974 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5975 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5976 EVT VT = Tmp0.getValueType(); 5977 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5978 return true; 5979 } 5980 5981 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5982 // Handle inline assembly differently. 5983 if (isa<InlineAsm>(I.getCalledValue())) { 5984 visitInlineAsm(&I); 5985 return; 5986 } 5987 5988 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5989 ComputeUsesVAFloatArgument(I, &MMI); 5990 5991 const char *RenameFn = nullptr; 5992 if (Function *F = I.getCalledFunction()) { 5993 if (F->isDeclaration()) { 5994 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5995 if (unsigned IID = II->getIntrinsicID(F)) { 5996 RenameFn = visitIntrinsicCall(I, IID); 5997 if (!RenameFn) 5998 return; 5999 } 6000 } 6001 if (unsigned IID = F->getIntrinsicID()) { 6002 RenameFn = visitIntrinsicCall(I, IID); 6003 if (!RenameFn) 6004 return; 6005 } 6006 } 6007 6008 // Check for well-known libc/libm calls. If the function is internal, it 6009 // can't be a library call. 6010 LibFunc::Func Func; 6011 if (!F->hasLocalLinkage() && F->hasName() && 6012 LibInfo->getLibFunc(F->getName(), Func) && 6013 LibInfo->hasOptimizedCodeGen(Func)) { 6014 switch (Func) { 6015 default: break; 6016 case LibFunc::copysign: 6017 case LibFunc::copysignf: 6018 case LibFunc::copysignl: 6019 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6020 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6021 I.getType() == I.getArgOperand(0)->getType() && 6022 I.getType() == I.getArgOperand(1)->getType() && 6023 I.onlyReadsMemory()) { 6024 SDValue LHS = getValue(I.getArgOperand(0)); 6025 SDValue RHS = getValue(I.getArgOperand(1)); 6026 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6027 LHS.getValueType(), LHS, RHS)); 6028 return; 6029 } 6030 break; 6031 case LibFunc::fabs: 6032 case LibFunc::fabsf: 6033 case LibFunc::fabsl: 6034 if (visitUnaryFloatCall(I, ISD::FABS)) 6035 return; 6036 break; 6037 case LibFunc::fmin: 6038 case LibFunc::fminf: 6039 case LibFunc::fminl: 6040 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6041 return; 6042 break; 6043 case LibFunc::fmax: 6044 case LibFunc::fmaxf: 6045 case LibFunc::fmaxl: 6046 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6047 return; 6048 break; 6049 case LibFunc::sin: 6050 case LibFunc::sinf: 6051 case LibFunc::sinl: 6052 if (visitUnaryFloatCall(I, ISD::FSIN)) 6053 return; 6054 break; 6055 case LibFunc::cos: 6056 case LibFunc::cosf: 6057 case LibFunc::cosl: 6058 if (visitUnaryFloatCall(I, ISD::FCOS)) 6059 return; 6060 break; 6061 case LibFunc::sqrt: 6062 case LibFunc::sqrtf: 6063 case LibFunc::sqrtl: 6064 case LibFunc::sqrt_finite: 6065 case LibFunc::sqrtf_finite: 6066 case LibFunc::sqrtl_finite: 6067 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6068 return; 6069 break; 6070 case LibFunc::floor: 6071 case LibFunc::floorf: 6072 case LibFunc::floorl: 6073 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6074 return; 6075 break; 6076 case LibFunc::nearbyint: 6077 case LibFunc::nearbyintf: 6078 case LibFunc::nearbyintl: 6079 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6080 return; 6081 break; 6082 case LibFunc::ceil: 6083 case LibFunc::ceilf: 6084 case LibFunc::ceill: 6085 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6086 return; 6087 break; 6088 case LibFunc::rint: 6089 case LibFunc::rintf: 6090 case LibFunc::rintl: 6091 if (visitUnaryFloatCall(I, ISD::FRINT)) 6092 return; 6093 break; 6094 case LibFunc::round: 6095 case LibFunc::roundf: 6096 case LibFunc::roundl: 6097 if (visitUnaryFloatCall(I, ISD::FROUND)) 6098 return; 6099 break; 6100 case LibFunc::trunc: 6101 case LibFunc::truncf: 6102 case LibFunc::truncl: 6103 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6104 return; 6105 break; 6106 case LibFunc::log2: 6107 case LibFunc::log2f: 6108 case LibFunc::log2l: 6109 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6110 return; 6111 break; 6112 case LibFunc::exp2: 6113 case LibFunc::exp2f: 6114 case LibFunc::exp2l: 6115 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6116 return; 6117 break; 6118 case LibFunc::memcmp: 6119 if (visitMemCmpCall(I)) 6120 return; 6121 break; 6122 case LibFunc::memchr: 6123 if (visitMemChrCall(I)) 6124 return; 6125 break; 6126 case LibFunc::strcpy: 6127 if (visitStrCpyCall(I, false)) 6128 return; 6129 break; 6130 case LibFunc::stpcpy: 6131 if (visitStrCpyCall(I, true)) 6132 return; 6133 break; 6134 case LibFunc::strcmp: 6135 if (visitStrCmpCall(I)) 6136 return; 6137 break; 6138 case LibFunc::strlen: 6139 if (visitStrLenCall(I)) 6140 return; 6141 break; 6142 case LibFunc::strnlen: 6143 if (visitStrNLenCall(I)) 6144 return; 6145 break; 6146 } 6147 } 6148 } 6149 6150 SDValue Callee; 6151 if (!RenameFn) 6152 Callee = getValue(I.getCalledValue()); 6153 else 6154 Callee = DAG.getExternalSymbol(RenameFn, 6155 DAG.getTargetLoweringInfo().getPointerTy()); 6156 6157 // Check if we can potentially perform a tail call. More detailed checking is 6158 // be done within LowerCallTo, after more information about the call is known. 6159 LowerCallTo(&I, Callee, I.isTailCall()); 6160 } 6161 6162 namespace { 6163 6164 /// AsmOperandInfo - This contains information for each constraint that we are 6165 /// lowering. 6166 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6167 public: 6168 /// CallOperand - If this is the result output operand or a clobber 6169 /// this is null, otherwise it is the incoming operand to the CallInst. 6170 /// This gets modified as the asm is processed. 6171 SDValue CallOperand; 6172 6173 /// AssignedRegs - If this is a register or register class operand, this 6174 /// contains the set of register corresponding to the operand. 6175 RegsForValue AssignedRegs; 6176 6177 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6178 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6179 } 6180 6181 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6182 /// corresponds to. If there is no Value* for this operand, it returns 6183 /// MVT::Other. 6184 EVT getCallOperandValEVT(LLVMContext &Context, 6185 const TargetLowering &TLI, 6186 const DataLayout *DL) const { 6187 if (!CallOperandVal) return MVT::Other; 6188 6189 if (isa<BasicBlock>(CallOperandVal)) 6190 return TLI.getPointerTy(); 6191 6192 llvm::Type *OpTy = CallOperandVal->getType(); 6193 6194 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6195 // If this is an indirect operand, the operand is a pointer to the 6196 // accessed type. 6197 if (isIndirect) { 6198 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6199 if (!PtrTy) 6200 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6201 OpTy = PtrTy->getElementType(); 6202 } 6203 6204 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6205 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6206 if (STy->getNumElements() == 1) 6207 OpTy = STy->getElementType(0); 6208 6209 // If OpTy is not a single value, it may be a struct/union that we 6210 // can tile with integers. 6211 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6212 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6213 switch (BitSize) { 6214 default: break; 6215 case 1: 6216 case 8: 6217 case 16: 6218 case 32: 6219 case 64: 6220 case 128: 6221 OpTy = IntegerType::get(Context, BitSize); 6222 break; 6223 } 6224 } 6225 6226 return TLI.getValueType(OpTy, true); 6227 } 6228 }; 6229 6230 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6231 6232 } // end anonymous namespace 6233 6234 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6235 /// specified operand. We prefer to assign virtual registers, to allow the 6236 /// register allocator to handle the assignment process. However, if the asm 6237 /// uses features that we can't model on machineinstrs, we have SDISel do the 6238 /// allocation. This produces generally horrible, but correct, code. 6239 /// 6240 /// OpInfo describes the operand. 6241 /// 6242 static void GetRegistersForValue(SelectionDAG &DAG, 6243 const TargetLowering &TLI, 6244 SDLoc DL, 6245 SDISelAsmOperandInfo &OpInfo) { 6246 LLVMContext &Context = *DAG.getContext(); 6247 6248 MachineFunction &MF = DAG.getMachineFunction(); 6249 SmallVector<unsigned, 4> Regs; 6250 6251 // If this is a constraint for a single physreg, or a constraint for a 6252 // register class, find it. 6253 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6254 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6255 OpInfo.ConstraintCode, 6256 OpInfo.ConstraintVT); 6257 6258 unsigned NumRegs = 1; 6259 if (OpInfo.ConstraintVT != MVT::Other) { 6260 // If this is a FP input in an integer register (or visa versa) insert a bit 6261 // cast of the input value. More generally, handle any case where the input 6262 // value disagrees with the register class we plan to stick this in. 6263 if (OpInfo.Type == InlineAsm::isInput && 6264 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6265 // Try to convert to the first EVT that the reg class contains. If the 6266 // types are identical size, use a bitcast to convert (e.g. two differing 6267 // vector types). 6268 MVT RegVT = *PhysReg.second->vt_begin(); 6269 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6270 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6271 RegVT, OpInfo.CallOperand); 6272 OpInfo.ConstraintVT = RegVT; 6273 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6274 // If the input is a FP value and we want it in FP registers, do a 6275 // bitcast to the corresponding integer type. This turns an f64 value 6276 // into i64, which can be passed with two i32 values on a 32-bit 6277 // machine. 6278 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6279 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6280 RegVT, OpInfo.CallOperand); 6281 OpInfo.ConstraintVT = RegVT; 6282 } 6283 } 6284 6285 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6286 } 6287 6288 MVT RegVT; 6289 EVT ValueVT = OpInfo.ConstraintVT; 6290 6291 // If this is a constraint for a specific physical register, like {r17}, 6292 // assign it now. 6293 if (unsigned AssignedReg = PhysReg.first) { 6294 const TargetRegisterClass *RC = PhysReg.second; 6295 if (OpInfo.ConstraintVT == MVT::Other) 6296 ValueVT = *RC->vt_begin(); 6297 6298 // Get the actual register value type. This is important, because the user 6299 // may have asked for (e.g.) the AX register in i32 type. We need to 6300 // remember that AX is actually i16 to get the right extension. 6301 RegVT = *RC->vt_begin(); 6302 6303 // This is a explicit reference to a physical register. 6304 Regs.push_back(AssignedReg); 6305 6306 // If this is an expanded reference, add the rest of the regs to Regs. 6307 if (NumRegs != 1) { 6308 TargetRegisterClass::iterator I = RC->begin(); 6309 for (; *I != AssignedReg; ++I) 6310 assert(I != RC->end() && "Didn't find reg!"); 6311 6312 // Already added the first reg. 6313 --NumRegs; ++I; 6314 for (; NumRegs; --NumRegs, ++I) { 6315 assert(I != RC->end() && "Ran out of registers to allocate!"); 6316 Regs.push_back(*I); 6317 } 6318 } 6319 6320 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6321 return; 6322 } 6323 6324 // Otherwise, if this was a reference to an LLVM register class, create vregs 6325 // for this reference. 6326 if (const TargetRegisterClass *RC = PhysReg.second) { 6327 RegVT = *RC->vt_begin(); 6328 if (OpInfo.ConstraintVT == MVT::Other) 6329 ValueVT = RegVT; 6330 6331 // Create the appropriate number of virtual registers. 6332 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6333 for (; NumRegs; --NumRegs) 6334 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6335 6336 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6337 return; 6338 } 6339 6340 // Otherwise, we couldn't allocate enough registers for this. 6341 } 6342 6343 /// visitInlineAsm - Handle a call to an InlineAsm object. 6344 /// 6345 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6346 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6347 6348 /// ConstraintOperands - Information about all of the constraints. 6349 SDISelAsmOperandInfoVector ConstraintOperands; 6350 6351 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6352 TargetLowering::AsmOperandInfoVector TargetConstraints = 6353 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 6354 6355 bool hasMemory = false; 6356 6357 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6358 unsigned ResNo = 0; // ResNo - The result number of the next output. 6359 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6360 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6361 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6362 6363 MVT OpVT = MVT::Other; 6364 6365 // Compute the value type for each operand. 6366 switch (OpInfo.Type) { 6367 case InlineAsm::isOutput: 6368 // Indirect outputs just consume an argument. 6369 if (OpInfo.isIndirect) { 6370 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6371 break; 6372 } 6373 6374 // The return value of the call is this value. As such, there is no 6375 // corresponding argument. 6376 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6377 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6378 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6379 } else { 6380 assert(ResNo == 0 && "Asm only has one result!"); 6381 OpVT = TLI.getSimpleValueType(CS.getType()); 6382 } 6383 ++ResNo; 6384 break; 6385 case InlineAsm::isInput: 6386 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6387 break; 6388 case InlineAsm::isClobber: 6389 // Nothing to do. 6390 break; 6391 } 6392 6393 // If this is an input or an indirect output, process the call argument. 6394 // BasicBlocks are labels, currently appearing only in asm's. 6395 if (OpInfo.CallOperandVal) { 6396 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6397 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6398 } else { 6399 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6400 } 6401 6402 OpVT = 6403 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6404 } 6405 6406 OpInfo.ConstraintVT = OpVT; 6407 6408 // Indirect operand accesses access memory. 6409 if (OpInfo.isIndirect) 6410 hasMemory = true; 6411 else { 6412 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6413 TargetLowering::ConstraintType 6414 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6415 if (CType == TargetLowering::C_Memory) { 6416 hasMemory = true; 6417 break; 6418 } 6419 } 6420 } 6421 } 6422 6423 SDValue Chain, Flag; 6424 6425 // We won't need to flush pending loads if this asm doesn't touch 6426 // memory and is nonvolatile. 6427 if (hasMemory || IA->hasSideEffects()) 6428 Chain = getRoot(); 6429 else 6430 Chain = DAG.getRoot(); 6431 6432 // Second pass over the constraints: compute which constraint option to use 6433 // and assign registers to constraints that want a specific physreg. 6434 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6435 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6436 6437 // If this is an output operand with a matching input operand, look up the 6438 // matching input. If their types mismatch, e.g. one is an integer, the 6439 // other is floating point, or their sizes are different, flag it as an 6440 // error. 6441 if (OpInfo.hasMatchingInput()) { 6442 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6443 6444 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6445 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6446 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6447 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6448 OpInfo.ConstraintVT); 6449 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6450 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6451 Input.ConstraintVT); 6452 if ((OpInfo.ConstraintVT.isInteger() != 6453 Input.ConstraintVT.isInteger()) || 6454 (MatchRC.second != InputRC.second)) { 6455 report_fatal_error("Unsupported asm: input constraint" 6456 " with a matching output constraint of" 6457 " incompatible type!"); 6458 } 6459 Input.ConstraintVT = OpInfo.ConstraintVT; 6460 } 6461 } 6462 6463 // Compute the constraint code and ConstraintType to use. 6464 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6465 6466 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6467 OpInfo.Type == InlineAsm::isClobber) 6468 continue; 6469 6470 // If this is a memory input, and if the operand is not indirect, do what we 6471 // need to to provide an address for the memory input. 6472 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6473 !OpInfo.isIndirect) { 6474 assert((OpInfo.isMultipleAlternative || 6475 (OpInfo.Type == InlineAsm::isInput)) && 6476 "Can only indirectify direct input operands!"); 6477 6478 // Memory operands really want the address of the value. If we don't have 6479 // an indirect input, put it in the constpool if we can, otherwise spill 6480 // it to a stack slot. 6481 // TODO: This isn't quite right. We need to handle these according to 6482 // the addressing mode that the constraint wants. Also, this may take 6483 // an additional register for the computation and we don't want that 6484 // either. 6485 6486 // If the operand is a float, integer, or vector constant, spill to a 6487 // constant pool entry to get its address. 6488 const Value *OpVal = OpInfo.CallOperandVal; 6489 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6490 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6491 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6492 TLI.getPointerTy()); 6493 } else { 6494 // Otherwise, create a stack slot and emit a store to it before the 6495 // asm. 6496 Type *Ty = OpVal->getType(); 6497 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6498 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6499 MachineFunction &MF = DAG.getMachineFunction(); 6500 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6501 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6502 Chain = DAG.getStore(Chain, getCurSDLoc(), 6503 OpInfo.CallOperand, StackSlot, 6504 MachinePointerInfo::getFixedStack(SSFI), 6505 false, false, 0); 6506 OpInfo.CallOperand = StackSlot; 6507 } 6508 6509 // There is no longer a Value* corresponding to this operand. 6510 OpInfo.CallOperandVal = nullptr; 6511 6512 // It is now an indirect operand. 6513 OpInfo.isIndirect = true; 6514 } 6515 6516 // If this constraint is for a specific register, allocate it before 6517 // anything else. 6518 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6519 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6520 } 6521 6522 // Second pass - Loop over all of the operands, assigning virtual or physregs 6523 // to register class operands. 6524 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6525 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6526 6527 // C_Register operands have already been allocated, Other/Memory don't need 6528 // to be. 6529 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6530 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6531 } 6532 6533 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6534 std::vector<SDValue> AsmNodeOperands; 6535 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6536 AsmNodeOperands.push_back( 6537 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6538 TLI.getPointerTy())); 6539 6540 // If we have a !srcloc metadata node associated with it, we want to attach 6541 // this to the ultimately generated inline asm machineinstr. To do this, we 6542 // pass in the third operand as this (potentially null) inline asm MDNode. 6543 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6544 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6545 6546 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6547 // bits as operand 3. 6548 unsigned ExtraInfo = 0; 6549 if (IA->hasSideEffects()) 6550 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6551 if (IA->isAlignStack()) 6552 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6553 // Set the asm dialect. 6554 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6555 6556 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6557 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6558 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6559 6560 // Compute the constraint code and ConstraintType to use. 6561 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6562 6563 // Ideally, we would only check against memory constraints. However, the 6564 // meaning of an other constraint can be target-specific and we can't easily 6565 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6566 // for other constriants as well. 6567 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6568 OpInfo.ConstraintType == TargetLowering::C_Other) { 6569 if (OpInfo.Type == InlineAsm::isInput) 6570 ExtraInfo |= InlineAsm::Extra_MayLoad; 6571 else if (OpInfo.Type == InlineAsm::isOutput) 6572 ExtraInfo |= InlineAsm::Extra_MayStore; 6573 else if (OpInfo.Type == InlineAsm::isClobber) 6574 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6575 } 6576 } 6577 6578 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6579 TLI.getPointerTy())); 6580 6581 // Loop over all of the inputs, copying the operand values into the 6582 // appropriate registers and processing the output regs. 6583 RegsForValue RetValRegs; 6584 6585 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6586 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6587 6588 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6589 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6590 6591 switch (OpInfo.Type) { 6592 case InlineAsm::isOutput: { 6593 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6594 OpInfo.ConstraintType != TargetLowering::C_Register) { 6595 // Memory output, or 'other' output (e.g. 'X' constraint). 6596 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6597 6598 unsigned ConstraintID = 6599 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6600 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6601 "Failed to convert memory constraint code to constraint id."); 6602 6603 // Add information to the INLINEASM node to know about this output. 6604 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6605 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6606 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, MVT::i32)); 6607 AsmNodeOperands.push_back(OpInfo.CallOperand); 6608 break; 6609 } 6610 6611 // Otherwise, this is a register or register class output. 6612 6613 // Copy the output from the appropriate register. Find a register that 6614 // we can use. 6615 if (OpInfo.AssignedRegs.Regs.empty()) { 6616 LLVMContext &Ctx = *DAG.getContext(); 6617 Ctx.emitError(CS.getInstruction(), 6618 "couldn't allocate output register for constraint '" + 6619 Twine(OpInfo.ConstraintCode) + "'"); 6620 return; 6621 } 6622 6623 // If this is an indirect operand, store through the pointer after the 6624 // asm. 6625 if (OpInfo.isIndirect) { 6626 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6627 OpInfo.CallOperandVal)); 6628 } else { 6629 // This is the result value of the call. 6630 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6631 // Concatenate this output onto the outputs list. 6632 RetValRegs.append(OpInfo.AssignedRegs); 6633 } 6634 6635 // Add information to the INLINEASM node to know that this register is 6636 // set. 6637 OpInfo.AssignedRegs 6638 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6639 ? InlineAsm::Kind_RegDefEarlyClobber 6640 : InlineAsm::Kind_RegDef, 6641 false, 0, DAG, AsmNodeOperands); 6642 break; 6643 } 6644 case InlineAsm::isInput: { 6645 SDValue InOperandVal = OpInfo.CallOperand; 6646 6647 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6648 // If this is required to match an output register we have already set, 6649 // just use its register. 6650 unsigned OperandNo = OpInfo.getMatchedOperand(); 6651 6652 // Scan until we find the definition we already emitted of this operand. 6653 // When we find it, create a RegsForValue operand. 6654 unsigned CurOp = InlineAsm::Op_FirstOperand; 6655 for (; OperandNo; --OperandNo) { 6656 // Advance to the next operand. 6657 unsigned OpFlag = 6658 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6659 assert((InlineAsm::isRegDefKind(OpFlag) || 6660 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6661 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6662 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6663 } 6664 6665 unsigned OpFlag = 6666 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6667 if (InlineAsm::isRegDefKind(OpFlag) || 6668 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6669 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6670 if (OpInfo.isIndirect) { 6671 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6672 LLVMContext &Ctx = *DAG.getContext(); 6673 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6674 " don't know how to handle tied " 6675 "indirect register inputs"); 6676 return; 6677 } 6678 6679 RegsForValue MatchedRegs; 6680 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6681 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6682 MatchedRegs.RegVTs.push_back(RegVT); 6683 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6684 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6685 i != e; ++i) { 6686 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6687 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6688 else { 6689 LLVMContext &Ctx = *DAG.getContext(); 6690 Ctx.emitError(CS.getInstruction(), 6691 "inline asm error: This value" 6692 " type register class is not natively supported!"); 6693 return; 6694 } 6695 } 6696 // Use the produced MatchedRegs object to 6697 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6698 Chain, &Flag, CS.getInstruction()); 6699 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6700 true, OpInfo.getMatchedOperand(), 6701 DAG, AsmNodeOperands); 6702 break; 6703 } 6704 6705 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6706 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6707 "Unexpected number of operands"); 6708 // Add information to the INLINEASM node to know about this input. 6709 // See InlineAsm.h isUseOperandTiedToDef. 6710 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6711 OpInfo.getMatchedOperand()); 6712 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6713 TLI.getPointerTy())); 6714 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6715 break; 6716 } 6717 6718 // Treat indirect 'X' constraint as memory. 6719 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6720 OpInfo.isIndirect) 6721 OpInfo.ConstraintType = TargetLowering::C_Memory; 6722 6723 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6724 std::vector<SDValue> Ops; 6725 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6726 Ops, DAG); 6727 if (Ops.empty()) { 6728 LLVMContext &Ctx = *DAG.getContext(); 6729 Ctx.emitError(CS.getInstruction(), 6730 "invalid operand for inline asm constraint '" + 6731 Twine(OpInfo.ConstraintCode) + "'"); 6732 return; 6733 } 6734 6735 // Add information to the INLINEASM node to know about this input. 6736 unsigned ResOpType = 6737 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6738 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6739 TLI.getPointerTy())); 6740 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6741 break; 6742 } 6743 6744 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6745 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6746 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6747 "Memory operands expect pointer values"); 6748 6749 unsigned ConstraintID = 6750 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6751 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6752 "Failed to convert memory constraint code to constraint id."); 6753 6754 // Add information to the INLINEASM node to know about this input. 6755 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6756 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6757 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, MVT::i32)); 6758 AsmNodeOperands.push_back(InOperandVal); 6759 break; 6760 } 6761 6762 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6763 OpInfo.ConstraintType == TargetLowering::C_Register) && 6764 "Unknown constraint type!"); 6765 6766 // TODO: Support this. 6767 if (OpInfo.isIndirect) { 6768 LLVMContext &Ctx = *DAG.getContext(); 6769 Ctx.emitError(CS.getInstruction(), 6770 "Don't know how to handle indirect register inputs yet " 6771 "for constraint '" + 6772 Twine(OpInfo.ConstraintCode) + "'"); 6773 return; 6774 } 6775 6776 // Copy the input into the appropriate registers. 6777 if (OpInfo.AssignedRegs.Regs.empty()) { 6778 LLVMContext &Ctx = *DAG.getContext(); 6779 Ctx.emitError(CS.getInstruction(), 6780 "couldn't allocate input reg for constraint '" + 6781 Twine(OpInfo.ConstraintCode) + "'"); 6782 return; 6783 } 6784 6785 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6786 Chain, &Flag, CS.getInstruction()); 6787 6788 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6789 DAG, AsmNodeOperands); 6790 break; 6791 } 6792 case InlineAsm::isClobber: { 6793 // Add the clobbered value to the operand list, so that the register 6794 // allocator is aware that the physreg got clobbered. 6795 if (!OpInfo.AssignedRegs.Regs.empty()) 6796 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6797 false, 0, DAG, 6798 AsmNodeOperands); 6799 break; 6800 } 6801 } 6802 } 6803 6804 // Finish up input operands. Set the input chain and add the flag last. 6805 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6806 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6807 6808 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6809 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6810 Flag = Chain.getValue(1); 6811 6812 // If this asm returns a register value, copy the result from that register 6813 // and set it as the value of the call. 6814 if (!RetValRegs.Regs.empty()) { 6815 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6816 Chain, &Flag, CS.getInstruction()); 6817 6818 // FIXME: Why don't we do this for inline asms with MRVs? 6819 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6820 EVT ResultType = TLI.getValueType(CS.getType()); 6821 6822 // If any of the results of the inline asm is a vector, it may have the 6823 // wrong width/num elts. This can happen for register classes that can 6824 // contain multiple different value types. The preg or vreg allocated may 6825 // not have the same VT as was expected. Convert it to the right type 6826 // with bit_convert. 6827 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6828 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6829 ResultType, Val); 6830 6831 } else if (ResultType != Val.getValueType() && 6832 ResultType.isInteger() && Val.getValueType().isInteger()) { 6833 // If a result value was tied to an input value, the computed result may 6834 // have a wider width than the expected result. Extract the relevant 6835 // portion. 6836 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6837 } 6838 6839 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6840 } 6841 6842 setValue(CS.getInstruction(), Val); 6843 // Don't need to use this as a chain in this case. 6844 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6845 return; 6846 } 6847 6848 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6849 6850 // Process indirect outputs, first output all of the flagged copies out of 6851 // physregs. 6852 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6853 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6854 const Value *Ptr = IndirectStoresToEmit[i].second; 6855 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6856 Chain, &Flag, IA); 6857 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6858 } 6859 6860 // Emit the non-flagged stores from the physregs. 6861 SmallVector<SDValue, 8> OutChains; 6862 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6863 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6864 StoresToEmit[i].first, 6865 getValue(StoresToEmit[i].second), 6866 MachinePointerInfo(StoresToEmit[i].second), 6867 false, false, 0); 6868 OutChains.push_back(Val); 6869 } 6870 6871 if (!OutChains.empty()) 6872 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6873 6874 DAG.setRoot(Chain); 6875 } 6876 6877 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6878 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6879 MVT::Other, getRoot(), 6880 getValue(I.getArgOperand(0)), 6881 DAG.getSrcValue(I.getArgOperand(0)))); 6882 } 6883 6884 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6886 const DataLayout &DL = *TLI.getDataLayout(); 6887 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6888 getRoot(), getValue(I.getOperand(0)), 6889 DAG.getSrcValue(I.getOperand(0)), 6890 DL.getABITypeAlignment(I.getType())); 6891 setValue(&I, V); 6892 DAG.setRoot(V.getValue(1)); 6893 } 6894 6895 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6896 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6897 MVT::Other, getRoot(), 6898 getValue(I.getArgOperand(0)), 6899 DAG.getSrcValue(I.getArgOperand(0)))); 6900 } 6901 6902 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6903 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6904 MVT::Other, getRoot(), 6905 getValue(I.getArgOperand(0)), 6906 getValue(I.getArgOperand(1)), 6907 DAG.getSrcValue(I.getArgOperand(0)), 6908 DAG.getSrcValue(I.getArgOperand(1)))); 6909 } 6910 6911 /// \brief Lower an argument list according to the target calling convention. 6912 /// 6913 /// \return A tuple of <return-value, token-chain> 6914 /// 6915 /// This is a helper for lowering intrinsics that follow a target calling 6916 /// convention or require stack pointer adjustment. Only a subset of the 6917 /// intrinsic's operands need to participate in the calling convention. 6918 std::pair<SDValue, SDValue> 6919 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6920 unsigned NumArgs, SDValue Callee, 6921 bool UseVoidTy, 6922 MachineBasicBlock *LandingPad, 6923 bool IsPatchPoint) { 6924 TargetLowering::ArgListTy Args; 6925 Args.reserve(NumArgs); 6926 6927 // Populate the argument list. 6928 // Attributes for args start at offset 1, after the return attribute. 6929 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6930 ArgI != ArgE; ++ArgI) { 6931 const Value *V = CS->getOperand(ArgI); 6932 6933 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6934 6935 TargetLowering::ArgListEntry Entry; 6936 Entry.Node = getValue(V); 6937 Entry.Ty = V->getType(); 6938 Entry.setAttributes(&CS, AttrI); 6939 Args.push_back(Entry); 6940 } 6941 6942 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6943 TargetLowering::CallLoweringInfo CLI(DAG); 6944 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6945 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6946 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6947 6948 return lowerInvokable(CLI, LandingPad); 6949 } 6950 6951 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6952 /// or patchpoint target node's operand list. 6953 /// 6954 /// Constants are converted to TargetConstants purely as an optimization to 6955 /// avoid constant materialization and register allocation. 6956 /// 6957 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6958 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6959 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6960 /// address materialization and register allocation, but may also be required 6961 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6962 /// alloca in the entry block, then the runtime may assume that the alloca's 6963 /// StackMap location can be read immediately after compilation and that the 6964 /// location is valid at any point during execution (this is similar to the 6965 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6966 /// only available in a register, then the runtime would need to trap when 6967 /// execution reaches the StackMap in order to read the alloca's location. 6968 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6969 SmallVectorImpl<SDValue> &Ops, 6970 SelectionDAGBuilder &Builder) { 6971 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6972 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6973 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6974 Ops.push_back( 6975 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6976 Ops.push_back( 6977 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6978 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6979 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6980 Ops.push_back( 6981 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6982 } else 6983 Ops.push_back(OpVal); 6984 } 6985 } 6986 6987 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6988 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6989 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6990 // [live variables...]) 6991 6992 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6993 6994 SDValue Chain, InFlag, Callee, NullPtr; 6995 SmallVector<SDValue, 32> Ops; 6996 6997 SDLoc DL = getCurSDLoc(); 6998 Callee = getValue(CI.getCalledValue()); 6999 NullPtr = DAG.getIntPtrConstant(0, true); 7000 7001 // The stackmap intrinsic only records the live variables (the arguemnts 7002 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7003 // intrinsic, this won't be lowered to a function call. This means we don't 7004 // have to worry about calling conventions and target specific lowering code. 7005 // Instead we perform the call lowering right here. 7006 // 7007 // chain, flag = CALLSEQ_START(chain, 0) 7008 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7009 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7010 // 7011 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7012 InFlag = Chain.getValue(1); 7013 7014 // Add the <id> and <numBytes> constants. 7015 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7016 Ops.push_back(DAG.getTargetConstant( 7017 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7018 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7019 Ops.push_back(DAG.getTargetConstant( 7020 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7021 7022 // Push live variables for the stack map. 7023 addStackMapLiveVars(&CI, 2, Ops, *this); 7024 7025 // We are not pushing any register mask info here on the operands list, 7026 // because the stackmap doesn't clobber anything. 7027 7028 // Push the chain and the glue flag. 7029 Ops.push_back(Chain); 7030 Ops.push_back(InFlag); 7031 7032 // Create the STACKMAP node. 7033 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7034 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7035 Chain = SDValue(SM, 0); 7036 InFlag = Chain.getValue(1); 7037 7038 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7039 7040 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7041 7042 // Set the root to the target-lowered call chain. 7043 DAG.setRoot(Chain); 7044 7045 // Inform the Frame Information that we have a stackmap in this function. 7046 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7047 } 7048 7049 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7050 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7051 MachineBasicBlock *LandingPad) { 7052 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7053 // i32 <numBytes>, 7054 // i8* <target>, 7055 // i32 <numArgs>, 7056 // [Args...], 7057 // [live variables...]) 7058 7059 CallingConv::ID CC = CS.getCallingConv(); 7060 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7061 bool HasDef = !CS->getType()->isVoidTy(); 7062 SDValue Callee = getValue(CS->getOperand(2)); // <target> 7063 7064 // Get the real number of arguments participating in the call <numArgs> 7065 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7066 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7067 7068 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7069 // Intrinsics include all meta-operands up to but not including CC. 7070 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7071 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7072 "Not enough arguments provided to the patchpoint intrinsic"); 7073 7074 // For AnyRegCC the arguments are lowered later on manually. 7075 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7076 std::pair<SDValue, SDValue> Result = 7077 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 7078 LandingPad, true); 7079 7080 SDNode *CallEnd = Result.second.getNode(); 7081 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7082 CallEnd = CallEnd->getOperand(0).getNode(); 7083 7084 /// Get a call instruction from the call sequence chain. 7085 /// Tail calls are not allowed. 7086 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7087 "Expected a callseq node."); 7088 SDNode *Call = CallEnd->getOperand(0).getNode(); 7089 bool HasGlue = Call->getGluedNode(); 7090 7091 // Replace the target specific call node with the patchable intrinsic. 7092 SmallVector<SDValue, 8> Ops; 7093 7094 // Add the <id> and <numBytes> constants. 7095 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7096 Ops.push_back(DAG.getTargetConstant( 7097 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7098 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7099 Ops.push_back(DAG.getTargetConstant( 7100 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7101 7102 // Assume that the Callee is a constant address. 7103 // FIXME: handle function symbols in the future. 7104 Ops.push_back( 7105 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7106 /*isTarget=*/true)); 7107 7108 // Adjust <numArgs> to account for any arguments that have been passed on the 7109 // stack instead. 7110 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7111 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7112 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7113 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7114 7115 // Add the calling convention 7116 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7117 7118 // Add the arguments we omitted previously. The register allocator should 7119 // place these in any free register. 7120 if (IsAnyRegCC) 7121 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7122 Ops.push_back(getValue(CS.getArgument(i))); 7123 7124 // Push the arguments from the call instruction up to the register mask. 7125 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7126 Ops.append(Call->op_begin() + 2, e); 7127 7128 // Push live variables for the stack map. 7129 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7130 7131 // Push the register mask info. 7132 if (HasGlue) 7133 Ops.push_back(*(Call->op_end()-2)); 7134 else 7135 Ops.push_back(*(Call->op_end()-1)); 7136 7137 // Push the chain (this is originally the first operand of the call, but 7138 // becomes now the last or second to last operand). 7139 Ops.push_back(*(Call->op_begin())); 7140 7141 // Push the glue flag (last operand). 7142 if (HasGlue) 7143 Ops.push_back(*(Call->op_end()-1)); 7144 7145 SDVTList NodeTys; 7146 if (IsAnyRegCC && HasDef) { 7147 // Create the return types based on the intrinsic definition 7148 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7149 SmallVector<EVT, 3> ValueVTs; 7150 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7151 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7152 7153 // There is always a chain and a glue type at the end 7154 ValueVTs.push_back(MVT::Other); 7155 ValueVTs.push_back(MVT::Glue); 7156 NodeTys = DAG.getVTList(ValueVTs); 7157 } else 7158 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7159 7160 // Replace the target specific call node with a PATCHPOINT node. 7161 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7162 getCurSDLoc(), NodeTys, Ops); 7163 7164 // Update the NodeMap. 7165 if (HasDef) { 7166 if (IsAnyRegCC) 7167 setValue(CS.getInstruction(), SDValue(MN, 0)); 7168 else 7169 setValue(CS.getInstruction(), Result.first); 7170 } 7171 7172 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7173 // call sequence. Furthermore the location of the chain and glue can change 7174 // when the AnyReg calling convention is used and the intrinsic returns a 7175 // value. 7176 if (IsAnyRegCC && HasDef) { 7177 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7178 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7179 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7180 } else 7181 DAG.ReplaceAllUsesWith(Call, MN); 7182 DAG.DeleteNode(Call); 7183 7184 // Inform the Frame Information that we have a patchpoint in this function. 7185 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7186 } 7187 7188 /// Returns an AttributeSet representing the attributes applied to the return 7189 /// value of the given call. 7190 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7191 SmallVector<Attribute::AttrKind, 2> Attrs; 7192 if (CLI.RetSExt) 7193 Attrs.push_back(Attribute::SExt); 7194 if (CLI.RetZExt) 7195 Attrs.push_back(Attribute::ZExt); 7196 if (CLI.IsInReg) 7197 Attrs.push_back(Attribute::InReg); 7198 7199 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7200 Attrs); 7201 } 7202 7203 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7204 /// implementation, which just calls LowerCall. 7205 /// FIXME: When all targets are 7206 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7207 std::pair<SDValue, SDValue> 7208 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7209 // Handle the incoming return values from the call. 7210 CLI.Ins.clear(); 7211 Type *OrigRetTy = CLI.RetTy; 7212 SmallVector<EVT, 4> RetTys; 7213 SmallVector<uint64_t, 4> Offsets; 7214 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7215 7216 SmallVector<ISD::OutputArg, 4> Outs; 7217 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7218 7219 bool CanLowerReturn = 7220 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7221 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7222 7223 SDValue DemoteStackSlot; 7224 int DemoteStackIdx = -100; 7225 if (!CanLowerReturn) { 7226 // FIXME: equivalent assert? 7227 // assert(!CS.hasInAllocaArgument() && 7228 // "sret demotion is incompatible with inalloca"); 7229 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7230 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7231 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7232 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7233 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7234 7235 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7236 ArgListEntry Entry; 7237 Entry.Node = DemoteStackSlot; 7238 Entry.Ty = StackSlotPtrType; 7239 Entry.isSExt = false; 7240 Entry.isZExt = false; 7241 Entry.isInReg = false; 7242 Entry.isSRet = true; 7243 Entry.isNest = false; 7244 Entry.isByVal = false; 7245 Entry.isReturned = false; 7246 Entry.Alignment = Align; 7247 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7248 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7249 } else { 7250 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7251 EVT VT = RetTys[I]; 7252 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7253 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7254 for (unsigned i = 0; i != NumRegs; ++i) { 7255 ISD::InputArg MyFlags; 7256 MyFlags.VT = RegisterVT; 7257 MyFlags.ArgVT = VT; 7258 MyFlags.Used = CLI.IsReturnValueUsed; 7259 if (CLI.RetSExt) 7260 MyFlags.Flags.setSExt(); 7261 if (CLI.RetZExt) 7262 MyFlags.Flags.setZExt(); 7263 if (CLI.IsInReg) 7264 MyFlags.Flags.setInReg(); 7265 CLI.Ins.push_back(MyFlags); 7266 } 7267 } 7268 } 7269 7270 // Handle all of the outgoing arguments. 7271 CLI.Outs.clear(); 7272 CLI.OutVals.clear(); 7273 ArgListTy &Args = CLI.getArgs(); 7274 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7275 SmallVector<EVT, 4> ValueVTs; 7276 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7277 Type *FinalType = Args[i].Ty; 7278 if (Args[i].isByVal) 7279 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7280 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7281 FinalType, CLI.CallConv, CLI.IsVarArg); 7282 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7283 ++Value) { 7284 EVT VT = ValueVTs[Value]; 7285 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7286 SDValue Op = SDValue(Args[i].Node.getNode(), 7287 Args[i].Node.getResNo() + Value); 7288 ISD::ArgFlagsTy Flags; 7289 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7290 7291 if (Args[i].isZExt) 7292 Flags.setZExt(); 7293 if (Args[i].isSExt) 7294 Flags.setSExt(); 7295 if (Args[i].isInReg) 7296 Flags.setInReg(); 7297 if (Args[i].isSRet) 7298 Flags.setSRet(); 7299 if (Args[i].isByVal) 7300 Flags.setByVal(); 7301 if (Args[i].isInAlloca) { 7302 Flags.setInAlloca(); 7303 // Set the byval flag for CCAssignFn callbacks that don't know about 7304 // inalloca. This way we can know how many bytes we should've allocated 7305 // and how many bytes a callee cleanup function will pop. If we port 7306 // inalloca to more targets, we'll have to add custom inalloca handling 7307 // in the various CC lowering callbacks. 7308 Flags.setByVal(); 7309 } 7310 if (Args[i].isByVal || Args[i].isInAlloca) { 7311 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7312 Type *ElementTy = Ty->getElementType(); 7313 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7314 // For ByVal, alignment should come from FE. BE will guess if this 7315 // info is not there but there are cases it cannot get right. 7316 unsigned FrameAlign; 7317 if (Args[i].Alignment) 7318 FrameAlign = Args[i].Alignment; 7319 else 7320 FrameAlign = getByValTypeAlignment(ElementTy); 7321 Flags.setByValAlign(FrameAlign); 7322 } 7323 if (Args[i].isNest) 7324 Flags.setNest(); 7325 if (NeedsRegBlock) 7326 Flags.setInConsecutiveRegs(); 7327 Flags.setOrigAlign(OriginalAlignment); 7328 7329 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7330 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7331 SmallVector<SDValue, 4> Parts(NumParts); 7332 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7333 7334 if (Args[i].isSExt) 7335 ExtendKind = ISD::SIGN_EXTEND; 7336 else if (Args[i].isZExt) 7337 ExtendKind = ISD::ZERO_EXTEND; 7338 7339 // Conservatively only handle 'returned' on non-vectors for now 7340 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7341 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7342 "unexpected use of 'returned'"); 7343 // Before passing 'returned' to the target lowering code, ensure that 7344 // either the register MVT and the actual EVT are the same size or that 7345 // the return value and argument are extended in the same way; in these 7346 // cases it's safe to pass the argument register value unchanged as the 7347 // return register value (although it's at the target's option whether 7348 // to do so) 7349 // TODO: allow code generation to take advantage of partially preserved 7350 // registers rather than clobbering the entire register when the 7351 // parameter extension method is not compatible with the return 7352 // extension method 7353 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7354 (ExtendKind != ISD::ANY_EXTEND && 7355 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7356 Flags.setReturned(); 7357 } 7358 7359 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7360 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7361 7362 for (unsigned j = 0; j != NumParts; ++j) { 7363 // if it isn't first piece, alignment must be 1 7364 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7365 i < CLI.NumFixedArgs, 7366 i, j*Parts[j].getValueType().getStoreSize()); 7367 if (NumParts > 1 && j == 0) 7368 MyFlags.Flags.setSplit(); 7369 else if (j != 0) 7370 MyFlags.Flags.setOrigAlign(1); 7371 7372 CLI.Outs.push_back(MyFlags); 7373 CLI.OutVals.push_back(Parts[j]); 7374 } 7375 7376 if (NeedsRegBlock && Value == NumValues - 1) 7377 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7378 } 7379 } 7380 7381 SmallVector<SDValue, 4> InVals; 7382 CLI.Chain = LowerCall(CLI, InVals); 7383 7384 // Verify that the target's LowerCall behaved as expected. 7385 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7386 "LowerCall didn't return a valid chain!"); 7387 assert((!CLI.IsTailCall || InVals.empty()) && 7388 "LowerCall emitted a return value for a tail call!"); 7389 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7390 "LowerCall didn't emit the correct number of values!"); 7391 7392 // For a tail call, the return value is merely live-out and there aren't 7393 // any nodes in the DAG representing it. Return a special value to 7394 // indicate that a tail call has been emitted and no more Instructions 7395 // should be processed in the current block. 7396 if (CLI.IsTailCall) { 7397 CLI.DAG.setRoot(CLI.Chain); 7398 return std::make_pair(SDValue(), SDValue()); 7399 } 7400 7401 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7402 assert(InVals[i].getNode() && 7403 "LowerCall emitted a null value!"); 7404 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7405 "LowerCall emitted a value with the wrong type!"); 7406 }); 7407 7408 SmallVector<SDValue, 4> ReturnValues; 7409 if (!CanLowerReturn) { 7410 // The instruction result is the result of loading from the 7411 // hidden sret parameter. 7412 SmallVector<EVT, 1> PVTs; 7413 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7414 7415 ComputeValueVTs(*this, PtrRetTy, PVTs); 7416 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7417 EVT PtrVT = PVTs[0]; 7418 7419 unsigned NumValues = RetTys.size(); 7420 ReturnValues.resize(NumValues); 7421 SmallVector<SDValue, 4> Chains(NumValues); 7422 7423 for (unsigned i = 0; i < NumValues; ++i) { 7424 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7425 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7426 SDValue L = CLI.DAG.getLoad( 7427 RetTys[i], CLI.DL, CLI.Chain, Add, 7428 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7429 false, false, 1); 7430 ReturnValues[i] = L; 7431 Chains[i] = L.getValue(1); 7432 } 7433 7434 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7435 } else { 7436 // Collect the legal value parts into potentially illegal values 7437 // that correspond to the original function's return values. 7438 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7439 if (CLI.RetSExt) 7440 AssertOp = ISD::AssertSext; 7441 else if (CLI.RetZExt) 7442 AssertOp = ISD::AssertZext; 7443 unsigned CurReg = 0; 7444 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7445 EVT VT = RetTys[I]; 7446 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7447 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7448 7449 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7450 NumRegs, RegisterVT, VT, nullptr, 7451 AssertOp)); 7452 CurReg += NumRegs; 7453 } 7454 7455 // For a function returning void, there is no return value. We can't create 7456 // such a node, so we just return a null return value in that case. In 7457 // that case, nothing will actually look at the value. 7458 if (ReturnValues.empty()) 7459 return std::make_pair(SDValue(), CLI.Chain); 7460 } 7461 7462 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7463 CLI.DAG.getVTList(RetTys), ReturnValues); 7464 return std::make_pair(Res, CLI.Chain); 7465 } 7466 7467 void TargetLowering::LowerOperationWrapper(SDNode *N, 7468 SmallVectorImpl<SDValue> &Results, 7469 SelectionDAG &DAG) const { 7470 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7471 if (Res.getNode()) 7472 Results.push_back(Res); 7473 } 7474 7475 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7476 llvm_unreachable("LowerOperation not implemented for this target!"); 7477 } 7478 7479 void 7480 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7481 SDValue Op = getNonRegisterValue(V); 7482 assert((Op.getOpcode() != ISD::CopyFromReg || 7483 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7484 "Copy from a reg to the same reg!"); 7485 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7486 7487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7488 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7489 SDValue Chain = DAG.getEntryNode(); 7490 7491 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7492 FuncInfo.PreferredExtendType.end()) 7493 ? ISD::ANY_EXTEND 7494 : FuncInfo.PreferredExtendType[V]; 7495 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7496 PendingExports.push_back(Chain); 7497 } 7498 7499 #include "llvm/CodeGen/SelectionDAGISel.h" 7500 7501 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7502 /// entry block, return true. This includes arguments used by switches, since 7503 /// the switch may expand into multiple basic blocks. 7504 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7505 // With FastISel active, we may be splitting blocks, so force creation 7506 // of virtual registers for all non-dead arguments. 7507 if (FastISel) 7508 return A->use_empty(); 7509 7510 const BasicBlock *Entry = A->getParent()->begin(); 7511 for (const User *U : A->users()) 7512 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7513 return false; // Use not in entry block. 7514 7515 return true; 7516 } 7517 7518 void SelectionDAGISel::LowerArguments(const Function &F) { 7519 SelectionDAG &DAG = SDB->DAG; 7520 SDLoc dl = SDB->getCurSDLoc(); 7521 const DataLayout *DL = TLI->getDataLayout(); 7522 SmallVector<ISD::InputArg, 16> Ins; 7523 7524 if (!FuncInfo->CanLowerReturn) { 7525 // Put in an sret pointer parameter before all the other parameters. 7526 SmallVector<EVT, 1> ValueVTs; 7527 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7528 7529 // NOTE: Assuming that a pointer will never break down to more than one VT 7530 // or one register. 7531 ISD::ArgFlagsTy Flags; 7532 Flags.setSRet(); 7533 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7534 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7535 ISD::InputArg::NoArgIndex, 0); 7536 Ins.push_back(RetArg); 7537 } 7538 7539 // Set up the incoming argument description vector. 7540 unsigned Idx = 1; 7541 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7542 I != E; ++I, ++Idx) { 7543 SmallVector<EVT, 4> ValueVTs; 7544 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7545 bool isArgValueUsed = !I->use_empty(); 7546 unsigned PartBase = 0; 7547 Type *FinalType = I->getType(); 7548 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7549 FinalType = cast<PointerType>(FinalType)->getElementType(); 7550 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7551 FinalType, F.getCallingConv(), F.isVarArg()); 7552 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7553 Value != NumValues; ++Value) { 7554 EVT VT = ValueVTs[Value]; 7555 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7556 ISD::ArgFlagsTy Flags; 7557 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7558 7559 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7560 Flags.setZExt(); 7561 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7562 Flags.setSExt(); 7563 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7564 Flags.setInReg(); 7565 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7566 Flags.setSRet(); 7567 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7568 Flags.setByVal(); 7569 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7570 Flags.setInAlloca(); 7571 // Set the byval flag for CCAssignFn callbacks that don't know about 7572 // inalloca. This way we can know how many bytes we should've allocated 7573 // and how many bytes a callee cleanup function will pop. If we port 7574 // inalloca to more targets, we'll have to add custom inalloca handling 7575 // in the various CC lowering callbacks. 7576 Flags.setByVal(); 7577 } 7578 if (Flags.isByVal() || Flags.isInAlloca()) { 7579 PointerType *Ty = cast<PointerType>(I->getType()); 7580 Type *ElementTy = Ty->getElementType(); 7581 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7582 // For ByVal, alignment should be passed from FE. BE will guess if 7583 // this info is not there but there are cases it cannot get right. 7584 unsigned FrameAlign; 7585 if (F.getParamAlignment(Idx)) 7586 FrameAlign = F.getParamAlignment(Idx); 7587 else 7588 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7589 Flags.setByValAlign(FrameAlign); 7590 } 7591 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7592 Flags.setNest(); 7593 if (NeedsRegBlock) 7594 Flags.setInConsecutiveRegs(); 7595 Flags.setOrigAlign(OriginalAlignment); 7596 7597 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7598 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7599 for (unsigned i = 0; i != NumRegs; ++i) { 7600 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7601 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7602 if (NumRegs > 1 && i == 0) 7603 MyFlags.Flags.setSplit(); 7604 // if it isn't first piece, alignment must be 1 7605 else if (i > 0) 7606 MyFlags.Flags.setOrigAlign(1); 7607 Ins.push_back(MyFlags); 7608 } 7609 if (NeedsRegBlock && Value == NumValues - 1) 7610 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7611 PartBase += VT.getStoreSize(); 7612 } 7613 } 7614 7615 // Call the target to set up the argument values. 7616 SmallVector<SDValue, 8> InVals; 7617 SDValue NewRoot = TLI->LowerFormalArguments( 7618 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7619 7620 // Verify that the target's LowerFormalArguments behaved as expected. 7621 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7622 "LowerFormalArguments didn't return a valid chain!"); 7623 assert(InVals.size() == Ins.size() && 7624 "LowerFormalArguments didn't emit the correct number of values!"); 7625 DEBUG({ 7626 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7627 assert(InVals[i].getNode() && 7628 "LowerFormalArguments emitted a null value!"); 7629 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7630 "LowerFormalArguments emitted a value with the wrong type!"); 7631 } 7632 }); 7633 7634 // Update the DAG with the new chain value resulting from argument lowering. 7635 DAG.setRoot(NewRoot); 7636 7637 // Set up the argument values. 7638 unsigned i = 0; 7639 Idx = 1; 7640 if (!FuncInfo->CanLowerReturn) { 7641 // Create a virtual register for the sret pointer, and put in a copy 7642 // from the sret argument into it. 7643 SmallVector<EVT, 1> ValueVTs; 7644 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7645 MVT VT = ValueVTs[0].getSimpleVT(); 7646 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7647 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7648 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7649 RegVT, VT, nullptr, AssertOp); 7650 7651 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7652 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7653 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7654 FuncInfo->DemoteRegister = SRetReg; 7655 NewRoot = 7656 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7657 DAG.setRoot(NewRoot); 7658 7659 // i indexes lowered arguments. Bump it past the hidden sret argument. 7660 // Idx indexes LLVM arguments. Don't touch it. 7661 ++i; 7662 } 7663 7664 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7665 ++I, ++Idx) { 7666 SmallVector<SDValue, 4> ArgValues; 7667 SmallVector<EVT, 4> ValueVTs; 7668 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7669 unsigned NumValues = ValueVTs.size(); 7670 7671 // If this argument is unused then remember its value. It is used to generate 7672 // debugging information. 7673 if (I->use_empty() && NumValues) { 7674 SDB->setUnusedArgValue(I, InVals[i]); 7675 7676 // Also remember any frame index for use in FastISel. 7677 if (FrameIndexSDNode *FI = 7678 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7679 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7680 } 7681 7682 for (unsigned Val = 0; Val != NumValues; ++Val) { 7683 EVT VT = ValueVTs[Val]; 7684 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7685 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7686 7687 if (!I->use_empty()) { 7688 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7689 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7690 AssertOp = ISD::AssertSext; 7691 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7692 AssertOp = ISD::AssertZext; 7693 7694 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7695 NumParts, PartVT, VT, 7696 nullptr, AssertOp)); 7697 } 7698 7699 i += NumParts; 7700 } 7701 7702 // We don't need to do anything else for unused arguments. 7703 if (ArgValues.empty()) 7704 continue; 7705 7706 // Note down frame index. 7707 if (FrameIndexSDNode *FI = 7708 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7709 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7710 7711 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7712 SDB->getCurSDLoc()); 7713 7714 SDB->setValue(I, Res); 7715 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7716 if (LoadSDNode *LNode = 7717 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7718 if (FrameIndexSDNode *FI = 7719 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7720 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7721 } 7722 7723 // If this argument is live outside of the entry block, insert a copy from 7724 // wherever we got it to the vreg that other BB's will reference it as. 7725 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7726 // If we can, though, try to skip creating an unnecessary vreg. 7727 // FIXME: This isn't very clean... it would be nice to make this more 7728 // general. It's also subtly incompatible with the hacks FastISel 7729 // uses with vregs. 7730 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7731 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7732 FuncInfo->ValueMap[I] = Reg; 7733 continue; 7734 } 7735 } 7736 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7737 FuncInfo->InitializeRegForValue(I); 7738 SDB->CopyToExportRegsIfNeeded(I); 7739 } 7740 } 7741 7742 assert(i == InVals.size() && "Argument register count mismatch!"); 7743 7744 // Finally, if the target has anything special to do, allow it to do so. 7745 EmitFunctionEntryCode(); 7746 } 7747 7748 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7749 /// ensure constants are generated when needed. Remember the virtual registers 7750 /// that need to be added to the Machine PHI nodes as input. We cannot just 7751 /// directly add them, because expansion might result in multiple MBB's for one 7752 /// BB. As such, the start of the BB might correspond to a different MBB than 7753 /// the end. 7754 /// 7755 void 7756 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7757 const TerminatorInst *TI = LLVMBB->getTerminator(); 7758 7759 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7760 7761 // Check successor nodes' PHI nodes that expect a constant to be available 7762 // from this block. 7763 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7764 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7765 if (!isa<PHINode>(SuccBB->begin())) continue; 7766 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7767 7768 // If this terminator has multiple identical successors (common for 7769 // switches), only handle each succ once. 7770 if (!SuccsHandled.insert(SuccMBB).second) 7771 continue; 7772 7773 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7774 7775 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7776 // nodes and Machine PHI nodes, but the incoming operands have not been 7777 // emitted yet. 7778 for (BasicBlock::const_iterator I = SuccBB->begin(); 7779 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7780 // Ignore dead phi's. 7781 if (PN->use_empty()) continue; 7782 7783 // Skip empty types 7784 if (PN->getType()->isEmptyTy()) 7785 continue; 7786 7787 unsigned Reg; 7788 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7789 7790 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7791 unsigned &RegOut = ConstantsOut[C]; 7792 if (RegOut == 0) { 7793 RegOut = FuncInfo.CreateRegs(C->getType()); 7794 CopyValueToVirtualRegister(C, RegOut); 7795 } 7796 Reg = RegOut; 7797 } else { 7798 DenseMap<const Value *, unsigned>::iterator I = 7799 FuncInfo.ValueMap.find(PHIOp); 7800 if (I != FuncInfo.ValueMap.end()) 7801 Reg = I->second; 7802 else { 7803 assert(isa<AllocaInst>(PHIOp) && 7804 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7805 "Didn't codegen value into a register!??"); 7806 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7807 CopyValueToVirtualRegister(PHIOp, Reg); 7808 } 7809 } 7810 7811 // Remember that this register needs to added to the machine PHI node as 7812 // the input for this MBB. 7813 SmallVector<EVT, 4> ValueVTs; 7814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7815 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7816 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7817 EVT VT = ValueVTs[vti]; 7818 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7819 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7820 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7821 Reg += NumRegisters; 7822 } 7823 } 7824 } 7825 7826 ConstantsOut.clear(); 7827 } 7828 7829 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7830 /// is 0. 7831 MachineBasicBlock * 7832 SelectionDAGBuilder::StackProtectorDescriptor:: 7833 AddSuccessorMBB(const BasicBlock *BB, 7834 MachineBasicBlock *ParentMBB, 7835 bool IsLikely, 7836 MachineBasicBlock *SuccMBB) { 7837 // If SuccBB has not been created yet, create it. 7838 if (!SuccMBB) { 7839 MachineFunction *MF = ParentMBB->getParent(); 7840 MachineFunction::iterator BBI = ParentMBB; 7841 SuccMBB = MF->CreateMachineBasicBlock(BB); 7842 MF->insert(++BBI, SuccMBB); 7843 } 7844 // Add it as a successor of ParentMBB. 7845 ParentMBB->addSuccessor( 7846 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7847 return SuccMBB; 7848 } 7849